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1. INTRODUCTION

In a direct detection of statistics (Braunstein, 199); Braunstein and Caves,
1990 in a single-mode photon field we count the number of photons in the field
mode of interest. The probability for counting n photons, called the photon count
distribution, 15 given by

F, = {n|pln},

where |n} 15 a phoon-number eigenstate and p 15 a density operator. However,
the direct detection cannot differentiate between the quadratures. All practical
phase-sensitive measurements require a reference beam, to act as a phase refer-
ence, commonly called the local oscillator. This beam has to be phase locked 1o
the input, otherwise itcannot provide a phase reference 1o distinguish between the
quadratures. If the local oscillator is resonant with the system field, that is has the
same frequency as the input, then this type of measurement is known as homaodyne
detection. Alternatively, if the local oscillator is detuned, that is, frequency shifled
from the bandwidth of the system field, then this is known as heterodyvne detection.
It 15 usually assumed that the observable measured by the homodyne detector 1s
one of the field quadratures and that by the heterodyne detector is both the field
quadratures.
The @ function defined by

Ma) = {olpla),
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where |o) 15 a coberent state, provides a normalized phase-space probability dis-
tribution, (Ma)/m, for & quantum system. (o) can be measured in a series of
optimized simultaneous measurements of two orthogonal quadrature components,
because (M) /m gives directly the statistics of such measurements. This means
that in optical frequency detection, (e )/ gives the statistics of heterodyne de-
tection that measures orthogonal quadrature components of the statistics of a pair
of homodyne detectors whose local oscillators have relative phases corresponding
Lo measunng orthogonal quadrture components.

Homodyne detection is a well-established method for measuring phase-
senitive properties of light. Usual process is 1o superimpose a signal field with a
much stronger local oscillator. As a consequence the resulting field is rather strong
and can be detected with photodiodes. In such ascheme a photocumrent 1s produced,
which may be weated classically. Nevertheless, from the statistical propernies of
this classical current one may get some insight into the nonclassical statistics of
light.

In recent years {Das, 1998, 1999ab, 2001a.b), we have smdied coherent
viectors, phase vectors, coherent phase vectors, ke vectors, and squeezed vectors
in the setting of a deformed Hilbert space and plan to study here their direct,
heterodyne, and homodyne statusues in this generalized setting. Here, we adopt the
viewpoint of Vogel and coworker { 1990, 1991) to study the statistics of different
vectors so far generalized.

The work is organized as follows. In section 2, we give a brief description of
preliminaries and notations. In section 3, we study the statistics of photon count. In
section 4, we describe the statistics of heterodyne detection. In section 3, 1o study
the statistics of homodyne detection we first find field strength vector and then, in
section 6, through various examples we describe homodyne statistics of different
viectors under consideration. Finally, we give a conclusion.

2. PRELIMINARIES AND NOTATIONS
We consider the set
H, = |_,|F o= Eﬂ,,;" where Z[HI!;H,,?E < oo,
where [n] = %= O=<g<l.

For f.g € Hy, f(z) = Y joyanz", g(2) = Y iey buz" we define addition and
scalar multiplication as follows:

(f +g)(z)= flz)+glz)= Z[n,. + by )" (1)

n=(}
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and

Ao fizd=do flz) = Z)-.ﬂ,,-“_ (2)

a=l}

It is easily seen that H, forms a vector space with respect to usual pointwise
scalar mullipIiL.iLiun and pointwise addition by (1) and (2). We observe that e, (z) =
Z:‘_“ it belongs o H,.

Now we define LhL inner product of two functions f(z) =% a

3 by belonging to H, as

=M
()l

and g(z) =

(fg)=" [nlld.by. (3)
Corresponding nomm 15 given by
1A =Cf ) =2 [nllal® < cc.

With this norm derived from the inner product it can be shown that H, is a
complete normed space. Hence H, forms a Hilbert space.

In a recent paper (Das, 1998, 1999a) we have proved that the set {x,—]:_;., n=
0,1,2, 3, ..} forms a complete othonormal set. If we consider the following
actions on M

Tf, = VInlfo_1.
T‘ﬁl — 'l."'[” + ]'I.-f.'|+l"

where T is the h.h_ kward- shift and is adjoint T* is the forward-shift operator on
H, and fu(z) = I then we have shown (Das, 1998, 1999a) that the solution of
the following ngtnvalw, equation
Tfe = tfa (5)
15 given by
fo = eg(laf) " e (6
! Z T

=iy

We call f, a coherent vector in H,.

3. STATISTICS OF PHOTON COUNT

In this section we shall describe stanstcs of direct detecton, that s, the
probability distribution P, of different vectors under consideration.



3.1. Incoherent Vectors

For the incoherent vectors (Das, 2001b) we take the density operator 1o be

p=""pulfullhil,

n=(}
with
=
pez0 and Y po=1.
a=(}

Then we calculate photon count distribution Py, as

-F.ll = fﬁls Iﬂﬁl} = Zpur{fu: _f;lr}{fms _.f.ll} = M-

ar=(}

3.2. Coberent Vector
For the coherent vectors f, (Das, 1998),

. L
-'f"-" :'Eﬁl'f;‘at b Zﬁfﬂ-

=l

We take the density operator o be
p=Ifalfal,  a=lale™
and caleulate the photon count distnbuton By, as
Py = (fu. pfa)
= (fus LM fal )
= I{fas S

 lod™
[n]!

: 2n
= e,(|axl")”

3.3. Coberent Phase Vector
For a coherent phase vector fi (Das, 1999h),

(7)

(8)

i

(10

Y in +[0])---(g"+[n—1
fo = ®(BP) '*'Zﬁ“,'./ st = s
a=l} '

”J‘J., (11)
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with |#] < 1 and

g+ [01)---(g" +[n—11)

e =Y 1B

o [r]!
We take the density operator o be
p=|faHfsl
and calculate the photon count distribution Pin) as
Fu = (fas pfa)
= (fos LfgH Sl fi)
= 1(fus F°

(g +[0])---(g" +[n—1])

= (I

[m]!
3.4, Kerr Vector
For a kerr vector ¢¢* (Das, 1999b),
':; MN{N—1)
‘:‘1': = &g .-fr.r

[= &)

Z .ll_.f.lls
where

by "3;»-|.'|I1|J|I—I:|

: (1}
ky = e (a2

T
We take the density operator 0o be
p=loa (o |
and calculate the photon count distribution Pin) as
P(n) = (fu, pfu)
(s b2 Nt £2)
(e 85I

el

|EEF K (O =IE
[m]! | i |-
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i12)

i13)

(14)

(15)

(16)

(17)

(18)



1.5, Squeezed Vecior
For a squeeeed vector f (Das, 2001a),

_ e T T i [‘m—1|II
J‘--=[Z [2n]!! ] Z \ N fan- (19)

a=lh n=lh
We take the densily operator o be
p= LA (20
and caleulate the photon count distnbution Pl ) as
P(n) = (fu. pfa)
= (fus il Fslfu)
= 1(fu, SOF

[“.qﬂm—uurgmm—uu )
2 k] e 2

a=l}

4. STATISTICS OF HETERODYNE DETECTION

In this section we shall describe statistics of heterodyne detection, that is, the
probability distribution (Ha) /7 of different vectors under consideration.

4.1. Incoherent Vector

For the meoherent vectors (Das, 2000h) we take the density operator 1o be

p=2_ palfulifil, (22)

n=(}

with

=
Pe =0 and Zp,, =1,

a=()

Then we calculate phase-space probability distribution Ma)/m as
Qla)/m = 1/a(fa, pfe)

=unzmmmnk

n=l}

= 1/me, (o)™ Ep,,'a' (23)

For
n=(} [’ I
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4.2. Coherent Veclor

For the coherent vectors f, (Das, 1998),

: e @™
oo = egleP)” ) T

a=i)
We take the density operator 0o be
p = |ful forls 0’ = |a|e™
and calculate the phase-space probability distribution Qo) /7 as
Qla)im = 1/aife of.)
= /7 fas | for M S| o)
= 1/ |(far for)I

= 1/me,(lal’) " e, (laT) " e (@)

4.3. Coherent Phase Vector

For a coherent phase vector fi (Das, 1999h),

/fq+[ﬂ|}l---fq“+[n—1|}l
\

2R 2y —1,2 - I
fo=®(pH~'12Y p T

a=l)

with || < | and

@B =Y 1B (g +10D):---(g" +[n—1])

a=l} [HI!
We take the density operator 0o be
p=|falifal

and caleulate the phase-space probahility distribution Qo) /m as

Qla)/m = 1/a(fu. pfa)
Va(fe l fatlfalfa)
1w | fas SO
/m (B egla )~ |@@p).

1637

(24

(25)

(26)

27)

(28)
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44. Kerr Vector
For a kerr vector ¢.* (Das, 1999b),

L N(N—1)

ok = IV,

o
=Y kufu, (31)
n=()

where
_ty2 @ ylaldnl =)
k, =quEﬂE'J} |,zﬁﬁ;r ] (32)

We take the density opertor o be
p= |65 )io: | (33)
and calculate the phase-space probability distribution (e )/ as

Limi fo. ofa)
L ( fu |2 b | £2)
L | (fur 05)

Qa)/m

X i nl[n]- 2
= lf.ﬂ'fqﬂﬂﬁ"}_z Z [ﬂ‘!E I Eq}?'l Klal—13 ) {34}
|J|=ﬂ [HI' |

4.5. Squeezed Vector
For a squeezed vector f; (Das, 2001a),
[Z[ el ’[!7;“1,'”]_'“% - m (35)
a=th =)
We take the density operator o be
p=FfHKl (36)
and calculate the phase-space probability distribution (He )/ as
Qo) jm = 1/ fo, pfa)
L/ fiaps fiaH Fial fa)
Ll o £OF
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=

e oo [2n — 10N -
= 1/me (o] I[Z'ﬂ"l W]

a=l}

| e L1 (37)
E*r'[_mp T '

Jl—i!

5. STATISTICS OF HOMODYNE DETECTION

Homodyne detection measures a quadrature component which is the field
aperator

E(p)=e""T —e"T*,

where ¢ is a phase determined by the phase of the local oscillator. The statistics of
homodyne detection, that is, the probability distribution Pi{E(¢)) of the quadrature
component 15 given by

PLE(@)) = (E(¢), pEig)),
where Eigh) denotes an arbitrary vector satisfying the equation
(T —*THE(@$) =0

and o 15 a density operator. The operators T oand T are elaborated in section 2
1t is called a field-strength vector E(gy). We shall find the probability distribution
at the particular field value Eigh) = 0. Before we proceed to find the homodyne
statistics of various vectors under consideration we find the field-strength vector
at the ongin E(g) = (0.

5.1. Generation of Field-Strength Vector

The field-strength vector at the origin E(gy) = 0 is generated by the action of
e7*T — ¢*T* on an arhitrary vector fy in H, (Das, 1998), which satisfies the
following equation

(e™*T — T f3 = 0, (38)
where
o o o
fal@) =) " =) any/Inllful2) (39)
n=(} n=(}
or
o

.-f.ﬂ = Z fy 'l."lllm..ﬁl .

=iy
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We have
= ]
e?Tfy = ZE‘_'&I!,, -,,-"{TTf
=l
= ]
= Zfﬂ.d’ﬂu \'fm\'fm n—1
n=I
=
= Ze-"-*n,,ﬂ JIin + 11/n+ 115, (40)
a=l)
and

=
e"'*T'_f}, - Ze‘"*:a,, VT £,

a=(}

=
Ze“‘”:a,, .,‘.-""[HT.,..-'[H+ 1] fieg1- (41}

a=(}

Now from (38)—(41) we observe that a,, satisfies the following difference equation:

e %a,  Jin + 111/In+ 1] =e*a,_,/In — 111y/[n] (42)

That is,
gy = 2% 31 5| (43)
" Jnt iyt
and
i =1 {44}
Hence,
E”«.-f[UI' J[_
Jen v

o e YRIVBI g VIIWVION VBIVITT
VAT e JEvEt
EQJ&VI'[T[VI'[T ef...,;v"[TV’[T[m ‘\"'I'[T‘V'"T\""—
—C VeV T VenVETET VAT

and so on. Thus,

1 [n—n
Jon JDalt

= Pl
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and
dy=ay=ds=---=dgr_| =L
Thus, fi satisfying (38) has the form
. —— \ [2n — 111 |
fi=) an/inllfy=ap) e"¥® [— ——f>,. (45)
: ; v ; [2n]!!

To normalise we have

[2n — 1]

1= (fa fa) = laol® Z ; (46)

n|!!
n=(} [ = I
Thus, aside from a trivial phase we have

= [2n— 1712
ay = [ZW] (47)

=l

and the field-sirength vector at the origin fg takes the form

?n—lll e 2n — 1]
Henceforth, we shall denote this veclor as
() = 0 = [iw] Z o (BI04
e [2n]!! e [2r]!!

6. EXAMPLES

We now calculate homodyne statistics for varous vectors under consideration.

6.1. Incoherent Vector
For the incoherent vectors (Das, 2001b) we take the density operator 1o be
=
0= ZPuEﬁuHﬁuL (_'_:Iﬂ::l
a=()
with

=
py =0 and Zp,, =1.

L]
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Then we calculate homodyne distrdbution P{E(¢) =) as

P(E@@)=0) = (E(¢) =0, pE(¢) =
= Zp,.rw{m =0, f)l?
n=(}
Z [Z[?n—ull] 'ii g |In = 111!
= F: €
Jl—i?P =i [2;1'” | =l [”I”

6.2. Coherent Vector
For the coherent vectors f, (Das, 1998),
Fu=e Py j;ﬂ
We take the density operator Lo be
p=Iflfal, a=lale®
and calculate homodyne distribution P{E{¢) =0} as
PIEG =0 =(Eig)=0.pE(d) =)
= (E@) =0, | fulfu| E@) =
= (E@) =0, fu)I’

o O [2"_1|“ =
= g, {la|) I[ZW]

n=(}
2

[ — 1] &" |_
|.

X!ZEW [nl!!” T

a=l)

6.3. Coherent Phase Yector

For a coherent phase vector fg (Das, 1999h),

g +[0D---(g"+[n—1]
Jq o n i

S 2—1,2 S "
fa=o0BP)' 7Y 8 =

a=(}

with [f] < | and

(g +[0D---(g" + [n— 1]}
[z]! ;

e =Y 1B

a=i)

(31)

(53)

(34)

(55)

(56)
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We take the densily operator o be
p = fallfal (57)
and calculate homodyne distribution P{Ei{¢) = 0) as
P(E(¢) =0) = (E(¢) = 0, pE(¢) =
= (E(¢) = 0. | fa} {fp| E(d) = 0)
= (E(@) =0, fa)*

2.1 ["_]-III 1 & ings ln — 1] =
= ‘Df;ﬁt ::' Z [7HI|| |ZE [HI” Jﬁ

n=(} | n=l}

g +[0D---(g"+[n—1] b
* J [m]! | ’ (58)
6.4, Kerr Vector
For a kerr vector ¢ (Das, 1999b),
";'f _ Eey.ﬂ.-'g.w—nﬁr
[= &
= Zkufan EE";‘::I
=)
where
. a2 @ Spfaklal-1)
ky = ey llal?) mf.-,r : (641

We take the density operator 0o be
p = |0 e | 61)
and calculate homodyne distribution P{Eig¢) = 0) as
PIE@) =0 =(Eig¢) =0, pEigh) =
= (E(¢) = 0, |§¥ g% |E@) = 0)
= [(E@) = 0,9¥)[

_ 25— AT 2 e f P— 1L, : ”
_[Z [2n]!! ] |Z [n]! I‘! @)

n=(} Jl—ii
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6.5. Squeezed Vecior
For a squeezed vector f, (Das, 2001a),

'-'.ll[ ”_]'III g [7!!—1|”
[Zl I’ [Zn]!! ] Zﬂ‘. ]‘ [jHIH f:'-ll (63)

=t} n=h
We take the density operator Lo be
g =1FfHE (64}
and calculate homodyne distribution P{E(¢) = 0) as
P(E(¢) =0) = (E(¢) =0, pE($) =
= (E(¢) =0, fi}{ | E(@) =0)
= [(E(¢) =0, f,I*
[z; T e
e e I

[7:: —Fi

'-'mdr "

a=i}

7. CONCLUSION

In conclusion, we have studied the statistics of direct, heterodyne, and ho-
modyne detection for several vectors under consideration. Using field-strength
eigenveclors we have given a prescription for the measurement of the distibution
using a balanced homodyne detection scheme in the deformed case.

REFERENCES

Braunstein, 5. L. (1990). Homodyne statistics. Physicad Beview A 42, 474451,

Braunstein, 5. L. and Caves, C. M. (199]). Phase and homodyne statistics of generalized squeezed
states, Physical Review A 42, 41154119,

[ras, P KL (1998). Eigenvectors of backwardshift on a deformed Hilben space. furemarional fowmal
af Thearetical Physics X7(9), 2363,

[ras, BKL {19994). Erratum: Eigenvectors of backwardshift on a deformed Hilbent space. fntermational
Jowmal of Theoretical Physics 38(7), 2063,

[has, BKL {19949 ). Phase distribution of kerr vectors in a detormed Hilbent space. faremarional fowmal
af Thearetical Physics 38(6), 1807,

[has, PK.L (2001 a). Squeezed veotor and its phase distnbution in adeformed Hilbert space. fntermasional
Jowmal of Theoretical Physics 44, 205,



Homodyne Statistics of a4 Vector in a Deformed Hilbert Space 1645

[has, P K. (2001h). Monlinear phase changes in a deformed Hilben space. fnrernatonal Jonmal af
Thearetical Physics 404, 217,

Wogel, W, { 1990). Field-strength probability distibutions and higher-ordersqueezing. Physical Review
A 42, 57545757,

Wogel, W. and Schleich, W. { 1991). Phase distibution of a quantum state without using phase states.
Fhysical Review A 44, 764276446,



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg

