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ABSTRACT 

In this work. we introduce a new Asymptotic Norming Property (ANP) which lies between the 

strongest and weakest of the existing ones, and obtain isometric characterisation of it. The corre- 

sponding w*-ANP turns out to be equivalent on the one hand, to Property (V) introduced by Sul- 

livan, and to a ball separation property on the other. We also study stability properties of this new 

ANP and its w*-version. 

I. INTRODUCTION 

The Asymptotic Norming Property (ANP) was introduced by James and Ho 

[JH] to show that the class of separable Banach spaces with Radon-Nikodym 

Property (RNP) is larger than those isomorphic to subspace of separable duals. 

Three different Asymptotic Norming Properties were introduced and were 

shown to be equivalent in separable Banach spaces. Recently, Hu and Lin 

[HLl] have obtained isometric characterisations of the ANPs and shown that 

they are equivalent in Banach spaces admitting a locally uniformly convex re- 

norming, a class larger than separable Banach spaces. In dual Banach spaces, 

they introduced a stronger notion called the w*-ANP, which turned out to be 

nice geometric properties. 

Here, we introduce a new Asymptotic Norming Property which lies between 

the strongest and weakest of the existing ones, and obtain isometric character- 

isations of it. The corresponding w*-ANP, the main object of our study. turns 

out to be equivalent on the one hand, to Property (V) introduced by Sullivan 
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[S], and to a ball separation property ri la Chen and Lin [CL] on the other. We 

also study stability properties of this new ANP and its w*-version. 

2. THE ANPS: OLD AND NEW 

Definition 2.1. For a Banach space X, let SX = {x : llxil = l} and Bx = 

{x : llxll 5 1). 
A subset @ of B,p is called a norming set for X if llx]] = SUP,*~~ x*(x), for all 

x E X. A sequence {xn} in SX is said to be asymptotically normed by Q, if for 

any E > 0, there exists a x* E @ and N E N such that x*(xn) > 1 - E for all 

n > N. 

For K = I, II or III, a sequence {xn} in X is said to have the property 6 if 

I. {xn} is convergent. 

II. {xn} has a convergent subsequence. 

III. nrz, CO{XI, : k > rz} # 0, where co(A) is the closed convex hull of 

A C X. 

For IF. = I, II or III, X is said to have the asymptotic norming property n with 

respect to @ (@-ANP-r;), if every sequence in SX that is asymptotically normed 

by @has property TV 

Remark 2.1. In [HLl, Theorem 2.31, it is shown that @-ANP-III is equivalent to 

the apparently stronger property that every sequence in S, asymptotically 

normed by @has a weakly convergent subsequence. 

This motivates the following definition. 

Definition 2.2. Let X be a Banach space and let @ & Bx: be a norming set for X. 

X is said to have @-ANP-II’ if any sequence {xn} in SX which is asymptotically 

normed by @ is weakly convergent. 

Definition 2.3. X is said to have the asymptotic norming property pi (ANP-K), 

6 = I, II, II’ or III, if there exists an equivalent norm II . 11 on X and a norming 

set @for (X, ]I 11) such that X has @-ANP-K. 

Remark 2.2. Clearly, @-ANP-I + @-ANP-II’ + @-ANP-III. Thus all the 

ANPs are equivalent in Banach spaces admitting a locally uniformly convex 

renorming, in particular, in separable Banach spaces. 

Definition 2.4. A Banach space X is said to have the Kadec property (K) if the 

weak and the norm topologies coincide on the unit sphere, i.e., (SX, w) = 

(Sx, II . II). 
Xis said to have Kadec-Klee property (KK) if for any sequence {xn} and x in 

Bx with lim, lixn]l = ]lxli = 1 an w im, x, = x, lim, IIx, - XII = 0. d -1 

The proofs of the following two theorems are evidently similar to those of 
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Theorems 2.4 and 2.5 of [HLl]. We include the details only when we feel some 

elaboration is needed. 

Theorem 2.1. Let @ be a norming set ,for a Banach space X. The following are 

equivalent.. 

(a) X has @-ANP-I 

(b) X has @-ANP-II’ and X has (K) 

(c) X has CD-ANP-II’ and X has (KK) 

Proof. Since CD-ANP-II implies (K) [HLl, Theorem 2.4, (1) =+ (2)], so does 

@-ANP-I. Thus (a) + (6) follows and (6) + (c) is obvious. 

(c) =+ (u) Since X has @-ANP-II’, any sequence {x~} in SX asymptotically 

normed by @ is weakly convergent to some x E X. Then by [HLl, Lemma 2.21. 

I/.Y// = 1 and hence by (KK) we have s,, + x in norm. 0 

Theorem 2.2. Let @ be a norming set ,for a Bunach space X. The ,following (wtl 

equivalent. 

(a) Xhas @-ANP-II’. 

(b) X/r~.r @-ANP-III and Xis strictly convex. 

Proof. (~1) + (h) Strict convexity of Xfollows similarly as in the proofof [HLI, 

Theorem 2.5, (1) + (2)]. 

(h) 3 (u) Let {x,~} b e a sequence in S.Y asymptotically normed by @. Since X 

has CD-ANP-III, D = f~~{.x~ : k > ?z} # 0. Now X has @-ANP-III implies {_Y,~} 

has weak cluster points and all of them must be in D. Since D C S,y is convex 

and Xis strictly convex, D is a singleton. Moreover, since every subsequence of 

{.Y,?} is also asymptotically normed by @, that singleton is the weak limit of 

{x,~}. Hence X has @-ANP-II’. 0 

Some renorming results similar toTheorem 2.7 of [HLl] can easily be obtained 

from our results. But in this work, we concentrate on the ANPs as isometric 

properties. 

3. W*-ANPS 

Definition 3.1. Let X* be a dual Banach space. X* is said to have w’-ANP-h 

(K = I, II, II’ or III) if th ere exists an equivalent norm I/ 11 on Xand a norming 

set @ for X” in Bx such that X* has @-ANP-K-. 

Remark 3.1. If @ C BX is a norming set for X*. then 7;7i(@ U 4) = Bx. Hence. 

by [HL3, Lemma 31 and similar arguments, @-ANP-h- is equivalent to 

Bx-ANP-k- (k = I, II, II’ or III). Thus, we can and do work with CD = Bx. 

Definition 3.2. For a Banach space X, let X’ = {.Y- E X*** : x1 (.u) = 0 for all 

I’ E X}. A Banach space is said to be Hahn-Bahach smooth if for all 
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x* E X*, I]x* + xl11 = ]Ix*II = 1 implies x’ = 0, i.e., x* E X*** is the unique 

norm preserving extension of x* Ix. 

Remark 3.2. It is shown in [HL2, Theorem l] that Xis Hahn-Banach smooth if 

and only if X* has Rx-ANP-III if and only if (Sx*, w”) = (S,p, w). 

Extending a characterisation of rotundity of X* due to Vlasov [VI, Sullivan 

[S] introduced the following stronger property: 

Definition 3.3. A Banach space X is said to have the Property (V), if there do 

not exist an increasing sequence {B,,} of open balls with radii increasing and 

unbounded, and norm one functionals x* and _vi such that for some constant c, 

x*(b) > c for all b E UB,, 

y;(b) > c for all b E B,,, n < k and 

dist(co(y;,y;, . . .),x*) > 0. 

Definition 3.4. Let W C X* be a closed bounded convex set. 

(a) A point x* E W is said to be a weak*-weak point of continuity (w*-w pc) 

of W if x* is a point of continuity of the identity map from ( W, w”) to ( W, w) 

(b) A point x* E W is said to be a w*-strongly extreme point of W if the 

family of w*-slices containing x* forms a local base for the weak topology of X* 

at x* (relative to W). 

Now we have our main characterisation theorem. 

Theorem 3.1. For a Banach space X, thefollowing are equivalent. 

(a) X* has Bx-ANP-II’. 

(b) X* is strictly convex and X is Hahn-Banach smooth. 

(c) X has Property (V). 

(d) Allpoints of Sx* are w*-strongly extremepoints of Bx*. 

Proof. (a) ++ (b) IS immediate from Theorem 2.2 and Remark 3.2, while 

(6) @ (c) is just [S, Theorem 41. 

(6) @ (d) Since (SX~, w*) = (SX*, w), and the norm is lower semi-continuous 

with respect to both weak and weak* topology of X*, any x* E SX* is a w*-w pc 

of Bx*. Now, since X” is strictly convex, every x* E Sx. is an extreme point of 

Bx*. By a classical result of Choquet [C, Proposition 25.131, for any x* E Sx*, 

the family of w*-slices containing x* forms a local base for the weak*, and 

therefore the weak, topology of X* relative to Bx:. 

(d) + (b) From (d), it is immediate that X* is strictly convex and any 

x* E SX~ is a w*-w pc of Bx* 0 

Definition 3.5. (a) The duality mapping D for a Banach space X is the set- 

valued map from Sx to Sx* defined by 

D(x) = {x’ E sx* : x*(x) = l}, x E s,. 
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(b) A Banach space X is said to be very smooth if every .Y E SX has a unique 

norming element in X***. 

(c) [HL2] A Banach space X is said to be Quasi-Frechet differentiable if for 

any convergent sequence {x,~} in SX and any XT, E D(xn). n E N, the sequence 

{x,*,} has a norm convergent subsequence. 

(d) X is said to be weakly Hahn-Banach smooth, if for all .Y E SX., and 

s,: E SX-, lim,,_ X S:(Y) = I implies that {.Y:} has a weakly convergent sub- 

sequence. 

It is known that X is Frechet differentiable (very smooth) if and only if the 

duality mapping D is single-valued and is norm-norm (norm-weak) con- 

tinuous. And from [HL2, Theorem 41, it is known that if X’ has Bx-ANP-I 

(Bx-ANP-II) then X is HahnBanach smooth and Frechet differentiable 

(Quasi-Frechet differentiable). The following question posed in [HL2] still 

seems to be open. 

Question 3.1. Let X be a Banach space which is HahnBanach smooth and 

Frechet differentiable (Quasi-Frechet differentiable). Does it follow that X’ has 

BX-ANP-I (BX-ANP-II)? 

Theorem 3.2. lfX* has BX-ANP-II’, then X is W~J’ snmoth. 

Proof. That Property (V) implies very smooth was already observed in [S]. We, 

however, prefer the following direct and ANP-like argument similar to [HL2, 

Theorem 4(l)]. 

Since X* is strictly convex, X is smooth. Now let {s,~} C SX be such that 

_Y,j --+ .Y. Let {s,;} = D(x,,), we have IX:,(X) - 11 < I-Y,*,(X) - .Y,~(x,,)I 5 II.Y;J 

11.X -- .&I/ 5 11.X - .X,/I + 0 as n + CXI. That is, lim,, 7X x,:(.Y) = 1. So {.1-T,} is 

asymptotically normed by Bx, and hence, is weakly convergent to s7 (say). 

Clearly, s* E D(x) and since X is smooth, {.Y} = D(s). Hence X is very 

smooth. 0 

Analogous to [HL2], we now have the following question: 

Question 3.2. Let X be HahnBanach smooth and very smooth. Does X* have 

BY-ANP-II’? 

Remark 3.3. Let us say that a Banach space X has property P;-K (K = I, II. II’ 

or III), if for any convergent sequence {x,~} in SX, and any _Y; E D(.Y,?), I? E N. 

the sequence {XI*)} has property K (recall that property III means having a 

weakly convergent subsequence). Then clearly, w*-ANP-K + P;-K and 

X has property PT-III u X is weakly Hahn-Banach smooth. 

X has property P;-II ti X is QuasiiFrichet differentiable. 

X has property P;-II’ ti X is very smooth. 

X has property P;-I ti X is Frechet differentiable. 



Thus Questions 3.1 and 3.2 are essentially whether the implication 

w*-ANP-K + P;-K (K =I, II and II’) can be reversed under Hahn-Banach 

smoothness. 

Observe that if we can reverse the implications for IE = II and II’, the result 

for K = I would follow. Observe also that since X is smooth and Hahn-Banach 

smooth implies that Xis very smooh [S, Corollary to Lemma 5.21, the Question 

3.2 (i.e., K = II’) actually boils down to 

Question 3.3. If X is smooth and Hahn-Banach smooth, is X’ strictly convex? 

As for /E = II, observe that since D(Sx) is dense in SX*, w*-ANP-II is equivalent 

to the apparently weaker property that any sequence {xz} in D(Sx) that is 

asymptotically normed by Bx has a convergent subsequence. Now, if 

{xn} C SX and x: E D(xn) is such that the sequence {x;} is weakly convergent, 

must {xn} have a convergent subsequence? 

Example 3.1. In general, for a Banach space X, the properties ANP-I, II, II’ 

and III are all distinct, i.e., except for the obvious implications @-ANP-I + 

@-ANP-II + @-ANP-III and @-ANP-I + @-ANP-II’ + @-ANP-III, no other 

implication is generally true. 

Proof. Clearly, it suffices to show that none of @-ANP-II of @-ANP-II’ implies 

the other. 

(1) Let X = CO, X* = !I. Since (SX:, w) = (SX* 11 . 11) on !I, by [HLl, Theorem 

3.11, X* has been Bx-ANP-II. But X’ is not strictly convex. 

(2) On X = el, define an equivalent norm as llxllo = max{l/2(]ixl12), l]x]lX}. 

And define T : t2 --7‘ .t2 by T(oJ~) = ak/k, for (cx~) E e2. Then T is an l-l con- 

tinuous linear map. Hence the equivalent dual norm IIxljs = IIx//,, + IITxllz is 
strictly convex [Dl]. Also since !2 is reflexive, it has Bx-ANP-III with respect to 

I] . l13. Thus by Theorem 2.2, (e,, II . [lx) has BX-ANP-II’. But, it was observed in 

[S] that (e,, II . 113) lacks (KK). 0 

Example 3.2. The above two examples show that a space may have ANP-III, 

but may lack either ANP-II or II’. The following is an example of a Banach 

space which has ANP-III but lacks both ANP-II and II’. 

Proof. Let X = (2 a1 R. It is clear that X* = & @a [w is reflexive, and hence, 

has BX-ANP-III. However X* is not strictly convex, and hence cannot have 

Bx-ANP-II’. Also the weak and the norm topologies do not coincide on SX*. 

Indeed, since e2 is infinite dimensional, by Riesz’ lemma, there exists a se- 

quence {xn} in Se, such that ]I x, -x,/I* 2 1, 12 # m. Let 2, = (x,, 1). So 

llznllm = 1 and J/z, - z,ll, 2 1. Clearly, {zn} cannot have any norm convergent 

subsequence. But as e2 is reflexive, {x,} has a subsequence {xn,} converging 

weakly to some x E Bp,. Then obviously (x,,~, 1) = z,,~ converges weakly to 

(x, 1) = z (say) and llzlloo = 1. 0 
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4. A BALL SEPARATION PROPERTY 

In a recent work, Chen and Lin [CL] have obtained certain ball separation 

properties which, in equivalent formulations, characterise Bx-ANP-K (K = I, II 

and III). 

Here we obtain a similar characterisation of Bx-ANP-II’. In fact, as in [CL], 

we also take a local approach, i.e., we characterise w*-strongly extreme points 

of Bx-. And for that we need the following characterisation for w*-w pc of By’ 

which is immediate from Theorem 3.1 of [CL]. 

Theorem 4.1. For a Banach space Xandfo E SX+, the,following are equivalent. 

(i) jb is a u’*-u’pc of Bx*. 

(ii) ,fbr any xi* E X** and cy E R, if.f;,(xG*) > (1, then there exists a ball B” in 

X** with centre in Xsuch that xi* E B** andinf ,fb(B*“) > CY. 

From [CL, Theorem 1.31 and the arguments of [B, Corolary 21, we get 

Theorem 4.2. For a Banach space Xandfo E SX., thefollowing are equivalent. 

(i) ,fo is an extremepoint of Bx.. 

(ii) ,fbr any compact set A C X tf inf .fo(A) > 0, then there exists a hall B in X 

such thut A C Band inf fo(B) > 0. 

(iii) ,fbr anqf,finite set A C X if inf ,fo(A) > 0, then there exists a hall B in Xsuch 

that A C: Bandinf,fo(B) > 0. 

Theorem 4.3. For a Banach space Xandfo E SX~, the,fbllowing are equivalent. 

(a) ,fi, is a Iv*-strongly extreme point of Bx*. 

(b) .fb is u IV*-wpc andan extremepoint of Bx-. 

(c) ,for any compact set A C X** iJ‘ inf fo(A) > 0, then there exists a hall 

B** 2 X** with centre in Xsuch that A c B” and inf fo(B**) > 0. 

(d) for anq’ finite set A C X” if inf fo(A) > 0, then there exists a hall 

B** & X** \tlith centre in Xsuch that A C B” and inf ,fo(B**) > 0. 

Proof. (a) H (h) is just the local version of Theorem 3.1 (h) H (d). 

(h) + (c) Sincefo is a w*-strongly extreme point of Bx-, it is easily seen that it 

remains extreme in Bx*=. Thus by Theorem 4.2, for any compact set A in X *- 

with inf,fb(A) > 0, there exists a ball in B** = B**(x;*. r) & X** such that 

A Cr B** and inf fo(B**) > 0. Now, inf fo(B**(xG*, r)) > 0 implies .fb(xG*) > r. 

Since fo is a w*-w pc, by Theorem 4.1, there exists a ball B**(x. t) C X** such 

that _Y;* E B**(.Y, t) and inf fo(B**(.u, t)) > r. This implies ,fo(x) > r + t. Thus, 

A 2 B**(sX*,r) C B**(x,r+ t)andinf.fo(B**(_u,r+ t) >O. 

(c) =+ (d) is trivial. 

(d) + (b) Taking A C X, it follows from Theorem 4.2 that fo is extreme in 

Bx /. And taking A to be a singleton, it follows from Theorem 4.1 that .fi, is an 

w*-w pc. 0 

Corollary 4.4. For a Banach space X, the follo+ting are equivalent. 
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(i) X* has Bx-ANP-II’. 

(ii) for any w*-closed hyperplane H in X”, and any compact convex set A in 

X** with A n H = 0, there exists a ball B** in X** with centre in X such that 

ACB**andB”*rlH=(b. 

(iii) for any w*-closed hyperplane H in X**, and any$nite dimensional convex 

set A in X** with A n H = 0, there exists a ball B** in X** with centre in X such 

that A C B** and B** f? H = 0. 

5. STABILITY RESULTS 

Theorem 5.1. Let X be a Banach space with Qi-ANP-L;, K = I, II, II’ or III. Then 

any closedsubspace YofXhas SPJ ,-ANP-K where @/ v = {y* : y* = x* 1 y, x* E @}. 

Theorem 5.2. Let X be a Banach space such that X* has Bx-ANP-K, K = I, II, II’ 

or III. Then for any closed subspace Yof X, Y’ has By-ANP-K. 

Proof. Let {yi} C SY* be asymptotically normed by By. For every n > 1, let x; 

be a norm preserving extension of yi to X. Then {x:} is asymptotically normed 

by Bx, and hence has property K. Now the restriction map x* + x*( y brings 

property K back to {y;}. •! 

Corollary 5.3. Hahn-Banach smoothness and Property (V) are hereditary. 

Remark 5.1. This observation appears to be new. Note that we do not need the 

stability of the ANPs under quotients to prove the above theorem. In fact, it is 

not clear whether the ANPs are indeed stable under quotients. 

Let Xbe a Banach space, 1 <p,q< 0;) with l/p+ l/q= 1 and (n,E,p) be a 

positive measure space so that C contains an element with finite positive 

measure. Let @ be a norming set for X. Then define @I = co(@ U {O})\Sx and 

Ei n EJ = 0, for i #j, Xi > 0 with 5 A:p(Ei) = 1) 
i=l 

Then A@? CL, 4) = U, 2 l A, is a norming set for Lr(p, X) [HL3]. 

Theorem 5.4. Let X be a Banach space, @ C Bx~ be a norming set for X. X has 

@-ANP-II’ zfand only ifLP(p, X) has A(@, p, q)-ANP-II’. 

Proof. It is well-known that X is strictly convex if and 

strictly convex [D2]. And in [HL3, Theorem 61, it is 

@-ANP-III if and only if LJ’(p, X) has A(@, p, q)-ANP-III 

lows from Theorem 2.2. 0 

only if Lr(p, X) is 

shown that X has 

Now, the result fol- 
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Remark 5.2. Let X be a Banach space. If (X. I/ 11) has ANP-II, the space 

(L,&, X), II II) may not h ave ANP-II. For an example, see [HL3]. Thus we 

have nicer stability results for ANP-II’ which was lacking in ANP-II. 

Theorem 5.5. Let X be u Banach space. X has Propert?’ (V) if and onl~~ if’ 
LP(p, X) bus (V) (1 < p < CO). 

Proof. By Corollary 5.3, Xinherits Property ( V) from Lf’(p, X). 

Conversely, if X has Property (V), by [S, Theorem 41, X is Hahn-Banach 

smooth. Hence X is an Asplund space. Thus, Lf’(,+ X)* = L”(p, A”), where 

l/i> + l/q = 1. From [HL3, Theorem 61, LP(p, X) is Hahn-Banach smooth. 

Also, X* strictly convex implies Lq(p. A’“) is strictly convex. The result now 

follows from Theorem 2.2. 0 
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