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SUMMARY. For testing equality of treatment effects in an unbalanced one-way model

against a d ive oxplicit expressi for the likelihood ratio test and its null
distribution are given. The gain of power compared with the F-test is demonstrated in &

simultation experiment.

1. INTRODUOTION

Let us ider an unbalanced one way ation model, i.e. we have
& normal populations with means &, s, ..., & respectively and a common
variance 0% zy donotes the jth ohservation of the i-th population,
i=12.,m ntngt.tuk= N.

The problem is to test the hypothesis

H:§=F=..=%
against the partislly ordered alternative
K:not H § < ... <& (r< k). . ()

For such probloms Bartholomew (1961) (sec also Barlow ef al., 1972),
developed the likelihood ratio criterion based on the statistic
= Tng(x—7)
T my(@—Z)+(N—k)s*
The 2} donote the ‘amalgumized’ means, or the projections of the Z's on
tho cone defiued by the restricted alternative (1). The null distribution of

E? is & mixture of bota distril Hi , excopt for balanced models
tho weights cannot be given in an analytical form when r > 4. An approxi-
mation for ‘nenrly balanced’ models may bo found in Siskind (1976).

* The pnpar was written -Iunn¢ the stay of this author at the Indian Statistical ludllll‘-
New Delhi under the Indo-GDR for sois
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Evading these difficulties Pinous (1975) evaluated & modified version
B2 of the likelihood ratio test for r = k, based upon embedding the alternative
Tegion in a suitable circular cone, and gave its null distribution. In Section 2
those results are extended to the perhaps more realistic case r < k. Since the
results are given for a cannonical form of the linear model, they are useful
also in situations other than the one way models.

For the case » = k there also exist other test statistics, e.g. Abelson and
Tukey's (1963) ‘Minimax linear contrast’ or Schaafsma’s (1966) ‘Most stringent
somewhere most powerful’ test, both being t-distributed under the hypothesis,
and with a fairly good power in the alternative region. If r < k they are
not applicable and a decomposition of the test problem so that these statistics
could be used for testing the equality of the first r means, loads to complicated
distributional problems.

In Section 3 we derive the explicit form of the Ej-statistic in the un-
balanced one way model. Section 4 finally presents the outcome of Monte-
Catlo studies for the behaviour of the power function of the E}-test and
compares it with the usual F-test.

2. THE DISTRIBUTION oF K}
We assume a linoar hypothesis to be given in a cannonical form. If
(w, z,y,2) is & random variate with

w~ Ny(y, o*l)
xz~ Ny, a*) e (2)
Yy~ Np(v,0*I)
2z~ N,(0,0%)
where w, z, ¥ and z are independently distributed, 7, #, v and o* are unknown,
we want to test the hypothesis

H p=v=0.

Further, we assume g to lic in a circular cone @ determined by its given axis

¢ and angle ¥, ce R?, 0 € ¥ < %; i.e. the alternative reads

K : not H, > cos Y.

c'u
liell flzell

Bl-14
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The likelihood ratio statistic

max (2mo?)~! exp { —N—;,- (llw—l*+ Ilzll’+llyll'+lkll’)}

AN —
toxp | — L (lo—glHle—plP+ly—
max (2m0%)-1 oxp { v (w—alP+l—plP+ly P+ e}

with N = l4+p+m+n equals

2N — (E—pa)' (@ —pa) 7%
Zu+yy+ez
whore p, denotes the orthogonal projection of z onto €, i.e.
fle—pe * = min [z—pl®
pe@

The L. B. criterion rejects the hypothesis if A is too small or equivalently,
considering py(x—pu,) = 0 etc. (c.f. Barlow et. al, 1972, p. 121) and setting
8= 2 2'z, if

n
Mot Y'Y .
g:?m>v.,u<v,<l, s (@)

where v, is chosen so that the level of significance of the test (3) equals a
given a.

We notice, c.f. Pincus (1975), that

( 0 if _oE_ < —siny
~ Mlell Tl
ity o if LI v
= a'x C
s e 8

“ ooy gt { e €T i ] oo
[ el cos y+( ' ol ) sunﬁ'] elsewhere.

The distribution of EZ under the hypothesis is evaluated for m = 0 in Pincus
(1976). Procooding on tho same lines one gets the null distribution for
arbitrary m,

2
PEFS v) = ’zn @ Bygsmys, intp-nia(®)h, 0<2< 1 e (8)
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Here By, y(+) stands for the distribution function of a Beta variate with para-
meters @ and b. The g are defined by

1
G=73 Bip-1/s, 4 (c08* ),

l(p—Z) (

=72\ 2

d

=
rofs.

N.‘

) sind "1y cos?=I1yr, j =1 cap—l,

p—1

leI

ol —

1 .
=7 Bip-1ys, i (8in ).

The distribution of E under the hypothesis therefore depends on the para-
meters m, p, n and V. Formula (5) may be used either for evaluation of
significance points, or by substituting the v in (5) by the observed value, to
compare the right hand side of (5) with 1—a, (c.f. example in Section 4).

2, EVALUATION OF THE K} STATISTIC
The crucial point in evaluating the E3-statistic, if the alternative region
is given by some inequalities like (1), i8 the determinaticn of the axis ¢ and
the angle r which determine the smallest circular cone containing the admissible
parameter region, and its representation in the original coordinates, since
testing problems usually are not given in a cannonical form.

Consider now the unbal d one way model of Section 1. Introduce
a new orthogonal basis in the N dimensional space so that the first basis
vector is (N-1/2, ..., N-1AY, the next (r—I) lie in the subspace spanned by
(L1, 01,0, .0, 0,0, ..., ) (g UNLS). c.ey (0, -.vy 0, 1, <.y 1,0, ..., O) (my unite),
and the following k—r vectors lie in the span of (1,...,1,0, ..., 0)’ (m, units),
enr(0, ..., 0,1, ..., 1) (ng units); the model gots the cannonical form (2) with

l=1lL,p=r—1,m=k—rond n=N—k (6)

Following Schaafsme. (1966) who proved it for k = r, Petrowiak (1978) showed
that the inequalities in (1) induce a cone in the z-space of the cannonical
form, and that the axis ¢ and the angle y of the smallest circular cone in that
subspace which contains the alternative region are dotermined by

€= (Cqs +vs Cqy vuns Cpy o003 Ops 0y onny (g
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and

oos® = (.‘_‘E, met) . ()

The ¢4 are given, (c.f. Schaafsma, 1966, p. 79) by
¢ = s ng {—sy (sr— s VA 8}l8 (s—s1 )M, i =1, .7, s (8)
where
[
sg= X my, 8=0.
J=1
Denoting

ni

k
Z=n Sy i=1.,6E=N"Z g,
i=1 i=1
r k
Z =570 X owdi; T = (N—s)™ B me@y,
i=1 i=r4l
and using (3), (4), (7), the E} statistic may be given explicitly, (soo also
Petrowiak, 1978),
E
T(x)+ al 0y(Fy—Z1a)) 2+ 8r(ZFy — )+ (N — 7)1 —7)*
jom

B= = (@
S nym—3)H(N—k)s
f=1

where according to (4) and (7),

F

r
2 ne®y "
f=1

0 if { )rlm(ﬁ_,m),}x/z < ~(én,c§_1 )u
im1

r
421 n(&—Fy)?* i .. >1

T)= < L5 2 2 12
(@) 121 NCEY 5 ‘El mcm)
=+ I nE—mnfi-r——
X nef =1 3 mcl
=1 =1
17272
1— ST elsewhere
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Obviously the valustion of E§ istic d ds in most cases at least a desk
calculator, but it is easily programmable. The distribution of Ef is given
by (5) with parameters determined by (6) and (7).

The individual terms in the numerator of (9) are useful for the inter-
pretation of the Ej statistic. If e.g. B} ds the a%-signifi point,
o large value of T(z) indicates inhomogeneity among the first » groups, etc.

4. MONTE OARLO STUDIES OF THE POWER FUNCTION

We will test the equality of six treatment effects in an experiment, where

e.g., the first four treatments represent different. dosages of the same drug,
so that a priori we may supnose &; < &, < €3 < &y

Let. the sample sizes and the (fictitious) data be as in Table 1.

‘
1 N
| N=28
n 6 4 3 5 4 6
i .44
EN 3.7 4.1 2.1 3.5 3.2 4.0

The usual ANOVA test gives an F-value 426 which is beyond the 1% signi-
ficance pont Fiype0 = 3:99. Evaluation of the Ef statistic according to
(9) gives -1383, while by (5) we have P(Ej < -1383) = -3338, so that using
a 19, 5% or even 109, significance level we had to accept the hypothesis.

Interpretation of the different outcomes is casy-the deviation e.g., between
Z, and Z which alone contributes 2:83 to the F value is automatically adjusted
by the E} statistic.

The oxample looks of course somewhst pathological and in any case,
says nothing about the quality of the Ej test with respect to its power fune-
tion. Therofore we simulated the power of the E§-test for this model. This
was done in the following way.

28 standard normal variables were generated and the Z; were and s*
ovaluated. Subsequently the Z were replaced by Z+£ for different combina-
tions of the ¢; and the value of E3 was computed and compared with the 5%
significance point. The whole procedure was repeated 10,000 times. Or
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more exactly, we choose the first 9500 repetitions for which the Ef statistic
was in the acceptance region, and the first 500 for which it was in the rejection
region, when all the random variables had zero means; thus making the
empirical size 0-05.

Since the power of the Ef-test depends not only on the noncentrality

6 - -
parameter X ny(E—E)? like the F-test, but also on the configuration of
=

£y, - Eg they were chosen so that they formed either multiplies of
(Cgs -1 €4 0, 0) = (—-333, —027, -069, 380, 0, 0) which guarantees maximum
power for fixed ity, or tipiies of (0, 0,0, 0, —6, *4) which
gives minimum power, (c.f. Pincus, 1975). The factors were chosen so that

+

8= 2 me—drro

equals -3, -5 etc. as indicated in Table 2, where the empirical power function
(percentage of rejections) is compared with that of the F-test. The exact
values for the F-test are taken from Tiku (1967).

TABLE 2
¢ 0 .3 .5 1.0 1.2 1.4 1.6 1.8 20 26
exact F-power .050 — 109 .343 .487 .637 .770 .871 .937 .997
emp. F-power .051 .069 .109 .345 .488 .640 .771 .873 .937 .997
omp. E-power L0530 .117 .206 .540 .693 .819 .907 .958 .98¢ .090
(max. config.)
omp. E-power L050 .07+ .119 .405 .563 .717 .838 .921 .965 .99

(min. config.)

The results suggest that the application of the E} test for partially
ordered alternatives gives a considerable gain in power, even in situations
where the inhomogeneity is due to means not involved in order restrictions.
The conclusions are supported by power evaluations of the likelihood ratio
test, for a related model with o known in Barlow et al. (1972, p. 1569).

Acknowledg t. The authors are grateful to Dr. M. Hartwig, Betlin,
for his help in providing the simulations for Table 2.
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