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Chapter 1

Introduction

1.1 Cone Linear Complementarity Problem

Let V be a finite dimensional real inner product space and K be a closed convex

cone in V. Given a linear transformation L : V → V and a vector q ∈ V the

cone linear complementarity problem or linear complementarity problem over K,

denoted as LCP(K, L, q), is to find a vector x ∈ K such that

L(x) + q ∈ K∗ and 〈x, L(x) + q〉 = 0,

where 〈., .〉 denotes an inner product on V and K∗ is the dual cone of K defined

as:

K∗ := {y ∈ V : 〈x, y〉 ≥ 0∀x ∈ K}.

Note that a subset C of V is a cone if x ∈ C ⇒ λx ∈ C for every λ ≥ 0.

The cone LCP is the special case of a variational inequality problem which is

formally stated as follows:

Let K be a closed convex set in V. Given a continuous function f : V → V , the

1



Cone LCP 2

variational inequality problem, denoted VI(K, f), is to find a x ∈ K such that

〈y − x, f(x)〉 ≥ 0, ∀ y ∈ K.

When K is a closed convex cone the VI (K, f) reduces to a (cone) complementar-

ity problem (CP) and with the additional condition of f being affine we get a cone

LCP. Volumes I and II of the recent book by Facchinei and Pang [9] provides

an up to date account of finite dimensional variational inequalities and com-

plementarity problems along with various applications and algorithmic details.

Interested readers can look at the bibliography of [9] for more details.

Though cone LCP is a special case of a variational inequality problem, its

usefulness as a modelling framework for various practical problems and the avail-

ability of an additional structure puts it in a distinguished position. See, for

example, Çamlibel et al. [5] and Heemels et al. [29], where switched piecewise

linear networks are modelled as cone LCP and [49, 50] for the reformulation of a

Bilinear Matrix Inequality as a cone LCP on the cone of semidefinite matrices.

Furthermore, [12] and [65] provide an excellent survey of various applications of

complementarity problems in engineering and economics, and complementarity

systems in optimization. The lecture notes [33] study complementarity problems

in abstract spaces. Some early references related to a cone LCP (CP) include

[25, 36, 37, 38]. For a recent work on cone LCP (CP) one can see [14, 15, 24, 40]

and the references therein.

1.1.1 Examples of a Cone LCP

Various special cases of a cone LCP (CP) are found to be of fundamental im-

portance in the literature. We discuss briefly some of these cases in the examples
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below.

Example 1.1.1 Given a real square matrix M ∈ Rn×n and a vector q ∈ Rn,

the linear complementarity problem, denoted LCP(Rn
+, M, q), is to find a x ∈ Rn

+

such that Mx+q ∈ Rn
+ and xT (Mx+q) = 0. The study of linear complementarity

problem began in 1960’s for solving convex quadratic programming problems [6].

Thereafter, Nash equilibrium problem for the bimatrix game was formulated as

an LCP over Rn
+, and some efficient algorithms like Lemke’s method has been

proposed, see [41, 42]. The monograph [8] by Cottle, Pang and Stone provides a

comprehensive treatment of various aspects of a LCP over Rn
+. This monograph

also contains an extensive bibliography of the LCP over Rn
+ up to year 1990 with

detailed notes and comments.

The study of LCP over Rn
+ has lead to interesting matrix classes and their

characterizations. These matrix classes play an important role in the study of

an existence and uniqueness of a solution, and the algorithmic aspects of a LCP

over Rn
+. We shall define and discuss some of these matrix classes which will be

used in the sequel. Their details can be found in [8].

• M ∈ Rn×n is a P -matrix if every principal minor of M is positive. The

notion of a P -matrix was introduced by Fiedler and Pták [11], in 1962. It is

central to the study of linear complementarity problems and characterizes

the uniqueness of a solution to LCP(Rn
+, M, q) for all q ∈ Rn, and has found

many applications in various fields, particularly in optimization [9].

• M ∈ Rn×n is strictly semimonotone if

x ∈ Rn
+, x ∗ (Mx) ≤ 0 ⇒ x = 0,
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where x ∗Mx is the componentwise product of x and Mx and the inequal-

ity is defined componentwise. Strictly semimonotone matrices are found

useful in studying the solution properties as well as the algorithmic aspects

of a LCP over Rn
+, [32].

• A matrix M ∈ Rn×n is a Q-matrix if LCP(Rn
+, M, q) over Rn

+ has a solution

for all q ∈ Rn. It is known that P and strictly semimonotone matrices are

Q-matrices.

• M is a R0-matrix if LCP(Rn
+, M, 0) has a unique (zero) solution. It can be

shown that a matrix M is R0 if and only if LCP(Rn
+, M, q) has a compact

solution set (may be empty) for all q ∈ Rn.

• M is a nondegenerate matrix if every principal minor of M is nonzero.

Nondegenerate matrices characterize the finiteness of the solution set of a

LCP(Rn
+, M, q) for all q ∈ Rn.

The normal map and fixed point map, see Page 83 in [9] and Page 24 in [8],

corresponding to LCP over Rn
+ are piecewise affine. By observing the above fact,

Robinson [60] generalized the P -matrix property from LCP over Rn
+ to affine

variational inequalities over polyhedral sets. Motivated by the above, various

researchers have studied the local and global invertibility of piecewise affine maps,

see [53, 17, 9].

Example 1.1.2 Let Sn be the space of n × n real symmetric matrices and Sn
+

be the cone of n×n real symmetric positive semidefinite matrices. Given a linear

transformation L : Sn → Sn and a Q ∈ Sn, the linear complemenatrity problem
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over Sn
+, with the inner product defined as 〈X, Y 〉 := trace (XY ), is called a

semidefinite linear complementarity problem, denoted SDLCP(L, Q).

The above form of the SDLCP is due to Gowda and Song [18]. The SDLCP

was introduced in a slightly different form by Kojima, Shindoh and Hara [39] as a

unified mathematical model for various problems arising from dynamical systems

and control theory and combinatorial optimization. This problem includes, as

a special case, the primal-dual pair of semidefinite programs (SDP), see [57], as

described below. Also see [39].

Consider the Primal SDP problem:

Minimize 〈C, X〉 := trace (CX)

subject to 〈Ai, X〉 ≥ bi, 1 ≤ i ≤ m,

X ∈ Sn
+

where C ∈ Sn, bi ∈ R and Ai ∈ Sn with 1 ≤ i ≤ m are given. Let b be the vector

in Rm whose ith coordinate is bi. The dual of the above problem is given by:

Maximize bT y

subject to C −∑m
i=1 yiAi ∈ Sn

+,

y ≥ 0.

Let B denote the m × m diagonal matrix whose ith diagonal entry is bi and Q

be the (m + n)× (m + n) matrix defined as

Q :=

 −B 0

0 C

 .
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Assuming that there is a complementary pair of solutions to the above optimiz-

ation problem, the SDLCP formulation of the pair of primal and dual SDP’s is

given by:

Find X
′ ∈ Sm+n

+ such that L
′
(X

′
) + Q ∈ Sm+n

+ and 〈X ′
, L

′
(X

′
) + Q〉 = 0,

where the transformation L
′
is:

L
′


 Y ∗

∗T X


 =



〈A1, X〉 0 0

. . .
...

0 〈Am, X〉 0

0 · · · 0 −∑m
i=1 yiAi


where Y is an m ×m symmetric matrix with yi as the ith diagonal entry, X is

an n× n symmetric matrix and ∗ is a matrix of order m× n.

The SDLCP can also be regarded as a generalization of the LCP over Rn
+, see

[59]. But strikingly, the properties of LCP over Rn
+ do not carry over to SDLCP

trivially, because the semidefinite cone is nonpolyhedral and the matrix product,

in general, is not commutative.

Various aspects of the above problem have been studied in recent years.

Gowda et al. study the solution properties (existence and uniqueness) of a general

SDLCP as well as with special transformations like Lyapunov and Stein trans-

formations (for A ∈ Rn×n and X ∈ Sn, the Lyapunov and Stein transformations

are defined by LA(X) := AX + XAT and SA(X) := X − AXAT , respectively),

making connection between control theory/dynamical systems, complementarity

problems and matrix theory, see [18, 19, 21, 22]. They introduce and study vari-

ous properties of linear transformations in the semidefinite setting, similar to the
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matrix classes studied in LCP over Rn
+. The connection between bilinear matrix

inequality problem and SDLCP has been made in [49].

Algorithmic aspects and interior point algorithms with a more general form

of a SDLCP are discussed in [39, 51].

Example 1.1.3 In the space Rn, the second-order or Lorentz cone is defined as

Λn
+ := {(x0, x1, . . . , xn−1)

T : x0 ≥ 0, x2
0 ≥ x2

1 + . . . + x2
n−1}.

Given a matrix M ∈ Rn×n and q ∈ Rn, the linear complementarity problem over

Λn
+, with the usual inner product, is called a second-order cone linear comple-

mentarity problem, denoted SOCLCP(M, q).

Second-order cone programming and complementarity problems have been

subjects of some recent studies. Pang et al. have studied the stability of solu-

tions to semidefinite and second-order cone complementarity problems in [54].

Study of smoothing functions for second-order cone complementarity problems

to develop noninterior continuation methods has been made by Fukushima et

al. in [13]. Smoothing and regularization methods for solving monotone second-

order cone complementarity problems are discussed in [27]. In [26], Hayashi et al.

proposed a matrix-splitting method to solve a linear complementarity problem

over the direct product of second-order cones. An application of a LCP over the

direct product of second-order cones in studying three-dimensional quasi-static

frictional contact problems has been given by Kanno et al. in [34]. One can see

the same paper and the references therein for various applications of second-order

cone (linear) complementarity problems. In another application, Hayashi et al.

[28] have studied the Robust Nash equilibria in the framework of a second-order
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cone complementarity problems. For a comprehensive exposition to various ap-

plications and algorithmic aspects of second-order cone programming problems,

the reader is advised to refer to Alizadeh and Golfarb, [1].

1.2 Preliminaries

1.2.1 Notations

A real n-dimensional space is denoted by Rn and Rn
+ is the nonnegative orthant

in Rn. For any x ∈ Rn, xT denotes the transpose of a vector x. Also, x ∈ Rn
+

(−x ∈ Rn
+) is represented by x ≥ 0 (x ≤ 0). The space of all n× n real matrices

is denoted by Rn×n. For any A ∈ Rn×n its transpose is denoted by AT . We use

the symbol X � 0 (� 0) to say that X is symmetric and positive semidefinite

(positive definite); the symbol X � 0 means that −X � 0.

A finite dimensional real inner product space is denoted by V. Orthogonal

projection onto the subspace S of V is denoted by ProjS(.) and span E represents

the linear span of a subset E of a linear space V . The inner product and norm on

V are denoted by 〈., .〉 and ||.||, respectively. For a convex cone K ⊆ V its dual

in the space V is denoted by K∗. For any set S ⊆ V its interior and boundary are

denoted by intS and bdS, respectively. Its orthogonal complement is denoted

by S⊥. The relative interior riC of a conex set C ⊂ V is the interior of C for

the topology relative to the affine hull of C. The dimension of a convex set C is

the dimension of its affine hull. The relative boundary rbdC := clC\riC, where

clC denotes closure of C.
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For a linear transformation L on V its adjoint, denoted LT , is defined by the

equality

〈x, L(y)〉 = 〈LT (x), y〉 ∀ x, y ∈ V.

L is self-adjoint if L = LT . The determinant of a linear transformation L is

defined as the product of its all eigenvalues.

The set SOL(K, L, q) denotes the solution set of the LCP(K, L, q).

1.2.2 Classes of linear transformations

In the context of a LCP over a closed convex cone we have the following defini-

tions.

Definition 1.2.1 Let L : V → V be a linear transformation and K be a closed

convex cone in V. Then

(a) L is said to be monotone (strictly monotone) if 〈x, L(x)〉 ≥ 0 (> 0) ∀ 0 6=

x ∈ V.

(b) L is copositive (strictly copositive) on K if

〈x, L(x)〉 ≥ 0 (> 0) ∀ 0 6= x ∈ K.

(c) L has the Q-property if LCP(K, L, q) has a solution for all q ∈ V.

(d) L has the R0-property if LCP(K, L, 0) has a unique (zero) solution.

Observation 1.2.1 If L has the R0-property, then the set SOL(K, L, q) is com-

pact (may be empty) for all q ∈ V.
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Proof. Note that SOL(K, L, q) is always closed. Let {xn} ⊂ SOL(K, L, q) be an

unbounded sequence of nonzero terms. Consider the subsequence {xm} of {xn}

such that xm

||xm|| converges to some x ∈ K. Then the sequence L( xm

||xm||) + q
||xm||

converges to L(x) ∈ K∗ with 〈x, L(x)〉 = 0, contradicting the R0-property.

Below, we state some properties of a linear transformation in the semidefinite

setting from Gowda et al. [18, 19, 21].

Definition 1.2.2 Let L : Sn → Sn be a linear transformation. Then

(a) L has the P-property if

X ∈ Sn, XL(X) = L(X)X � 0 ⇒ X = 0.

(b) L has the strictly semimonotone property (SSM-property) if

X ∈ Sn
+, XL(X) = L(X)X � 0 ⇒ X = 0.

(c) L is nondegenerate if

X ∈ Sn, XL(X) = 0 ⇒ X = 0.

1.2.3 Closed convex cones and Principal Subtransforma-

tions

Definition 1.2.3 ([4])

(a) A nonempty subset F of a (closed) convex cone K in V is called a face of

K, denoted by F � K, if F is a convex cone and

x ∈ K, y − x ∈ K and y ∈ F ⇒ x ∈ F.
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(b) The smallest subspace of V containing a closed convex cone K (affine hull

of K in V ) is the set

K −K = {x− y : x ∈ K, y ∈ K}.

(c) The smallest face of K containing a point x ∈ K is defined as

Φ(x) := ∩{F : F � K, x ∈ F}.

(d) The complementary face of F � K is defined as

F4 := {x ∈ K∗ : 〈x, y〉 = 0∀ y ∈ F}.

Example 1.2.1 The faces of Rn
+ are {0}, Rn

+ and any set of the form

F := P{(x1, x2, . . . , xk, 0, . . . , 0)T : xi ≥ 0, 1 ≤ i ≤ k},

where P is a permutation matrix and k ∈ {1, . . . , n}. The complementary face

of F is given by

F4 = P{(0, . . . , 0, xk+1, . . . , xn)T : xi ≥ 0, k + 1 ≤ i ≤ n}.

The complementary face of {0} (Rn
+) is Rn

+ ({0}).

Example 1.2.2 ([30]) Let X ∈ Sn
+ be a matrix of rank r. Then

(i) There exists an orthogonal U such that the smallest face of Sn
+ containing

X is

F =

U

 Y 0

0 0

 UT : Y ∈ Sr
+

.

The complementary face of F is

F4 =

U

 0 0

0 Z

 UT : Z ∈ Sn−r
+

.
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(ii) The dimension of the face F is r(r+1)
2

and the dimension of the complement-

ary face F4 is (n−r)(n−r+1)
2

.

Theorem 1.2.1 ([4]) Let F be a face of a closed convex cone K and let x ∈ K.

Then F is the smallest face of K containing x if and only if x lies in the relative

interior of F .

It is easy to see that for any x ∈ ri F, F4 can equivalently be represented as

F4 := {y ∈ K∗ : 〈x, y〉 = 0}. For any face F of K, F ⊆ (F4)4. Also G � F � K

implies that G � K.

A closed convex cone K is solid if intK 6= φ. K is pointed if K∩ (−K) = {0}.

A solid and pointed closed convex cone is called proper.

Proposition 1.2.1 ([3, 9]) For a convex cone K in V the following statements

hold.

(i) K∗ is a closed convex cone.

(ii) If K is closed, then (K∗)∗ = K.

(iii) If K is closed, then K is solid (pointed) if and only if K∗ is pointed (solid).

A closed convex cone K is self-dual if K = K∗. By Proposition 1.2.1, every

self-dual closed convex cone is solid and pointed.

Motivated by the concept of a principal submatrix of a matrix in Rn×n we

introduce the notion of a principal subtransformation of a linear transformation

on V corresponding to a face F of a closed convex cone K.
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Definition 1.2.4 Let L : V → V be a linear transformation and F � K. Then

a principal subtransformation of L with respect to F is a linear transformation

LFF : span F → span F such that LFF (x) = Projspan F L(x)∀x ∈ span F.

Example 1.2.3 Consider a linear transformation L : S2 → S2 defined as

L(X) :=

 2(x11 + x12) 2x12 + x22

2x12 + x22 2x22

,

and a face F of S2
+ given as

F =

U

 α 0

0 0

 UT : α ∈ R+

,

where U :=


1√
2

−1√
2

1√
2

1√
2

 . Then the principal subtransformation LFF : span F →

span F is given by

LFF (X) = U

 (UT L(X)U)11 0

0 0

 UT = U

 3α 0

0 0

 UT ∀ X ∈ span F .

Remark 1.2.1 The notion of a principal subtransformation in a semidefinite

setting was also introduced independently by Gowda et al. [22]. Though the

connection of their notion with our notion has been described in detail in [44],

our notion of a principal subtransformation with respect to a face of K seems to

be more general and geometric in nature.

With the above notion of a principal subtransformation, given a linear trans-

formation L and a q ∈ span F the LCP(F, LFF , q) is to find an x ∈ F such that

LFF (x) + q ∈ F d and 〈x, LFF (x) + q〉 = 0, where F d is the dual cone of F in

spanF defined as F d := span F ∩ F ∗.
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Observation 1.2.2 The following statements hold for any linear transforma-

tion L : V → V and a closed convex cone K in V.

(i) (LT )FF = (LFF )T ∀ F � K.

(ii) If G � F � K, then (LFF )GG = LGG.

(iii) L is strictly monotone (strictly copositive on K) ⇒ LFF is strictly mono-

tone (strictly copositive on F ) ∀ F � K.

(iv) L is self-adjoint ⇒ LFF is self-adjoint ∀ F � K.

Proof. The proof of the statements (i)-(iv) follows easily from the definition of

a principal subtransformation and the fact that for any x, y ∈ span F we have

〈x, L(y)〉 = 〈x, Projspan F L(y) + ProjF⊥L(y)〉

= 〈x, Projspan F L(y)〉

= 〈x, LFF (y)〉.

1.3 Euclidean Jordan algebras

This section begins with a preliminary introduction to a Euclidean Jordan al-

gebra. For a complete treatment one can read the book [10] by Faraut and

Koranyi. Brief summaries can also be found in the articles [63, 64].

A Euclidean Jordan algebra A is a finite dimensional real vector space equipped

with an inner product 〈x, y〉 and a bilinear map (x, y) → x ◦ y, which satisfies

the following conditions:
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(i) x ◦ y = y ◦ x,

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x, and

(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉,

for all x, y, z ∈ A.

The product x ◦ y is called a Jordan product. A Euclidean Jordan algebra

A has an identity element, if there exists a (unique) element e ∈ A such that

x ◦ e = e ◦ x = x for all x ∈ A. Henceforth, we shall assume the existence of an

identity element in a Euclidean Jordan algebra.

In a finite dimensional inner product space V, a self-dual closed convex cone

K is symmetric if for any two elements x, y ∈ int K there exists an invertible

linear transformation Θ : A → A such that Θ(K) = K and Θ(x) = y. The cone

of squares K associated with A is a self-dual closed convex cone defined as

K := {x2 : x ∈ A}.

Theorems III.2.1 and III.3.1 in [10] give the following characterization of sym-

metric cones in a Euclidean vector space.

Theorem 1.3.1 ([10]) A cone is symmetric iff it is the cone of squares of some

Euclidean Jordan algebra.

For each x ∈ A let d be the smallest positive integer such that the set

{e, x, x2, . . . , xd} is linearly dependent. Then d is called the degree of x. The

rank of A is defined as the largest degree of any x ∈ A. An element c ∈ A is

an idempotent if c2 = c. It is primitive idempotent if it is nonzero and cannot

be written as a sum of two nonzero idempotents. A finite set {f1, f2, . . . , fn} of
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primitive idempotents in A is a Jordan frame if

fi ◦ fj = 0 if i 6= j and
∑n

i=1 fi = e.

Theorem 1.3.2 (Spectral theorem) Let A be a Euclidean Jordan algebra of

rank n. Then for every x in A, there exists a Jordan frame {f1, f2, . . . , fn} and

real numbers λ1, λ2, . . . , λn such that

x = λ1f1 + λ2f2 + . . . + λnfn.

The numbers λi (with their multiplicities) are uniquely determined by x and are

called the eigenvalues of x.

With the above decomposition we shall define determinant of x ∈ A as follows.

det (x) := λ1λ2 . . . λn.

x is said to be invertible if det(x) 6= 0. In which case inverse of x is defined

as x−1 := λ−1
1 f1 + . . . + λ−1

n fn. Also from the spectral theorem it is clear that

x ∈ K (intK) if and only if all its eigenvalues are nonnegative (positive).

Example 1.3.1 In the space Sn of n × n real symmetric matrices the inner

product and the Jordan product are defined by

〈X, Y 〉 := trace(XY ) and X ◦ Y := 1
2
(XY + Y X) .

The cone of squares in Sn is the cone of all positive semidefinite matrices denoted

by Sn
+. The identity matrix is the identity element and the set of matrices

{E11, E22, . . . , Enn} where Eii is the diagonal matrix with (i, i)th entry 1 and

others zero, constitutes a Jordan frame. Thus Sn is a rank n algebra. Any other

Jordan frame in Sn is of the form {UE11U
T , UE22U

T , . . . , UEnnU
T} where U is

any n× n orthogonal matrix.
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Example 1.3.2 Consider the space Rn (n > 1) whose elements x = (x0, x̄
T )T ,

where x̄ = (x1, . . . , xn−1)
T , are indexed from zero, equipped with the usual inner

product and the Jordan product defined as

x ◦ y = (〈x, y〉, x0ȳ
T + y0x̄

T )T .

Then Rn is a Euclidean Jordan algebra, denoted by Λn with the cone of squares, a

Lorentz cone (second-order cone) which is seen to be Λn
+ := {x ∈ Rn : ||x̄|| ≤ x0}.

The identity element in this algebra is given by e = (1, 0, . . . , 0)T . Also the

spectral decomposition of any x with x̄ 6= 0 is given by x = λ1e1 + λ2e2, where

λ1 = x0 + ||x̄||, λ2 = x0 − ||x̄||

and

e1 := 1
2
(1, x̄T /||x̄||)T , and e2 := 1

2
(1,−x̄T /||x̄||)T .

In a Euclidean Jordan algebra a linear transformation Lx : A → A corres-

ponding to any x is defined as Lx(y) := x ◦ y for all y ∈ A. See [10, 64] for

the discussion on the spectral decomposition of Lx. We say two elements x, y of

a Euclidean Jordan algebra A operator commute if LxLy = LyLx, which means

that x ◦ (y ◦ z) = y ◦ (x ◦ z) for all z ∈ A. Lemma X.2.2, [10] or Theorem 27,

[64], give the following characterization of operator commutativity.

Lemma 1.3.1 Two elements x, y of a Euclidean Jordan algebra A operator com-

mute iff there is a Jordan frame {f1, f2, . . . , fn} such that x =
∑n

i=1 λifi and

y =
∑n

i=1 µifi.

Example 1.3.3 In the space Sn it is easy to observe that matrices X and Y

operator commute iff XY = Y X. Also in Λn, vectors x and y operator commute

iff either ȳ is a multiple of x̄ or x̄ is a multiple of ȳ.
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Definition 1.3.1 (a) A linear transformation Ψ : A → A is said to be an

automorphism of A if Ψ is invertible and Ψ(x ◦ y) = Ψ(x) ◦ Ψ(y) for all

x, y ∈ A. The set of all automorphisms of A is denoted by Aut(A).

(b) A linear transformation Θ : A → A is said to be an automorphism of K if

Θ(K) = K. The set of all automorphisms of K is denoted by Aut(K).

We shall now illustrate the above concepts through some examples.

Example 1.3.4 ([62]) In the Euclidean Jordan algebra Sn, corresponding to

any automorphism Ψ ∈ Aut(Sn), there exists a real orthogonal matrix U such

that

Ψ(X) = UXUT (∀X ∈ Sn).

For an automorphism Θ ∈ Aut(Sn
+) there exists an n × n invertible matrix Q

such that

Θ(X) = QXQT (∀X ∈ Sn).

Example 1.3.5 ( [43]) In a Euclidean Jordan algebra Λn an n×n matrix A (or

−A) belongs to Aut(Λn
+) iff there exist a µ > 0 such that

AT JnA = µJn

where Jn = diag(1,−1,−1, . . . ,−1). Also any A ∈ Aut(Λn) can be written as

A =

 1 0

0 D


where D : Rn−1 → Rn−1 is an orthogonal matrix.

Proposition 1.3.1 (Proposition 6, [24]) For x, y ∈ A, the following conditions

are equivalent.
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(i) x ∈ K, y ∈ K, and 〈x, y〉 = 0.

(ii) x ∈ K, y ∈ K, and x ◦ y = 0.

In each case, elements x and y operator commute.

1.4 Summary of the Thesis

Various matrix classes (P , Q, strictly semimonotone, R0, copositive, etc.) have

been found useful in the study of existence and uniqueness of solutions, and the

working of various algorithms for LCP over Rn
+. A similar approach has been

made by Gowda and Song [18] who initiated the study of solution properties of

a SDLCP particularly for Lyapunov and Stein transformations. Following the

same approach, in this thesis, we shall define various transformation classes for a

general cone LCP as well as for LCP over specialized cones. We shall concentrate

on the solution properties (existence and uniqueness) of a cone LCP when the

transformations belong to such classes, along with the geometrical aspects.

In Chapter 2 we introduce the notion of a complementary cone for a cone

LCP, motivated by a similar notion in LCP over Rn
+, see [8, 52]. We shall also

introduce the notion of a nondegenerate linear transformation and study the

finiteness of the solution set of a cone linear complementarity problem.

(Results of this chapter have appeared in [48].)

In Chapter 3 we consider the linear complementarity problem over the cone

of squares (symmetric cone) in a Euclidean Jordan algebra. The Euclidean

Jordan algebraic framework unifies various linear complementarity problems such
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as semidefinite and second-order cone linear complementarity problems. We

study the facial structure of a symmetric cone and use it in generalizing the

notion of a strictly semimonotone matrix and SSM linear transformation from

the theory of LCP [8] and SDLCP [18, 47] respectively, to a Euclidean Jordan

algebraic setting. We shall relate the SSM-property to the uniqueness of a

solution to LCP(K, L, q) for all q ∈ K and the strict copositivity of self-adjoint

linear transformations on A. Finally, we study the Q-property of all principal

subtransformations in the context of a LCP over a proper cone in a finite dimen-

sional inner product space and connect it to the strict semimonotonicity when

specialized in the setting of a Euclidean Jordan algebra.

(A part of this chapter has appeared in [45].)

In Chapter 4 we shall discuss relationship between Q and R0 properties

of a second-order cone invariant transformations. Our study is motivated by a

result of Murty [52] in the context of a LCP over Rn
+ with a nonnegative square

matrix. It states that LCP(Rn
+, M, q) is solvable for all q ∈ Rn if and only if

the diagonal entries of M are positive (equivalent to M being R0), where M is

a n × n nonnegative matrix. Though we do not have a complete generalization

of Murty’s result to a second-order cone, in this chapter we characterize the R0-

property of a quadratic representation Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x of Λn for

a, x ∈ Λn where ‘◦’ is a Jordan product and show that the R0-property of Pa is

equivalent to stating that SOCLCP(Pa, q) has a solution for all q ∈ Λn.

(Results of this chapter have appeared in [46].)

In Chapter 5 we shall study whether the matrix representation of a linear

transformation L : Sn → Sn, denoted asN (L), with the P-property, with respect
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to the canonical basis in Sn, is a P -matrix [8]. The motivation for asking the

above is partly the issue studied in Theorem 8 of [18] (also see [20]). Also, when

L is self-adjoint we have the following equivalence:

LFF has the P-property for all F ⇔ L has P-property ⇔ L is strictly monotone

⇔ N (L) is symmetric positive definite, (see Theorem 1 in [22]).

(A part of this chapter has appeared in [47].)

Finally, Chapter 6 finishes with some open problems and concluding re-

marks.



Chapter 2

Complementary Cones and

Nondegenerate Transformations

In this chapter we introduce and study the notion of a complementary cone,

nondegenerate complementary cone and nondegenerate linear transformation in

connection with the LCP over a closed convex cone K, generalizing the notion of

a complementary cone and nondegenerate matrix studied in linear complement-

arity theory, see [8, 52]. We study the closedness and the boundary structure

of a complementary cone in the cone LCP. We show that unlike complement-

ary cones in LCP over Rn
+, complementary cones in a cone LCP need not be

closed. However, closedness of complementary cones is shown to be a necessary

condition for many of the important solution properties of a cone LCP to hold.

Finally, we unify and prove the results of Gowda and Song [21], Malik [45] and

Tao [67] characterizing the finiteness of the solution set of a SDLCP, LCP over

a symmetric cone and SOCLCP, respectively, for any cone LCP.

22
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2.1 Complementary cones

The notion of a complementary cone has been introduced by Murty [52] in re-

lation to a LCP over Rn
+. This notion is well studied in the literature on the

LCP theory, see [8]. It has been found useful in studying the existence and mul-

tiplicity of solutions to LCP over Rn
+ and in studying a geometric interpretation

of pivoting algorithms to solve the LCP. The book by Cottle, Pang and Stone

[8] provides a detailed study of all the above concepts. The notion of a com-

plementary cone has been extended to the semidefinite linear complementarity

problems in [47]. It is further studied in the context of a second-order cone linear

complementarity problem [67] and LCP over a symmetric cone in a Euclidean

Jordan algebra [45].

Motivated by the above we present the following generalization of the concept

of a complementary cone. Subsequently, we show how complementary cones

explain the geometry and the solution properties of a cone LCP.

Definition 2.1.1 Given a linear transformation L : V → V a complementary

cone of L corresponding to the face F of K is defined as

CF := F4 − L(F )

Observation 2.1.1 The linear complementarity problem LCP(K, L, q) has a

solution if and only if there exists a face F of K such that q ∈ CF .

Proof. Suppose x ∈ V solves the LCP(K,L, q). Then x ∈ K, y := L(x)+q ∈ K

and 〈x, y〉 = 0. Taking F to be the smallest face of K containing x we get

y = L(x) + q ∈ F4. Hence q ∈ CF . The converse is obvious.
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In the literature on LCP theory, see [8, 9], the set of all vectors q for which the

LCP(K, L, q) has a solution is called the range set of a LCP defined by a cone K

and a linear transformation L. By the above observation, the range set of a LCP

defined by K and L is the union of all complementary cones of L. The notion

of a range set is also studied in the context of a variational inequality problem

VI(K, f) where K is a closed convex set and f is an affine map. It is closely

related to the existence and stability theory of the VI problem, see [15, 16, 58].

The following example shows that complementary cones and their union are not

closed in general. However, it is easy to see that complementary cones and the

range are closed when K is a polyhedral cone.

Example 2.1.1 Let Λ3
+, the second-order cone in R3, be defined as Λ3

+ := {x =

(x0, x1, x2)
T ∈ R3 : (x2

1 + x2
2)

1
2 ≤ x0}. Let M : R3 → R3 be a matrix defined as

M(x) =


(x0 + x1)/2

(x0 + x1)/2

x2

 .

Then M


1
2
(ε + 1

ε
)

1
2
(ε− 1

ε
)

−1

 →


0

0

−1

 as ε ↓ 0. However, there exist no x ∈ Λ3
+ such

that M(x) =


0

0

−1

 . Thus the complementary cone of M corresponding to the

face Λ3
+ is not closed.

Also SOCLCP(M, q) with q = (0, 0, 1)T does not have a solution. How-
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ever, for the sequence qt = (−t/2,−t/2, 1)T converging to q as t ↓ 0 note that

SOCLCP(M, qt) has a solution for all t > 0. Thus the union of complementary

cones is also not closed in general.

In our next proposition we give a sufficient condition for the closedness of a

complementary cone of a given linear transformation L and corresponding to a

given face F. For this we appeal to a result which can be deduced from Theorem

9.1 in [61], but an independent proof has been supplied here.

Lemma 2.1.1 Let K be a closed convex cone in Rn and A : Rn → Rm be a m×n

real matrix. If Az = 0, z ∈ K implies z = 0, then A(K) is closed.

Proof. Let {xt} be a sequence in K such that A(xt) → y. We shall show that

y ∈ A(K). When y = 0 the result is trivial, so consider the case y 6= 0. Then

xt 6= 0 for all large t and hence there exists a subsequence {xs} of {xt} such that

xs

||xs|| converges to some w ∈ K. Thus A(xs)
||xs|| → A(w). Note that the sequence {xs}

is bounded, otherwise we have A(w) = 0, which by the hypothesis gives w = 0,

a contradiction. Since {xs} is bounded, it has a subsequence converging to some

x ∈ K. Thus we have y = A(x) ∈ K, which completes the proof.

Proposition 2.1.1 Given a linear transformation L : V → V and a face F of

a closed convex cone K, the complementary cone CF is closed if

x ∈ F, L(x) ∈ F4 implies x = 0.

Proof. By Lemma 2.1.1 and the condition described above, it is apparent that

L(F ) is closed. Let L̃ : V × V → V be defined as L̃(x, y) = x + y. Let

CF = {y − L(x) : x ∈ F and y ∈ F4} be a complementary cone corresponding
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to the face F. Let K1 := {y : y ∈ F4} and K2 := {−L(x) : x ∈ F}. Then

L̃(K1 × K2) = K1 + K2 = CF . Now, L̃(y,−L(x)) = 0 for some x ∈ F and

y ∈ F4 implies that y − L(x) = 0 ⇒ L(x) ∈ F4, which by the given condition

yields x = 0. Thus we have y = L(x) = 0. Appealing to Lemma 2.1.1 again, we

conclude that CF is closed.

Remark 2.1.1 L has the R0-property if and only if for every F�K the following

relation holds:

x ∈ F, L(x) ∈ F4 ⇒ x = 0.

Proposition 2.1.2 Let L has the R0-property. Then the union of all comple-

mentary cones is closed.

Proof. The union of all complementary cones of L can be represented by the set

S = {q : SOL(K, L, q) 6= φ}. Let {qn} be a sequence in S such that qn → q and

{xn} is a corresponding sequence of solutions to LCP(K, L, qn). Note that {xn}

is bounded, otherwise we can construst a sequence xm

||xm|| converging to some

nonzero x ∈ K, contradicting the R0-property. Since {xn} is bounded, there

exists a convergent subsequence {xm} of {xn} such that xm → y ∈ SOL(K, L, q).

2.2 Nondegenerate linear transformations

Murty [52] first used the term “nondegenerate matrix” in the context of a LCP

over Rn
+ to study the finiteness of the set SOL(Rn

+, M, q) for all q ∈ Rn. It is

important to note that the nondegeneracy of matrices is neither related to the
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concept of nondegeneracy of basic solutions of equations nor to the concept of

nondegenerate solution in LCP over Rn
+. (x ∈ Rn is a nondegenerate solution of

LCP(Rn
+, M, q) if x is a solution with x + Mx + q ∈ int Rn

+).

In the case of LCP over Rn
+, nondegeneracy of a matrix can be described by

x ∗ Mx = 0 ⇒ x = 0, where x ∗ Mx is the componentwise product of x and

Mx. Gowda snd Song [21] extended this notion to SDLCP by the condition

X ∈ Sn, XL(X) = 0 ⇒ X = 0. In this section we extend and study the notion

of a nondegenerate linear transformation on V and study the facial structure of

complementary cones in a cone LCP.

Theorem 2.2.1 ([21]) Let A ∈ Rn×n. Then the Lyapunov transformation LA

is nondegenerate if and only if 0 /∈ σ(A) + σ(A), where σ(A) denotes the set of

eigenvalues of A.

Definition 2.2.1 (a) A complementary cone CF of L corresponding to the

face F is called nondegenerate if

x ∈ span F , L(x) ∈ span F4 ⇒ x = 0.

A complementary cone which is not nondegenerate is called degenerate.

(b) A linear transformation L is nondegenerate if CF is nondegenerate for every

F � K.

Remark 2.2.1 (i) By Proposition 2.1.1 every nondegenerate complementary

cone is closed.

(ii) For V = Sn and K = Sn
+ a linear transformation L : V → V is nondegen-

erate if and only if (see also [21])
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X ∈ Sn, XL(X) = 0 ⇒ X = 0.

Proposition 2.2.1 For any face F of a closed convex cone K, det LFF 6= 0

implies that CF is nondegenerate. Moreover, if L(span F ) ⊆ span F + span F4

for a nonzero F � K, then CF is nondegenerate if and only if det LFF 6= 0.

Proof. Let det LFF 6= 0 for F � K. Let x ∈ span F such that L(x) ∈ span F4.

Then LFF (x) = 0. Since LFF is nonsingular, it implies that x = 0. Conversely,

suppose that L(span F ) ⊆ span F + span F4 and CF is nondegenerate for some

nonzero F � K. Let 0 6= x ∈ span F such that LFF (x) = 0. Then L(x) ∈

span F4, which contradicts the fact that CF is nondegenerate. This completes

the proof.

Corollary 2.2.1 Suppose that L(span F ) ⊆ span F + span F4 for all nonzero

F � K. Then the following are equivalent.

(i) L is nondegenerate.

(ii) det LFF 6= 0 for every nonzero F � K.

Below we give an example of a nonpolyhedral convex cone to illustrate the

hypothesis in the above corollary.

Example 2.2.1 ([66]) Take C to be the compact convex set in R2 with extreme

points at (0, 1), (0, 0), and (1/k, (1/k)2), k = 1, 2, ... Let K be the proper cone in

R3 given by

K := {λ(x, 1) : λ ≥ 0 and x ∈ C}.

Note that K is not polyhedral (K has countably infinite number of faces). K has
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the property that for each face F of K, dim F + dimF4 = 3. Thus, any matrix

M ∈ R3×3 satisfies the hypothesis in Corollary 2.2.1.

Remark 2.2.2 In particular, when K = Rn
+, we note that the condition of

Corollary 2.2.1 is satisfied and hence an n × n real matrix M in LCP over Rn
+

is nondegenerate if and only if all the principal minors of M are nonzero. ( Also

see [8].)

Below we give an example to show that, in general, nondegeneracy of a linear

transformation need not imply the nonsigularity of all principal subtransforma-

tions.

Example 2.2.2 Consider a Lyapunov transformation LA : S2 → S2 for

A =

 0 1

1 1

 .

By Theorem 2.2.1, LA is nondegenerate, however, det (LA)FF = 0 corresponding

to the face F of S2
+ generated by E11 =

 1 0

0 0

.

Definition 2.2.1 (b) of a nondegenerate linear transformation is motivated by

the uniqueness of a solution to a LCP on a given face and has been explained in

the following proposition.

Proposition 2.2.2 Given a linear transformation L : V → V and a F �K, CF

is nondegenerate if and only if for each q ∈ CF there exist a unique x ∈ F and

y ∈ F4 such that q = y − L(x).
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Proof. Suppose there exist x1, x2 ∈ F and y1, y2 ∈ F4 such that q = y1 −

L(x1) = y2−L(x2), which implies that y1−y2 = L(x1−x2), where x1−x2 ∈ span F

and y1 − y2 ∈ span F4. By the nondegeneracy of L, x1 = x2 and y1 = y2.

Conversely, suppose there exists a x ∈ span F such that L(x) ∈ span F4. Writing

x = x1 − x2 with x1, x2 ∈ F and L(x) = y1 − y2 with y1, y2 ∈ F4 we get

q̄ := y1 − L(x1) = y2 − L(x2).

Since each q ∈ CF has a unique representation in CF we get x1 = x2 and y1 = y2.

Remark 2.2.3 If L has the property that LCP(K, L, q) has a unique solution

for all q ∈ V, then L is nondegenerate and hence all the complementary cones of

L are closed.

Corollary 2.2.2 Given L : V → V and q ∈ V, LCP(K, L, q) has infinitely

many solutions only if either q is contained in a degenerate complementary cone

or q lies in infinitely many complementary cones.

Proof. Suppose the assertion is not true, then it implies that q lies in an at most

finitely many nondegenerate complementary cones. Thus LCP(K, L, q) can have

at most finitely many solutions negating our hypothesis.

Theorem 2.2.2 Let CF be a complementary cone of L corresponding to the face

F . Then the following statements hold.

(i) If CF is nondegenerate, then q ∈ ri CF if and only if there exist x ∈ ri F and

y ∈ ri F4 such that q = y − L(x).
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(ii) Any face G of CF can be represented as

G = {y − L(x) : x ∈ H and y ∈ H
′},

where H is a face of F and H
′
is a face of F4. Moreover, if CF is nonde-

generate, then any set of the above form is a face of CF .

Proof. The proof of (i) is easy and is left to the reader. For the proof of (ii) let

G be a face of CF for some face F. Define the sets

H := {x ∈ F : −L(x) ∈ G},

H
′
:= {y ∈ F4 : y ∈ G}, and

G ′
:= {y − L(x) : x ∈ H and y ∈ H

′}.

As G is a convex cone, G ′ ⊆ G. We shall show that G = G ′
. Consider a point in G.

Since such a point is in CF , it can be expressed in the form y−L(x) where x ∈ F

and y ∈ F4. Since F and F4 are closed convex cones, both contain 0. Thus, CF

contains both y and −L(x). Since y ∈ CF , (y − L(x)) − y = −L(x) ∈ CF , and

y − L(x) ∈ G, we have y ∈ G, so y ∈ H
′
. Likewise −L(x) ∈ G, so x ∈ H. Thus,

y − L(x) ∈ G ′
and, hence, G is contained in G ′

. Therefore, G = G ′
.

We now need to show that H � F , and H
′
� F4. Since 0 ∈ F ∩ F4, 0 ∈ CF .

Thus, as CF is a cone, any face of CF must contain 0, so G contains 0. By their

definitions, it follows that 0 ∈ H∩H
′
. It is also easy to check from their definitions

that H and H
′

are convex cones. Now if x ∈ F , z − x ∈ F and z ∈ H, then

−L(x) ∈ CF , −L(z − x) ∈ CF and −L(z) ∈ G. Since G � CF we get −L(x) ∈ G,

so x ∈ H and H � F. Similarly, we can show that H
′
� F4.

Conversely, let CF be nondegenerate and N be defined as N := {y − L(x) :

x ∈ H, y ∈ H
′}, where H � F and H

′
� F4. Obviously, N is a convex cone and
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φ 6= N ⊆ CF . Let y−L(x) ∈ CF , (y0− y)−L(x0− x) ∈ CF , and y0−L(x0) ∈ N ,

where x0 ∈ H, x ∈ F, y0 ∈ H
′
and y ∈ F4. Since CF is nondegenerate x0−x ∈ F

and y0 − y ∈ F4. Thus,

x ∈ F, x0 − x ∈ F, and x0 ∈ H;

y ∈ F4, y0 − y ∈ F4, and y0 ∈ H
′
.

Since H and H
′

are the faces of F and F4, respectively, we get x ∈ H and

y ∈ H
′
. Hence y − L(x) ∈ N and N is a face of CF .

Corollary 2.2.3 Given a linear transformation L : V → V and q ∈ V, the

LCP(K, L, q) has infinitely many distinct solutions if q lies in the relative interior

of infinitely many nondegenerate complementary cones.

Proof. Let q ∈ ∩ ri CFα , where Fα is a family of distinct faces of K indexed by

α and CFα is nondegenerate for each α. Then q = yα − L(xα) for xα ∈ ri Fα and

yα ∈ ri F4
α . Since each CFα is a nondegenerate complementary cone, xα ∀ α are

infinitely many distinct solutions to LCP(K, L, q).

2.3 Finiteness of the solution set of a cone LCP

As mentioned before, in the context of a LCP over Rn
+, nondegenerate matrices

characterize the finiteness of the solution set of a LCP(Rn
+, M, q) for all q ∈ Rn,

see [8]. A similar study is made by Gowda and Song [21] in the context of

a semidefinite linear complementarity problem. They have shown that when

K = Sn
+, nondegeneracy of a linear transformation L need not be a sufficient
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condition for the finiteness of a solution set of a SDLCP(L, Q) for all Q ∈ Sn
+.

The example below throws more light on the preceding discussion.

Example 2.3.1 Let M : R3 → R3 be defined as M(x) = −x, K = {(x0, x1, x2)
T :

x0 ≥ 0,
x2
0

4
≥ x2

1 +x2
2} and q := (5

8
, 0, 0)T . It is easy to check that M is nondegen-

erate, K is closed and convex (but not self-dual) and any point x = (x0, x1, x2)
T

lies on the boundary of K if and only if x0 ≥ 0 and
x2
0

4
= x2

1 + x2
2. Any comple-

mentary cone corresponding to a face F is of the form CF = {y + x : x ∈ F, y ∈

F4}. Except two 3-dimensional complementary cones, namely K∗ and K, every

other complementary cone is of dimension 2. The infinite set of solutions to

LCP(K, L, q) is given by {(1
2
, x1

2
, x2

2
)T : x2

1 + x2
2 = 1

4
}.

Definition 2.3.1 (a) A solution x0 of LCP(K,L, q) is locally unique if it is

the only solution in a neighborhood of x0.

(b) A solution x0 is locally-star-like if there exists a sphere S(x0, r) such that

x ∈ S(x0, r) ∩ SOL(K, L, q) ⇒ [x0, x] ⊆ SOL(K, L, q).

The following theorem generalizes the earlier results on the finiteness of the

solution set of a LCP over specialized cones, see [8, 21, 46, 52, 67], to LCP over

a closed convex cone in V.

Theorem 2.3.1 Given a linear transformation L : V → V and a closed convex

cone K in V , the following statements are equivalent.

(i) SOL(K, L, q) is finite for all q ∈ V.

(ii) Every solution of LCP(K,L, q) is locally unique for all q ∈ V.
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(iii) L is nondegenerate, and for all q ∈ V , each solution of LCP(K, L, q) is

locally-star-like.

Proof. The assertion (i) ⇒ (ii) is obvious. For the reverse implication, note

that (ii) implies that L has the R0-property. Thus SOL(K, L, q) is compact for

all q and hence (in view of (ii)) is finite for all q.

(ii) ⇒ (iii): First we shall show that L is nondegenerate. Let x ∈ V be nonzero

such that x ∈ span F , L(x) ∈ span F4 for some face F of K. Since x ∈ span F,

we can write x = x1 − x2 with x1, x2 ∈ F. Similarly, L(x) = L(x)1 − L(x)2

with L(x)1, L(x)2 ∈ F4. Now taking q := L(x)1 − L(x1) = L(x)2 − L(x2) it is

observed that LCP(K, L, q) has two distinct solutions x1 and x2 with

〈(tx1 + (1− t)x2), (tL(x)1 + (1− t)L(x)2)〉 = 0 ∀ t ∈ [0, 1],

i.e., [x1, x2] ⊆ SOL(K,L, q) which contradicts (ii).

Also for any q ∈ V since the solution x0 ∈ SOL(K, L, q) is locally unique, it is

locally-star-like.

(iii) ⇒ (ii): Let for some fixed q ∈ V, the solution x0 of LCP(K, L, q) be not

locally unique. Then there exist a sequence {xk} ⊆ SOL(K, L, q) converging to

x0 with xk 6= x0 for all k. By the locally-star-like property we have [x0, xk] ⊆

SOL(K, L, q) for all large k. Let Fi be the smallest face of K containing xi

(xi ∈ ri Fi) where i = 0, 1, 2, . . . From the complementarity of solutions we

have for all large k

x0 ∈ ri F0 and L(x0) + q ∈ F4
0 ;

xk ∈ ri Fk and L(xk) + q ∈ F4
k .
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Also from the fact that [x0, xk] ⊆ SOL(K, L, q) for large k we get

〈x0, L(xk) + q〉 = 0 and 〈xk, L(x0) + q〉 = 0.

Since x0 ∈ ri F0 and xk ∈ ri Fk we get L(xk) + q ∈ F4
0 and L(x0) + q ∈ F4

k .

Defining a face G := F4
0 ∩ F4

k of K∗ we get x0, xk ∈ G4 and L(x0) + q,

L(xk) + q ∈ G. Thus there exists a face F = G4 of K such that a nonzero

x := x0 − xk ∈ span F with L(x) ∈ span F4, which contradicts our assumption

that L is nondegenerate.

Corollary 2.3.1 When K is polyhedral LCP(K,L, q) has a finite number of

solutions for all q ∈ V if and only if det LFF 6= 0 for all nonzero F � K, or

equivalently L is nondegenerate.

Proposition 2.3.1 If L is a monotone linear transformation on V , then L is

nondegenerate if and only if LCP(K, L, q) has a unique solution for all q ∈ V .

Proof. Let x1 and x2 with x1 6= x2 be the two solutions of LCP(K, L, q) for

some q ∈ V. Let x1 ∈ ri F1 and x2 ∈ ri F2 where F1, F2 are the two faces of K.

By the monotonicity of L we have

0 ≤ 〈x1 − x2, L(x1 − x2)〉 = 〈x1 − x2, y1 − y2〉 = −〈x1, y2〉 − 〈x2, y1〉 ≤ 0,

where yi = L(xi) + q for i = {1, 2}. Thus 〈x1, y2〉 = 0 and 〈x2, y1〉 = 0. Since

x1 ∈ ri F1 and x2 ∈ ri F2, y1 ∈ F4
2 and y2 ∈ F4

1 . Defining a face G := F4
1 ∩ F4

2

of K∗ we get x1, x2 ∈ G4 and L(x1)+ q, L(x2)+ q ∈ G. Thus for a face F = G4

of K we have a nonzero x := x1−x2 ∈ span F, such that L(x) ∈ span F4, which

contradicts that L is nondegenerate.

Proposition 2.3.2 Let L be copositive on K. Then L is nondegenerate only if

LCP(K, L, q) has a unique solution for all q ∈ K∗.
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The proof is similar to that of Proposition 2.3.1 above and is omitted.



Chapter 3

Strictly Semimonotone and

Completely-Q Transformations

In this chapter we consider the linear complementarity problem over the cone of

squares (symmetric cone) in a Euclidean Jordan algebra, studied by Gowda et

al. in [24]. The Jordan algebraic framework unifies various linear complement-

arity problems such as SDLCP and second-order cone linear complementarity

problems. We study the facial structure of a symmetric cone and use it in gen-

eralizing the notion of a strictly semimonotone matrix (linear transformation)

from the theory of LCP [8] (SDLCP [18, 47]) to a Euclidean Jordan algebraic

setting. We shall relate the strict semimonotonicity to the uniqueness of a solu-

tion to LCP(K, L, q) for all q ∈ K. We also show that for a self-adjoint linear

transformation L on A, strict semimonotonicity of L is equivalent to the strict

copositivity of L on K. Finally, motivated by the class of completely-Q-matrices

and their connection with the strictly semimonotone matrices in the standard

37
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LCP theory [7, 8], we study the Q-property of all principal subtransformations

in the context of a cone LCP and connect it to the strict semimonotonicity when

specialized in the setting of a Euclidean Jordan algebra.

We state below the existence theorem of Karamardian [38] in the context of

a LCP over a proper cone in a finite dimensional space.

Theorem 3.0.2 (Karamardian’s theorem) Let L : V → V be a linear

transformation. Let K be a proper cone in V and q̃ ∈ int K∗. If the prob-

lems LCP(K, L, 0) and LCP(K, L, q̃) have unique solutions (namely zero), then

LCP(K,L, q) has a solution for all q ∈ V.

3.1 Faces of the symmetric cone

In a Euclidean Jordan algebra A of rank n, fix a Jordan frame {e1, e2, . . . , en}

and define sets

A(r)
+ := {x ∈ K : x ◦ (e1 + e2 + . . . + er) = x}

and

A(r) := {x ∈ A : x ◦ (e1 + e2 + . . . + er) = x}

for 1 ≤ r ≤ n. Then we have the following lemma.

Lemma 3.1.1 If x ∈ A(r), then x and
∑r

i=1 ei operator commute and the number

of non-zero eigenvalues of x is less than or equal to r.

Proof. We shall make use of the following identity in a Euclidean Jordan algebra

(Proposition II.1.1 in [10]):

[Lu, Lv2 ] + 2[Lv, Lu◦v] = 0,
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for all u, v ∈ A, where [A, B] := AB − BA. Substituting u = x and v =
∑r

i=1 ei,

and noting that
∑r

i=1 ei
2 =

∑r
i=1 ei we get LxL∑r

i=1
ei

= L∑r

i=1
ei
Lx. Since x and∑r

i=1 ei operator commute there exists a Jordan frame {f1, f2, . . . , fn} and real

numbers λ1, λ2, . . . , λn such that x =
∑n

i=1 λifi and
∑r

i=1 ei =
∑r

i=1 fi. Substitut-

ing the value of x and
∑r

i=1 ei in the equality x ◦ ∑r
i=1 ei = x we get λi = 0 for

i = r + 1, . . . , n.

Proposition 3.1.1 (i) The set A(r)
+ defined above corresponding to the Jordan

frame {e1, e2, . . . , en} is the smallest face of K containing
∑r

i=1 ei.

(ii) The set A(r) is the smallest subspace of A containing A(r)
+ .

Proof. (i) First we shall show that A(r)
+ is a face of K. Clearly A(r)

+ is a convex

cone. Take an x ∈ K, y − x ∈ K and y ∈ A(r)
+ . Since y ∈ A(r)

+ , y ◦∑n
i=r+1 ei = 0.

By Proposition 1.3.1, 〈y,
∑n

i=r+1 ei〉 = 0. Thus,

〈y − x,
∑n

i=r+1 ei〉 = −〈x,
∑n

i=r+1 ei〉 ≤ 0.

Since y − x ∈ K, we get 〈x,
∑n

i=r+1 ei〉 = 0, which by Proposition 1.3.1 gives

x◦∑n
i=r+1 ei = 0, proving that A(r)

+ is a face of K. Now in the light of Lemma 2.8

in [2], showing
∑r

i=1 ei ∈ riA(r)
+ is equivalent to showing that for every x ∈ A(r)

+

there exists α > 0 such that
∑r

i=1 ei−αx ∈ K. Take an arbitrary x ∈ A(r)
+ . Then

x ◦ (
∑r

i=1 ei − αx) = x− αx2 = x ◦ (e− αx).

We can choose α > 0, sufficiently small, so that e − αx ∈ K. Since x ∈ K,

e− αx ∈ K for the above α > 0, and x and e− αx operator commute, we have

x ◦ (e− αx) = x ◦ (
∑r

i=1 ei − αx) ∈ K. By Lemma 3.1.1, x and
∑r

i=1 ei operator

commute and hence they have a common spectral decomposition, i.e, there exists

a Jordan frame {f1, f2, . . . , fn} such that
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x =
∑k

i=1 λifi and
∑r

i=1 ei − αx =
∑r

i=1 fi − α
∑k

i=1 λifi

where k ≤ r ≤ n and λi > 0 for i = 1, . . . , k. Also,

x ◦ (
∑r

i=1 ei − αx) =
∑k

i=1 λi(1− αλi)fi ∈ K

⇒ λi(1− αλi) ≥ 0

⇒ 1− αλi ≥ 0

for i = 1, . . . , k. Thus,
∑r

i=1 ei − αx ∈ K for the above chosen α > 0 and since

x ∈ A(r)
+ is arbitrary, we have proved our claim.

(ii) Since A(r) is a subspace of A containing A(r)
+ , x− y ∈ A(r) for all x, y ∈ A(r)

+ .

Conversely, for any x ∈ A(r) there exists a Jordan frame {f1, f2, . . . , fn} such

that x =
∑r

i=1 λifi and
∑r

i=1 ei =
∑r

i=1 fi. Define

x+ :=
∑r

i=1 λ+
i fi and x− :=

∑r
i=1 λ−i fi

where λ+ = max{λi, 0} and λ−i = λ+
i − λi. Thus, we have x = x+ − x− with

x+, x− in A(r)
+ , which proves our claim.

Theorem 3.1.1 Let A be a Euclidean Jordan algebra of rank n. Let x ∈ K be

an element of A having exactly r nonzero eigenvalues. Then the smallest face of

K containing x is of the form

W
(r)
+ := {y ∈ K : y ◦ (f1 + f2 + . . . + fr) = y},

where {f1, f2, . . . , fn} constitutes a Jordan frame.

Proof. In view of the spectral theorem, there exists a Jordan frame {f1, f2, . . . , fn}

and positive real numbers λ1, λ2, . . . , λr where 1 ≤ r ≤ n such that x can be writ-

ten as x = λ1f1 + λ2f2 + . . . + λrfr. Consider the set

W
(r)
+ = {y ∈ K : y ◦ (f1 + f2 + . . . + fr) = y}.
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We shall show that the smallest face of K containing x is W
(r)
+ . Since K is a

convex cone, without loss of generality assume that 0 < λi < 1 for all i and∑r
i=1 λi = 1. We can choose an α ∈ (0, 1), say α = max{1 − λi}, such that the

point z = x
α
− (1−α)

α

∑r
i=1 fi lies in W

(r)
+ . Since

∑r
i=1 fi lies in the relative interior

of W
(r)
+ , z ∈ W

(r)
+ and x = (1− α)

∑r
i=1 fi + αz with 0 < α < 1, it follows that x

lies in the relative interior of W
(r)
+ .

Note that the above theorem characterizes all the faces of a symmetric cone

in the sense that if F is a face of a symmetric cone K then it is the smallest face

of K containing a point in its relative interior. The following example illustrates

all the faces of the positive semidefinite cone in Sn. See also Hill and Waters [30].

Example 3.1.1 Consider the space Sn with its associated cone of squares Sn
+

and a Jordan frame {UE11U
T , UE22U

T , . . . , UEnnU
T}, where Eii is an n × n

diagonal matrix with (i, i)th entry 1 and others 0, and U is an orthogonal matrix.

Then the set

W
(r)
+ := {X ∈ Sn

+ : X ◦ (UE11U
T + UE22U

T + . . . + UErrU
T ) = X},

where 1 ≤ r ≤ n, is of the form

U

 Y 0

0 0

 UT : Y ∈ Sr
+

 . Hence every face

of Sn
+ can be represented in the above form.

Proposition 3.1.2 For any F �K following statements hold:

(i) x ∈ span F, y ∈ span F4 ⇔ x and y operator commute and x ◦ y = 0.

(ii) x ∈ span F, y ∈ span F ⇒ x ◦ y ∈ span F.

Proof. (i): Since x and y can be represented as a linear combination of the

elements of F and F4, respectively, from Proposition 1.3.1 x and y operator
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commute and x ◦ y = 0. Conversely, by the Spectral theorem and the condition

x ◦ y = 0 we can write

x =
∑r

i=1 λifi and y =
∑n

i=r+1 µifi.

Define a subset F of K as

F := {z ∈ K : z ◦ (f1 + f2 + . . . + fr) = z}.

By Proposition 3.1.1, F � K and x ∈ spanF. Also it is easy to observe that

spanF4 will be of the form

spanF4 = {z ∈ A : z ◦ (fr+1 + fr+2 + . . . + fn) = z}.

Thus y ∈ spanF4.

(ii): Let x, y ∈ span F for some F �K. By Proposition 3.1.1 and Theorem 3.1.1,

span F can be represented as

span F = {z ∈ A : z ◦ (f1 + f2 + . . . + fr) = z}.

By Lemma 3.1.1, x and
∑r

i=1 fi operator commute which gives

(x ◦ y) ◦ (
∑r

i=1 fi) = x ◦ ((
∑r

i=1 fi) ◦ y) = x ◦ y.

Thus x ◦ y ∈ span F.

Remark 3.1.1 (i) A linear transformation L : A → A is nondegenerate if

and only if

x and L(x) operator commute, x ◦ L(x) = 0 ⇒ x = 0.

(ii) For every F �K, spanF is a Euclidean Jordan algebra with F as its cone

of squares. Thus, every face of a symmetric cone is symmetric in its linear

span.
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3.2 Strictly Semimonotone transformations

Strictly semimonotone matrices are well studied in the standard LCP theory

[8]. They characterize the class of matrices for which the LCP(Rn
+, M, q) has

a unique (zero) solution for all q ∈ Rn
+. Also, in the space of real symmetric

matrices, the class of strictly semimonotone matrices is equivalent to the class of

strictly copositive matrices on Rn
+. On the algorithmic side, strictly semimono-

tone matrices are useful in the study of the variable dimension algorithm of Ludo

Van der Heyden [32] to solve LCP over Rn
+.

Gowda and Song [18] generalized the above notion in the semidefinite lin-

ear complementarity problems. They have the following characterization of the

SSM-property of a Lyapunov transformation in terms of the positive stability

of a matrix. Note that a matrix A ∈ Rn×n is positive stable if the real part of

every eigenvalue of A is positive.

Theorem 3.2.1 Given a matrix A ∈ Rn×n. The Lyapunov transformation LA

has the SSM-property if and only if A is positive stable.

The relationship between the SSM-property and the strict copositivity of

self-adjoint linear transformation on Sn has been studied in [47].

In this section, we shall define the concept of a strictly semimonotone linear

transformation in a Euclidean Jordan algebraic setting. We study its relation-

ship with the uniqueness of the solution to LCP(K, L, q) for q ∈ K. Also, for

a self-adjoint linear transformation L on A, the SSM-property of all principal

subtransformations is shown to be equivalent to the strict copositivity of L on

K. We shall begin with the following definition.
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Definition 3.2.1 For a linear transformation L : A → A, we say that

(a) L is strictly semimonotone (SSM) if

x ∈ K, x and L(x) operator commute, and x ◦ L(x) ∈ −K ⇒ x = 0.

(b) LFF is strictly semimonotone if

x ∈ F , x and LFF (x) operator commute, and x ◦ LFF (x) ∈ −F ⇒ x = 0.

It is known that every principal submatrix of a strictly semimonotone matrix

is strictly semimonotone in a LCP over Rn
+, [8]. However, the following example

shows that the strict semimonotonicity of L need not imply that LFF is SSM

for all F �K.

Example 3.2.1 Consider the Lyapunov transformation LA : S2 → S2 for

A =

 1 1

−1 0

 .

Note that A is positive stable and hence from Theorem 3.2.1 LA has the

SSM-property. However, for a face F of S2
+ defined as

F :=

α

 0 0

0 1

 : α ≥ 0

 ,

(LA)FF (X) = 0, for all X ∈ spanF . Hence, (LA)FF does not have the SSM-

property.

Proposition 3.2.1 If L : A → A is strictly semimonotone then SOL(K, L, q) 6=

φ for all q ∈ A.

Proof. It is easy to observe that L has the R0-property. Also, if x ∈ SOL(K, L, e)

then, by the Spectral theorem, x and L(x) operator commute and x◦L(x) = −x ∈
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−K. By the strict semimonotonicity of L we have x = 0. Thus, by Karamardian’s

theorem, LCP(K, L, q) has a solution for all q ∈ A.

Theorem 3.2.2 For a linear transformation L : A → A consider the following

statements.

(i) L is strictly copositive on K.

(ii) LCP(K, L, q) has a unique (zero) solution for all q ∈ K.

(iii) L is strictly semimonotone.

Then (i) ⇒ (ii) ⇒ (iii) in the above statements.

Proof. (i) ⇒ (ii) is easy. For (ii) ⇒ (iii) suppose that there exists x ∈ K

such that x and L(x) operator commute and x ◦ L(x) ∈ −K. From the spectral

decomposition theorem, x and L(x) can be written as

x =
∑n

i=1 λifi and L(x) =
∑n

i=1 βifi ,

where {f1, f2, . . . , fn} constitutes a Jordan frame. For a real number a define

a+ := max{a, 0} and a− := min{−a, 0}. ¿From the condition x ◦ L(x) ∈ −K

which is equivalent to λiβi ≤ 0 for all i, we have

x ◦ (L(x))+ = 0

where (L(x))+ :=
∑n

i=1 β+
i fi. Now taking q := (L(x))+−L(x) ∈ K it is observed

that x solves LCP(K, L, q). From (ii) it implies that x = 0 and hence, L is SSM.

Since every face of a symmetric cone is symmetric in its linear span, we have

the following corollary.
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Corollary 3.2.1 Given F � K, LCP(F, LFF , q) has a unique (zero) solution

for all q ∈ F implies that LFF is strictly semimonotone.

The following example from [18] shows that strict semimonotonicity of L need

not imply that LCP(K, L, q) has a unique (zero) solution for all q ∈ K.

Example 3.2.2 [18] Consider the SDLCP(LA, Q) for

A =

 −1 2

−2 2

 and a positive definite Q =

 2 2

2 4

 .

Since A is positive stable, LA has the SSM-property. However,

X =

 1 0

0 0


is a nonzero solution to SDLCP(LA, Q).

To study the relationship between strict copositivity and strict semimono-

tonicity of self-adjoint linear transformations on A we shall generalize Lemma 2,

[47], to a Euclidean Jordan algebraic setting, whose proof is an extension of the

proof for Theorem 1, [35].

Lemma 3.2.1 Let L : A → A be a self adjoint linear transformation on a Eu-

clidean Jordan algebra A. Then L is strictly copositive on K if every principal

subtransformation LFF of L has no eigenvector v ∈ ri F with associated eigen-

value λ ≤ 0.

Proof. Suppose there exists a nonzero x0 ∈ K with 〈x0, L(x0)〉 ≤ 0. Define

S := {x ∈ K : x 6= 0, 〈x, L(x)〉 ≤ 0}. Let m(x) denote the number of positive

eigenvalues of x. Since we can choose an x ∈ S that has the least number of
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positive eigenvalues among all x ∈ S, we can assume, without loss of generality,

that r = m(x0) ≤ m(x), ∀ x ∈ S. We consider the case r > 1. ( For r = 1

the proof follows easily). Let F be the smallest face of K containing x0 and

= := {y : y ∈ F, ||y|| = 1}. We can also assume without loss of generality that

||x0|| = 1. Consider the function f : span F → R defined as f(y) := 〈y, L(y)〉 =

〈y, LFF (y)〉 restricted to the set =. Note that x0 is in the relative interior of F and

〈x0, L(x0)〉 ≤ 0. Moreover, any x on the relative boundary of F with ||x|| = 1will

have less than r positive eigenvalues and hence for such a x, 〈x, L(x)〉 > 0. It

follows that f(y) restricted to = will attain its minimum at some point v in

the relative interior of F and f(v) ≤ 0. But then v would be an eigenvector of

LFF with a negative or zero eigenvalue, contradicting our hypothesis. Thus, L is

strictly copositive on K.

Theorem 3.2.3 Suppose L : A → A is self-adjoint. Then the following state-

ments are equivalent.

(i) L is strictly copositive on K.

(ii) For every F �K, LCP(F, LFF , q) has a unique (zero) solution for all q ∈ F .

(iii) LFF is strictly semimonotone for all F �K.

Proof. If L is strictly copositive on K, then every nonzero principal subtrans-

formation LFF is strictly copositive on F � K. Thus, (i) ⇒ (ii) ⇒ (iii) follows

from Theorem 3.2.2. To prove the implication (iii) ⇒ (i) assume that L is not

strictly copositive. By Lemma 3.2.1, there exists a nonzero face F �K such that

LFF (x) = λx for some x ∈ ri F and λ ≤ 0. Thus we have
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x ∈ ri F , x and LFF (x) operator commute, and x ◦ LFF (x) ∈ −F,

which contradicts the fact that LFF has the SSM-property.

3.3 Completely-Q transformations

In the literature on LCP(Rn
+, M, q) where M ∈ Rn×n and q ∈ Rn, suppose

Y is a fixed class of matrices defined by some property. We say that M is

completely-Y if every principal submatrix of M also belongs to Y (equivalently,

share the same property that defines the class Y , for the corresponding order

of a submatrix). This concept is useful in pivoting algorithms where different

principal submatrices are used to generate intermediate solutions.

In the literature on LCP over Rn
+, we say that a matrix M is completely-Q

if M and every principal submatrix of M is also a Q-matrix. It is known that

a Q-matrix in general need not be a completely-Q matrix, see section 3.10, [8].

The study of the concept of a completely-Q matrix has been motivated by the

variable dimension algorithm of Ludo Van der Heyden [32] to solve LCP over

Rn
+. It has been shown (see [7, 8]) that M is completely-Q if and only if M is

strictly semimonotone.

In this section we shall study the Q-property of each principal subtransform-

ation of a linear transformation on a finite dimensional real inner product space

V associated with a proper cone K.

The following definition is motivated by a similar class of matrices studied in

the LCP theory [8].

Definition 3.3.1 (i) A linear transformation L : V → V is said to have the
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S-property if LCP(K, L, q) has a feasible solution (i.e, there exists an x ∈ K

such that L(x) + q ∈ K) for all q ∈ V.

(ii) L : V → V is said to be completely-Q (completely-S) if LFF has the Q-

property (S-property) for all F � K.

The proof of the following lemma is similar to that of Proposition 3.1.5 in [8].

Lemma 3.3.1 Given a linear transformation L : V → V and a proper cone K,

LCP(K, L, q) has a feasible solution for all q ∈ V if and only if there exists an

x ∈ int K such that L(x) ∈ int K∗.

The next lemma can be seen as a specialization of Theorems 3.5 and 3.6 in

[3]. It can also be obtained from Theorem 4 of [56].

Lemma 3.3.2 Let A ∈ Rn×n and K be a proper cone in Rn. Then the following

are equivalent:

(i) The system Ax ∈ int K∗, x ∈ int K is consistent.

(ii) The following implication holds

−y ∈ K, AT y ∈ K∗ ⇒ y = 0.

Proposition 3.3.1 Let L : V → V be given and K be proper in V . Then (i)

⇒ (ii) in the following statements.

(i) For all F � K, LT
FF has the S-property.

(ii) For all F � K, LCP(F, LFF , q) has a unique (zero) solution for all q ∈

F d := span F ∩ F ∗.
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Proof. Since every principal subtransformation of LFF with respect to G�F is

also a principal subtransformation of L, we can assume without loss of generality

that there exists a q ∈ K∗ such that 0 6= y ∈ K, z := L(y) + q ∈ K∗ and

〈y, z〉 = 0. Let F be the smallest face of K containing y. Then y ∈ F and

z ∈ F4. Since q ∈ K∗ can be written as q = qF + qF⊥ , where qF := Projspan F (q)

and qF⊥ := ProjF⊥(q), we have qF ∈ F d. Thus we have a nonzero y ∈ F such

that LFF (−y) = Projspan F L(−y) = qF ∈ F d, which by Lemma 3.3.2 implies

that the system LT
FF (x) ∈ ri F d, x ∈ ri F is inconsistent. This, by Lemma 3.3.1,

contradicts the S-property of LT
FF .

Theorem 3.3.1 Let L : V → V be linear and K be a proper cone in V. Then

the following statements are equivalent.

(i) LT
FF has the Q-property for all F � K.

(ii) LT
FF has the S-property for all F � K.

(iii) For every F � K, LCP(F, LFF , q) over F has a unique (zero) solution for

all q ∈ F d.

(iv) LFF has the Q-property for all F � K.

(v) LFF has the S-property for all F � K.

(vi) For every F � K, LCP(F, LT
FF , q) over F has a unique (zero) solution for

all q ∈ F d.

Proof. (i)⇒ (ii) is obvious. (ii) ⇒ (iii) follows from Proposition 3.3.1. (iii)

⇒ (iv) follows from Karamardian’s theorem or Theorem 2.5.10 in [9]. Since

(LT
FF )T = LFF , other implications follow. This completes the proof.
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Corollary 3.3.1 For any linear transformation L : V → V the following im-

plication holds.

LFF has the S-property for all F � K ⇒ L has the R0-property (implies that

every complementary cone of L is closed).

Corollary 3.3.2 If L(K) ⊆ K∗, then all the statements of the above theorem

are equivalent to the R0-property of L.

Proof. It is evident that if L satisfies Theorem 3.3.1 (iii), then L is R0. Con-

versely, the conditions L is R0 and L(K) ⊆ K∗ imply that 〈x, L(x)〉 > 0 for

every 0 6= x ∈ K. Thus L is strictly copositive on K. It is easy to observe that

any linear transformation L is strictly copositive on K implies that LCP(K, L, q)

has a unique (zero) solution for all q ∈ K∗. Since L is strictly copositive implies

that LFF is strictly copositive on F for all F � K, we have proved our claim.

Remark 3.3.1 In the setting of a Euclidean Jordan algebra we know that (see,

Example 3.2.2) strict semimonotonicity of L need not imply that LCP(K, L, q)

has a unique (zero) solution for all q ∈ K. However, by Proposition 3.2.1, LFF

is strictly semimonotone for all F �K is equivalent to the statements (i)-(vi) of

Theorem 3.3.1.

The following lemma is a generalization of Theorem 3.8.3, [8].

Lemma 3.3.3 Let L : V → V be self-adjoint and K be proper in V . Then (i) ⇔

(ii) in the following statements.

(i) For every nonzero F � K, the system

LFF (x) ∈ ri F d, x ∈ ri F

is consistent.
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(ii) L is strictly copositive on K.

Proof. The proof is by induction on the dimension of V. If dim V = 1, it is

easy to see that the implication holds. Now suppose (i) ⇒ (ii) holds for all V

of dimension less than n. Let dimV = n and F be a nontrivial face of K. Since

G�F �K ⇒ G�K and (LFF )GG = LGG for all G�F , we have from condition

(i) and the induction hypothesis that LFF is strictly copositive on F. Since F is

arbitrary, LFF is strictly copositive on F for all nontrivial faces of K. Now, from

condition (i), let x̄ ∈ int K be such that L(x̄) ∈ int K∗. Obviously, 〈x̄, L(x̄)〉 > 0.

For any other nonzero x ∈ K there exists α ≥ 0 such that 0 6= x − αx̄ ∈ bd K.

Let F be the smallest face containing 0 6= x− αx̄. Write

〈x, L(x)〉 = 〈x− αx̄, L(x− αx̄)〉+ 2α〈x− αx̄, L(x̄)〉+ α2〈x̄, L(x̄)〉.

Thus we have,

〈x, L(x)〉 ≥ 〈x− αx̄, L(x− αx̄)〉

= 〈x− αx̄, LFF (x− αx̄)〉

> 0,

where the last inequality follows from the strict copositivity of LFF . Hence, L is

strictly copositive on K.

Conversely, note that by Lemma 3.3.1, (i) is equivalent to saying that L is

completely-S. Since L is strictly copositive on K implies that for every F � K

LCP(F, LFF , q) over F has a unique (zero) solution for all q ∈ F d, by Theorem

3.3.1, L is completely-S.
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Theorem 3.3.2 Suppose L is self-adjoint on V . Then all the statements of

Theorem 3.3.1 are equivalent to the strict copositivity of L on K.

Proof. By Lemma 3.3.3, for a self-adjoint L, LFF has the S-property for all F�K

implies that L is strictly copositive on K. Thus for every F �K, LCP(F, LFF , q)

has a unique (zero) solution for all q ∈ F d. This completes our proof.

Remark 3.3.2 In view of Remark 3.3.1, Theorem 3.2.3 is a restatement of the

above theorem in a Euclidean Jordan algebra. However, in Theorem 3.2.3 the

strict copositivity of a self-adjoint L is obtained independently of showing that

LFF has the Q-property (or, S-property) for all F �K.



Chapter 4

Q and R0 Properties of a

Quadratic Representation in

SOCLCP

Given a n× n real square matrix M and a vector q in Rn the second-order cone

linear complementarity problem (SOCLCP(M, q)) is to find a vector x in Λn
+ such

that Mx + q is in Λn
+ and 〈x, Mx + q〉 = xT (Mx + q) = 0. It is well known that

the second-order cone is the cone of squares of its associated Euclidean Jordan

algebra. In this regard the complementarity problem SOCLCP is a special case

of the more general linear complementarity problem studied in the setting of

a Euclidean Jordan algebra. However, the important feature which makes the

SOCLCP interesting and draws a special attention is the nature of the faces

of the second-order cone. Unlike the cone of symmetric positive semidefinite

matrices, which is also studied in the setting of a Euclidean Jordan algebra, the

54
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only nontrivial faces of Λn
+ are its extreme rays and its only nonpolyhedral face

is the cone Λn
+ itself, see [13].

Loewy and Schneider [43], have studied the closed convex cone of matrices

which leave Λn
+ invariant, denoted by Π(Λn

+), and characterized the extreme rays

of Π(Λn
+). Our focus in this chapter is on the SOCLCP(M, q) where the matrix

M ∈ Π(Λn
+). Our study is motivated by a result proved by Murty [52] in the

context of a LCP over Rn
+ with a nonnegative square matrix. It states that a

nonnegative square matrix M is a Q-matrix if and only if the diagonal entries of

M are positive, which is equivalent to saying that M is a R0-matrix. Though we

do not have a complete generalization of Murty’s result to a second-order cone, in

this chapter we shall show that for a quadratic representation Pa of Λn for a ∈ Λn,

defined as Pa(x) := 2a◦(a◦x)−a2◦x, see [10], SOCLCP(Pa, q) has a solution for

all q ∈ Λn if and only if a or −a lies in the interior of Λn
+. An important feature

being exploited in showing the above equivalence is the property of the faces of

the second-order cone. Note that the quadratic representation Pa ∈ Π(Λn
+) for

all a ∈ Rn and Pa(Λ
n
+) = Λn

+ when a is invertible. The quadratic representation

plays a fundamental role in the study of Euclidean Jordan algebras. On the space

of real symmetric matrices the quadratic representation is seen to be the map

X → AXA where A is a real symmetric matrix. The solvability of semidefinite

linear complementarity problem SDLCP(L, Q) with L(X) = AXA, where A is

real symmetric, has been characterized in terms of A being positive or negative

definite in [55, 59].

We shall begin with a brief survey of some Jordan algebraic properties of the

second-order cone in section 4.1. In section 4.2 we present our main results.
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4.1 Second-order cone and its Jordan algebra

In this chapter we shall confine our attention to the space Rn, whose elements

x = (x0, x̄
T )T are indexed from zero, equipped with the usual inner product and

the Jordan product defined as

x ◦ y = (〈x, y〉, x0ȳ
T + y0x̄

T )T .

Then Rn is a Euclidean Jordan algebra, denoted by Λn, with the cone of squares

as second-order cone Λn
+. The interior of Λn

+ is the cone given by int Λn
+ =

{x ∈ Rn : ||x̄|| < x0}, see [1]. The identity element in this algebra is given

by e = (1, 0, . . . , 0)T . Also the spectral decomposition of any x with x̄ 6= 0 is

given by x = λ1f1 + λ2f2 with

λ1 := x0 + ||x̄||, λ2 := x0 − ||x̄||,

f1 := 1
2
(1, x̄T /||x̄||)T , and f2 := 1

2
(1,−x̄T /||x̄||)T

where {f1, f2} constitutes a Jordan frame. From the above decomposition det(x) =

x2
0−||x̄||2. The rank of Λn is always 2 and it can be shown that all Jordan frames

are of the above form. Also x ∈ Λn
+ (int Λn

+) if and only if both λ1 and λ2 are

nonnegative (positive), see [1, 13].

The quadratic representation of Λn, denoted by Pa for a ∈ Λn, is the matrix

Pa := 2L2
a − La2 = 2aaT − det(a)Jn,

where Jn is the n× n matrix defined as

Jn :=

 1 0

0 −I

 .

Observation 4.1.1 For a ∈ Λn, Pa ∈ Π(Λn
+).

Proof. Case 1: When det(a) 6= 0, Pa(Λ
n
+) = Λn

+ and Pa(int Λn
+) = int Λn

+, see



Second-order cone 57

[1].

Case 2: When det(a) = 0, a2
0 = ||ā||2 and Pa(x) = 2aT xa for x ∈ Λn

+. If

a0 = ||ā||, then a ∈ Λn
+ and 2aT xa0 − 2|aT x|a0 = 0, because aT x ≥ 0. Again if

a0 = −||ā||, then 2aT xa0 + 2|aT x|a0 = 0, because aT x ≤ 0.

Below we shall state some of the important properties of a quadratic repres-

entation.

Proposition 4.1.1 ([1]) Let α be a real number and x ∈ Λn. For a ∈ Λn with

the spectral decomposition a = λ1f1 + λ2f2 we have the following properties.

(i) λ1 = a0 + ||ā|| and λ2 = a0 − ||ā|| are the eigenvalues of La. Moreover, if

λ1 6= λ2 then each one has multiplicity one with corresponding eigenvectors

f1 and f2, respectively. Also a0 is an eigenvalue of La with multiplicity

n− 2 when a 6= 0.

(ii) λ2
1 = (a0 + ||ā||)2 and λ2

2 = (a0 − ||ā||)2 are eigenvalues of Pa. Moreover, if

λ1 6= λ2 then each one has multiplicity one with corresponding eigenvectors

f1 and f2, respectively. Also det(a) = a2
0−||ā||2 is an eigenvalue of Pa with

multiplicity n− 2 when a is invertible and λ1 6= λ2.

(iii) Pa is an invertible matrix iff a is invertible.

(iv) Pαa = α2Pa.

(v) PPa(x) = PaPxPa.

(vi) detPa(x) = det2(a)det(x).

(vii) If a is invertible, then Pa(a
−1) = a and Pa−1 = P−1

a .
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In view of the above discussions the second-order cone Λn
+ can also be rep-

resented by Λn
+ := {x ∈ Λn : xTJnx ≥ 0, x0 ≥ 0} and any x ∈ Λn has

det(x) = xTJnx. The elements on the boundary of Λn
+ are exactly those for

which x0 = ||x̄||. Below we shall state some relations on the boundary structure

of the cone Λn
+, which will be useful in this chapter.

x ∈ Λn
+ ∪ (−Λn

+) ⇒ Jnx ∈ Λn
+ ∪ (−Λn

+).

xTJnx > 0 ⇒ x ∈ int Λn
+ ∪ int (−Λn

+).

xTJnx ≥ 0 ⇒ x ∈ Λn
+ ∪ (−Λn

+).

xTJnx = 0 ⇒ x ∈ bd Λn
+ ∪ bd (−Λn

+).

xTJnx < 0 ⇒ x 6∈ Λn
+ ∪ (−Λn

+).

One of the important properties of automorphisms of Λn, which we shall make

use in this chapter is that for any two Jordan frames {e1, e2} and {f1, f2} in Λn

there exists an automorphism Ψ such that Ψf1 = e1 and Ψf2 = e2, see [10]. Also

any automorphism Ψ of Λn can be written as

Ψ =

 1 0

0 U

 ,

where U is an (n− 1)× (n− 1) orthogonal matrix, see [43].

Fix a canonical Jordan frame {e1, e2} where

e1 := (1/2, 1/2, 0, . . . , 0)T and e2 := (1/2,−1/2, 0, . . . , 0)T .

In case of a second-order cone with a fixed Jordan frame {e1, e2} consider the

following subspaces of Λn. (Similar subspaces have been considered in Theorem

IV 2.1 in [10].)

V11 = {x ∈ Λn : x ◦ e1 = x} = {λe1 : λ ∈ R},
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V22 = {x ∈ Λn : x ◦ e2 = x} = {βe2 : β ∈ R}, and

V12 =
{
x ∈ Λn : x ◦ e1 = 1

2
x = x ◦ e2

}
= {x ∈ Λn : x0 = x1 = 0}.

Thus given an x ∈ Λn we can write

x = (x0 + x1)e1 + (x0 − x1)e2 + (0, 0, x2, . . . , xn−1)
T .

We shall designate (x0 + x1) and (x0 − x1) as the diagonal entries of a vector x

with respect to the Jordan frame {e1, e2}.

Observation 4.1.2 For a ∈ Λn
+ we have the following relationship among its

entries. a ∈ Λn
+ (int Λn

+) if and only if (a0 + a1) ≥ 0 (> 0), (a0 − a1) ≥ 0 (> 0),

and (a0 + a1)(a0 − a1)− ||ã||2 ≥ 0 (> 0) where ã = (a2, . . . , an−1)
T .

Similar to the notion of a diagonal matrix we introduce the notion of a diag-

onal vector d ∈ Λn with respect to a canonical Jordan frame {e1, e2} as

d = λ1e1 + λ2e2, λ1, λ2 ∈ R.

4.2 Equivalence of Q and R0-property of a quad-

ratic representation

Proposition 4.2.1 Let M ∈ Π(Λn
+). Then M has the R0-property if and only

if 〈x, M(x)〉 > 0 for all 0 6= x ∈ Λn
+.

The proof of the above proposition follows easily from the definitions.

Remark 4.2.1 For a linear complementarity problem LCP(Rn
+, M, q) with

M(Rn
+) ⊆ Rn

+, we have LCP(Rn
+, M, q) is solvable for all q ∈ Rn iff LCP(Rn

+, M, 0)

has a unique solution zero, which is also equivalent to stating that M is strictly

copositve on Rn
+, see [8].
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Theorem 4.2.1 Let M ∈ Π(Λ2
+). Then M has the Q-property if and only if M

has the R0-property.

Proof. Observing the fact that {e1, e2} is the only Jordan frame of Λ2
+ unique up

to permutation, R0-property of the above matrix M is equivalent to the property

that 〈e1, M(e1)〉 > 0 and 〈e2, M(e2)〉 > 0. Now suppose without loss of generality

that 〈e1, M(e1)〉 = 0. We shall show that M does not have the Q-property. Take

q = e2 − e1 = (0,−1)T . Let x ∈ Λ2
+ be a nonzero solution to SOCLCP(M, q).

Then we have

x = λ1e1 + λ2e2 and M(x) + q = β1e1 + β2e2

such that λ1β1 = 0 and λ2β2 = 0. Since M(x) ∈ Λ2
+ and x 6= 0, λ2 = β1 = 0. Thus

〈e1, M(x) + q〉 = 〈e1, λ1M(e1) + e2 − e1〉 = −〈e1, e1〉 < 0, which contradicts the

fact that M(x) + q ∈ Λ2
+. The ‘if part’ is apparent from Karamardian’s theorem.

Loewy and Schneider [43] proved the following result which characterizes the

extreme matrices of the closed convex cone of square matrices which leave the

cone Λn
+ invariant.

Theorem 4.2.2 ([43]) Let M be an n × n real matrix, with n ≥ 3. Then M is

an extreme matrix of Π(Λn
+) (generates a 1-dimensional face of Π(Λn

+)) if and

only if either M(Λn
+) = Λn

+ or M = uvT for u, v ∈ bd Λn
+.

Remark 4.2.2 Any M : Λn → Λn satisfying M(Λn
+) = Λn

+ can be written as

M = PaΨ, where a ∈ int Λn
+ and Ψ ∈ Aut(Λn), see page 56 of [10].
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Proposition 4.2.2 Let M ∈ Π(Λn
+). Then M has the Q-property if and only if

ΘMΘT has the Q-property for all Θ : Λn → Λn such that Θ(Λn
+) = Λn

+.

Proof. Take an arbitrary q ∈ Λn and define q̃ = Θ−1q. Then SOCLCP(M, q̃)

has a solution x̃ such that

x̃ ∈ Λn
+, M(x̃) + q̃ ∈ Λn

+ and 〈x̃, M(x̃) + q̃〉 = 0.

Define x = (Θ−1)T x̃. Since both Θ−1, ΘT ∈ Π(Λn
+), we have

x ∈ Λn
+, M(ΘT x) + Θ−1q ∈ Λn

+ and 〈ΘT x, MΘT x + Θ−1q〉 = 0,

equivalently,

x ∈ Λn
+, ΘMΘT x + q ∈ Λn

+ and 〈x, ΘMΘT x + q〉 = 0,

which implies that ΘMΘT has the Q-property.

Theorem 4.2.3 Let M = uvT for u, v ∈ bd Λn
+. Then M does not have the

Q-property.

Proof. First we shall show that if M = eie
T
j , where i, j ∈ {1, 2}, then M

does not have the Q-property. When M = e1e
T
2 or M = e1e

T
1 we can take

q = (0, 1, 0, . . . , 0)T and can show easily that SOCLCP(M, q) does not have a

solution. Again when M = e2e
T
1 or M = e2e

T
2 we can take q = (0,−1, 0, . . . , 0)T

and can easily prove that SOCLCP(M, q) is not solvable. In fact, in both the

above cases SOCLCP(M, q) is not even feasible. Now we consider the two cases.

Case 1: Suppose that u and v are linearly dependent. Then there exists an

automorphism Ψ of Λn such that Ψu = e1. By Proposition 4.2.2, uvT has the

Q-property implies that e1e
T
1 has the Q-property. Since we know that e1e

T
1 is

not Q, we have proved our claim.
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Case 2: Suppose that u and v are linearly independent. Then by Lemma

3.7 in [43], there exists a Θ ∈ Π(Λn
+) with Θ(Λn

+) = Λn
+ such that Θu = e1 and

Θv = e2. Again by Proposition 4.2.2, uvT has the Q-property implies that e1e
T
2

has the Q-property. Since we know that e1e
T
2 is not Q, uvT does not have the

Q-property.

Theorem 4.2.4 For a quadratic representation Pa of Λn, n ≥ 3, we have the

following equivalence.

(i) a ∈ int Λn
+ or −a ∈ int Λn

+.

(ii) Pa is positive definite.

(iii) SOCLCP(Pa, q) has a unique solution for all q ∈ Λn.

(iv) Pa has the R0-property.

Proof. The proof of (i) ⇒ (ii) follows from Proposition 4.1.1 (ii), since all

the eigenvalues of Pa are positive. From (ii), Pa is positive definite implies that

SOCLCP(Pa, q) has at most one solution for all q ∈ Λn. Also from Karamardian’s

theorem, Pa has the Q-property. Thus (iii) follows. The proof of (iii) ⇒ (iv)

is obvious. To prove (iv) ⇒ (i), let us suppose that neither a ∈ int Λn
+ nor

−a ∈ int Λn
+. To complete the proof, it is sufficient to show that there exists

some z ∈ bd Λn
+ such that 〈a, z〉 = 0. We consider the following two cases.

Case 1: When a ∈ bd Λn
+ or −a ∈ bd Λn

+ we can find a nonzero z ∈ bd Λn
+ or

−z ∈ bd Λn
+ on a face complementary to which a or −a lies.

Case 2: When a 6∈ bd Λn
+ and −a 6∈ bd Λn

+, there exist an x ∈ bd Λn
+ and

y ∈ bd Λn
+ such that 〈a, x〉 < 0 and 〈a, y〉 > 0. Since the inner product 〈a, ·〉 is



Quadratic Representation 63

continuous on the line segment joining x and y denoted as [x, y], there exists a

z̃ = αx + (1 − α)y for 0 < α < 1 such that 〈a, z̃〉 = 0. Since Λn
+ has faces of

dimension 0, 1 and n only, either z̃ lies on a one dimensional face of Λn
+ in which

case we are done otherwise z̃ ∈ int Λn
+. It means that a⊥ ∩ int Λn

+ is nonempty

where a⊥ is the orthogonal complement of the span of a in Λn. Note that a⊥ is a

(n− 1) dimensional subspace of Λn intersecting a full dimensional cone Λn
+ in its

interior where n ≥ 3. Hence from Lemma 3.6, [43], there exists an invertible linear

transformation Γ on Λn such that Γ(Λn
+) = Λn

+ and Γ(a⊥) = {x ∈ Λn : xn−1 = 0}.

Thus there exists a nonzero z ∈ a⊥ such that Γz = e1, which by Lemma 3.3, [43],

lies on the boundary of Λn
+.

Now for the above chosen z we have 〈z, Pa(z)〉 = 〈z, (2aaT −det(a)Jn)z〉 = 0,

which contradicts that Pa has the R0-property.

Lemma 4.2.1 If the quadratic representation Pa has the Q-property then a is

invertible.

Proof. Taking −q ∈ int Λn
+ let x ∈ Λn

+ be a solution to SOCLCP(Pa, q). Since

Pa(x) + q ∈ Λn
+ and −q ∈ int Λn

+, Pa(x) ∈ int Λn
+. From Proposition 4.1.1 (vi),

detPa(x) = det2(a)det(x). Hence a is invertible.

The following lemma is analogous to Lemma 4.3.2 in [59].

Lemma 4.2.2 Let d = d1e1 + d2e2 be a diagonal vector with nonzero entries.

Let |d| = |d1|e1 + |d2|e2. Write d = |d| ◦ s where s = ±e1 ± e2. The coefficients

of e1 and e2 in the expression for s are determined by the signs of d1 and d2,

respectively. If Pd has the Q-property then Ps has the Q-property.
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Proof. Fix an arbitrary q ∈ Λn and define q̃ := P√|d|(q) where
√
|d| =

√
|d1|e1 +√

|d2|e2. Let x ∈ Λn
+ be a solution to SOCLCP(Pd, q̃). Then z := Pd(x) + q̃ ∈ Λn

+

is such that x ◦ z = 0. We have

z = P|d|◦s(x) + q̃

= P|d|Ps(x) + P√|d|(q)

= P√|d|P
√
|d|Ps(x) + P√|d|(q),

where the last equality follows from Proposition 4.1.1 (v). Thus by Propos-

ition 4.1.1 (vii), P√
|d|

−1(z) = P√|d|Ps(x) + q = PsP√|d|(x) + q. Define y =

P√|d|(x) and w = P√
|d|

−1(z). Then y ∈ Λn
+, w = Ps(y) + q ∈ Λn

+ and 〈y, w〉 =

〈x, P√|d|P
√
|d|

−1(z)〉 = 0. Hence y ∈ Λn
+ solves SOCLCP(Ps, q).

Lemma 4.2.3 Let s be a diagonal vector of the form s = ±e1 ± e2 and s 6= ±e.

Then Ps does not have the Q-property.

Proof. Without loss of generality take s = e1 − e2 = (0, 1, 0, . . . , 0)T . Then the

matrix Ps will be

Ps = 2ssT − det(s)Jn =


1 0 0

0 1 0

0 0 −I

 .

Consider a vector q = (0, 0,−1, 0, . . . , 0). If y ∈ Λn is the solution of the

SOCLCP(Ps, q) then

y ∈ Λn
+, Ps(y) + q ∈ Λn

+ and 〈y, Ps(y) + q〉 = 0.

The complementary condition 〈y, Ps(y) + q〉 = 0 gives us y2
0 + y2

1 − y2 =
∑n−1

i=2 y2
i .

Also from y ∈ Λn
+ and Ps(y) + q ∈ Λn

+ we have
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y2
0 ≥ y2

1 + . . . + y2
n−1 and y2

0 ≥ y2
1 + (1 + y2)

2 + y2
3 + . . . + y2

n−1.

Substituting the value of
∑n−1

i=2 y2
i in the above two inequalities we get 2y2

1 ≤ y2

and 2y2
1 + 1 + y2 ≤ 0, which are inconsistent.

Theorem 4.2.5 Let Pa be a quadratic representation of Λn, n ≥ 3. Then Pa has

the Q-property if and only if Pa has the R0-property.

Proof. Since Pa has the Q-property we have by Lemma 4.2.1, a is invertible.

By the spectral decomposition and the fact that for any two Jordan frames

{e1, e2} and {f1, f2} in Λn there exists an automorphism Ψ such that Ψe1 = f1

and Ψe2 = f2 (Theorem IV.2.5, [10]), we can write a = d1Ψe1 + d2Ψe2, where

d1, d2 6= 0 and Ψ ∈ Aut(Λn). Since ΨPaΨ
T = PΨa, by Proposition 4.2.2, Pa has

the Q-property implies that PΨT a has the Q-property, which is equivalent to the

statement that Pd has Q-property where d := d1e1 + d2e2. By Lemma 4.2.2, Ps

has the Q-property where s is the vector corresponding to d as defined above.

Since Ps has the Q-property if and only if s = ±e, either d1 > 0 and d2 > 0 or

d1 < 0 and d2 < 0. It means that either a ∈ int Λn
+ or −a ∈ int Λn

+, which by

Theorem 4.2.4 proves that Pa has the R0-property. Conversely, R0 implies Q is

evident from the Karamardian’s theorem.

The above result can also be extended to linear complementarity problems

over the direct product of second-order cones, which is defined as follows. Given

a matrix M on Rn and q ∈ Rn the linear complementarity problem over the

cone Kn is the problem of finding an x ∈ Kn such that M(x) + q is in Kn and

〈x, M(x) + q〉 = 0, where the cone Kn is defined as

Kn := Λn1
+ × . . .× Λnm

+ ,
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with n = n1 + . . . + nm.

It should be noted that Rn is a Euclidean Jordan algebra with the usual

inner product and the Jordan product defined as the componentwise Jordan

product of the elements of Λni , i = 1 . . . m. Formally, for x := (x1, . . . , xm)T and

y := (y1, . . . , ym)T , where each component vector xi is written in a row vector

form, the Jordan product is defined as

x ◦ y := (x1 ◦ y1, . . . , xm ◦ ym)T .

The cone of squares with respect to the above Jordan product is the cone Kn.

Also the quadratic representation Pa for a ∈ Rn is a block diagonal matrix of

the form

Pa =



Pa1 0 . . . 0

0 Pa2 . . . 0

...
...

...
...

0 0 0 Pam


,

where a = (a1, . . . , am)T . For further information one can see the references

[1, 10].

Theorem 4.2.6 In the space Rn with the cone of squares Kn and the Jordan

product defined above the following statements are equivalent.

(i) For a ∈ Rn, Pa has the R0-property, that is, x ∈ Kn, Pa(x) ∈ Kn and

〈x, Pa(x)〉 = 0 implies x = 0.

(ii) The linear complementarity problem LCP (Kn, Pa, q) has the solution for

all q ∈ Rn.
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Proof. The proof of the above theorem is apparent once we notice that Pa has

the R0-property if and only if Pai
has the R0-property for each component vector

ai ∈ Λi for i = 1, . . . ,m.



Chapter 5

Some Geometrical Aspects of a

SDLCP

In the first section of this chapter we study Murty’s result [52] (in the context of

LCP over Rn
+, a nonnegative matrix is a Q-matrix if and only if it is an R0-matrix)

in the semidefinite setting and provide a necessary condition for the transforma-

tions of the type L(Sn
+) ⊆ Sn

+ to have the Q-property. In the second section, we

discuss a question whether the matrix representation of a transformation L with

the P-property, with respect to the canonical basis in Sn, is a P -matrix.

5.1 Q-property of positive semidefiniteness pre-

serving transformations

In this section we study the transformation L : Sn → Sn for which L(Sn
+) ⊆ Sn

+.

We call such transformations semidefiniteness preserving. Special cases of such

68
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transformations have earlier been studied by [19, 22, 55]. These transformations

generalize a nonnegative matrix in the context of the linear complementarity

problem.

We first note that transformations satisfying L(Sn
+) = Sn

+ can be represented

as L(X) = AXAT for some invertible matrix A of order n, see [62]. However,

there are semidefiniteness preserving transformations which cannot be represen-

ted as AXAT . The following is an example.

Example 5.1.1 Consider the transformation L : S2 → S2 given by

L(X) =

 x11 + x22 0

0 x11 + x22

 , for all X =

 x11 x12

x12 x22

 .

If we try to represent it in the form AXAT we get inconsistent equations in the

elements of the matrix A.

For a general L the semidefiniteness preserving property and in addition the

R0-property, have the following interpretation in terms of the faces of Sn
+, which

has been observed in the more general setting of a Euclidean Jordan algebra.

Observation 5.1.1 (i) A linear transformation L : A → A has the property

L(K) ⊆ K if and only if for every pair of 1-dimensional faces F and G of

the symmetric cone K, 〈y, L(x)〉 ≥ 0, ∀ x ∈ F and y ∈ G.

(ii) Let L(K) ⊆ K. Then L has the R0-property if and only if 〈x, L(x)〉 > 0

for every nonzero x ∈ F , where F is any 1-dimensional face of K.

The proof of the above can be easily obtained using Spectral Theorem 1.3.2.
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Remark 5.1.1 Note that the defining condition 〈y, L(x)〉 ≥ 0, for all x ∈ F

and y ∈ G, is a generalization of the condition that eT
i Mej = mij ≥ 0, where M

is a square matrix and ei is a vector whose ith entry is 1 and others 0.

Motivated by the characterization of a nonnegative Q-matrix (equivalently,

nonnegative R0-matrix) in terms of the positive diagonal entries of a matrix by

Murty [52] in LCP over Rn
+, we introduce the following definition.

Definition 5.1.1 L has the positive diagonal property if for every 1-dimensional

face F of Sn
+, 〈X, L(X)〉 > 0 for every nonzero X ∈ F.

The above observation shows that a semidefiniteness preserving transforma-

tion has the R0-property if and only if it has the positive diagonal property. At

present we are unable to settle the question whether for such transformations

Q-property implies R0-property. However we have the following result.

Theorem 5.1.1 Let L : Sn → Sn satisfy L(Sn
+) ⊆ Sn

+. If L has the Q-property

then for every 1-dimensional face G there exists a 1-dimensional face F of Sn
+

such that 〈Y, L(X)〉 > 0 for all nonzero X ∈ F and Y ∈ G.

Proof. Suppose the result is not true. Then without loss of generality we

assume that 〈E11, U
T L(X)U〉 = 0 for all rank 1 matrices X � 0 and some fixed

orthogonal matrix U. Consider the matrix

Q =



−1 0 . . . 0

0 1 . . . 0

...
...

...
...

0 0 0 1


.
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Let R = UQUT . Since L(X) is positive semidefinite for all X � 0, it follows that

for all X � 0 at least (n − 1) eigenvalues of UT (L(X) + R)U = UT L(X)U + Q

are positive. Since X = 0 cannot be a solution to SDLCP(L, R), it follows that

if X̃ is a solution to it, then the rank of L(X̃) + R must be (n− 1) and hence X̃

must have rank 1. Now for any rank 1 matrix X � 0,

〈E11, U
T (L(X) + R)U〉 = 〈E11, U

T L(X)U〉+ 〈E11, Q〉 = −1,

which shows that any X � 0 of rank 1 cannot be a solution to SDLCP(L, R).

Since X is an arbitrary rank 1 matrix, it follows that there is no solution to

SDLCP(L, R). This concludes the proof.

In the last result of this section we observe that a nonnegative matrix is a Q-

matrix if and only if a related linear transformation on Sn, to be defined below,

has the Q-property.

Theorem 5.1.2 Let M be a given nonnegative matrix and define the n × n

diagonal matrix Ai by taking its jth diagonal entry as mij, the (i, j)th entry of

M. Let the transformation L be defined by

L(X) =



〈A1, X〉 0 . . . 0

0 〈A2, X〉 . . . 0

...
...

...
...

0 0 0 〈AnX〉


.

Then L has the Q-property if and only if M is a Q-matrix.

Proof. Suppose L has the Q-property. Given any q ∈ Rn let Q denote the

diagonal matrix whose ith diagonal entry is qi. Note that SDLCP(L, Q) has a

solution X, since L has the Q-property. Define x ∈ Rn as xi = xii. Then it is
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easy to note that x ≥ 0 and that x is a solution to the LCP(Rn
+, M, q) proving

that M is a Q-matrix. Conversely, note that M is a Q-matrix if and only if all

the diagonal entries of M are positive, see Murty ([52]). We shall show that L

is R0 when M is a Q-matrix. Let X � 0 solve SDLCP(L, 0). Then XL(X) = 0

implies xii(
∑

i6=j mijxjj + miixii) = 0 ∀ i. Since mii > 0 ∀ i and mij ≥ 0 ∀ i 6= j

we get xii = 0 ∀ i, which in turn gives X = 0. Also on observing the fact that

for any Q � 0, SDLCP(L, Q) has the unique solution X = 0, it follows from

Karamardian’s theorem that L has the Q-property.

5.2 Relationship between P-property and P -matrix

property

Definition 5.2.1 For a linear transformation L : Sn → Sn and F �Sn
+, we say

that LFF has the P-property if

X ∈ span F , X and LFF (X) commute, and XLFF (X) ∈ −F ⇒ X = 0.

In connection with the SDLCP, following results on Lyapunov transformation

[18, 23], Stein transformation [19], and the transformation of the type AXAT for

A ∈ Rn×n, X ∈ Sn, see [22], will be referred to in the sequel.

Theorem 5.2.1 For any matrix A ∈ Rn×n, the following statements hold.

(i) A is positive definite (i.e, xT Ax > 0∀ 0 6= x ∈ Rn) if and only if (LA)FF

has the P-property for all F � Sn
+.

(ii) A is positive stable if and only if LA has the P-property.
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(iii) SA has the P-property if and only if ρ(A) < 1, where ρ(A) denotes the

spectral radius of A.

(iv)) For the transformation L(X) = AXAT , A is positive definite implies that

LFF has the P-property for all F � Sn
+.

Given a linear transformation L : Sn → Sn, we denote by N (L) the matrix of

L of order n(n+1)
2

corresponding to the basis {Eij) where Eij, for i 6= j, is the

symmetric matrix whose ijth and jith elements are 1/
√

2 and other elements

are 0, and Eii is the symmetric matrix whose ith diagonal entry is 1 and all

other entries are equal to 0. The elements in a column of this matrix represent

the matrix L(Ers) as a linear combination of the basis elements Eij taken in

the order {E11, E12, E22, E13, E23, E33, E14, . . . , Enn}. Note that each column will

have n(n+1)
2

entries.

We say that L has the P -matrix property if N (L) is a P -matrix. The motiva-

tion for asking whether a L with P-property has the P -matrix property is partly

the issue studied in Theorem 8 of [18] (also see [20]). Also, when L is self-adjoint

we have the following equivalence:

LFF has the P-property for all F ⇔ L has P-property ⇔ L is strictly monotone

⇔ N (L) is symmetric positive definite, (see Theorem 1 in [22]). In this section

we shall study the relationship between the P-property of L and the P -matrix

property of L.

The following example shows that N (L) may be a P -matrix, but LFF does

not have the P-property for all F .



P-property and P -matrix property 74

Example 5.2.1 For A =

 1 −2

0 1

, the matrix of the Lyapunov transforma-

tion LA is

N (LA) =


2 −2

√
2 0

0 2 −2
√

2

0 0 2

 .

Note that N (LA) is a P -matrix. However A is not positive definite, which

implies from Theorem 5.2.1 (i) that not every principal subtransformation of LA

has the P-property.

The next example shows that P-property of L need not imply that N (L) is

a P -matrix.

Example 5.2.2 Consider a Lyapunov transformation LA : S2 → S2. Take A = −1 2

−2 2

 . Note that A is positive stable and hence from Theoerm 5.2.1 (ii),

LA has the P-property. The matrix of LA is N (LA) =


−2 2

√
2 0

−2
√

2 1 2
√

2

0 −2
√

2 4


which is not a P -matrix.

Given a set of indices α = {i1 < i2 < . . . < ik} where 1 ≤ i1; ik ≤ n, the

canonical face Fα of Sn
+ corresponding to α is the face defined as

Fα := P

 S
|α|
+ 0

0 0

 P T ,
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where P is a permutation matrix such that for any X ∈ Sn, (P T XP )ββ = Xαα,

where β = {1, 2, . . . , |α|}. As has been discussed earlier, due to the nonpolyhed-

ral nature of Sn
+, span F + span F4 does not generate the whole space Sn. This

motivates us to study a class of linear transformations for which

L(span Fα) ⊆ span Fα + span F4
α ,

where Fα is a canonical face. In what follows we shall characterize these trans-

formations and study the P-property and the P -matrix property for these trans-

formations. We shall assume, without loss of generality, the following form of a

linear transformation L.

L(X) =


〈A11, X〉 · · · 〈A1n, X〉

... · · · ...

〈An1, X〉 · · · 〈Ann, X〉

 = ((〈Aij, X〉)), (5.2.1)

where Aij and Aji are n × n symmetric matrices and Aij = Aji for all i, j ∈

{1, . . . , n}. We will use the notation ars
ij for the (i, j)th entry in the matrix Ars.

Theorem 5.2.2 A linear transformation L : Sn → Sn written in the form

(5.2.1) satisfies L(span Fα) ⊆ span Fα + span F4
α for all α ⊆ {1, . . . , n} iff every

entry other than the (i, j)th entry of the n × n symmetric matrix Aij in (5.2.1)

is zero for all i, j ∈ {1, 2, . . . , n} with i 6= j.

Proof. If part:

Let α ⊆ {1, 2, . . . , n} and LFαFα be a principal subtransformation of L corres-

ponding to Fα. We shall show that L(span Fα) ⊆ span Fα + span F4
α . Without

loss of generality assume that α = {1, . . . , k}, where 1 ≤ k ≤ n. Consider an

arbitrary X ∈ span Fα and a matrix Aij for any (i, j) ∈ α × β, where β is the
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complement of α in {1, 2, . . . , n}. Then by our hypothesis 〈Aij, X〉 = 0, which

immediately proves our claim.

Only if part:

Consider an n × n symmetric matrix Aij for i, j ∈ {1, 2, . . . , n}, i 6= j. We

shall show that every (k, l)th entry of Aij is zero where (k, l) 6= (i, j). Let

Fα1 be a canonical face of Sn
+ corresponding to α1 := {1, 2, . . . , n} \ {i}. Since

L(span Fα1) ⊆ span Fα1 + span F4
α1

, we have 〈Aij, X〉 = 0 ∀X ∈ span Fα1 , which

gives (Aij)α1α1 = 0. Thus all the (k, l)th entries of Aij other than k = i or l = i

are 0. Similarly (Aij)α2α2 = 0 for α2 := {1, 2, . . . , n} \ {j}, which shows that

every (k, l)th entry of Aij other than k = j or l = j are 0. Thus every entry other

than (i, j)th entry of Aij is 0.

Theorem 5.2.3 Suppose L : Sn → Sn has the property that

L(span Fα) ⊆ span Fα + span F4
α

for all α ⊆ {1, . . . , n} with L(span Fα) ⊆ span Fα for α = {1, . . . , r}, 1 ≤ r ≤ n.

Then (i)⇒(ii)⇔(iii) in the following statements

(i) L has the P-property.

(ii) All the real eigenvalues of L and those of its canonical principal subtrans-

formations are positive.

(iii) N (L) is a P -matrix.

Proof. (i) ⇒ (ii)

Let F be a face of Sn
+ for which L(span F ) ⊆ span F +span F4. Then for any X ∈

span F, XL(X) = XLFF (X) and L(X)X = LFF (X)X. This immediately gives
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us that LFF has the P-property when L has the P-property. By using Theorem

1, [22], which states that if L has the P-property then all real eigenvalues of L

are positive, the above implication follows.

(ii)⇔(iii)

We assume w.l.g that the given L is represented in the form (5.2.1). The proof

is by induction on n. We first verify the theorem for n = 2. For n = 2, N (L) is

given by:

N (L) =


a11

11

√
2a11

12 a11
22

0 2a12
12 0

0
√

2a22
12 a22

22

 .

The hypothesis that the real eigenvalues of the canonical principal subtrans-

formations are positive shows that the diagonal entries a11
11 and a22

22, and the

determinant of the above matrix are positive. From the structure of the matrix

it follows that 2a12
12 is also positive. Further note that any principal minor of

the above matrix is a product of a subset of the diagonal entries and hence is

positive. Thus the theorem holds for n = 2.

Induction hypothesis: The theorem is true when n ≤ k.

We shall now show that the theorem holds when n = k+1. When n = k+1 the

matrixN (L) of order (k+1)(k+2)
2

can be partitioned as follows: Let α = {1, 2 . . . k}.

Now

N (L) =

 Aαα C

B G

 ,

where Aαα is of order k(k+1)
2

, B is of order k+1× k(k+1)
2

, C is of order k(k+1)
2

×k+1

and G is of order (k+1)×(k+1). The matrix Aαα is the same as N (LFαFα) where
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Fα is the canonical face of Sn
+ corresponding to α. Since L and all its canonical

principal subtransformations have the property that all their real eigenvalues are

positive, it follows by the induction hypothesis that Aαα is a P -matrix. We now

note that B = 0. This is so since the column entries in the block B are the

coefficients of El(k+1) for 1 ≤ l ≤ k + 1 in the representation of L(Eij), 1 ≤ i ≤

k, 1 ≤ j ≤ k, i ≤ j, and by our hypothesis L(Eij) ∈ L(span Fα) ⊆ span Fα. Since

B is zero, any principal minor of N (L) will either be a principal minor of Aαα

or a product of a principal minors of Aαα and a principal minor of G. Note that

G is given by

G =



2a
1(k+1)
1(k+1) 0 . . . 0

0 2a
2(k+1)
2(k+1) . . . 0

...
...

...
...

√
2a

(k+1)(k+1)
1(k+1)

√
2a

(k+1)(k+1)
2(k+1) . . . a

(k+1)(k+1)
(k+1)(k+1)


.

Since G is lower triangular, it follows that any principal minor of G is a product

of some of its diagonal entries. That these diagonal entries are positive follows by

considering the canonical principal subtransformations LF{i,k+1} of L and using

our hypothesis about the eigenvalues of such canonical principal subtransforma-

tions. From these observations it follows that N (L) is a P-matrix.

Below we give an example to illustrate the above theorem.

Example 5.2.3 Consider a Stein transformation SA(X) = X − AXAT cor-

responding to A =

 a11 a12

0 0

 . It is easy to check that SA satisfies the as-

sumption made in Theorem 5.2.3. The matrix of SA with respect to the basis

{E11, E12, E22} is
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N (SA) =


1− a2

11 −
√

2a11a12 −a2
12

0 1 0

0 0 1

 ,

which is not a self adjoint matrix. The eigenvalues of A are 0 and a11 and from

Theorem 5.2.1 (iii) we have SA has the P-property iff |a11| < 1. Thus choosing

|a11| < 1 it is immediate that N (SA) is a P -matrix.

Proposition 5.2.1 For A ∈ R2×2 we have the following implications:

(i) (LA)FF has the P-property for all F ⇒ N (LA) is a P -matrix.

(ii) N (LA) is a P -matrix ⇒ LA has the P-property.

Proof. (i) For A =

 a11 a12

a21 a22

 we haveN (LA) =


2a11

√
2a12 0

√
2a21 a11 + a22

√
2a12

0
√

2a21 2a22

 .

Let (LA)FF have the P-property for all F . Then from Theorem 5.2.1 (i) A is

positive definite. From simple calculations we can easily see that all the principal

minors of N (LA) are positive. Hence N (LA) is a P -matrix.

(ii) If N (LA) is a P -matrix, then detA > 0. The eigenvalues of A are given

by λ =
Tr(A)±

√
(Tr(A))2−4det(A)

2
. Since det(A) > 0, the real parts of the eigenvalues

of A are positive. Hence A is positive stable and LA has the P-property.

We do not know if the above proposition can be proved for any n.

We conclude this chapter by presenting an example, which shows that P-

property of LFF , for all F need not imply the P -matrix property of L.
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Example 5.2.4 Consider L(X) = AXAT with A =

 1 −2

2 3

 . Note that

N (L) =


1 −2

√
2 4

2
√

2 −1 −6
√

2

4 6
√

2 9

 .

Since A is positive definite we can check easily that LFF has the P-property for

all F (see also Theorem 5.2.1 (iv)) but N (L) is not a P -matrix.



Chapter 6

Concluding Remarks and Open

Problems

In this thesis we have studied various aspects of a linear complementarity problem

in a finite dimensional real inner product space. Our study of LCP is made over

a general as well as specialized closed convex cones. In this chapter we pose a

few interesting problems, which had arisen during the course of this thesis.

(i) A question of interest, as it is relevant to the solvability of a LCP is: are

the complementary cones corresponding to a transformation L with the

Q-property closed? Except for an affirmative answer in some special cases

like Lyapunov [18] and Stein transformations [19], where Q-property is

equivalent to the P-property, this question remains open.

(ii) In chapter 4, we have shown that when the matrix M ∈ Rn×n is a quadratic

representation, SOCLCP(M, q) has a solution for all q ∈ Rn if and only

81
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if SOCLCP(M, 0) has a unique solution zero. However, it is not known

whether the above equivalence holds for all matrices M ∈ Π(Λn
+) for n ≥ 3.
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