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Ahbstract

In this paper we consider the class f.,:r] of fully copositive and the class E,:r:; of fully semi-
monotone matrices. We show that f.,:r] matrices with positive diagonal entries are column suf-
ficient. We settle a conjecture made by Murthy and Parthasarathy to the effect that a f_tr] M n
matrix is positive semidefinite by providing a counterexample. We finally consider E':']' matri-
ces introduced by Cottle and Stone (Math. Program. 27 (1983) 191-213) and partially address
Stone’s conjecture to the effect that Etr:; N Qg S Py by showing that Etr:; MO matrices are

Fpy. where DF is the Doverspike class of matrices. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

For a given square matrix A € RB"™ and a vector g & R" the linear comple-
mentarity problem (denoted by LCPig, A)) is o find vectors w, z € B* such that

w—Ar=g, wz0, zz0, (1.1}

w'z = 0. {1.2)

* Cormesponding authar,
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A pair of vectors {w, z) satisfying (1.1} is said to be a feasible solution 1o LCP
ig, A). If there is a feasible solution o LCP{g, A), then the problem LCP{g, A) is
said 1o be feavible. A pair (w, z) satisfying (1.1) and (1.2) is called a solution to
the LCPig, A). For further details on the theory and applications of LCP see [2,16].
Several matnx classes are inroduced in the LCP literature due to their vadous impor-
tant properties or their various applications or from an algorithmic point of view. In
this paper we use the following conventions. Suppose a class of matrices % < R
is defined by specifying a property which is satisfied by each square matrix of or-
der n in % We then say that A is a % matrix. Thus the symbol % is used for the
class of matrices satisfying the specified property as well for the property itseli.
For the definition of various classes of matrces see Section 2. We say that A is
positive semidefinite (PSD) if x'Ax = 0 ¥x € B" and A is positive definite (PD) if
Ar = 00 &£ x & B A is said to be a P ({Py)-matrix if all its principal minors
are positive (nonnegative). A is said w0 be column sufficient if for all x € B the
following implication holds:

xi(Ax); £ 0¥ imphies x;(Ax); =0 Vi.

Ais sufficientif A and A" are both column sufficient. For details on sufficient matrices
see [1,4.20]. We say that a matrix A is a Qp-matriv if for any g € B (1.1) has a
solution implies that LCP{g, A) has a solution. The class fE:E}I of fully monotone ma-
trices was intrmoduced by Cottle and Stone [3]. Stone [17] studied various propertics
of Etr:; and conjectured that Etl] N @o € Py In [12], the conjecture was resolved for
Etr:; matrices of order 4 and for some subeases under various assumptions on A. In the
ST PP, E'Tl] was replaced by fully copositive matrices fC{]}l and the conjecture wias
shown true for Ctl]'-mulricus with positive dingonal entries. Murthy and Parthasarathy
[13] proved that €, N Qo € Py Murthy et al. [15] proved that € N Qg matrices
are sufficient. The class of Ctl]' M Qg matrices are completely (g matrices [13] and
share many properties of PSD matrices. Symmetric C,:l]' M @y matrices are PSD. The
principal pivoting algorithm of Graves [ 11] for solving LCPs with PSD matrices also
processes matrices in the class Ctl]' M G Murthy and Pathasarathy [13] proved that
2 % 2, Ch 1 @y matrices are PSD and a bisymmetric Qg matrix is PSD if and only if
it is fully copositive. It is known that PSD matrices are sufficient. They conjectured
that if A € C§ N Q. then it is PSD.

In this paper, we study C,:l]' and Etl]' matrices. In Section 2, we present the required
definitions and introduce the notations used in this paper. In Section 3, we present
a different proof of the result that C,:l]' M @y matrices are column sufficient. We also
consider C,:l]' matrnices with positive diagonal entries [12] and show that such C{'] mi-
trices are sufficient. We provide an example to show that L't"] N Qg £ PSD and thus
settle the conjecture made by Murthy and Parthasarathy [13]. Fmally, we consider
Etl]' matrices introduced by Cottle and Swne [3] and partially address Stone’s conjec-
ture [ 17] that Etl] M Qo = Py by showing that Etl] M DF matrices are contained in 8,
where D¢ is the Doverspike class of matrices for which all the strongly degenerate
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complementary cones of {1, —A) are contained in the boundary of pos(l, —A) (see
Section 2 for details). This generalizes the result of Sridhar [ 18] to the effect that
EjN Ry S Ay

2. Preliminaries

We begin by introducing some basic notations used in this paper. We consider
matrices and vectors with real entries. Forany matdx A € ™™, a; denotes its ith
row and jth columnentry. For any positive integer n, N denotes the set { 1,2, .. . n}.
Forany set o« € {1,2, ..., n}. o denotes its complementin {12, ..., np. IfAis a
matrix of order n x n, o € {1,2,.. ., nland g < {1.2,..., ni. then Agp denotes
the submatrix of A consisting of only the rows and columns of A, whose indices are
in @ and 8, respectively. Any vector x € R" is a column vector unless otherwise
specified, and x* denotes the row transpose of x. For any index i, ¢ stands for the
vector of appropriate order whose ith entry is 1 and the other entries are (0. Given a
matrix A and a vector g we define the feasibleset Fig, A) = {z 20| Az +g = 0}
and the solution set S{g. A) = {z € Fig. A) | ' Az + g) = 0}. The notation pos A
represents the cone generated by taking the nonnegative linear combinations of
columns of A. C o) denotes the complementary matrix of A with respect 10 o,
where Calw).; = —A il j e and Calw); =1 if j ¢ o. The associated cone
posC 4o ) 15 called complementary cone welative to A with respect to o, The
complementary cone with respect 1o o is said (o be nondegenerate if det{ Az, ) = 0.
Otherwise it is said o be degenerate. A degenerate posCa (o) is said o be strongly
degenerate if there exists 0 £ x = 0, x € R", such that Ca(a)x = 0. Any solution
{w, z) of LCP{g, A) is said to be nondegenerate if w + z = 0. Otherwise it is called
a degenerate solution. A vector g € [R" is said o be nondegenerate with respect to
A if every solution to LCPig, A) is nondegenerate. Let 6{A) be the union of the
strongly degenerate complementary cones of A and let #7{A) denote the union of
all facets of all the complementary cones of A. A connected component of a sel §
containing a point v is defined as the union of all connected sets C such that
xeCC 8§

A matrix A € B is said to be a @-matrix if for every g € B", LCP(g. A)
has a solution. It is a Op-matrix if and only if pos(f, —A) = {g | LCPig, A) has
a solution}. A is said to be a completely O (Qn) marrix if A and all its principal
submatrices are (F ((p) matrces. A € B is said 1o be a Ep-matrix if for every
O£y =0, yeR" 3 anisuchthat y; = 0and {Ay); = 0. The class of such ma-
trices is called the class of semimonotone matrices. A matrix A  B"™" is said 1o be
an Lo-matrix if for cach0 £ £ = 0, £ e B, satisfying g = A& = 0and ' £ = 0,
Jals£E>0suchthats =Eandy =7 =0, wherefj = —A%. A € "™ jssaid
to be an L-matrix if it is in both Ep and L. This class was introduced by Eaves
[8] who shows that Lemke’s algorithm processes LCPig, A) when A € L and hence
LC Qg
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We say that A satisfies Doverspike’s condition [7], if all the strongly degenerate
complementary cones of (1, —A) lie on the boundary of pos{/, —A). We denote the
class of matrices satisfying Doverspike’s condition by DF. Doverspike [7] proved

that if A € Eg M D, then A € Oy by showing that Lemke’s algorithm processes
LCPig, A)if A € Eg i DF.
Lot © {1,205 n} and let A, be nonsingular. The principal pivol transform

(PPT) of A with respect to the index set o is defined as the matnx given by
Mﬂu J'f'fa&
M= ;
Mar Mzs
where
Mon = (Aga)™', Muz = —(Aae) ' Ana,
Mae = Agal(Aua)™' . Maz = Aaz — Aga(Aae)” Asa.

Similady the PPT of a vector g with respect 1o the same index sel o is & veclor
g', where g, = —A;J ge and g, = ga — Aﬁu-ﬂ;al ge. The PPT of LCPig, A) with
respect to o (oblained by pivoting on A, ) is given by LCP{g", M). When o = ¢, by
conventiondel Ay = land M = A. Fora detailed discussionon PPT see [1]or[2].

We say that A is copositive { Cy) if FAr 20%x = 0and A is strictly copositive
(Crif x'Ax = 0OWD £ v = 0.

We say that A is fully semimonotone {E{']}l if every PPT of A is in Ey. The class of
E] matrices was introduced by Cottle and Stone [3]. For this class if ¢ € R" is in the
interior of a full complementary cone, then LCP{g, A) has a unique solution. This is
a geomelric characterization of the class E‘l]'. We say that A is fully copositive {Ctr:;}l if
every PPT of Ais in Cg. Note that P € Py € E} € EpandCJ € E}. If A belongs to
any one of the classes Ey, Oy, E, C, Etl]., L',:r] or the class of sufficient matrices, then
S0 1%

(1) any principal submatrix of A; and
(i) any principal permutation of A.

A matrix A is sufficient of order kif all its k = k principal submatrices are suffi-
cient. If A € (), then every PPT of A € Q). For details on the class of fully
copositive matrices see [ 12-15].

Stone [17] conjectured that if A € E} 1 Q. then it is in Fy. Murthy and Partha-
sarathy [12] proved that forn = 4, E} N Qg matrices are in Py. They also established
Stone’s conjecture under some additional assumptions.

We require the following theorems and lemma in Section 3.

Theorem 2.1 [13, Theorem 4.5]. Suppose A € C,:r:; N Qy. Then A € Fy.

Theorem 2.2 [13, Theorem 3 3] Let A £ Ctr:;. The following statements are eguiva-
lent:
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(a) A ix a Qp matrix.
(b) For every PPTM af A, mi =0 = m;j +m; =0, ¥i,j €{1,2,....,n}.
(c) A ixa completely Qg matrix.

Theorem 2.3 [13, Theorem 4.9]. If A € B> N CLN Qq, then A is a PSD matrix.

Lemma 2.1 [15, Lemma 14]. Let A € Pyand g € R If (w, 2) and (v, x) are two
distinct selutions of LCP{g, A). Then there exists an index i, 1 < i < n, such that
either z; = x; = Dorw; = y; =0.

2.1, Degree theory

Let fq @ RB" — R" be the piccewise linear map for a given matrix A4 € B"™"
defined as fale;) = e and fa(—ei) = —Ae;, i=1,2,..., n. Forany x € RB", let

fa®) =) falxe) =Y |xilfalsgnixie) = ) eix; + ) |xl(—Aer)

=l i=l i=l i=l

- Zf;_r‘.'i' -+ E{—A}{Ex;ie,-} =x"— Ax~,

=l i=l

whcn:.r;" = max{{}, x;) andx; = max(0, —x;)¥i=1,2, ..., n.Notethat LCP{g, A)
is equivalent 1o finding an x € [" such that f4ix) = g. If x belongs to the interior
of some orthants of " and det{ Ay ) #+ 0, where o = {i | x; < 0}, then the index of
Falx) at x is well defined and
det( Ay,)
| det(Age)|
Let f__,l_l{q}l stand for the set of all vectors x € B, such that fa(x) = g. From the
linear complementarity theory, it is clear that the cardinality of f l{g) denotes the
number of solutions of LCP{g, A). ln particular, if' g is nondegenerate with respect
to A, each index of fy is well defined and we can then define local degree of A at g,
denoted by deg ,(g), to be equal to the local degree of fa atg, ie.,
T det{Age)
dega@)= ) indfalg.x)= Y roomE

xe £l g xe £ g

ind falg, x) = sgn detid ) =

where the summation is taken over the index sets o ©{1,2, ... n} such that g €
posC ala).

If g.g" = B" Y #°(A) and lie in the same connected component of B\ %(M),
thendeg 4 (g) = degyi(g"). See Theorem 6.1.171n |2, p. 515]. More specifically when
" % € M) is made up of a single connected component, we have the degree of A at
g defined and equal to the same constant for every g € R, except possibly for a set
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of vectors which has measure (0. Such a scalar is called the global degree of A and is
denoted by deg A. For further details on degree theory see [2, Chapter 6].

3. Main results

It is known that positive semidefinite matrices are sufficient. Murthy and Partha-
sarathy [13] proved that C,:l] M Oy matrices are sufficient. Here, we show that this
resull is a consequence of the following result proved by Cottle and Guu [4].

Theorem 3.1. A € B"™™" is sufficient if and only if every matrix obtained from it by
meany of @ PPT operation is sufficient of ovder 2.

As g consequence we have the following theorem.

Theorem 3.2, Let A € Ctr] M Q. Then A is sufficient.

Proof. MNote that all 2 = 2 submatrices of A or its PPTs are E'tl]' M @y matrices since
A and all its PPTs are completely Qp matrices. Now, by Theorem 2.3, all 2 = 2 sub-
matrices of A or its PPTs are positive semidefinite, and hence sufficient. Therefore A
or every matrix obtained by means of a PPT operation is sufficient of order 2. Now
by Theorem 3.1, A is sufficient. [

Remark 3.1. In[13],it is shown that Graves's principal pivoting algorithm [11] for
solving LCP{g, A), where A is positive semidefinite also processes LCPig, A) with
Aeg Ctr] M Og. By Theorem 3.2, it follows that other principal pivoting methods also
processes LCP{g, A) when A £ Ctr:; M Q. See [1] and other references cited therein,

Murthy and Parthasarathy [12] proved the following theorem.

Theorem 3.3. Suppose A € B N Ctl].. Assume that ai = 0¥i € {1,2,...,n}
Then A  Fy.

In contrast 1o the above we observe that with the assumption of positive diagonal
entries, a CJ matrix is a column sufficient matrix and that if a matrix A with positive
diagonal entries, and is transpose are in C{],
is a completely Oy matrix.

then such a matrix 15 in Oy and hence it

Theorem 3.4. Let A € B"™" NCL. Assume that a;; = 0V¥i e {1,2,..., n}. Then
Ae

(1) A is column sufficient.

(i) In addition, if A' € B"™" N Ctl]', then A is a completely Qg matrix.

Proofl. We shall first show that A sufficient.
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Let g € R and consider the solution set (g, A) of the LCP{g, A). From Theo-
rem 3.3, it follows that A £ Py. From Theorem 4.3 in [20], it follows that A is suffi-
cient if m=1lor2 Let us make the induction hypothesis that if
B Rir-Dxin—1) Ctl]' with the assumption by =0, ¥i=1,.. ., n—1, then B is
sufficient of order (n—1). Let A € C:.] be of order n with a;; = 0, ¥i. To show
that A is column sufficient, it is enough to show that 8{g, A) is convex ¥g £ " by
Theorem 6 in [6]. Let (w, 2, (v, x) be two solutions 1o LCP{g . A)andlet 0 < A = 1
be given.

MNow since A € Py, from Lemma 2.1 it follows that there is an index i, 1 < § < n,
such that either x; = z; =0 o0rw; = vy = 0.

Case ):xj =z; =0

In this case xy %+ 2o € S{go, Age). where oo ={1.2,..., i—1i+1,..., nt.
From the induction hypothesis L v, + (1 — Mze € S{ga, Aee). Hence it follows
thatAx 4+ (1 — Az € §ig. A).

Case (ii): yj = wy =10.

Without loss of generality, we assume that i = 1. We have a) = 0 by the hy-
pothesis of the theorem. Let LCP{g, M) be the PPT of LCPig, A) with respect to
o = {1}. Let (¥, 1), (w0, I) be the solutions to LCP{ g, M) comesponding to the so-
lutions (v, x), {w, z) of LCP{g, A), respectively. It follows that ¥ = 0 and z; = 0.
From here it follows that & (v, £) + {1 — 2w, 2) € S(g, M) and hence & (v, x) +
(1 —3A)w, z) e Sig, A). Thus it follows that S{g, A) is convex.

By the prnciple of induction, it follows that A is column sufficient for all n.

Now to conclude (i) under the additional assumption that Alisa Ctl]' Mmatrix, we
proceed as follows. As A' € €}, and has positive diagonal entries, from the proof of
part (1) it follows that A'is also column sufficient. Thus, A is sufficient and hence A €
(}o. Since the above arguments apply wevery principal submatrix of A it follows that
A is a completely Qg matrix. O

The following example shows that in the above theorem for the stronger cone lu-
S in (1), 1L 1% necessary 1o assumd that Alis alsoa C:l] maltrix.

Example 3.1.
-1 2
A=]|-1 [
0 0 1

It is easy to verify that the above matrix is a C‘E matrix but it 15 not a Oy matrix.
For example, the vector

—B
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is feasible but LCP (g, A) has no solution. It is also easy W verify that A" is nota CJ
Mmalrix.

Murthy and Parthasarathy [13] proved that if A € B2 n E':r] M Qu, then A is
positive semidefinite. They conjectured that this may be true for all n x r matrices.
However we present below a counterexample to this conjectune.

Example 3.2
1 1 0
A=10 1 1
0O 0 1

Note that principal submatrices of order 2 of A + A® are positive definite but
det(A + A') < 0. Therefore, A is not positive semidefinite.

We now show that 4 € Ctl]'.

Note that there are four distinet PPTs of A, each of which happens to correspond
to four choices of the index set «. The first of these PPTs is the strictly copositive
matrix itself. It is the PPT of A comresponding Lo

o =¥ a=1{3}
The other PPTs are
1 -3 O
Mi=1|0 -
K 0 1
1 7 =1
Mz=10 1 -1
|00 1
r T T
k=g
Mi= 1|0 1 -1
L] L] 1

The mdex set o o which these PPTs correspond are, respectively,

(1) {1} and {1,3};
(2) {2} and {2, 3};
(3) {1.2} and {1,2, 3}.

The copositivity of the matrices My, M> and M3 can be demonstrated by deter-
minantal criteria such as those given in [5] or by an analysis of the comesponding
quadratic forms which can be rewritten as follows:

(1) x'Mix = (x1 — Ix)* + Bx3 + xax3 + x5,

1 2 2 7 7 L e
(2) x'"Max = (x2 — 383 )° + a7 + grixz — gxixa + 3E5,
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(3) *'"Max = (x3 — %r:}lz + .r% + %xlx_; — %.rl.rg + %.rlz
Hence A € C{ N Qg. But A is not positive semidefinite.

Stone [ 17] conjectured that within the class of Oy matrices, fully semimonotong
matrices are Py Note that Etr] N D¢ C Oy, We now prove a special case of Stone's
conjecture [17] by showing that Etl]' N DF C Py This generalizes the result ;':"TI] mn
Ry € Py, due to Sridhar [18].

Theorem 3.5. Let A be a n % n real matrix. Let %(A) denote the union of alf the
facets of the complementary cones of (I, —A). Consider g € R™\ 4(A), where g i
nondegenerate with respect to A. Let § € {1,2, .. ., n} be such that det(Agg) # 0
and let M be a PPT of A with respect to . Then

det{Ags)

deg lg) = ———— . de 3
Earlq) [ det(Agp)] eg ,(q)

Proof. Note that this is a generalization of Theorem 6.6.23 in [2]. This theorem
asserts the conditions of Theorem 6.6.23 without assuming that A is Ry for the local
degree when it is defined. The proof of this theorem is similar to Theorem 6.6.23 in
[2.p.595]. O

Let ¢ = posif, —A) and let €{A) denote the union of all strongly degenerate
cones of (f, —A). Further suppose that € A) is contained in the boundary of £. Then
£. being convex, is a connected component of B #(A). Hence by Theorem 6.1.17,
[2,p. 515] it follows that if g and g” are two nondegenerate vectors in £, then

deg, (g) =deg,(q"). (3.1)
We denote this common degree of A, restricted 1o £ by deg. (A). Let M be any PPT
of A with respect lo a given index set § € {1,2,. .., n} such that det{Agg) = 0. Let

pos(f, —M) = £. We now have the following theorem.

Theorem 3.6. Ler A e R™' N Etl]' ND°. Then deg (A) =1, where { = pos
(f, —A).

Prool. It is well known that if A € R"*" N Etr:; M D¢, then the strongly degenerate
complementary cones of (I, —A) are contained in the boundary of pos(, —A). See
[10]. Further since A 15 a Op matnx, pos{f, —A) = {g |LCP{g, A) has a solution}
= £, is a convex sel. Hence the interior of ¢ is a connected component of
R4 % (A). Thus deg.(A) is well defined. Further if g* I]E’_r:“ then LCP{g*, A) has a
unigue solution, which is w = g, z = (. Hence deg ,(g*) = 1. It follows from (3.1)
thatdeg (A)=1. 0O

We now prove our main result.
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Theorem 3.7. Let A € B™' N Etl]' M DF. Then A is a By-matrix.

Prool. Suppose not. Then thereisaset § ©{1,. .., n} such that det{Agg) < 0. Let
M be the PPT of A with respect to f. Note that M is again a Ef N DF matrix and
hence deg=(M) = 1, by Theorem 3.6, where pos{ I, — M) = . Now, however, from
Theorem 3.5, it follows that for any g € ¢, which is nondegenerate with respect 1o
A,

doggi(@) = o). oy )= 1 g (g) = 1
egyy(q) = ————— -deg,(gq) = —1-deg,(g)=—1.
ey [ det(Agp)| A A
Therefore di:gg{ﬂ-_f}l = —1 which is a contradiction. O

Corollary 3.1. Suppose A € R™" 1 E::r] M L.Then A is a Py matrix.
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