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The scientist does not study nature because it is useful; he studies it

because he delights in it, and he delights in it because it is beautiful.

If nature were not beautiful, it would not be worth knowing, and if

nature were not worth knowing, life would not be worth living.

Henri Poincaré
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Chapter 1

Introduction

Science, it is argued [65], advances through paradigm shifts. Concepts emerge that open-up
new vistas of research, fundamentally changing the way we are used to looking at things.
Between these paradigm shifts remain the periods of consolidation. Periods when human
mind explores the newly found territory, shedding light on hitherto unknown dimensions. If
radical changes are the hallmarks of paradigm shifts, the period within witnesses small but
continuous developments, occasionally marked by its own milestones. It is in these periods
that human faculty tries to grasp the full significance of the new concepts, consolidates its
gains and thereby pushes the boundary of our collective knowledge further. The prospects,
nevertheless, bring with it new problems too. Perhaps, by the way, making ground for the
next paradigm shift.

Cryptology, as a branch of science, is no exception to this common story. Though known
from the antiquity and not without some shining milestones; it encountered a paradigm
shift exactly three decades ago. Diffie and Hellman [37], in 1976 introduced the notion of
public key cryptography (PKC) through their work, appropriately titled, “New Directions
in Cryptography”. Prior to this work, cryptology was practiced in the “symmetric” setting
only, i.e., the same secret key was used for encryption as well as decryption. This kind
of symmetric key cryptography necessitates a secret channel to be established between the
sender and receiver. This is, no doubt, a cumbersome business when a large number of users
want to communicate secretly with each other.

In the public key setting (also known as asymmetric key cryptography), each user pos-
sesses a pair of keys, one public key which is published in a publicly available directory
and another private key which is known only to the user concerned. When somebody, say
Alice, wants to send an encrypted message to Bob, she looks up in the directory for the
public key of Bob, encrypts the message using that public key and sends it to Bob. Bob
uses his private key to decrypt the message. Naturally, there should be some mathematical
relationship between the two keys, so that given the private key it should be (computation-
ally) easy to decrypt the message encrypted using the public key. On the other hand, it
should be (computationally) hard to obtain any information regarding the private key given
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the public key. In this setting, anybody can send an encrypted message to anybody else,
provided the public key is made available, while only the person in possession of the private
key can decrypt the message. This way, the problem of key distribution (that we observe in
the symmetric setting) can be solved effectively.

Within two years of publication of Diffie-Hellman’s work, the field of public key cryptology
got a milestone in the form of RSA cryptosystem [79]. Rivest, Shamir and Adleman based
their cryptosystem on the hardness of integer factorisation problem. In 1985, ElGamal [41]
proposed a public key cryptosystem based on the discrete logarithm problem over cyclic
groups. This was soon followed by Koblitz [61] and Miller [73], who independently proposed
a public key cryptosystem called the elliptic curve cryptosystem (ECC). ECC is based on
the hardness of the discrete log problem over elliptic curve groups. RSA and ECC are the
two most popular public key cryptosystems to date.

This kind of PKC when applied, however, bring with them their own problem of key
management. In our example, we assumed that Bob has made available his public key in a
publicly available directory. Now suppose Eve impersonates Bob and publishes a public key
in the name of Bob. Since there is no need of prior communication between Alice and Bob,
there is no way for Alice to verify whether the public key available in the name of Bob is
actually his and not posted by Eve. To solve this kind of problems public keys are related by
digital certificates issued by a certifying authority (CA). A certificate is a digital signature of
the CA on the public key. Since the keys need periodic refreshing, the CA needs to maintain
a revoked list too, along with a valid list of public keys. Moreover, in actual practice there
may be a chain of certificates (and CAs) to verify a public key.

This, perhaps, motivated Shamir [84] to introduce the concept of identity-based encryp-
tion (IBE). IBE is a kind of public key encryption scheme where the public key of an user
can be any arbitrary string – typically the e-mail id. In our example, when Alice wants to
send a message to Bob; she encrypts it using the e-mail id of Bob as the public key. There
is no need for Alice to go to the CA to verify the public key of Bob. This way an IBE can
greatly simplify certificate management. To quote Shamir [84]:

It makes the cryptographic aspects of the communication almost transparent to
the user, and it can be used effectively even by laymen who know nothing about
keys or protocols.

An IBE consists of four algorithms: Set-up which generates a set of public parameters
together with a master key, Key-Gen which generates the private key of an entity, given her
identity, Encrypt that encrypts a message given the identity and Decrypt that decrypts the
message using the private key. Instead of a certifying authority, here we have a private key
generator (PKG) who possesses the master key. In the above example, Bob authenticates
himself to the PKG to obtain a private key corresponding to his identity. (This can be even
after he receives the encrypted message from Alice.) Bob uses this private key to decrypt
all the messages encrypted using his identity as the public key. Note that, Alice need not
verify any certificate relating the public key to send an encrypted message to Bob. What
she needs is the identity of Bob along with the public parameters of PKG.
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Shamir posed a challenge to the crypto community to come out with a practical IBE
scheme. A satisfactory solution of this problem eluded cryptographers till the turn of the
millennium. The solution, when it finally arrived, came not from one, but three different
quarters – Sakai-Ohgishi-Kasahara [80], Boneh-Franklin [20] and Cocks [34]. Among these,
the former two based their cryptosystems on bilinear pairing over elliptic curve groups while
the last was based on factoring and is less practical. Boneh and Franklin [20] formalised
the notion of IBE, gave a precise definition of its security model and related the security of
their construction with a natural analogue of the computational Diffie-Hellman problem in
the bilinear setting, called bilinear Diffie-Hellman problem. This work caught the immediate
attention of the crypto community world wide and turned out to be a milestone within the
paradigm of public key cryptography.

Boneh-Franklin use bilinear pairing over elliptic curve groups to construct their IBE.
Initially bilinear maps such as Weil and Tate pairing were introduced in cryptology [71, 43]
as weapons in the arsenal of the cryptanalyst – to reduce the discrete log problem in the
elliptic curve group to the discrete log problem over finite fields. Joux [58] converted it into
a tool of cryptography by proposing a one round tri-partite key agreement protocol using
bilinear pairing.

These works, in some sense, ignited an explosion in pairing based public key cryptography.
Within a period of around five years we see works in different areas of public key cryptogra-
phy like key agreement [58, 86, 13], identity-based encryption [20, 56, 49, 17, 18, 89, 19, 48],
signature (including identity-based signature) [22, 54, 16], threshold decryption [68, 5], ac-
cess control [87] etcetera based on pairing. Some nice works on efficient implementation of
pairing [8, 45, 39, 52] also appeared in this phase. Even a cursory glance at a compendium [6]
of these works is enough to give a feel of the research activity generated.

Identity-based encryption using bilinear pairing, in particular, has become an active
research area. One reason of this interest is encryption being a core area in cryptology;
the other reason is the versatile applications of this primitive. The concept of IBE was
soon extended to hierarchical identity-based encryption (HIBE) [56, 49]. Instead of a single
component identity in IBE, here identities are considered to be vectors. In HIBE, an entity
having identity v = (v1, . . . , vj) and possessing the private key dv can generate the private
key of an entity whose identity is v′ = (v1, . . . , vj, vj+1). This way HIBE reduces the workload
of the PKG.

Both IBE and its extension HIBE can be used to construct other important cryptographic
primitives. Naor observed that any IBE can be converted to a digital signature scheme and
applying this transformation on the Boneh-Franklin IBE one gets the signature scheme of
Boneh-Lynn-Shacham [22]. Similarly, HIBE can be transformed into hierarchical identity-
based signature [49]. Other applications of (H)IBE include key delegation [20, 81], forward
secure encryption [26], broadcast encryption [38] to name a few.

The security model of IBE, as formalised by Boneh and Franklin, is in a sense an extension
of the corresponding concept of public key encryption. The additional complexity arises due
to the identities. In the security model, the adversary has access to a key extraction oracle
and a decryption oracle. Intuitively, a protocol is said to be secure if the advantage of an
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adversary in distinguishing two messages encrypted using the same identity is negligible
unless it knows the private key of that identity. The security reduction of initial (H)IBE
protocols used the random oracle heuristic. Since random oracles do not exist in reality, it
led to a search for protocols secure without random oracle. Initially this has been achieved in
a weaker security model called the selective-ID model. As an aside, it should be mentioned
that, an IBE secure against chosen plain-text attack (i.e., the adversary is restricted from
accessing the decryption oracle) in the selective-ID model can be used to construct a PKE
secure against chosen ciphertext attack. This is another interesting application of IBE.

The (H)IBE protocols secure in the selective-ID model do not suffer any degradation in
the security reduction, i.e., the adversarial advantage against such a protocol can be directly
related to the advantage against the assumed hard problem. In contrast, protocols secure
in the full model (with or without random oracle) suffer from a degradation in the security
reduction. For HIBE, this degradation is exponential with the number of components in the
identity vector. Reducing or controlling this degradation is one of most challenging problems
in this area.

1.1 Plan of the Thesis

Within the paradigm of public key encryption, we further explore the problem of efficient
and secure construction of (hierarchical) identity-based encryption protocols using bilinear
pairing. The thesis is based on the following works [33, 28, 30, 31, 32, 29] and organised as
follows.

In Chapter 2, we define the core concepts that are used through-out the work. We give
precise formal definition in some of the cases while providing an informal discussion for some
other.

In Chapter 3, we review some important (hierarchical) identity-based encryption pro-
tocols available in the literature. Our aim in this chapter is to trace the important de-
velopments in the field, without being exhaustive. It also helps to present our work in the
proper context. Along with the protocols, in some cases we discuss the salient features of the
proof techniques while an intuitive justification of the proof is given for some others. These
protocols are proved secure against chosen plaintext attack. There exists generic methods
(and non-generic too) for achieving chosen ciphertext security (CCA-security). One of the
generic techniques is discussed in details. In view of these techniques, in this work we too
concentrate on developing protocols secure against chosen plaintext attack.

All the (hierarchical) identity-based encryption protocols discussed in this dissertation
use bilinear map over elliptic curve groups as the primary building block. This is also the
most computationally intensive part in a protocol. Our first contribution (in Chapter 4)
is an efficient algorithm for the computation of modified Tate pairing in general character-
istic fields with embedding degree two. We consider the use of Jacobian coordinates for
this computation. The idea of encapsulated double-and-line computation and add-and-line
computation is introduced. We also describe the encapsulated version of iterated doubling.
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Detailed algorithms are presented in each case and the memory requirement is considered.
The inherent parallelism in each of the algorithm has been identified leading to optimal two-
multiplier algorithms. The cost comparison of our algorithms with previously best known
algorithms shows an efficiency improvement of around 33% in the general case and an effi-
ciency improvement of 20% for the case of the curve parameter a = −3.

With this background of pairing computation, we proceed to the problem of efficient and
secure protocol design. At Eurocrypt 2005, Brent Waters [89] proposed an efficient identity-
based encryption scheme secure in the full model. One limitation of this scheme is that the
number of elements in the public parameter is rather large. In Chapter 5, we propose a
generalisation of Waters scheme. In particular, we show that there is an interesting trade-
off between the tightness of the security reduction and smallness of the public parameter.
For a given security level, this implies that if one reduces the number of elements in public
parameter then there is a corresponding increase in the computational cost due to the increase
in group size. This introduces a flexibility in choosing the public parameter size without
compromising in security. In concrete terms, to achieve 80-bit security for 160-bit identities
we show that compared to Waters protocol the public parameter size can be reduced by
almost 90% while increasing the computation cost by 30%. Our construction is proved
secure in the full model without random oracle.

In Chapter 6, we extend the IBE protocol of the previous chapter to a hierarchical IBE
(HIBE) protocol which is secure in the full model without random oracle. The only previous
suggestion for a HIBE in the same setting is due to Waters. Our construction improves
upon Waters’ suggestion by significantly reducing the number of public parameters. The
implication of the security degradation is also discussed briefly.

A major problem with (H)IBE protocols secure in the full model (with or without ran-
dom oracle) is the degradation in the security reduction. For HIBE, security degrades ex-
ponentially with the number of levels. On the other hand, the selective-ID security model
introduced in [26, 27] puts severe restriction on the adversary and thereby avoids any degra-
dation in the security reduction. This motivated us to search for a go between of the two
extremes.

In Chapter 7, we generalize the selective-ID security model for HIBE by introducing
two new security models, M1 and M2. Broadly speaking, both these models allow the
adversary to commit to a set of identities and in the challenge phase choose any one of the
previously committed identities. Two constructions of HIBE are presented which are secure
in the two models. Further, we show that the HIBEs can be modified to obtain a multiple
receiver IBE which is secure in the selective-ID model without random oracle.

Boneh, Boyen and Goh [19] presented an interesting construction of HIBE (which we call
BBG-HIBE) where the ciphertext expansion is independent of the number of levels in the
identity tuple. The security of the protocol was proved in the selective-ID model without
random oracle.

In Chapter 8, we present two variants of this constant size ciphertext HIBE. Both the
constructions have constant size ciphertext expansion. The first variant (which we call
ccHIBE) is proved to be secure in the generalized selective-ID model M2 introduced in the
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previous chapter. The second variant (called FullccHIBE) is secure in the full model. Like
BBG-HIBE, both are proved secure without random oracle.

In Chapter 9, we augment the selective-ID security model for HIBE by allowing the
adversary some flexibility in choosing the target identity tuple during the challenge phase of
the security reduction. We denote this model by selective+-ID model (s+ID model). We show
that the HIBE proposed by Boneh-Boyen [17] satisfies this notion of security. The case of the
constant size ciphertext HIBE of Boneh, Boyen and Goh is different – the original reduction
in [19] can be modified to achieve this goal where security degrades by a multiplicative factor
of the number of levels in the HIBE. Further we modify the BBG-HIBE to construct a new
protocol called G1, secure in s+ID model without any degradation. G1 maintains all the
attractive features of BBG-HIBE. We build on this new construction another constant size
ciphertext HIBE G2. The security of G2 is proved under the augmented version of M2. Our
third construction in this chapter is a “product” HIBE G3 that allows a controllable trade-off
between the ciphertext size and the private key size.

We conclude the dissertation by summing-up our contributions in Chapter 10. We also
mention some open problems in the area.
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Chapter 2

Preliminaries

In this chapter, we define the basic notions used throughout the dissertation. The identity-
based encryption protocols that we describe all use cryptographic bilinear map as the primary
building block. Hence, we start with a definition of bilinear map.

2.1 Bilinear Map

Let G1 and G2 be two cyclic groups of same prime order p for some large p where we write G1

additively and G2 multiplicatively. Let P be a generator of G1, i.e., G1 = 〈P 〉. A mapping
e : G1 ×G1 → G2 is called an admissible bilinear map if it satisfies the following properties:

• Bilinearity: e(aQ, bR) = e(Q,R)ab for all Q, R ∈ G1 and a, b ∈ Zp.

• Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.

• Computability: There exist efficient algorithms to compute the group operations in
G1, G2 as well as the map e().

Let, Q = xP and R = yP ; then e(Q,R) = e(P, P )xy = e(yP, xP ) = e(Q,R). So the map e()
also satisfies the symmetry property.

Known examples of e() usually have G1 to be a group of Elliptic Curve (EC) or Hyper
Elliptic Curve points and G2 to be a subgroup of a multiplicative group of a finite field.
Modified Weil pairing [20], Tate pairing [8, 45], Eta pairing [7], Ate pairing [55] are examples
of bilinear maps.

In mathematical literature, it is usual to write elliptic curve group operation additively
whereas it is usual to write the finite field group operation multiplicatively. Consequently,
in works on pairing computation and implementation of pairing based protocols [8, 45, 11],
it is customary to write G1 additively and G2 multiplicatively. Initial works on protocol
design such as [20, 49] also adhered to this notation. However, later works on protocol
design [17, 18, 89] write both G1 and G2 multiplicatively. Here we follow the first convention
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as it is closer to the known examples of bilinear maps and also because our work includes
(Chapter 4) an algorithm to compute the modified Tate pairing. To maintain the consistency
of notation through out the work, we rewrite some of the protocols reviewed in Chapter 3
in the additive-multiplicative notation.

Note that, the bilinear pairing can be more generally defined in the asymmetric setting
[22, 24]. Let ê : G1 × Ĝ1 → G2 be one such bilinear map, where G1 and Ĝ1 are two
(possibly) distinct groups. The properties of bilinearity, non-degeneracy and computability
hold for ê(), but not the symmetry property. In this work we use symmetric bilinear map.
Hence, asymmetric bilinear map is not discussed any further.

2.2 Hardness Assumption

Security of identity-based encryption protocols described in this dissertation rely on the
hardness of the bilinear Diffie-Hellman (BDH) problem formally introduced by Boneh and
Franklin in [20] or one of its variants. In this section we define the problems and the
corresponding security assumptions relevant to our work.

2.2.1 Bilinear Diffie-Hellman Assumption

Let G be a randomized algorithm which takes input a security parameter κ ∈ Z+, runs in
time polynomial in κ and outputs a prime number p, descriptions of two groups G1, G2 of
order p and an admissible bilinear map e : G1 × G1 → G2 as defined in Section 2.1. Here
log2(p) = Θ(κ), so κ is used to determine the cardinality of the groups G1, G2 (i.e., p). Let
G(1κ) = 〈p, G1, G2, e〉 denote the output of G on input κ. We assume that the descriptions
include polynomial time (in κ) algorithms to compute the group operations in G1, G2 as well
as a polynomial time algorithm for evaluating e(). Let Zp = Z/pZ and Z∗

p = Zp \ {0}.

Bilinear Diffie-Hellman Problem: Let G1, G2, e() be as defined in Section 2.1.The bi-
linear Diffie-Hellman problem (BDH) in 〈G1, G2, e()〉 is the following.

Given P, aP, bP, cP ∈ G1 where P is a generator of G1 and a, b, c are random elements
of Z∗

p; compute e(P, P )abc.

BDH Assumption: An algorithm A is said to have an advantage ε(κ) in solving the BDH

problem in 〈G1, G2, e()〉, generated by G(1κ) if

AdvG,A(κ) = Pr

[
A(p, G1, G2, e, P, aP, bP, cP ) = e(P, P )abc

∣∣∣∣∣ 〈p, G1, G2, e()〉 ← G(1κ),

P
$← G1, a, b, c

$← Z∗p

]
≥ ε(κ)

The (t(κ), ε(κ))-bilinear Diffie-Hellman assumption holds in 〈G1, G2, e()〉 generated by G
if no t(κ)-time algorithm A, where t(κ) is a polynomial in κ, has at least a non-negligible
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advantage ε(κ) in solving the BDH problem. (As usual, a function f : IR→ IR is negligible
if for any d > 0 we have f(κ) < 1/κd for sufficiently large κ.) To simplify the notation, we
omit κ and write this as (t, ε)-BDH assumption or sometimes just the BDH assumption.

The BDH problem is said to be (t, ε)-hard in 〈G1, G2, e()〉 if the (t, ε)-BDH assumption
holds in 〈G1, G2, e()〉.

The BDH problem has a corresponding decision version which we call the decisional
bilinear Diffie-Hellman problem (DBDH) [58, 17].

Decisional BDH Problem: Let G1, G2 and e() be as defined in Section 2.1. The DBDH
problem in 〈p, G1, G2, e()〉 ← G(1κ) is as follows:

Given a tuple 〈P, aP, bP, cP, Z〉 ∈ (G1)
4×G2, where P is a generator of G1 and a, b, c are

random elements of Zp, decide whether Z = e(P, P )abc (which we denote as Z is real)
or Z is random.

A probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 ∈ (G1)
4 × G2,

runs in time t(κ) (i.e., polynomial in κ) and outputs a bit, has an advantage ε(κ) in solving
the DBDH problem in 〈G1, G2, e()〉 if

AdvDBDH
G,B (κ) = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

− Pr[B(P, aP, bP, cP, Z) = 1| Z is random]| ≥ ε(κ)

where the probability is calculated over the random choices of a, b, c ∈ Zp as well as the
random bits used by B.

DBDH Assumption: The (t, ε)-DBDH assumption holds in 〈G1, G2, e()〉 if no t-time
algorithm has advantage at least ε in solving the DBDH problem in 〈G1, G2, e()〉. We say
that the DBDH problem is (t, ε)-hard in 〈G1, G2, e()〉 if the (t, ε)-DBDH assumption holds
in 〈G1, G2, e()〉.

2.2.2 Variants of BDH

Some variants of bilinear Diffie-Hellman problem have been suggested in the literature. Here
we give an informal description of some of these problems, along with their decision version.

Bilinear Diffie-Hellman Exponent Assumption

The Bilinear Diffie-Hellman Exponent problem was introduced by Boneh-Boyen-Goh in [19].
The h-BDHE problem over 〈G1, G2, e()〉 is as follows:

Given a generator P of G1, Q ∈ G1 and aiP ∈ G1 for i = 1, 2, . . . , h− 1, h + 1, . . . , 2h,
compute e(P, Q)ah

.
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Let Pi = aiP . An algorithm A has advantage ε in solving h-BDHE if

Pr
[
A(P, Q, P1, . . . , Ph−1, Ph+1, . . . , P2h) = e(P, Q)ah

]
≥ ε

where the probability is calculated over the random choices of P, Q ∈ G1, a ∈ Zp as well as
the random bits used by A. The h-BDHE assumption holds if there is no such algorithm A
with a non-negligible advantage.

The h-BDHE problem has a corresponding decision version – the decisional bilinear
Diffie-Hellman exponent problem (h-DBDHE).

An instance of the h-DBDHE problem over G1 = 〈P 〉 and G2 consists of the tuple
(P, Q, aP, a2P, . . . , ah−1P, ah+1P, . . . , a2hP, Z) for some a ∈ Zp and the task is to decide

whether Z = e(P, Q)ah
or Z is random.

The advantage of a probabilistic algorithm B that outputs a bit in solving this decision
problem is defined as

AdvDBDHE
B =

∣∣∣Pr[B(P, Q,
−→
Y , e(P, Q)ah

) = 1]− Pr[B(P, Q,
−→
Y , Z) = 1]

∣∣∣
where

−→
Y = (aP, a2P, . . . ah−1P, ah+1P, . . . , a2hP ), and Z is a random element of G2. The

probability is calculated over the random choices of a ∈ Zp and Z ∈ G2 and also the random
bits used by B. The quantity AdvDBDHE(t) denotes the maximum of AdvDBDHE

B where the
maximum is taken over all adversaries, B running in time at most t.

Bilinear Diffie-Hellman Inversion Assumption

This problem was introduced by Boneh-Boyen [17] and also by Mitsunari, Sakai and Kasahara
[76].

An instance of the bilinear Diffie-Hellman inversion (BDHI) problem consists of the
tuple P, P1, . . . , Ph where Pi = aiP for some random a ∈ Zp. Here the task is to
compute e(P, P )1/a.

Informally speaking, the h-BDHI assumption holds if there is no efficient algorithm that can
solve the h-BDHI problem with non-negligible advantage.

A slightly weaker but related problem which is called the weak BDHI∗ problem over
〈G1, G2, e()〉 is as follows:

Suppose we are given a random generator P of G1, another random element Q ∈ G1

and aP, . . . , ahP for a random a ∈ Zp. The task is to compute e(P, Q)ah+1
.
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Decisional Weak Bilinear Diffie-Hellman Inversion Problem This is the decision
version of the weak BDHI∗ problem. The decisional weak bilinear Diffie-Hellman inversion
problem (h-wDBDHI∗) was used by Boneh-Boyen-Goh in [19].

An instance of the h-wDBDHI∗ problem over G1 = 〈P 〉 and G2 consists of the tuple
(P, Q, aP, a2P, . . . , ahP, Z) for some a ∈ Zp and the task is to decide whether Z =

e(P, Q)ah+1
or Z is random.

The advantage of a probabilistic algorithm B that outputs a bit in solving this decision
problem is defined as

Advh-wDBDHI∗

B =
∣∣∣Pr[B(P, Q,

−→
Y , e(P, Q)ah+1

) = 1]− Pr[B(P, Q,
−→
Y , Z) = 1]

∣∣∣
where

−→
Y = (aP, a2P, . . . ahP ), and Z is a random element of G2. The probability is calculated

over the random choices of a ∈ Zp and Z ∈ G2 and also the random bits used by B. The
quantity Advh-wDBDHI∗(t) denotes the maximum of Advh-wDBDHI∗

B where the maximum is taken
over all adversaries, B running in time at most t.

The (t, ε, h)-wDBDHI∗ assumption holds in 〈G1, G2, e()〉 if no t-time algorithm has ad-
vantage at least ε in solving the h-wDBDHI∗ in 〈G1, G2, e()〉. When the context is clear, we
drop t and ε and refer to this as h-wDBDHI∗ assumption.

2.3 Public Key Encryption

The concept of public key cryptography was introduced by Diffie and Hellman in 1976 [37].
A public key encryption scheme can be specified by three probabilistic algorithms described
below. A more formal description can be found in [50].

Key-Gen: This algorithm takes input a security parameter κ ∈ Z+ and generates a public
and private key pair (pk, sk) from the appropriate key space. The public key is made available
in a public directory while the private key is kept secret.

Encrypt: It takes input a message M from the appropriate message space and the public
key pk of the recipient and outputs a ciphertext C. Let E() be the corresponding encryption
function; then C = E(pk, M).

Decrypt: It takes input a ciphertext C from the appropriate cipher space and the private
key sk of the recipient of C. Suppose D() is the corresponding decryption function. The
algorithm outputs M = D(sk, C) if C = E(pk, M). Otherwise, it outputs “reject”.

Indistinguishability against adaptive chosen ciphertext attack [50, 14] is the strongest
accepted notion of security for a public key encryption scheme. An encryption scheme secure
against such an attack is said to be IND-CCA2 secure. We give an informal description of
IND-CCA2 security in terms of the following game between a challenger and an adversary A.
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Given the security parameter κ, the challenger runs the Key-Generation algorithm to
generate a public and private key pair (pk, sk). It gives A the public key pk. Given the public
key, A adaptively issues decryption queries, which the challenger must properly answer. At
some point, A outputs two equal length messages M0, M1 and the challenger responds with
an encryption C∗ of Mγ, where γ is a random bit. The adversary continues with adaptive
decryption queries but not on C∗. Finally, A outputs its guess γ′ of γ and wins if γ′ = γ.

The advantage of A against the encryption scheme is AdvA = |Pr[γ = γ′] − 1/2|. An
encryption scheme is said to be (t, q, ε)-IND-CCA2 secure, if no t time randomized algorithm
A that makes at most q decryption queries, has advantage at least ε in the above game.

A weaker notion of security, called semantic security or security against chosen plaintext
attack (in short IND-CPA security) of a public key encryption scheme is available in the
literature [50, 14]. In the IND-CPA security game the adversary is not allowed to place any
decryption query. Given with a random public key, here the adversary outputs two equal
length messages M0, M1 and the challenger responds with an encryption C∗ of Mγ. The
adversary wins if it can predict γ.

2.4 Identity-Based Encryption Protocols

Following [84, 20] an identity-based encryption scheme E is specified by four probabilistic
polynomial time algorithms: Setup, Key-Gen, Encrypt and Decrypt.

Setup: This randomized algorithm takes input a security parameter 1κ, and returns the
system parameters PP together with the master key msk. The system parameters include a
description of the message spaceM, the ciphertext space C and the identity space I. They
are publicly known while the master key is known only to the private key generator (PKG).

Key-Gen: This randomized algorithm takes as input an identity v ∈ I together with the
system parameters PP and the master key msk and returns a private key dv, using the master
key. The identity v is used as the public key while dv is the corresponding private key.

Encrypt: This randomized algorithm takes as input an identity v ∈ I and a message
M ∈M and produces a ciphertext C ∈ C using the system parameters PP.

Decrypt: This is a deterministic algorithm which takes as input a ciphertext C ∈ C, the
private key dv of the corresponding identity v and the system parameters PP. It returns the
message M or bad if the ciphertext is not valid.

These set of algorithms must satisfy the standard consistency requirement:
For (PP,msk) output by Setup, let dv be a private key generated by Key-Gen given input
the identity v, then

∀M ∈M : Decrypt(Encrypt(M, v, PP), dv, PP) = M
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2.4.1 Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is an extension of IBE. In contrast to IBE,
here identities are represented as vectors. So for a HIBE of maximum height h (henceforth
denoted as h-HIBE) any identity v is a tuple (v1, . . . , vτ ) where 1 ≤ τ ≤ h. Let, v′ = v′1, . . . , v

′
j,

j < τ be another identity tuple. We say v′ is a prefix of v if v′i = vi for all 1 ≤ i ≤ j.
Like IBE, here also the PKG has a set of public parameters PP and a master key msk.

For all identities at the first level the private key is generated by the PKG using msk. For
identities at the second level on-wards, the private key can be generated by the PKG or any
of its ancestors. In the above example, the private key dv of v can be generated by an entity
whose identity is a prefix of v and who has obtained the corresponding private key.

The generation of private key can be a computationally intensive task. The identity of
an entity must be authenticated before issuing a private key and the private key needs to
be transmitted securely to the concerned entity. HIBE reduces the workload of the PKG by
delegating the task of private key generation and hence authentication of identity and secure
transmission of private key to its lower levels. However, only the PKG has a set of public
parameters. The identities at different levels do not have any public parameter associated
with them.

Apart from being a standalone cryptographic primitive, HIBE has many interesting ap-
plications such as forward secure encryption [26] and broadcast encryption [38].

Following [56, 49] an h-HIBE scheme H is specified by four PPT algorithms: Setup,
Key-Gen, Encrypt and Decrypt.

Setup: This randomized algorithm takes input a security parameter 1κ and returns the
system parameters PP together with the master key msk. The system parameters include a
description of the finite message spaceM, the finite ciphertext space C and the finite identity
space I. These are publicly known while the master key is known only to the private key
generator (PKG).

Key-Gen: This randomized algorithm takes as input an identity tuple v = (v1, . . . , vτ ) and
the private key dv|τ−1 for the identity (v1, . . . , vτ−1) and returns a private key dv using dv|τ−1,
or directly using the master key. The identity v is used as the public key while dv is the
corresponding private key.

Encrypt: This randomized algorithm takes as input the identity v and a message M from
the message space and produces a ciphertext C in the ciphertext space.

Decrypt: This is a deterministic algorithm which takes as input the ciphertext C and a
private key dv of the corresponding identity v and returns the message or bad if the ciphertext
is not valid.

The standard consistency requirement that we mention for IBE in Section 2.4 is also
applicable for HIBE. If dv is a private key corresponding to the identity tuple v generated by
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the Key-Gen algorithm and C is the output of the Encrypt algorithm for a message M ∈M
using v as a public key and PP; then the Decrypt algorithm must return M on input dv and
C.

2.5 Security Model of (H)IBE

As we have already noted, HIBE is a generalisation of IBE i.e., an IBE can be thought of as a
single level HIBE. So instead of describing the security models of IBE and HIBE separately,
we only describe the security model of HIBE.

2.5.1 Security Against Chosen Ciphertext Attack

In case of public key encryption, we have seen that security against adaptive chosen cipher-
text attack is the standard notion of security. Boneh and Franklin extended this notion of
security to the identity-based setting [20]. They termed this as IND-ID-CCA security.

Let H be an h-HIBE scheme as defined in the previous section. The IND-ID-CCA security
for H is defined [56, 49, 17] in terms of the following game between a challenger and an
adversary of the HIBE. The adversary is allowed to place two types of oracle queries –
decryption queries to a decryption oracle Od and key-extraction queries to a key-extraction
oracle Ok.

Setup The challenger takes input a security parameter 1κ and runs the Setup algorithm of
the HIBE. It provides A with the system parameters PP while keeping the master key msk
to itself.

Phase 1: Adversary A makes a finite number of queries where each query is one of the
two types:

• key-extraction query 〈v〉: This query is placed to the key-extraction oracle Ok. Ok

generates a private key dv of v and returns it to A.

• decryption query 〈v, C〉: This query is placed to the decryption oracle Od. It returns
the resulting plaintext to A.

A is allowed to make these queries adaptively, i.e., any query may depend on the previous
queries as well as their answers.

Challenge: When A decides that Phase 1 is complete, it fixes an identity v∗ and two equal
length messages M0, M1 under the (obvious) constraint that it has not asked for the private
key of v∗ or any prefix of v∗. The challenger chooses uniformly at random a bit γ ∈ {0, 1}
and obtains a ciphertext C∗ corresponding to Mγ, i.e., C∗ is output of the Encrypt algorithm
on input (Mγ, v

∗, PP). It returns C∗ as the challenge ciphertext to A.
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Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction
that it cannot place a decryption query for the decryption of C∗ under v∗ or any of its prefixes
nor a key-extraction query for the private key of v∗ or any prefix of v∗. All other queries are
valid and A can issue these queries adaptively just like Phase 1. The challenger responds as
in Phase 1.

Guess: A outputs a guess γ′ of γ.
The advantage of the adversary A in attacking the HIBE scheme H is defined as:

AdvHA = |Pr[(γ = γ′)]− 1/2| .

An h-HIBE scheme H is said to be (t, qID, qC, ε)-secure against adaptive chosen ciphertext
attack ((t, qID, qC, ε)-IND-ID-CCA secure) if for any t-time adversary A that makes at most
qID private key queries and at most qC decryption queries, AdvHA ≤ ε. In short, we say H is
IND-ID-CCA secure or when the context is clear, simply CCA-secure.

2.5.2 Security Against Chosen Plaintext Attack

Security reduction of (H)IBE protocols available in the literature [49, 17, 19, 89] generally
concentrate on proving security in a weaker model. This is called security against chosen
plaintext attack. Boneh and Franklin [20] defines this notion as IND-ID-CPA security. The
corresponding game is similar to the game defined above, except that the adversary is not
allowed access to the decryption oracle Od. The adversary is allowed to place adaptive
private key extraction queries to the key-extraction oracle Ok and everything else remains
the same. For the sake of completeness, we give a description of the IND-ID-CPA game for
an h-HIBE H below.

Setup The challenger takes input a security parameter 1κ and runs the Setup algorithm of
the HIBE. It provides A with the system parameters PP while keeping the master key msk
to itself.

Phase 1: Adversary A makes a finite number of key-extraction query to Ok. For a private
key query corresponding to an identity v, the key-extraction oracle generates the private key
dv of v and returns it to A. A is allowed to make these queries adaptively, i.e., any query
may depend on the previous queries as well as their answers.

Challenge: At this stage A fixes an identity, v∗ and two equal length messages M0, M1

under the (obvious) constraint that it has not asked for the private key of v∗ or any of
its prefixes. The challenger chooses uniformly at random a bit γ ∈ {0, 1} and obtains a
ciphertext (C∗) corresponding to Mγ, i.e., C∗ is the output of the Encryption algorithm on
input (Mγ, v

∗, PP). It returns C∗ as the challenge ciphertext to A.
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Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction
that it cannot place a key-extraction query for the private key of v∗ or any prefix of v∗. All
other queries are valid and A can issue these queries adaptively just like Phase 1.

Guess: A outputs a guess γ′ of γ.
Like the IND-ID-CCA game, the advantage of the adversary A in attacking the HIBE scheme
H is defined as:

AdvHA = |Pr[(γ = γ′)]− 1/2| .

An h-HIBE schemeH is said to be (t, q, ε) secure against adaptive chosen plaintext attack
if for any t-time adversary A that makes at most q private key extraction queries, AdvHA < ε.
In short we say H is (t, q, ε)-IND-ID-CPA secure or simply CPA-secure if the context is clear.

There are generic techniques [27, 21] to convert an (h + 1)-HIBE H′ secure in the sense
IND-ID-CPA to an h-HIBE H which is secure in the sense IND-ID-CCA. One of these tech-
niques is described in Section 3.5. In view of such generic techniques to achieve CCA security,
in this dissertation we concentrate on achieving CPA security only.

2.5.3 Selective-ID Model

Canetti, Halevi and Katz [26, 27] gave a new and weaker definition of security for identity
based encryption schemes – the so called selective-ID model. In this model, the adversary
A commits to a target identity before the system is set up. This notion of security is called
the selective identity, chosen ciphertext security (IND-sID-CCA security in short). Following
[26, 27, 17] we define IND-sID-CCA security for an h-HIBE in terms of the game described
below.

Initialization: The adversary outputs a target identity tuple v∗ = (v∗1, . . . , v
∗
u), 1 ≤ u ≤ h

on which it wishes to be challenged.

Setup: The challenger sets up the HIBE and provides the adversary with the system public
parameters PP. It keeps the master key msk to itself.

Phase 1: Adversary A makes a finite number of queries where each query is either a
decryption or a key-extraction query. In a decryption query, it provides the ciphertext as
well as the identity under which it wants the decryption. Similarly, in a key-extraction
query, it asks for the private key of the identity it provides. Further, A is allowed to make
these queries adaptively, i.e., any query may depend on the previous queries as well as their
answers. The only restriction is that it cannot ask for the private key of v∗ or any of its
prefixes.
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Challenge: At this stage, A outputs two equal length messages M0, M1 and gets a cipher-
text C∗ corresponding to Mγ encrypted under the public key v∗, where γ is chosen by the
challenger uniformly at random from {0, 1}.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction
that it cannot ask for the decryption of C∗ under v∗ or any of its prefixes nor the private
key of v∗ or any prefix of v∗.

Guess: A outputs a guess γ′ of γ.
The advantage of the adversary A in attacking the HIBE scheme H is defined as:

AdvHA = |Pr[(γ = γ′)]− 1/2| .

The HIBE scheme H is said to be (t, qID, qC, ε)-secure against selective identity, adaptive
chosen ciphertext attack (in short, (t, qID, qC, ε)-IND-sID-CCA secure) if for any t-time ad-
versary A that makes at most qID private key queries and at most qC) decryption queries,
AdvHA < ε.

We may restrict the adversary from making any decryption query. An h-HIBE scheme
H is said to be (t, q, ε)-secure against selective identity, adaptive chosen plaintext attack (in
short, (t, qID, ε)-IND-sID-CPA secure) if for any t-time adversary A that makes at most qID

private key queries, AdvHA < ε.
Henceforth, we will call this restricted model the selective-ID (sID) model and the unre-

stricted model to be the full model.
The generic technique [27, 21] for converting a CPA-secure HIBE to a CCA-secure HIBE

is also applicable to the sID model. Hence, as in the full model it is more convenient in
the sID model also to initially construct a CPA-secure (H)IBE and then convert it into a
CCA-secure one.
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Chapter 3

Previous Works in Identity-Based

Encryption

In this chapter, we review some of the (hierarchical) identity-based encryption schemes,
based on bilinear pairing, available in the literature. This being a relatively new area, there
are quite a large number of works studying the different aspects of identity-based encryption,
including security notions and applications of this primitive to other areas in cryptography.
This chapter in no way tries to be encyclopedic, rather we concentrate on those works that
help to place the concepts presented in this work in a proper context.

3.1 Identity-Based Encryption

It has already been observed that Boneh and Franklin [20] were first to propose a practical
identity-based encryption scheme using bilinear pairing with a proper security model and a
proof. Sakai, Ohgishi and Kashahara had also independently proposed an IBE [80] using
pairing. Their work being in Japanese was not much noticed at the time it appeared. Nev-
ertheless, it is due to the work of Boneh and Franklin that IBE caught immediate attention
of the crypto community.

Boneh and Franklin proposed two protocols – BasicIdent and FullIdent in their terminol-
ogy. The first protocol is secure in the sense IND-ID-CPA while the second is secure in the
sense IND-ID-CCA. Both the protocols use cryptographic hash functions that are modelled
as random oracles in the security reduction. While describing the Boneh-Franklin IBE, as
well as the later protocols, we concentrate on protocols achieving security against chosen
plain text attack (i.e., CPA secure). There are mainly two reasons to do so. Firstly, these
CPA secure protocols and their security reduction capture the essential ideas that we are
interested in. Secondly, once we get a CPA-secure IBE, there are standard techniques to
achieve CCA security.

For all the protocols that we describe in this chapter as well as later in the dissertation,
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it is assumed that, given a security parameter κ, the descriptions of G1, G2 and the bilinear
map e() : G1 × G1 → G2 are publicly available. The descriptions include polynomial time
(in κ) algorithms to compute the group operations in G1, G2 and e().

We now describe BasicIdent followed by the salient features of the security reduction.

Setup: Let P be a generator of G1. Pick a random s ∈ Z∗
p and set Ppub = sP . Choose

cryptographic hash functions H1 : {0, 1}∗ → G∗
1, H2 : G2 → {0, 1}n. The master secret is s

and the public parameters are PP = 〈P, Ppub, H1, H2〉.

Key-Gen: Given an identity v ∈ {0, 1}∗, compute Qv = H1(v) and set the private key to
dv = sQv.

Encrypt: To encrypt M ∈ {0, 1}n, choose a random r ∈ Z∗
p and set the ciphertext:

C = 〈rP,M ⊕H2(e(Qv, Ppub)
r)〉

Decrypt: To decrypt C = 〈U, V 〉 using dv compute

V ⊕H2(e(dv, U)) = M

.
If C is an encryption of M under the public key v then we have

e(dv, U) = e(sQv, rP ) = e(Qv, sP )r = e(Qv, Ppub)
r.

Hence the decryption algorithm returns M .
Security of the above scheme against chosen plaintext attack (i.e., IND-ID-CPA security)

is proved in [20] assuming H1() and H2() to be random oracles. The proof is a reduction and
proceeds in two steps. In the first step, a public key encryption scheme BasicPub is defined
as follows.

Key-Gen: Let P be a generator of G1. Choose a random s ∈ Zp and compute Ppub = sP ;
also choose a random Qv ∈ G∗

1. Next choose a cryptographic hash function H2 : G2 →
{0, 1}n. The private key is dv = sQv and the public key is pk = 〈P, Ppub, Qv, H2〉.

Encrypt: Encrypt M ∈ {0, 1}n as C = 〈rP,M ⊕ H2(e(Qv, Ppub)
r)〉 where r is a random

element of Z∗
p.
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Decrypt: Decrypt C = 〈U, V 〉 using the private key dv as V ⊕H2(e(dv, U)) = M .
Suppose, for some identity v in BasicIdent, H1(v) is mapped to Qv of BasicPub. Then the

Key Generation, Encryption and Decryption algorithms of BasicPub essentially corresponds
to the respective algorithms of BasicIdent for the identity v.

Let A1 be an IND-ID-CPA adversary against BasicIdent and A2 is an IND-CPA adversary
against BasicPub, while B is an algorithm that solves the given BDH problem. The reduction
proceeds in two steps. In the first step which we denote as Game 1, A1 is used to construct
A2. In the next step which we call Game 2, A2 is used to construct B.
B plays the role of challenger in the IND-CPA game with A2. It runs the Key Generation

algorithm of BasicPub and gives pk = 〈P, Ppub, Qv, H2〉 to A2. The secret key dv = sQv is
not revealed. From pk, A2 passes on P, Ppub and H2 to A1. A2 keeps Qv to itself and uses
it to form H1. The crux of the proof in the first step is in the construction of H1().

To pose as a proper challenger to A1, A2 should be able to answer the key extraction
queries and also to generate a valid challenge. In simulating H1(), A2 randomly partitions
the identity space I into two disjoint subsets I1 and I2 in such a way that it is able to form
a proper private key if and only if the queried identity is from I1. Similarly, it can form
a proper challenge ciphertext if and only if the challenge identity is from I2. It aborts the
game if the key extraction query is for an identity from I2 or the challenge identity is from
I1. This in turn results in a degradation in the security reduction.

This is an intuitive explanation of the principal strategy in the security reduction of
Game 1. In fact, partitioning of the identity space into two disjoint subsets, such that the
private key queries can be answered for one subset, while a proper challenge can only be
generated for a member of the second – this is a hallmark of the security reduction (with or
without random oracle) of all the identity-based encryption schemes that we describe in this
chapter.

Given this intuitive understanding, we now proceed for a more formal description.

Game 1

H1-queries: A1 can query the random oracle H1() at any time during the game. A2

maintains a list called H list
1 to answer such queries. The ith entry to the list is a 4-tuple,

〈vi, Qi, bi, ci〉 ∈ {0, 1}∗×G∗
1×Z∗

p×{0, 1}. Suppose A1 places a query to H1() for the identity
vj. A2 responds to this query in the following way.

• If vj already exists in H list
1 as 〈vj, Qj, bj, cj〉 then A2 returns H1(vj) = Qj.

• Otherwise A2 takes the following steps.

– Generate a random c ∈ {0, 1} where Pr[c = 0] = δ for some δ which is fixed
a-priori for all queries.

– Pick a random b ∈ Z∗
p and set Qj = bP if c = 0; otherwise set Qj = bQv.

– Add 〈vj, Qj, b, c〉 to H list
1 and return H1(vj) = Qj to A1.
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Note that, based on Pr[c = 0] = δ, the identity space I is partitioned into two disjoint
subsets I1 and I2. For identities in I1, we have c = 0 and A2 can answer the private key
extraction queries as we show in the next phase. While for identities in I2, c = 1 and A2

can generate a proper challenge ciphertext.

Phase 1: Suppose A1 asks for the private key of vi in the ith query. A2 runs the algorithm
to answer the H1-queries. Suppose 〈vi, Qi, bi, ci〉 be the corresponding tuple in H list

1 . If
ci = 1, A2 aborts the game. Otherwise, we have ci = 0 and so Qi = biP . Define dvi

= biPpub

and return dvi
to A1. Note that, dvi

= bisP = sQi, where H1(vi) = Qi. So this is a proper
private key for vi.

Challenge: When A1 decides that Phase 1 is over; it outputs a challenge identity v∗ and
two equal length messages M0, M1. v∗ should not be an identity for which A1 placed a private
key extraction query in Phase 1. A2 relays M0, M1 as its own challenge to B. B chooses
γ uniformly at random from {0, 1} and responds with a BasicPub ciphertext C = 〈U, V 〉 of
Mγ. Next, A2 runs the H1-queries to find a tuple 〈v∗, Q, b, c〉 in the H list

1 . If c = 0, A2 aborts
the game. Otherwise, c = 1, so Q = bQv and H1(v

∗) = Q. A2 now sets C∗ = 〈b−1U, V 〉 and
returns C∗ to A1 as the challenge ciphertext.

Let U = rP and V = Mγ ⊕ H2(e(Qv, Ppub)
r for some random r ∈ Zp. A2 sets U ′ =

b−1U = b−1rP = r′P . So e(Q, Ppub)
r = e(b−1Q, Ppub)

r = e(Q, Ppub)
b−1r = e(Q,Ppub)

r′ .
Hence, C∗ = 〈U ′, V 〉 is a proper encryption of Mγ under the identity v∗.

Phase 2: A1 places additional private key extraction queries with the restriction that it
cannot ask for the private key of v∗. A2 responds as in Phase 1.

Guess: Finally A1 outputs its guess γ′ for γ. A2 relays this γ′ as its own guess for γ.
If A2 does not abort the above game, then from the view point of A1 the situation is

identical to that of a real attack. So we have

|Pr[γ = γ′]− 1/2| ≥ ε

where ε is the advantage of A1 against BasicIdent. Boneh and Franklin show that the
probability that A2 does not abort is δq(1 − δ), where q is the number of key extraction
queries and a lower bound is Pr[abort] ≥ 1/(e × (1 + q)), where e is the base of natural
logarithms and should not be confused with the notation e() of bilinear map. Hence, A2’s
advantage against BasicPub is at least ε/(e × (1 + q)). The above technique is similar to
Coron’s analysis of Full Domain Hash Signature [35].

In the next step, Boneh-Franklin constructs an algorithm B which solves the BDH prob-
lem given the adversary A2 against BasicPub; relating the advantage of B with that of A2.
The details of the reduction follow.
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Game 2

Suppose B is given a BDH problem instance 〈P, aP, bP, cP 〉. Its task is to compute Z =
e(P, P )abc. B tries to solve this problem by interacting with A2 in the IND-CPA game.

Setup: B forms the BasicPub public key Kpub = 〈P, Ppub, Qv, H2〉 where Ppub = aP , Qv =
bP and H2 is a random oracle controlled by B. The private key dv = abP is unknown to B.

H2-queries: To respond to A2’s queries to the random oracle H2(), B maintains a list
called H list

2 . The ith entry to the list is a tuple 〈Xi, Hi〉 ∈ G∗
1 × {0, 1}n. B responds to any

query for Xj in the following manner:

• If there is already a tuple 〈Xj, Hj〉 in H list
2 , then return H2(Xj) = Hj.

• Otherwise, pick a random Hj ∈ {0, 1}n, add 〈Xj, Hj〉 to H list
2 and then return H2(Xj) =

Hj.

Challenge: A2 outputs two n-bit messages M0, M1. B picks a random string R ∈ {0, 1}n
and forms the ciphertext C = 〈cP,R〉 and returns it to A2. Note that, decryption of C is
R⊕H2(e(cP, dv)) = R⊕H2(e(P, P )abc.

Guess: A2 outputs its guess γ′ ∈ {0, 1}.
B picks a random tuple 〈Xi, Hi〉 from H list

2 and outputs Xi as the solution of the given BDH
problem.

This completes the description of Game 2. Boneh and Franklin next go on to estimate
the advantage of B against the BDH problem. This is done by comparing A2’s behavior in
the above game with it’s behavior in a real IND-CPA attack.

Let H be the event that A2 places a query for Z = e(P, P )abc to H2 at some point in
the above game. By induction on the number of queries Boneh-Franklin show that Pr[H] in
Game 2 is equal to Pr[H] in a real attack. In the next step, they show that in a real attack
Pr[H] ≥ 2ε′ where ε′ is the advantage of A2 against BasicPub. In Game 2, A2 makes at most
qH2 queries to H2. So, the probability that B outputs Z is at least 2ε′/qH2 .

Combining the analysis of Game 1 and 2, one comes to the final conclusion:

AdvBasicIdent
A1

≤ 1

2
e× (1 + q)qH2εBDH

Note that, the security degrades by roughly a factor of (1 + q)qH2 which is the product
degradation in the reduction of Game 1 and 2.

Boneh and Franklin next propose an IBE with chosen ciphertext security: FullIdent in
their terminology. FullIdent is the result of applying the so called Fujisaki-Okamoto transfor-
mation [44] to BasicIdent. We do not provide details of the construction. Interested readers
are referred to the original work of Boneh and Franklin [20] and also to Galindo’s work [47],
who fixed a bug in the original reduction. Further works on reducing the degradation in the
security reduction of the Boneh and Franklin scheme is also available in the literature [60, 3]
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3.1.1 Hierarchical Identity-Based Encryption

The concept of IBE has been generalised to hierarchical identity-based encryption (HIBE)
by Horwitz-Lynn and Gentry-Silverberg [56, 49]. Extending in the line of Boneh-Franklin,
Horwitz and Lynn gave precise definitions of HIBE and its security model. They also pro-
posed a two-level HIBE that achieves total collusion resistance in the first level and partial
collusion resistance in the second level. This means a certain number of users at the second
level can collude to find the private key of their ancestor at the first level. Their scheme was
proved secure using random oracles.

Gentry and Silverberg proposed a HIBE [49] scheme that is totally collusion resistant
for arbitrary number of levels. This too was proved secure using random oracles. The
Gentry-Silverberg HIBE bears much resemblance with the Boneh-Franklin HIBE in terms of
construction as well as security proof. We now detail their scheme followed by the essential
idea of the security reduction.

BasicHIBE

Setup: Let P be an arbitrary generator of G1. Pick a random x0 ∈ Z∗
p and set Ppub = x0P .

Also choose cryptographic hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n. The
public parameters are PP = 〈P, Ppub, H1, H2〉, while the master secret is x0.

Key-Gen: An identity v at the jth level is represented as v = (v1, . . . , vj). The PKG
chooses random elements x1, . . . , xj−1 ∈ Z∗

p and computes di = xiP for 1 ≤ i ≤ j − 1 and

dj =
∑j

i=1 xi−1Qi, where Qi = H1(v1, . . . , vi). It gives dv = 〈d1, . . . , dj〉 to v.
A private key for v can also be generated by its parent. Let ID|j−1 = (v1, . . . , vj−1) be

the parent of v, i.e., ID|j−1 is one level up in the hierarchy with respect to v. Let the private
key of v|j−1 be dv|j−1

= (d′1, . . . , d
′
j−1). Then dv can be formed by ID|j−1 as follows: Compute

Qv = H1(v1, . . . , vj), choose a random xj−1 ∈ Z∗
p and set dj = d′j−1 + xj−1Qv and set di = d′i

for 1 ≤ i ≤ j − 2 and dj−1 = xj−1P . The private key, dv = 〈d1, . . . , dj〉 is given to v.

Encrypt: To encrypt M under the identity v = (v1, . . . , vj), compute Qi = H1(v1, . . . , vi)
for 1 ≤ i ≤ j. Then choose a random r ∈ Z∗

p and set the ciphertext

C = 〈rP, rQ2, . . . , rQj, M ⊕H2(e(Ppub, Q1)
r)〉

Decrypt: Given C = 〈U0, U2, . . . , Uj, V 〉 and dv = 〈d1, . . . , dj〉, compute

V ⊕H2

(
e(U0, dj)∏j

i=2 e(di−1, Ui)

)
= M

If the HIBE is restricted to the first level only, then this is exactly the BasicIdent scheme
of Boneh and Franklin [20].
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Security of BasicHIBE against chosen plaintext attack (i.e., IND-ID-CPA security) can
be proved in the same manner as that of the BasicIdent of previous section. In the first
stage, an IND-ID-CPA adversary, A1 against BasicHIBE is used to construct an IND-CPA
adversary A2 against BasicPub (the same public key encryption scheme defined in the context
of Boneh-Franklin IBE). In the next stage, this A2 is utilised to construct an algorithm B
that solves the BDH problem.

However, Gentry and Silverberg first prove the security in the non-adaptive setting and
later extend it to the adaptive setting. In the non-adaptive setting, A1 a-priori fixes a target
identity v∗ = (v∗1, . . . , v

∗
j ), j ≥ 1. Given v∗, A2 forms the H list

1 in such a way that given any
identity v it can generate the private key of v, provided v is not a prefix of v∗. Similarly
in the challenge phase, it can generate a proper encryption of Mγ under v∗, given a proper
encryption of Mγ in BasicPub. This way, the advantage of A1 against BasicHIBE can be
directly converted into the advantage of A2 against BasicPub without any degradation.

The security reduction in the adaptive setting, however, suffers from a large degradation
factor. Let’s briefly see why this is so. Here, instead of a single identity, we have an identity
tuple of arbitrary levels. Recall that in the reduction for BasicIdent of Section 3.1, a typical
entry in H list

1 is of the form 〈v, Q, b, c〉. In case of BasicHIBE an entry for v = (v1, . . . , vj)
is of the form 〈vi〉, 〈Qvi

〉, 〈bi〉, 〈ci〉 where 1 ≤ i ≤ j, i.e., each 〈· · ·〉 contains j many entries,
whereas in case of BasicIdent of Section 3.1 they contained only a single term.

Let the target identity be v∗ = (v∗1, . . . , v
∗
h) then the corresponding entry in the H list

1 has
terms c1, . . . , ch ∈ {0, 1}h. So, instead of a single c, we have to maintain h many cis in H list

1 .
A2 can generate a proper challenge ciphertext if and only if all these h cis have the same
value, 1. But these cis are chosen independently at random, so the probability that all are 1
is the product of the probabilities that each is 1. Hence, we get a security degradation which
is exponential in the number of levels in the target identity tuple.

Once A2 has been constructed, either in the adaptive or the non-adaptive setting, the
next stage of the reduction is exactly that of Game 2 in case of Boneh-Franklin IBE. Finally,
in the adaptive setting one gets the following result:

AdvBasicHIBE
A1

≤ (e× (q + h))hqH2

h
εBDH

where e is the base of natural logarithm.
This means, if there is an IND-ID-CPA adversary A1 in the adaptive setting having

advantage ε against BasicHIBE and that makes at most qH2 queries to H2 and q private key
extraction queries and H1, H2 are random oracles then there is an algorithm B that solves
the BDH problem with advantage at least (ε(h/e × (q + h))h)q−1

H2
, where h is the number

of levels in the target identity. So the security degrades exponentially with the number of
levels of the HIBE.

Applying the Fujisaki-Okamoto transformation to the BasicHIBE, Gentry and Silverberg
obtains an IND-ID-CCA secure HIBE which is called FullHIBE. The construction as well as
the security proof is analogous to that of FullIdent and not detailed here. Similarly, Galindo’s
observation [47] with respect to FullIdent is also applicable for the scheme FullHIBE.
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3.2 From Random Oracle to Standard Model

Both the Boneh-Franklin IBE and the Gentry-Silverberg HIBE schemes depend on the ran-
dom oracle heuristic for their proof of security. The first move to get rid of the random oracle
assumption was taken by Canetti, Halevi and Katz [26, 27]. However, they had to weaken
the security notion from the full model to the so called selective-ID model of Section 2.5.3
while moving in this goal.

We have already observed that two random oracles (namely H1, H2) are used in the
security proof of BasicIdent and BasicHIBE. We need another two random oracles, H3 and
H4 to achieve CCA security for the above protocols. These four random oracle serve three
distinct purposes. H1 is used to map an identity to a random element of G1, H2 is used to
relate the security of the scheme with that of BDH problem while H3, H4 come into play
because of the Fujisaki-Okamoto transformation to achieve chosen ciphertext security from
a given chosen plaintext secure scheme. H2 can be done away with if one is prepared to
rely on the (presumably stronger) decisional bilinear Diffie-Hellman assumption (DBDH).
Canetti, Halevi and Katz [27] proposed a different generic transformation to achieve CCA
security, thereby removing the need to rely on random oracles H3, H4. The efficiency of this
generic transformation was later improved by Boneh and Katz [21]. We discuss this generic
transformation in Section 3.5. Here we concentrate on constructions that achieve security
against chosen plaintext attack under the selective-ID model.

By restricting the adversary’s behaviour, it is possible to construct protocols secure in
the selective-ID model that avoid any degradation in the security reduction. The BasicHIBE
of Gentry-Silverberg [49] secure in the non-adaptive setting can be seen as secure in the
selective-ID model, though the model was not formalised when the scheme was first proposed.

Canetti, Halevi and Katz [26] introduced the notion of binary tree encryption (BTE). A
BTE differs from HIBE in the sense that each node in the BTE has two children – the left
child and the right child. BTE is a public key encryption scheme and they also show [26] how
an (H)IBE can be constructed from any BTE. This gives the first (H)IBE construction that is
secure without random oracle in the selective-ID model. We do not detail their construction
and security proof here. One limitation of the construction is large computational overhead
– one pairing computation for each bit of identity during decryption.

3.2.1 Selective-ID Secure HIBE

Boneh and Boyen proposed two efficient IBE schemes that are secure in the selective-ID
model without random oracle. The first construction was presented as an HIBE which we
call BB-HIBE. We give a detailed description of the BB-HIBE protocol and its security
reduction below. One reason being that we generalize this protocol to propose two new
constructions in Chapter 7. Another reason is that the algebraic technique introduced in
this work for private key extraction was adapted in later works (including ours).
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BB-HIBE

Here individual components of an identity tuple are elements of Zp.

Setup Select a random generator P ∈ G∗
1, a random x ∈ Zp and set P1 = xP . Also pick

random elements Q1, . . . , Qh, P2 ∈ G1. Then

PP = 〈P, P1, P2, Q1, . . . , Qh〉; msk = xP2

The maximum height of the HIBE is h. Define publicly computable family of functions
Fj : Zp → G1 for j ∈ {1, . . . , h}: Fj(α) = αP1 + Qj.

Key-Gen: Given an identity v = 〈v1, . . . , vj〉 of depth j ≤ h, pick random r1, . . . , rj ∈ Zp

and compute

dv =

(
xP2 +

j∑
i=1

riFi(vi), r1P, . . . , rjP

)
dv can also be generated given the private key dv|j−1 of v|j−1 = 〈v1, . . . , vj−1〉.

Encrypt: Encrypt M ∈ G2 for v = 〈v1, . . . , vj〉 as

C = (e(P1, P2)
s ·M, sP, sF1(v1), . . . , sFj(vj))

where s is a random element of Zp.

Decrypt: Decrypt C = 〈A, B, C1, . . . , Cj〉 using the private key dv as

A ·
∏j

i=1 e(Ci, di)

e(B, d0)
= M

Security

CPA security of BB-HIBE is proved in the selective-ID model. Let A be an adversary
against the above HIBE with advantage ε. A commits to an identity tuple before the system
is set-up. In the security reduction, A is used to construct an algorithm B that solves
the DBDH problem. B is given as input a 5-tuple 〈P, aP, bP, cP, Z〉. The task of B is
to determine whether Z is equal to e(P, P )abc or a random element of G2. B solves this
problem by interacting with A in the selective-ID game. The essential idea is to form the
public parameters using the target identity tuple and the DBDH instance in such a way
that all the key extraction queries of A (except on any prefix of the target identity) can
be answered by A. A valid challenge, on the other hand, can be generated for the target
identity only. So, based on the target identity, the identity space is partitioned into two
disjoint subsets.
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Initialization: A commits to a target identity v∗ = 〈v∗1, . . . , v∗h′〉 of height h′ ≤ h. If h′ < h,
B adds extra random elements from Zp to make v∗ an identity of height h. Let us denote
these extra (h− h′) elements by v∗h′+1, . . . , v

∗
h.

Setup: B sets P1 = aP and P2 = bP . It then picks random α1, . . . , αh ∈ Zp and defines
Qj = αjP−v∗jP1 for 1 ≤ j ≤ h. It givesA the public parameters PP = 〈P, P1, P2, Q1, . . . , Qh〉.
Here the msk = aP2 = abP is unknown to B. Define the function Fj(x) = xP1 + Qj =
(x− v∗j )P1 + αjP for 1 ≤ j ≤ h.

Phase 1: A makes up to q private key queries. In a private key query corresponding to
an identity v = 〈v1, . . . , vu〉, with u ≤ h the only restriction is that v is not a prefix of v∗.
Let, j be the smallest index such that vj 6= v∗j . B chooses random r1, . . . , rj ∈ Zp and first
computes

d0|j =
−αj

(vj − v∗j )
P2 + rjFj(vj)

=
−αj

(vj − v∗j )
P2 + rj((vj − v∗j )P1 + αjP )

= abP − abP +
−αj

(vj − v∗j )
bP + rj((vj − v∗j )P1 + αjP )

= aP2 +

(
rj −

b

vj − v∗j

)
((vj − v∗j )P1 + αjP )

= aP2 + r̃jFj(vj)

where r̃j = rj − b
vj−v∗j

. So B forms the private key of 〈v1, . . . , vj〉as

d0 = d0|j +

j−1∑
i=1

riFi(vi), d1 = r1P, . . . , dj−1 = rj−1P, dj = − 1

vj − v∗j
P2 + rjP = r̃jP

It is easy to verify that 〈d0, d1, . . . , dj〉 is a valid private key for 〈v0, . . . , vj〉. From this B
forms a private key for v and return it to A.

Note that, B can derive a valid private key for an identity v without the knowledge of
the master secret. This is possible as long as v is not a prefix of v∗. The above algebraic
technique of private key derivation is one of the major technical novelties of this work.
Also note that, if the original target identity v∗ = (v∗1, . . . , v

∗
h′) is of height less than h,

then v = (v∗1, . . . , v
∗
h′ , v

∗
h′+1, . . . , v

∗
h) can be a valid query for private key extraction. In such

eventuality, B has to abort the game. Probability of such eventuality is, however, very low
– of the order q/p.

Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈ G2. B chooses
a random bit γ and forms the ciphertext C = 〈Mγ · Z, cP, α1cP, . . . , αh′cP 〉. Note that,
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Fi(v
∗
i ) = αiP , so

C = 〈Mγ · Z, cP, cF1(v
∗
1), . . . , cFh′(v

∗
h′)〉.

If Z = e(P, P )abc = e(P1, P2)
c then C is a valid encryption of Mγ.

Phase 2: A makes additional queries which B answers just like Phase 1. Total number of
queries in Phase 1 and 2 together should not exceed q.

Guess: Eventually, A outputs its guess γ′ of γ. If γ′ = γ, B outputs 1, otherwise it outputs
0.

When Z = e(P, P )abc, then A’s view in the above game is identical to that in a real
attack. In that case |Pr[γ = γ′]− 1/2| ≥ ε. on the other hand if Z is a random element of
G2 then Pr[γ = γ′] = 1/2. Hence we get,

AdvDBDH
B ≥ ε.

In other words, if the (t, ε)-DBDH assumption holds in G1, G2 then the h-HIBE of Boneh-
Boyen is (t′, q, ε)-IND-sID-CPA secure for arbitrary h and q and any t′ < t− O(τhq) where
τ is the time for a scalar multiplication in G1.

3.3 Full Model

Boneh and Boyen were first to propose an IBE [18] whose proof of security in the full model
does not rely on the random oracle heuristic. The construction, however, is not very efficient
and as the authors observed, should be seen as a proof of concept. We reproduce their
construction because of its chronological importance.

Construction

Here the identities are elements of {0, 1}w. These identities are mapped to a random n bit
string through a hash function Hk. Hk is chosen from a family of hash functions {Hk :
{0, 1}w → {0, 1}n}k∈K, where K is the key space for the family of hash functions.

Setup: Choose an arbitrary generator P ∈ G1, pick a random x ∈ Zp and set P1 = xP .
Also choose a random element P2 ∈ G1. Construct a random n×2 matrix U = (Ui,j) ∈ Gn×2

1

where each Ui,j is uniform in G1. Finally pick a random hash function key k ∈ K. The
public parameters are PP = 〈P, P1, P2,U , k〉 and the master key is msk = xP2.

Key-Gen: To generate the private key dv for an identity v ∈ {0, 1}w, compute −→a =
Hk(v) = a0, . . . , an ∈ {0, 1}n and pick random r1, . . . , rn ∈ Zp. The private key is dv =
〈xP2 +

∑n
i=1 riUi,ai

, r1P, . . . , rnP 〉. Note that the private key consists of n + 1 elements of
G1.
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Encrypt: To encrypt a message M ∈ G2 for the identity v ∈ {0, 1}w, set −→a = Hk(v) =
a0, . . . , an, pick a random s ∈ Zp and compute

C = 〈e(P1, P2)
s ×M, sP, sU1,a1 , . . . , sUn,an〉 ∈ G2 ×Gn+1

1

Decrypt: To decrypt C = 〈A, B, C1, . . . , Cn〉 using the private key dv = 〈d0, d1, . . . , dn〉
compute

A×
∏n

j=1 e(Cj, dj)

e(B, d0)
= M.

It is easy to verify that this gives a proper decryption.

Security

We only provide an intuitive understanding of the security reduction. This construction has
much resemblance with the BB-HIBE discussed in the previous section. Consider a BB-
HIBE of maximum depth n where all the identity tuples are of the form v = (i1, . . . , in), i.e.,
we allow only the identity tuples of full depth. Then what we essentially get is the above
construction. Here, however, ij ∈ {0, 1} where as in the original BB-HIBE construction,
domain of the identities is Zp. Boneh-Boyen use additional randomization, such as using the
hash function Hk() and taking an n× 2 matrix U , to tackle this situation.

The proof idea also follows from that of the BB-HIBE. However, recall that the earlier
construction is proved to be secure only in the selective-ID model. Some additional sub-
tleties are needed to achieve security in the full model as we presently discuss. Suppose the
challenger B chooses an n bit string vc = ic1, . . . , i

c
n at random. B then forms the matrix U

in such a way that it can form the private key for any identity v = (i1, . . . , in) only if there
is some j, 1 ≤ j ≤ n such that ij = icj. In challenge phase it can form a proper encryption
only if the challenge identity, v∗ is the complement string of vc, i.e., there is no j such that
v∗j = vc

j for 1 ≤ j ≤ n. This is sort of plug-n-pray technique. The security reduction suffers
from a (huge) degradation because the simulator can generate a proper encryption only for
the identity plugged in, i.e., v∗.

3.3.1 Waters’ Protocol

The public parameters, private key and ciphertext sizes are quite large for the Boneh-Boyen
IBE. Waters introduced a nice protocol [89] where the private key and ciphertext sizes are
drastically reduced. In this protocol, identities are represented as bit strings of length n.

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1 at random.

Further, choose a random element U ′ ∈ G1 and a random n-length vector
−→
U = {U1, . . . , Un},

whose elements are from G1. The master secret is xP2 whereas the public parameters are
〈P, P1, P2, U

′,
−→
U 〉.
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Key-Gen: Let v = (v1, . . . , vn) ∈ {0, 1}n be any identity. A secret key for v is generated
as follows. Choose a random r ∈ Z∗

p, then the private key for v is

dv = (xP2 + rV, rP ).

where
V = U ′ +

∑
{i:vi=1}

Ui.

Encrypt: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)
tM, tP, tV ),

where t is a random element of Zp and V is as defined in key generation algorithm.

Decrypt: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding identity. Then
we decrypt C using secret key dv = (d1, d2) by computing

C1
e(d2, C3)

e(d1, C2)
.

We give an intuitive understanding of the security reduction of this protocol. One of
the contributions of the present work is a generalisation of Waters construction. We give a
security proof of this generalised construction in Chapter 5.

Waters construction has some similarity with the BB-HIBE of Section 3.2. Using a
similar algebraic technique of Boneh-Boyen, Waters forms a simulator B, that solves the
DBDH problem given an adversary A against the IBE with advantage ε.

In the simulation, B constructs a function F : I → Zp, where I is the set of identities,
in such a way that given an identity v it can form a proper private key dv only if F (v) 6=
0. In contrast, it can form a proper challenge for an identity v∗ only if F (v∗) = 0. We
have already observed that this complementary condition for key generation and challenge
generation is a hallmark of all the encryption protocols described so far. Because of this
complementary condition there are certain identities for which the simulator cannot generate
the private key and for some other identities it is unable to generate a proper challenge. In
such situations, the simulator has to abort the game and we have no way to correlate the
adversarial advantage against the encryption protocol to that of solving the underlying hard
problem. This is the cause of degradation in the security reduction.

The complementary condition of key generation and target generation is also true for the
protocols secure under the selective-ID model. The simulator cannot generate the private
key of the target identity or any of its prefix. In sID model, however, we do not have any
security degradation because of the restriction of the model. The adversary commits to a
target identity ahead of the system setup. So the simulator chooses the system parameters
in such a way that it can answer all the key extraction queries of the adversary and also
generate the target ciphertext with probability one.
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3.4 HIBE with Shortened Ciphertext

3.4.1 Constant Size Ciphertext HIBE

Boneh, Boyen and Goh proposed a HIBE in the selective-ID model where the length of the
ciphertext is always constant. We refer to this protocol as BBG-HIBE. The construction is
described below.

Identities at a depth u are of the form (v1, . . . , vu) ∈ (Z∗
p)

u
. Messages are elements of G2.

Setup: Let 〈P 〉 = G1. Choose a random α ∈ Zp and set P1 = αP . Choose random ele-
ments P2, P3, Q1, . . . , Qh ∈ G1. Set the public parameter as PP = (P, P1, P2, P3, Q1, . . . , Qh)
while the master key is αP2.

Key-Gen: Given an identity v = (v1, . . . , vk) ∈ (Z∗
p)

k of depth k ≤ h, pick a random r ∈ Zp

and output
dv = (αP2 + r(v1Q1, . . . , IkQk + P3), rP, rQk+1, . . . , rQh).

The private key for v can also be generated given the private key for v|k−1 as is the general
requirement of any HIBE.

Encrypt: To encrypt M ∈ G2 under the identity v = (v1, . . . , vk) ∈ (Z∗
p)

k, pick a random
s ∈ Zp and output

CT = (e(P1, P2)
s ×M, sP, s(v1Q1 + . . . + vkQk + P3)) .

Decrypt: To decrypt CT = (A, B, C) using the private key dv = (a0, a1, bk+1, . . . , bh),
compute

A× e(a1, C)

e(B, a0)
= M.

Note that, apart from the masked message, the ciphertext in BBG-HIBE consists of only
two elements of G1 irrespective of the number of components in the corresponding identity.
In other HIBEs, the length of the ciphertext is proportional to the length of the identity tuple.
The BBG-HIBE offers new and important applications for constructing other cryptographic
primitives like forward secure encryption [26] and broadcast encryption [78, 38].

Security of BBG-HIBE against adaptive chosen plaintext attack is proved in the selective-
ID model under the h-wDBDHI∗ assumptions described in Section 2.2.2. The security reduc-
tion uses an algebraic technique similar to that of BB-HIBE. We do no provide the details of
the reduction. In Chapter 8 and Chapter 9 we augment the BBG-HIBE to stronger security
models with detailed argument about the reductions.
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Composite HIBE

Boneh, Boyen and Goh also suggested a “product” construction of the constant ciphertext
BBG-HIBE and BB-HIBE [19]. In case of BBG-HIBE the private key size decreases with the
increase in identity level. While in case of BB-HIBE the private key size increases with the
height of an identity. Utilizing the algebraic similarities of both the systems they construct
a composite scheme where the inner HIBE is the BBG-HIBE and the outer HIBE is the BB-
HIBE. The composite scheme allows a trade-off between the ciphertext size and the private
key size. We suggest a variant of this composite construction in Chapter 9.

3.5 Chosen Ciphertext Security

Security against chosen-ciphertext attack (IND-ID-CCA security) is the strongest notion
of security for any (hierarchical) identity-based encryption scheme. We have already ob-
served that the initial proposals such as the Boneh-Franklin IBE and Gentry-Silverberg
HIBE used the Fujisaki-Okamoto transformation to their basic schemes secure in the sense
of IND-ID-CPA to achieve this goal. However, the Fujisaki-Okamoto transformation uses
cryptographic hash functions that are modelled as random oracles. Protocols that achieve
security against chosen-plaintext attack without random oracle require a different technique
to achieve chosen-ciphertext security.

Canetti, Halevi and Katz introduced a generic transformation [27] to achieve CCA se-
curity. Given any (h + 1) level HIBE which is secure against chosen-plaintext attack, this
generic transformation yields an h level HIBE which is secure against chosen ciphertext at-
tack. This transformation uses a strongly unforgable one time signature scheme. Boneh and
Katz suggested a modification [21] where the one time signature scheme is replaced by a
MAC, there by increasing the efficiency of the transformation.

We now detail the signature based approach. A signature scheme is defined by three
probabilistic polynomial time algorithms as follows:

Key-Gen: On input the security parameter 1κ, this probabilistic polynomial time algo-
rithm outputs a pair of signing key (sk) and verification key (vk).

Sign: This algorithm takes input a signing key sk and a message M from the appropriate
message spaceM and outputs a signature σ.

Verify: This is a deterministic algorithm which on input a verification key vk, a message
M and a signature σ on M outputs accept or reject depending on whether σ is a proper
signature on M or not.

A signature scheme (Key-Gen, Sign, Verify) is a strong, one-time scheme if the success
probability of any probabilistic polynomial time adversaryA is negligible in κ in the following
game.

32



1. Key-Gen(1κ) outputs (vk, sk). The adversary A is given κ and vk.

2. A(1κ, vk) may take one of the following actions:

(a) A outputs a pair (M∗, σ∗) and halts. In this case (M, σ) is undefined.

(b) A outputs a message M and in return is given a signature of M under the signing
key sk, i.e., σ ← Signsk(M). Then A outputs a pair (M∗, σ∗).

A succeeds in the game if σ∗ is a proper signature of M∗ under the verification key vk,
i.e., Verifyvk(M

∗, σ∗) = accept but (M∗, σ∗) 6= (M, σ). A may succeed even if M∗ = M .
Let H′ = (Setup, Der′, E ′,D′) be an (h+1)-HIBE for arbitrary h ≥ 1 handling (n+1)-bit

identities. Let Sig = (Key-Gen, Sig, Verify) be a signature scheme which outputs an n-bit
signature. If H′ is secure in the sense IND-sID-CPA and Sig is a strong one-time signature
scheme, then one can construct an h-HIBE secure in the sense IND-sID-CCA that handles
n-bit identities. Given an identity tuple v = (v1, . . . , vj) ∈ ({0, 1}n)j of H we map it to an
identity tuple of H′ as

Encode(v) = (0v1, . . . , 0vj) ∈ ({0, 1}n+1)j

and Encode(ε) = ε, i.e the null string is mapped to itself. Let v̂ = Encode(v), the HIBE H is
constructed in such a way that the private key dv of an identity tuple v in H is equal to the
private key d′v̂ of v̂ in H′.

Construction of H

Setup: Same as the Setup algorithm of H′. The master key of H′, mskH′ is the master
key, mskH of H.

Key-Gen: Let dv be the private key of v. To derive the private key of (v, r) find v̂ =
Encode(v) and r̂ = Encode(r). Run Der′dv

(v̂, r̂) and output the result as dv,r.
Note that, dv,r = dv̂,̂r, given dv = d′v̂.

Encrypt: To encrypt a message M to an identity tuple v, run the key generation algorithm
of Sig, Key-Gen(1κ) to obtain (vk, sk). Let v̂ = Encode(v)||(1vk), compute C = E ′PP(v̂, M)
and σ = Signsk(C). The ciphertext is the tuple 〈vk, C, σ〉.

Decrypt: Given the ciphertext 〈vk, C, σ〉, first check whether Verifyvk(C, σ) = accept. If
not reject the ciphertext. Otherwise, let v̂ = Encode(v) and run Der′dv

(v̂, (1vk)) to generate
the private key d∗ = d′v̂||(1vk). Then output M = D′

d∗(v̂, C).
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Security

Given an identity tuple v = (v1, . . . , vj), j ≤ h in H, the sender encrypts the message M to
a (j + 1) level identity v̂ = (Encode(v), (1vk)) of H′ where vk is the verification key of the
underlying signature scheme. The receiver having identity v first derives the private key of
v̂ in H′ from the private key dv in H using the key generation algorithm of H′. We assume
that the probability of forging a signature, Pr[Forge] is negligible. Then by a reductionist
security argument Boneh, Canetti, Halevi and Katz show that if there is an IND-sID-CCA
adversary A against H in the selective-ID model then one can construct an IND-sID-CPA
adversary A′ against H′ in the same model. Here we reproduce their argument:

1. A′ runs the IND-sID-CCA adversary A which outputs a target identity tuple v∗ =
〈v∗1, . . . , v∗j 〉, j ≤ h. A′ next runs the key generation algorithm Key-Gen of Sig to
generate (vk∗, sk∗). It outputs Encode(v∗), (1vk∗) as its target identity.

2. The challenger gives A′ the public parameter PP, which it relays to A.

3. A asks for the private key of an identity v, which is not a prefix of v∗. A′ asks its
challenger for the private key dv̂ where v̂ = Encode(v) and returns it to A.

4. For a decryption query of the form (v, 〈vk, C, σ〉) from A, A′ takes the following action:

(a) If v = v∗ and vk = vk∗, return reject.

(b) If v 6= v∗ or if v = v∗ but vk 6= vk∗, then A′ sets v̂ = Encode(v) and requests
its challenger for the private key of v̂, (1vk). It decrypts the ciphertext using this
private key and returns the result to A.

5. In the challenge stage A outputs two messages M0, M1. The same messages are also
output by A′. It receives a challenge ciphertext C∗. Now A′ computes σ∗ = Signsk∗(C

∗)
and returns the ciphertext 〈vk∗, C∗, σ∗〉 to A.

6. In phase 2 A makes additional decryption queries and private key extraction queries.
These queries are answered as before.

7. Finally A outputs its guess γ′. The same γ′ is output by A′.

In the above simulation, A′ poses as a real challenger for A. Since we have assumed that
the probability of forging a signature is negligible, the advantage of A against H translates
into the advantage of A′ against H′.

Note that, if H′ is adaptive chosen plaintext secure in the full model (i.e., IND-ID-CPA
secure), then H will be adaptive chosen ciphertext secure (i.e., IND-ID-CCA secure) in the
full model.

Given this generic transformation to achieve CCA-security, protocol designers generally
concentrate on constructing protocols that achieve CPA-security (be it in the full model
or the selective-ID model) without random oracle and then apply this transformation to
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achieve CCA-security. Protocols such as the Boneh-Boyen HIBE of Section 3.2.1 and the
Boneh-Boyen-Goh HIBE of Section 3.4.1 accomplish this in the selective-ID model, while
the Boneh-Boyen IBE and Waters IBE of Section 3.3 accomplish this in the full model.

Boyen, Mei and Waters proposed an endogenous transformation to achieve CCA security
[23]. Their technique uses the structure of the underlying HIBE and there by avoid the
use of one time signature or MAC. In their work they have suggested that when applied
to BB-HIBE or BBG-HIBE this technique yields a selective-ID CCA-secure hierarchical
identity-based key encapsulation mechanism (HIB-KEM) and for Waters protocol modified
to HIBE, an adaptive identity CCA-secure HIBE.

In view of these developments, we concentrate on only designing CPA-secure protocols
in this dissertation. Any of the transformations mentioned above can be applied on the
CPA-secure protocols discussed in this work to achieve CCA-security.

3.6 Conclusion

In this chapter, we reviewed some of the important (hierarchical) identity-based encryption
protocols proposed in the literature. Along with the protocols, in some cases we have dis-
cussed the salient features of the proof technique while an intuitive justification of the proof
is given for some others. These protocols are proved secure against chosen plaintext attack.
Methods for achieving CCA-security is also mentioned. Our aim was not an exhaustive
survey of the area, but an exposition of the basic issues in identity-based encryption, de-
velopments in the proof techniques, the prospects as well as the problems. It also helps to
present our work in the proper context. This being an emerging research area, new concepts
are still evolving. The IBE proposed by Gentry in [48] , the concept of anonymous IBE [1]
and the anonymous HIBE proposed by Boyen and Waters in [24] are some important recent
developments not discussed here.
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Chapter 4

Tate Pairing in General Characteristic

Fields

4.1 Introduction

Implementation of pairing based protocols requires efficient algorithm for computing pairing.
An initial breakthrough in this direction was made in [8] and [45], which introduced some
nice optimisation ideas leading to dramatic improvement in pairing computation time. Since
then, there have been quite a few works on implementation aspects. Most of the initial im-
plementation works have focussed on Tate pairing as it is faster than Weil pairing. However,
in [63] it has been observed that, for higher security levels Weil pairing can be faster than
Tate pairing. This again was contested in [51] who argued that Tate pairing can indeed be
faster.

In this chapter, we consider only elliptic curves over large prime fields having embedding
degree 2. For such fields, we consider the use of Jacobian coordinates for Tate pairing
computation. The new idea that we introduce is encapsulated double-and-line computation
and encapsulate add-and-line computation. We also describe encapsulated version of iterated
double and line computation.

From an implementation point of view, we divide curves of the form y2 = x3 + ax + b
into three cases: small a, a = −3 and the case where a is a general element of the field. In
each case, we present detailed algorithm for pairing computation.

For hardware applications having special purpose crypto co-processors, it might be desir-
able to consider parallel versions of the algorithms. We identify the inherent parallelism in
our algorithms and two-multiplier parallel version of our algorithms are optimal with respect
to the number of parallel rounds.

In comparison with earlier work, we are able to obtain approximately 33% speed-up over
the best known algorithm [57] for the case of general a. In the case a = −3 and for non-
supersingular curves with embedding degree 2, the work by Scott [82] provides the most
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efficient algorithm. In comparison, for the case a = −3, we are able to obtain approximately
20% speed-up over the algorithm in [82].

Related Work: The important work in [8] and [45] has been mentioned before. Projective
coordinates were seriously considered by Izu and Takagi [57], where mainly non-supersingular
curves with large embedding degrees were considered. Further, projective coordinates in con-
junction with non-supersingular curves with embedding degree 2 were also considered in the
work by Scott [82] mentioned earlier. The work by Scott and Baretto [83] considers the issue
of computing trace of pairings. This paper also describes a laddering algorithm for expo-
nentiation in IFp2 based on Lucas sequences. For general characteristics, this exponentiation
algorithm is the fastest known and has to be used with the algorithm that we develop. The
algorithm proposed by Eisenträerger et. al. [40] uses the double-add trick with parabolas for
fast computation of pairing in affine coordinates. There are several other works on Tate pair-
ing computation like [39, 52, 66]. However, most of these work with affine coordinates and
over characteristic two or three. Hence, they are not much relevant in the present context
and therefore are not discussed here.

Implementation of pairing being an active and emerging research area, there are im-
portant advances in different aspects. These include construction of elliptic curves suitable
for pairing implementation [10, 12], efficient algorithms for curves with larger embedding
degree [9] and also efficient implementation of pairing based protocols [11].

4.2 Preliminaries

We start with a definition of modified Tate pairing. We limit the discussion at a level
necessary to understand the implementation issues discussed in this chapter. For a detailed
description of Tate pairing the interested reader is referred to Chapter IX of [15].

4.2.1 The Tate Pairing

Let IFp (with p prime) be a finite field of integers modulo p and IFpk be the degree k extension
of IFp. We define an elliptic curve E over IFp by the equation [53]

y2 = x3 + ax + b (4.2.1)

where a, b ∈ IFp satisfy the condition 4a3 + 27b2 6≡ 0 mod p. A pair (x, y) with x, y ∈ IFp

is said to be a point on the elliptic curve if (x, y) satisfies Equation 4.2.1. The points on
the elliptic curve together with a special point at infinity (denoted by O) forms an additive
abelian group.

Let r be a large prime divisor of (p + 1), such that r is coprime to p and for some
k > 0, r|pk − 1 but r 6 |ps − 1 for any 1 ≤ s < k; k is called the embedding degree (MOV
degree). Suppose P is a point of order r on the elliptic curve E(IFp) and Q is a point of same
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order on the elliptic curve E(IFpk), linearly independent of P . We denote the (modified)
Tate pairing of order r as er(P, Q) ∈ IFpk .

er(P, Q) is defined in terms of divisors of a rational function. A divisor is a formal sum:
D =

∑
P∈E aP 〈P 〉, where P ∈ E(IFp). The degree of a divisor D is deg(D) =

∑
P∈E aP . The

set of divisors forms an abelian group by the addition of their coefficients in the formal sum.
Let f be a (rational) function on E, then the divisor of f , 〈f〉 =

∑
P ordP (f)〈P 〉, where

ordP (f) is the order of the zero or pole of f at P . A divisor D =
∑

P∈E aP 〈P 〉 is called a
principal divisor if and only if it is a divisor of degree 0 (zero divisor) and

∑
P∈E aP P = O.

If D is principal then there is some function f such that D = 〈f〉. Two divisors D1 and D2

are said to be equivalent if D1 − D2 is a principal divisor. Let AP be a divisor equivalent
to 〈P 〉 − 〈O〉 (similarly AQ). Then it is easy to see that rAP is principal; thus there is a
rational function fP with 〈fP 〉 = rAP = r〈P 〉 − r〈O〉. The (modified) Tate pairing of order
r is defined as

er(P, Q) = fP (AQ)(pk−1)/r (4.2.2)

4.2.2 Miller’s Algorithm

Miller proposed a polynomial time algorithm to compute the Weil pairing [74, 75]. This
algorithm can be adapted easily to compute the modified Tate pairing. Let fa be a (rational)
function with divisor 〈fa〉 = a〈P 〉 − 〈aP 〉 − (a − 1)〈O〉, a ∈ Z. It can be shown that
f2a(Q) = fa(Q)2.haP,aP (Q)/h2aP (Q) where, haP,aP is the line tangent to E(IFp) at aP , it
intersects E(IFp) at the point −2aP , and h2aP is the (vertical) line that intersects E(IFp) at
2aP and −2aP . Now, 〈fr〉 = r〈P 〉 − 〈rP 〉 − (r − 1)〈O〉 = 〈fP 〉, since rP = O. Given P
and the binary representation of r, Miller’s algorithm computes fP (Q) = fr(Q) in lg r steps
by the standard double-and-add through line-and-tangent method for elliptic curve scalar
multiplication. Under the condition, r 6 |(p− 1) we can further have er(P, Q) = fP (Q)(pk−1)/r

for Q 6= O, as long as k > 1.
In the implementation of Tate pairing over super-singular elliptic curves E(IFp), the usual
practice is to take Q ∈ E(IFp) of order r and then use a distortion map φ() [88], to get a
point φ(Q) ∈ E(IFpk) of order r which is linearly independent of P . A major finding in [8]
is that, for particular choices of the curve parameters and distortion map φ() we can freely
multiply or divide the intermediate result of pairing computation by any IFp element and
consequently completely ignore the denominator part in the computation of Tate pairing.

4.2.3 Choice of Curves

Let E1 be the elliptic curve given by the equation

y2 = x3 + ax (4.2.3)

over IFp. E1 is super-singular if p ≡ 3 mod 4. For these curves, the curve order is #E1(IFp) =
p + 1 and embedding degree is k = 2. For such curves, a distortion map [8] is φ(x, y) =

38



(−x, iy) ∈ IFp2× IFp2 with i2 = −1. Let r be the integer, for which we wish to compute er(, ).
Then r|(p + 1) and the final powering in Tate pairing computation is of the form (p2− 1)/r.
As observed in [8], this implies (p− 1) divides the final powering exponent.

Let, E2 be the elliptic curve given by the equation

y2 = x3 − 3x + B (4.2.4)

over IFp, p ≡ 3 mod 4. Scott in his paper [82] considered this form of non super-singular EC
with embedding degree, k = 2 with #E2(IFp) = p+1−t, where t is the trace of Frobenius [69].
It is shown in [82] that the r for which er(, ) is computed over E2 also satisfies r|(p + 1) and
hence again p− 1 divides the final powering exponent of Tate pairing.

Thus for both E1 and E2 the following observation holds. Since xp−1 = 1 for any x ∈ IFp,
this implies that we can freely multiply or divide any intermediate Tate pairing result by
any nonzero element of IFp. This has been previously used to improve the efficiency of Tate
pairing computation in affine coordinates. In Section 4.3, we point out the importance of
this observation in the context of projective coordinates.

Note that, for E1 as well as E2, the embedding degree is k = 2 and the elements of the
quadratic extension field (IFp2) is represented as a + ib, where a, b ∈ IFp and i is the square
root of a quadratic non-residue. For p ≡ 3 mod 4 we can further have i2 = −1. Essentially,
the same algorithm that we develop for E1 also applies to E2 by evaluating e(, ) at P and
(−xQ, iyQ).

4.2.4 Non-Adjacent Form Representation

The Non-Adjacent Form (NAF) representation of an integer has been suggested for elliptic
curve scalar multiplication. In this representation, the digits {0,±1} are used to represent
an integer with the property that no two adjacent digits are non-zero. The advantage is that,
on an average, the number of non-zero digits is one-third of the length of the representation,
while it is one-half in the case of binary representation. For details of NAF representation
we refer the reader to [53].

For Tate pairing applications, the representation of r should be sparse, i.e., the number of
non-zero digits should be small. The NAF representation is sparser than the corresponding
binary representation. Hence in our algorithms, we work entirely with the NAF representa-
tion.

4.3 Encapsulated Computation

In the computation of Tate pairing one needs to perform an implicit scalar multiplication
of the EC point P . For this, as well as for computation of the line function haP,aP () one
requires to perform base field inversion. But inversion for large characteristic is quite costly.
The standard method to avoid inversion is to move from affine to projective coordinate
system. Among the different available projective coordinate systems, the Jacobian gives
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the best result. In [57] the authors suggested to take the so called simplified Jacobian-
Chudnovsky coordinate Js as they store (X, Y, Z, Z2) instead of (X, Y, Z). However, we have
found out that if one encapsulates EC addition/doubling with line computation then there
is no need to additionally store Z2 – one can simply work in the Jacobian coordinate. Here
we give the explicit formulae required for the encapsulated computation of double/add-and-
line computation. In what follows, by [M] and [S], we respectively denote the cost of one
multiplication and one squaring in IFp.

4.3.1 Encapsulated Point Doubling and Line Computation

Here P = (X1, Y1, Z1) correspond to (X1/Z
2
1 , Y1/Z

3
1) in affine coordinate. We encapsulate the

computation of 2P given P together with the computation corresponding to the associated
line.

Point Doubling : From the EC point doubling rule we have the following formula:

X ′
3 =

(3X2
1 + aZ4

1)2 − 8X1Y
2
1

4Y 2
1 Z2

1

Y ′
3 =

3X2
1 + aZ4

1

2Y1Z1

(
X1

Z2
1

−X ′
3)−

Y1

Z3
1

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1

Using temporary variables, we compute:

1. t1 = Y 2
1 ; 2. t2 = 4X1t1; 3. t3 = 8t21;

4. t4 = Z2
1 ; 5. t5 = 3X2

1 + aZ4
1 ; 6. X3 = t25 − 2t2;

7. Y3 = t5(t2 −X3)− t3; 8. Z3 = 2Y1Z1.

So, we require 6[S] + 4[M] for EC doubling. Now consider t5. If a is a general element of
IFp, then we have to count the multiplication a× (Z4

1). However, if a is small, i.e., it can be
represented using only a few (say ≤ 8) bits, then we do not count this multiplication. In this
case, aZ4

1 can be obtained summing Z4
1 a total of a times. This reduces the operation count

to 6[S]+3[M]. Further, if a = −3, then t5 = 3(X1 −Z2
1)(X1 + Z2

1) = 3(X1 − t4)(X1 + t4) and
the operation count reduces to 4[S]+4[M]. These facts are known and can be found in [53].

Line Computation: Note that, the slope µ of hP,P , the line through P and −2P , is
µ = t5/Z3. So,

hP,P (x, y) = (y − Y1

Z3
1

)− µ(x− X1

Z2
1

).

Hence, hP,P (−xQ, iyQ) = (yQi− Y1

Z3
1
) + µ(xQ + X1

Z2
1
).

By defining gP,P (x, y) = (2Y1Z
3
1)hP,P (x, y), we get,

gP,P (−xQ, iyQ) = (2Y1Z1)Z
2
1yQi− 2Y 2

1 + (3X2
1 + aZ4

1)(Z2
1xQ + X1)

= Z3t4yQi− (2t1 − t5(t4xQ + X1))
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The ultimate result is raised to the power (p2 − 1)/r, where r|(p + 1) (see Section 4.2.1).
Thus we have to compute

(hP,P (−xQ, iyQ))(p2−1)/r = ((hP,P (−xQ, iyQ))(p−1))(p+1)/r

= ((gP,P (−xQ, iyQ)/(2Y1Z
3
1))(p−1))(p+1)/r

= ((gP,P (−xQ, iyQ))(p−1))(p+1)/r.

The last equation holds since (2Y1Z
3
1) ∈ IFp and consequently (2Y1Z

3
1)p−1 = 1. Thus, we can

work entirely with gP,P (−xQ, iyQ) instead of hP,P (−xQ, iyQ). Since t1, t4 and t5 have already
been computed, gP,P (−xQ, iyQ) can be obtained using 4 additional multiplications.

Hence, encapsulated point doubling and line computation requires 8[M] + 6[S]. In the case
a is small, this cost is 7[M]+6[S] and for the case a = −3, this cost is 8[M]+4[S].

4.3.2 Encapsulated (Mixed) Point Addition and Line Computa-

tion

We encapsulate the computation of P +R given P in affine and R in Jacobian together with
the computation corresponding to the associated line.

Mixed Addition: Given R = (X1, Y1, Z1) and P = (X, Y, 1) we compute R + P =
(X3, Y3, Z3) as follows.

X ′
3 =

(
Y − Y1

Z3
1

X − X1

Z2
1

)2

− X1

Z2
1

−X

=

(
Y Z3

1 − Y1

(XZ2
1 −X1)Z1

)2

− X1

Z2
1

−X

Y ′
3 =

(
Y Z3

1 − Y1

(XZ2
1 −X1)Z1

)
(
X1

Z2
1

−X ′
3)−

Y1

Z3
1

X3 = X ′
3Z3

= (Y Z3
1 − Y1)

2 −X1(XZ2
1 −X1)

2 −X(XZ2
1 −X1)

2Z2
1

= (Y Z3
1 − Y1)

2 − (XZ2
1 −X1)

2(X1 + XZ2
1)

Y3 = Y ′
3Z3

= (Y Z3
1 − Y1)((XZ2

1 −X1)
2X1 −X3)− Y1(XZ2

1 −X1)
3

Z3 = (XZ2
1 −X1)Z1

Using temporary variables we compute:

1. t1 = Z2
1 ; 2. t2 = Z1t1; 3. t3 = Xt1;

4. t4 = Y t2; 5. t5 = t3 −X1; 6. t6 = t4 − Y1;
7. t7 = t25; 8. t8 = t5t7; 9. t9 = X1t7;
10. X3 = t26 − (t8 + 2t9); 11. Y3 = t6(t9 −X3)− Y1t8; 12. Z3 = Z1t5.
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Hence, we require 3[S] + 8[M] for EC point addition. See [53] for details.
Line Computation: Note that, the slope µ of hR,P , the line through R and P is

µ = t6/Z3. So,
hR,P (x, y) = (y − Y )− µ(x−X).

Hence, hR,P (−xQ, iyQ) = (yQi − Y ) + µ(xQ + X). Define g(x, y) as g(x, y) = Z3hR,P (x, y).
Thus, we get

gR,P (−xQ, iyQ) = Z3yQi− (Z3Y − t6(xQ + X))

As explained in the case of doubling, we can simply work with gR,P instead of hR,P . Since
we have already computed t6 and Z3 during point addition, gR,P (−xQ, iyQ) can be com-
puted using additional three multiplications. Hence, encapsulated point addition and line
computation requires 11[M] + 3[S].

4.4 Algorithm

We consider three situations: a = −3; a small (i.e., multiplication by a need not be counted);
and the case where a is a general element of IFp. For the first two cases, double-and-add
algorithm is considered. For the general case, we adopt an iterated doubling technique used
by Izu and Takagi [57].

4.4.1 Double-and-Add

We slightly modify the Miller’s algorithm as improved in [8]. We will call this algorithm
the modified BKLS algorithm. In the algorithm the NAF representation of r is taken to be
rt = 1, rt−1, . . . , r0.

Algorithm 1 (Modified BKLS Algorithm):
1. set f = 1 and V = P
2. for i = t− 1 downto 0 do
3. (u, V ) = EncDL(V );
4. set f = f 2 × u;
5. if ri 6= 0, then
6. (u, V ) = EncAL(V, ri);
7. set f = f × u;
8. end if;
9. end for;
10. return f ;
end Algorithm 1.

The subroutine EncDL(V ) performs the computation of Section 4.3.1 and returns (gV,V (φ(Q)),
2V ). The subroutine EncAL(V, ri) takes V and ri as input. If ri = 1, it performs the compu-
tation of Section 4.3.2 and returns (gV,P (φ(Q)),V + P ); if ri = −1, it first negates the point

42



P = (α, β) to obtain P ′ = −P = (α,−β), then it performs the computation of Section 4.3.2
with P ′ instead of P and returns (gV,−P (φ(Q)),V − P ). The correctness of the algorithm
follows easily from the correctness of the original BKLS algorithm.

We consider the cost. The subroutine EncDL is invoked a total of t times while EncAL
is invoked a total of s times where s is the Hamming weight of rt−1 . . . r0. The cost of
updation in Line 4 is one IFp2 squaring and one IFp2 multiplication. These operations can be
completed in five IFp multiplications (see [83]). The cost of updation in Line 7 is three IFp

multiplications.
The cost of EncDL depends upon the value of the curve parameter a. We analyse the

total cost for the following two cases.
Case a = −3:

• Cost of EncDL is 8[M]+4[S].

• Cost of update in line 4 is 5[M].

• Cost of EncAL is 11[M]+3[S].

• Cost of update in line 7 is 3[M].

• Total cost is t(13[M]+4[S]) + s(14[M]+3[S]).

Case a is small:

• Cost of EncDL is 7[M]+6[S].

• Cost of update in line 4 is 5[M].

• Cost of EncAL is 11[M]+3[S].

• Cost of update in line 7 is 3[M].

• Total cost is t(12[M]+6[S]) + s(14[M]+3[S]).

4.4.2 Iterated Doubling

In the case where we have to consider the multiplication by the curve parameter a, we employ
the technique of iterated doubling to reduce the total number of operations. As before we
consider the NAF representation of r. We write the NAF representation of r as

(rt = 1, rt−1, . . . , r0) = (ls = 1, 0ws−1 , ls−1, . . . , 0
w0 , l0)

where the li’s are ±1. The following algorithm is an iterated doubling version of the modified
BKLS algorithm described in Section 4.4.1. The points P = (α, β) and Q = (xQ, yQ) are
globally available.
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Algorithm 2 (iterated doubling):
Input: P = (α, β, 1) in Jacobian coordinates; Q = (xQ, yQ).
Output: fP (φ(Q)).
1. Set f = 1; g = 1;
2. X = α; Y = β; Z = 1; set R = (X, Y, Z);
3. for j = s− 1 down to 0
4. (f, R) = EncIdbl(f, R, wj);
5. (g,R) = EncAL(R, lj);
6. f = f × g;
7. end for;
8. return f ;
end Algorithm 2.

The Subroutine EncAL has already been discussed in Section 4.4.1. We now describe Sub-
routine EncIdbl.

Subroutine EncIdbl
Input: R = (X, Y, Z), f and w.
Output: updated f and 2w+1R.
1. t1 = Y 2; t2 = 4Xt1; t3 = 8t21; t4 = Z2; w = aZ4; t5 = 3X2 + w;
2. A = −(2t1 + t5(t4xQ −X)); X = t25 − 2t2;

Y = t5(t2 −X)− t3; Z = 2Y Z; B = Zt4yQ;
3. f = f 2 × (A + iB);
4. for j = 1 to w do
5. w = 2t3w; t1 = Y 2; t2 = 4Xt1; t3 = 8t21; t4 = Z2; t5 = 3X2 + w;
6. A = −(2t1 + t5(t4xQ −X)); X = t25 − 2t2;

Y = t5(t2 −X)− t3; Z = 2Y Z; B = Zt4yQ;
7. f = f 2 × (A + iB);
8. end for;
9. R = (X, Y, Z);
9. return (f , R);
end Subroutine EncIdbl.

Algorithm 2 is essentially the same as Algorithm 1 except for the use of iterated doubling.
The technique of iterated doubling is considered to reduce computation cost but does not
affect the correctness of the algorithm. We consider the cost of the algorithm. As before let
the Hamming weight of rt−1, . . . , r0 be s.

• Steps 5 and 6 of Algorithm 2 are invoked s times. The total cost of these two steps is
s(14[M]+3[S]).

• Step 4 of Algorithm 2 is invoked a total of s times. The cost of the jth invocation of
Step 4 is computed as follows:

– Cost of Steps 3 and 7 in EncIdbl is 5[M].
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– Cost of Steps 1 and 2 in EncIdbl is 8[M]+6[S].

– Cost of Steps 5 and 6 in EncIdbl is 8[M]+5[S].

– Total cost of jth invocation of EncIdbl is
13[M]+6[S]+wj(13[M]+5[S])=1[S]+(wj + 1)(13[M]+5[S]).

• Total cost of Algorithm 2 is
s(14[M]+3[S])+

∑s−1
j=0(1[S]+(wj + 1)(13[M]+5[S]))

=s(14[M]+4[S])+t(13[M]+5[S]).

4.4.3 Memory Requirement

The memory requirement of Algorithm 1 and Algorithm 2 are similar with Algorithm 2
requiring slightly more memory. We consider the memory requirement of Algorithm 2. To
find the minimum memory requirement, first note that in Algorithm 2 we have to store and
update f ∈ IFp2 and X, Y, Z ∈ IFp – they require 5 IFp storage space. We also need to store
Q = (xQ, yQ). In addition, we require some temporary variables to keep the intermediate
results produced in the subroutines EncIdbl and EncAL. These subroutines are called one after
another – we first call EncIdbl and update f together with X, Y, Z, release the temporary
variables and then call EncAL where these temporary variables can be reused. The maximum
of the number of temporary variables required by the two subroutines determines the number
of temporary variables required in Algorithm 2. We ran a computer program to separately
find these requirements. Given a straight line code what the program essentially does is to
exhaustively search (with some optimisations) for all possible execution paths and output
the path pertaining to minimum number of temporary variables. This turns out to be 9 for
EncIdbl, while it is 7 for EncAL. So, at most we require to store 16 IFp elements.

4.4.4 Parallelism

We consider the parallelism in the encapsulated computations of Sections 4.3.1 and 4.3.2.
While considering parallelism, we assume that a multiplier is used to perform squaring.

First we consider the case of encapsulated double and line computation. The situation
in Section 4.3.1 has three cases – small a, a = −3 and general a. For the last case we use
the iterated doubling technique of Section 4.4.2. We separately describe parallelism for the
three cases. In each case, we first need to identify the multiplications which can be performed
together. This then easily leads to parallel algorithms with a fixed number of multipliers.

Small a

In this case, multiplication by a will be performed as additions. The multiplication levels
are as follows.
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Level 1 : t1 = Y 2
1 ; t4 = Z2

1 ; X2
1 ; Z3 = 2Y1Z1; square f ;

Level 2 : t2 = 4X1t1; t3 = 8t21; t5 = 3X2
1 + aZ4

1 ; t6 = t4xQ; t7 = t4yQ;
Level 3 : −(2t1 + t5(t6 −X1)); X3 = t25 − 2t2; Y3 = t5(t2 −X3)− t3; Z3t7;
Level 4 : update f .

Case a = −3

In this case, t5 = 3(X2
1−Z4

1) = 3(X1−Z2
1)(X1+Z2

1). The multiplication levels are as follows.

Level 1 : t1 = Y 2
1 ; t4 = Z2

1 ; Z32Y1Z1; square f ;
Level 2 : t2 = 4X1t1; t3 = 8t21; t5 = 3(X1 − t4)(X1 + t4); t6 = t4xQ; t7 = t4yQ;
Level 3 : −(2t1 + t5(t6 −X1)); X3 = t25 − 2t2; Y3 = t5(t2 −X3)− t3; Z3t7;
Level 4 : update f .

General a

In this case, Subroutine EncIdbl is used. This consists of an initial part plus computation
inside the for loop. The parallel version of both these parts are similar and we describe the
parallel version of the loop computation. The multiplication levels are as follows.

Level 1 : w = 2t3w; t1 = Y 2; t4 = Z2; X2; Z3 = 2Y Z; square f ;
Level 2 : t2 = 4Xt1; t3 = 8t21; t5 = 3X2 + w; t6 = t4xQ; t7 = t4yQ;
Level 3 : A = −(2t1 + t5(t6 −X)); X = t25 − 2t2; Y = t5(t2 −X)− t3; Z3t7;
Level 4 : update f .

In each of the above cases, with two multipliers the entire operation can be performed in 9
rounds and with four multipliers it can be performed in 5 rounds. Since the total number of
operations is either 17 or 18 squarings and multiplications, the number of rounds is optimal
for the given number of operations and given number of multipliers.

Addition

We now consider the case of encapsulated add-and-line computation. See Section 4.3.2
for the details of the temporary variables and the operations. Here we mainly list the
multiplication/squaring operations.

Level 1 : t1 = Z2
1 ;

Level 2 : t2 = Z1t1; t3 = Xt1;
Level 3 : t4 = Y t2; t7 = t25; Z3 = Z1t5;
Level 4 : t8 = t5t7; t9 = X1t7; X3 = t26 − (t8 + 2t9); Z3yQ; Z3Y ; t6(xQ −X);
Level 5 : Y3 = t6(t9 −X3)− Y1t8; update f ;

There are a total of 17 multiplications including the update operation. Using two multipliers,
these can be performed in 9 rounds. On the other hand, the four multiplier algorithm is
sub-optimal in the number of rounds.
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Thus, for parallel version of pairing computation algorithm, one obtains optimal two-
multiplier algorithms for both doubling and addition. For doubling, the four multiplier
algorithm is optimal, while for addition, the four multiplier algorithm is sub-optimal. How-
ever, the Hamming weight of r will be small and hence if we use four multipliers then the
sub-optimal performance will be amortized over the length of the representation of r and
will not be significantly reflected in the final cost analysis.

4.5 Comparison

For the purpose of comparison, we assume that r = (rt = 1, rt−1, . . . , r0) is represented in
NAF having length t and Hamming weight s.

The irrelevant denominator optimisation was introduced in [8]. Further, [8] uses affine
representation. The total cost including point/line computation and updation is

t(1[I]+8[M]+2[S]) + s(1[I]+6[M]+1[S]),

where [I] is the cost of inversion over IFp and is at least 30[M], see [72].
Izu-Takagi [57] uses projective coordinates for pairing computation in general charac-

teristics for large embedding degree k. They also consider the BKLS optimisations for
supersingular curves with embedding degree k = 2 for general a. They assume that one IFpk

multiplication takes k2[M]. For k = 2, this can be improved to 3[M]. In the following calcula-
tion, we use this fact. Their cost for w-iterated doubling is 6w[M]+4w[S]+13w[M]+(5w+1)[S]
and addition is 6[M]+16[M]+3[S]. Summing over w’s, the total cost comes to
t(19[M]+9[S])+s(22[M]+4[S]).

The work of Scott [82] also proposes the use of projective coordinates in the case a = −3
for certain non-supersingular curves. The paper does not distinguish between multiplication
and squaring. The total cost is 21t[M]+22s[M].

In Table 4.1, we summarize the above costs along with the costs obtained by our algo-
rithms for the various cases for the curve parameter a. The best case occurs for Algorithm 1
with a = −3. Also the cases for Algorithm 1 for small a and Algorithm 2 are marginally
slower than the best case. However, all three of these cases are much more efficient than
any of the previous algorithms. The algorithms of Izu-Takagi [57] and Scott [82] are more
efficient than the basic BKLS algorithm with affine coordinates.

For Tate pairing applications, r is generally chosen so that the Hamming weight s is
small. On the other hand, for a general r, the Hamming weight s is approximately s = t/3.
In either of these two situations, we summarize the superiority of our method as follows.

• Algorithm 1 with a = −3 is approximately 20% faster compared to the algorithm by
Scott.

• Algorithm 2 is approximately 33% faster compared to the algorithm by Izu and Takagi.
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Table 4.1: Cost Comparison. Note 1[I]≥ 30[M] [72].

Method Cost

BKLS [8] (affine) t(1[I]+8[M]+2[S])+s(1[I]+6[M]+1[S])

Izu-Takagi [57] (general a) t(19[M]+9[S])+s(22[M]+4[S])

Scott [82] (a = −3) 21t[M]+22s[M]

Algorithm 1 (a small) t(12[M]+6[S])+s(14[M]+3[S])

Algorithm 1 (a = −3) t(13[M]+4[S])+s(14[M]+3[S])

Algorithm 2 (general a) t(13[M]+5[S])+s(14[M]+4[S])

We consider the cost comparison to EC scalar multiplication. For the purpose of security,
scalar multiplication has to be resistant to side channel attacks. One simple method of
attaining resistance to simple power analysis is to use Coron’s dummy addition using binary
representation of multiplier. Under the (realistic) assumption that the length of the binary
representation of the multiplier is equal to the length of the NAF representation of r for
Tate pairing, the cost of dummy-addition countermeasure is t(2[M]+7[S]) for the case of
a = −3. This cost is comparable to the cost of Algorithm 1 for a = −3 when s is at
most around t/8. Again for practical situation r can usually be chosen so that s ≤ t/8.
Thus the efficiency of our algorithm is almost comparable to the efficiency of simple SPA
resistant EC scalar multiplication. On the other hand, there is a wide variety of techniques
for EC scalar multiplication providing very efficient algorithms. Whether the cost of Tate
pairing computation can be made comparable to the most efficient EC scalar multiplication
is currently a challenging research problem.

4.6 Conclusion

In this chapter, we have considered the use of Jacobian coordinates for Tate pairing com-
putation in general characteristics with embedding degree two. The main idea that we have
introduced is encapsulated double-and-line computation and encapsulated add-and-line com-
putation. We have also developed encapsulated version of iterated double algorithm. The
algorithms are presented in details and memory requirement has been considered. Inher-
ent parallelism in these algorithms have been identified leading to optimal two-multiplier
parallel algorithms. Our algorithms lead to an improvement of around 33% over previously
best known algorithm for the general case where the curve parameter a is an arbitrary field
element. In the special case where a = −3, our techniques provide an efficiency improvement
of around 20% over the previously best known algorithm.
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Chapter 5

Identity-Based Encryption in Full

Model

5.1 Introduction

In this chapter, we provide a generalisation of the identity-based encryption scheme of Waters
[89]. As already noted in Chapter 3, one disadvantage of Waters’ scheme in [89] is the
requirement of a rather large public parameter file. If identities are represented by a bit
string of length n, then the scheme requires an n length vector of elements of G1 to be
maintained as part of the public parameter.

Our generalisation shows that if one tries to reduce the number of elements in the public
parameter then there is a corresponding degradation in the security reduction. In other
words, a trade-off is involved in the tightness of security reduction and smallness of public
parameter. The trade-off between tightness and smallness can be converted to a trade-off be-
tween group size and smallness of public parameter. When desiring a specific security level,
the loss of security due to loss of tightness in the security reduction can be compensated by
working in a larger group. This increases the bit length of representation of the elements
in the public parameter but the number of elements in the public parameters decreases so
drastically that there is a significant reduction in the overall size of the public parameter.
The increase in group size in turn affects the efficiency of the protocol. Thus, the trade-off
is actually between the space required to store the parameters and the time required to exe-
cute the protocol. For example, if identities are represented by 160-bit strings, then Waters
protocol require to store 160 elements of G1 as part of the public parameter. Alternatively,
using our generalisation if one wants to store 16 elements, then to achieve 80-bit security,
compared to Waters protocol the space requirement reduces by around 90% while the com-
putation cost increases by around 30%.
– Like Waters, applying Naor’s technique, our scheme can also be easily converted to a signa-
ture scheme where the underlying security assumption is the computational Diffie-Hellman
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problem.
– Our construction resembles closely the construction of Waters [89] and security against the
chosen ciphertext attack (i.e., the CCA security) of the former follows from that of the later
by constructing a 2-level HIBE and applying the technique of [27]. As an alternative, we
show that CCA security can also be achieved by assuming the hardness of the oracle bilinear
decision Diffie-Hellman assumption (OBDH).

5.2 Generalisation of Waters’ IBE

Here we describe our generalisation of Waters scheme. The groups G1 = 〈P 〉, G2 and the
map e() are as already defined in Section 2.1. In the following, we assume the message space
M is G2, the cipher space C is G2 ×G1 ×G1.

Note that, in Waters scheme identities are represented as n-bit strings. Because of this
representation, Waters requires to store n elements of G1 i.e.,

−→
U in the public parameter.

Depending upon the choice of representation of the identities we can change the size of the
public parameter.

Let N = 2n, then we can consider the identities as elements of ZN and one extreme
case would be to consider the identities just as elements of ZN . A more moderate approach,
however, is to fix a-priori a size parameter `, where 1 < ` ≤ n. In this case, an identity v
is represented as v = (v1, v2, . . . , v`), where vi ∈ ZN1/` i.e., each vi is an n/` bit string. (If
identities are considered to be bit strings of arbitrary length, then as in Waters protocol we
hash them into ZN using a collision resistant hash function.)

In this case the protocol is changed to the following, which we call IBE-SPP(`).

IBE-SPP(`) with 1 < ` ≤ n

Setup: Randomly choose a secret x ∈ Zp. Set P1 = xP , then choose P2 ∈ G1 at random.
Further, choose random elements U ′, U1, U2, . . . , U` ∈ G1. The master secret is xP2 whereas
the public parameters are 〈P, P1, P2, U

′, U1, U2, . . . , U`〉.

Key-Gen: Let v be any identity, a secret key for v is generated as follows. Choose a
random r ∈ Z∗

p, then the private key for v is

dv = (xP2 + rV, rP ).

where V = U ′ +
∑`

i=1 viUi.

Encrypt: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)
s ×M, sP, sV ),

where s is a random element of Zp and V is as defined in key generation algorithm.
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Decrypt: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding identity. Then
we decrypt C using secret key dv = (d1, d2) by computing

C1 ×
e(d2, C3)

e(d1, C2)
= e(P1, P2)

s ×M
e(rP, sV )

e(xP2 + rV, sP )
= M

Note that, for ` = n this is exactly Waters protocol. For ` = 1, some minor modifications
in the above scheme give a protocol where the additional requirement in the public parameter
is just a single element of G1 as described below.

IBE-SPP(1)

Setup: Randomly choose a secret x ∈ ZN . Set P1 = xP , then choose P2 ∈ G1 at random.
Further, choose a random element U ′ ∈ G1. The master secret is xP2 whereas the public
parameters are 〈P, P1, P2, U

′〉.

Key-Gen: Let v be any identity. A secret key for v is generated as follows. Choose a
random r ∈ Z∗

p, then the private key for v is

dv = (xP2 + rV, rP ).

where V = U ′ + vP2.
Here the Encrypt and Decrypt algorithms are same as IBE-SPP(`) with the modified def-

inition of V . Note that, this is essentially the Boneh-Boyen HIBE of Section 3.2.1 restricted
to IBE in the adaptive-ID model.

Efficiency: Consider IBE-SPP(`) with 1 < ` ≤ n. Let cost(V ) be the cost of computing V .
The cost of key generation is two scalar multiplications over G1 plus cost(V ). By including
e(P1, P2) instead of P1, P2 in the public parameter, we can avoid the pairing computation
during encryption. So the cost of encryption is one exponentiation over G2, two scalar mul-
tiplications over G1 plus cost(V ). The cost of decryption is two pairings, one multiplication
and one inversion over G2. The effect of ` is in cost(V ) and affects key generation and
encryption costs but does not affect decryption cost.

We first consider the costs of scalar multiplication over G1 and exponentiation over G2.
As mentioned earlier, G1 is an elliptic curve group. Let IFa denote the base field over which
G1 is defined. Then G2 is a subgroup of IFk

a, where k is the MOV degree. Additions and
doublings over G1 translate into a constant number of multiplications over IFa. The actual
number is slightly different for addition and doubling, but we will ignore this difference. Let
|IFa| be the size of the representation of an element of IFa. Assuming the cost of multiplication
over G1 is approximately equal to |IFa|2, the cost of a scalar multiplication over G1 is equal
to c1|IFa|3 for some constant c1. One can also show that the cost of exponentiation over G2
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is equal to c2|IFa|3. Thus, the total cost of scalar multiplication and exponentiation is equal
to c|IFa|3.

The cost of computing V amounts to computing ` scalar multiplications where each
multiplier is an (n/`)-bit string. On an average, the cost of each such multiplication will be
n/2` additions and (n/` − 1) doublings over G1. Hence, the total cost of computing V is
n/2 additions and (n − `) doublings over G1. This cost is equal to d(3/2 − `/n)n|IFa|2 for
some constant d.

We consider the cost of encryption. The total cost is

c|IFa|3 + d(3/2− `/n)n|IFa|2 =

(
c + d× n

|IFa|

(
3

2
− `

n

))
|IFa|3. (5.2.1)

This cost is minimum when ` = n (as in Waters protocol). The maximum value of the
coefficient of |IFa|3 is (c + (3nd)/(2|IFa|)) whereas the minimum value is (c + (nd)/(2|IFa|)).
The value of |IFa| is usually greater than n and hence the value of (nd)/(2|IFa|) will be a small
constant and hence there is not much effect of ` on the total cost of encryption. A similar
analysis shows that the effect of ` is also not very significant on the cost of key generation.
We note, however, that key generation is essentially a one-time offline activity.

5.2.1 Security Reduction

The security (in the sense of IND-ID-CPA) of the identity-based encryption scheme developed
above (i.e., IBE-SPP(`)) can be reduced from the hardness of the DBDH problem as stated
in the following theorem.

Theorem 5.2.1. The IBE protocol described in Section 5.2 is (εibe, t, q)-IND-ID-CPA secure

assuming that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where εibe ≤ 2εdbdh/λ;

t′ = t + O(τq) + χ(εibe) and

χ(ε) = O(ε−2 ln(ε−1)λ−1 ln(λ−1));

τ is the time required for one scalar multiplication in G1;

λ = 1/(8q(µ` + 1)) with µ` = `(N1/` − 1), N = 2n.

Proof : Suppose A is a (t, q, εibe)-IND-ID-CPA adversary for IBE-SPP(`). Then we construct
an algorithm S for DBDH running in time (t + O(τq) + χ(εibe)) such that, εibe ≤ 16q(µ` +
1)εdbdh, where µ` = `(N1/` − 1). S will take as input a 5-tuple 〈P, aP, bP, cP, Z〉 where P is
a generator of G1, aP, bP, cP ∈ G1 and Z ∈ G2. We define the following game between S
and A.

Setup: S first chooses random x, x1, . . . , x` ∈ Zm where m < 4q is a prime; random
y, y1, . . . , y` ∈ Zp and a random k ∈ {0, . . . , µ`}. It then defines three functions: F (v) =
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p−mk + x +
∑`

i=1 xivi, J(v) = y +
∑`

i=1 yivi and

K(v) =

{
0 if x +

∑`
i=1 xivi ≡ 0 mod m

1 otherwise

Here, F (v) and K(v) are defined in such a way that K(v) 6= 0 implies F (v) 6≡ 0 mod p. Next,
S assigns P1 = aP, P2 = bP , U ′ = (p−mk + x)P2 + yP and Ui = xiP2 + yiP for 1 ≤ i ≤ `.
It provides A the public parameters 〈P, P1, P2, U

′, U1, . . . , U`〉. Everything else is internal to
S. Note that from A’s point of view the distribution of the public parameters is identical to
the distribution of the public parameters in an actual setup.

Phase 1: The adversary A issues key extraction queries. Suppose, the adversary asks for
the private key corresponding to an identity v. S first checks whether K(v) = 0 and aborts
in that situation and outputs a random bit. Otherwise, it gives A the pair

(d1, d2) =

(
− J(v)

F (v)
P1 + r(F (v)P2 + J(v)P ),

−1

F (v)
P1 + rP

)
where r is chosen at random from Zp. Now,

d1 = − J(v)

F (v)
P1 + r (F (v)P2 + J(v)P )

= − J(v)

F (v)
P1 +

(
aP2 − a

F (v)

F (v)
P2

)
+ r (F (v)P2 + J(v)P )

= aP2 −
a

F (v)
(F (v)P2 + J(v)P ) + r (F (v)P2 + J(v)P )

= aP2 +

(
r − a

F (v)

)
(F (v)P2 + J(v)P )

= aP2 + r′ (F (v)P2 + J(v)P )

= aP2 + r′

(
(p−mk + x)P2 + yP +

l∑
i=1

vi(xiP2 + yiP )

)
= aP2 + r′V where r′ = r − a

F (v)

and

d2 =
−1

F (v)
P1 + rP =

−1

F (v)
aP + rP = (r − a

F (v)
)P = r′P

Hence, (d1, d2) is a valid private key for v following the proper distribution. S will be able
to generate this pair (d1, d2) if and only if F (v) 6≡ 0, for which it suffices to have K(v) 6= 0.

Challenge: At this stage, the adversary A submits two messages M0, M1 ∈ G2 and an
identity v∗ with the constraint that it has not asked for the private key of v∗ in Phase 1. S
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aborts if F (v∗) 6= 0 and outputs a random bit. Otherwise, S chooses a random bit γ ∈ {0, 1}
and gives A the tuple C ′ = 〈Z ×Mγ, cP, J(v∗)cP 〉.

If 〈P, aP, bP, cP, Z〉 given to S is a valid DBDH tuple, i.e., Z = e(P, P )abc then C ′ is a
valid encryption for Mγ. Since,

e(P, P )abc = e(aP, bP )c = e(P1, P2)
c

and using F (v∗) = p−mk + x +
∑`

i=1 xiv
∗
i ≡ 0 mod p we have,

J(v∗)cP = c(y +
l∑

i=1

yiv
∗
i )P

= c((p−mk + x +
l∑

i=1

xiv
∗
i )P2 + (y +

l∑
i=1

yiv
∗
i )P )

= c((p−mk + x)P2 + yP +
l∑

i=1

v∗i (xiP2 + yiP ))

= c(U ′ +
l∑

i=1

v∗i Ui)

= cV

Note that, this condition is satisfied as long as F (v∗) ≡ 0 mod p, which holds if x +∑`
j=1 xjv

∗
j = km. Otherwise, Z is a random element of G2 and C ′ gives no information

about S’s choice of γ.

Phase 2: This phase is similar to Phase 1, with the obvious restriction that A cannot ask
for the private key of v∗. We note that the total number of key extraction queries together
in Phase 1 and 2 should not exceed q.

Guess: A outputs a guess γ′ of γ. Then S outputs 1⊕ γ ⊕ γ′.
Suppose the adversary has not aborted up to this point. Waters introduced a technique

whereby the simulator is allowed to abort under certain condition. The simulator samples
the transcript it received from the adversary during the attack phase. Based on the sample,
it decides whether to abort and output a random string. The rationale for such “artificial
abort” is the following: The probability of abort during the attack phase depends on the
adversarial transcript and can be different for different transcripts. The purpose of artificial
abort is to ensure that the simulator aborts with (almost) the same probability for all
adversarial queries. This ensures that the adversary’s success is independent of whether the
simulator aborts or not. The probability analysis performed by Waters in [89] requires this
independence. For details of this method see [89]. Here we just note that the artificial abort
stage requires an additional χ = O(ε−2 ln(ε−1)λ−1 ln(λ−1)) time. Further, it is independent
of the parameter ` which defines the generalisation over Waters [89] that we introduce here.
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Let abort be the event of the simulator aborting during the actual attack (as opposed to
artificial abort) and let λ = Pr[abort]. In Proposition 6.3.3. of Chapter 6, we calculate this
lower bound for the general case of HIBE. Here we use this lower bound for the special case
of IBE, which turns out to be

λ ≥ 1

8q(µ` + 1)
.

If S does not abort the game, then it simulates a real challenger for A.
In the proof of Theorem 6.3.1. of Chapter 6, we show in a more generalised setting how

the adversarial advantage against the protocol can be related with the simulator’s advantage
in solving the DBDH problem. Instantiating this for the case of IBE one gets

εibe ≤ 16q(µ` + 1)εdbdh.

This completes the proof.
Note that, in the simulation, only the computation of F (v), J(v) ∈ Zp depends on the

size parameter `. Once F (v) and J(v) are obtained, the key generation in Phase 1 and 2 and
cipher text generation in Challenge is done through some scalar multiplications involving
F (v) and J(v). Cost of computation of F (v) and J(v) are insignificant compared to the cost
of a scalar multiplication. So the simulation time is independent of the size parameter `.

5.3 Concrete Security

From the security reduction of previous section we observe that any (t, q, ε) adversary A
against IBE-SPP(`) can actually be used to build an algorithm B to solve the DBDH problem
over (G1, G2, e) which runs in time t′ and has a probability of success ε′. Then t′ = t +
O(τq) + χ(ε) ≈ t + cτq + χ′ for some constant c and ε′ ≈ ε/δ where τ is the time for a group
operation in G1 and δ is the corresponding degradation in the security reduction. Resistance
of IBE-SPP(`) against A can be quantified as ρ

(`)
|A = lg(t/ε). To assert that IBE-SPP(`) has

at least 80-bit security, we must have ρ
(`)
|A ≥ 80 for all possible A. Similarly, the resistance

of DBDH against B can be quantified as

ρ|B = lg

(
t′

ε′

)
≈ lg

(
δ × t + cτq + χ′

ε

)
= lg(δ(A1 + A2))

where A1 = t/ε and A2 = (cτq+χ′)/ε. We now use max(A1, A2) ≤ A1+A2 ≤ 2 max(A1, A2).
Since a factor of two does not significantly affect the analysis we put ρ|B = lg(δ×max(A1, A2)).
By our assumption, A1 = t/ε ≥ 280 and hence max(A1, A2) ≥ A1 ≥ 280. This results in the
condition ρ|B ≥ 80 + lg δ.

Thus, if we want IBE-SPP(`) to have 80-bit security, then we must choose the group
sizes of G1, G2 in such a way that the best possible algorithm for solving DBDH in these
groups takes time at least 280+lg δ. Hence, in particular, the currently best known algorithm
for solving the DBDH should also take this time. Currently the only method to solve the
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DBDH problem over (G1, G2, e) is to solve the discrete log problem (DLP) over either G1 or
G2. The best known algorithm for the former is the Pollard’s rho method while that for the
later is number/function field sieve. Thus, if we want IBE-SPP(`) to have 80-bit security,
then we must choose the group sizes such that, 280+lg δ ≤ min(tG1 , tG2), where tGi

stands for
the time to solve DLP in Gi for i ∈ {1, 2}.

We have assumed that G1 is a group of elliptic curve points of order p defined over a
finite field IFa (a is a prime power). Suppose G2 is a subgroup of order p of the finite field
IFak where k is the embedding degree. The Pollard’s rho algorithm to solve ECDLP takes
time tG1 = O(

√
p), while the number/function field seive method to solve the DLP in IFak

takes time tG2 = O(ec1/3 ln1/3 ak ln2/3(ln ak)) where c = 64/9 (resp. 32/9) in large characteristic
fields (resp. small characteristic fields).

5.3.1 Space/time trade-off

In this section, we parametrize the quantities by ` wherever necessary. Let, δ(`) denote the
degradation factor in IBE-SPP(`). We have already noted in Section 5.2 that ` = n stands for
Waters protocol. δ(`) and hence ρ(`) is minimum when ` = n and we use this as a bench mark
to compare with other values of `. Suppose ∆ρ(`) = ρ(`)−ρ(n) = lg(δ(`)/δ(n)) = (n/`)−lg(n/`).
This parameter ∆ρ(`) gives us an estimate of the extra bits required in case of IBE-SPP(`),
to achieve the same security level as that of IBE-SPP(n) i.e., Waters protocol.

Table 5.1: Approximate group sizes for attaining 80-bit security for IBE-SPP(`) for different

values of ` and relative space and time requirement. The first part corresponds to n = 160

and the second to n = 256.
` ∆ρ(`) |p(`)| |G(`)

2 | α(`) β(`)

(a) (b) (a) (b) (a) (b)

160 – 246 1891(2225) 3284(3872) – – – –

8 15 276 2443(2831) 4258(4944) 6.5(6.4) 6.5(6.4) 2.16(2.06) 2.18(2.08)

16 6 258 2102(2457) 3655(4288) 11.1(11.0) 11.1(11.1) 1.37(1.35) 1.38(1.35)

32 2 250 1960(2300) 3405(4006) 20.7(20.7) 20.7(20.7) 1.11(1.11) 1.12(1.11)

80 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

256 – 246 1891(2225) 3284(3872) – – - –

8 27 300 2948(3381) 5151(5919) 4.9(4.7) 4.9(4.8) 3.79(3.51) 3.86(3.57)

16 12 270 2326(2703) 4051(4717) 7.7(7.6) 7.7(7.6) 1.86(1.79) 1.88(1.81)

32 5 256 2066(2417) 3592(4212) 13.7(13.6) 13.7(13.6) 1.30(1.28) 1.31(1.29)

64 2 250 1960(2300) 3405(4006) 25.9(25.8) 25.9(25.9) 1.11(1.11) 1.11(1.11)

128 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)
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Suppose, |p(`)| (resp. |G(`)
2 |) denotes the bit length of representation of p(`) (resp. an

element of G
(`)
2 ). Like [46], we assume that the adversary A is allowed to make a maximum

of q = 230 number of queries. For a given security level, we can now find the values of |p(`)|
and |G(`)

2 | for IBE-SPP(`) based on the bit length of the identities (i.e., n), q and `. Note that,

the value of |p(`)| (resp. |G(`)
2 |) thus obtained is the minimum required to avoid the Pollard’s

rho (resp. number/function field seive) attack. In actual implementation, these values give
an estimate of the size of suitable pairing groups G1, G2 and the embedding degree so that
the requirements can be optimally met. In our comparison, the embedding degree k is taken
to be same for different values of ` and |G(`)

2 | = k lg a (G
(`)
2 is a multiplicative subgroup of

order p(`) of the finite field IFk
a). As already noted, the value of p(`) is given by Pollard’s

rho. On the other hand, the logarithm of the size of G
(`)
1 is equal to max(p(`), |G(`)

2 |/k). For

relatively small embedding degree (i.e., k ≤ 6), |G(`)
2 |/k > |p(`)| and so the logarithm of the

size of G
(`)
1 is equal to |G(`)

2 |/k = |IF(`)
a |. For a given `, we have to store ` elements of G

(`)
1

in the public parameter file and a scalar multiplication in G
(`)
1 takes time proportional to

(|IF(`)
a |)3.
Now, we are in a position to compare the space requirement in the public parameter file

and the time requirement for a scalar multiplication in G
(`)
1 for different values of `. Let

α(`) =
`×|G(`)

1 |
n×|G(n)

1 |
× 100 i.e., the relative amount of space (expressed in percentage) required to

store the public parameters in case of IBE-SPP(`) with respect to IBE-SPP(n) and β(`) =

|IF(`)
a |3/|IF(n)

a |3, i.e., the relative increase in time for scalar multiplication in G
(`)
1 in the case

of IBE-SPP(`) with respect to IBE-SPP(n). Note that, β(`) can be computed from |G(`)
2 | and

|G(n)
2 | since k cancels out from both numerator and denominator. We have seen in Chapter 4

that pairing computation is also of order |IF(`)
a |3 (but with a larger constant factor). So, the

ratio β(`) also holds for pairing computation and exponentiation in case of IBE-SPP(`) with
respect to Waters protocol.

In Table 5.1, we sum-up these results for n = 160 and 256 for different values of `
ranging from 8 to n for 80-bit security. The subcolumns (a) and (b) under α(`) and β(`)

stand for the values obtained for general characteristic field and field of characteristic three
respectively. The values of |G(`)

2 |, α(`), β(`) are computed using the formula as suggested in
[46] (see Section 3); while in parenthesis we give the corresponding values as computed from
the formula obtained from [67] (as given in Section 3 of [46]). Note that, the values of α(`) and
β(`) being the ratio of two quantities remain more or less invariant whether the underlying
field is a general characteristic field or a field of characteristic three or which formula (of [46]
or of [67]) is used.

Public parameter consists of (` + 4) elements of G1. From Table 5.1, for 80-bit security
in general characteristic fields using EC with MOV degree 2, the public parameter size for
Waters protocol will be around 37 kilobyte (kb) for 160-bit identities and 59 kb for 256-bit
identities. The corresponding values in case of IBE-SPP(`) with ` = 16 will be around 4 kb
and 4.5 kb respectively. Similarly, in characteristic three field EC with MOV degree 6, the
corresponding values are respectively 21.5 kb and 34.2 kb and for IBE-SPP(`) with ` = 16
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these are respectively 2.4 kb and 2.64 kb. There is an associated increase in computation cost
by 30%. In typical applications, the protocol will be used in a key encapsulation mechanism
(KEM). Thus the encryption and decryption algorithms will be invoked once for a message
irrespective of its length. Also the key generation procedure is essentially a one-time offline
activity. In view of this, the increase in computation cost will not substantially affect the
throughput. On the other hand, the significant reduction in space requirement will be an
advantage in implementing the protocol and also in reducing the time for downloading or
transmitting the public parameter file over the net. Overall, we suggest ` = 16 to be a good
choice for implementing the protocol.

5.4 CCA Security

One way to achieve CCA-security for our scheme is to follow the generic transformation
of Canetti, Halevi and Katz [27] or Boneh and Katz [21] as discussed in Section 3.5. As
our scheme closely resembles that of Waters [89] it is also possible to apply the endogenous
transformation of Boyen, Mei and Waters [23] in essentially the same way and the reduction
follows.

We show that it is possible to take a different approach based on the oracle bilinear
decision Diffie-Hellman (OBDH) assumption which is a variation of the ODH assumption
used in [2]. The OBDH assumption is as follows [81].

• Instance : 〈P, aP, bP, cP, str〉 where a, b, c ∈ Zp and str ∈ {0, 1}k.

• Oracle : Ha(X, Y ), with X,Y ∈ G1. When invoked with (a1P, b1P ) it returns
H(a1P, e(a1P, b1P )a), where H : G1 ×G2 → {0, 1}k is a hash function.

• Restriction : Cannot query Ha(, ) on (cP, bP ).

• Task : Determine whether str = H(cP, e(cP, bP )a) or str is random.

Any algorithm A for OBDH takes as input an instance (P, aP, bP, cP, str) of OBDH and
produces as output either zero or one. The advantage of an algorithm A in solving OBDH
is defined in the following manner.

AdvOBDH
A = |Pr[A outputs 1|E1]− Pr[A outputs 1|E2]|

where E1 is the event that str = H(cP, e(cP, bP )a) and E2 is the event that str is random.
The quantity AdvOBDH(t, q) denotes the maximum of AdvOBDH

A where the maximum is taken
over all adversaries running in time at most t and making at most q queries to the oracle
Ha(, ).

To suit into the OBDH assumption we modify our constructions of Section 5.2 as follows:
Setup and Key-Gen remain unaltered. To encrypt a message, we first generate a symmetric
key sym.key = H(tP, e(P1, P2)

t). Then the ciphertext is C = 〈tP, tV, y)〉, where y is the
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encryption of the message using the symmetric key sym.key. To decrypt, all that we need is
e(P1, P2)

t = e(d1, tP )/e(d2, tV ) and then find sym.key using H.
Security: Breaking the (modified) IBE implies either solving OBDH or breaking the

symmetric encryption scheme. The later we assume to be unbreakable under chosen ci-
phertext attack. CCA security under the OBDH assumption is expressed in the following
theorem.

Theorem 5.4.1. The modified IBE protocol is (εibe, t, q)-IND-ID-CCA secure assuming that

the (t′, εobdh)-OBDH assumption holds in 〈G1, G2, e〉, where εibe ≤ 2εobdh/λ; t′ = t + O(τq) +

χ(εibe), where λ, χ(εibe) and τ are as defined in Theorem 5.2.1.

Proof : (Brief sketch) Given a tuple 〈P, aP, bP, cP, str〉, the simulator B has to decide
whether str = H(cP, e(cP, bP )a) or str is random. The Setup and key-extraction queries
of both Phase 1 and 2 are just the same as that in the simulation of Theorem 5.2.1. of
Section 5.2.1. Whenever A places any decryption query C = 〈rP, rV, y〉, B queries the
oracle Ha() with (rP, P2) and decrypts y using whatever value the oracle returns.

In the Challenge phase, when A submits two messages M0, M1 and an identity v∗, B
aborts if S would have aborted under v∗ in the simulation part of Theorem 5.2.1.. Otherwise
B gives A the tuple C ′ = 〈cP, J(I∗)cP, y〉, where y is the encryption of Mγ, γ ∈ {0, 1} using
str as the symmetric key. If str is random then C ′ gives no information about B’s choice of
γ. Otherwise C ′ is a valid encryption of Mγ.

The rest of the simulation exactly mimics that of Theorem 5.2.1.
Use of OBDH assumption prevents the loss of one level in the conversion from CPA

security to CCA security and does not require any one time signature or MAC as in the
generic conversion discussed in Section 3.5. Using the endogenous technique of Boyen, Mei
and Waters [23] we can avoid this MAC or signature. However, it still requires a 2 level
HIBE. On the other hand, OBDH is a stronger assumption than DBDH.

5.5 Signature

It is an observation of Naor that any identity-based encryption scheme can be converted to
a signature scheme. Waters in his paper [89] has given a construction of a signature scheme
based on his IBE scheme. A similar construction is possible for the generalised scheme
IBE-SPP(`) which we detail here. The sketch of the security reduction is provided next.

Let G1 = 〈P 〉, G2 and e() be as defined in Section 2.1. Messages are assumed to be
elements of ZN where N = 2n. Alternatively, if messages are assumed to be bit strings of
arbitrary length, then we use a collision resistant hash function to map the messages into
ZN .

Setup: Choose a random x in Zp and compute P1 = xP . Next, choose from G1 random
points P2, U

′, U1, . . . , U`. The public key is 〈P, P1, P2, U
′, U1, . . . , U`〉 and the secret key is

xP2.
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Signing: Let M = (m1, m2, . . . ,m`) is the message to be signed, where each mi, 1 ≤ i ≤ `
is a bit string of length n/`. To generate a signature on M , first choose a random r ∈ Z∗

p.
Then the signature is

σM = (xP2 + rV, rP ),

where V = U ′ +
∑`

i=1 miUi

Verification: Given a message M = (m1, m2, . . . ,m`) and a signature σ = (σ1, σ2) on M ,
one accepts σ as a valid signature on M if

e(σ1, P ) = e(P1, P2)e(σ2, V )

where V = U ′ +
∑`

i=1 miUi.

5.5.1 Security

The security of the above signature scheme can be reduced from the hardness of the DBDH
problem. In fact, using the same argument, we can show that the reduction in Theorem 5.2.1.
also holds for this signature scheme. Moreover, the forged signature that the adversary
returns can be used to break the computational Diffie-Hellman problem (CDH) in G1. The
CDH problem in G1 is: given a tuple 〈P, aP, bP 〉, compute abP . The success probability of
an adversary B in solving the CDH problem in G1 is defined as

SuccCDH
B = Pr[B(P, aP, bP ) = abP ]

where the probability is calculated over the random choice of a, b ∈ Zp as well as the random
bits used by B. Let (AdvSIG(t, q) in this context denote the maximum advantage where the
maximum is taken over all adversaries running in time t and making at most q queries.

Theorem 5.5.1. For t ≥ 1, q ≥ 1; AdvSIG(t, q) ≤ (2/λ)SuccCDH(t+O(τq)), where messages

are chosen from ZN and 1 < ` ≤ lg N is a size parameter.

Proof : Brief sketch: This proof also is a reduction. Suppose A is a CPA adversary for
the signature scheme. Then we construct an algorithm S for Computational Diffie-Hellman
problem (CDH). S will take as input a 3-tuple 〈P, aP, bP 〉 where P is a generator of G1 and
aP, bP ∈ G1. We define the following game between S and A.

The Setup and Signature Generation steps of this game is exactly same as the Setup and
Phase 1 in the simulation part of Theorem 5.2.1.

Forge: At this stage the adversary A submits a message M∗ ∈ ZN and a signature
σ∗ = (σ∗1, σ

∗
2) with the constraint that it has not asked for the signature of M∗ in the

Signature Generation phase. A wins if σ∗ is a valid signature on M∗.
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If A is successful in forging the signature, S first checks whether F (M∗) 6= 0 and aborts
in that situation. Otherwise, S computes J(M∗)σ∗2 and then adds the inverse of this product
with σ∗1. It returns the end result as the value of abP .

Since F (M∗) = 0, then as in the Challenge part of the simulation in Theorem 5.2.1. we
have

J(M∗)σ∗2 = rV.

J(M∗)σ∗2 = J(M∗)rP

= r(y +
l∑

i=1

yim
∗
i )P

= r((p−mk + x +
l∑

i=1

xim
∗
i )P2 + (y +

l∑
i=1

yim
∗
i )P )

= r((p−mk + x)P2 + yP +
l∑

i=1

mi(xiP2 + yiP ))

= r(u′ +
l∑

i=1

miui)

= rV

Note that, this condition is satisfied as long as F (M∗) ≡ 0 mod p, which holds if x +∑`
j=1 xjm

∗
j = km.

Now, σ∗1 = abP + rV and hence abP = σ∗1 − rV .
Note that, the conditions under which S aborts this game is exactly the same under

which S aborts the game in Theorem 5.2.1. So the lower bound on the probability of not
aborting remains exactly the same.

5.6 Conclusion

At Eurocrypt 2005, Brent Waters proposed an efficient IBE scheme which is secure in the
standard model. One drawback of this scheme is that the number of elements in the public
parameter is rather large. In this chapter, we have proposed a generalisation of Waters
scheme. In particular, we have shown that there is an interesting trade-off between the
tightness of the security reduction and smallness of the public parameter. For a given
security level, this implies that if one reduces the number of elements in public parameter
then there is a corresponding increase in the computational cost due to the increase in group
size. This introduces a flexibility in choosing the public parameter size without compromising
in security. In concrete terms, to achieve 80-bit security for 160-bit identities we show that
compared to Waters protocol the public parameter size can be reduced by almost 90% while
increasing the computation cost by 30%. Our construction is proven secure in the standard
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model without random oracles. Additionally, we show that CCA security can also be achieved
through the reduction to oracle decision bilinear Diffie-Hellman problem (OBDH).

We note that Naccache [77] has independently obtained a similar construction as of ours
in Section 5.2. Though the construction is similar, the work by Naccache does not perform
any concrete security analysis. In fact, the Naccache work asserts that the loss of security
due to the generalisation is “insignificant”. As discussed in Section 5.3, this is not correct. In
fact, the conversion of security degradation into a trade-off between time and space is original
to our work and is the most important feature of the generalisation of Waters scheme. On
the other hand, we would like to mention that Naccache’s work presents a clearer probability
analysis than that of Waters.
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Chapter 6

Extending IBE to HIBE with Short

Public Parameters

6.1 Introduction

In this chapter, we present a hierarchical identity-based encryption scheme which can be
proved to be secure in the full model without random oracle assuming the hardness of
decisional bilinear Diffie-Hellman problem. The construction extends the IBE of the previous
chapter to a HIBE. A suggestion for extending the IBE of Waters [89] to a HIBE was provided
in [89] itself.

Recall from Section 3.3.1 that Waters’ IBE uses U ′, U1, . . . , Un (and P, P1, P2) as public
parameters. His suggestion to extend this to a HIBE is to have new public parameters for
each level. For an h-level HIBE, the public parameters will be of the form U ′

1, U1,1, . . . , U1,n,
U ′

2, U2,1, . . . , U2,n, . . ., U ′
h, Uh,1, . . . , Uh,n. The parameters P, P1, P2 are still required giving

rise to 3 + (n + 1)h many parameters.
The HIBE construction in this chapter uses public parameters of the form U ′

1, . . . , U
′
h,

U1, . . . , Ul for 1 ≤ l ≤ n. In other words, the parameters U ′
1, . . . , U

′
h correspond to the

different levels of the HIBE, whereas the parameters U1, . . . , Ul are the same for all the
levels. These parameters U1, . . . , Ul are reused in the key generation procedure. For l = n,
we require 3+n+h parameters compared to 3+ (n+1)h parameters in Waters’ suggestion.

Thus, our work provides two things. First, by reusing public parameters it reduces
the size of the public parameters. Second, it extends the flexibility in the IBE protocol of
Chapter 5 to the HIBE setting. The reuse of public parameters over the different levels of
the HIBE complicates the security proof. A straightforward extension of the independence
results and lower bound proofs from [89] is not possible. We provide complete proofs of the
required results. The constructed HIBE is proved to be secure under chosen plaintext attack
(CPA-secure). Standard techniques as discussed in Section 3.5 can convert such a HIBE into
one which is secure against chosen ciphertext attack (CCA-secure).
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6.2 Construction

HIBE-spp

The identities are of the type (v1, . . . , vj), for ≤ j ≤ h where each vk = (vk,1, . . . , vk,l) and vk,i

is an (n/l)-bit string which will also be considered to be an integer in the set {0, . . . , 2n/l−1}.
Choosing l = n gives vk to be an n-bit string as considered by Waters [89].

Set-Up: The public parameters are the following elements: P , P1 = αP , P2, U ′
1, . . . , U

′
h,

U1, . . . , U`, where G1 = 〈P 〉, α is chosen randomly from Zp and the other quantities are
chosen randomly from G1.

The master secret is αP2. (The quantities P1 and P2 are not directly required; instead
e(P1, P2) is required. Hence one may store e(P1, P2) as part of the public parameters instead
of P1 and P2.)

A Useful Notation: Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string and is
considered to be an element of Z2n/l . For 1 ≤ k ≤ h we define,

Vk(v) = U ′
k +

l∑
i=1

viUi. (6.2.1)

When v is clear from the context we will write Vk instead of Vk(v). The modularity introduced
by this notation allows an easier understanding of the protocol.

Note that for the jth level of the HIBE, we add a single element, i.e., U ′
j in the public

parameter while the elements U1, . . . , Ul are re-used for each level. This way we are able to
shorten the public parameter size. Later in the security reduction we show that the simulator
forms U ′

js, 1 ≤ j ≤ h in such a way that it is able to answer the adversarial queries.

Key-Gen: Let v = (v1, . . . , vj), j ≤ h, be the identity for which the private key is required.
Choose r1, . . . , rj randomly from Zp and define dv = (d0, d1, . . . , dj) where

d0 = αP2 +

j∑
k=1

rkVk(vk)

and dk = rkP for 1 ≤ k ≤ j.
Key delegation can be done in the manner shown in [17]. Suppose (d′0, d

′
1, . . . , d

′
j−1) is a

private key for the identity (v1, . . . , vj−1). To generate a private key for v, rj randomly from
Zp and compute dv as follows.

d0 = d′0 + rjVj(vj);

di = d′i 1 ≤ i ≤ j − 1;

dj = rjP.
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Encrypt: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2 is to be
encrypted. Choose s to be a random element of Zp. The ciphertext is

(C0 = M × e(P1, P2)
s, C1 = sP,B1 = sV1(v1), . . . , Bj = sVj(vj)).

Decrypt: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding identity
v = (v1, . . . , vj). Let (d0, d1, . . . , dj) be the decryption key corresponding to the identity v.
The decryption steps are as follows.

Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these verifications fail,
then return bad, else proceed with further decryption as follows. Return

C0 ×
∏j

k=1 e(Bi, di)

e(d0, C1)
.

It is standard to verify the consistency of decryption.

6.3 Security

We first state the result on security and discuss its implications.

Theorem 6.3.1. The protocol HIBE-spp described in Section 6.2 is (εhibe, t, q)-IND-ID-CPA

secure assuming that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where εhibe ≤
2εdbdh/λ; t′ = t + χ(εhibe) and

χ(ε) = O(τq + O(ε−2 ln(ε−1)λ−1 ln(λ−1));

τ is the time required for one scalar multiplication in G1;

λ = 1/(2(2σ(µl + 1))h) with µl = l(N1/l − 1), N = 2n and σ = max(2q, 2n/l).

We further assume 2σ(1 + µl) < p.

Before proceeding to the proof, we discuss the above result. The main point of the theorem
is the bound on εhibe. This is given in terms of λ and in turn in terms of µl. We simplify
this bound.

Since l ≥ 1, we have 1 + µl = 1 + l(N1/l − 1) ≤ lN1/l = l2n/l. Consequently,

εhibe ≤
2εdbdh

λ
= 4(2σ(µl + 1))hεdbdh

≤ 4(2σl2n/l)hεdbdh

= 4(2l2n/l)hσhεdbdh (6.3.2)

The reduction is not tight; security degrades by a factor of 4(2l2n/l)hσh. We now consider
several cases. The actual value of degradation depends on the value of q, the number of key
extraction queries made by the adversary. A value of q used in the previous chapter and also
in earlier analysis is q = 230 [47]. We will use this value of q in the subsequent analysis.
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Table 6.1: Comparison of HIBE Protocols.

HIBE Hardness Random Security PP size PK/CT size Pairing
Protocol Assumption Oracle Degradation (elts. of G1) (elts. of G1) Enc. Dec.
GS [49] BDH Yes qHqh 2 j 1 j

Waters [89] DBDH No (32nq)h (n + 1)h + 3 j + 1 None j + 1

HIBE-spp DBDH No 4(2l2n/lσ)h h + l + 3 j + 1 None j + 1

The maximum height of the HIBEs is h; PP, PK and CT respectively stand for public parameter, private

key and ciphertext. We compare the PK/CT sizes and number of pairings during decryption for an identity

tuple at level j.

h = 1 and l = n: The value of h = 1 implies that the HIBE is actually an IBE and
l = n implies that each identity is a bit vector of length n. This is the situation originally
considered by Waters [89]. In this case, 2q = max(2q, 2n/l) and Equation (6.3.2) reduces to
εhibe ≤ 32nqεdbdh. For n = 160, the degradation is by a factor of 10× 239.

h = 1: This correspond to the IBE considered in the previous chapter. The value of σ
depends on the value of l. For example, if l = 1, then σ = 2n/l = 2n and hence εhibe ≤
22(n+1)εdbdh. This makes the security degradation unacceptably bad. One would obtain a
similar security degradation when converting a selective-ID secure IBE to an IBE secure in
the full model. The situation for other values of l has already been discussed in the concrete
security analysis of Section 5.3 and hence not repeated here.

h > 1: This corresponds to a proper HIBE. If l = n, then we obtain εhibe ≤ 4(8nq)hεdbdh.
For n = 160 (and q = 230), this amounts to εhibe ≤ 4(10 × 237)h. We consider a few other
values of l. If l = 10, then εhibe ≤ 4(10× 248)hεdbdh and if l = 32, then εhibe ≤ 242h+2εdbdh.

In Table 6.1, we compare the known HIBE protocols which are secure in the full model.
We note that HIBE protocols which are secure in the selective-ID model are also secure
in the full model with a security degradation of ≈ 2nh, where h is the number of levels in
the HIBE and n is number of bits in the identity. This degradation is far worse than the
protocols in Table 6.1. For the GS-HIBE [49], the parameter qH stands for the total number
of random oracle queries and in general qH ≈ 260 � q [47]. The parameter j in the private
key size, ciphertext size and the encryption and decryption columns of Table 6.1 represents
the number of levels of the identity on which the operations are performed. The parameter
h is the maximum number of levels in the HIBE. For ` = n, HIBE-spp requires (h + n + 3)
many elements of G1 as public parameters whereas Waters suggestion requires (n + 1)h + 3
many elements. The security degradation remains the same in both cases. For ` < n, the
new construction extends the IBE protocol of Chapter 5. In this setting, no previous HIBE
protocols were known.
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6.3.1 Security Reduction

The security reduction follows along standard lines and develops on the proof given in previ-
ous chapter and in [89, 77]. We need to lower bound the probability of the simulator aborting
on certain queries and in the challenge stage. The details of obtaining this lower bound is
given in Section 6.3.2. In the following proof, we simply use the lower bound. We want to
show that the HIBE is (εhibe, t, q)-CPA secure. In the game sequence style of proofs, we start
with the adversarial game defining the CPA-security of the protocol against an adversary A
and then obtain a sequence of games as usual. In each of the games, the simulator chooses
a bit b and the adversary makes a guess b′. By Xi we will denote the event that the bit b is
equal to the bit b′ in the ith game.

Game 0: This is the usual adversarial game used in defining CPA-secure HIBE. We assume
that the adversary’s runtime is t and it makes q key extraction queries. Also, we assume
that the adversary maximizes the advantage among all adversaries with similar resources.
Thus, we have εhibe =

∣∣Pr[X0]− 1
2

∣∣ .
Game 1: In this game, we setup the protocol from a tuple 〈P, P1 = aP, P2 = bP, P3 =
cP, Z = e(P1, P2)

abc〉 and answer key extraction queries and generate the challenge. The
simulator is assumed to know the values a, b and c. However, the simulator can setup the
protocol as well as answer certain private key queries without the knowledge of these values.
Also, for certain challenge identities it can generate the challenge ciphertext without the
knowledge of a, b and c. In the following, we show how this can be done. If the simulator
cannot answer a key extraction query or generate a challenge without using the knowledge
of a, b and c, it sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the adversary (with or without using
a, b and c). The adversary is provided with proper replies to all its queries and is also
provided the proper challenge ciphertext. Thus, irrespective of whether flg is set to one, the
adversary’s view in Game 1 is same as that in Game 0. Hence, we have Pr[X0] = Pr[X1].

We next show how to setup the protocol and answer the queries based on the tuple
〈P, P1 = aP, P2 = bP, P3 = cP, Z = e(P1, P2)

abc〉.

Set-Up: Recall that σ = max(2q, 2n/l). Let m be a prime such that σ < m < 2σ. Our
choice of m is different from that of previous works [89, 77] where m was chosen to be equal
to 4q and 2q.

Choose x′1, . . . , x
′
h and x1, . . . , xl randomly from Zm; y′1, . . . , y

′
h and y1, . . . , yl randomly

from Zp. Choose k1, . . . , kh randomly from {0, . . . , µl}.
For 1 ≤ j ≤ h, define U ′

j = (p−mkj+x′j)P2+y′jP and for 1 ≤ i ≤ l define Ui = xiP2+yiP .
Set the public parameters of HIBE to be (P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Ul). The master secret

is aP2 = abP . The distribution of the public parameters is as expected by A. In its attack,
A will make some queries, which have to be properly answered by the simulator.
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For 1 ≤ j ≤ h, we define several functions. Let v = (v1, . . . , vl) where each vi is an
n/l-bit string considered to be an integer from the set {0, . . . , 2n/l − 1}. We define

Fj(v) = p−mkj + x′j +
∑l

i=1 xivi

Jj(v) = y′j +
∑l

i=1 yivi

Lj(v) = x′j +
∑l

i=1 xivi (mod m)

Kj(v) =

{
0 if Lj(v) = 0
1 otherwise.

 (6.3.3)

Recall that we have assumed 2σ(1 + µl) < p. Let Fmin and Fmax be the minimum and
maximum values of Fj(v). Fmin is achieved when kj is maximum and x′j and the xi’s are all
zero. Thus, Fmin = p−mµl. We have mµl < 2σ(1 + µl) and by assumption 2σ(1 + µl) < p.
Hence, Fmin > 0. Again Fmax is achieved when kj = 0 and x′j and the xi’s and vi’s are equal

to their respective maximum values. We get Fmax < p+m(1+ l(2n/l− 1)) = p+m(1+µl) <
p + 2σ(1 + µl) < 2p. Thus, we have 0 < Fmin ≤ Fj(v) ≤ Fmax < 2p. Consequently,

Fj(v) ≡ 0 mod p if and only if Fj(v) = p which holds if and only if −mkj +x′j +
∑l

i=1 xivi = 0.
Now we describe how the queries made by A are answered by B. The queries can be

made in both Phases 1 and 2 of the adversarial game (subject to the usual restrictions). The
manner in which they are answered by the simulator is the same in both the phases.

Key Extraction Query: Suppose A makes a key extraction query on the identity v =
(v1, . . . , vj). Suppose there is a u with 1 ≤ u ≤ j such that Ku(vu) = 1. Otherwise set flg to
one. In the second case, the simulator uses the value of a to return the proper decryption key
dv = (aP2+

∑j
i=1 riVi, r1V1, . . . , rjVj). In the first case, the simulator constructs a decryption

key in the following manner.
Choose random r1, . . . , rj from Zp and define

d0|u = − Ju(vu)
Fu(vu)

P1 + ru(Fu(vu)P2 + Ju(vu)P )

du = −1
Fu(vu)

P1 + ruP

dk = rkP for k 6= u
dv = (d0|u +

∑
k∈{1,...,j}\{u} rkVk, d1, . . . , dj)

 (6.3.4)

The quantity dv is a proper private key corresponding to the identity v. The can be verified
using an algebraic technique similar to that in the simulation of Theorem 5.2.1. of Chapter 5.
This is provided to A.

Challenge: Let the challenge identity be v∗ = (v∗1, . . . , v
∗
h∗), 1 ≤ h∗ ≤ h and the messages

be M0 and M1. Choose a random bit b. We need to have Fk(v
∗
k) ≡ 0 mod p for all 1 ≤

k ≤ h∗. If this condition does not hold, then set flg to one. In the second case, the
simulator uses the value of c to provide a proper encryption of Mb to A by computing
(Mb× e(P1, P2)

c, cP, cV1, . . . , cVh∗). In the first case, it constructs a proper encryption of Mb

in the following manner.

(M b × Z,C1 = P3, B1 = J1(v
∗
1)P3, . . . , Bh∗ = Jh∗(v

∗
h∗)P3).
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We require Bj to be equal to cVj(v
∗
j ) for 1 ≤ j ≤ h∗. Recall that the definition of Vj(v) is

Vj(v) = U ′
j +
∑l

k=1 vkUk. Using the definition of U ′
j and the Uk’s as defined in the setup by

the simulator, we obtain, cVi = c(Fi(v
∗
i )P2 + Ji(v

∗
i )P ) = Ji(v

∗
i )cP = Ji(v

∗
i )P3. Here we use

the fact, Fi(v
∗
i ) ≡ 0 mod p. Hence, the quantities B1, . . . , Bh∗ are properly formed.

Guess: The adversary outputs a guess b′ of b.

Game 2: This is a modification of Game 1 whereby the Z in Game 1 is now chosen to be a
random element of G2. This Z is used to mask the message Mb in the challenge ciphertext.
Since Z is random, the first component of the challenge ciphertext is a random element of
G2 and provides no information to the adversary about b. Thus, Pr[X2] = 1

2
.

We have the following claim.

Claim:
|Pr[X1]− Pr[X2]| ≤

εdbdh

λ
+

εhibe

2
.

Proof : The change from Game 1 to Game 2 corresponds to an “indistinguishability” step
in Shoup’s tutorial [85] on such games. Usually, it is easy to bound the probability difference.
In this case, the situation is complicated by the fact that there is a need to abort.

We show that it is possible to obtain an algorithm B for DBDH by extending Games 1
and 2. The extension of both the games is same and is described as follows. B takes as
input a tuple (P, aP, bP, cP, Z) and sets up the HIBE protocol as in Game 1 (The setup of
Games 1 and 2 are the same). The key extraction queries are answered and the challenge
ciphertext is generated as in Game 1. If at any point of time flg is set to one by the game,
then B outputs a random bit and aborts. This is because the query cannot be answered or
the challenge ciphertext cannot be generated using the input tuple. At the end of the game,
the adversary outputs the guess b′. B now goes through a separate abort stage as follows.

“Artificial Abort”: The probability that B aborts in the query or challenge phases de-
pends on the adversary’s input. The goal of the artificial abort step is to make the probability
of abort independent of the adversary’s queries by ensuring that in all cases its probability
of abort is the maximum possible. This is done by sampling the transcript of adversary’s
query and in certain cases aborting. The sampling procedure introduces the extra compo-
nent O(ε−2

hibe ln(ε−1
hibe)λ

−1 ln(λ−1)) into the simulator’s runtime. (For details see [89, 77].) Here
λ is a lower bound on the probability that B does not abort before entering the artificial
abort stage. The expression for λ is obtained in Proposition 6.3.3. of Section 6.3.2.

Output: If B has not aborted up to this stage, then it outputs 1 if b = b′; else 0.
Note that if Z is real, then the adversary is playing Game 1 and if Z is random, then

the adversary is playing Game 2. The time taken by the simulator in either Game 1 or 2
is clearly t + χ(εhibe). From this point, standard inequalities and probability calculations
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establish the claim. We provide the details. Let Yi be the event that the simulator outputs
1 in Game i, i = 1, 2. Then, we have

|Pr[Y1]− Pr[Y2]| ≤ εdbdh.

Let abi be the event that the simulator aborts in Game i, i = 1, 2. This includes both
protocol and artificial abort. Following the analysis of [89] and [77], we have

λ− λε

2
≤ Pr[abi|Xi], Pr[abi|Xi] ≤ λ +

λε

2
. (6.3.5)

Here ε = εhibe and λ is the lower bound on the probability of not abort up to the artificial
abort stage (see Section 6.3.2).

Pr[Yi] = Pr[Yi ∧ (abi ∨ abi)]

= Pr[(Yi ∧ abi) ∨ (Yi ∧ abi)]

= Pr[Yi ∧ abi] + Pr[Yi ∧ abi]

= Pr[Yi | abi]Pr[abi] + Pr[Yi | abi]Pr[abi]

=
1

2
(1− Pr[abi]) + Pr[Xi | abi]Pr[abi]

=
1

2
(1− Pr[abi ∧ (Xi ∨Xi)]) + Pr[Xi ∧ abi]

=
1

2
+

1

2

(
Pr[abi|Xi]Pr[Xi]− Pr[abi|Xi]Pr[Xi]

)
Now we need to do some manipulations with inequalities and for convenience we set Ai =
Pr[abi|Xi], Bi = Pr[Xi] and Ci = Pr[abi|Xi] and D = Pr[Y1]− Pr[Y2]. We have from (6.3.5)

λ− λε

2
≤ Ai, Ci ≤ λ +

λε

2
.

Also

2D = (A1B1 − C1(1−B1))− (A2B2 − C2(1−B2)). (6.3.6)

Since both B1 and (1−B1) are non-negative, we have

Bi(λ− λε
2
) ≤ AiBi ≤ Bi(λ + λε

2
)

(1−Bi)(−λ− λε
2
) ≤ −Ci(1−Bi) ≤ (1−Bi)(−λ + λε

2
).

Hence,

λ(2Bi − 1)− λε

2
≤ AiBi − Ci(1−Bi) ≤ λ(2Bi − 1) +

λε

2
. (6.3.7)

Putting i = 1 in (6.3.7), we obtain

λ(2B1 − 1)− λε

2
≤ A1B1 − C1(1−B1) ≤ λ(2B1 − 1) +

λε

2
. (6.3.8)
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Multiplying (6.3.7) by −1 and putting i = 2 we obtain

−λ(2B2 − 1)− λε

2
≤ −(A2B2 − C2(1−B2)) ≤ −λ(2B2 − 1) +

λε

2
. (6.3.9)

Combining (6.3.6), (6.3.8) and (6.3.9) we get

2λ(B1 −B2)− λε ≤ 2D ≤ 2λ(B1 −B2) + λε. (6.3.10)

This shows that |λ(B1 − B2)−D| ≤ λε
2
. Now |λ(B1 − B2)| − |D| ≤ |λ(B1 − B2)−D| ≤ λε

2
.

Note that |D| = |Pr[Y1]− Pr[Y2]| ≤ εdbdh and recalling the values of B1 and B2, we have

|Pr[X1]− Pr[X2]| ≤
εdbdh

λ
+

εhibe

2
.

This completes the proof of the claim.
Now we can complete the proof in the following manner.

εhibe =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
≤ |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|
≤ εhibe

2
+

εdbdh

λ
.

Rearranging the inequality gives the desired result. This completes the proof.

6.3.2 Lower Bound on Not Abort

We require the following two independence results in obtaining the required lower bound.
Similar independence results have been used earlier in [89, 77] in connection with IBE pro-
tocols. The situation for HIBE is more complicated than IBE and especially so since we
reuse some of the public parameters over different levels of the HIBE. This makes the proofs
more difficult. Our independence results are given in Proposition 6.3.1. and 6.3.2. and these
subsume the results for the IBE of previous chapter. We provide complete proofs for these
two propositions as well as a complete proof for the lower bound. The probability calculation
for the lower bound is also more complicated compared to the IBE case.

Proposition 6.3.1. Let m be a prime and L(·) be as defined in (6.3.3). Let v1, . . . , vj be

identities, i.e., each vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string (and hence 0 ≤ vi,k ≤
2n/l − 1). Then

Pr

[
j∧

k=1

(Lk(vk) = 0)

]
=

1

mj
.
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The probability is over the independent and uniform random choices of x′1, . . . , x
′
j, x1, . . . , xl

from Zm. Consequently, for any θ ∈ {1, . . . , j}, we have

Pr

[
Lθ(vθ) = 0

∣∣∣∣∣
j∧

k=1,k 6=θ

(Lk(vk) = 0)

]
=

1

m
.

Proof : Since Zm forms a field, we can do linear algebra with vector spaces over Zm. The
condition

∧j
k=1 (Lj(vj) = 0) is equivalent to the following system of equations over Zm.

x′1 + v1,1x1 + · · · + v1,lxl = 0
x′2 + v2,1x1 + · · · + v2,lxl = 0
· · · · · · · · · · · · · · · · ·
x′j + vj,1x1 + · · · + vj,lxl = 0

This can be rewritten as

(x′1, . . . , x
′
j, x1, . . . , xl)A(j+l)×(j+l) = (0, . . . , 0)1×(j+l)

where

A =

[
Ij Oj×l

Vl×j Ol×l

]
and Vl×j =

 v1,1 · · · vj,1

· · · · · · · · ·
v1,l · · · vj,l

 ;

Ij is the identity matrix of order j; O is the all zero matrix of the specified order. The
rank of A is clearly j and hence the dimension of the solution space is l. Hence, there
are ml solutions in (x′1, . . . , x

′
j, x1, . . . , xl) to the above system of linear equations. Since

the variables x′1, . . . , x
′
j, x1, . . . , xl are chosen independently and uniformly at random, the

probability that the system of linear equations is satisfied for a particular choice of these
variables is ml/ml+j = 1/mj. This proves the first part of the result.

For the second part, note that we may assume θ = j by renaming the x′’s if required.
Then

Pr

[
Lj(vj) = 0

∣∣∣∣∣
j−1∧
k=1

(Lk(vk) = 0)

]
=

Pr
[∧j

k=1 (Lk(vk) = 0)
]

Pr
[∧j−1

k=1 (Lk(vk) = 0)
] =

mj−1

mj
=

1

m
.

Proposition 6.3.2. Let m be a prime and L(·) be as defined in (6.3.3). Let v1, . . . , vj be

identities, i.e., each vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string. Let θ ∈ {1, . . . , j}
and let v′θ be an identity such that v′θ 6= vθ. Then

Pr

[
(Lθ(v

′
θ) = 0) ∧

j∧
k=1

(Lk(vk) = 0)

]
=

1

mj+1
.
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The probability is over the independent and uniform random choices of x′1, . . . , x
′
j, x1, . . . , xl

from Zm. Consequently, we have

Pr

[
Lθ(v

′
θ) = 0

∣∣∣∣∣
j∧

k=1

(Lk(vk) = 0)

]
=

1

m
.

Proof : The proof is similar to the proof of Proposition 6.3.1. Without loss of generality,
we may assume that θ = j, since otherwise we may rename variables to achieve this. The
condition (Lθ(v

′
θ) = 0) ∧

∧j
k=1 (Lk(vk) = 0) is equivalent to a system of linear equations

xA = 0 over Zm. In this case, the form of A is the following.

A =

[
Ij cT Oj×l

Vl×j (v′j)
T Ol×l

]
where c = (0, . . . , 0, 1); cT denotes the transpose of c and (v′j)

T is the transpose of v′j. The
first j columns of A are linearly independent. The (j + 1)th column of A is clearly linearly
independent of the first (j − 1) columns. We have vj 6= v′j. Since each component of both vj

and v′j is less than 2n/l and m > 2n/l, we have vj 6≡ v′j mod m. Using this, it is not difficult
to see that the first (j +1) columns of A are linearly independent and hence the rank of A is
(j + 1). (Note that if m ≤ 2n/l, then it is possible to have vj 6= v′j but vj ≡ v′j mod m. Then
the jth and (j + 1)th columns of A are equal and the rank of A is j.) Consequently, the
dimension of the solution space is l−1 and there are ml−1 solutions in (x′1, . . . , x

′
j, x1, . . . , xl)

to the system of linear equations. Since the x′’s and the x’s are chosen independently and
uniformly at random from Zm, the probability of getting a solution is ml−1/ml+j = 1/mj+1.
This proves the first part of the result. The proof of the second part is similar to that of
Proposition 6.3.1..

Proposition 6.3.3. The probability that the simulator in the proof of Theorem 6.3.1. does

not abort before the artificial abort stage is at least 1
2(2σ(µl+1))h .

Proof : We consider the simulator in the proof of Theorem 6.3.1. Up to the artificial
abort stage, the simulator could abort on either a key extraction query or in the challenge
stage. Let abort be the event that the simulator aborts before the artificial abort stage. For
1 ≤ i ≤ q, let Ei denote the event that the simulator does not abort on the ith key extraction
query and let C be the event that the simulator does not abort in the challenge stage. We
have

Pr[abort] = Pr

[(
q∧

i=1

Ei

)
∧ C

]

= Pr

[(
q∧

i=1

Ei

)
|C

]
Pr[C]
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=

(
1− Pr

[(
q∨

i=1

¬Ei

)
|C

])
Pr[C]

≥

(
1−

q∑
i=1

Pr [¬Ei |C ]

)
Pr[C].

We first consider the event C. Suppose the challenge identity is v∗ = (v∗1, . . . , v
∗
h∗). Event

C holds if and only if Fj(v
∗
j ) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by choice of p, we can

assume Fj(v
∗
j ) ≡ 0 mod p if and only if x′j +

∑l
k=1 xkvj,k = mkj. Hence,

Pr[C] = Pr

[
h∗∧

j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

)]
. (6.3.11)

For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ µl, denote the event x′j +
∑l

k=1 xkvj,k = mi by Aj,i and the event
kj = i by Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.

Note that the event
∨µl

i=0 Aj,i is equivalent to the condition x′j +
∑l

k=1 xkvj,k ≡ 0 mod m
and hence equivalent to the condition Lj(vj) = 0. Since kj is chosen uniformly at random
from the set {0, . . . , µl}, we have Pr[Bj,i] = 1/(1 + µl) for all j and i. The events Bj,i’s are
independent of each other and also independent of the Aj,i’s. We have

Pr

[
h∗∧

j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

)]

= Pr

[
h∗∧

j=1

(
µl∨

i=0

Cj,i

)]

= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(C1,i1 ∧ · · · ∧ Ch∗,ih∗ )


= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(A1,i1 ∧B1,i1 ∧ · · · ∧ Ah∗,ih∗ ∧Bh∗,ih∗ )


=

∑
i1,...,ih∗∈{0,...,µl}

Pr [A1,i1 ∧B1,i1 ∧ · · · ∧ Ah∗,ih∗ ∧Bh∗,ih∗ ]

=
∑

i1,...,ih∗∈{0,...,µl}

Pr [A1,i1 ∧ · · · ∧ Ah∗,ih∗ ]× Pr [B1,i1 ∧ · · · ∧Bh∗,ih∗ ]

=
1

(1 + µl)h∗

∑
i1,...,ih∗∈{0,...,µl}

Pr [A1,i1 ∧ · · · ∧ Ah∗,ih∗ ]

=
1

(1 + µl)h∗
Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(A1,i1 ∧ · · · ∧ Ah∗,ih∗ )
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=
1

(1 + µl)h∗
Pr

[
h∗∧

j=1

(
µl∨

i=0

Aj,i

)]

=
1

(1 + µl)h∗
Pr

[
h∗∧

j=1

(Lj(vj) = 0)

]

=
1

(m(1 + µl))h∗

The last equality follows from Proposition 6.3.1.
Now we turn to bounding Pr[¬Ei|C]. For simplicity of notation, we will drop the subscript

i from Ei and consider the event E that the simulator does not abort on a particular key
extraction query on an identity (v1, . . . , vj). By the simulation, the event ¬E implies that
Li(vi) = 0 for all 1 ≤ i ≤ j. This holds even when the event is conditioned under C. Thus,
we have Pr[¬E|C] ≤ Pr[∧j

i=1Li(vi) = 0|C]. The number of components in the challenge
identity is h∗ and now two cases can happen:
j ≤ h∗: By the protocol constraint (a prefix of the challenge identity cannot be queried to
the key extraction oracle), we must have a θ with 1 ≤ θ ≤ j such that vθ 6= v∗θ.
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have

Pr[¬E|C] ≤ Pr

[
j∧

i=1

Li(vi) = 0|C

]
≤ Pr[Lθ(vθ) = 0|C] = Pr

[
Lθ(vθ) = 0|

h∗∧
i=1

Li(v∗i ) = 0

]
= 1/m.

The last equality follows from an application of either Proposition 6.3.1. or Proposition 6.3.2.
according as whether j > h∗ or j ≤ h∗. Substituting this in the bound for Pr[abort] we obtain

Pr[abort] ≥

(
1−

q∑
i=1

Pr [¬Ei |C ]

)
Pr[C].

≥
(
1− q

m

) 1

(m(µl + 1))h∗

≥
(
1− q

m

) 1

(m(µl + 1))h

≥ 1

2
× 1

(2σ(µl + 1))h
.

We use h ≥ h∗ and 2q ≤ σ < m < 2σ to obtain the inequalities. This completes the proof.

6.4 Conclusion

In this chapter, we have presented a construction of a HIBE which builds upon the previous
IBE protocols. The HIBE is secure in the full model without random oracle. The number

75



of public parameters is significantly less compared to previous suggestion. The main open
problem in the construction of HIBE protocols secure in the full model is to avoid or control
the security degradation which is exponential in the number of levels of the HIBE.
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Chapter 7

Generalization of the Selective-ID

Security Model

7.1 Introduction

In this chapter, we generalize the selective-ID model and introduce two new models of security
for HIBE protocols. The basic idea is to modify the security game so as to allow the adversary
to commit to a set of identities (instead of one identity in the sID model) before set-up.
During the game, the adversary can execute key extraction queries on any identity not in
the committed set. In the challenge stage, the challenge identity is chosen by the adversary
from among the set that it has previously committed to.

For IBE, this is a strict generalization of the sID model, since we can get the sID model
by enforcing the size of the committed set of identities to be one. On the other hand, for
HIBE, there are two ways to view this generalization leading to two different security models
M1 and M2.

In M1, the adversary commits to a set I∗. It can then ask for the private key of any
identity v = (v1, . . . , vj) as long as all the vis are not in I∗. Further, during the challenge
stage, it has to submit an identity all of whose components are in I∗. If we restrict the ad-
versary to only single component identities (i.e., we are considering only the IBE protocols),
then this is a clear generalization of the sID model for IBE. On the other hand, in the case
of HIBE, we cannot fix the parameters of this model to obtain the sID model for HIBE.

The second model, M2, is an obvious generalization of the sID model for HIBE. In this
case, the adversary specifies j sets I∗1 , . . . , I∗j . Then it can ask for private key of any identity
v as long as there is an i such that the ith component of v is not in I∗i . In the challenge
stage, the adversary has to submit an identity such that for all i, the ith component of the
identity is in I∗i .

Even though M2 generalizes the sID model for HIBE, we think M1 is also an appropriate
model for a HIBE protocol. The adversary would be specifying a set of “sensitive” keywords
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to be I∗. It can then ask for the private key of any identity as long as one component
of the identity is not sensitive and in the challenge stage has to submit an identity all of
whose components are sensitive. The added flexibility in M2 is that the adversary can
specify different sets of sensitive keywords for the different levels of HIBE. In practice, this
flexibility might not be required since keywords like root, admin, dba, etcetera will be sensitive
for all levels.

We present two constructions of HIBE denoted by H1 and H2. H1 is proved to be secure
in the model M1 under the DBDH assumption while H2 is proved to be secure in the model
M2 also under the DBDH assumption. Our constructions and proofs of security are very
similar to that of the Boneh-Boyen HIBE (BB-HIBE) discussed in Section 3.2.1. The actual
technical novelty in the proofs is the use of a polynomial, which in the case of the BB-HIBE
is of degree one. The use of an appropriate polynomial of degree greater than one allows us
to prove security in the more general models M1 and M2. However, this flexibility comes at
a cost. In both H1 and H2, the number of required scalar multiplications increases linearly
with the size of the committed set of identities.

Multiple receiver IBE (MR-IBE) is an interesting concept which was introduced by Baek,
Safavi-Naini and Susilo [4]. In an MR-IBE, an encryptor can encrypt a message in such a
way that any one of a set of identities can decrypt the message. A trivial way to achieve
this is to separately encrypt the message several times. It turns out that the efficiency can
be improved. A more efficient construction of MR-IBE was presented in [4]. The proof of
security was in the sID model using random oracle.

We show that the HIBE H1 or H2 when restricted to IBE can be easily modified to
obtain an efficient MR-IBE. Our MR-IBE is proved to be secure in the sID model without
random oracle and to the best of our knowledge this is the first of such kind.

7.2 Another Look at Security Model

We have seen in Chapter 2 that the security model for HIBE is defined as an interactive
game between an adversary and a simulator. Both the adversary and the simulator are
modeled as probabilistic algorithms. Currently, there are two security models for HIBE –
the selective-ID (sID) model and the full model. We will be interested in defining two new
security models. We present the description of the interactive game in a manner which will
help in obtaining a unified view of the sID, full and the new security models that we define.

In the game, the adversary is allowed to query two oracles – a decryption oracle Od and
a key-extraction oracle Ok. The game has several stages.

Adversary’s Commitment: In this stage, the adversary commits to two sets S1 and S2

of identities. The commitment has the following two consequences.

1. The adversary is not allowed to query Ok on any identity in S1 or on a prefix of any
identity in S1.
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2. In the challenge stage, the adversary has to choose one of the identities from the set
S2.

There is a technical difficulty here. Note that the adversary has to commit to a set of
identities even before the HIBE protocol has been set-up. On the other hand, the identity
space is specified by the set-up algorithm of the HIBE protocol. In effect, this means that
the adversary has to commit to identities even before it knows the set of identities. Clearly,
this is not possible.

One possible way out is to allow the adversary to commit to binary strings and later
when the set-up program has been executed, these binary strings are mapped to identities
using a collision resistant hash functions. Another solution is to run the set-up program in
two phases. In the first phase, the identity space is specified and is made available to the
adversary; then the adversary commits to S1 and S2; and after obtaining S1 and S2 the rest
of the set-up program is executed.

The above two approaches are not necessarily equivalent and may have different security
consequences. On the other hand, note that if S1 = ∅ and S2 is the set of all identities (as
is true in the full model), then this technical difficulty does not arise.

Set-Up: The simulator sets up the HIBE protocol and provides the public parameters to
the adversary and keeps the master key to itself. Note that at this stage, the simulator knows
S1,S2 and could possibly set-up the HIBE based on this knowledge. However, while doing
this, the simulator must ensure that the probability distribution of the public parameters
remains the same as in the specification of the actual HIBE protocol.

Phase 1: The adversary makes a finite number of queries where each query is addressed
either to Od or to Ok. In a query to Od, it provides the ciphertext as well as the identity
under which it wants the decryption. The simulator returns either the corresponding message
or bad if the ciphertext is malformed. Similarly, in a query to Ok, it asks for the private
key of the identity it provides. This identity cannot be an element of S1 and neither can it
be a prefix of any element in S1. Further, the adversary is allowed to make these queries
adaptively, i.e., any query may depend on the previous queries as well as their answers.

Certain queries are useless and we will assume that the adversary does not make such
queries. For example, if an adversary has queried Ok on any identity, then it is not allowed
to present the same identity to Od as part of a decryption query. The rationale is that since
the adversary already has the private key, it can itself decrypt the required ciphertext.

Challenge: The adversary provides the simulator with an identity v∗ ∈ S2 and two mes-
sages M0 and M1. There is a restriction that the simulator should not have queried Ok for
the private key of v∗ or for the private key of any prefix of v∗ in Phase 1. The simulator
randomly chooses a γ ∈ {0, 1} and returns the encryption of Mγ under v∗ to the adversary.
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Phase 2: The adversary issues additional queries just as in Phase 1 with the following
restrictions. It cannot ask Od for the decryption of C∗ under v∗; cannot ask Ok for the
private key of any prefix of an identity in S1; and cannot make any useless query.

Guess: The adversary outputs a guess γ′ of γ.
The adversary’s success is measured as defined in Section 2.5

7.2.1 Full Model

Suppose S1 = ∅ and S2 is the set of all identities. By the rules of the game, the adversary
is not allowed to query Ok on any identity in S1. Since S1 is empty, this means that the
adversary is actually allowed to query Ok on any identity. Further, since S2 is the set of all
identities, in the challenge stage, the adversary is allowed to choose any identity. In effect,
this means that the adversary does not really commit to anything before set-up and hence,
in this case, the commitment stage can be done away with. This particular choice of S1 and
S2 is called the full model (defined in Section 2.5 and is currently believed to be the most
general notion of security for HIBE.

Note that the challenge stage restrictions as well as the restrictions in Phase 2 still apply.

7.2.2 Selective-ID Model

Let S1 = S2 be a singleton set. This means that the adversary commits to one particular
identity; does not ask for a private key of any of its prefixes; and in the challenge phase is
given the encryption of Mγ under this particular identity. This model is significantly weaker
than the full model and is called the selective-ID model (defined in Section 2.5.3.

7.2.3 New Security Models

We introduce two new security models by suitably defining the sets S1 and S2. In our new
models, (as well as the sID model), we have S1 = S2. (Note that in the full model, S1 = S2.)

Model M1: Let I∗ be a set. Define S1 = S2 to be the set of all tuples (v1, . . . , vj), such
that each vi ∈ I∗. If the HIBE is of maximum depth h, then 1 ≤ j ≤ h. The length of the
target identity tuple is not fixed by the adversary in the commit phase.

Let us now see what this means. In the commit phase, the adversary commits to a set
I∗; never asks for a private key of an identity all of whose components are in I∗; and during
the challenge phase presents an identity all of whose components are in I∗.

Consider the case of IBE, i.e., h = 1, which means that only single component identities
are allowed. Then, we have S1 = S2 = I∗. Let |I∗| = n. If we put n = 1, then we obtain
the sID model for IBE as discussed in Section 7.2.2. In other words, for IBE protocol, M1

is a strict generalization of sID model.
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If h > 1, then we have proper HIBE. In this case, M1 differs fundamentally from the
sID model.

1. In the sID model, the adversary is allowed to query Ok on a permutation of the
challenge identity. This is not allowed in M1.

2. In the sID model, the length of the challenge identity is fixed by the adversary in the
commit phase. On the other hand, in M1, the adversary is free to choose this length
(to be between 1 and h) in the challenge stage itself.

In the case of HIBE, model M1 is no longer a strict generalization of the usual sID model
for HIBE. We cannot restrict the parameters of the model M1 in any manner and obtain
the sID model for HIBE. Thus, in this case, M1 must be considered to be a new model.

Model M2: Let I∗1 , . . . , I∗u be sets and |I∗j | = nj for 1 ≤ j ≤ u. We set

S1 = S2 = I∗1 × · · · × I∗u.

If the maximum depth of the HIBE is h, then 1 ≤ u ≤ h.
In this model, for 1 ≤ j ≤ u, the adversary is not allowed to obtain a private key for an

identity v = (v1, . . . , vj) such that vi ∈ I∗i for all 1 ≤ i ≤ j. Further, the challenge identity
is a tuple (v∗1, . . . , v

∗
u), with vi ∈ I∗i for all 1 ≤ i ≤ u. Like the sID model, the length of the

challenge identity is fixed by the adversary in the commit phase.
This model is a strict generalization of the sID model for HIBE. This can be seen by

setting n1 = · · · = nh = 1, i.e., setting I∗1 , . . . , I∗h to be singleton sets. On the other hand,
M2 and M1 are not comparable due to at least two reasons.

1. In M1, the length of the challenge identity can vary, while in M2, the length is fixed
in the commit phase.

2. In M2, it may be possible for the adversary to obtain the private key for a permutation
of the challenge identity, which is not allowed in M1.

These two reasons are similar to the reasons for the difference between sID and M1.

Parametrizing the models: A HIBE may have a bound on the maximum number of
levels that can be supported. The corresponding security model also has the same restriction.
For example, a HIBE of at most h levels will be called h-sID secure if it is secure in the sID
model. The models M1 and M2 have additional parameters.

For the case of M1, there is a single parameter n, which specifies the size of I∗, the set
which the adversary specifies in the commit phase. In this case, we will talk of (h, n)-M1

security for an HIBE. Similarly, for M2, we will talk of (h, n1, . . . , nh)-M2 security. Note
that (h, 1 . . . , 1)-M2 model is same as the h-sID model.

81



7.3 Interpreting Security Models

The full security model is currently believed to provide the most general security model for
HIBE. In other words, it provides any entity (having any particular identity) in the HIBE
with the most satisfactory security assurance that the entity can hope for. The notion of
security based on an appropriate adversarial game is adapted from the corresponding notion
for public key encryption and the security assurance provided in that setting also applies to
the HIBE setting. The additional consideration is that of identity and the key extraction
queries to Ok. We may consider the identity present during the challenge stage to be a target
identity. In other words, the adversary wishes to break the security of the corresponding
entity. In the full model, the target identity can be any identity, with the usual restriction
that the adversary does not know the private key corresponding to this identity or one of its
prefixes.

From the viewpoint of an individual entity e in the HIBE structure, the adversary’s
behavior appears to be the following. The adversary can possibly corrupt any entity in
the structure, but as long as it is not able to corrupt that particular entity e or one of its
ancestors, then it will not be able to succeed in an attack where the target identity is that
of e. In other words, obtaining the private keys corresponding to the other identities does
not help the adversary. Intuitively, that is the maximum protection that any entity e can
expect from the system.

Let’s reflect on the sID model. In this model, the adversary commits to an identity even
before the set-up of the HIBE is done. The actual set-up can depend on the identity in
question. Now consider the security assurance obtained by an individual entity e. Entity e
can be convinced that if the adversary had targeted its identity and then the HIBE structure
was set-up, in that case the adversary will not be successful in attacking it. Alternatively, e
can be convinced that the HIBE structure can be set-up so as to protect it. Inherently, the
sID model assures that the HIBE structure can be set-up to protect any identity, but only
one.

Suppose that a HIBE structure which is secure in the sID model has already been set-up.
It has possibly been set-up to protect one particular identity. The question now is what
protection does it offer to entities with other identities? The model does not assure that
other identities will be protected. Of course, this does not mean that other identities are
vulnerable. The model simply does not say anything about these identities.

The system designer’s point of view also needs to be considered. While setting up the
HIBE structure, the designer needs to ensure security. The HIBE is known to be secure
in the sID model and hence has a proof of security. The designer will play the role of the
simulator in the security game. In the game, the adversary commits to an identity and then
the HIBE is set-up so as to protect this identity. However, since the actual set-up has not
been done, there is no real adversary and hence no real target identity. Thus, the designer
has to assume that the adversary will probably be targeting some sensitive identity like root.
The designer can then set-up the HIBE so as to protect this identity. However, once the
HIBE has been set-up, the designer cannot say anything about the security of other possible
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sensitive identities like sysadmin. This is a limitation of the sID model.
It has been observed in [17] that a generic conversion from an IBE protocol secure in the

selective-ID model to a protocol secure in the full model suffers from a security degradation
by a factor of 2`, where identities are `-bit strings. This also indicates the inadequacy of the
selective-ID model.

This brings us to the generalization of the sID model that we have introduced. First
consider the model M1 as it applies to IBE. In this model, the designer can assume that
the adversary will possibly attack one out of a set of sensitive identities like {root, admin,
dba, sysadmin}. It can then set-up the IBE so as to protect this set of identities. This offers
better security than the sID model.

Now consider the model M1 as it applies to HIBE. In this case, the set I∗ can be taken
to be a set of sensitive keywords such as {root, admin, dba, sysadmin}. The adversary is not
allowed to obtain private keys corresponding to identities all of whose components lie in I∗.
For the above example, the adversary cannot obtain the private key of (root, root), or (admin,
root, dba). On the other hand, it is allowed to obtain keys corresponding to identities like
(root, abracadabra). Thus, some of the components of the identities (on which key extraction
query is made) may be in I∗; as long as all of them are not in I∗, the adversary can obtain
the private key. On the other hand, all the components of the target identity have to be
sensitive keywords, i.e., elements of I∗. Clearly, model M1 provides an acceptable security
notion for HIBE.

As mentioned earlier, a major difference of M1 with sID is that in sID the adversary is
allowed to obtain a private key for a permutation of the challenge identity, whereas this is
not allowed in M1. We point out that it is possible for a particular HIBE to be secure in
both sID and M1. An example will be provided later. Thus, one may choose to obtain the
good features of both sID and M1.

The model M2 is a clear generalization of the usual sID model for HIBE. The adversary
fixes the sensitive keywords for each level of the HIBE up to the level it wishes to attack.
It cannot make a key extraction query on an identity of depth j, such that for 1 ≤ i ≤ j,
the ith component of the identity is among the pre-specified sensitive keywords for the ith
level of the HIBE. Further, the target identity must be such that each of its component is a
sensitive keyword for the corresponding HIBE level. As mentioned earlier, by fixing exactly
one keyword for each level of the HIBE, we obtain the sID model.

The protocols like Waters IBE, IBE-SPP(`) of Chapter 5 and HIBE-spp of Chapter 6 which
offer full model security suffer from security degradation. On the other hand, protocols such
as BB-HIBE and BBG-HIBE discussed in Chapter 3 which are secure in the selective-ID
model have no security degradation. Thus, one can work with significantly smaller size groups
while implementing the later protocols compared to the former protocols. The protocols that
are described in this chapter have no security degradation. Hence, the group sizes used for
implementing selective-ID protocols can be used for implementing the protocols secure in
M1 and M2.
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7.4 Constructions

We present several HIBE protocols which are proved to be secure in different models. In
this section, we provide only the constructions. The security proofs are provided later.

The underlying groups G1, G2 and the pairing map e(, ) will be required by all the
HIBE protocols. The set-up procedure of each HIBE will generate these groups based on
the security parameter. The maximum depth of a HIBE will be denoted by h. In each
of the HIBEs below, we will have P1 and P2 as public parameters which are not directly
required. Instead, one may keep e(P1, P2) in the public parameter which will save the pairing
computation during encryption.

The components of identities are elements of Zp. Alternatively, if these are bit strings,
then (as is standard) they will be hashed using a collision resistant hash function into Zp.

7.4.1 HIBE H1

Set-Up: The identity space consists of all tuples (v1, . . . , vj), j ≤ h, where each vi ∈ Zp.
The message space is G2. The ciphertext corresponding to an identity (v1, . . . , vj) is a tuple
(A, B, C1, . . . , Cj), where A ∈ G2 and B, C1, . . . , Cj ∈ G1.

Randomly choose α ∈ Zp and set P1 = αP . Randomly choose P2, P3,1, . . . , P3,h,
Q1, . . . , Qn from G1 where n is a parameter. The public parameters are

(P, P1, P2, P3,1, . . . , P3,h, Q1, . . . , Qn)

and the master secret key is αP2.

Notation: For any y ∈ Zp define

Vi(y) = ynQn + · · ·+ yQ1 + P3,i.

Let (v1, . . . , vj) be an identity. We write Vi for Vi(vi).

Key-Gen: The private key dv = (d0, d1, . . . , dj) corresponding to an identity v = (v1, . . . , vj)
is defined to be

(d0, d1, . . . , dj) = (αP2 + r1V1 + . . . + rjVj, r1P, . . . , rjP )

where r1, . . . , rj are random elements of Zp. Key delegation can be done in the following
manner. Let (d′0, d

′
1, . . . , d

′
j−1) be the private key corresponding to the identity (v1, . . . , vj−1).

Then (d0, d1, . . . , dj) is obtained as follows. Choose a random rj from Zp and define

d0 = d′0 + rjVj;
di = d′i for 1 ≤ i ≤ j − 1;
dj = rjP.

This provides a proper private key corresponding to the identity (v1, . . . , vj).
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Encrypt: Suppose a message M is to be encrypted under the identity v = (v1, . . . , vj).
Choose a random t ∈ Zp. The ciphertext is (A, B, C1, . . . , Cj), where

A = M × e(P1, P2)
s; B = sP ; Ci = sVi, for 1 ≤ i ≤ j.

Decrypt: Suppose (A, B, C1, . . . , Cj) is to be decrypted using the private key (d0, d1, . . . , dj)
corresponding to the identity v = (v1, . . . , vj). Compute

A×
∏j

i=1 e(di, Ci)

e(d0, B)
= M × e(P1, P2)

s

∏j
i=1 e(riP, sVi)

e(αP2 +
∑j

i=1 riVi, sP )

= M × e(P1, P2)
s × 1

e(P1, P2)s
×
∏j

i=1 e(riP, sVi)

e(
∑j

i=1 riVi, sP )

= M.

Unbounded Depth HIBE:

It is possible to modifyH1 to obtain a HIBE which is secure in model M1 and which supports
key delegation over any number of levels. The required modifications are as follows.

• The public parameters are (P, P1, P2, P3, Q1, . . . , Qn).

• V (y) = ynQn + · · ·+ yQ1 + P3 and Vi = V (vi) as in the case of H1.

With the above two changes, the rest of key generation, encryption and decryption are as in
H1.

More specifically, let us look at key generation. The private key dv corresponding to
v = (v1, . . . , vj) is defined to be

(xP2 + r1V1 + . . . + rjVj, r1P, . . . , rjP ) = (d0, d1, . . . , dj)

where r1, . . . , rj are random elements of Zp.
Since the maximum number of levels is not fixed in the set-up phase, the HIBE supports

unbounded key delegation. This HIBE can be proved to be secure in model M1. However, it
is not secure in the sID-model, the reason being the following. Note that the first component
d0 of the secret key does not depend upon the ordering of the components of v. Hence, for
any permutation of the components of v, the first component remains the same and thus,
one can obtain a valid private key for any permutation of the components of v. In the sID
model, the adversary can commit to an identity v∗ and then ask the key extraction oracle
for a private key of v′ which is a permutation of v∗. Using the obtained private key of v′, the
adversary can easily obtain a private key for v∗ and hence decrypt the challenge ciphertext.
This shows insecurity in the sID model. Since, sID model is an accepted notion of security,
insecurity in this model makes the unbounded depth HIBE less interesting and hence we will
not consider this HIBE any further in this work.
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7.4.2 HIBE H2

The description of H2 is similar to that of H1. The differences are in the specification of the
public parameters and the definition of the Vi’s.

1. Let (n1, . . . , nh) be a tuple of positive integers.

2. The new public parameters are (P, P1, P2,
−→
P 3,
−→
Q 1, . . . ,

−→
Qh) where

−→
P 3 = (P3,1, . . . , P3,h)

and
−→
Q i = (Qi,1, . . . , Qi,ni

). The master secret is αP2.

3. Define
Vi(y) = yniQi,ni

+ yni−1Qi,ni−1 + . . . + yQi,1 + P3,i.

As before Vi is used to denote Vi(vi).

With these differences, the rest of set-up, key generation, encryption and decryption algo-
rithms remain the same.

Note: The HIBE H1 has the parameters h and n and we will write (h, n)-H1 to denote
this explicit parametrization. The HIBE H2 is parametrized by the tuple (n1, . . . , nh) and
we will write (h, n1, . . . , nh)-H2 to denote this parametrization.

7.5 Security Reduction

In this section, we show security reductions for the HIBE protocols.
Recall that the security model M1 is parametrized as (h, n)-M1 while model M2 is

parametrized as (h, n1, . . . , nh)-M2. The advantage of an adversary in the security game
is denoted by Adv. A subscript to this will denote the model and a superscript will denote
the HIBE for which the result is being stated. For example, Adv

(h,n)-H1

(h,n)-M1
(t, q) denotes the

maximum advantage of any adversary running in time t and making q queries to Ok in
winning the security game defined by (h, n)-M1 for the HIBE (h, n)-H1. We will assume
that one scalar multiplication in G1 can be done in time O(τ).

7.5.1 Security Reduction for H1

Theorem 7.5.1. Let h, n, q be positive integers and n′ be another positive integer with n′ ≤
n. Then

Adv
(h,n)-H1

(h,n′)-M1
(t, q) ≤ AdvDBDH(t + O(τnq)).

Proof : The security reduction is to show that if there is an adversary which can break H1

then one obtains an algorithm to solve DBDH. The heart of such an algorithm is a simu-
lator which is constructed as follows. Given an instance of DBDH as input, the simulator
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plays the security game (h, n′)-M1 with an adversary for (h, n)-H1. The adversary executes
the commitment stage; then the simulator sets up the HIBE based on the adversary’s com-
mitment as well as the DBDH instance. The simulator gives the public parameters to the
adversary and continues the game by answering all queries made by the adversary. In the
process, it randomly chooses a bit γ and encrypts Mγ using the DBDH instance provided
as input. Finally, the adversary outputs γ′. Based on the value of γ and γ′, the simulator
decides whether the instance it received is real or random. Intuitively, if the adversary has
an advantage in breaking the HIBE protocol, the simulator also has an advantage in distin-
guishing between real and random instances. This leads to an upper bound on the advantage
of the adversary in terms of the advantage of the simulator in solving DBDH.

We want to prove (h, n)-H1 secure in model (h, n′)-M1, where 1 ≤ n′ ≤ n. This means
that the public parameters of the HIBE depend on n, while the adversary commits to a set
I∗ of size n′ in the commit phase.

DBDH Instance: The simulator receives an instance (P, P1 = aP, P2 = bP,Q = cP, Z)
of DBDH.

The simulator now starts the security game for model M1. This consists of several
stages which we describe below. We will consider security against chosen plaintext attacks
and hence the adversary will only have access to the key extraction oracle Ok.

Adversary’s Commitment: The adversary commits to a set I∗ of size n′. The elements
of I∗ are from Zp. We write I∗ = {v∗1, . . . , v∗n′}.

Set-Up: Define a polynomial F (x) in Zp[x] as follows.

F (x) = (x− v∗1) · · · (x− v∗n′) (7.5.1)

= xn′ + an′−1x
n′−1 + · · ·+ a1x + a0 (7.5.2)

where the coefficients ai’s are in Zp and are obtained from the values {v∗1, . . . , v∗n′}. Since
F (x) is a polynomial of degree n′ over Zp and v∗1, . . . , v

∗
n′ are its n distinct roots, we have

F (y) 6= 0 for any y ∈ Zp \ {v∗1, . . . , v∗n′}. The coefficients of F (x) depend on the adversary’s
input and one cannot assume any distribution on these values. Define an′ = 1 and an =
an−1 = · · · = an′+1 = 0.

For 1 ≤ i ≤ h, define another set of polynomials Ji(x) each of degree n in the following
manner. Randomly choose b0,1, . . . , b0,h, b1, . . . , bn from Zp. Define

Ji(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x + b0,i (7.5.3)

The public parameters P3,is and Qjs are defined in the following manner.

• For 1 ≤ i ≤ h, define P3,i = a0P2 + b0,iP .

• For 1 ≤ j ≤ n, define Qj = ajP2 + bjP .
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Since b0,1, . . . , b0,h, b1, . . . , bn are chosen randomly from Zp, the P3,is and the Qjs are random
elements of G1. The public parameters are given to the adversary. The master secret is aP2,
which is not known to the simulator.

Now comes the most crucial part of the proof. For y ∈ Zp,

Vi(y) = P3,i + yQ1 + y2Q2 + · · ·+ ynQn

= a0P2 + b0,iP + y(a1P2 + b1P ) + y2(a2P2 + b2P ) + · · ·+ yn(anP2 + bnP )

= (a0 + a1y + a2y
2 + · · ·+ any

n)P2 + (b0,i + b1y + b2y
2 + · · ·+ bny

n)P

= F (y)P2 + Ji(y)P.

This decomposes Vi(y) into two parts – one depends on P2 and the other depends on P . The
part which depends on P2 vanishes if and only if y is equal to some element of I∗. The ability
of the simulator to properly answer key extraction queries and generate a proper challenge
ciphertext depends crucially on this fact.

Phase 1: In this stage, the adversary can make queries to Ok, all of which have to be
answered by the simulator. Suppose the adversary queries Ok on an identity v = (v1, . . . , vj),
with 1 ≤ j ≤ h. By the constraint of model M1 all the vi’s cannot be in I∗. Suppose ı is
such that vı is not in I∗. Then F (vı) 6≡ 0 mod p.

As in the protocol, define Vi to be Vi(vi). Choose r1, . . ., rı−1, r′ı, rı+1, . . ., rj randomly
from Zp. Define W =

∑j
i=1,i6=ı riVi. The first component d0 of the secret key for v =

(v1, . . . , vj) is computed in the following manner.

d0 = −Jı(vı)

F (vı)
P1 + r′ı(F (vı)P2 + Jı(vı)P ) + W.

The following computation shows that d0 is properly formed.

d0 = ±aP2 −
Jı(vı)

F (vı)
P1 + r′ı(F (vı)P2 + Jı(vı)P ) + W

= aP2 +

(
r′ı −

a

F (vı)

)
(F (vı)P2 + Jı(vı)P ) + W

= aP2 +

j∑
i=1

riVi

where rı = r′ı− a/F (vı). Since r′ı is random, so is rı. The quantities d1, . . . , dj are computed
in the following manner.

di = riP 1 ≤ i ≤ j, i 6= ı;
= r′ıP − 1

F (vı)
P1 = rıP for i = ı.

This technique is based on the algebraic techniques introduced by Boneh and Boyen [17] as
discussed in Section 3.2.1. The generalization is in the definition of F () and Ji()s. Here we
take these to be polynomials, which allows us to tackle the case of adversary committing to
more than one identity.
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Challenge Generation: The adversary submits messages M0, M1 and an identity v =
(v1, . . . , vj) with 1 ≤ j ≤ h. By the rules of model M1, each vi ∈ I∗ and so F (vi) ≡ 0 mod p
for 1 ≤ i ≤ j. Consequently,

Vi = Vi(vi) = F (vi)P2 + Ji(vi)P = Ji(vi)P

and hence
cVi = cJi(vi)P = Ji(vi)(cP ) = Ji(vi)Q

where Q = cP was supplied as part of the DBDH instance. Note that it is possible to
compute Wi = cVi even without knowing c. The simulator now randomly chooses a bit γ
and returns

(Mγ × Z,Q,W1, . . . ,Wj)

to the adversary. If Z is real, then this is a proper encryption of Mγ under the identity v.

Phase 2: The key extraction queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess γ′. The simulator outputs 1 if γ = γ′, else it outputs
0.

If Z = e(P, P )abc, then the simulator provides a perfect simulation of the (h, n′)-M1

game. On the other hand, if Z is random, the adversary receives no information about the
message Mγ from the challenge ciphertext.

The above shows that an adversary’s ability to attack (h, n)-H1 HIBE in model (h, n′)-
M1 can be converted into an algorithm for solving DBDH. The bound on the advantage
follows from this fact.

Theorem 7.5.1. shows that an (h, n)-H1 HIBE is CPA-secure in model (h, n′)-M1 for
n′ ≤ n. The next result shows that (h, n)-H1 is also secure in the h-sID model.

Theorem 7.5.2. Let h, n, q be positive integers. Then

Adv
(h,n)-H1

h-sID (t, q) ≤ q

p
+ AdvDBDH(t + O(τnq)).

Proof : The proof is similar to the proof of Theorem 7.5.1.. In the h-sID model, the
adversary commits to an identity (v∗1, . . . , v

∗
j ) where 1 ≤ j ≤ h and vi ∈ Zp. Randomly choose

v∗j+1, . . . , v
∗
h from Zp. Randomly choose b1, . . . , bn, b0,1, . . . , b0,h from Zp. For 1 ≤ i ≤ h, define

Fi(x) = x− v∗i ;

Ji(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x + b0,i.

The protocol is set-up in the following manner. For 2 ≤ j ≤ n, define Qj = bjP , Q1 =
P2 + b1P and for 1 ≤ i ≤ h, define P3,i = −v∗i P2 + b0,iP . This defines all the public
parameters.
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For 1 ≤ i ≤ h, we have

Vi(y) = P3,i + yQ1 + y2Q2 + · · ·+ ynQn

= (−v∗i P2 + b0,iP ) + y(P2 + b1P ) + y2b2P + · · ·+ ynbnP

= (y − v∗i )P2 + (b0,i + b1y + · · ·+ bny
n)P

= Fi(y)P2 + Ji(y)P

The rest of the simulation is similar to the proof of Theorem 7.5.1. with one difference. If
the adversary ever submits a key extraction query of the form (v1, . . . , vk), with k > j and
vi = v∗i for 1 ≤ i ≤ j, then the simulator aborts and outputs a random bit. Note that since
the length of the identity is longer than the committed identity, the adversary is allowed to
make such queries. The probability that vi = v∗i for j < i ≤ k is 1/pk−j ≤ 1/p. Since this
can be repeated for each of the q key extraction queries, we have the additive degradation
by the factor q/p.

7.5.2 Security Reduction for H2

Theorem 7.5.3. Let h, n1, . . . , nh, q be positive integers and n′1, . . . , n
′
h be another set of

positive integers with n′i ≤ ni for 1 ≤ i ≤ h. Then

Adv
(h,n1,...,nh)-H2

(h,n′1,...,n′h)-M2
(t, q) ≤ AdvDBDH(t + O(τnq))

where n =
∑h

i=1 ni.

Proof : The proof is similar to the proof of Theorem 7.5.1.. The difference is in the
definition of F (x) and Ji(x). In this case, for 1 ≤ i ≤ h, we require Fi(x). After the
appropriate definition of Fi(x) and Ji(x), we show that Vi(y) can be written as Vi(y) =
Fi(y)P2 + Ji(y)P . As mentioned in the proof of Theorem 7.5.1., the simulator’s ability for
answering key extraction queries and challenge generation depends upon this decomposition.
The actual procedure for key extraction and challenge generation is very similar to that in
the proof of Theorem 7.5.1. and these details are not provided. Thus, we provide the details
of only two stages of the game – adversary’s commitment and set-up.

The simulator is given an instance (P, P1 = aP, P2 = bP,Q = cP, Z) of DBDH.

Adversary’s Commitment: Following model (h, n′1, . . . , n
′
h)-M2, the adversary commits

to sets I∗1 , . . . , I∗u, where |I∗i | = n′i and 1 ≤ u ≤ h.

Set-Up: The simulator defines polynomials F1(x), . . . , Fh(x), and J1(x), . . ., Jh(x) in the
following manner. For 1 ≤ i ≤ j, define

Fi(x) =
∏
v∈Ii

(x− v)

= xn′i + ai,n′i−1x
n′i−1 + · · ·+ ai,1x + ai,0;
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For u + 1 ≤ i ≤ h choose a random non-zero element ai,0 from Zp and define Fi(x) = ai,0.
Note that Fi(x) is a non-zero constant polynomial. For 1 ≤ i ≤ u, define ai,n′i

= 1 and
ai,ni

= · · · = ai,n′i+1 = 0; for u + 1 ≤ i ≤ h, set n′i = 0 and ai,1 = · · · = ai,ni
= 0.

For 1 ≤ i ≤ h and 1 ≤ j ≤ ni choose random elements bi,j from Zp. Define

Ji(x) = bi,ni
xni + bi,ni−1x

ni−1 + · · ·+ bi,1x + bi,0.

Note that Fi(x) is of degree n′i while Ji(x) is of degree ni.
The public parameters are defined as follows.

• For 1 ≤ i ≤ h, define P3,i = ai,0P2 + bi,0P .

• For 1 ≤ i ≤ h and 1 ≤ j ≤ ni define Qi,j = ai,jP2 + bi,jP .

Since the bi,js are chosen randomly, the distribution of the public parameters is random. We
now show the decomposition of Vi(y).

Vi(y) = P3,i + yQi,1 + y2Qi,2 + · · ·+ yniQi,ni

= (ai,0P2 + bi,0P ) + y(ai,1P2 + bi,1P ) + y2(ai,2P2 + bi,2P ) + · · ·+ yni(ai,ni
P2 + bi,ni

P )

= (ai,0 + ai,1y + ai,2y
2 + · · ·+ ai,ni

yni)P2 + (bi,0 + bi,1y + bi,2y
2 + · · ·+ bi,ni

yni)P

= Fi(y)P2 + Ji(y)P.

The rest of the simulation is very similar to that in the proof of Theorem 7.5.1.. Also, the
bound on the advantage follows as in the above mentioned proof.

The proof shows that (h, n1, . . . , nh)-H2 is secure in model (h, n′1, . . . , n
′
h)-M2 with n′i ≤

ni. Recall that (h, 1, . . . , 1)-M2 is same as the h-sID model and hence (h, n1, . . . , nh)-H2 is
secure in the h-sID model.

7.6 Multi-Receiver IBE

A multi-receiver IBE (MR-IBE) is an extension of the IBE, which allows a sender to encrypt
a message in such a way that it can be decrypted by any one of a particular set of identities.
In other words, there is one encryptor but more than one valid receivers. In IBE, the number
of valid receivers is one. One trivial way to realize an MR-IBE from an IBE is to encrypt
the same message several times. A non-trivial construction attempts to reduce the cost of
encryption.

This notion was introduced in [4] and a non-trivial construction based on the Boneh-
Franklin IBE (BF-IBE) was provided. The construction was proved to be secure in the
selective-ID model using random oracle assumption. Note that the BF-IBE is secure in the
full model using random oracle.

We show that H1 restricted to IBE can be modified to obtain an MR-IBE. The situation
for H2 is almost identical. The required modifications to the protocol are as follows.
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1. The encryption is converted into a hybrid scheme. Instead of multiplying the message
with the “mask” Z = e(P1, P2)

s, the value Z is provided as input to a pseudorandom
generator and the message (considered to be a bit string) is XORed with the resulting
keystream.

2. The private key corresponding to an identity v is dv = (xP2 + rVv, rP ), where Vv =
P3,1 + V (v) as defined in Section 7.4.1.

3. Suppose the intended set of receivers is {v1, . . . , vj}. Then the ciphertext consists of
the encryption of the message plus a header of the form (sP, sV1, . . . , sVj), where Vi is
as defined in the construction of H1 in Section 7.4.1 and s is a random element of Zp.

4. The receiver possessing the secret key dvi
(1 ≤ i ≤ j) can compute e(P1, P2)

s in the
standard manner and hence obtain the input to the pseudorandom generator. Thus it
can decrypt the message.

The MR-IBE described above can be proved to be secure in the selective-ID model without
random oracle. The security model for MR-IBE is the following [4]. In the commitment
stage, the adversary commits to a set of identities; does not ask for the private key of these
identities in the key extraction queries and finally asks for the encryption under this set
of identities. Note that this is very similar to the model M1 restricted to IBE. The only
difference is that during the generation of the challenge ciphertext, in M1, the adversary
supplies only one identity out of the set of identities it had previously committed to, whereas
in the model for MR-IBE, the adversary asks for the encryption under the whole set of these
identities.

This difference is easily tackled in our proof in Section 7.5.1 which shows thatH1 is secure
in model M1. Recall that the construction of the polynomial F (x) is such that F (v) = 0
for all v ∈ I∗, where I∗ is the set of committed identities. In the challenge stage of the
security proof for H1 as an IBE, we use this fact for only one identity (the identity given by
the adversary). In the proof for MR-IBE, we will need to generate cVi for all v ∈ I∗. Since
F (v) = 0 for any such v, this can be done in the standard fashion.

The above argument does not provide any security degradation. Hence, we obtain an
MR-IBE which can be proved to be secure in the selective-ID model without random oracle.

7.7 Conclusion

In this chapter, we have generalized the notion of selective-ID secure HIBE. Two new security
models M1 and M2 have been introduced. In the security game, both these models allow an
adversary to commit to a set of identities (as opposed to a single identity in the sID model)
before the set-up. During the challenge stage, the adversary can choose any one of the
previously committed identities as a challenge identity. We provide two HIBE constructions
H1 and H2 which are secure in the models M1 and M2 respectively. The public parameter
size is smaller in case of H1. Further, we also show that H1 and H2 can be modified to
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obtain an MR-IBE protocol which is secure in the sID model without random oracles. The
only previous construction of MR-IBE is secure in the sID model using random oracle.
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Chapter 8

Constant Size Ciphertext HIBE

8.1 Introduction

In this chapter, we present two variants of the constant size ciphertext HIBE of Boneh-Boyen-
Goh discussed in Section 3.4.1. The aim of these variants is to be able to prove security in
models which are stronger than the sID-model. The first variant (called ccHIBE) is secure in
the generalized model M2 introduced in the previous chapter. The second variant (called
FullccHIBE) is secure in the full model. Security in the stronger models is attained at the
cost of increasing the size of the public parameters and an increase in the computation time
of the key generation and encryption. The ciphertext expansion as well as the decryption
efficiency remains the same as that in the BBG-HIBE. Another point to note is that the
reduction for the full model security is not tight. The security degradation is along the lines
of HIBE of Chapter 6.

Constant size ciphertext HIBE is an important cryptographic primitive. To some extent,
this justifies the variants that we present. On the other hand, from a technical point of view,
our variants are not really straightforward extensions of the BBG-HIBE. There are certain
technical subtleties which need to be taken care of for the proof to go through. Here we
provide an overview of some of these aspects.

The BBG-HIBE has been proved to be secure in the sID-model. We augment this HIBE
to attain security in model M2. A similar construction has been done for the BB-HIBE
in the previous chapter. The main technical novelty in the proof is the use of a polyno-
mial which in [19] is of degree one. The other problem is that the security of the BBG-
HIBE is based on the wDBDHI∗ problem. An instance of this problem consists of a tuple
(P, Q, aP, a2P, . . . , ahP, Z), where P, Q are points elements of G1and Z is an element of G2.
This instance is more complicated than an instance (P, aP, bP, cP, Z) of DBDH. Properly
combining the polynomial-based security proof from the previous chapter with the wDBDHI∗

problem is the main technical difficulty in the proof of security in model M2.
The public parameters in the BBG-HIBE consists of (P, P1, P2, P3, Q1, . . . , Qh). In ex-

tending the BBG-HIBE to attain security in model M2, we have to replace each Qi by a

94



tuple (Qi,1, . . . , Qi,ni
). The parameter P3 does not change. The public parameters of the

new HIBE are (P, P1, P2, P3,
−→
Q 1, . . . ,

−→
Qh), where

−→
Q i = (Qi,1, . . . , Qi,ni

). The Q-parameters
capture the dependence on the level in both the BBG-HIBE and in its extension to M2.
The parameters P1, P2, P3 do not depend on the number of levels of the HIBE.

On the other hand, when we modify the BBG-HIBE to attain security in the full model,
we need to change the parameter P3 to a tuple

−→
P 3 = (P3,1, . . . , P3,h). The new

−→
P 3 depends

on the number of levels of the HIBE. The public parameters in this case are of the form
(P, P1, P2,

−→
P 3,
−→
Q 1, . . . ,

−→
Qh), where

−→
Q i = (Qi,1, . . . , Qi,l).

It has been mentioned in [19] that the BBG-HIBE protocol can be modified using Waters
technique [89] to attain security in the full model. The change to P3 forms a part of this
modification, which was perhaps not anticipated in [19]. Adapting the techniques of Chap-
ter 5 and Chapter 6 to the more complicated wDBDHI∗ assumption is the main technical
difficulty in the proof of security in the full model.

8.2 ccHIBE

8.2.1 Construction

Setup: The maximum depth of the HIBE is a prespecified value denoted by h. Identities
are of the form v = (v1, . . . , vu) with 1 ≤ u ≤ h and each vi ∈ Z∗

p. Messages are elements of
G2.

Let (n1, . . . , nh) be a tuple of integers. Choose a random α ∈ Zp and set P1 = αP . Choose

random points P2, P3 from G1. The public parameters are (P, P1, P2, P3,
−→
Q 1, . . . ,

−→
Qh) where

−→
Q i = (Qi,1, . . . , Qi,ni

). Each Qi,j is chosen randomly from G1. The master secret is αP2.

Notation: For ease of description, we define a notation.

Vi(y) = yniQi,ni
+ · · ·+ yQi,1.

Let v = (v1, . . . , vj) be an identity. By Vi we will denote Vi(vi).

Key-Gen: Given an identity (v1, . . . , vu), pick a random r ∈ Zp and output

dv =

(
αP2 + r

(
P3 +

u∑
j=1

Vj

)
, rP, r

−→
Qu+1, . . . , r

−→
Qh

)

where r
−→
Q i = (rQi,1, . . . , rQi,ni

). A private key at level u consists of (2+
∑h

i=u+1 ni) elements
of G1. Among these, only the first two are required in decryption which we denote as
decryption sub-key. The rest are used to generate a private key for the next level as follows:
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Let a private key for (v1, . . . , vu−1) be (A′
0, A

′
1,
−→
B

′
u, . . . ,

−→
B

′
h), where

A′
0 = αP2 + r′

(
u−1∑
j=1

Vj + P3

)
,

A′
1 = r′P , and for u ≤ j ≤ h,

−→
B

′
j = (r′Qj,1, . . . , r

′Qj,nj
). Let B′

j,k = r′Qj,k. Pick a random

r∗ ∈ Zp and compute dv = (A0, A1,
−→
B u+1, . . . ,

−→
B h) where

A0 = A′
0 +

∑nu

i=1 vi
uB

′
u,i + r∗

(∑u
j=1 Vj + P3

)
,

A1 = A′
1 + r∗P,

Bu+1 =
−→
B

′
u+1 + r∗

−→
Qu+1,

. . . ,

Bh =
−→
B

′
h + r∗

−→
Qh.

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vu) ∈ (Z∗
p)

k, pick a random
s ∈ Zp and output (

e(P1, P2)
s ×M, sP, s

(
P3 +

u∑
j=1

Vj

))
.

Decrypt: To decrypt (A, B, C) using the private key dv = (d0, d1, . . .), compute

A× e(d1, C)

e(B, d0)
= e(P1, P2)

s ×M ×
e
(
rP, s

(
P3 +

∑u
j=1 Vj

))
e
(
sP, αP2 + r

(
P3 +

∑k
j=1 Vj

)) = M.

Note: ccHIBE is parametrized by (n1, . . . , nh) and we will write (h, n1, . . . , nh)-ccHIBE to
explicitly denote this parametrization.

8.2.2 Security Reduction

We wish to show that ccHIBE is secure in model M2. Recall that Adv is used to denote
the advantage of an adversary in attacking a HIBE. By the notation Adv

(h,n1,...,nh)-ccHIBE

(h,n′1,...,n′h)-M2
(t, q)

we will denote the maximum advantage of an adversary which runs in time t and makes q
key-extraction queries in attacking (h, n1, . . . , nh)-ccHIBE in the model (h, n′1, . . . , n

′
h)-M2.

Theorem 8.2.1. Let h, n1, . . . , nh, q be positive integers and n′1, . . . , n
′
h be another set of

positive integers with n′i ≤ ni for 1 ≤ i ≤ h. Then

Adv
(h,n1,...,nh)-ccHIBE

(h,n′1,...,n′h)-M2
(t, q) ≤ Advh-wDBDHI∗(t + O(τnq))
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where n =
∑h

i=1 ni.

Proof : We show that an adversary playing the (h, n′1, . . . , n
′
h)-M2 game against a simulator

for the HIBE (h, n1, . . . , nh)-ccHIBE can be converted into an algorithm for the h-wDBDHI∗

problem.
An instance of the h-wDBDHI∗ problem is a tuple 〈P, Q, Y1, . . . , Yh, T 〉 where Yi = αiP

for some random α ∈ Z∗
p and T is either equal to e(P, Q)αh+1

or a random element of G2.

Adversary’s commitment: The adversary outputs I∗1 , . . . , I∗u where 1 ≤ u ≤ h and each
set I∗i is a set of cardinality n′i.

Setup: Define polynomials F1(x), . . . , Fh(x) as follows. For 1 ≤ i ≤ u, define

Fi(x) =
∏
v∈I∗i

(x− v)

= xn′i + ai,n′i−1x
n′i−1 + . . . + ai,1x + ai,0.

For u+1 ≤ i ≤ h, define Fi(x) = x (and so Fi(x) 6≡ 0 mod p for any x ∈ Z∗
p). For 1 ≤ i ≤ u,

define ai,n′i
= 1 and ai,ni

= · · · = ai,n′i+1 = 0; for u + 1 ≤ i ≤ h, set n′i = 1, ai,0 = 0, ai,1 = 1
and ai,2 = · · · = ai,ni

= 0.
For 1 ≤ i ≤ h, define J1(x), . . . , Jh(x) in the following manner.

Ji(x) = bi,ni
xni + bi,ni−1x

ni−1 + . . . + bi,1x + bi,0

where bi,j are random elements of Zp. Note that Fi(x) is of degree n′i while Ji(x) is of degree
ni.

The public parameters are defined as follows. Choose a random β ∈ Zp.

1. P1 = Y1 = αP ;

2. P2 = Yh + βP = (αh + β)P ;

3. P3 =
∑h

i=1(bi,0P + ai,0Yh−i+1); and

4. for 1 ≤ i ≤ h, 1 ≤ j ≤ ni,
Qi,j = bi,jP + ai,jYh−i+1;

The public parameters are (P, P1, P2, P3,
−→
Q 1, . . . ,

−→
Qh) where

−→
Q i = (Qi,1, . . . , Qi,ni

). The
distribution of the public parameters is as expected by the adversary in the original protocol.
The corresponding master key αP2 = Yh+1 + βY1 is unknown to B.
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Phase 1: Suppose a key extraction query is made on v = (v1, . . . , vj) for j ≤ h. (Note that
j may be less than, equal to, or greater than u.)

If j ≤ u, then there must be a k ≤ j such that Fk(vk) 6≡ 0 mod p, as otherwise vi ∈ I∗i
for each i ∈ {1, . . . , j} – which is not allowed by the rules of M2. In case j > u, it is
possible that F1(v1) = · · · = Fu(vu) = 0. Then, since vu+1 ∈ Z∗

p and Fu+1(x) = x, we have
Fu+1(vu+1) 6≡ 0 mod p.

Thus, in all cases, there is a k such that Fk(vk) 6≡ 0 mod p. We choose k to be the first
such value in the range {1, . . . , j} and so for i < k, we have Fi(vi) ≡ 0 mod p. We next show
that it is possible to construct a valid private key for v from what is known to the adversary.

Recall that Yi = αiP and hence Yi1+i2 = αi1Yi2 . Choose a random r in Zp and define

A1 = βY1 −
1

Fk(vk)

(
j∑

i=1

Ji(vi)Yk

)
+ r

(
j∑

i=1

(Fi(vi)Yh−i+1 + Ji(vi)P )

)
;

A2 = − 1

Fk(vk)

∑
i∈{1,...,j}\{k}

Fi(vi)Yh+k−i+1;

A3 =
h∑

i=j+1

(
r(bi,0P + ai,0Yh−i+1)−

1

Fk(vk)
(bi,0Yk + ai,0Yh+k−i+1)

)
.

It is possible to compute A1, A2 and A3 from what is known to the simulator. First note
that Fk(vk) 6≡ 0 mod p and hence 1/Fk(vk) is well defined. The values Fi(vi), Ji(vi) and
P, Y1, . . . , Yh are known to the simulator. Hence, A1 and A3 can be computed directly.
In A2, the values Yh+2, . . . , Yh+k are involved. However, the corresponding coefficients are
Fk−1(vk−1), . . . , F1(v1). By definition, k is the first integer in the set {1, . . . , j} such that
Fk(vk) 6≡ 0 mod p. Hence, Fk−1(vk−1) ≡ · · · ≡ F1(v1) ≡ 0 mod p and consequently, the
values Yh+2, . . . , Yh+k are not required by the simulator in computing A2.

The first component d0 of the private key dv for v is obtained as d0 = A1 + A2 + A3. The
following computation shows that this is proper.

d0 = A1 + A2 + A3

= ±Yh+1 + A1 + A2 + A3

= Yh+1 + βY1 − αk Fk(vk)

Fk(vk)
Yh−k+1 + (A1 − βY1) + A2 + A3

= αP2 +

(
r − αk

Fk(vk)

)
A

where

A =

j∑
i=1

(Ji(vi)P + Fi(vi)Yh−i+1) +
h∑

i=j+1

(bi,0P + ai,0Yh−i+1) .

Now

Ji(vi)P + Fi(vi)Yh−i+1 =

ni∑
l=1

bi,lv
l
iP +

ni∑
l=1

ai,lv
l
iYh−i+1 + bi,0P + ai,0Yh−i+1
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=

ni∑
l=1

vl
iQi,l + bi,0P + ai,0Yh−i+1

= Vi + bi,0P + ai,0Yh−i+1.

Hence,

A =

j∑
i=1

Vi +
h∑

i=1

(bi,0P + ai,0Yh−i+1)

= P3 +

j∑
i=1

Vi.

This shows

d0 = αP2 + r′

(
P3 +

j∑
i=1

Vi

)
where r̃ = r− (αk/Fk(vk)). Since r is random, so is r̃ and hence d0 is properly formed. Also,

d1 = − 1

Fk(vk)
Yk + rP = − αk

Fk(vk)
P + rP = r̃P

which is as required. To form a valid private key r̃
−→
Q i has to be computed for j < i ≤ h.

This is done as follows.

r̃Qi,l =

(
r − αk

Fk(vk)

)
(bi,lP + ai,lYh−i+1)

= r(bi,lP + ai,lYh−i+1)−
1

Fk(vk)
(bi,lYk + ai,lYh+k−i+1) .

Thus, we get

dv =
(
d0, d1, r̃

−→
Q j+1, . . . , r̃

−→
Qh

)
.

Challenge: After completion of Phase 1, the adversary outputs two messages M0, M1 ∈ G2

together with a target identity v∗ = (v∗1, . . . , v
∗
u) on which it wishes to be challenged. The

constraint is each v∗i ∈ I∗i and hence Fi(v
∗
i ) ≡ 0 mod p for 1 ≤ i ≤ u. If u ≤ h, then

aj,0 = 0 for u ≤ j ≤ h. The simulator picks a random b ∈ {0, 1} and constructs the challenge
ciphertext (

Mb × T × e(Y1, βQ), Q,

(
u∑

i=1

Ji(v
∗
i ) +

h∑
i=u+1

bi,0

)
Q

)
.

Suppose, Q = γP for some unknown γ ∈ Zp. Using the fact Fi(v
∗
i ) ≡ 0 mod p for 1 ≤ i ≤ u

and ai,0 = 0 for u + 1 ≤ i ≤ h, we have(
u∑

i=1

Ji(v∗i ) +
h∑

i=u+1

bi,0

)
Q = γ

(
u∑

i=1

(Ji(v∗i )P + Fi(v∗i )Yh−i+1) +
h∑

i=u+1

(ai,0Yh−i+1 + bi,0P )

)

99



= γ

(
P3 +

u∑
i=1

Vi

)
.

If the input provided to the simulator is a true h-wDBDHI∗ tuple, i.e., T = e(P, Q)(αh+1),
then

T × e(Y1, βQ) = e(P, Q)(αh+1) × e(Y1, βQ)

= e(Yh, Q)α × e(βP,Q)α

= e(Yh + βP,Q)α

= e(P2, γP )α

= e(P1, P2)
γ.

So, the challenge ciphertext(
Mb × e(P1, P2)

γ, γP, γ

(
u∑

j=1

Vj + P3

))

is a valid encryption of Mb under v∗ = (v∗1, . . . , v
∗
u). On the other hand, when T is random,

the first component of the challenge ciphertext is a random element of G2 and provides no
information to the adversary.

Phase 2: This is similar to Phase 1.

Guess: Finally, the adversary outputs its guess b′ ∈ {0, 1}. The simulator outputs 1⊕b⊕b′.
This gives us the required bound on the advantage of the adversary in breaking the HIBE

protocol.

8.3 FullccHIBE

In this section, we consider the problem of constructing a constant size ciphertext HIBE
which is secure in the full model. Our construction is based on the IBE scheme given by
Waters [89] and its generalization given in Chapter 5.We note that the possibility of obtaining
such a constant size ciphertext HIBE based on the work in [89] was mentioned as a passing
remark in [19] though no details were provided.

Let the maximum height of the HIBE be h. Any identity v at height k ≤ h is represented
by a k-tuple, v = (v1, . . . , vk) where each vi is an n-bit string. Each vi is represented as
vi = (vi,1, . . . , vi,l), where vi,j is a bit string of length n/l and N = 2n. In other words, an
n-bit identity at each level is represented as l blocks each of length n/l bits. This manner of
representing identities is already used in Chapter 5 and Chapter 6.

In our construction, the public parameter size depends on both the size parameter l
and the height h of the HIBE. If we decrease the value of l, the public parameter size also
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decreases. However, the security of the HIBE degrades as l decreases. Hence, the decrease
in the size of the public parameters comes at an increase in the security degradation. This
trade-off can be converted into a trade-off between the memory required to store the public
parameters and the time required for the different operations. This space/time trade-off
has been studied in details in Chapter 5. A similar space/time trade-off also holds for the
present case.

8.3.1 Construction

Setup: Choose a random secret α ∈ Zp and set P1 = αP . Randomly choose P2; an h-

length vector
−→
P3 = (P3,1, . . . , P3,h); and h many l-length vectors

−→
U1, . . . ,

−→
Uh from G1, where

each
−→
Uj = (Uj,1, . . . , Uj,l). The public parameters consist of the elements

〈P, P1, P2,
−→
P3,
−→
U1, . . . ,

−→
Uh〉

while the master secret is αP2. Note that, for each level i of the HIBE we have l+1 elements
i.e., P3,i and

−→
Ui.

Notation: Let vj be an n-bit string written as vj = (vj,1, . . . , vj,l), where each vj,i is an
(n/l)-bit string. Define

Vj = P3,j +
l∑

i=1

vj,iUj,i.

The modularity introduced by this notation is useful in describing the protocol.

Key-Gen: Given an identity v = (v1, . . . , vk) for k ≤ h, this algorithm generates the

private key dv of v as follows. Choose a random element r ∈ Zp and output

dv =

xP2 + r

 k∑
j=1

Vj

 , rP, rP3,k+1, . . . , rP3,h, r
−→
U k+1, . . . , r

−→
U h


where r

−→
Uj = (rUj,1, . . . , rUj,l).

Note that, the private key for v can also be generated from the private key of (v1, . . . , vk−1)
as is the general requirement for a HIBE scheme. Suppose the private key for (v1, . . . , vk−1)

is (d′0, d
′
1, a

′
k, . . . , a

′
h,
−→
b′k , . . . ,

−→
b′h), where

−→
b′i = 〈b′i,1, . . . , b′i,`〉. Pick a random r′ ∈ Zp and then

dv = (d0, d1, ak+1, . . . , ah,
−→
b k+1, . . . ,

−→
b h), where

d0 = d′0 + a′k +
∑l

i=1 vk,ib
′
k,i + r′

∑k
j=1 Vj;

d1 = d′1 + r′P ;

and for k + 1 ≤ j ≤ h.
aj = a′j + r′P3,j;−→
bj =

−→
b′j + r′

−→
Uj,
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Encrypt: To encrypt a message M ∈ G2 under the public key v = (v1, . . . , vk) choose a
random s ∈ Zp and then the cipher text is

C =

(
e(P1, P2)

s ×M, sP, s
k∑

j=1

Vj

)

where Vj is as defined in Key Generation part.

Decrypt: Let (A, B, C) be a ciphertext and v = (v1, . . . , vk) be the corresponding identity.
Then we decrypt using dv = (d0, d1, . . .) as

A× e(d1, C)

e(B, d0)
= M.

Note that, only the first two components of the private key are required for the decryption.

8.3.2 Security Reduction

Security of the FullccHIBE scheme described above can be reduced from the hardness of the
h-wDBDHI∗ problem. The reduction combines ideas from the proof in Section 8.2.2 with
ideas from the proofs in Chapter 5. In particular, the general idea of tackling adaptive
adversaries including an “artificial abort” stage is from Waters [89], the modification for the
case of 1 < l ≤ n is from Chapter 5 whereas the idea of the simulation of the key-extraction
queries is from the proof in Section 8.2.2 and is based on algebraic techniques originally used
by Boneh and Boyen [17]. To explain this idea further, the simulator in the proof will abort
on certain queries made by the adversary and also on certain challenge identities. The idea
of controlling this abort strategy is based on the technique from [89]. On the other hand, if
on a certain query, the simulator does not abort, then the technique for the actual simulation
of the key-extraction oracle is very similar to the technique in Section 8.2.2.

The challenge generation is a bit different due to the fact that in FullccHIBE level j of
the HIBE has a parameter P3,j, whereas in ccHIBE, there is one parameter P3 for all levels of
the HIBE. In case of BBG-HIBE or its augmented version ccHIBE, the height of the target
identity is fixed in the commitment stage itself. Based on this information the simulator sets
up the HIBE and the effect of the committed identity tuple for BBG-HIBE or the sets of
committed identities in ccHIBE is assimilated in P3. In case of FullccHIBE there is no prior
commitment stage in the reduction and the number of levels in the target identity may vary
between 1 and h. This is the intuitive reason of why we need different P3,i for each level of
the HIBE.

Theorem 8.3.1. The FullccHIBE protocol is (ε, t, q)-IND-ID-CPA secure assuming that the

(t′, ε′, h)-wDBDHI∗ assumption holds, where
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ε ≤ 2ε′/λ;

t′ = t + O(uq) + O(ε−2 ln(ε−1)λ−1 ln(λ−1)); and

λ = 1/(2(4lq2n/l)h).

We assume 2q > 2n/l.

Proof : Suppose A is a (t, q)-CPA adversary for the h-HIBE, then we construct an algorithm
B that solves the h-wDBDHI∗ problem. B takes as input a tuple 〈P, Q, Y1, . . . , Yh, T 〉 where
Yi = αiP for some random α ∈ Z∗

p and T is either equal to e(P, Q)αh+1
or is a random

element of G2. We define the following game between B and A.

Setup: B chooses random u1, . . . , uh ∈ Zm and l-length vectors −→x1, . . . ,−→xh with entries
from Zm. Here m = 2 max(2q, 2n/l) = 4q. Similarly, it chooses random v1, . . . , vh ∈ Zp and
l-length vectors −→y1 , . . . ,−→yh from Zp. It further chooses kj for 1 ≤ j ≤ h randomly from
{0, . . . , µl}, where µl = l(N1/l − 1)}. Let, vj = (vj,1, . . . , vj,l). For 1 ≤ j ≤ h, it then defines
the functions:

Fj(vj) = p + mkj − uj −
l∑

i=1

xj,ivj,i

Jj(vj) = vj +
l∑

i=1

yj,ivj,i

Kj(vj) =

{
0 if uj +

∑l
i=1 xj,ivj,i ≡ 0 mod m

1 otherwise

These functions are used to control the abort strategy by the simulator.
Next, B assigns P1 = Y1, P2 = Yh + yP , P3,j = (p+mkj −uj)Yh−j+1 + vjP for 1 ≤ j ≤ h

and Uj,i = −xj,iYh−j+1 + yj,iP for 1 ≤ j ≤ h and 1 ≤ i ≤ l. It provides A the public

parameters 〈P, P1, P2,
−→
P 3,
−→
U 1, . . . ,

−→
U h〉. Everything else is internal to B. Note that from

A’s point of view the distribution of the public parameters is identical to the distribution of
the public parameters in an actual setup. The master secret αP2 is unknown to B.

Using the definition of the public parameters it is possible to show that

Vj = P3,j +
l∑

i=1

vj,iUj,i = Fj(vj)Yh−j+1 + Jj(vj)P.

As in the proof of Theorem 8.2.1., this fact is crucial to the answering key-extraction queries
and challenge generation.

Phase 1: Suppose A asks for the private key corresponding to an identity v = (v1, . . . , vu),
for u ≤ h. B first checks whether there exists a j ∈ {1, . . . , u} such that K(vj) 6= 0. It aborts
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and outputs a random bit if there is no such j. Otherwise, it answers the query in a manner
similar to that in the proof of Theorem 8.2.1..
B chooses r randomly from Zp and computes

d0|j = − J(vj)

Fj(vj)
Yj + yY1 + r(Fj(vj)Yh−j+1 + J(vj)P );

d1 =
−1

Fj(vj)
Yj + rP.

It is standard to show that d0|j = αP2+r̃Vj and d1 = r̃P , where r̃ = r− αj

Fj(Ij)
. As in the proof

of Theorem 8.2.1., it is possible to show that B can compute r̃Vi for any i ∈ {1, . . . , u} \ {j};
and r̃P3,k, r̃

−→
Uk for u < k ≤ h. The simulator computes d0 = d0|j +

∑
i∈{1,...,u}\{j} r̃Vi. A is pro-

vided the private key corresponding to v as dv =
(
d0, d1, r̃P3,u+1, . . . , r̃P3,h, r̃

−→
U u+1, . . . , r̃

−→
U h

)
.

Note that dv is a valid private key for v following the proper distribution. B will be able
to generate this dv as long as there is a j ∈ {1, . . . , u} such that F (vj, kj) 6≡ 0 for which it
suffices to have K(vj) 6= 0.

Challenge: A submits two messages M0, M1 ∈ G2 and an identity v∗ = (v∗1, . . . , v
∗
h′),

h′ ≤ h on which it wants to be challenged. B aborts and outputs a random bit, if Fj(v
∗
j ) 6≡ 0

for any j ∈ {1, . . . , h′}. Otherwise, B chooses a random bit γ ∈ {0, 1} and gives A the tuple

CT = (T × e(Y1, yQ)×Mγ, Q,
∑h′

j=1 J(v∗j )Q).

If 〈P, Q, Y1, . . . , Yh, T 〉 given to B is a valid h-wDBDHI∗ tuple, i.e., T = e(P, Q)αh+1
then

CT is a valid encryption for Mγ. Suppose Q = cP for some unknown c ∈ Zp. Then the first
component of CT can be seen to be e(P1, P2)

c. Further, using Fj(v
∗
j ) ≡ 0 mod p it can be

shown that J(v∗j )Q = cVj. The correctness of the third component of CT follows from this
fact. If T is a random element of G2, CT gives no information about B’s choice of γ.

Phase 2: Similar to Phase 1, with the restriction that A cannot ask for the private key of
ID∗ or any of its ancestors.

Guess: A outputs a guess γ′ of γ.
A lower bound λ on the probability of aborting up to this stage is the following.

λ =
1

2(4lq2n/l)h
.

Waters [89] obtains a similar bound (for the case l = n) in the context of an IBE secure
in the full model under the DBDH assumption. In the same paper, Waters had suggested
a construction for HIBE where new public parameters are generated for each level of the
HIBE. Generating new public parameters for each level of the HIBE simplifies the probability
analysis for the lower bound on the probability of abort.
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The security of FullccHIBE is based on the h-wDBDHI∗ problem which is obtained by
modifying the BBG-HIBE. For each level of the HIBE we have separate public parameters
P3,i and (Ui,1, . . . , Ui,l). This makes it possible to easily apply the reasoning of Waters leading
to the above mentioned lower bound.

At this point, we have to also use the technique of “artificial abort” employed by Wa-
ters [89]. The idea is that the probability of aborting up to this is not independent of the
adversarial queries. The idea of the artificial abort technique is to allow the simulator to
sample the transcript of queries it obtained from the adversary and on certain conditions
abort and output a random bit. This increases the total probability of abort and makes it
almost equal for all adversarial inputs. This helps in the probability analysis. The effect of
sampling the transcript is to increase the runtime of the simulator. See [89] for the details.
Incorporating the probability analysis of Waters into the present situation in a straightfor-
ward manner we obtain the required result.

8.4 Conclusion

In this chapter, we have presented two variants of the constant size ciphertext HIBE pro-
posed by Boneh, Boyen and Goh [19]. Both the constructions have constant size ciphertext
expansion. The first variant is proved to be secure in the generalized selective-ID model M2

introduced in Chapter 7 while the second variant is secure in the full model. We combine
techniques from several works along with the BBG-HIBE to obtain the new constructions
and their proofs.
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Chapter 9

Augmented Selective-ID Model: Case

of Constant Size Ciphertext HIBE

9.1 Introduction

In this chapter, we augment the selective-ID security model by giving more power to the
adversary. Recall that, for a HIBE of maximum height h, in the sID model the adversary
commits to an identity tuple v∗ = (v∗1, . . . , v

∗
j ), j ≤ h and in the challenge phase obtains

an encryption under v∗. In the augmented version, which we call selective+-ID model, the
adversary is allowed in the challenge phase to ask for an encryption under v+ = (v∗1, . . . , v

∗
j′),

where 1 ≤ j′ ≤ j. This way we provide additional flexibility to the adversary in choosing
the target identity.

In the sID model, the adversary is restricted from making private key query for any prefix
of v∗. Consequently, a “natural” intuition is that the adversary be allowed to choose any
prefix of v∗ as a challenge identity. Unfortunately, the selective-ID model does not allow this
flexibility to the adversary. In the s+ID model, this flexibility is introduced and the challenge
identity is allowed to be any prefix of v∗. Clearly, any protocol secure in the s+ID model is
also secure in the sID model, though the converse is not necessarily true.

We show that the security reduction for BB-HIBE [17] satisfies this notion of s+ID se-
curity. On the other hand, the security proof of the BBG-HIBE does not go through in the
s+ID model. A simple modification of this proof gives a proof of security for the BBG-HIBE
in the s+-ID model. But this proof yields a multiplicative security degradation by a factor of
h, where h is the maximum number of levels in the HIBE. Admittedly, a security degradation
by a factor of h is not much. However, the sID and the s+ID models are really restrictive
models and one would like to obtain a protocol without any security degradation. We modify
the BBG-HIBE to obtain a new constant size ciphertext HIBE, G1 which is secure in the
s+ID model without any security degradation.

Identities in the BBG-HIBE are tuples whose components are elements of Z∗
p, where p is
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a suitable large prime. It is an easy observation that if these components are allowed to be
elements of Zp, then the BBG-HIBE is not secure (we provide the details in Section 9.2.2).
In our construction, G1, we allow the components of the identity tuples to be elements of Zp.

We next modify this construction to obtain a constant size ciphertext HIBE, G2 which is
proved to be secure in model M2 augmented in the line of s+ID model.

Our third construction is a product construction, in the sense that the constructed HIBE
can be seen to be a “product” of two individual HIBEs. We have mentioned in Section 3.4
that a product construction combining the BB-HIBE and the BBG-HIBE has been presented
in [19]. We consider the product of H1 of Chapter 7 with G2 to obtain a new HIBE G3. This
HIBE is secure in model M1 and reduces the size of the ciphertext in H1 by a factor of h,
where h is the number of levels in G2.

The decryption subkey (i.e., the part of the private key required for decryption) for both
G1 and G2 are equal to that of BBG-HIBE. While in G3 the size of the decryption subkey is
reduced by a factor of h over the size of the decryption subkeys in H1.

9.2 From Selective-ID to Selective+-ID Model

We modify the challenge phase of the selective-ID model to give more power to the adversary.

Challenge: A outputs two equal length messages M0, M1 and an identity v+ where v+ is
either v∗ or any of its prefixes. In response it receives an encryption of Mγ under v+, where
γ is chosen uniformly at random from {0, 1}.

We refer to this new model as selective+-ID model (s+ID model in short). This model
is stronger than the original sID model because now the adversary is allowed to ask for a
challenge ciphertext not only on v∗ but also on any of its prefixes. In case of IBE both the
models are same as we have only one level. For HIBE, a protocol secure in the selective+-ID
model is obviously secure in the selective-ID model, however the converse may not hold. We
now analyse two well known HIBEs in the light of this new model.

9.2.1 Case of Boneh-Boyen HIBE

We show that the Boneh-Boyen HIBE discussed in Section 3.2.1 is secure in the s+-ID model.
The original reduction as discussed in Section 3.2.1 goes through without almost any

modification for the s+-ID model. The only change is in challenge generation.

Initialization: A commits to a target identity v∗ = v∗1, . . . , v
∗
k of height k ≤ h. If k < h,

B adds extra random elements from Zp to make v∗ an identity of height h.

Setup: B picks random α1, . . . , αh ∈ Zp and defines Qj = αjP − v∗jP1 for 1 ≤ j ≤ h. It
gives A the public parameters PP = 〈P, P1, P2, Q1, . . . , Qh〉. Here the msk = aP2 = abP is
unknown to B. Define the function Fj(x) = xP1 + Qj = (x− v∗j )P1 + αjP for 1 ≤ j ≤ h.
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Phase 1 and Phase 2: As discussed in Section 3.4.1.

Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈ G2 and an
identity tuple v+ = v∗1, . . . , v

∗
u, u ≤ k. B chooses a random bit γ and forms the ciphertext

C = 〈Mγ · Z, cP, α1cP, . . . , αucP 〉. Note that, Fi(v
∗
i ) = αiP , so

C = 〈Mγ · Z, cP, cF1(v
∗
1), . . . , cFu(v

∗
u)〉.

If Z = e(P, P )abc = e(P1, P2)
c then C is a valid encryption of Mγ.

9.2.2 Case of Boneh-Boyen-Goh HIBE

The original BBG-HIBE protocol has been described in Section 3.4.1.
The BBG-HIBE is proved to be secure in the selective-ID model (Theorem 3.1 of [19]).

We now show that the proof is not sufficient for the augmented s+ID model and how can it
be modified to achieve security in the s+ID model.

In the original sID model, an adversary declares an identity v∗ that it intends to attack
before the system is set up. Suppose v∗ = (v∗1, . . . , v

∗
m) where m ≤ h. In the reduction given

in [19], the following is done. If m < h then the simulator appends (h−m) zeros to v∗ so that
v∗ is a vector of length h. Note that, in the protocol individual components of an identity
are elements of Z∗

p so the adversary is restricted from making a query where one or more
components of the identity is 0. (BB-HIBE does not have this restriction). The reduction
in [19] crucially depends on this step.

In the protocol, a single element of G1 (i.e. Qi) is associated with the ith level of the
HIBE and we have another element, namely P3 which is required for the security reduction.

The simulator B is given as input a random tuple (P, Q, Y1, . . . , Yh, T ) where Yi = αiP s
for 1 ≤ i ≤ h for some unknown α. The task of B is to decide whether T = e(P, Q)αh+1

or
T is a random element of G2.

We now reproduce the relevant steps of the reduction in Theorem 3.1 in [19].

Setup: B picks a random γ ∈ Zp and sets P1 = Y1 = αP and P2 = Yh + γP . Next, B
picks random γ1, . . . , γh ∈ Zp and sets Qj = γjP − Yh−j+1 for j = 1, . . . , h. B also picks

a random δ ∈ Zp and sets P3 = δP +
∑h

j=1 v∗jYh−j+1. B gives A the public parameters
〈P, P1, P2, P3, Q1, . . . , Qh〉.

Note that, the effect of v∗ = (v∗1, . . . , v
∗
m) is assimilated in P3. In case, m (the depth of

the challenge identity tuple v∗) is less than h, we have v∗m+1 = · · · = v∗h = 0, so v∗jYh−j+1 for
m < j ≤ h has no effect on P3. The Qjs in the public parameter are independent of the
target identity and depends only on the Yh−j+1s after suitable randomization. In contrast,
in case of the BB-HIBE, each Qj depends on v∗j i.e., the component corresponding to level j
in target identity v∗ and we have no term like P3.

Given this setup, Boneh, Boyen and Goh show that all the private key queries of A can
be answered (see Phase 1 in the proof of Theorem 3.1 in [19] for details).
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Now, suppose in the challenge phase A asks the encryption under v+ which is a prefix of
v∗, i.e., v+ = v∗1, . . . , v

∗
µ, µ ≤ m. If µ = m, then the original reduction goes through and we

get a proper encryption of Mb provided the input instance is a true h-wDBDHI∗ instance.
However, if µ < h, then the original reduction in [19] does not give a proper encryption of
Mb even if the input is a true h-wDBDHI∗ instance as we show below.

Let Q = cP for some unknown c ∈ Zp, then third component of the challenge ciphertext
is

C =

(
δ +

h∑
j=1

v∗jγj

)
Q

= c

(
h∑

j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗jYh−j+1

)
= c(v∗1Q1 + . . . , v∗mQm + P3) since v∗m+1 = · · · = v∗h = 0

However, this corresponds to an encryption under v∗ not v+. To get a valid encryption under
v+ = v∗1, . . . , v

∗
µ, the third component of the ciphertext should be of the form

C ′ = c(v∗1Q1 + · · ·+ v∗µQµ + P3)

= c

(
µ∑

j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗jYh−j+1

)

= c

(
µ∑

j=1

v∗jγjP + δP +
m∑

j=µ+1

v∗jYh−j+1

)

=

(
δ +

µ∑
j=1

v∗jγj

)
Q + c

m∑
j=µ+1

v∗jYh−j+1

This C ′ cannot be computed by B without the knowledge of c.
So we see that the BB-HIBE satisfies the security requirement of s+-ID model but the

BBG-HIBE does not. This difference is due to the fact that the simulator in the BBG-
HIBE assimilates the effect of the challenge identity tuple in a single element in the public
parameter (i.e., P3) where as in case of BB-HIBE the public parameter corresponding to
each level depends on the corresponding component in the target. So the reduction in [19]
provides a proof of security against an adversary in the sID model. However, in the modified
s+-ID model the adversary is free to choose the length of the target identity to be any value
between 1 and m. Because of the construction of P3 in the reduction of [19], B cannot form
a proper challenge unless µ = m.

Another difference in the BB-HIBE and the BBG-HIBE is that in the former, components
of identities are elements of Zp, whereas in the later the identity components are elements
of Z∗

p. It is an easy observation that if zero is allowed to be an identity component, then
the BBG-HIBE is not secure. A sketch of the argument is as follows. In the sID game,
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an adversary has to commit to an identity before the HIBE is set-up. Let adversary A
commit to an identity v∗ = (v∗1, . . . , v

∗
k) for some k with 1 ≤ k < h. In the query phase,

A issues a private key query for the identity v = (v∗1, . . . , v
∗
k, 0) which is a valid query if

0 is allowed. In return, A is provided the private key of dv = (d0, d1, . . .). Then d0 =
αP2 +r(v∗1Q1, . . . , v

∗
kQk +0 ·Qk+1 +P3) and d1 = rP for some random r ∈ Zp. Using (d0, d1),

A can decrypt any message encrypted for v∗. Removing 0 from the identity space avoids
this situation and allows a proof of the BBG-HIBE in the sID model.

Modified Reduction

We modify the security reduction of BBG-HIBE in the following way. Suppose, as before
the adversary committed to an identity tuple v∗ = (v∗1, . . . , v

∗
h′) in the commitment stage.

During setup, B choses a random u from {1, . . . , h′} and forms the public parameters as in
the original reduction assuming that v+ = (v∗1, . . . v

∗
u) will be the target identity in challenge

stage. This means that during setup, the simulator augments v+ by appending zeros and
forming a tuple of length h.

The above change does not affect the simulator’s ability to answer key extraction queries.
In the challenge phase, B can form a proper encryption only if the target identity tuple is
v+. The target identity submitted by the adversary should be a prefix of v∗. If this is not
equal to v+ then B aborts the game and outputs one with probability half. Otherwise, it
returns a proper challenge as in the original reduction, provided the input instance is a true
h-wDBDHI∗ tuple.

Since, 1 ≤ u ≤ h′ ≤ h and u is chosen uniformly at random, we have Pr[abort] ≥ 1/h.
This leads to a multiplicative degradation by a factor of h, i.e., ε ≤ hε′, where ε is A’s
advantage against BBG-HIBE and ε′ is the advantage of solving h-wDBDHI∗.

9.3 Constant Size Ciphertext HIBE in Selective+-ID

Model

We augment the BBG-HIBE to obtain a new constant size ciphertext HIBE secure in the
selective+-ID model without any degradation. We call this new protocol G1. The basic intu-
ition is to replace P3 in BBG-HIBE by a vector

−→
P 3 = (P3,1, . . . , P3,h) where P3,i corresponds

to the ith level of the HIBE.

9.3.1 Construction

Let the maximum height of the HIBE be h. The identities at a depth u ≤ h are of the form
v = (v1, . . . , vu) ∈ Zu

p . Note that, we also allow 0 as a valid identity component. Messages
are elements of G2.
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Setup: Let 〈P 〉 = G1. Choose a random α ∈ Zp and set P1 = αP . Choose a random

element P2 ∈ G1 and two random h length vectors
−→
P 3,
−→
Q ∈ Gh

1 where
−→
P 3 = (P3,1, . . . , P3,h)

and
−→
Q = (Q1, . . . , Qh). Set the public parameter as PP = (P, P1, P2,

−→
P 3,
−→
Q) while the

master key is P4 = αP2. Instead of P1, P2, e(P1, P2) can also be kept as part of PP. This
avoids the pairing computation during encryption.

Key-Gen: Given an identity v = (v1, . . . , vk) ∈ (Zp)
k of depth k ≤ h, pick a random r ∈ Zp

and output

dv =

(
αP2 + r

k∑
j=1

Vj, rP, rP3,k+1, . . . , rP3,h, rQk+1, . . . , rQh

)

where Vj = P3,j + vjQj . The private key at level k consists of 2(h− k + 1) elements of G1.

Among these 2(h− k +1) elements only the first two are required in decryption, the rest are
used to generate the private key for the next level as follows:
Let the secret key corresponding to the identity v|k−1 = (v1, . . . , vk−1) be

dv|k−1
= (A0, A1, Bk, . . . , Bh, Ck, . . . , Ch)

where A0 = αP2 + r′
∑k−1

j=1 Vj, A1 = r′P , and for k ≤ j ≤ h, Bj = r′P3,j, Cj = r′Qj. Pick a
random r∗ ∈ Zp and compute

dv = (A0 + Bk + vkCk + r∗
∑k

j=1 Vk, A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,
Ck+1 + r∗Qk+1, . . . , Ch + r∗Qh).

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk) ∈ (Zp)
k, pick a random

s ∈ Zp and output

CT =

(
e(P1, P2)

s ×M, sP, s

(
k∑

j=1

Vj

))
where Vj is as defined in Key Generation.

Decrypt: To decrypt CT = (A, B, C) using the private key dv = (d0, d1, . . .) of v =
v1, . . . , vk), compute

A× e(d1, C)

e(B, d0)
= e(P1, P2)

s ×M ×
e
(
rP, s

∑k
j=1 Vj

)
e
(
sP, xP2 + r

∑k
j=1 Vj

) = M.
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Table 9.1: Comparison of BBG-HIBE and G1.

Protocol/ id PP max pvt dec. subkey/ enc. eff. dec. eff. security
Sec. Model comp size key size CT expansion degradation

G1 in s+ID Zp 3 + 2h 2h 2 h + 2 2 none

BBG in s+ID Z∗p 4 + h h + 1 2 h + 2 2 h

BBG in sID Z∗p 4 + h h + 1 2 h + 2 2 none

The columns PP size, max pvt key size, dec. subkey/CT expansion stand for the number of elements

of G1 in public parameter, private key, decryption subkey and ciphertext expansion respectively. The

column enc. eff stands for the number of scalar multiplications in G1 during encryption while the

column dec. eff denotes the number of pairing computations during decryption. All values are for

a HIBE of maximum height h.

Comparison to BBG protocol

The protocol G1 is a modification of the BBG-HIBE with a different P3,i for each level of the
HIBE. This is required to get a proof of security in the augmented s+-ID model without any
security degradation. This reduction is provided in the next section. Additionally, it allows
identity components to be elements of Zp, instead of Z∗

p as in BBG-HIBE. On the other
hand, this modification only affects the efficiency of the BBG-HIBE in a small way. The first
thing to note is the size of the ciphertext is still constant (three elements). Secondly, the
size of the public parameter as well as private key is linear in the length of the HIBE and
private key size decreases as we “go down” the HIBE. These two properties ensure that the
applications mentioned in [19] also hold for the new HIBE described above. In particular, it
is possible to combine the new HIBE with the BB-HIBE of [17] to get an intermediate HIBE
with controllable trade-off between the size of the ciphertext and the size of the private key.
Further, the application to the construction of forward secure encryption protocol mentioned
in [19] can also be done with the new HIBE.

9.3.2 Security

Semantic security (i.e., (CPA-security) of the above scheme in the s+-ID model is proved
under the h-wDBDHI∗ assumption.

Theorem 9.3.1. Let (t′, ε, h)-wDBDHI∗ assumption holds in 〈G1, G2, e()〉. Then the HIBE

G1 is (t, q, ε)-IND-sID-CPA secure for q ≥ 1, t′ ≈ t + O(τq) where τ is the time for a scalar

multiplication in G1.

Proof : Suppose A is a (t, q, ε)-CPA adversary for the G1, then we construct an algorithm
B that solves the h-wDBDHI∗ problem. B takes as input a tuple 〈P, Q, Y1, . . . , Yh, T 〉 where
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Yi = αiP for some random α ∈ Z∗
p and T is either equal to e(P, Q)αh+1

or a random element
of G2. We define the s+ID game between B and A as follows.

Initialization: A outputs an identity tuple v∗ = (v∗1, . . . , v
∗
u) ∈ (Zp)

u for any u ≤ h. The
restriction on A is that it cannot ask for the private key of v∗ or any of its prefixes and in
challenge stage it asks for an encryption under v∗ or any of its prefixes. In case u < h, B
chooses random v∗u+1, . . . , v

∗
h from Zp and keeps these extra elements to itself. (Note that B

is not augmenting the target identity to create a new target identity.)

Setup: B picks random β, β1, . . . , βh and c1, . . . , ch in Zp. It then sets

P1 = Y1 = αP ; P2 = Yh + βP = (αh + β)P ; and for 1 ≤ j ≤ u,
Qj = βjP − Yh−j+1; P3,j = cjP + v∗jYh−j+1; and for u < j ≤ h,
Qj = βjP ; P3,j = cjP + v∗jYh−j+1.

B declares the public parameter as (P, P1, P2,
−→
P 3,
−→
Q), where

−→
Q = (Q1, . . . , Qh),

−→
P 3 =

(P3,1, . . . , P3,h). The corresponding master key αP2 = Yh+1 +βY1 is unknown to B. B defines
the functions Fj = v∗j − vj for 1 ≤ j ≤ u and Fj = v∗j for u < j ≤ h and Jj = cj + βjvj for
1 ≤ j ≤ h.

Phase 1: Suppose A asks for the private key corresponding to an identity v = (v1, . . . , vm)
for m ≤ h. Note that for any j ≤ u,

Vj = P3,j + vjQj

= cjP + v∗jYh−j+1 + vj(βjP − Yh−j+1)

= (v∗j − vj)Yh−j+1 + (cj + βjvj)P

= FjYh−j+1 + JjP.

Similarly, for u < j ≤ h

Vj = P3,j + vjQj = cjP + v∗jYh−j+1 + vjβjP = FjYh−j+1 + JjP.

Hence, Vj for 1 ≤ j ≤ h is computable from what is known to B.
Recall that u is the length of v∗ that the adversary committed to before the set-up phase.

If m ≤ u, then there must be a k ≤ τ such that Fk 6= 0, as otherwise the queried identity is
a prefix of the target identity. In case m > u, it is possible that F1 = · · · = Fu = 0. Then
by construction, Fu+1 6= 0. Let k be the smallest in {1, . . . ,m} such that Fk 6= 0. B picks a
random r ∈ Zp and assigns d0|k = (−Jk/Fk)Yk + βY1 + rVk and d1 = (−1/Fk)Yk + rP. Now,

d0|k = −Jk

Fk

Yk + βY1 + αkYh−k+1 − αk Fk

Fk

Yh−k+1 + rVk = αP2 + r̃Vk
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where r̃ = (r− αk

Fk
). Also d1 = − 1

Fk
Yk +rP = −αk

Fk
P +rP = r̃P . For any j ∈ {1, . . . ,m}\{k}

we have

r̃Vj = (r − αk

Fk

)(FjYh−j+1 + JjP )

= r(FjYh−j+1 + JjP )− 1

Fk

(FjYh+k−j+1 + JjYk).

For j < k, Fj = 0, so B can compute all these r̃Vjs from what it has. It forms

d0 = d0|k +
∑

j∈{1,...,m}\{k}

r̃Vj = αP2 + r̃
m∑

j=1

Vj.

To form a valid private key B also needs to compute r̃P3,j and r̃Qj for m < j ≤ h. Now,

r̃P3,j =

(
r − αk

Fk

)
(cjP + v∗jYh−j+1)

= r(cjP + v∗jYh−j+1)−
1

Fk

(
cjYk + v∗jYh+k−j+1

)
;

For j ≤ u,

r̃Qj =

(
r − αk

Fk

)
(βjP − Yh−j+1) = r(βjP − Yh−j+1)−

1

Fk

(βjYk − Yh+k−j+1)

and for u < j ≤ h,

r̃Qj =

(
r − αk

Fk

)
βjP = rβjP −

1

Fk

βjYk.

All these values are computable from what is known to B. Hence, B forms the private key
as:

dv = (d0, d1, r̃P3,m+1, . . . , r̃P3,h, r̃Qm+1, . . . , r̃Qh)

and provides it to A.

Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈ G2 on which
it wishes to be challenged and v+ = v∗1, . . . , v

∗
u′ where u′ ≤ u ≤ h. B picks a random b ∈ {0, 1}

and provides A the challenge ciphertext

CT =

(
Mb × T × e(Y1, βQ), Q,

(
u′∑

j=1

(cj + βjv
∗
j )

)
×Q

)
.

Suppose, Q = γP for some unknown γ ∈ Zp. Then(
u′∑

j=1

cj + βjv
∗
j

)
×Q = γ

(
u′∑

j=1

cj + βjv
∗
j

)
P
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= γ

u′∑
j=1

(
cjP + v∗jYh−j+1 + v∗j (βjP − Yh−j+1)

)
= γ

u′∑
j=1

(
P3,j + v∗jQj

)
= γ

(
u′∑

j=1

Vj

)
.

If the input provided to B is a true h-wDBDHI∗ tuple, i.e., T = e(P, Q)(αh+1), then

T × e(Y1, βQ) = e(P, Q)(αh+1) × e(Y1, βQ) = e(Yh + βP,Q)α = e(P1, P2)
γ.

So, the challenge ciphertext is

CT =

(
Mb × e(P1, P2)

γ, γP, γ

(
u′∑

j=1

Vj

))
.

CT is a valid encryption of Mb under v+ = (v∗1, . . . , v
∗
u′). On the other hand, when T is

random, CT is random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A places at most q queries in Phase 1 and
2 together.

Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1⊕ b⊕ b′.
A’s view in the above simulation is identical to that in a real attack. This gives us the

required bound on the advantage of the adversary in breaking the HIBE protocol.

9.4 Augmenting to M+
2

Like the augmentation of the selective-ID model to selective+-ID model, we can augment
M2 proposed in Chapter 7 in an obvious way to M+

2 . Suppose the adversary of an h-HIBE
has committed to a set of target identities, I∗1 , . . . , I∗u where u ≤ h. Then in the challenge
phase it outputs a target identity v∗1, . . . , v

∗
u′ where 1 ≤ u′ ≤ u and each v∗j ∈ I∗j .

The HIBE H2 proposed in Chapter 7 is also secure in M+
2 . ccHIBE of Chapter 8 secure

in M2 can be proved to be secure in M+
2 with a multiplicative security degradation of h.

Here, we show how G1 can be augmented to M+
2 .

9.4.1 Construction

We augment G1 to obtain security in model M+
2 and call this new protocol (h, n1, . . . , nh)-G2

or simply G2.
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The maximum height of the HIBE be h. The identities at a depth u ≤ h are of the form
v = (v1, . . . , vu) ∈ (Zp)

u. Messages are elements of G2.

Setup: Let 〈P 〉 = G1. Choose a random α ∈ Zp and set P1 = αP . Choose a random

element P2 ∈ G1 and a random h length vector
−→
P 3 = (P3,1, . . . , P3,h), where each P3,i ∈ G1.

Also choose random vectors
−→
Q 1, . . . ,

−→
Qh where each

−→
Q i consists of ni elements of G1. Set

the public parameter as PP = (P, P1, P2,
−→
P 3,
−→
Q 1, . . . ,

−→
Qh) while the master key is P4 = αP2.

Instead of P1, P2, e(P1, P2) can also be kept as part of PP. This avoids the pairing computation
during encryption.

Note that, while the original BBG scheme and ccHIBE of Chapter 8 had a single element
P3 in the public parameter, we have a vector

−→
P 3 of length h.

Key-Gen: Let, V (i, y) = yniQi,ni
+ · · · + yQi,1 for any y ∈ Zp. Given an identity v =

(v1, . . . , vk) ∈ Zk
p of depth k ≤ h, pick a random r ∈ Zp and output

dv =

(
αP2 + r

k∑
j=1

Vj, rP, rP3,k+1, . . . , rP3,h, r
−→
Q k+1, . . . , r

−→
Qh

)

where Vj = P3,j + V (j, vj) . The private key at level k consists of (2 + h − k +
∑h

i=k+1 ni)

elements of G1. Among these, only the first two are required in decryption, the rest are used
to generate the private key for the next level as follows:
Let the secret key corresponding to the identity v|k−1 = (v1, . . . , vk−1) be

dv|k−1
= (A0, A1, Bk, . . . , Bh,

−→
C k, . . . ,

−→
C h)

where A0 = αP2 + r′
∑k−1

j=1 Vj, A1 = r′P , and for k ≤ j ≤ h, Bj = r′P3,j,
−→
C j =

r′Qj,1, . . . , r
′Qj,nj

= 〈Cj,nj
〉 Pick a random r∗ ∈ Zp and compute

dv = (A0 + Bk +
∑nk

i=1 vi
kCk,i + r∗

∑k
j=1 Vj, A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,−→
C k+1 + r∗

−→
Q k+1, . . . ,

−→
C h + r∗

−→
Qh).

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk) ∈ (Zp)
k, pick a random

s ∈ Zp and output

CT =

(
e(P1, P2)

s ×M, sP, s

(
k∑

j=1

Vj

))
where Vj is as defined in Key Generation.
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Decrypt: To decrypt CT = (A, B, C) using the private key dv = (d0, d1, . . .) of v =
(v1, . . . , vk), compute

A× e(d1, C)

e(B, d0)
= e(P1, P2)

s ×M ×
e
(
rP, s

∑k
j=1 Vj

)
e
(
sP, αP2 + r

∑k
j=1 Vj

) = M.

9.4.2 Security

Semantic security (i.e., CPA-security) of the above scheme in model M+
2 is proved under

the h-wDBDHI∗ assumption. Note that, the additional flexibility in terms of choosing the
target identity that we allowed to the adversary in the s+ID model is also applicable here.

Theorem 9.4.1. Let n1, . . . , nh, q and n′1, . . . , n
′
h be two sets of positive integers with n′i ≤ ni

for 1 ≤ i ≤ h. Then for t ≥ 1, q ≥ 1

Adv
(h,n1,...,nh)-G2

(h,n′1,...,n′h)-M+

2

(t, q) ≤ Advh-wDBDHI∗(t + O(τnq))

where n =
∑h

i=1 ni.

Proof : Suppose A is a (t, q)-CPA adversary for G2, then we construct an algorithm B
that solves the h-wDBDHI∗ problem. B takes as input a tuple 〈P, Q, Y1, . . . , Yh, T 〉 where
Yi = αiP for some random α ∈ Z∗

p and T is either equal to e(P, Q)αh+1
or a random element

of G2. We define the modified M+
2 game between B and A as follows.

Initialization: A outputs sets of target identities for each level of the HIBE as (I∗1 , . . . , I∗u)
where each I∗i is a set of cardinality n′i for any u ≤ h.

Setup: B defines polynomials F1(x), . . . , Fh(x) where for 1 ≤ i ≤ u,

Fi(x) =
∏
v∈I∗i

(x− v)

= xn′i + ai,n′i−1x
n′i−1 + . . . + ai,1x + ai,0

For u < i ≤ h, define Fi(x) = ai,0 where ai,0 is a random element of Z∗
p. For 1 ≤ i ≤ u, let

ai,n′i
= 1 and ai,ni

= · · · = ai,n′i+1 = 0. For u < i ≤ h we set n′i = 0 and ai,ni
= · · · = ai,1 = 0.

For 1 ≤ i ≤ h define

Ji(x) = bi,ni
xni + bi,ni−1x

ni−1 + . . . + bi,1x + bi,0

where bi,j are random elements of Zp. It then sets

P1 = Y1 = αP ; P2 = Yh + βP = (αh + β)P ; and for 1 ≤ i ≤ h, 1 ≤ j ≤ ni

Qi,j = bi,jP + ai,jYh−i+1; P3,j = bi,0P + ai,0Yh−i+1.
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B declares the public parameters to be

(P, P1, P2,
−→
P 3,
−→
Q 1, . . . ,

−→
Qh),

where
−→
P 3 = (P3,1, . . . , P3,h) and

−→
Q i = (Qi,1, . . . , Qi,ni

). The corresponding master key
αP2 = Yh+1 + βY1 is unknown to B. The distribution of the public parameter is as expected
by A.

Phase 1: Suppose A asks for the private key corresponding to an identity v = (v1, . . . , vh′)
for h′ ≤ h. Note that for any i ≤ η′,

Vi = P3,i +

ni∑
j=1

vj
i Qi,j

= bi,0P + ai,0Yh−i+1 +

ni∑
j=1

vj
i (bi,jP + ai,jYh−i+1)

= Fi(vi)Yh−i+1 + Ji(vi)P.

Hence, Vi is computable from what is known to B.
Recall that A initially committed to sets of identities up to level u before the set-up

phase. If h′ ≤ u, then there must be a k ≤ h′ such that Fk(vk) 6= 0, as otherwise vj ∈ I∗j for
each j ∈ {1, . . . , h′} – which the adversary is not allowed by the rules of the Game. In case
h′ > u, it is possible that F1(v1) = · · · = Fu(vu) = 0. Then by construction Fu+1 6= 0. So, in
either case there is a k such that Fk(vk) 6= 0. Moreover, k is the first such index in the range
{1, . . . , h′}. B picks a random r ∈ Zp and assigns d0|k = (−Jk(vk)/Fk(vk))Yk +βY1 + rVk and
d1 = (−1/Fk(vk))Yk + rP. Now,

d0|k = −Jk(vk)

Fk(vk)
Yk + βY1 + αkYh−k+1 − αk Fk(vk)

Fk(vk)
Yh−k+1 + rVk

= −Jk(vk)

Fk(vk)
αkP + αP2 − αk Fk(vk)

Fk(vk)
Yh−k+1 + rVk

= αP2 + r̃Vk

where r̃ = (r − αk

Fk(vk)
). Also d1 = − 1

Fk(vk)
Yk + rP = − αk

Fk(vk)
P + rP = r̃P . For any

j ∈ {1, . . . , h′} \ {k} we have

r̃Vj = (r − αk

Fk(vk)
)(Fj(vj)Yh−j+1 + Jj(vj)P )

= r(Fj(vj)Yh−j+1 + Jj(vj)P )− 1

Fk(vk)
(Fj(vj)Yh+k−j+1 + Jj(vj)Yk).

Recall that, k is the smallest in the range {1, . . . , h′}, such that, Fk(vk) 6= 0. Hence, for

j < k, Fj(vj) = 0 and r̃Vj = rJj(vj)P − Jj(vj)Yk

Fk(vk)
. For j > k, Yh+k−j+1 varies between Y1 to
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Yh. So B can compute all these r̃Vjs from the information it has. It forms

d0 = d0|k +
∑

j∈{1,...,h′}\{k}

r̃Vj = αP2 + r̃
h′∑

j=1

Vj.

To form a valid private key, B also needs to compute r̃P3,i and r̃
−→
Q i for h′ < i ≤ h. Now,

r̃P3,i =

(
r − αk

Fk(vk)

)
(bi,0P + ai,0Yh−i+1)

= r(bi,0P + ai,0Yh−i+1)−
1

Fk(vk)
(bi,0Yk + aj,0Yh+k−i+1) ;

r̃Qi,j =

(
r − αk

Fk(vk)

)
(bi,jP + ai,jYh−i+1)

= r(bi,jP + ai,jYh−i+1)−
1

Fk(vk)
(bi,jYk + ai,jYh+k−i+1) .

All these values are computable from what is known to B. Hence, B forms the private key
as:

dv =
(
d0, d1, r̃P3,τ+1, . . . , r̃P3,h, r̃

−→
Q τ+1, . . . , r̃

−→
Qh

)
and provides it to A.

Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈ G2 together
with a target identity v∗ = (v∗1, . . . , v

∗
u′), u′ ≤ u, on which it wishes to be challenged. The

constraint is each v∗j ∈ I∗j and hence Fj(v
∗
j ) = 0 for 1 ≤ j ≤ u′ ≤ u. B picks a random

b ∈ {0, 1} and provides A the challenge ciphertext

CT =

(
Mb × T × e(Y1, βQ), Q,

(
u′∑

i=1

Ji(v
∗
i )

)
×Q

)
.

Suppose, Q = γP for some unknown γ ∈ Zp. Then

u′∑
j=1

Jj(v
∗
j )Q = γ

u′∑
j=1

(
Jj(v

∗
j )P + Fj(v

∗
j )Yh−j+1

)
= γ

(
u′∑

j=1

Vj

)
.

If the input provided to B is a true h-wDBDHI∗ tuple, i.e., T = e(P, Q)(αh+1), then

T × e(Y1, βQ) = e(P, Q)(αh+1) × e(Y1, βQ) = e(Yh + βP,Q)α = e(P1, P2)
γ.
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So, the challenge ciphertext is

CT =

(
Mb × e(P1, P2)

γ, γP, γ

(
u′∑

j=1

Vj

))
.

CT is a valid encryption of Mb under v∗ = (v∗1, . . . , v
∗
u′). On the other hand, when T is

random, CT is random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A places at most q queries in Phase 1 and
2 together.

Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1⊕ b⊕ b′.

A’s view in the above simulation is identical to that in a real attack. This gives us the
required bound on the advantage of the adversary in breaking the HIBE protocol.

9.5 Composite Scheme

We have mentioned in Section 3.4 that Boneh-Boyen-Goh [19] proposed a “product” con-
struction based on the BBG-HIBE and the BB-HIBE. A similar construction is possible
based on the HIBE G1 of Section 9.3 and BB-HIBE. The resulting HIBE is secure in s+ID
model. On the other hand, in Chapter 7 we have presented a construction H1 which is secure
in model M1. This construction is in a sense an extension of the BB-HIBE. We propose a
composite scheme based on H1 and G2 which we denote as (h, n)-G3 or simply G3.

The essential idea, as in [19] is to form a product of two HIBEs. For this we represent an
identity tuple in the form of a matrix (say II) having (a-priori) fixed number of columns, h.
When we look at a row of II, it forms a constant ciphertext HIBE, H, while each row taken
together as a single identity forms another HIBE, H′. We obtain a product construction by
instantiating H′ to be H1 of Chapter 7 and H to be the constant size ciphertext HIBE G2 of
Section 9.4. In this case, the components of the identity tuples are from Zp and we obtain
security in M1. Since M1 allows the target identity to be of any length up to the maximum
height of the HIBE, the adversary has the flexibility to choose the length the target identity
in the challenge phase.

9.5.1 Construction

Let the maximum depth of the HIBE be h ≤ `1 × `2. Here individual identity components
are elements of Zp.
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Setup: Let P be a generator of G1. Choose a random secret x ∈ Zp and set P1 = xP .
Randomly choose P2; an `1 × `2 matrix R where

R =

 R1,1 · · · R1,`2
...

...
...

R`1,1 · · · R`1,`2


and `2 many vectors

−→
U1, . . . ,

−→
U`2 from G1, where each

−→
Ui = (Ui,1, . . . , Ui,n). The public

parameters are 〈P, P1, P2,R,
−→
U1, . . . ,

−→
U`2〉, while the master secret is xP2.

Key Generation: Given an identity v = (v1, . . . , vu) for any u, this algorithm generates
the private key dv of v as follows.

Let u = k1`2 + k2 with k2 ∈ {1, . . . , `2}. We represent v by a (possibly incomplete)
(k1 + 1) × `2 matrix I where the last row has k2 elements. Choose (k1 + 1) many random
elements r1, . . . , rk1 , rk2 ∈ Zp and output

dID =

(
xP2 +

k1∑
i=1

ri

(
h∑

j=1

Vi,j + Ri,j

)
+ rk2

(
k2∑

j=1

Vk1+1,j + Rk1+1,j

)
, r1P, . . . , rk1P, rk2P,

rk2Rk1+1,k2+1, . . . , rk2Rk1+1,h, rk2

−−−→
Uk2+1, . . . , rk2

−→
U`2

)
where Vi,j =

∑n
j=1 vjUi,j and rk2

−→
Ui denotes that each element of

−→
Ui is multiplied by the

scalar rk2 .
The private key of v can also be generated given the private key of v|u−1 = v1, . . . , vu−1

as required. There are two cases to be considered.
Case 1: Suppose u− 1 = k1`2 + `2, then

dv|u−1
=

(
xP2 +

k1+1∑
i=1

ri

(
h∑

j=1

Vi,j + Ri,j

)
, r1P, . . . , rk1P, rk1+1P

)
= (a0, a1, . . . , ak1 , ak1+1) (say)

Choose a random r∗ ∈ Zp and form dv as

dv = a0 + r∗(Vk1+2,1 + Rk1+2,1), a1, . . . , ak1+1, r
∗P, r∗Rk1+2,2, . . . , r

∗Rk1+2,h, r
∗−→U2, . . . , r

∗−→U`2

Case 2: Let, u− 1 = k1`2 + k′2 with k′2 < `2 then,

dv|u−1
= (xP2 +

k1∑
i=1

ri

(
h∑

j=1

Vi,j + Ri,j

)
+ r′k2

 k′2∑
j=1

Vk1,j + Pk1+1,j

 , r1P, . . . , rk1P, r′k2
P,

r′k2
Rk1+1,k′2+1, . . . , r

′
k2

Rk1+1,h, r
′
k2

−→
U k′2+1, . . . , r

′
k2

−→
U `2

= (a0, a1, . . . , ak1 , ak1+1, bk′2+1, . . . , b`2 ,
−→c k′2+1, . . . ,

−→c `2) (say)
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Choose a random r∗ ∈ Zp and form dv as

dv = a0 +
n∑

j=1

vj
uck′2+1,j + bk′2+1,j + r∗

k′2+1∑
j=1

Vk1+1,j + Pk1+1,j

 , a1, . . . , ak1 , ak1+1 + r∗P,

bk′2+2 + r∗Rk1+1,k′2+2, . . . , b`2 + r∗Rk1+1,`2 ,
−→c k′2+2 + r∗

−→
U k′2+2, . . . ,

−→c `2 + r∗
−→
U `2

It can be verified that dv is a proper private key for v.

Encrypt: To encrypt a message M ∈ G2 under the public key v = (v1, . . . , vu) choose a
random s ∈ Zp and then the ciphertext is

C =

e(P1, P2)s ×M, sP, s

`2∑
j=1

(V1,j + R1,j), . . . , s

 `2∑
j=1

Vk1,j + Rk1,j

 , s

 k2∑
j=1

Vk1+1,j + Pk1+1,j


where Vi,j is as defined in Key Generation part.

Decrypt: Let CT = (A, B, C1, . . . , Ck1 , Ck1+1) be a cipher text and v = v1, . . . , vu be the
corresponding identity. Then we decrypt CT using dID = (d0, d1, . . . , dk1+1, . . .) as

A×
∏k1+1

i=1 (di, Ci)

e(B, d0)
= M.

9.5.2 Security

Security of the above hybrid construction in the generalised selective-ID model (h, n)-M1 of
Chapter 7 can be reduced from the hardness of `2-wDBDHI∗ problem. Here we give a brief
sketch of the proof.

The simulator is provided with a tuple 〈P, Q, Y1, . . . , Y`2 , T 〉 ∈ G`2+2
1 × G2. It has to

decide whether this is a proper `2-wDBDHI∗ instance or not.
Adversary’s commitment: A commits to a set I∗, where |I∗| = n. The restriction on the

adversary is that in the private key extraction query at least one component of the identity
tuple should be outside I∗; while in the challenge phase it asks for the encryption under an
identity v∗ all of whose components are from I∗.

Set-up: The simulator defines

F (x) =
∏
v∈I∗

(x− v) = anx
n + · · ·+ a1x + a0

J
(j)
i (x) = bi,nx

n + · · ·+ bi,1x + b
(j)
i,0 for 1 ≤ i ≤ `1, 1 ≤ j ≤ `2

where each bi,j ∈ Z∗
p. The simulator defines P1 = Y1, P2 = Y`2 + βP in a similar manner

as in the set-up of Section 9.3.2. It further defines Ui,j = bi,jP + aiYh−i+1 for 1 ≤ i ≤ `2,

1 ≤ j ≤ n and Rk,j = b
(j)
k,0P + a0Y`2−j+1 for 1 ≤ k ≤ `1, 1 ≤ j ≤ `2.
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Phase 1: Suppose A asks for the private key of an identity v = v1, . . . , vm where m =
k1× `2 + k2. The simulator first forms the (k1 + 1)× `2 matrix II where v1 is indexed as v1,1

and vm as vk1+1,k2 . As per the rule of the game there is at least one identity, say vj, such
that F (vj) 6= 0. Suppose, vj is indexed as k′1, k

′
2 in II. Using the identity tuple in the k′1-th

row and the technique of Section 9.3.2 the simulator forms a private key for (vk′1,1, . . . , vk′1,k′2
)

as a′0, ak′1+1, bk′2+1, . . . , b`2 , ck′2+1, . . . , c`2 . It next chooses r1, . . . , rk′1
∈ Zp and computes the

private key for v1, . . . , vj as

d0 = a′0 +

k′1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j)

di = riP for 1 ≤ i ≤ k′i

(d0, d1, . . . , dk′i
, ak′1+1, bk′2+1, . . . , b`2 , ck′2+1, . . . , c`2 is a proper private key for v1, . . . , vj from

which the simulator forms a private key for v and gives it to A.
Challenge: The challenge identity v∗ = v∗1, . . . , v

∗
u should have each vj ∈ I∗ and hence

F (v∗j ) = 0 for 1 ≤ j ≤ u. Based on this fact the simulator is able to form a proper encryption
if the tuple provided to it is a true h-wDBDHI∗ instance.

This way we can relate the adversarial success in breaking the composite scheme with
the simulator’s success in solving the `2-wDBDHI∗ problem.

Note that, in the commitment stage we may give the adversary some more flexibility by
allowing it to commit to sets of identities I∗1 , . . . , I∗h, where I∗j corresponds to the commitment
for the jth level of the constant size ciphertext HIBE. In this case the restrictions in M2

regarding the private key queries and challenge generation apply. This added flexibility,
however, does not affect the efficiency of the protocol.

9.6 Discussion

The private key corresponding to an identity in a HIBE has two roles. The first role is to
enable decryption of a message encrypted using this identity, while the second role is to
enable generation of lower level keys. Not all components of the private key are necessarily
required for decryption, i.e., the decryption subkey can have less number of components than
the whole private key. This has also been observed in [19] and in case of the BBG-HIBE, the
decryption subkey consists of only two components. In G1 and G2, the decryption subkeys
also consist of two components as in the BBG-HIBE. In G3 the size of the decryption subkey
is reduced by a factor of h compared to the size of the decryption subkeys in H1.

Having a small decryption subkey is important, since the decryption subkey may need to
be loaded on smart cards for frequent and online decryptions. This is achieved in all the HIBE
constructions described in this chapter. On the other hand, the entire private key is required
for key delegation to lower level entities. Key delegation is a relatively infrequent activity
which will typically be done by an entity from a workstation. Storage in a workstation is less
restrictive and a larger size private key required only for key delegation is more tolerable.
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The size of the private key in the BBG-HIBE and G1 is proportional to the number of
levels in the HIBE. For G2 this size is proportional to n× h, where h is the number of levels
of the HIBE and n is the maximum number of challenge identities that the adversary can
commit to for any level. The size of the private key in G3 varies cyclically with the number
of components j in the identity. Let j = j1h + j2, where h is the number of levels in H1

used in the product construction and j2 ∈ {1, . . . , h}. The size of the private key then varies
as j1 + n × j2, where n is the number of elements in the set from which the adversary can
construct the challenge identity. Since j2 varies in a cyclic manner with period h, the size
of the private key also shows a similar behaviour. (A similar behaviour is also shown by the
size of the private key in the product construction in [19].) A modification of the protocols
eliminates the dependence of the size of the private key on j2. Suppose that key delegation
is only allowed to be performed by the PKG and entities at levels h, 2h, 3h, . . .. In this case,
the size of the private key varies only with j1 and in fact, the private key and the decryption
subkey become identical.

9.7 Conclusion

In this chapter, we have augmented the selective-ID security model for hierarchical identity-
based encryption by allowing the adversary some flexibility in choosing the target identity
tuple during the challenge phase of the security reduction. We have denoted this model by
selective+-ID model (s+ID model). The Boneh-Boyen HIBE satisfies this notion of security
while the constant size ciphertext HIBE of Boneh, Boyen and Goh needs some modification
in the security reduction to do so. This modification introduces a multiplicative security
degradation. We have further augmented the BBG-HIBE to construct a new protocol secure
in s+ID model without any degradation which maintains all the attractive features of BBG-
HIBE. We build on this new construction another constant size ciphertext HIBE. The security
of our second construction is proved under a generalization of the selective-ID security model.
Our third construction of HIBE is a “product” construction that allows a controllable trade-
off between the ciphertext size and the private key size.
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Chapter 10

Conclusion

We conclude the dissertation by summing-up our contribution. In the process we also men-
tion some challenging open problems in the area.

All the identity-based encryption protocols described in this dissertation use bilinear
pairing as the primary building block and pairing computation is the most computationally
intensive part in these protocols. Protocol designers usually assume the bilinear map to be
a black box. This, no doubt, helps in a modular description and hence, easier understanding
of the protocols. However, when we want to implement a protocol then the issue of actually
computing the pairing takes a pivotal role.

This way, the problem of efficient pairing computation is closely associated with the
question of efficient design of pairing based protocols. In our study of efficient and secure
construction of (H)IBE, we started with an efficient algorithm for the computation of (mod-
ified) Tate pairing over elliptic curves having embedding degree two. Using the Jacobian
coordinates for representation of the elliptic curve points together with a technique of en-
capsulated computation, we are able to improve the efficiency of Tate pairing computation
with respect to the previous works on the same type of curves.

We note that, there remain many issues to be resolved on the question of pairing compu-
tation [63]. Which curve (e.g., elliptic or hyperelliptic, super-singular or non super-singular),
over small characteristic or large characteristic and which pairing (Weil, Tate, Eta or Ate) to
use and under what conditions are some of the pertinent issues that will keep the researchers
in the relevant field busy in the coming future.

The pairing computation time depends on the sizes of the groups G1 and G2 (here we
concentrate on symmetric pairing only). The sizes of G1 and G2 in turn depends on what
level of security (e.g., 80 bits or 128 bits etc.) we are interested in. If a protocol suffers
from a degradation in the security reduction, then that degradation must be compensated
by working in larger size groups. Otherwise, we may well end up with a protocol without
any practical significance [62, 64].

Our contribution in protocol development start with a generalisation of Waters IBE,
which is proved secure in the full model without random oracle. We do not just stop at the
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generalisation and move on to address the issue of concrete security in the context of this
IBE protocol. To the best of our knowledge, this kind of concrete security analysis in the
IBE scenario was not much emphasised before.

Our next contribution is an extension of this IBE to HIBE. By reusing the public pa-
rameters, we are able to significantly reduce the size of the public parameter. The security
reduction for the HIBE is not tight and suffers from a degradation along the line of the
earlier works in the full model (with or without random oracle). We propose another HIBE
secure in the full model in Chapter 8. This is a variant of constant size ciphertext HIBE
originally proposed by Boneh, Boyen and Goh modified along the line of our generalisation
of Waters suggestion in Chapter 5. In Table 10.1 we make a comparative study of these two
HIBEs with earlier suggestions in the same security model. For all these HIBEs the security
degradation is exponential in the number of levels. Consequently, construction of a HIBE in
the full model where the security degradation is sub-exponential in the number of levels is
an outstanding research problem in this area.

A weaker security model, called the selective-ID model has been suggested in the litera-
ture where it is possible to avoid the security degradation. BB-HIBE and BBG-HIBE are the
only HIBE protocols proposed in this model. We augment this selective-ID security model
by allowing some flexibility to the adversary in choosing the target identity and call this
augmented version selective+-ID model. We show that BB-HIBE can be easily proved to be
secure in s+ID model and modify the original security reduction of BBG-HIBE to achieve
security in this model. The modified reduction of the BBG-HIBE introduces a multiplica-
tive security degradation. Next, we make some augmentation in the BBG-HIBE to achieve
security in s+ID model without any degradation. This new constant size ciphertext HIBE
secure in the s+ID model is called G1. In Table 10.2 we make a comparison of G1, BBG-HIBE
and BB-HIBE.

Though the selective-ID model for (H)IBE avoids security degradation, it is too restrictive
on the adversary. This motivated us to propose a generalisation of this model where the
adversary commits to sets of identities. In Chapter 7 we define two models M1 and M2

based on the adversarial behavior. Two HIBE protocols H1 and H2 secure respectively in
M1 and M2 are also suggested. These protocols can be seen as augmentation of the BB-
HIBE. We further propose a constant size ciphertext HIBE called ccHIBE by adapting the
BBG-HIBE in M2. Another constant size ciphertext HIBE G2 secure in the augmented (in
the sense of s+ID model) M2 is also suggested. A comparative study of these HIBEs is
given in Table 10.3

To conclude, the HIBE protocols proposed in the dissertation broaden the choice of
a designer of identity-based encryption protocols. Several different options of secure and
efficient HIBE protocols are now available to choose from. HIBE as a cryptographic primitive
has several interesting applications. Exploring these applications further based on the HIBEs
proposed here would be an interesting future work.
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Table 10.1: Comparison of HIBE Protocols Secure in Full Model.

Protocol PP size Pvt. Key size CT size Pairing

(elts. of G1) (elts. of G1) (elts. of G1) Enc. Dec.

GS [49] 2 j j 1 j

Waters [89] (n + 1)h + 3 j + 1 j + 1 None j + 1

HIBE-spp h + l + 3 j + 1 j + 1 None j + 1

FullccHIBE (` + 1)h + 3 (` + 1)(h− 1) + 2 2 None 2

The columns for Pvt. Key size, ciphertext (CT) size and pairing in decryption corresponds

to an identity at a level j, 1 ≤ j ≤ h. The GS-HIBE uses random oracle in the security

reduction while the other three do not.

Table 10.2: Comparison of HIBE protocols Secure in sID/s+ID Model.

protocol security id public max pvt decryption

model comp parameter key size subkey size

G1 s+ID Zp 3 + 2h 2h 2

BBG s+ID Z∗
p 4 + h h + 1 2

BBG sID Z∗
p 4 + h h + 1 2

BB s+ID Zp 3 + h h + 2 h + 2

protocol ciphertext encryption decryption Security

expansion efficiency efficiency degradation

G1 2 h + 2 2 Nil

BBG in s+ID 2 h + 2 2 h

BBG in sID 2 h + 2 2 Nil

BB h + 1 2h + 1 h + 1 Nil

For a HIBE of maximum height h, the columns for public parameter, max pvt key size, de-

cryption subkey size and ciphertext expansion denote the number of elements of G1, encryp-

tion efficiency denotes the number of scalar multiplications in G1 and decryption efficiency

denotes the number of pairing computations.
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Table 10.3: Comparison of HIBE protocols Secure in Generalised Selective-ID Model.

protocol id public max pvt decryption

comp. parameter key size subkey size

H1 Zp n + h + 3 h + 1 h + 1

H2 Zp 3 + (n + 1)h h + 1 h + 1

ccHIBE Z∗
p 4 + nh 2 + n(h− 1) 2

G2 Zp 3 + (n + 1)h h + 1 + n(h− 1) 2

protocol ciphertext encryption decryption security

expansion efficiency efficiency model

H1 h + 1 h(n + 1) + 1 h + 1 M1

H2 h + 1 h(n + 1) + 1 h + 1 M2

ccHIBE 2 nh + 2 2 M2

G2 2 nh + 2 2 M+
2

For a HIBE of maximum height h, the columns for public parameter, max pvt key size, de-

cryption subkey size and ciphertext expansion denote the number of elements of G1, encryp-

tion efficiency denotes the number of scalar multiplications in G1 and decryption efficiency

denotes the number of pairing computations.
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