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Abstract

Consider a finite population of units (L, Uy, .., Dy ). On each unit Ly, variates of interest
and x are defined taking values ¥, and X, respectively, i=1.2,....N. In certain surveys, it is of
interest to estimate the population ratio B =YX (or equivalently, ¥/ X)) where ¥ = Ej’ ¥, and
X =37 X, based on a sample of size n selected according to a sampling design p(s). Under
simple random sampling scheme, the usual choices for the estinmtion of B are (i) a (single)
ratio of sample means given by R, = /% or (it} the mean of (n) ratios, viz. R, = iz,
It is well known that both £ and R, are biased for . Using the extent of biases, we shall
first discuss the role of B and R, in the construction of unbiased ratio estimators. When y
is considered as the stdy variate and x is an auxiliary variate related to v, the problem of
estimation of the population mean F or the population total ¥ is dealt by constructing ¥ = £7
or ¥F=Rx.

For the estimation of the population total ¥, we shall consider a class of Symmetrized Des Raj
{ SDR) strategies and look for a choice of a model-optimum estimator when design-unbiasedness
is not demanded, among those utilising “mean of ratios” and ‘ratio of means’,

1. Introdvection

Consider a finite population % = (U, Us,. .., Uy) of size N. Two variables of
interest vy and x are defined taking values ¥; and X; on U}, respectively, i=1,2,.. . N.
We are interested in estimating the population ratio R = EL Y E?=|X,-= YX (or
cquivalently ¥/X) based on a sampling design p(s).

Under a simple mndom sampling (srs) design, it s customary to use the esti-
mators R, = 7/%, a single ratio of means or R, = 5 (wi/x:)/n, mean of n ratios as an
estimate of K. It s well known that for srs design, both R, and R, are {design) iased
for B. These estimators could also be mterpreted as “weighted averages of the mtios’
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¥iixi, 'ri}f., ¥ Wil wifx;) and when w; =x;/ Y x; we have Ry and when w; = 1/n,
we pet R,

When v is the study varable and x s taken as an auxiliary vanable related to v,
one can use the ratio method of estimation to obtam the more efficient estimators of
the population mean as ¥y =(#/00WX and ¥, = (Zy/x )X /n.

Both f. and 1?,, are design (srs)-biased. However, when the relationship lzn:mw:n ¥
and x is expressed as a model for which exp(¥; | X)) = fiX,, say, then both ¥y and T,
are (model j-unbiased.

2. Role of £, and £, in the construction of unbiased ratio estimators

When ¥y and ¥, are design biased, several unbiased (or almost-unbiased) ratio
estimators are suggested m the literature. We shall first brefly review some of these
unbiased estimators and highlight the role of B, and R, in their construction and then
suggest new classes of unbiased mbo estimators involving either R, or R,.

Consider

i: ¥i (2.1)

1 &

2 V- X
¥ =02X +(1- @)
X n
for the estimation of the population mean ¥, The estimator ¥ in (2.1} is unbiased for
¥ if

H=Ea|."l{_-ﬂu e -EI }: {2-2]

where B, =Bias(¥,) and B, = Bias(¥,).

Murthy and Nanjamma (1959) demonstrated that 8, ~ n8, based on » interpen-
etrating subsamples. Thus @ of (2.2) reduces to Sy =n/(n — 1) and the resulting
{almost) unbiased ratio estimator is given by

}_:HN =HHN.§|E +{_1 == QHN }.ﬁ;“xf, with H=H_.".{H— 1 } {23}

It 15 also known (see, for example, Rao (1981)) that Hartley and Ross (1954)
estimator could be written as

;Hu = OB X + (1— A JR,X (2.4)

where Gpp = (n/n — 1}%% and the estimator due to Nicto de Pascual (1961) could

be expressed as
¥p=0,RX +(1—0,)RT with@,=—(N—1)/(n— 1}&'}. (2.5)
Mote that Gy the factor combinmg R.X and B.¥ is a constant but @yp and &, are
random variables with the property that Gy = 1 while E(@up ) =1 and E(&,) < 0.
Thus, Murthy—Nanjamma type unbiased ratio estimators are non-convex combinations
of B.X and R,.X while Hartley—Ross, Pascual type unbiased ratio estimators are stochas-
tic non-convex combinations of #.X and B ¥ (ie, iR X + (1 — 1R, X with / such
that £(4) & (0,1), see Rao (1981) for details.).
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Next consider the estimator £,.7 and let
T(s)=[(N — 1 — N(n — NFIR.X. for T(s) > 0. (2.6)
Consider the strategies

Hy: (smswor, e =T(s)/(N — n}.f}
My (Mideuno—Sen (MS) scheme, e = T(s)/(N — n)x)
and Hy: (Deshpande, 1982 scheme, e3 = T(s)(NX — ni)).
Deshpande and Prabhu Ajgaonkar, 1993 (DP, 1993 ) have shown that all the above
are (design) unbiased for ¥,
We now observe that e can be wntten as

(W —1mE Nin—1)X\ ;- ( Ogp—] )
EI_(N{H—I}X_ ])({N—n}f)R‘"X_'(E{@Hu}—l ;-

Motivated by this, we consider in general

= 1 — &) e
¥ (—1 ~ E{H{m) R.X 2.7)

whenever the multiplier 1s positive.
For ¥ to be unbiased for ¥, we should have

)

E}:_ _E 1—8&(s) X1 w _¥
g (I—Etﬁ*(snﬁ. E)_
ar
" ¥i _H_}? B .
E({l—mmgz)— =1 - EO0)
ar

N o I=; B E(s)p(s)| _n i B . )
ZI‘FI{E E ~x }—;;[,Z}f[l E(Q(s))) "i‘r{
which mmplics the condition
1 "
7 2 PNl — B(s) = (1 —E(8(s)))

1530

ar

3 pls)A(s) =m; =nX;(X, (2.8)
where As)=(1—@(s))/(1—E(E(s))) and m; 15 the sample weight function as defined
by Srivastava (1985). Note that £4(s)= 1 which is outside the open interval (0,1).

Table 1 gives the estimators ¢ of DP (1993) as special cases whenever they are

defined.
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Tahle 1
Special cases of unbiased ratio estimators

G5 s E{ENz1) ¥
¢ bad ¢ Buk
o e oo
o Ms o= &
ot oo, : #

Furthermore, letting 7T'(s)=(N — n)#f, Deshpande and Prabhu-Ajgaonkar

{DP, 1993) obscrved that

H{: (smswor, &) =T'(s)(N —n)X = 7)

Hi: (MS scheme, &)= T(s)/(V — n)E =( 7/x)X)

and H: (Deshpande scheme, & = T'(s)/(NX — nif)=(7/5)X),

where & is the average of x,’s not in the sample, are all design-unbiased for ¥.
Extending these, one can consider as m (2.7)

d s -

IO )

whenever &'(s)/E(&'(5)), the multiplier s positive and the condition for unbiasedness
15 given by

E(@'(5)R\X)=TFE(@(s))
or
= N
¥ H'f-"}l%xﬁf-ﬂ = (Z }]'.-"N) E(&'(s))
S X I
or
N N
le ¥; {Z (H'{.ﬁ'}p{s} Z.T;) } = (ZI‘ }}.-"X) E(&'(s)) ¥y
=1 f=23 il
which implics that
iy (@'{s}p[.f} ij-) =E(@'(s))/X
=) IEx
or

3 (ir{s )p(s) Z.r;) =1/X (2.10)
F=3

=T

similar to (2.8), where A'(5) = @'(s )/ E(&'(5)).
Note that E(A(s))=1 m all these cases and & open (0.1).
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Tahble 2
Special cases of unbiased ratio estimators
&'(s) pls) E(E(s)) #
r oM 4
= 1Y) 1 €
: -2 : !
1 { ore) T, I {ar ¢} €3
N =) NX —nf '
E —uf M) 1 £
Table 3
rm.s.e’s of different estimators
E stimator rmse
Fopulation | Fopulation [
o 00105 00101
Y ur 0.0127 00287
¥p 0.0114 0.0175
¥i 0.0255 00,0066
g 0.0641 0.0140
(=7 0.0741 0.3003
4 00230 0.0051
e} 03211 08306

Remark 2.1. One can further obtain Hartley—Ross type unbiased ratio estimators by

considering
a{ ()R X} +(1 — 2){ Ys)R, X}

for a chosen p(s). For example, when p{.v}={': T (e smwor), As)=3F,
As)=10(1 =Gy (1 — E(@ugr)), we have

S R 1 — e 2
}’Hn—ﬂt{f}}l+{1 1}{1_5{&1[{}}?"

which gives a class of Hartley—Ross type unbiased ratio estimators for ¥ In particular,
the value x=n(N — 1)/N(n— 1)=E[(@yp ) gives

Yur =Our¥) +(1 — O )Y,

which 15 the same as lﬁHR of (2.4). Similar classes of estimators could be obtained for
other p(s) values (Table 2). We shall omit the details here.

The following table presents the relative mean squared emors (rms.e) of some
of these estimators for Population 1, considered by Nieto de Pascuoal (1961) and by
Sukhatme (1954, p. 165) when n=2 (Table 3). )

For population [, ¥y behaves well while ¥ i %nd ¥p are quite close. For population
I for which p(=0995) is very close to unity, ¥; as well as & fare better while &
is very inefficient, as expected. (e, es,e5 are not calculated since they take negative
values for some samples for these populations. )
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Remark 2.2, Such numerical comparisons as above may not give much msight into
the reason why an estimator clicks in a given situation. However, from the wide appli-
cability based on interpenetrating subsamples and the relatively very simple expression,
the Murthy—Nanjamma almost unbiased ratio estimator ¥y is preferable to others.
Even though exactly unbiased, }?Jm could be less efficient compared to even the con-

ventional biased ratio estimator ¥y, if f is nearer to R than to (3 ¥i/X YN,

3. Optimality of estimators based on R, and R,

Suppose that we assume a model ¢ in which y;'s are considered to be realised
values of mdependent random varables ¥'s where ¥, has exp (¥4 =AY, and
vars(¥;|X;)=a'v(x;); f and & being constants. Royall (1970) has proved that the
estmator

f‘r = ¥; + = —
I'EZ* . ZJ’E ¥ 1'_:' -"IF{'TJI}

15 model (£ j-optimum,
When o x;) =x;, we have the optimum estimator

Ligs ¥i%il o) (X - Z.r,.) 31)

=]

T/ =RX

) = = .
and when o(x;) =x7 we have the comesponding optimum estimator

Ta=Yyi +Ru(X — x).
Furthermore, if design-unbiasedness is not demanded, the strategy consisting of the nPS
plan and the estimator T2 would be better than the mPS plan and Horvitz—Thompson
{HT ) estimator as noted by Royall (1970):

E:M( paps. ) € E: M{ paps. Tut).

It 15 well known that ff.X is optimum for o{x)=x;. It 15 interesting to note
that B,X is optimum when o(x;) =x7/(X — nx;) (see Ramachandran and Rao (1973))
since
> v/ {6 /(X —nx;)}
> X~ )
=R.X (3.2)

Note here that (T =3 y)/(X =S x) X =R X while (T:—% » ) (X - x) X =R X
and the implied estimator f, =% 3| % x happens to give the estimator T = B.X

fl' - Z‘f‘, + {.X - ETJ'}

whereas the implied estimator §, =3 ( wlx)/n does not mve R.X, but gives T1 as
mentioned above.

Let % be a sample of those n labels for which the sizes x; are the largest. Further, let
P be the sampling plan which selects 5% with certamty 1.e. p*(s*)= 1. Then following
Royall (1970), when of x;) = x;, the strategy consisting of the purposive sampling plan
p* and the estimator 7'y =KX is optimum for ¥.
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We have already noted m (3.2) that under the varmnee function ofx;) =.tf..-"{X —nx; ),
Ty=R,X is the optimum estimator. Furthermore, we have

'E;'[ f‘r 5 }:_’ )={X — Z'TJ'}!'E-:'{IEM i ﬁ'r, + HE Z L‘{:TJ'}

|

ey A=A L R

. i — HX;

Also

a a
X; Xy

X x = =
! X —mx; T X —nx

which shows that (3.3) s minimum for the largest x; values. Thus, when o{x;)=x7/
(X — nx;), the strategy p* together with 8,5 15 optimum (cf. Royall (1970)).

4. Symmetrized Des Raj Estimators

In this section we shall consider a class of symmetrized Des Raj (SDR) estimators
and discuss the role of the ‘mean of ratios’ and ‘ratio of means’ in its construction.

Let s=(i.i2 ..., i) be an ordered sample with the corresponding values of the study
variable v ={y;. ¥n,.... ¥, ) and initial probabilities of selection {p;. pr..... pi )
Des Ra’s (Rag (1956)) ordered  estimator for  the population  total ¥ ooas
ziven by

o n
Yo=13% cuti. (4.1)
k=1

where fy = 35+, +- -y, + i_;-‘-.[l — i — P, — P, ) and ;s are constants such
3 s 3
that 37 ;=1
Murthy {1957 ) constructed a symmetnized unordered estimator known as Symmetnzed
Des Ray (SDR) estimator given by
}f- Z P.\'{;Ivf-_’v"'vjlu}f-u
SDR = T i
: Z P.\'{flﬁfzs---:f.u}
where p(iy,f,.. .0, ) 15 the probability of the ordered sample s(i).is,....1,) and the

summation Z 15 over all »! permutations of (), ... 0, )
As an estimator of the population total ¥, Basu (1971) considered

; 4.2}

'r-’|= Z _111'| + .vjﬂ (1 | Z PJ“) {43'=

iEx _Fj'ﬂ =1
and rewrites (4.3) as

fy=381 + 82,
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where §1=3%, ;) and Sa is an estimate of ¥ — Z, co - It is clear that 82 would
be an ‘exact’ estimate of ¥ — 3}, - v iff v /x; =(¥ - ZI. e M MY — 325 o)
weighted average of the unobserved ratios, weights being the sizes of the come-
sponding units. Basu then suggests that it is ‘natural” for the surveyor to estimate
(¥ — 2w, )/(X — 3 x;,) by ‘some sort of average’ of observed ratios such as 3. v, /
> i e, Xi, (ratio of means) or 1/nh 7 v /x; (mean of mtios).
Thus we have the choices

Zh+%(,¥—; ) 2 %: (X—;.r,-) (44)

ar,
1 i
=t (Z:—_)M —2.%) (4.5)

both of which have ‘greater face validity” than (4.1). With PPSWOR plan bath ¥,
and ¥y, are design-biased.

Now, consider 8 more general estimator
= Z Wisiaibns (4.6)

where t, 15 the ordered Des Raj estimator based on (iy,6s,....6,) and w’s are weights
with 3wy, = 1, summation being over all ! permutations of (i, . ... f,,‘.| When
Wi =g fin — 103, es Pis (4.6) simplifics to e fﬁ‘u Wy g_g = 1/n), e }3\
and when wy g —M;‘:j:—“:”, we pet P ¥epr. Thus {4.6) pgenerates a class of
SDR estimators. We then have the problem of choosing the best i this class, 1F
design-unbiasedness s not demanded, we note that

= Z ﬁ.u'_rj'

TEx

15 C-unbiased where

e Wil 1l — Z_,u‘ i)
7y )

Bi=14+3

where Zr is summation over all (n—1)! permutations of (iy,is,.. . i, ) the first (n—1)
units in s with ¢ as the last unit and where s 15 the ordered sample i.ia, .. 0.0
Let a;=n’. wy; ;. Then from Ramachandran and Rao (1973) it follows for any
sampling plan p with fixed sample size n, under the model ¢ (with variance function

v(x))

EM(p.¥ )y 2 E-M(p. ¥a,)

if for i.i' €5 and s € % with p(s) = 0,aq; < a;, mplies P{r,} <= Fixp )xh, where for
i€s.a;=n% " wy, ; i This identifics ¥y, which has £, as the implied estimator as
the optimum n this class under the given conditions.
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5. Conclusion

We have seen in the preceding sections the role played by the two estimators *mean
of ratios” and ‘rano of means’ in the construction of unbiased ratio estimators or in
determining an optimum in the class of SDR estimators. Historically, these two estima-
tors have been of interest even i classical inference from infinite populations. For ex-
ample, Rao (1952, pp. 154-155) discusses the role of the two statistics £, = 1/n 3 ¥ilx;
and R, = 74 based on n pairs of observations (v x), i=12,....n from Normal
populations. &, is considered ‘inconsistent’ as an estimator of the parametric func-
tion E(y)/E(x) while R, is ‘consistent’. Rao cites examples of the uses of indices in
biometric research where wsually mean index is caleulated by taking ratio of means.
He also discusses why this s not strictly applicable with the mean of ratios.

We shall now discuss another interesting example from Rao (1989, pp. 116-118).
The problem was, to estimate the unknown large number N of people of a minonty
community who took refuge in the Red Fort n Delhi dunng communal riots of 1947,
A method which was “unconventional and ingenious” suggested by Sengupta was used
for the esumation of N,

If wy,wps, vy denote the quantities of rice, pulses and salt used daily to feed all
the refugees and if from consumption surveys, the per person requirements of these

.I' .I'

commodities are known to be xp, xa, xy, respectively, then cach provides a parallel

and valid estimate of N, Following the discussions of the abn:rc sections, it is but
natural to consider the two alternatives

Yi+y+»

X +x + x5

the ratio of means

. 1§ ¥ ¥a ¥i
or ;n\'.:_u=i T_|+E+T_;

the ‘mean of three ratios’

Nay=

However, it was found by “Cross-Examination of Data® that w/xs 15 the lowest
compared to % or ; since the figures for vy, w given by the supplier of these expen-
sive ftems were exaggerated. Thus takmg the figure vy to be *more approprate’, the
estimate suggested was

o2
x3
So m a sitwation hke this, it s neither the “mean of mbos” nor the ‘ratio of means” that
15 suitable. As pointed out by the referce, it should be noted that this example pertams
to an unconventional situation where the reported w-values are not the correct ones
and hence does not relate to the cadier sections. However, given such a situation and
extra information, the statistician should not routinely go in for either “mean of mtios’
or ‘ratio of means’ but “cross-examine’ the data w go in for an altemative estimate.

Remark. Also in those few sitwations of stratified ratio estimation where the stratum
ratios are equal, it 15 well known (see Murthy, 1967 that the combined estimator Fois
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preferred to the separate estimator ¥ since the Bias, 8( ¥¢) is much smaller than B(¥ )
while the MSE’s are equal. Furthermore, 1f the strata are such that the stratum totals X;
could be made equal {as in “equi-stratification rule’ suggested by Mahalanobis, 1952
and Kitagawa, 1956) we have Bg = k8p. Then comrecting for the Bias of ¥, we have
an almost unbiased stratified matio estimator given by ¥ = (k/(k— 1) ¥c —(1/(k—1))¥s
on the lmes of Murthy and Nanjamma (1959).
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