Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation
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We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin
horizontal layer of slowly rotating zero- Prandtl-number Boussinesq fluid confined between stress-free conduct-
ing boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves
along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value.
Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.

L INTRODUCTION

The study of thermal convection in very low-Prandtl-
number ( P= k<5 1) fluids has been motivated by theoret-
ical interests in the problems of astrophysics [ 1-4]. geophys-
ics [5], and wrbulence [2.3], as well as its potential industrial
applications in the problems of erystal growth [6.7] and heat
ransport in liguid metals [8.9]. In addition, both experimen-
tal and theoretcal investigations of thermal convection at
very low P have also contributed 1o our undersianding of the
mechanism of pattern-forming instabilities [10-16] in an ex-
ended dissipative system. The hydmodynamics, in Bouss-
inesq approximation [17], is govemed by two nonlinearities.
The first, v- Vv, describes the self-interaction of the velocity
ficld ¥ and the second, v- V&, results from the mteraction of
the velocity field and the deviation # from the conductive
temperature field due w convection. These two nonlinearities
are responsible for varous instabilities and their saturation.
Al the onset of thermal convection in Boussinesq fluids con-
fined between the conducting boundaries the straight [two-
dimensional (2D)] rolls appear [17] The nonlinear term
v- Vv does not sawrate the temporally growing amplitude of
the straight rolls just above the onset of convection in the
presence of stress-free flat boundaries. 1t happens because
v-Wv yields zero for 2D rolls near the onset. The growing
amplitude of 2D mlls 1s satumled by the nonlinearity
v-V i In the asymptotic limit of vanishing Prandd number
( #—0), the nonlinearity v-V # in the heal equation is con-
sidered negligible [1] and, therefore, dropped. The set of 2D
rolls with their amplitude growing exponentially in time,
which is the exact solution of the linear system for R=R .,
then becomes an exact solution of the nonlinear hydrody-
namical system in the close vicinity of the instability onset.
Some of the 3D nonlinear solutions {e.g., squares and hexa-
zons), which arse due o the nonlinear superposition of two
or more sets of straight rolls, also fail © saturale the insta-
bility [18]. The limit has been, therefore, considered a com-
plicated singular limit [19] for a long time. The nonsaturation
of the instability is also known 1o occur in the case of inertial
convection [20], where v- Vv is compensated by a pressure
gradient. A careful 3D direct numerical simulation (DNS) of
Boussinesq equations i the limit of zero Prandtl number by
Thual [14] showed saturation of the instability instead of

indefinite temporal growth. He considered all possible modes
for the vertical vorticity compatible with stress-free bound-
ades. When the growing amplitude of 2D rolls becomes
large, wavy perturbations  are  spontaneously  generated.
These perturbations make rolls wavy along their axis. The
exchange of energy between the waves and the straight rolls
leads 1o the saturation of convective instability. The instabil-
ity is self tuned [15] as they appear when the amplitude of
the straight rolls grows above a large value with all bifurca-
tion parameters (e.g., Rayleigh number B, Taylor number T,
wave numbers k and g) kept fixed. The new bifurcation is
nonlocal and forwand.

We present, in this paper, a theoretical study of thermal
convection in slowly rotating Boussinesq fluids of zero
Prandil number confined between conducting stress-free flat
boundaries. The system shows interesting nonlinear dynam-
1¢s. The hinear stability shows that the principle of exchange
af stability is vahd for T=277Y/8. The critical Rayleigh
number R, and the eritical wave number &y, for the oscilla-
tory convection are independent of Taylor number T in this
limit. The nonlinear convection for small mtation rates is
mvestigated by constructing a 12-mode dynamical system
isee Appendix B) from the full hydrodynamical equations.
We show that the convection sets i as temporal quasiperi-
odic waves for Taylor number T above a critical value T, ,
although the principle of exchange of stability 15 vahd al
these Taylor numbers. To the best of our knowledge, the
possibility of fluid flow varying quasiperodically in time al
the onset of the first instability has not been studied before
for hydrodynamical systems. Earlier observations of quasip-
eriodic flows [21] in other Auid-dynamical systems were re-
ported at the onsel of secondary instability and not at the
primary instability as is the case here. The generation of two
independent frequencies is the result of an interaction be-
tween stationary instability and self-tuned waves in the pres-
ence of Coriolis force. For the values of Taylor number be-
low T, , the convection occurs in the form of 3D wavy molls
as is the case in the absence of rowton. The model also
shows the possibility of a transition from one wavy solution
to another through a narow window of period-doubling in-
stability. We have also verified the stability of these standing
waves agmnst raveling waves,
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. HYDRODYNAMICAL SYSTEM

We consider a thin layer of 8 Boussinesq fluid of infinite
horizontal extension subjected to a uniform adverse lempera-
wre gradient B across the fluid layer, and a rigid body rota-
tion with an angular velocity £} about the vertical axis. The
fluid is assumed o have uniform values of the kinematic
viscosity  and the thermal diffusivity s. The basic state is
the conductive state with no fluid motion in the rotating
frame of reference. The convective flow, in the limit of zero
Prandil number, is then described by the following system of
dimensionless hydmdynamic cquations:

3,(V203) =V + RV 60— Tow,— 8-V
*[(e-Viv—(v-Vie], (1)

3,03= V2w +Tav;+[ (e Vivy—(v-Viws]  (2)

Vig=—uv,, i3

where wix,v.z.0)=(vta,03) is the wvelocity field,
#x,v.z.0) the deviation in temperature field from sweady
conduction profile, and w=1(w | ,w, w5) =V v the vorticity
ficld in the fluid. In the above, length scales are made dimen-
sionless by the thickness o of the fluid layer, time by the
viscous time scale d”/v, and the temperature field by
(Bd )/ k. Rayleigh number R = ceg Bd™/vic and Taylor num-
ber T=40%d"/v* are the two-dimensionless external param-
eters. The unit vector &, is directed vertically upward. We
mmpose periodic boundary  conditions in horizontal plane.
This introduces two fundamental wave numbers £ along x
axis and g along v axis. The stress-free boundary conditions
mply d.uv,;=d.vs=v3=0 at z=(0.1. Thermally conducting
horizontal boundaries yield #=0 at z=0,1. The hydrody-
namical Egs. {1)—(3) are the same as those derived by Chan-
drasckhar [17]. We have made the fields also nondimen-
sional, and have considered the case of zem P. We have also
eliminated the pressure field from Navier-Stokes equations
by taking the curl twice on the momentum equation and
using the incompressibility condition (¥ -v=0).

IIL LINEAR STABILITY ANALYSIS

The linear stability analysis of the Rayleigh-Benard con-
vection with Conolis force has been done by Chandrasekhar
[17]. The ecrtical Rayleigh number R.(T) and the critical
wave number & 7T) for stationary convection are indepen-
dent of the Prandtl number P. So, they remain unchanged in
the limit of zero Prandil number They may be writlen as
RAT)=3[ 7 +k3 T} and k (T)= w1, +1,— 1/2, where

J T " T'E 1'I."3] 14
f'-f—( =277 T3] |-

In the absence of rotation, k& (T=0) and R (T=10) 1ake their
standard values, which are w/v2 and 2774, respectively.
The critical Rayleigh number Ry T) and the critical wave
number ky( T) for the oscillatory instability in rotating fluids
depend, in general, on the Taylor number T as well as the
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Prandtl number P. In the hmit of zemo P, however, kgl T)
= 7/vZ wrns out to be independent of T. The eritical Ray-
leigh number B, T)=27%"/2 is also independent of T. The
angular frequency g, at the onset of oscillatory convection,
is given by wj=2(T—27%"/8). The angular frequency w,,
is real, if the Taylor number T is above a fixed value T
=277 /8. The principle of exchange of stability is, therefore,
valid at the onset of thermal convection in rotating Bouss-
inesq fluids of zero Prandll number, if T=T,. The oscilla-
tory convection is possible for T=T,. However, the oscilla-
tory conveclion may occur as the pomary instability onfy if
Ry=R_(T). This happens for the values of Taylor number
T=T, (=54470025£0.00005). The thermal convection
in the limit of P—{) shows a bicritical point at T=T,,, when
the stationary and the oscillatory solutions coexist.

IV. THE MODEL

The straight rolls, just above the onset of zero-Prandtl-
number convection, are not the exact solution of the nonlin-
ear hydrodynamic system with rotation as is the case in the
absence of rotation. The only melevant nonlinearity v- Vv
does not yield zero. Nevertheless, 2D rolls are not saturated
close o the instability onset. The saturation occurs only be-
cause of the nonlinear interaction of 2D rolls with 3D wawvy
perturbations, which make the rolls wavy along their axis. To
understand the nonlinear behavior close 1o the onset of con-
vecton, we construct a consistent minimal-mode model us-
ing Galerkin technigue [24]. We expand the vertical velocity
vy and the vertical vorticity w5 in Fourier series compatible
with the stress-free boundary conditions and conducting ther-
mal boundary conditions. As the DNS, in absence of rota-
tion, showed standing patterns [14] instead of traveling pat-
terns, we expect similar behavior at least for small rotation
rates. Therefore, we expand the fields with real Fourier co-
efficients. This lead o the following expansion for the verti-
cal velocity and the vertical vorticity for a minimum-mode
model.

valx,y.o.00= Wy (theos kx sin
+ W (fcos k. xcos gy sin 7z
+ Wi (r)sink, xsingy sin 7z

+ Wy alfeos gy sin 2z ++ -+ i4)

walx, v, 2.0 = gl fleos kox cos wo+ Syl thcos gy

+ &l eos k xeos gy cos wz

+ I (nsink, x singy c0s Wz

+ {pialtdeos gy cos 2wz + faggl £ heos 2k,x
+ Eaqpl theos 2k, xcos gy

+ {3l thsin 2k csingy 4+ . (5)

The solenoidal character of the velocity and the vorticity
ficlds yield their horzontal components (see, Appendix A).
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The thermal fluctuation #1s slaved o this limit, and may be
computed easily from Eq. (3).

The mode selection 1s guite systemabic. As rotation
couples the vertical velocity and the vertical vorticity lin-
early, we have selected the mode £ for the verical vortic-
ity. The wavy mode £ 15 the most dangerous at very low P,
and, therefore, retained. All other modes appear through the
nonlinear interaction of these vorticity modes with the criti-
cal velocity mode Wy and higher order velocity modes. As
the vorticity field is crucial for the satumtion of convection
in the limit of vanishing Prandtl number, all relevant second
hammonics are retained for the vertical vorteity. All second
harmonics in the verical velocity field, consistent with the
selected vorticity modes, are also retained. Other higher or-
der modes may be required as R and T are raised further. We
have not considered other convective structures ke squares
[22] or hexagons, which are nonlinear superposition of
straight rolls becavse they ae unhikely o saturate the insta-
bility at the onset in P—0 lmit. Kippers-Lonz instability
[23], which oceurs at relatively high T and involves two sets
of straight rolls at an angle of 587, is also not considered as
we are concemed with saturation of the pamary instability at
bow TT=215). Wavy stripes are more likely to oceur m this
limit than structures mvolving straight rolls. We have re-
ined essental modes 1o capture the nonlinear mteraction
between the statwomary instability and the wavy instabilities
just at the onset of convection. Projecting the hydrodynamic
Eqg. (1)-(3) on the selected modes [Egs. (4) and (5)]. we
arrive at a 12-dimensional dynamical system (see, Appendix
B). The model is expected 1o be good in the vicinity of the
convective mstability at low Taylor numbers.

V. RESULTS AND DISCUSSION

We now investigate the solutions of the dynamical system
by performing numerical integration of the model vsing the
standard fourth order Runge-Kutta scheme. We take a valoe
for T, which fixes & (T). We then choose a value for g. We
have tded with different values of the wave number g of the
perturbations and got qualitatively similar results for 0.2
=g/k,=0.65. The model requires more modes outside this
range of g. We present here all the results for g/k(T)
=().4. Initial values for all the 12 modes are chosen ran-
domly, and the integration is done for a fixed value of the
Rayleigh number. We then mepeat the procedure by increas-
ing the value of B in small steps. We have also tned various
mitial conditions. The mesults of all the numencal integra-
uons remain the same for wentical values of all the relevant
parameters. In the absence of rotation (T=10), only six
modes are excited. This model then reproduces the results of
the model [15] of zem P convection without mtation, In the
presence of rotation, all twelve modes are excited as they
should in a consistent mimimume-mode model. Small values
of higher order modes (see Fig. 5) show the convergence
properties of the model close to the onset of convection at
the Taylor numbers considered.

Figure 1 gives the stability boundaries of various possible
solutions, in the parmmeter space R— T, computed from the
model dynamical system. The lowest line shows the depen-
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FIG. 1. Stability boundaries in the parameter space R-T just
above the onset of convection. The conduction state is stable below
the lowest line, which shows the critical value R, of Rayleigh num-
ber as a function of Taylor number T for g=04%&, . The regions
denoted by SW1 and SW2 show two regimes of wavy solutions
separated by a thin region where period doubling is observed. Tem-
porally quasiperiodic waves are predicted in the region marked QP

dence of the critical Rayleigh number R, on Taylor number T
for zero-Prandtl-number stationary convection in Boussinesq
fluids. The overstability is mled out for Taylor numbers con-
sidered here. As the Rayleigh number is mised above its
entical value B.(T), the conductive state becomes unstable
via stationary bifurcation. However, the emporal growth of
the amplitude of the stright rolls does not stop if only 2D
problem is considered. Figure 2 shows the mechanism of
saturation. The wtal energy, spatially averaged over one con-
vective cell, grows exponentially until the 3D waves are
spontancously generated. The generation of waves is shown
by the spontaneous surge in ui ithe bottom left in Fig. 2).
The standing waves (SW1) so generated is pedodic in time
for T=-6.0. This is similar 1o what happens in the absence of
rotation in zero P Boussinesq fluids [15]. As Rayleigh num-
ber is increased slowly, the exchange of energy from 2D
modes o 3D waves mereases. Larger amplitude variation of
the wavy modes is at the cost of the energy of 2D rolls. This
is & well known feature in the case of oscillatory instability.
The mechanism of saturation of the instability is gquite differ-
ent from that for the oscillatory instability [25].

As the Rayleigh number is increased further, the solution
changes from one wavy solution W another through a narrow
window of R showing period-doubling solutions (see the
middle row of Fig. 3). The first wavy solution (SW1) has the
modes W, and £ oscillating with nonzero mean, while
the second wavy solution (SW2) has these modes oscillating
with zero mean. In the later case the modes Jyp and g
oscillate with nonzero mean. The period of oscillation for the
vorticity mode £y, is double that of the velocity mode Wy,
for both the waves. The mode W, oscillates subharmoni-
cally for W1 and harmonically for SW2 with respect o the
mode W, .

026311-3
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FIG. 2. The saturation mechanism for Taylor number 7= 6.0,
The first column shows the temporal evolution of the spatially av-
eraged total energy (£} (above) and the energy ('Lrg} (below) of
wives along the roll axis for T=20and g=0.4k_ . When the en-
ergy of straight rolls grows to a large but finite value, wavy pertur-
bations are excited. The waves thus excited stop the further growth
of 212 rolls. The interaction between the straight rolls and standing
waves along the rolls leads to a limit cycle (second column).

As Tis raised further, the motation facilitates the exchange
of more energy from the 2D woll mode W, o the vorticity
mode &g through the inear coupling. We observe an inter-
esting behavior for T=6.0 (see Fig. 1), The conduction stale
becomes unstable via stationary instability but the final stale
Just above the onset 1s quasipeniodic waves in ime. Figure 4
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FIG. 3. Phase portrait for various values of the Rayleigh number
R for T=2.0 and ¢=04k,. The first, second, and third colunms
show the projections of the 12-dimensional phase space on

Wigr s Soo— Wiy . and Wy, =W, planes, respectively. The top
row (R =063.0) and the bottom row (R =0668) show two different
wiavy regimes SW1 and SW2, respectively, while the middle row
(R=06064.95) shows period doubling in a narrow regime between
SW1 and SW2.
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FIG. 4. The saturation mechanism for Taylor number 7= 6.0,
When the energy {E} of straight rolls grows to a large but finite
value, wavy perturbations (v §:- are excited (F=10.0and =04k _).
The interzction between the straight rolls and the standing waves
along the roll-axis leads to two independent frequencies (second
column) instead of one as is observed for 7= 0.0 (see Fg. 2).

shows the saturation mechanism of convection for T 6.0,
When the total energy of 2D molls becomes large, wavy per-
turbations are spontancously excited as observed for T
=< 6.0. However, the vertical vorticity doe o rotation and the
seff-tuned 3D waves mleract srongly. This interaction leads
to the appearance of two independent frequencies at the on-
set of primary nstability. Consequently, the amplitude of
waves starts modulating. Figure 5 shows the vanations of
different modes with time. The amplitudes of all the modes

1™
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FIG. 5 Time variation of various modes for =100, g

=04k, . and R =678.0 long after all transients have died out. The
critical Rayleigh number R {T= 10.0)=677.076 8. Starting from
left, the top row shows temporal variation of the modes W,
Wit Wi, and Wz, respectively with time. The middle row
shows the variation of &0 £yne &1ppe @nd £y, The bottom row
shows the same for the modes &2, £ag. £37g. and ;4.
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FIG. 6. Phase space portraits showing quasiperiodic motion for
=100, g=04k, ., and R=677.08. Starting clockwise from the
left top, they show the projections of phase space in Wiy, — Wi,
Sio1— Wian. £370— Wi, and Wiz— Wi planes, respectively.

begin modulating at the same frequency. The Founer tans-
forms of these modes show two independent frequencies.
The frequency of amplitude modulation s much smaller
compared o that of waves. The sharp decrease of the ampli-
wdes of higher order modes (see Fig. 5) confirms the fast
convergence of the expansion. The model, therefore, repre-
sents accurately the scenario close o the instability onset.
Figure 6 shows the projections of phase space trajectones in
varnous phase planes. It cleardy deseribes the guasiperiodic
nature of the convective flow. The trajectories are confined in
a 12-dimensional torus in the phase space. The gquasiperiodic
behavior onginates due to the nonlinear mlermction among
the 2D velocity mode W, . the 2D vorticity mode £, ex-
cited by rotation, and the wavy mode £y Figure 7 reveals
some interesting details of the tume dependence of convec-
tve pattems. The complex textures of the gquasiperiodie pat-
lems are shown for a penod of the wavy motion, which is
much faster than the amphitode modulation. Two halves of a
peniod of the wavy motion are quite asymmetric. The tex-
wres of the pattem at different tmes are never the same doe
o quasiperiodicity.

We now consider the stability of the standing waves
against possible raveling waves along the moll axis. This is
facilitated by adding a mode {7(f)singy and all higher
order modes ansing due 1o the nonlinear coupling between
this mode and the velocity modes. This ked o six mome
miodes for the vorticity and three higher modes for the verti-
cal velocity. The resulting model, consisting of 21 maodes,
reduces to the 12-mode model on integration for Taylor num-
ber considered here. Depending upon the imtial condiions
erther £go 0 opp 18 excited at the primary instability. This
shows that the standing waves are prefermed at the onset. This
may be connected to the fact that the limit of zero P removes
the nonlinearity v-V &,

We have presented in this paper a sumple dynamical sys-
em, derived from the full hydmodynamical equations, which
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FIG. 7. Contour plots (T=7.0, g=04k_, and R=0671.30 at :
=0.25). Various textures of the pattern are shown over a period of
faster time scale fy at equal time intervals of 15/8. The sequence of
time evolution of the pattern texture is shown from left to right in
each row starting from the top row.

describes the phenomenon of thermal convection in slowly
rotating Boussinesq fluids of zero Prandtl number just above
the onset. For values of Taylor number below T, one wavy
solution bifurcates to another via 4 narrow window of
penod-doubling instability as the Rayleigh number R is in-
creased. For T=T,, quasiperiodic waves ame observed at the
onset of thermal convecton. This 15 possible in spite of the
fact that the principle of exchange of stability 15 vald accord-
g o the lineanzed hydrodynamical system. The instability
15 an example of self-mned forward bifurcation purely due
nonlinear effects. The conductive state bifurcates directly o
the quasiperiodic waves at the primary instability. The model
presented would be also useful o study an mteresting possi-
bality of transition from a state of rest o quasiperiodic chaos
[21.26] close o the primary instability.
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APPENDIX A: HORIZONTAL VELOCITY AND
VORTICITY FIELDS
The honzontal components of the velocity and the vortic-

ity fields ame given by

W 1
vlx.y.2.0)=— T Wil f)sink x cos wz— ;{,’(;.ml_’r_h-in gy

1
= E.g',’(m[ f)singy cos2wz

q

— — v Lol F)o0s 2k x sin gy
ik tq Lol ¢ .
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2 2
q i i TR, . .
+ msfmr}sm 2k x cos gy @(x,3,2,0) = ——= W gyt }sin kv sin 7
TH, 211' . ]
+ i _'_ql Witi(r) + ?gmﬂfhmq_r sin 2wz
9o 1) lcosk.x s k(m+ k2 +g%)
— —— ) |cos k,x sin gy cos 7z o T e e
gt i L Wi i)
Tk, : g
a K +q? Winilf) - m§|||(f} cos kx singy sin Wz
c ] : . S k w4+ k2 +gY)
WHHU}JHHL.I COS gV COS 7E, +[ _;_.-_,_ql W)
(Al)
L . .
1 1 - .F? £ ,,(f}}f-:m k. xecosgysinwz.
va(0.3.2.0)= = Lo (1)sinkx cos w2+ 5o Lgp(1)sin2k x eTd
g = (Ad)
2
— — Wyl t)singy cos 2wz
g
t APPENDIX B: THE DYNAMICAL SYSTEM
2k, ¢
= ﬁ Sl rieos 2k, xsingy The 12-mode dynamical system reads
e T
S : T 2
+ rTETTER. . Sappl 1sin 2k ,.x cos gy di= T.-"‘[ Rk~ = |ai —arir Th,
2 2 2
_ W,,(1) +{7m =3k —2g7)78]aa,
ki+gq* R J
< —2a7 [ B— (7" —k2) 7B Jazbs
k, -
+ e 11 (r}]um k, xsingy cos ws —2a I_,f (@abs— 8f layba+ 10aaby)
T 1
—[daBrim —k2)]abyg
g
* LI Wity + 27 Briba+ byt 10adb )by
—dm afdrhqby, (B1)

+ .i_""_; -:qrz §|||(f}]5in k. xcosgycoswz, (A2)

. 1) —
Gy="79 Rl:.kf+q"]l— ;_1-1::_;+2}-*11'2\..'Tbu+a_ ', by

m
w (x.y.z.0)= = St F)sink x sin g
”(4 . +faay (@ by +58bg)+ frasbat faash,
wet g
- 2 Wizl t)singy sin 2 7z — 27 adyh bt 47w B yb, by, iB2)
:j(w3+k:‘_+q3} ; ‘
—| =W} . e I A 2 = ;
ko +g” :{_—,=}-’|‘R(.{':.+q Jes .3 ay+2ymw ) Thy— fra,ay
7k, ) ) 28y
+ WSI 1 ||:f} cos kox sin gy sin Wz o ___T_ﬂ |b".|_4f_?|ﬂjbq _41.‘.2,},!}' ':bl +b_1}
gy
gla“+k.+q7) 207 aSyb \bs— 7B ybsba, (B3)
+ T Wil
fl
"ilTk‘. . . . ,j. 2 11 A —
+ Fﬁgl (e [sink, x cosgy sin 7wz, dy=mn" | Rg~— F‘Iﬂd +27 gy Ths+fea a3+ fra,byg
i . .
(A3) + fyarby— 7 B b by, (B4)
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; | = 2a
b= —;b, +Ta,+aby+ ;_5;:{-3:14—2,8&?!77

+Bayi b+ bs—5bg)+2Baby+2a | Bldb,+bs)

Kby +6B8(byb+ 10bby), (B5)
. a o :
b3= _(j'_bz_ T(ﬂ|{{3+2b|ba}
B, 3
_If":“b.'*_ﬂ]b”_a 15!?4!?7, (Bﬁ}
[y P
; 1 T =
by=— ;ba— “Tﬂa—ﬂ (bt 3bs—5bg) + ﬁz—ﬁ“ﬂb-l
+3asbi+fobibr+ a(38— B baiby, (B7)
, . 5 lad
ba=—4kbs—5a1b—28(2a:by—azb3)+ ?bzbh
(B8)

¥ ¥

. 1 i
by=——bs+2\Ta,+ Tﬁ(n,ﬂg+b|b3}+ %(ﬂ,b;
7

+2a3b,), (B9)
5ﬁ=—(4k;’_+q—’}bﬁ+f%(maﬁ%,m
4p+3p’
—-fiaﬁfiwa,bj+njbg, (B10)
i a‘ !
b7=—(4kf+q2}b7+Tﬁ(.ra|n3+2b|b3}
48+3g’ 4o’ —
_u(2ﬂ|bﬁ_ﬂgb|}_ = abgbq,
Fl 2
(B11)
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p B W i B—B ata”
bl‘i:_;bﬁ_Tﬂz-'_iﬂ'b?-i_ 5 ﬂzbq_Tblbl
S 5(3+a’)s
+Tb|b5—Tb|bﬁ
al3F—8")
Fi— J|5]:4 ? LELTR (B12)

where the temporal variables a,'s and b 's are defined as

m wm 2
(ﬂusﬂ_ﬂ':—Eiwmn—Wln}, f“h“d}:_ﬁ Wit
1 ' 1
_EW“H_’ b|=_E£|u|s

1
(Ba.by)=— %':;ulmf:m}s (B3.bg)=— E‘;E':ETI I

The coefficients in the above dynamical system are
T=|:1T."+ﬂ'f}_l, a=glk,, ﬁ=kf;"(£‘f+q3},
B =a'g, S=kqglldki+g"), y=(7+ki+g") ",
n=(4m+q") !, fi=[Qw-k)B+ (7 —kDp ],
fr=y(37—k;—q%), fi=e(B'—Bf:)4,
j;1=cr}f(3112+.k3+q3}, j'5=2177r(5ﬂ3+kﬁ+(;3},
fo=B n(3w+ 22 +2¢" M8, fr=aBn(3a’—¢")2,

fa=anldm B—g 14, fo=(3+a’)s.
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