Bell’s inequality violation and symmetry
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Ahbstract

Bell’s inequality violation is related to the breakdown of symmetry of photonic field states. The states allowing the violation
are characterized by a parameter y associated with the interaction of the nonlinear medium and radiation. The violation is
shown for small values of 1, where the particle aspect of light dominates. The degrading of the entanglement of the beam with
increasing y is discussed. The essential local noncommutativity of the operators involved is obvious.
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1. Introduction

It is well known that group theory s particularly
suited for quantum mechanics. The deep connection
of group theory with symmelry suggests that casting
counterimtuitive quantum mechanical resulls in group
theoretical format should be helpful to its comprehen-
sion. Violation of Bell's inequality [1] 15, thus, a nat-
ural candidate. In the present Letter we outline our
version of this approach which underscores the cru-
cial mole of opertors noncommutativity [2], which is

a local effect, in Bell's inequality violation (BIQV,
henceforth). The gquantum states of the radiation field
that are often mvolved in the stodies of BIOQV (eg.,
“entangled states”, “phase shifted states”, ele.) were
analysed within Lie group terminology in [3.4]. In the
next section we use their temminology o formulate
our problem. That section provides the mathematical
background for our study and relates it to the genera-
tion of the states involved. The state providing the en-
tanglement of distant parts of the field is generated via
a down converter. The vacuom state we consider is the
limit wherein no photon pairs are being generaled by
the down converter. The symmetry of the whole sys-
tem {i.e., of all pans inclusive of those that may be
widely separated in space) 1% realized by a polanea-
tion rotator acting in unison on the distinet parts of our
system—denoted by A and B henceforth (ef. Fig. 1).



I

Fig. 1. Schematics of the apparatus:  is the down converter, 44, dg
are polarization phase vectors, € are the counters, € are counters’
correlators.

The symmelry operation in our study is this symmelry
with respect to the rotation of the polarization. (It cor-
responds to the spherical symmetry enjoyed by the §
state of the spins in standard discussions (e.g., [5.6])
of BIOQW.) Itis the breaking of this symmetry that will
be shown tobe associated with BIQW. Our approach is
closely related o that of Ralph et al. [7]. However, we
consider the whole range of the parameter and, since
our emphasis 15 on symmetry rather than on the re-
alization, we allow both polarizations to be included
equally in the emerging squeceed light. The time du-
ration for each operation and the strength of the non-
lingarity of the medium are parametrized by a para-
meter . Thus pois o measure of the entanglement
of the beam under study which, in agreement with
other studies [6], degrades with increasing p and can
be associated with the “fuzziness™ parameter of refer-
ence [B]: only low values of 3 allow BIQV. The con-
clusions and some discussion are contained in the last
section. Appendix A contains the proof for the particu-
larly simple dependence of the expectation values con-
sidered on the crucial symmetry breaking parameler—

adependence which underpins the symmetry aspect of

our formulation.

2. Group theoretical formulation of the Bell
problem

Crucial o any discussion of “nponlocality™ in quan-
tum mechanics (and Bell’s inequality violation 15 no
exception) 15 the notion of “entangled states”, whose
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spatially separated parts, A and B, can provide coun-
terimtuitive correlations [1]. For the case at hand, this
state s taken to be

|y =expliy K110}, 1)
1
Ki=[albl +a_b_+albl +asbs]. (2)

Here the 4+ and — subscripts denote the polarization
relative Lo some chosen axis common o A and B (ef.
Fig. 1). The state [¥) (Eq. (1)) will be mecognized
as the state generated by an appropriate down con-
verter [3].

Our symmetry operator is taken to be

Kij= iz[n:a_ —atas+bib_ —bTb.). (3)
Smee

[Ko. Ke]=0 (4
and

K0y =1, (5)
wi have

@) = exp(—id Kp)| ¥ = |}, (6}

Le., exp(—idKo) 18 a symmetry operator—the state is
invariant under this operation.
Mote that Ky 1s made up, additively, of two parts

K;"]i = ;[ﬂ:ﬂ_ —ﬂ:ﬂ_],

Kf = ;[.’:Cb_ —bThy]. ()

and each of these parts acts on a distinet local part.
While

Ko=K{ +K§ (8)

15 4 symmelry operator for the system as a whole—
. . re A% o n . X
the operator explid 4 K ') s a symmetry breaking op-
erator for our state, Eqg. (1 —it breaks the Ky symme-
try. This operator does not commute with K.
The correlations under serutiny are

C*F(8a. 8g) = la] (8a)ag(8)bg (5g)bg(dp)). (9
Here o, A are polanzation indices, and

. e N _aps g
alida) = exp ko a; exp ks =<,

ba(dg) =cxp"‘5"‘ Ky bg mp—fé“-f‘ A=+, (10}
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and their Hermitian adjoints. The expectation value
(e.g.. in Eqg. (99 15 with respect to @), It is shown
in Appendix A that

C™P(54.55)=C™P(54 — 55.00. (11)

We will, henceforth, denote cef (dg — dg.0) by
CeF(8) with § =84 — 5.

Next we evaluate O (1), To this end we use the
readily verifiable formulae

ag [yl =exp”r gf exp™ 7
=a, coshy +ib, sinh p, (12)
bﬁ[y[:bﬁuush}—'—fn;shhy, (13}

and their Hermitian adjoints.
Substituting these into

CP(0) = (Wlag aub} bgl¥). (14)
W gCL
C () =sinh’y, a# 8. (15)
C“?(0) = cosh® ysinh® y +sinh? ., a=g.  (16)
Noting that (cf. Appendix A)
CA(0) = CF=(5), (17)
we evaluate C*F(8) 1o be
C (&) =C""(d)

=CT(0)cos” § + CTT(0) sin” &,
C™ (&) =CTHd)

=CH 0 cos? § + CT(0) sin? 5. (18)
Defining
Cih=D c¥@=cy=Cchy o, (19)
o, B
with

CT=C"" 4+ C ()
= 2{4_'1}5}:2 ¥ sinh? ¥+ sinh’ ¥l
C™=C T (0)+ C T (0) =2sinh* ¥. (20
we note that C(8) is independent of 4.
Consider now
C¥ (@)  C*(3)

et —
P (8= cH -

(21)

where we have used the equality C** (0) = CP(0),
Eg. (17), and Eq. (19). P8y is the normalized
probability for realizing the correlation € (8).

Wi now define the expectation value [6], E(4), by

E@=P 8+ P (8 —P {8 — P (8.

(22)
It gives the expectation value of obtaining equally po-
larized correlation. Utilizing our previous definitions
we obtain for the expectation value:

{Iri=
Eif)y =

W cos(248)

|
= ——— c0s(28). (23)
1+ 2tanh’ y

This expression reduces Lo

E(8) = cos(28), y <1,

1
E(f)== 3 cos(2d), p L (24)

Thus, in agreement with [6.7], large values of p ome-
duce the allowed values of E(4) and, as will be shown
below, preclude BIQVW. This can be expressed differ-
ently as follows: state (1) has an ill-defined particle
number; larger values of 3 signify that larger admix-
tures are involved, thereby degrading the entanglement
in its simplest form (where only two particles are in-
volved). This mtrodoces “haziness”™ into the entanghe-
ment which can be paramerized by A [B] (L = 1 signi-
fies “sharp™ observables [8]). An appropriate measure
for this is the mean square number deviation:

_md) —tne) 1

A = :
{n2) 1 4 tanh*y

(25)

Mote that this expression for the mean square de-
viation coincides with the thermal one if we dentify
tanh® = exp(—1/ T}, T being a dimensionless temper-
ature [9].

A direct substitunon of E(d), Eg. (23), mto the
expression for Bell's inequality [6.7],
|E(84.88) + E(84, 8p) + E(8}4.98)

— E(¥,.83)| <2, (26)
yields

|
1+ 2tanh® y

+ cos2(8), —8p) —cos 2(8), —dp) }] £2. (2D

[|L'Us 2d4 — dg)+cos 2{&?__1 —h‘rﬁ}
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The quantity in the square brackets 1s maximized al

. " J_r
da=10, ﬁg:g.

gl et (28)
A s B H 5 L
for which the square bracket o s 2»\,5. Thus, for
¥ osuch that 1 + lanhl}—' = /2, mnequality (26) can
be violated. The limitation to small values of p can
also be mterpreted o mean that only when |¥) in-
volves a few photons is the violation possible—or, put
in another way, only when the granulated facet of light
dominates, the violation s attainable. Increasing p de-
grades the entanglement in that it allows admixtures of
varius partic ke number states; this 1s expressed in by
“haziness” parameter, Eq. (25). The experimental re-
alization is seen to be difficult, as the expression for
the probability of comrelated photons involves a nor-
malised expression, i.e., we require reference readings.
These are given by Egs. (15).(16), which give vanish-
ing readings for y — 0. Thus while for  small but
finite observation of BIQV is possible, this becomes

increasingly more difficult as p — 0.

3. Concluding remarks

The violation of Bell’s inequality observed within
quantum optics wis discussed in terms of symmelry
breaking, It was shown that when the wavefunction
as a whole possesses a global symme ry—the rotation
of the polanzation in the case studied—the breaking
of the symmetry retains the strong gquantum comela-
tion that allows the violation of Bell's inequality. This
presentation relates directly to the (nonjeommutativity
of operators: the complete symmetry operation com-
mutes with all the relevant quantities—the breaking of
the symmetry is connecled o noncommutativity of lo-
cal operators whose expectation values allow the vio-
lation of the inequality.

The parameter y is, in effect, a measure for an ef-
fective temperature (tanh” ¥ =exp(—1/T)) of each
separate beam when its reduced density matrix is con-
sidered [9.10] (ef. Eq. (23) above). Thus the degrading
of the entanglement of the state with increasing p—
in the sense of ils increasing reluctance w allow the
violation of Bell's inequality—can also be viewed as

due tothe increase in the effective temperature of each
beam.
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Appendix A. Proolof
CP(84,8g) = C*F (54 — 8, 0)

By definition
C®P(54,8g) = (W] cxp"j-" Ki'+idg Ky ﬂ:ﬂubﬁ_bﬁ
® uxp‘mﬂﬁ{? —idg Ky |,
Defining
d=dy—dp and A=d4+4dp
allows the rewriting of the correlation function as
C®P (84, 8) = (W] uxp‘.lj'al]m"-?_ﬁ'-'f]ﬂ;ﬂubﬁbﬁ
w uxp_l'lﬂ'."lllf':tf—f':illrl |@).
We have wsed the atribute that Kp = Kt'? + Kt‘;} 15 4
symmelry opertion, Le., it commutes with K, and
Kpl0) = 0, and that it commutes with K3 and KF.
By the same reasoning we add/subtract i{46/2) Ky 1o
remove the explicit appearance of K:i& Lo el
C (84, 8) = C*F(5,0) = C¥ (8),

and that it is symmetric in 8:

C*8(5) = CP(—8) = CP=(—4).
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