SiZer for Exploration of Structures in Curves

Probal CHaUoHURI and J. 5. MARAON

Lo the vee of anoathing methods in daea snslveiz, an impogeant question is which obserecd foatopes are “really thore” az appased
o being spurious sampling sriifacts. An approach is deseribed besed on scale-space ideas oviainglly develaped In the computer
visicn litarature, Assessmeont of skgnificant ABRS crossings of derivatives rosules in the Sifor map, & araplucal device for Jdisplay
of sipnificance of leaturas with cespect to both location oo scale, Hore "scale’” means "level of resoluioc™ dhat is, “bamdeidh.”

KoY WS, Conlicdence bunds; Cloree sslimnations Bomel extimales; Tocal polynonialy, Mompareneims smaothing; Scele spae;

Significant featurey; ST map.

1. INTRODUCTION

Smoothing e curve estimation in stalistics is a wselul
ton] Tor discovering feamures in data. Some examples of
this are shown in Fipure L. For many more such examplas,
seis, Tor crample, the monographs of Bowman and Awea-
lind (1997}, Eubank (1988), Fan and Gijbels {1996}, Green
and Silverman (1994, Hirdle (79900, Miller (19881 Santl,
(19923, Silverman (1986), Simonoeft (1996}, Wahba (1991),
and Wand and Tones {1995),

Figure L(a}is an example of density estimation, where the
Iypical goal is W presenl a densily £ Lhal reveuls strociyre
inunivariate data X- , ..., X .. The kernel approach imvolves
centering small picees of probability mass Chaving o Ghaus-
sian shape here} at each data point, using the formula given
in (1], As seen, the window widih & controls the amount
of smoothing. The data here are « — 7,211 family incomes
{rescaled so thal the mean is 13 Lor the year 1975, lom the
Family Cxpenditure Survey in the United Kingdom. (See
Schmitz and Marron 1992 lor a detalled discusslon and
analysis of these duta) Mowe that the midrange bandwiddh,
I AR, shows two prominent modes—perhaps an indica-
lion of an econemic ¢lasys siructure? However, ihase moday
can he made to disappear simply by using the larger band-
width 1 = 2. Also, muny more mewdes. which are likely 1o
be spurions sampling artifacts, can he made to appear by
using the smaller bandwidth i = 0125, Which modes are
“relly there™? The detaled analvsis of Schmite and Mar-
ran (1992} reveals that the two important modes e (per-
haps surprisingly) importunt leatures of tlis datasel, Thal
analysis also reveals an interesting shift in the size of these
modes over lime.

Figure 1(h} is an example of scatterplot smoathing, also
culled nonparmnetric repression estimation, where hivariate
data { &y, 70, ..., (XL, Y ace smoothed (eg., by a moviog
averagel Lo give o ¢urve thal ean be viewed as an estimated
comditional mean, flz) = & {Y|X = &) The smosths we-
tually used here are local linear smooths, with Ganssian
weighly, explicilly defined in (2}, These have sume preler-
ahle properties, as summarized in, for csample, the mono-
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oraphs of Fan and Gijbels (1996) and Wanod and Jones
(1995), Aguin the window width is crucial to the smooth,
wilh i = .3 and 4.8 represenling substantial undersmaoath-
ing and oversmoothing. The data, provided by T. Bralower
of the University of North Carolina, reflect global climate
millions of yvears ago, through ratios of strontiom lsotopes
Foomd in Fossil shells, The rauos bad 70 sobirgelel and
then were multiplied by 100, becanse all are very close to
70, The shells ave daled by biostratipraphic methods (see
Bralower, Fullager, Paull, Dwyer, and Leckic 19971, 50 the
strontinm ratio can be studied as a function of time. Both
the scutterplots and the smooths have a relatively lush ratio
lor Tomsils Ioss thao 103 million vears olil have g subsiandial
dip with a minimum for those near 113 million vears old,
and lhen perhaps un increase for those around 120 million
viears okl These Teatures are shown nicely by the larger
bandwidth & 4.5, Ilowever, at the dip this bandwidth
seelns o be subsluntially oversmoothing, so there is 4 good
chines it it couwld be srosnhing away some Tealures Lhal
are really there. The bandwidth & — 1.2 seems closer to
a reasonahle amount of smoothing; note that this suggests
additional possible features, such us un inerease trom Y92
o 95 milhon vears ago, iand perhaps a ip around 98 mil-
lion vears ago. Bur the significance of ar leasr this last dip
15 quite suspect, because a look al the data shows thatl it
uppears Lo be based om only two solated observations.

Both exumples in Figure 1 illustrate o magor huedle in
the practical use of smoathing methods: Which featuees ob-
served in a smooth are really there? Data analysts familiar
wilh smoothing maethods e vsually very good ut answor-
ing this gquestion {although cven Tor them gray arcas exist
where quantification would be helpful}, when they have the
lime Lor u cavelul Liul und ervor approach. However, such
analysls do nol always have lols of dme, and even worse,
such skilled people are all too often just not available. In
this article we propose a graphical device, the 51Zer mup,
thal has two imporlant benetits, Firsl, it speeds up the pro-
voss ol deciding “which Teatures are really thoe” Tor the
experienced analvst, while at the same time guantitatively
resolving oray area problems. Second, it allows even inex-
pericneced wnalysls Lo make inferances aboul which leatures
are really Lhere.
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Figure 7. Examplos of Foatures Revesled by Smaathing. fa) Kornaol denzity sstimates, with three differant bandwidifis h = 0125, .05, and .2,

far the 1975 income data. (B A scatterplat and focal insar ragrossion astimates, with ifiree diferent bandwidihis

pata, with the raw data shown as smal circles.

Chr approach involves a view of smoothing and of the
slatislical inference problem at hand thal is vadicully ifler-
ent trom most of the literature. The traditional approach is
tr Focus on a weue uoderlying curve and do inlerence about
that. In particolar, much work has been done on choosing
the Bandwidih From the data, and memy proposuls bave been
made for inference based on confidence intervals/hands.
Fon teasons diseussed in deladl in Section 6.2, such infer-
ence has not been very wseful, especially Mor the problem of
linding important features, The muain problem is that curve
estirmatars sulfer inherently feom a bias that is hard o deal
wilh. This bias is not present in ¢lassical parametric statis-
ties, where one operates under the assumption that a para-
melric model s “truth” We beliave this is why attempts to
extencd the classical notion of parametric confidence inter-
vals to smoothing seem to have v yielded the same usetul
results.

3, L& and 4.8 far the Fossil

Cur methodology is motlvared by “scale-space™ 1deas
from compuler vision. (See Lindeberg 1994 for an intro-
duction and detailed discussion), Our approach departs from
the classical in two ways. First, we simultaneously study a
very wide range of bandwidths, avoiding the clussicul nead
to choose a bandwidth, This wdea 15 not foreign to good data
analysts, who know well that different useful information
can be available al dilferent levels of smoothing. The fom-
iy approach of Marron and Chung (1997} is one way of
Lupring inl Lhis inlimmadion, bul does oo adilress the key
question of which features are really present.

Our seeond departure From Lhe classical view, again Gol-
lowing scale-space ideas from computer vision, 1s that we
aveddd the bigs problem in doing inference by shifling the
tocus from the true vnderlying curve to the true curve,
vicwed at varying lewvels of resolotion. In particular, oar
mterence focuses on smeothed versions of the underlyving
curve, With the ddea thal 1his conlaing all the information



Chaudburl and Marron: Exploring Struciuees in Curves

available in the data when working with thar bandwidth.
Detailed discossion of this view of smoothing is given in
Section 2.

[n Section 3 pur main inferential tool, the SiZer map, is
developed. This stodies featres simultaneously over both
location and secale (i.e., bandwidth) by using a color map,
as shown in Fipure 2. The idea is to highlight significant
features, such as bumps, by displaying where (with respect
to both location and scale) the curve significantly increases
and decreases. Note that sigmificant bumps will be at zenp
crossings of the derivative between regions of sigmficant
increase and decrease. The name “SiZer” is a shortening
af “Slgnficant ZERo crossings of derivatives.” The color
scheme 15 blue {red) in locations where the curve is sipnif-
icantly increasing {decreasing), and the intermediate color
of purple iz used where the curve cannot be concloded to
be either decreasing or increasing. Here the term “loca-
tion™ is used in the scale-space sense of both “z-location™
and “bandwidth location.” Gray 1s used to indicate regions
where the data are too sparse to make starements about
significance, because there are not enough points in each
window, as defined precisely in Scetion 3.

Mote that for both sets of data, the family approach re-
veals potential interesting structure, in addition to lots of
likely spuricus structure. Perhaps the worsl spurious stric-
ture is in the fossil data, where the smallest bandwidth
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smooth actually leaves the range of the data arcund 95 and
97 million years ago. This is caused by data spursity in
that region and is an unappealing feature of the local lin-
ear smoother, (See Hall and Marron 1997 for detailed dis-
cussion, and access (o the literature on various fixes that
have becn proposed.) The SiZer maps for each make it
clear which structure seen in the family plots is “statisti-
cally significant” and which one cannot be separated from
the natural variability.

For the income data [Fig. 2{c)], at very coarse levels
of resolution (ie., large bandwidths), the smooths are sig-
nificantly increasing (shaded blue) and then significantly
decreasing [shaded red), meaning that these features are
“really there™ af this level of resolition. For bandwidths
near log,,(k) = —L.d, the two modes become apparent
and are both statistically significant, becavse the shading
changes from blue {1} to red {) to blue (1) to red (l).
Hence Sifer gives an answer consistent with the results
obiained from other independent amalysis discussed carlier.
SiZer further suggests that the other features thal can be
seen in the family of smooths [iocluding the three small
bumps near the broader peak in the smooth with the thick-
est width in Fig. 2(a)] are just sampling artifacts, because
the color is purple in these regions. The gray areas in each
lower corner are where the data are too sparse for 5iZer to
he effective, as described in detail in Section 3.
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Figure 2. Combination of Family Piols fia) and bl and Si7er Maps [{c) and (d)] for the Datasets in Figure 1, Using Level of Sigrificance o =

A5 fg) and (g} The income data; the important bandwidth it = .05 is highllohled in both plols. (b) amd (d) The fossit data; agafn the important
bandwidth b = 1.2 is highfighted In bott ploks. The dotted curvas in the S17er maps show effactive window widths for each bandwidif, as intervals
representing +2h {Te, 2 sfandard deviations of the Gavssian karmsi).
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For the fossil data [Fig. 2(d)], at the coarsest levels of
rescluiinon {largesi bancbwidths) the smooth i3 not far from
a stple loasl squares [ line (boeause the window is ex-
tremely large), although not the same, because SiZer shows
signiligunl. decrease up jo wround 108 million vears ago and
then no significant change. For bandwidths that ae less
grossly oversmoathod, such as the bandwidih & — 4.8 [note
that log,,(1.87 — .6%]] shown in Figure 1(b), the estimate
has no significant slope on the lefl, significantly decreuses
in the center, and significanlly increases on the right. When
one looks at finer levels of resnlution (smallee bandwridihs),
the curve is seen to be slgnificantly increasing al around
93 million vears ago. Meweser, the dip in the thick carve
of Figure 2(b). al about 27 million vears ago, is shown to
be spurions, beeanse this feamare is in Lthe gray arca, where
there is not enough data to conclude that this dip is really
Lhere.

These examnples demonstrate the great potential of SiZer
as a ool For data analysis. More examples o this effect tha
lso illustraie potential pitfalls are given in Seclion 4. David
Scott has pointed out that the SiZer map can be viewed
ws an Cenhancemeni” of the mode ree of Mimmotle und
Scott {1993); Bowman and Azzalini {1997} have given some
related ideas.

Or mwain ideas can easily be adapted to many dif-
ferent Lypes of smonthing metheds, such as smoothing
splines, regression splings, or wavelets, But In fhis arti-
cle we concenirare on kernel-local palynomial smoothers,
because of their simplicity snd interpretability and their
very direct connection to the scale-space ideas from com-
puter visiom. Yarious other lypes of extensions of this
methodology are worth pointing out, which we do in
Seclion 5.

Ciher approaches e inference of this ype are discussed
m Section 6. An importaot conpetitor is formal mode tests,
reviewed in Section 6.1,

2. SCALE-SPACE VIEWPOINT

In this scetion we introduce precise notation and give
some discussion of the scale-space view of smoothing, Ker-
nel density esbmaion wses 2 random sample Xy, X,
tfrom a smooth probability density [flw), to estimate [
through

: ] l i
frlnh == Folm — X0 1
FrlE n ; o i (1)

where h is the bandwidih {ie., smonthing parameter] and
I, is the “h-rescaling” of the kernel function K, K, (-} =
LR (5 The main ides s wo pul probabilily muss = 1 /n
nedr each X, As shown in Figure L(a), the bandwidth con-
trols the amount of smoothing: j;[]‘ 15 wiggly when ©
15 small. and verv flat when h is large. (See, e.o., Scott
1993, Silverman 1986, and Wand and Jones 1995 for dis-
cussion of many mportant properties and aspects of this
estimatar.)

The lieal linear repression estimate uses i Tandom sample
XYL (XKLL, to estimate the ennditional expecied

Journal of the Amotican Statletical Aszociation. Segplerr ber 1300

value; that is, the regression Mnetion,
Tl B e

throngh

Fuiz) = argmin E Y fa BA; a)i)?
7=l
w Rpfe— X0, (2)

where argrmin, is inlerpreted to mean minimize jointly over
i and b, but use the o value, The main idea is that for each @,
aline is fitked 1 the data, using K y-weighied least squares,
Apain the bandwidth controls the amount of smoothness of
.;lih{:.-'.:l, as shown in Figure Tk (See. cop.. Fan and Gijbels
1995 and Wand and Jones 1996 for discussion of many
properiics and imporlant aspects of ihis estimator.)

Scale-space ideas fram computer vision provide a view-
puinl om kernel sousshing that is new o statisticians. The
“scale space surface,” the family of all kernel smooths in-
dexed by Lhe hundwidih £ 35 g model wsed in computer
visionl, The essential ideq is that large b omodels macro-
scopic (distant} vision where only large-scale feafures can
bi resolved, and small A medels microscopic {(zoomed in)
reselution of small-scale fealures. In particular, for a given
function § (i.e., underlying wignul), various amounts of sig-
nal Murring {at least some is present in any real visual sys-
tern) are represenied by the convoluiion §+ &, for different
vilues of k. In fact, this family of convolutions becomes
the focus ol the analysis, with the idea thal this iy all Lhal
15 available from a finire amount of data in the presence
of noise (see Chaodhuri and Marron 1997 and Lindeberg
1294 for details). This is very different from the classical
statiztical approach, where the Toeus s

Examples of features in curve estimation include peaks
and valleys. These can be charactenized in seversl wiys. In
this article we tocus on zero crossings of the derivative, We
say that a zero crossing is significant when the derivative
eslimale 15 sipmiticantly diferent from € on both sides, with
opposite signs as shown by blue and ved areas in Tigures
20c) and 20d).

Studying these wrero crossings of the smomh derivative es-
timates across a range of bandwidths shows that the Gaus-
sian kernel Aix! = (1/v/2x)e =*/2 hay an Important ad-
vantage over other kernels. Tn particular, for convolution
smoothers, the number of wero crossings of (he derivaive
smooth is always a decreasing function of & (which is not
true for any other kernel wsed for kernel smoothing). In
other words, only Gaussian blurring has moenotonicity of
feturey with respect o the smomit of smoolhing, Several
ways to see this have been given by Chaudhuri and har-
on (1997, see. 2) and Lindeberg (1994), based on “lodal
positivity” (see also Karlin 1968 and Brown, Tohnstone,
and MeGibbon 19813, Inleresting relaled references in Lhe
statistical literature include wock of Silbverman (1981) and
Minnolic and Scoll (19493), Henee only the CGrasyian kernel
is vsed in this article.

The main poind. of this article is the development of color
mips s shown in Figures 2(c) and 2{(d), valled SiZer maps.
These maps, which can be used for exploratory data anal-
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yaly, show regions in seale space (i.c., with respeal Lo both
w and h) where the derivative is significantly increasing
and decressing, As discussed m Sechion 6.2, classical ap-
proaches 1o signilicance of Teatures based on confidence
hands are cither much oo conservative for useful infer-
ence, o are grassly invalid becanse of blas problems. In
this article we tale a novel approach to this old bias prob-
lem by adopting the scalc-space point of vicw, In par-
licwlar, mylead of sceking confidence inwrvals for e,
we seck conlidence inlervals for the scale-space version
File & .I’|"., (). {Tor regression, we take this I' to be con-
ditional on X, ..., X, ) The center point of such mrervals
15 automatically correct, and the varianee is eslimaled sim-
ply and effectively, as detailed luler. From this peind of view,
signiticance of any leature depends on the scale of resolu-
tion (i.e., op A} and st be interpreled in thal way, Figue
Hey shows that the bimodal sireelure is present at some lev-
els of resolation but disappears at coarser levels {i.e., there
is only one mode at large bandwidihs),

Mote that this approach is rather different from traditional
mode tesling. In particular, the Sider map nol only counls
the number of significan). moedes al dilferen), levels of res-
olution, bul alzo gives information ahowur mode locations.
There is a trade-off, howewver, in that the 5iZer map tends
to be more conservalive than mode fests thal specilically
targel Lhe number of modes; sco Sceiion 4.

3. DEVELOPMENT OF SIZER

Cur approach to the vispal assessment of the significance
of features such as peaks and valleys o a family of smooths
[Pl b G [Pans B, | 13 based on conlidence limits for
the derivaiive in scale space, £ Lel (The choice ol A,
and b0 16 discussed in Sec. 3.1.) Behavior at o« and »
locations is presented via the 5iZer color map, where blue
(black in versions where only blick and white are availuble)
indicutes locations where £ ) is significantly positive, red
{whitc in hlack and white versions) shows where f (] is
significantly negative, and purple {gray in black and white
versions) indicates where f.f; ‘4] is not significantly different
trom 0.

Because repeated caleulatlon of smoothers 15 reguived for
suech color maps, Tast computalional methods are very im-
portant. Binned {alzo called “WARPed") methods are nat-
ural for this, becanse the data need be binned only once,
{3ee Fan and Marron 1994 for detailed discussion of this
and other tast computation methods.] The main idead is thal
caleulation of f;7x) becomes 4 rapidly computed diserele
convolubion when Lhe dula are approsimated by bin counts
on an equally spaced grid, which can cesult in specd savings
of factors of 100 (for larger sample sizes). For the reasons
discussed by Fan and Marron {1994), we use g — 101 grid
poinls for mosi examples i this arlick:, although in some
silualions olher values can he destrable, as disenssed later

Comlidenes: hvniis Cor £ (2) are of the Tmm

Fote) _q SOOI (0, 3)

a1

where g iy an sppropriale guaniile, and the standard de-
vidtion is estimated as discussed in Section 3.1, An [, b
location (in scale space) is called significantly increasing,
decreasing, or nol significant when 0 iz below, above, or
within these confidence limits.

Candidales for calenlation of the guantile g include:

+ pointwise Gaussian quantiles: g (0 = ¢ — 711 =
(22]]

+ approximate simultanecus over « Gaussian quanriles:
bascd on “number ol independent. blocks.” delined ay
o later

+ hoolslirap simollancous over @, delined as gy laler

* bhootstrap simoltioeons over o and &, defined as o4

lileer.

Although Chiussian spproximations work gquile well (he-
canse smoothers are local averages), the pointwise quantiles
g1 are nol. reeommended. This i becyuse Lhis version of Lhe
S5iZer map suggests that too many teatures are “significant,”
as shown in Tigure 3.

Fach panel in Figure 3 is for the sane simulated dataset
of size v — 100 from the density #4533 of Marron and Wand
{1992). This densily, shown as the beavy vellow curve in
Figure 3(a), is a mixtore of eight normals, intended to re-
flect much of the struclue presend in the lognormal distt-
bution: a single large peak, with a very long right tail. As
shown in the Family of amoolhs, bused on the single dataset
in Figure 3{a), this density is challenging to estimate, In par-
teular, small window widihs are most appropriate near the
peak to avoid smoothing that down L oo low a level, b
large bandiwidths are more sensible in the tail to smooth out
the spurious clusters that arise just by chunce, The poinl-
wise SiZer map, shown in Figure 3b), inconrectly indicates
that some of these spurious clusters are “significunt™; lor
caample, the peaks near » — —1.7,—1.4, and 6. The prob-
lem s understoond via the classical frequentisl mierpretation
of confidence intervals; looking at many replications should
result in roughly proporiion o intervils thal do net cover the
tene value. A natural solution to the problem is to adjust the
length of the infervals Lo dir simulianeous inferenee, which
15 the goal of the other approaches to o mentioned earlier,
which are discussed In defail In the nexl sechion. The ap-
proximate simultaneous approach is shown in Figure 3(c),
where Lthese spurions modes arc noww shaded eorrecily as
purple. However, this version bas a curious red stripe in
the levwer tight corner that we do oot fully understand. We
have not caretully analyzed this, because it 5 1o 4 region
in seale space where the dala are very sparse. Both becanse
of effects like this and becavse we do not trust conlidence
inlervals based on oo fow points, tegions in scale space
where the data are too sparse for meaningful inference ure
praved oul. Based on the classical rule of thumb, a location
gray is shaded gray when the effective sample sive in the
window (delined later) is less than 5. This gives the map
shown in Figme 3(d),

Chur firsi suggesiion, gz, for approxunate simultansous
confidence limits 1s based on the Mack thal when o and »° are
sufficiently far apart, so that the kernel windows centerad
b oumed 2" are essenlially digjoinl, the estimates f7 (2} and
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mrobloms with small ESS as
ki
avg . BSS{T AY

vk —

whore Jx, iy the set of o locations where the data are dense,
D= Lo B85S0, 1) = g

These approximate sirmltaneons condidence Hmils gre
somcwhal erude and also are only simultansons over o, Dot
h. To improve them, we explored several classical muli-
variate newmal simulizneous conlidenee sels (both elliptical
and rectangular). These are based on the standard principal
component anilvsis, Unlortunately, they tended to be far
too conservative, because the cocnlation of Lhe usual con-
ldence sely along the eigenvector directions gave a ragion
that did not eficiently project back 1o conlidenes inlervily
low f7 (2} Tor cach 2, The projections (i.e., the resulting con-
fidence intervals) tended to be far too long Lo allow us W
find importane features.

simullancous confidence sets that are hypercubes, whose
edges are parallel o the ases with lengihs of the [onm (3),
ari: much beller oriented to reflect the significance of our
derivative estimates. Direet calenlatiom o the probubilitics
of such rectangular scls in high dimensions is very difficult
lor these highly correlated normal disiributiony. Bocatse
simulaticn is the anly racluble approach, it is natoral to vse
(e more dircet method of the bootsteap (i.c., sironlate Teoim
the empirical distribudion of the duta, insteud of from the
upproximaling Guussian). For each bootstrap sample (i,
random sample drawn with replacement (rom the dala; see
Elrom and Tibshirani 1993 for an introduction o bootatrap
ideas), we compute £ (27 (agdin a fast implementation is
crocial} and the standardized version

FAEN T Syl —f: (3]
: SDifi{s 1)

Fow cach fe, 1he bootstrap quantile g; — g3(%) that is simul-
taneons over o (where the dawa are ressmably dense) s the
cmpirical guantile of mazx.en, |20, k| caleulated over
the bootstrap replications. Similarly, the boolsirup quaniile
g4 that is simultancous over both & and & is the empirical
guanlile ol masy wax -n, [Z7 (e k0 taken over the bouot-
strap replications.

Study af many SiZer maps based on g, gy, and g showed
that in many cases Lhere was nod much difference belween
the guick und approximate quantile g and the hootatrap
quantile gs thal is simullncons aver w. As expected, some-
whitl [ower features penerally appeared as significant for q.,
the bootstrap value Lhal 35 simultancous over both » and b,
although surprisingly often . was quite similar to g, and ;.
The maps based on different chodces for g wers most similar
For cxamples that were homogeneous in =, meaning cither
equally spaced regression or densily cslimalion cxamples
where the local average height of the density 1s roughly
constant. This is becanse there is an implicit hormsgensity
assumption made by gz that is 4 reasonable approximation
in this case.

E13

An cxmple where this homogeneity is lacking (thus giv-
ing interesting ditferences) is the income datasel, From Fig-
wres 2iab and 2(c). SiZer maps buscd on Lhe bootstrap quan-
Liles gy amdd gy are shown in Fipure 4.

The SiZer map for gy with o« = 05, shown in Figure
4(al, is [aivly similar to that for g0 shown in Uigure 2{c),
except the lowwer righl red regiom above = = o is quite a
bit thinner, That red region actually disappears For the Tully
simullancons SiZer mup based on gy with ¢ = .05 shown in
Figure 4¢). This shows that the 4y SiZer map can be ralher
conservative, because 11 does nol show thal there are two
significunt modes here (at the level o — 03], although these
have heen verified by other mouns. Bul when the level of
significance is ralsed to o — (18, as shown in Tgure ),
the red region reappears, so both modes are now statistically
significant in this sense. Mowe tha for both gy and gq, 18 o
increases, the rod and blue regions grow, as expecred.

Because the bootstrap versions of 3iZer are much slower
Lo commipule, wi suggesl using gz for a fivst look at the data,
This version of Sifer is called SiZer] in our sollware, avail-
able at the TIRL Asps/ Sewws stofume eche/ fronlee/marron,
racrroir_sofrware il But when there are any doubiy (here
showdd b more doubis i setlings that are not homoge-
neous in ), we recommend using gy and gy (mplemenied
as Siferf in our sofiware) for verilication. Although gy is
our only procedure that gives a rigorous test of significance
of features, it is also gencrally somewhal conservarive, so
we rceommend that Features found in go o gy SiZer maps
that do not appear in the g version be independenily in-
vesligted by 4 wode testing method, as explained in sec-
tion 6.1. Tior example, the mode (esl of Tsher and Mamon
{1998) shows thul the existence of two modes in the income
data can be establishod with o <0 01 by a fost that focuses
explicitly on number of modes.

Boesirap theory suggests improvenent by o stodentized
modification (see, ez, Hall 1992) or other methods (sec,
c.g. Bfeon and Tihshirani 1993), Such methads have not
been implemented hare, because they invelve recaleulation
of the variance estimale ot cach boolyrap sample, which
wonld entail substantial computational cost.

3.1 MNumerical Implementatiocn

The handwidth range [fmin, fimas] can be chosen in sev-
eral wiys, One approach is a broad range of smooihs
which should catch sl inleresting Tealures, as devel-
oped m the family approach to smoothing of Marron and
Chung (1997}, Another approach is “a very wide range of
gmooths,” which is determined more by the curve eslima-
tiom selling than by the data, In the examples of this article,
we have used the latter, and we ook hoy, ,, Lo be the small-
cal bandwidlh o which there is no substantial distortion in
construction of the binned implementation of Lhe smoolher,
feni- = 2 # {binwidih), and took e, to be the range of the
data.

F4 D Densivy Estimarion Specifics. The main idea be-
hind the calculation of 3D in this context is that the deriva-
LV cslimalor fﬁ;_‘(m'] i% an average (ol the devivative kermel
[unciions), so we use the coresponding sample standard
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Figure 3. A Simuwaled Datasei, of Size n = 100, Frove the Mamon—Wand Density £3. (a) The famity aporoach, overlaid with ie ree undertying
densily (thick green curse); (b} pointwise SiZer; (¢ simultaneous SiZer with ne gray shading for sparse data regions, (0] approxirmate simullanecus

SiZer with sparse data reqions showit In gray.

fi{z') are essentially independent, but when « and x’ are
close together, the estimates are highly correlated. The si-
multansous confidence limir problem is then approximated
by m independent confidence interval problems, where m
reflects the number of independent blocks. We estimate
through an estimated effective sample size (ESS), defined
for each {x.h) as

i E?:1 Bplz — X;)
ESS(x. R} 0] .
Mote that when K is a uniform {i.e., boxcar) kernel,
ESS(x, £} is the number of data points in the kernel win-
dow centered at x. For other kernel shapes, points are down-
weighted according to the height of the kernel function, just
as they are in the averages represented by the kernel esti-
mators. Next, we choose m (o be essentially the number
of independent blocks of average size available from owr
dataset of size n,

L

Tl = avg ESS{x, k)

A reviewer puinted out an interesting coonection between
m(f) and the concept of effective degrees of freedom of
Hastie and Tibshirani (1990}, which is the imace of the

smoother matrix. [gnoring edge effects, this trace is

1
o (br) =
(Kh 'DJ)
T
N g T mxay,
R [0

because avg:(1/n} Y7 | Ku{z — X;) = 1 (the area under
a kernel density estimate). Now, assuming independence of
these m{f) blocks of data, the approximate simultaneons
quantile is

o 14(-a)im
f;fz—ﬂz{ﬁ-}—‘l'l(——-——g )

The guantity ES5 is also useful to highlight regions
where the normal approximation implicit in {3) could be in-
adequate. This plays a role similar to np in the Gaussian ap-
proximation to the binomial. So regions whers ESS(x, b)) <
ng (we have followed the standard practice of ng = 5 at all
points hera} are shaded gray, to rule out spurious features
aned alse to indicals regions where the smooth is cssentially
based on sparse data, as shown in Figure 3{d). The forego-
ing calculation of the block siee m(h) is modificd to aveid
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Figrure 4, Sier Maps for the income Dala, Based on 1,000 Booistrap Rsplizations. Quaniies are g pointwise over b it the (&) and (b}, and g
simultanecus over i in (o) and (d). Sigmificance levels are o = 0% in fa) and (c), o« = 10 in {b) and (d).

deviation,
var{ fi{x)) — var (-u_l Z Ko — Xﬂl)
i=1

= n KL (2 - Xi),, PR . 9

where #? is the usual sample variance of 7t numbers.

Details of the binned implementation of fi (&) are similar
to those given by Fan and Marron (1994), except that the
kermnel is now replaced by the derivative of the kernel. In
particular, for the equally spaced grid of points {uw;: j —
1,....g} let the comresponding bincounts (computed by, for
example, the linear binning described im Fan and Marron
1994) be {c;: =1,....g}. Then

Filzy) = 07" §Y(=y),

where
=L g
Silxs) = Z Kl ey {4)
i'=1
and
Kooy = Kile; —2p). (5)

To similarly approximarte 3D, use

9
§B(ay) = \J n Y (e Vey — (i)
j*=l

3.1.2  Regresston Estimetion Specifics. We prefer the
local linear smoother to a number of other sensible
smoothers, becavse the derivative estimate is the simple and
appealing slope of the local lineg,

filz) = argmin y | (Vi - (= b(X; — @)

= Kh(:ﬂ T X‘i]' {6)

This is very similar to (2], except that the slope is kept
instead of the intercept. This slope estimate is preferable w
the quetient rule torm of the derivative estimate, which has
an unpleasant form. (See, e.g., Fan and Gijbels 1996 and
Wiand and Jones 1995 for further discussion, and Fan and
Marron 1994 for a fast binned implementation of the local
hnear smoother.)

Cur proposed SD is motivated by the fact that the deriva-
tive estimator is a weighted sum of the observed responses,
and we essentially use the conditional {given X,,...,X,)
weighted sample variances,

var{-ﬂ.{m}lxh" 1 Xﬂ}

= vdr (ﬂ'_l Z thl:m:X{}}r-ile_.---, Xﬂ-)

i=1

S PHIXNWale, X))

i=1
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To estimate o*(¥;| X, ), we use a simple smooth of the resid-
uals; for example,

Eillﬁgf{h{x - Xy
i Kl - X3)

FY|X=1)=

where é; = ¥; - fr(X;).
An efficient binned approximation of the local linear
derivative estimate f} (x) (6) is

Ti{m;) — Tolz; ) X ()
x5} = 281 (23X (x5} + Solws) X (w502

.ﬂ;[:"j} = 5-2(

_ Tilzs) — Tole) X (25)
Sofxs) — Silz;)% Salzs)’

where the notations

¥
Siiz) = E m_,-_jaf:_f:zf?-r._
il

il
Ti(zy) = ¥ w_y¥Fal,
gr=1

and
X{Tj] =5 (Ej}fgﬂ{xjh (7
are used together with
Ky = Knlw; - w5} (8)
100
a0
z B8
2
i
=] 40F
|
|
20 |
R T T e R
Thickness (mm)
(a)

012

0.08 0.1
Thickmess (mm)

(c)

815

and Yﬁ for the bin sums of the ¥,. Note that using the Gans-
sian Kernel ensures that Sy{x;) is theoretically nonzero.
Rounding errors can create zero values of Sy{x;}, but SiZer
iz unaffected because thiz happens only in the gray regions
where not enough data are present.

A binned approximation to &% {Y|X = z;}, based on
calculations familiar from simple linear regression, is

(Y |X =2;) = (1 — plz; ¥ )6 (z5)5,

where

CIETS

_ Oolay) (Tuli:ﬂj]')g
5'0{::.'_,-] EQ{EJ:I
and

ﬁ(ﬂ:j]2 — {f?i{ﬂ:gj}ﬂ (SU(TJ:'S'Z(E_?} i 5'1 [*’:_f}?) {9)

& (x5 ) Splrs )2
using the notation (7) and
g
Uﬂ{ﬂ:‘j} = E r;j_j:YﬁE
§'=1

for Y** denoting the bin sums of the ¥, Our binned ap-
proximation to the conditional variance is now

m{.ﬂ{'ﬁ] |X1r vony Xn)

o Volzs) — W) X (x;) + Vale;) X (z;)?
(8w} — S1(x)2/ 8o}y ’

g=401

g1 D)

0.06 0.08 8.1 0.12 0.14
Thickness (mmj}
[{=)]

logiih}
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Thickness {mm)

{d)
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Figure 5. Family Fiot (g) and SiZer Maps, Based on 407 Grid Points (&), 81 Grid Points {¢), and 2071 Grid Foirls (d), for the Hidalgo Stamp Data.
The Sheather—Jones plug-in bandwidth is the thick curve in the famify plot and cormesponds ta the hightighted rorizontel bar. The SJAP! banowicth
suggasts sevan modas, but nof al are “significant™ from the SiZer point of view,
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whoere
0
Vila ) = z Fig g r'j-r.c_i-fe"“.rz X =3,
il
and the notabions (7, {85, and (9} have been wsed, Tlias ro-
sults in

5?3['3:3-:. = ﬂ,l,-"'lx-'arf _fﬁ,;(m_?-j R SO, 5

4. MORE APPLICATIONS AND EXAMPLES

In this section, we present additional examples illustrac-
ing both the wscllness of Sider and also some potential
pitfalls. Refer to Marron and Chandhuael 19984, 1 998h for
several elher inleresting applications of Sider as a powertul
data analvtic tool.

The Hidalger slamp cdila sel wis wought 1o the mode-
testing literature by Izenman and Sonuner (F988). This is
a univariate dataset comprised of the thicknesses of stamps
lasued in Mexico during the last century. These thicknesses
have a remarkable amount of variahility and clusiering,
which sugygests a number of sources for the paper. An in-
teresting philatelic question is to determine the namber of
paper sources, which wis addressed by Trenman and Soun-
mers | 1388) via nonparametric density estimation. Tigure 3
analvres these dag with the family approach and Siver

The thick curve in Figure 5(a) is a kernel density esti-
mate using the Sheather—Jones plog-in bandwidih, as rec-
ommended by Junes, Marron, and Sheather (19%6a,5), This
guggests soven mades in the daa (e, atl leas) seven sources
for the paper). which agrees with the findings of Lzemman
and Sommoers (1988} and some others. The SiZer map
Figure 5(b) shows that the two largest modes, at 72 mm
and X719 mm, are indeed signilicant, as 15 the mode at |1
mm. The mode at 09 mum 1y less certain, as 3iZer finds a
significant increase oo the feft but no significant decrease
on Lhe right, Similar resulls were Found for the mode af (LT
munt, where there is only a significant decrease. Si7er com-
plelely misses the modes at 12 mm aod .13 mom. ut the
existence of these is perhaps debatable. TF one has a prior
kmwadedpe that no paper source lus o very wide variance,
then one may be able to believe these are actunal modes.
However, 6 one aeeepts the possibility of g heayy-lailed
distribartion, then the family plot suggests these could be
jusk randam clustering in such a heavy tail. Also nole the
thick density esfimate is heavily into the gray region of
the SiZcr map, which cays the dala arc very sparse in thiy
repion. which also casts doubt on these modes, from this
point ol vicw.

Mote that at the finest level of resclution (smallest band-
width), the Sier map in Figure S{h) suggesls the esisience
ol more “modes™ between (008 and 083, This is caused by
the data being heavily rounded, 160 001 mm, which resulis in
mamy replicate values in reglons where the data are dense.
When such rounded data are binned to 401 hing over this
range (e, a binwidih of D20, there are o number of bins
that receive no observations, When these hincounts, which
allernale between 0 und very Targe numbers (because of the

Journal of the American Statistcal Association, Soplomber 1938

rounding) are smoothed with a very small bandwideh, one
gets a kernel estimale thal signilicantly incresses and de-
creases, s shown. [ (his sense these fealure are “really
there.”™ aliliough the only conclusion is that the dara have
been eounded. We have seen 1hig sagme phenomenon in olther
datascls, A patural solution is that in Figure S{c), where the
mumber of grid poinls s reduced o g — 21, which mukey
cach rounded data value a bin center. Untortunately, the
heavw rounding in the dara entails a SiFer map Lhal missey
=ome of U mosl inleresting levels of smoothing, such as
the Sheathei—Tones plue-in bandwidth. COne weay 1o (ix this
winthd b Lo exparid the range of bandwidths, but. as noted
in Section 3.1. this entails nsing small bandwidths, which
resutls modisioried densily cstimmtes, A beller fix i shown
in Figure 5(d), where ¢ — 201 is nsed. Note that this SiZer
map hus all the sume important fealures as in Figure S(b).

Next we study the performance of SiFer in some simu.
lativm settings, which highlight how SiZer displays the in-
formation available in the data. The first of these is shown
in Figure f, where we study the ciieel of increasing sumple
size n (ie., increasing information in the data) in densiry
estimation.

The Fannly plot. in combination with the Sheather—Tones
plug-in bandwidth, for w — 10 sugeests noo signilcant
modal siructure ™ othe dats, This 1y also rellected in the
51Zer map. There are just not enough data o resnlve even
the 1w larper modey present ain the under ving density, For
1= 1,000, the situation is different, and now the twao large
modes are clearly present 1o the data. More inloresiing 1y
the third central mode, 1 is oot clear {rom the family plot
whether this is significant, the Sheather—lones plug-in band.
width suseests this 15 dublous, and the SiZer map confirms
this is not signilicanc. Tor s — 10,000, the Tarmily plol showees
that we bhave a great deal of wformation about this density
and can estimate it extremely well, The Sider plon venlicy
this, showing that all three modes are clearly present.

There are also some Interesting overall trends prescnt that
cun be expecled 1nogeneral, For oammple, as nogrows, the
gray area diminishes and tends to be replaced by pucple. The
purple areas also lend to be evenhrally replaced by cither red
or blue, hoth fraom below and also in the boundary reginns.

Inereusing informabion In tegression is also investigated
in Figure 7. but this time the information in the data in-
creascs Lhrough decreasing Lhe error varianee, rather than
increasing the sample size.

The undertying repression curve in each part o Figure 7

T 18 % [.'.i'.: = .:35} |:'_;]_: i f\'_:|
1= 1; B - h R . _
Tie) Do L 13 i o .

where - is the standard Gaussian probability density func-
ton. For the very low noise case. o = .02, the data con-
tain a lot of information about the underlying regression
curyes, s the Ruppert Sheather Wand bandwidih (see Rup-
pert, Sheather, and Wand 1993 for a detailed description)
and the wnderymanthed members of the Gamily are 311 cssen-
tially the same as the target corve. The S5i%er map shows
that all Teawres of the target curve are significant, Tor g
wide ringe of different resolufions {i.z., bandwidths). Even

15
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Figure £, Familly Plots f{a), (b), and (o)} and Corresponding SiZar Maps (fd], (a). and (] for Karnal Density Estimates, Based on Simulated
Data, From the Marron amnd Warnd Density #8, Timoodal, Shown as the Thich Greest Curvever i1 five Farily Plods. Sanyols sizes are n = 100 iv fa) and
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iz the highiightad harlzontal Bar In the SIZar mapa.

the “flat spot™ near » = .6, which is not easy to find in
the smooths, shows up as purple. When the noise level is
mncreased substantially to o = .18, the family plot shows
that the estimation problem is now harder, and the SiZer
map shows fewer significant features. However, the regions
of increage are still significant, and two regions of decrease
still appear, although at different levels of resolution. In-
creasing the noise still further, to o = .66, results io a very
challenging estimation problem, and now S1Zer does not in-
dicate any of the decreases and indicates only one of the two
increases as being significant. The family plot shows that
this is reasonable, because the noise level is so high. The
Ruppert—Sheather—Wand bandwidth suggests a decrease (al-
though it completely misses the small valley at x = .8), but
it is not clear with this noise leve! that it is sigmficant, and
Sifer shows that it is pot.

SiZer is also useful even in settings where the underlying
target curve is not smooth, and in faet is quite usefu! at high-
lighting “jurmnps.” This is shown in Figure 8, where Doncho
and Johnstone's blocks function (famouos from many papers
on wavelets) 15 used as a regression target, but the added
Gaussian noise i3 larger than iz typical in wavelot exam-
ples. Note that the location of each jump is highlighted by
a coloved streak (blue for op and red For down) that reaches
all the way to the bottom of the Sifer map. The streaks are
caused by the lact that even at very small bandwidths, the

estimates are changing significantly at these points. This
phenomencn appeared in a number of olher examples we
have studied where the target curve has jump discontinn-
ities. These indicated jumps could be used to construct a
step function estimator with much better properties than
the nsual wavelet estimators for this example,

8. FUTURE RESEARCH DIRECTIONS

In this section we discuss a number of futare research
directions that are motivated by Sifer

51 Local Likelinood

George Terrell has pointed out that for density estimation,
and for special types of regression such as logistic regres-
sion, symmetric confidence intervals such as those proposed
here ¢an be improved upon using context-specific informa-
tdon. We suggest a local likelihood approach wo this. Lo-
¢l likehihood is 4 smoothing method that is more efficient
than simple kerngl methods in some cases; for example,
discrete response variables. (See Chaudhuri and Dewanji
1995, Fan, Heckman, and Wand 1993, Simonoff 1997,
Staniswalliy 1989, and Tibshirani and Hastie 1987 for de-
tailed discussion and more references.) We anticipate that
SiZer may be exiended inoa Tairly straightforward way
this important smoothing context.

5.2 Handiing Dependency

In nonparametric regression, our current SiZer develop-
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Figure 7, Family Flots [ig), (b} and {oll and Cormasponding SiZar Maps [fd), {a), and (¥} for Local Linear Aegression Estimates, Based on
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Stmuilated errors are independent Gaugssian, with standand deviabions o =

£2 i {3) and {g), o = .18 In {B) and {8), and & = .66 i {c} and (. The

thick red curve is the Ruppert-Sheather—Wand direct pug-in berowidh, which i highlighted in the corresponding SiZar maps.

ment assumes independent errors, which is not always re-
alistic {2.g., in lime series contexis), But $iZer has the po-
tential to become an important tool in such contexts where
“sipnificance of trends” is often an important issue. We be-
lieve that such applications will require appropriate mod-
cling of the error structuve (e.g., by some autoregressive
moving average or even long-range dependent models) be-
fore usefnl inference can be done.

53 Testing Other Types of Hypotheses

SiZer focuses on regions where the derivatives are signif-
icantly increasing and decreasing, but for sone situations
other aspects of the underlying curve, such as the second
derivative, or even the curve itself could be more appropri-
ate to study in this way. Variations of 5iZer could also be
used to address other prablems, such as whether or not two
curves are significantly ditfferent.

5.4 Other Estimation Settings

Smoothing is usefnl in other settings besides just den-
sity and regression estimation. For example, SiZer can be
extended to estimation of the hazard function and other
funclions appearing in survival analysis. Another interesi-
ing extension would be to various censored-data contexts,

5.5 Lecal Bandwidth Selecticon
A separate potential application of SiZer is to the old

field of location varying bandwidth selection. The need for
this is demonstrated in Figure 9, where the family approach
shows that ooe would prefer a smaller bandwidth on the
right, where the underlying density has finer features, and
a larger bandwidth on the left, where the density has less
curvature. The Sheather—Jones plug-in bandwidth does a
reasonable job with the fatter peaks, but could be much im-
proved on the smaller peaks. In particular, 5iZer shows that
the smaller peaks really are significant, but only at a finer
level of resolution (smaller bandwidth). However, although
the need for it has been clearly understood, data-based lo-
cal bandwidth selection has proven to be a very challeng-
ing problem. In particular, the simulation study of Farmen
{1994) and Farmen and Marron {1997) shows that most of
the available methods do not fare much better overall than
the simple global bandwidth chosen by the Sheather-Jones
plug-in method, A likely miuitive explanation for this is that
local bandwidth selectors essentially require knowledge of
the local curvature, which is very hard to estimate.

Note that the Sier map gives some interesting visual
cues as to how one might choose a local bundwidih Tung-
tion, which iz described as a curve running across the
map. For example, the Sheather—Jones plug-in bandwidth
could be used for r € (—3,2), then the bandwidth curve
could move down to around logg, (k) = —1.4 lor » &
(2.3,3). An interactive approach 1o local bandwidth selec-
tiom could be based on tracing a “bandwidth curve”™ with
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a mouse on the 5iZer map. The resulting local bandwidth
smooth could be shown in gnother window. If the family
has already been computed, then computation of the lo-
cal bandwidth smooth would be very fast, because it only
needs interpolation among the family members. Marron and
Udina (1997) discussed a different approach to interactive
local bandwidth selection.

A natural question is, with 5iZer, why do we need local
bandwidth smoothing? The answer is that for presenting
conclusions to nonexperts (who are not interested in delails
behind the conclusions), a single location-varying smooth
will be very simple and attractive.

56 Higher Dimenslans

The problem of which feamres are really present? is
also very important in smeothing settings of more than
one dimension. In particular, the two-dimengional smooth-
ing problems arise in “imapge analysis,” which has & very
lurge literature. An important problem with extending Sider

to higher dimensions is how to preseot the “map” The
very simplest two-dimensional version that one might try
is to study the magnitude of the gradient, and highlight
scale-space regions where this is significantly sbove 0. But
now the map would be shaded regions in three dimensions,
which is fairly challenging to visualize. Minnotte and Scott
(1993} faced analogous challenges in developing a two-
dimensional version of their mode tree.

Cther applications would likely result in the need to vi-
sualize even higher-dimensional maps. For example, one
could replace the magnitude of the gradient by directional
dervatives, As another example, in some cases it could be
desirable to use different bandwidths in different directions.
Fven with a two-dimensional image, implementation of
both ideas would result in a six- or seven-dimensional map.

& OTHER APPROACHES

61 Mode Testing
An older approach o the analysis of significant features
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in a smooth is mode testing. Here one formulaies a null hy-
pothesis of “few modes™ (e.g., one), and then constructs
a test which seeks strong evidence of the aliernative of
“more modes” {e.g., two). This approach goes back at least
to Good and Gaskins {1980); later work includes Cheng and
Hall {1997}, Donoho (1988), Fisher, Mammen, and Marron
{1994}, Fisher and Marron {1998), Hartigan and Hartigan
{1985}, Hartigan and Mohanty {1992), Mammen, Marron,
and Fisher (1992), Mionotte and Scott (1993), Miiller and
Sawitzki (1991), and Silverman {1981).

Such tests have an important place, even now that S5iZer
has been developed, because they are likely to have greater
power than the inferences available from SiZer. This is be-
cause they focus directly on the question of modality, and
also becanse they are not hampered by trying to be simulta-
neows over all of scale space. However, most available mode
tests have the weakness that they determine only how many
modes are present, and do not say where the modes are,
or even which features in the smooth are the modes. {(See
Mammen, Marron, and Udina 1997 and Minnote 1997 for
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sume inleresting cxceptions to this.) The strength of SiZer
is that it gives a much faster way of addressing the ques-
tion of which modes are significant and which are not. We
believe that Sifer should be used mostly as an exploratory
Lool, with follow-up analysis by explicit mode tests recom-
mended In borderline cases.

82 wWhy Not Conventional Confidence Bands?

In classical parametric statistics, a time-honored ap-
proach to displaying variability is the confidence interval.
Many attemnpts have been made to extend this idea to non-
parameiric curve estimation. There are two major hurdles
to the effective use of this technigue:

« Tnstead of a single real-valued parameter, the quantity
being estimated is now an entire curve, Furthermore,
inference about features will involve aspects of sinoul-
taneous inference.

* TUnlike conventional parameter estimation, curve esti-
mation necessarily invalves an important bias compo-
nent.

e —
g

05 ——
045
03t
¥
o2 §
/ i
|
01 |4 f
g ; et |
-3 -2 1

0.5

0
=
=
205

(b)

Figure 2. Family Plot (3} and SiZer Map (b) for Kerne! Density Estimates, Based or n = {1,008 Simwaied Dala, From the Marron and Wand
Dansity #1545, “Discrete Comb” Shown as the Thick Yeltow Green in the Family Plots. The thick red curve in the family pielz iz he Sheather—Jones
PMug-in bamawidth, which is the highliohted horizontal bar fn the SiZer maps.
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Figure 10, Underlying Morme! Misture Dengity f (a), SiZer Map for 8 Simwated Datasel of Size n = 500 (o), 100 Replicates of Kernal Densily
Exstimates, Using the Coverage-Optimal Bandwid!h (&), and ihe Bandwidih That is MSE Optimal a8t x = .8 {d). These two bandwidths ara Hightighted
in the Sier map /s & sofid tine for ie M5E opfimal and & dashed line for the coverege ogiima,

There is a larpe literature on attetnpts to address these
problems in the context of smoothing. Gonod aceess is pro-
vided through the monograph of Hall (1992).

A quick and simple approach has been suggested by, for
example, Hastie and Tibshirani (1990), where one ignores
both of these hurdles and simply writes down standard con-
fidence intervals that capture only the variability part of the
error. If the goal is to make confidence statements about the
true underlying curve f{z), then this approach is inappro-
priate, because the bias is ignored, and the pointwise nature
of the intervals makes them too short for valid inference.

A time-honored approach o handling bias is to make it
negligible by undersmoothing; that is, using a very small
bandwidth, Many do this simply by assuming that asymp-
totically as the sample size grows, the bandwidth tends to
0 faster than the optimal, which canses the bias o tend to
0 at a faster rate. This still leaves open the problem of how
the bandwidth should be chosen, and the fact that for any
fixed set of data, any bandwidth will have at least a little
bias. But even ignoring these problems, confidence intervals
based on such bandwidths are pot intuitively appealing, be-
cause they may be expected to be unnecessarily long; that
is, significant features can be missed.

Another approach is to tey to estimate the bias and ad-
just accordingly. An attempt at this presentod by Hirdle
and Marron (1991) was asymptotically successful, but gave
incorrect coverage in simulations, as discussed in their sec-

tion 3. They also showed that the reason for the error was
because the bias estimate was inefficient. D. Nychka {per-
sonal communication, 1988) provided an intoitive explana-
tion of this with the statement “if you could estimate bias
effectively, then vou could get an improved estimate.”

Nige insight imto the [ailure of bias-correction methods
was developed in several papers by Hall (and is well sum-
marized in Hall 1991, see, 4.4). The approach taken there is
to choose the bandwidih to make coverage probabilities as
close ag possible to the desired values. Asympiotic theory
is developed for optimal bandwidths according to this crite-
rion, and it is shown that when opiimal bandwidths are used,
sirple undersmoothed bandwidths give shorter confidence
intervals than if one attempts any type of bias cotrection.

Thiz motivates a more careful look at undersmoothed
bandwidths, and a pamral question is: How long are the
coverage optimal confidence intervals? Figure 10 shows an
example addressing this point, using the explicit represan-
tation given just after (3.5} of Hall (1991).

The true underlying density shown in Figure 10¢a} is the
Gaussian mixmre density

425- (.35, .0144) +.425-N(.575, .0144) + .15 - N(.8, .0002).

Here we study its estimation when n = 500 data points are
used, and focus on the thinner peak; that is, on estimation at
« — 8. The practical effect of the coverage-optimal band-
width is shown in Figure 10{b), where overlays of kernel
density estimates for 100 indspendent replicates (i.e., repen-
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cration ol the n = &S00 pseudo—dwla poinls) are shown, The
envelope of curves suggests that at this level of smoothing
there is not enouch information in the dala 10 establish the
slhalistical significance of Lhe thinner peak, because the lop
of the envelope near the valley peint = .72 is well above
the ballom of the envelope al the peak, @ = 8. Figure 10{d)
investigates whether there is enongh information in the data
Lr resalyve the sceond peak. by again averluying TO0 realizg-
tions of the density estimate, but this tima with the band-
width chosen o mimmire the MSE = .F'.-"_‘i*"_._. (x) — flz)®
fapproximated by simulation) at the peak «w = .5 This en-
velope of curves shows that at this level of resolution, there
seeins o be plenty of mformation in the daty, and the sec-
ond mode should be a significant feature. The 5iZer map
in Figure 10(c) tinds both of the modes, and thus is using
the infermation gyailable in the data more clfectively than
confidence intervals with the coverage optimal bandwidth
can e

Note that even if il ware possible to pet effective clas-
sical ennfidence bands [doubtful in view of the foregoing
discussion), then SiZer would sl be a more powerlul dara
analvtic tool. This is because confidence bands need to fo-
cus on g single bimdwidih, which {even when il can be well
.chosen from the data) can still miss fearures that appear at
other levels of resolution.

[Received (hxaher 1997, Reviced Waralh 1990 [
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