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Abstract. We consider a family of models that arise in connection with sharp
change in hazard rate corresponding to high initial hazard rate dropping to a
mare stable ar slowly changing rate at an unknown change-point §. Although
the Bayes estimates are well behaved and are asymptotically efficient, it is dif-
ficult to compute them as the posterior distributions are generally very compli-
cated. We obtain a simple first order asymptotic approximation to the posterior
distribution of 8. The accuracy of the approximation is judged through simu-
lation. The approximation performs quite well. Qur method is also applied to
analyze a real data set.

Key words and phrases: Change-point, Gibbs sampling, hazard rate, posterior
distribution.

1. Introduction

We consider a change-point model {f(z;8)} : z > 0} for life-time data where
the density f(2;8) is decreasing in z for every # and is continuous everywhere
except at = # where the form of the density changes. The parameter ¢ is called
the change-point for such a model. Such models are of significant importance in
reliability theory. For equipments with high infant mortality rate up to a change-
point 6, it is often customary to “burn in” equipments up to ¢ or an estimated
valne of # and only sell survivors. Such models have been considered by Nguyen
et al. {1984), Basu et al. (1988), Ghosh and Joshi (1992) and Ghosh et al. (1993,
1996). For a different application to leukemia patients, see Matthews and Farewell
(1982) and Achcar and Bolfarine {1989). An important example of such a model
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is given by the density

ae” %%, 0<z <9,
bexp[—(a — b)8le™™, # <z < o0,

(1.1) ﬂm@—{
0 < b<a< oo More generally, we can consider

(12) ﬂ;mZ{M@+”Vdf“’ <2<,

A(0)(z + p)* e ™ 0 < < oo,
where AT! = [(z + p)*'e~*"dz and

S (@ 4 ) lemavdy

Aa(8) = A
2(6) VTR + pyalebedr

here a, b, o and p are fixed positive constants satisfying 0 < b < a < oo, p =
(v~ 1}/bifl <a<ooand pp>0if0 < v < 1. The condition on ;. is imposed
here so as to make the density decreasing and bounded (in z) as required for the
application of our results.

The class of densities described above does not satisfy the “usual regularity
conditions”. In fact, & is a point of discontinuity. This kind of nonregular cases
were first studied by Chernoff and Rubin {1956). lbragimov and Has’minskii (1981)
{(kenceforth abbreviated as 1H) studicd a wide variety of nonregular cases (that
covers the change-point models also, if the change-point parameter is bounded)
and obtained asymptotic properties of the maximum likelihood estimate (MLE)
and the Dayes estimates. It follows that the ML and the Dayes estimates are
consistent and converge at a rate n~!. Further, the Bayes estimates are asymptot-
ically more efficient than the MLE. Also, by Proposition 1 of Ghosal et al. (1995)
and in view of the results of Chapter V of IH, the posterior is consistent with
probability one and concentrates in O(n~!)-neighbourhoods of the true parame-
ter with probability tending to one for priors which are positive and continuous.
However, the form of the actual posterior distribution may be awkward which
prevents one from various Bayesian computations. If the posterior distribution
(of a suitably centered and normalized parameter) approaches a simple form, as
the sample size increases indefinitely, one can easily execute approximate {(up to
the first order) Bayesian computations based on the limiting form. Unfortunately,
as typical in most of the nonregular cases, Theorem 2.4 of Ghosh et al. (1994)
implies that the posterior distribution in the change-point problem does not ap-
proach a limit (details are shown in pp. 32-35 of Ghosal {(1994)). In this paper,
we first find a useful approximation to the posterior distribution which depends
on the sample size, assuming 6 is the only unknown parameter. In presence of
additional parameters (for example, if @ and b in (1.1) are unknown}, a similar
approximation to the marginal posterior of # is also obtained. This is established
by using an approximation similar to (2.8} below for the corresponding likelihood
ratio process Z,(-) obtained in Ghosal and Samanta (1995). Also, this suggests an
approximation of the form (2.11) to the joint posterior of all the parameters. To
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justify this, one has to prove an analogous version of Lemma 2.2. Nevertheless, we
show that our approximations coupled with the Gibbs sampling technique enable
us to approximately compute the posterior distribution in the multiparameter case
even if some observations are censored.

The paper is organized as follows. We deal with the one-parameter case in
Section 2 and the multiparameter case is considered in Section 3. The proofs of the
auxiliary lemmas are given in the Appendix. In Section 4, we present the results
of a simulation study to judge the accuracy of the approximations obtained in the
paper and illustrate our method with a real data set.

2. One-parameter case

Let X1,..., X, be independent and identically distributed {iid} observations
with a common density

filz), 0<z<8,

(2.1 flz;0) = { _ .
) ) (F](H)/FQ(B))fQ(.’E), f < xr < o0,

where f1(-) and fa(-} are {completely specified) nonincreasing, continuous densities

with survival functions Fy(-) and Fy(-) respectively, the hazard rate of fi(-) is

greater than that of fo{), Le.,

(2.2) ri(z) = %%)) > ro(x)

_ falz)
T Iy(x)’

x>0,

and 0 < § < K, K being a known bound.

The point of discontinuity # is often referred to as a change-point or a point
where a new density takes over. It is easily observed that the conditions stated in
IH (p. 242) are satisfied. At the change-point ¢, the left and right hand limits of
f{z; 8) arc

q(0) == lim f(z;0) = f1{8),

2.3 _ _
= p(0) := lim 123 0) = (F(6)/ Fa6))2(0)
It follows from {2.2) that g(#) > p(#).

Note that the assumption of nonincreasing density is satisfied if the hazard
rates 71{z) and ro(x) are nonincreasing. The assumption that 4 is bounded is a
crucial one. If all the parameters are unbounded both the MLE or the Bayes est1-
mates may misbehave (see Pham and Nguyen (1990)) and so one has to look for
alternative estimators. Pham and Nguyen (1990) considered an estimator which
maximizes likelihood over random compact sets and obtained strong consistency
and asymptotic distribution of the resulting estimator. As the asymptotic distribu-
tion is complicated, Pham and Nguyen (1993) also considered an useful bootstrap
approximation. Since the posterior distribution may be inconsistent when # is
unbounded and the objective of the present paper is to approximate the posterior,
we restrict our attention only to the case when # is bounded. From a practical
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point of view, however, this assumption is a mild requirement since failure before
the change-point may be viewed as infant mortality.
We fix 0 < #y < K and consider the likelihood ratio process

(2.4) H f(X"{’;? -Z)Du/n)’ u € U, := (—nby,n(K — b)),

and set Z,(u) = 0 otherwise.

Suppose we have a prior density #(#) which is positive and continuous at
8o and bounded on (0, K). The posterior density of the normalized parameter
u = n{# — Bp) given the observations Xi,..., X,, is given by

Zn(u)mw (B + u/n)
[ Zp{w)w(0y + w/n)dw’

(2.5) o () =

We are interested in obtaining an approximate expression (correct up to the first
order} for m,(u) as n — oc. In view of Theorem 2.1 of Ghosh et al. (1994), we
may assuine, without loss of generality, that 7(8) = 1.

Let

(2.6) Zn(u) = exp | c{Bo)u + 6(8) sign(u ZI{X € [0, 00 + u/nl}
i=1

for u > ~nfy and set it to be zero otherwise where ¢(8y) = p(6y) — q(6p) < 0 and
6(0s) = logl(q(6o)/p(fy)) > 0. We shall drop 6 whenever there is no source of

confusion.
Let X7., < --- < X,.., be the order statistics based on X1,..., X, and let

Xom = 0 and Xpy1.n = 00 as convention. We set Uy, = n(Xin — bo), i =
0,1,...,n,n+ 1. Then Z,(u) can be expressed as

exp[cu—f—ﬁ(r—kﬂ, Ur:n <ugUr+1:nsT:01"')k‘*11
(2'7) én(u) = exp[cu], UVen < u < Uk,
' expleu+6(r — k), Upn<u<Urjimr=k+1,...,n,

where k is such that Uy, < 0 < Ugy1in.
It has been shown in IH (Chapter V) that

(2.8) Zn(1e) = Zi () + 0p(1)

and the convergence is uniform in u belonging to compacts.

It has also been shown in IH (Chapter V) that the finite dimensional dis-
tributions of the processes Z,(-) and Z,(-) converge to the process Z(-) defined
by
(2.9) Z(u) = {exp[cu + 61j(u)}, u z 0,

explew + 6v(—u)], u <0,
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where v(.) and #(-) are independent homogeneous Poisson processes with rates p
and g respectively. It is straightforward to check that

(2.10) EzZ(u)=1, wuwcR.

From (2.8), it is natural to expect that the posterior density is approximated
by 7,(-}, where

Zn (1)

2.11 Fo(w) — el
(2.11) Fule)
Indeed we have the following result:

THEOREM 2.1. Under the above set up,

(2.12) f () = o ()| du — 0.

To prove Theorem 2.1, we shall use the following lemmas whose proofs are
deferred to the Appendix.

LEMMA 2.1. For any u € R,

(2.13) lim E|Zp{u) - Z,(u)| = 0.

n—roC

LEmMa 2.2, The follvwing asserlivns hold:
(i) EZ.(u) <1,ueR.
Gi) EZY? ) < exp[—Alu|], u € R, where X = (p'/? — ¢1/2)2/2,
{ili) Given any € > 0, there exist N > 1, By > 0 such that for alln > N,
E|Z}/?(u1) — Z3*{us)|* < BoexpleR]u1 — us|
whenever uy,up € R with |uy| < R, |uz| £ R, R > 0.

Lemma 2.3. There exist N > 1, B,b > 0 such that for alin > N,

(2.14) E ([ [ Hi’rn(u)du) < Bexp[-bH|, H>0.

Remark 2.1, It can be noted from the proof of Lemma 2.3 in the Appendix
that (2.14) can be strengthened to:
There exist g6 > 0, N > 1, B,b > 0, such that for alln > N,

(215) (/| >Hexp[£0[u]ﬁn(u)du) < Bexpl-bH], H>0.
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In particular, [ expleo|u|]fn(u)du is stochastically bounded.

ProorF OF THEOREM 2.1. For any H > 0, we have

(2.16) / I (10) — o (1)t < f e (10) = o (1)t + f o ()l

jul<H lul>H
+ / n (u)du.
lul>H

Frx > 0 and choose H > 0 and N > 1 sufficiently large such that
(2.17) B f mw)du) <m, >N,

|lu|>H
and
(2.18) E (/ frn(u)du) <n, n>=N.

lu|>H

Relation (2.17} follows from Lemma I.5.2 and Theorem V.2.5 of IH while (2.18)
follows from Lemma 2.3 above. For this chosen H, set I, = fiul> 5 Tn(u)du and

Isn :f|uJ>H fn(uw)du. Now

(2.19) f| o) = 7o

Zn(w)  Zn(w) ”
= [uISH [ Zp(w)dw [ Z,(w)dw d
Z,(w) Zn(u)

| fJulsH S Za(w)dw [ Z,(w)dw

= ( / zn(w)dw)l quH |2, () — Z, ()
( ] Zn(_w)d:w) o ( f Zn(w)dw) N f|u|5H 7. (u)du.

The second term on the RHS of (2.19)} is bounded by

(2.20) ( / Zn(w)dw)_l ( / Zn(w)dw)_l /MH Zn(u)du
v (/lwbH Zon(w)dw + LDH o (w)duw

. /|w|<H Zo(w) — zn(wndw)

-+
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< In + Iom ([ Zn(w)dw)l
x ([MSH Z,(u)du + fMSH \Zo () — Z~n(u)|du)

+ (f Zn(w)dw) o /qugH |Zn(w) — Z(w)|dw
< Tip o+ Ipp + 2 (/ Zn(u)du) - /|u|<H |Z0(u) — Zn(u)|du.

In view of (2.17) and (2.18), it is thus enough to show that

(2.21) ( f Zn(u)du)-l f;u;m \Z(0) — Z () ldie >, 0.

Since for any M > 0,

(2.22) ([ Zn(u)du) - < (/MSM Zn(u)du) _

and fiul <ar Zn(u)du converges to the positive random variable flu\ <nr Z(u}du by

virtue of Theorems V.2.1, V.2.5 and 1.A.22 of IH (here Z(u) is as defined in (2.9)),
it follows that

(2.23) (f Zn(ﬂ.)d?f) T 0,(1).

Alternatively, (2.23) can be deduced from Lemma I.5.1 of IH. Hence it remains to
show Lhat

(2.24) f! 170 Zufuidu =0

To this end, observe that

(2.25) E f |Zn (1) = Zn(u)|du | = f E|Zo(u) = Zp(u)|du — 0
lu|<H < H

by Lemma 2.1 and the dominated convergence theorem, since

(2.26) Bl Zn(u) — Zo(u)| < BZ,(u) + EZ,(u) < 2. m

Remark 2.2. In a manner similar to the proof of Theorem 2.1, one can also
show that for any &k > 0,

(2.27) f fu E () — 7 () it = 0.
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This yields approximations for the posterior moments.

Theorem 2.1 provides an approximation to the posterior distribution of u =
n{f ~ 6y) (and hence of 8}; the approximation, however, involves the unknown
parameter point fg. We therefore consider another version of Theorem 2.1 where
B is replaced by a “good” estimate 8. .

Let # be an n-consistent estimate of the parameter, i.e., n(f — ) = Oy{1).
Existence of such estimators is ensured as the MLE or Bayes estimates are n-
consistent (see Section V.4 of IH). The Bayes estimate, however, cannot be eval-
uated without computing the posterior which we are trying to approximate. The
MLE or the approximate MLE (as suggested by Chernoff and Rubin (1956)) can,
however, be used for this purpose.

Set w = n{# — 8). The posterior density of w is given by

(2.28) T (w) = mo(w + n(8 — 6y)).

From Theorem 2.1, we immediately have

(2.29) [ i) - Fawidw =0,
where
(2.30) 7t (w) = Fnlw + n(f — 8))

_ ¢ explew + 67]
B Z?:O (CXP[CWs:nl — exp[CWs+1:n])eés’
we (Wr:n=Wr+1;n],

and Wyp = Up.p — (0 — 8g) = n( Xy — 8), 7 =0,...,n+ L
The approximation 7% (w) still involves 8y through the constants ¢ = ¢(fg)
and & = 6(8g). Set

|él expléw + 67
> h o (ex[eWan] — exp[eWei1in])ef”
Wi <w < Wr+1:n; r=0,...,n

(2.31) Fnlw) =

where & = ¢(f) and & = §(8). Clearly ¢(-) and §(-) are continuously differentiable
and hence ¢ and é are n-consistent estimates of ¢ and & respectively.

THEOREM 2.2,  Under the ahove set up,

(2.32) / |7y () — T {w)|dw —, 0.
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Proor. Note that
-1
(2.33) f 2 (1) — o (a0) o < 2 ( f Zn(u)du) [ | Zon(ot) = Zn () s,

where Z,(u) is obtained from Z,(u) by replacing ¢ and & by & and & respectively,
ie.,

n
Zn(u) = exp {éu + & sign(w) Z HX, ¢ 6,60 + u/n]}] s i & +ufn=0,

g=1

and equals to zero otherwise. Now
—~ _1 — ~
(2.34) ( j Z, (u)du) / Zo () = Zn(u0) s

< ( f Zn(u)du) B / | expleu] — expléu]|

bsign(u) Y I{X; ¢ [fo,f0 + u/n]}:| du

i=1

+ ( f Zn(u)du)l f explé]

b sign(u) i I{X; € (60,60 + U/”]}]

i=1

X exp

X |exp

— exp [(5 sign(u) i IH{X; € 00,60 + u/n}}} du

i=1

— Jin + Jon (say}.

Using the inequality

(2.35) |e* — e¥| < |z — yle¥ exp[lz - yl],
we have
(2.36) Jin <6 —¢ / |u)exp[|é — c||ul]Fn(u)dy,

which converges to zero in probability by consistency of é and Remark 2.1.
By another application of (2.35),

(237) o < f|5 S I € B0 + u/nl) explle — lu]

=1

X eXp llé — b ZI{Xi € 6o, 00 + u/n|}| Tn(u)du.
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We split the integral in (2.37) over the regions |u| < H and |u| > H, where H is to
be chosen later. Since 3.7 I{X; € 8,80 + u/n]} < n and é is n-consistent for &,
it follows from (2.15) that the integral over |u| > H can be made arbitrarily small
with probability arbitrarily close to one by choosing H sufficiently large. For this
chosen H, the integral over |u| < H is dominated by

(2.38) 2H|6 — & ZR:I{X@- € [fo — H/n,00 + H/nl} expllc — &|H]

t=1

X exp []6— S{Zn:I{X,, €[00 — H/n, 80 + H/nl}|,

=1

which converges to zero in probability since é—,¢, 5—>p6 and 0 I{X; €
[0 — H/n, 8y + H/n]} converges in law (to a Poisson((p + ¢} H) random variable).
Combining (2.29) and (2.33)—(2.38), we obtain (2.32). O

Remark 2.3. As in Remark 2.2, one can also show that for any k > 0,
(2.39) f|w|’f47r;(w) — #tp(w)]dw —, 0.

Remark 2.4. In some cases (as in the model (1.1)), the parametric function
8(") may be free of . In such cases, one can use any consistent estimate & (such
as estimates obtained by the method of moments) to obtain the convergence in
(2.32). However, the approximation is likely to perform better if one uses superior
estimates.

Remark 2.5. Theorems 2.1 and 2.2 are first order asymptotic results where
the approximation does nat depend an the prior provided it is continuous and
positive. In practice, the approximations suggested by {2.12) and (2.32) are likely
to perform better for relatively flat priors.

Remark 2.6. The approximations to the actual posterior given by (2.12) and
(2.32) do not involve the bound K of #. This enables one to use these results even
if no precise knowledge of K is available.

3. Multiparameter case

We now consider the case with a density of the form given in (2.1) where
fi(-) and fa2{-) involve unknown parameters . Thus we consider iid observations
Xi1,..., X wilhh a common density

fl(x;‘P): - 053759,

(3.1) flz;:8,¢) = { (FL(8;9)/ Fa(8;9) fo(z;0), 0 <z < o0,

0 <6< K and ¢ & ®, an open subset of RY, d > 1.
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Tle assumptions and notations are analogous to those in Section 2 with ob-
vious modifications in presence of the additional parameter ¢. For example, the
quantities p, q, ¢ and & involve the parameter @ and the prior density 7 is defined
on (0,K) x ®.

We fix 0 < 8y < K, ¢, € ® and consider the likelihood ratio process

f X¢,60+u/n @y +n"2p)
3.2 u v .
( ) ) H qug()u(lo())

By convention, we set Z,(u,v) = 0 if (6 + u/n,p, + n~1/2v) does not belong to
the parameter space.

For a prior density 7(#, ), the posterior density of the normalized parameter
u =n(f — 6) and v = nV/2(p — ) is given by

Znlu, 'v}fr(Bo +u/n, o +n2%)
[ Z0(t, 9)7(80 1 /gy + 1~ PPs)deds

(3.3) (U, v) =

and the marginal posterior for u has density

(3.4) (1) = f (11, 0) .

An approximation of Z,(u, v) obtained in Ghosal and Samanta {1995) is given by
(3.5) Zo(u,v) = Z () Z(B (),

where

ZWM (4) = exp [cu + §sign(u) iI{Xz- € [fo, 0o +u/n]}

i=1
Z’,(f)(v) = exp ['vTAn - %vTFv] ,
A, —g A~ NyO, F)

and F is the Fisher information matrix for ¢.
It is shown in Ghosal and Samanta (1995) that

(3.6) Zn(u,v) = Zp{u, v) + 0,(1)

and the convergence is uniform in (u, v) belonging to cowpacts. It is also shown
in Ghosal and Samanta (1995) that the finite dimensional distributions of the
processes Zy, (-} and Z,(-) converge to those of the process Z(.) defined by

(3.7) Z(u,v) = ZW () 23 (v),

where ZV (1) is given hy (2.9) and

(3.8) ZP(v) = exp [vTA - %vTF'v]



490 SUBHASHIS GHOSAL ET AL.

with A independent of Z(:) and distributed as N4(0, F).
The following theorem shows that even if there is an additional “regular”

parameter ¢, the marginal posterior of u = n{(f# — ;) has the same approximation
as that obtained in Theorem 2.1.

THEOREM 3.1. Under the above set up,
(3.9) ] 7 (1) — (1)t 3 0
where wp(u) is the marginal posterior density of u defined in (3.4) and

[ Zn(u,v)do  Z89(w)
I Za(t, 5)dtds [ Z0tyar

(3.10) fin{u) =

ProOF. We proceed along the same line as in the proof of Theorem 2.1. For
notational simplicity, below we shall omit dummy variables of integration. As in
(2.16}, we bound the LHS of (3.9) by

/ |1rn—';"rn|+/ 7rn+f Tn-
ju|<H [ui>H |ul>H

In view of Lemma 1.5.2 of IH, the second term can be made small by choosing H
large. The third term is also small by Lemma 2.3, Now

(31D /1u|5H T =] < (]/ Z,,,) ) ./u|<H / 170 = 20}
M ]2
=L+, (say).
We have I, < Iy + s + Ti3, where

9= (f]#) foan e~
fi2 = (/f Z”) "1 quISH fllv“>H ’
he = (/] Z"y f|u|5H fnv;bH z

By the arguments used to prove (2.23), ([[ Z,) ! is stochastically bounded. Thus
by (3.6), I11 tends to zero in probability. For large enough H, Iz is small by
Lemma 1.5.2 of IH. To handle the term I3, it suffices to prove that

(3.12) lim supP{/ z > Hz} =
H—ooon>y 2| < H

(3.13) lim sup P f z23 > HS =0,
H=oon>1 loll>H
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Indeed, we then can choose H large enough to make the product
f|u\ g Zn 71 f”””> H 7 sufficiently small (uniformly in n) with a preassigned prob-

ability. By the stochastic boundedness of ([ Z,)71, it will then follow that I3
can be made small.
To prove (3.12), simply observe that

p f ZV>H Y <H™? EZWM <og.
|lu|<H || < H

Relation (3.13) follows from the stochastic boundedness of A,, and the nature of
the tails of a normal distribution.
We now note that Is < fog + fog + la3, where

foand = Lo =) (2 S
e ([ =) (=) (f2) ], )2
w2 =) (]2) ]2

The term fo; < 1) whereas Iys is hounded ahove hy (ff 7)1 f\u[;ﬁ‘ on, which
can be made small by Lemma 1.5.2 of [H. Now

Jupn Zn
DLy = fle1 ffZ (f|u|<H/Z +/uE<H/]Z =7 i)
<(fa) [, m0

The first term above can be made small by Lemma 2.3. This completes the proof. O

Iy —

As mentioned in the introduction, an analytic approximation for the joint
posterior distribution of (6,4) has not been obtained. We, however, describe below
a procedure of obtaining an approximation to the joint posterior distribution using
the one-dimensional approximation obtained in Section 2, the well-known normal
approximation to the posterior distribution of ¢ and the Gibbs sampling procedure.
It is interesting to observe that here asymptotic approximation and Markov chain
Monte-Carlo methods are not competitors, but complementary to each other.

Let £ = (z1,...,Zn) be observations from a density of the form {3.1), where
the possibility of some observations being censored (right censoring) is not ruled
out. We proceed in the following steps.

Step 1. Compute an initial estimate (4,¢), which could be the MLE.

Step 2. Fix an interval of reasonable values of (f,¢) around the initial esti-
mate and generate an initial sample (fy,,) at random from this interval.
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Step 3. Impute the censored observations to obtain an artificial sample 2
assuming (fg,¢,) to be the actual value of the parameters. For example, for
Model (1.1), if the i-th observation is censored at z;, then the corresponding
imputed value is 2; = z; + V, where V is a random outcome from the density
f(; 80 — x;,a0,b0) if 7; < 6y and from exponential with mean by ! otherwise.

Step 4. With ¢ = ¢, compute the MLE # based on the (complete) data z.

Step 5. Generate w from the density #,(-) defined in (2.31). Generating a
sample from #,(-) is not difficult as #,(-) is a piecewise exponential density. Put
61 = é +w/n.

Step 6. With # = #; and z as the observations, compute the MLE  of ¢.
For Model (1.1) we compute the MLE (&,5) of (a,b) subject to the restriction
a > b Letting J = {i: 2 < 6}, m — number of elements in J, T} = EzeJ 2,
Ty =} 472 and § = 3z, it turns out that & = m/(T} + (n — m)8,), b=
(n — m)/(T; — (n — m)b;} provided 1 < m < n and m/(Ty + (n — m)d,) >
(n—m)/(Ta — (n — m)61) and & = b =n/S otherwise.

Step 7. We generate a sample ¢, from the posterior distribution of ¢ using
its normal approximation (if the exact distribution is non-standard). We may use
reparametrization of ¢ for more accurate approximation to a normal distribution.
For example, for Model (1.1) we consider a = loga and # = logh and generate
a ~ N(&/{l - exp[—&gl])tl/n) and 8 ~ N{3,exp[ath]/n) until & > 3, where
& =loga, 3 =1logh and &, b are as in Step 6. Put a; = ¢® and b; = ef.

Step 8. Replace (6g,,) by (f1,¢,) and perform Steps 3-7. Repeat the op-
eration a large number of times to obtain final samples fram the joint posterior
distribution. These may now be used to (approximately) compute the posterior
means, medians, standard deviations etc.

Our method ig llustrated with a real data set in Section 4.

After completing the revision, we have become aware of a recent work by
Ebrahimi et al. (1997} where they have proposed to compute the exact posterior
by a combination of Gibbs sampling with other computation based methods. The
difference between our approaches is that we approximate complicated conditionals
by asymptotics and use only Gibbs whereas they use computation based methods
such as Mectropolis or certain tailored strategies to draw samples from the compli~
cated conditionals. Our method is computationally less intensive than theirs but,
on the other hand, is not exact. Also we have obtained a simple approximation
in the general case so Lhal we need nol really treal the different particular cases
separately (except for calculating quantities like p(f) and ¢(f)). For large samples
one can just use our simpler approximation that performs quite well.

4. A simulation study and an application to real data

We first present the results of a simulation study to judge the accuracy of
the approximations obtained in Section 2. For this we consider iid observations
Xi1,Xa,..., Xy, each having distribution possessing a density given in (1.1) with
0 < ¢ < K, K being a known bound. We consider a uniform prior on (0, K)
and obtain the expression for the exact posterior density n7(w} of the normalized

(and centered) parameter w = n(f — 8), where # is the MLE of 4. Equation (2.31)
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Fig. 1. Comparison of exact and approximate posterior of w = n{f — 5) in the one-
parameter case.

gives an expression for the approximate posterior #, with § = (§ =) log(a/b) and
¢ = (b — a)exp(—af). In our experiment, iid observations are generated from
a distribution (1.1) with @ = 2, 6 — 1, ¢ — 0.1 and K is luken Lo be 1. For
different choices of the sample size n we calculate the exact posterior 77 (w) and
its approximation 7, (w). For comparison of the approximation 7, with the actual
posterior 7y, we plot thew together. It is observed that the approximations are
good for moderate sample sizes. For a sample of size 10, the plots are shown in
Fig. 1.

In our experiment we have chosen the model (1.1) so that we are able to com-
pute the exact posterior easily and compare it with its approximation. For more
complicated models (e.g., (1.2}), the actual posterior may be awfully complicated
while the approximations can be computed easily.

We now illustrate the method we suggested in Section 3 (pp. 20-21) for deal-
ing with the multiparameter case both with a set of simulated data and a set of
real data. For illustration we again consider Model (1.1). We take as the prior
distribution a product of a uniform distribution over (8;, K') for # and a noninfor-
mative prior m(a,b) for (a,b) given by dn(a,b) = Zdadb on 83 < b < a < oo, &,
62 being very small positive numbers. For a random sample of size 100 from (1.1)
with # = 1, a = 1 and b == 0.2, censored by an exponential variable, we compare
the characteristics of the exact and approximate posterior distributions for # in
Table 1 (we take K =4, §; = 0.1, § = 0.01). We also consider a data on remis-
sion duration for 84 patients with acute non-lymphoblastic leukemia (Glucksberg
et al. (1981}) which was used in Matthews and Farewall ((1982), Section 4). As
in Matthews and Farewell (1982}, the data is modelled as independently censored
observations from the density (1.1) with all the parameters (6, a,b) unknown. For
certain advantages in computation and putting it more or lese in the same scale
as that of the simulation experiment we have divided the original data by 500.
Matthews and Farewell (1982) computed the MLE as (1.394, 1.02, 0.215) which
we take ac the initial estimate mentioned in Step 1. We take K — 3.5, §; — 0.05,
6y = 0.01. The values of various characteristics of the exact and approximate
posterior distributions of # are shown in Table 2.
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Table 1. Values of various characteristics of the exact and approximate posterior of &
for a simulated data.

Mean Median S.D.
Exact 1.05 1.02 0.07
Approximate 1.07 1.07 0.06

Table 2. Values of various characteristics of the exact and approximate posterior of @
for the data on remission duration.

Mean Median S.D.
Exact 1.83 1.60 0.50
Approximate 1.79 1.51 0.61
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Appendix

Proor oF LEMMA 2.1. The result directly follows from Theorem V.2.4 of
IH. However, the full strength of that theorem is not needed and we propose
an alternative simpler proof. In view of (2.8), it suffices to show that Z,(u) and
Z,(u) are uniformly integrable. Since both Z.(u) and Z,(u) converge in law to
the random variable Z{u} defined in (2.9), we only have to show that

(A1) Jim EZ,(u) = EZ(u),  lim EZ.(u) = EZ(u).

Since EZ,(u) < 1 (by definition) and EZ,(u) < 1 (by Lemma 2.2(i)), Fatou’s
lemma and (2.10} imply (A.1}. 0

Proor oF LEMMA 2.2. Throughout the proof, we use the fact that f(z;8)
is nonincreasing in x and the inequality * > 1 + z, z € R, without mention.
{i} We show the derivation for the case w > 0; the casc v < 0 is similar.

EZn(u) = exp(eu)(1 + (e — 1)P{X; € 6,0 + u/n]})"

= exp(cu) (1 +(e® — 1)/ (Fy (90)/13’2(90))f2($)d3?)

Po-tuln

o

< exp{eu)(1 + (¢’ — 1)pu/n)™
< exp{(p — @}u + n(g/p — L)pu/n]|
=1.
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{ii} We do for u < 0 only.

EZM%(w) = explcu/2)(1 — (1 — e=¥Y)P{X} € [0 + u/n, 8] )"
< exp(eu/2)(1 — (1~ e™"%)g(—u)/n)"
< exp{(p — @)u/2 + n(1 — (p/9)""*)qu/n]
= exp[(p'/? — ¢'/%)%u/2).
(iii) Below, for a random variable X, E*(X) will stand for (E(X))". There

are three different cases—0 < u; < ug < R, —R< uy € us < l0and —R < 4y <
0 < uy < R. We show calculations for the last case only.

E|ZY?(w) — Z2 *(un)?
= E™{exp|cug/n + 81{X1 € (84,00 + usz/n]}])
+ E™(expleuy /n — 6I{Xy € [0y + u1/n, 8]}])

_opn (exp[%(m +ug) — (5/2)(1 {Xl € [60’ Bo + ElLni]}

w1 {xe oo Sl )])

< 2nE(lefluz —w1]/(2n) + (6/2)I{X; € (6o + u1/n, 8 + uz2/n|})
-exp[Rlcl/n + 8]

= [lelluz — u1| + 6(puz + f1(0}{—w1))] exp[Rlc|/n + &]

< (lel + f1{0)6) exp[Rlc|/n + 8][uz — wi].

Given any ¢ > 0, choose N > 1 such that |¢|/N < . Then (iii} follows from
the above calculations. O

Proor OF LEMMA 2.3. The proof is somewhat similar to that of Lemma
1.5.2 of IH, and therefore is briefly sketched. Fix M > 0 and set I = [}, Zn(u)du,
Q =1I/ [ Zn(u)du, where T = {u: M < |u| < M+1}. Divide I into L subintervals
Ay, ..., AL of equal length, where L is to be chosen later. Choose u; € A;,
i=1,...,L and set § = Ef:l Z, (w;) mes(A;) = Zf’zl fa Zn(u;)du. Let A be as
in Lemina 2.2(ii). L'hen, '

(A2) P {S > %exp[—)\M/S]} <P { (1%%XL .Zi/z(u,-)) > %exp[—)\M/lﬁ]}

<2 B(Z,/*(u)) exp[AM/16]

< 2L exp[-15AM/16];

here we have used part {ii) of Lemma 2.2.
Using Cauchy-Schwarz inequality and Lemma 2.2 (iii) (with £ = A/8), we
have for some B; > 0,

L ~ .
(A3)  ES-1 < ZL B|Zn(u) — Zn(us)|du
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<y | B@ ) + 22
i1 B
(B2 ) - 2 (w)))
< 2BY% exp{A(M + 1)/16] i/{; | — ug| 2 du
— Ja;
< By exp[AM/16]L™1/2, z

Hence by (A.2) and (A.3),
(A4)  P{I>exp[-AM/38]} <P {S > —;-exp[—,\M/S]}
+p { IS 1] > %exp[w/\M/S]}

< 2L exp[—15AM/16] + 2By L™ 2 exp[3AM/16].

We now choose L such that exp[3AM /4] < L < 2exp[3AM/4]. Then (A.4) yields
that for some By > 0,

(A.5) P{I > exp[-AM/8]} < B, exp[—AM/8].

From Lemma 1.5.1 of IH, for sufficiently small > 0,
{A.6) P {f Zn(uw)du < n/4} < 435/2 exp[A/16]71/2.
Thus from (A.5) and (A.6), we obtain

(A7) EQ<P {fzn(u)du < n/fl} + P{I > exp[—AM/8]}
+ %exp[-—)\M/S]

< 4B}/ exp{A/16]n/2 4 B, exp[-AM/8] + %exp[—,\AJ/S].

Putting n = exp[—AM/12] in (A.7), we have for some By > 0,
(A.8) EQ < Bsexp[- AM/24].

Hence for all n > N (where N corresponds to € = A/8 in Lemma 2.2 (iii}),

E (flu|>H Znlu)du

(4.9) [ Zn(u)du

) < iBg expl—A(H + r)/24]
=0

< Bexp[-AH/24]. U
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