
ON SOME NEW METHODOLOGIES FOR

PATTERN RECOGNITION

AIDED BY SELF-ORGANIZING MAPS

Arijit Laha

Institute for Development and Research in Banking Technology

Hyderabad - 500057

India.

A thesis submitted to the Indian Statistical Institute

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2005



ACKNOWLEDGEMENTS

This work is done under supervision of Prof. Nikhil R. Pal. I would like to express

my most heartfelt gratitude to him for his constant guidance and painstaking care that

enabled me carrying out quality research work. He has been a constant source of en-

couragement and inspiration while I went through several changes in my professional life

during last few years which threatened discontinuation of the research work. He has been

the teacher who taught me how to proceed systematically for solving research problems.

I thank Prof. Bhabatosh Chanda for his kind help during the research and imparting

valuable knowledge in the field of image processing. I also thank Prof. Jyotirmoy Das

for sharing his vast knowledge in the field of remote sensing as well as in capacity of

the head of the unit allowing me to occasionally utilize computation and communication

resources in ECSU. Along with Prof. Pal I thank Prof. Chanda and Prof. Das for

allowing our joint works to be included in this thesis.

I would like to thank my friends in ISI Dr. Debrup Chakrabarty, Mr. Partha P. Mo-

hanta and Mr. Subhasis Bhattacharya for their help. I also thank my former colleagues

Dr. A. K. Laha, Mrs. S. Samaddar and Mr. N. Ghosh in NIMC as well as all my

colleagues in IDRBT for their encouragement and support.

I would like to record my gratitude for my wife Susmita, my parents and my brother for

their unstinting support and courage, but for which I could never have left a financially

rewarding career in IT industry and follow my heart to an intellectually satisfying career

in academics.

Last but never the least, I thank my little daughter Deya. In moments of crisis, her

single smile could lift the cloud of despair hanging overhead and make me feel again the

grace and beauty of life.

IDRBT, Hyderabad Arijit Laha

2005

i



Contents

1 Introduction and Scope of the Thesis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Steps in a pattern recognition task . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Feature selection/extraction . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Classification and clustering . . . . . . . . . . . . . . . . . . . . . 7

1.3 Approaches to Pattern Recognition . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Statistical Pattern Recognition . . . . . . . . . . . . . . . . . . . 8

1.3.2 Neural Networks for Pattern Recognition . . . . . . . . . . . . . . 15

1.3.3 Fuzzy Set Theoretic Approach to Pattern Recognition . . . . . . . 21

1.3.4 Evidence Theoretic Approach to Pattern Recognition . . . . . . . 26

1.4 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 The Self-Organizing Map (SOM) . . . . . . . . . . . . . . . . . . 29

1.4.2 SOM: robustness, simplification and topology preservation [199, 202] 29

1.4.3 Extraction of prototypes and designing classifiers [203, 204, 266] . 30

1.4.4 Extraction of fuzzy rules for classification [206, 267] . . . . . . . . 30

1.4.5 Evidence theory-based decision making for fuzzy rule based clas-

sifiers [201, 207] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.6 Designing vector quantizer with SOM and surface fitting for better

psychovisual quality [205] . . . . . . . . . . . . . . . . . . . . . . 32

1.4.7 Fast codebook searching in a SOM-based vector quantizer [200] . 32

1.4.8 Conclusion and future works . . . . . . . . . . . . . . . . . . . . . 33

ii



2 The Self-Organizing Map (SOM) 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The SOM architecture and algorithm . . . . . . . . . . . . . . . . . . . . 36

2.2.1 The SOM architecture . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 The SOM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 The generalized SOM algorithm . . . . . . . . . . . . . . . . . . . 39

2.3 Properties of SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Topology preservation property of SOM . . . . . . . . . . . . . . 43

2.3.2 The density matching property . . . . . . . . . . . . . . . . . . . 47

2.3.3 Some limitations of SOM . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Relationship between SOM and k-means clustering algorithm . . 53

2.3.5 Variants of SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 A brief survey of the SOM: Theory and Application . . . . . . . . . . . . 59

2.4.1 Theoretical analysis of SOM algorithm . . . . . . . . . . . . . . . 59

2.4.2 Applications of SOM . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 SOM: Robustness, Simplification and Topology Preservation 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 A new quantitative measure of topology preservation . . . . . . . . . . . 72

3.2.1 Rank Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 Rank Correlation-based measure of topology preservation . . . . . 74

3.2.3 Experimental study on the topology preservation measures . . . . 75

3.3 Robustness of SOM in preserving topology with respect to link density . 79

3.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Simplified SOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Simplified SOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2 SOMs with Tree Neighborhood . . . . . . . . . . . . . . . . . . . 88

3.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iii



4 Extraction of Prototypes and Designing Classifiers 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Generation of a good Set of Prototypes . . . . . . . . . . . . . . . . . . . 99

4.2.1 The SOM-based prototype generation scheme . . . . . . . . . . . 100

4.2.2 Generation and labelling of initial set of prototypes . . . . . . . . 102

4.3 Generating a better set of prototypes . . . . . . . . . . . . . . . . . . . . 102

4.3.1 The operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.2 The DYNAmic prototype GENeration (DYNAGEN) algorithm . . 104

4.3.3 Results of 1-NMP classifier . . . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Properties of 1-NMP classifiers . . . . . . . . . . . . . . . . . . . 112

4.4 A new classifier and fine-tuning of prototypes . . . . . . . . . . . . . . . 114

4.4.1 The 1-MSP classifier . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.2 Fine tuning of the prototypes . . . . . . . . . . . . . . . . . . . . 114

4.4.3 Implementation and results of 1-MSP classifiers . . . . . . . . . . 117

4.5 Cross-validation and comparison with k-NN and SVM classifiers . . . . . 123

4.5.1 Results of cross-validation with proposed classifiers . . . . . . . . 123

4.5.2 Comparison of the proposed classifiers with k-NN and SVM classifiers126

4.6 Classifying landcover types from multispectral satellite images . . . . . . 129

4.6.1 The multispectral satellite image data . . . . . . . . . . . . . . . 130

4.6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Extraction of Fuzzy Rules for Classification 134

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Fuzzy rule based systems for pattern classification . . . . . . . . . . . . . 136

5.2.1 Which type of fuzzy rules to use . . . . . . . . . . . . . . . . . . . 136

5.2.2 Design issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Designing fuzzy rule based classifiers . . . . . . . . . . . . . . . . . . . . 140

5.3.1 Generating the fuzzy rule base . . . . . . . . . . . . . . . . . . . . 140

5.3.2 Tuning the rule base . . . . . . . . . . . . . . . . . . . . . . . . . 143

iv



5.3.3 Softmin as a conjunction operator . . . . . . . . . . . . . . . . . . 145

5.4 Context-sensitive inferencing . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.1 Classification of group A and group B data sets . . . . . . . . . . 149

5.5.2 Results of cross-validation experiments . . . . . . . . . . . . . . . 152

5.5.3 Landcover classification from multispectral satellite images . . . . 153

5.5.4 Performance of the classifiers with context-Free inferencing . . . . 158

5.5.5 Performance of the classifiers with context-sensitive inferencing . . 163

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Evidence Theory based Decision Making for Fuzzy Rule based Classi-

fiers 169

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2 The Landcover analysis problem . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Handling uncertainty with theory of evidence . . . . . . . . . . . . . . . 174

6.3.1 Dempster-Shafer theory of evidence . . . . . . . . . . . . . . . . . 175

6.3.2 Pignistic probability . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 Generating fuzzy label vectors from the fuzzy rule base . . . . . . . . . . 177

6.5 Aggregation of spatial contextual information for decision making . . . . 178

6.5.1 Method 1: Aggregation of possibilistic labels by fuzzy k-NN rule . 178

6.5.2 Method 2: Aggregation with Bayesian belief modelling . . . . . . 179

6.5.3 Method 3: Aggregation with non-Bayesian belief . . . . . . . . . . 180

6.5.4 Method 4: Aggregation using evidence theoretic k-NN rule . . . . 181

6.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Designing Vector Quantizer with SOM and Surface Fitting for Better

Phychovisual Quality 191

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2 Scheme for designing vector quantizers . . . . . . . . . . . . . . . . . . . 194

7.2.1 Preparing the image vectors . . . . . . . . . . . . . . . . . . . . . 195

v



7.2.2 Preparing training data for construction of a generic codebook . . 195

7.2.3 Surface fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.3 Processing the block averages and indexes for Huffman coding . . . . . . 201

7.3.1 Difference coding of the block averages . . . . . . . . . . . . . . . 203

7.3.2 Huffman coding of the indexes and difference coded averages . . . 204

7.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.4.1 Quantitative assessment of psychovisual quality preservation . . . 212

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8 Fast Codebook Searching in a SOM-based Vector Quantizer 217

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.2 Codebook searching in a SOM . . . . . . . . . . . . . . . . . . . . . . . . 218

8.3 Searching the codebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.3.1 Strategy 1: Restricted window search over SOM lattice . . . . . . 220

8.3.2 Strategy 2: Codebook searching with L2-SOM . . . . . . . . . . . 222

8.3.3 Combined Method: Restricted window search with L2-SOM look-

up for re-initialization . . . . . . . . . . . . . . . . . . . . . . . . 222

8.4 Transformation and Huffman coding of the indexes . . . . . . . . . . . . 223

8.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9 Conclusion and Future Works 233

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

vi



List of Figures

1.1 McCulloch-Pitts neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 SOM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Kohonen’s Self-organizing Map algorithm. . . . . . . . . . . . . . . . . . 40

2.3 1-D SOM trained with 2-D data distribution of a noisy sine curve. . . . . 41

2.4 1-D SOM trained with 2-D data uniformly distributed over a square. . . 41

2.5 2-D SOM trained with 2-D data uniformly distributed over a square. . . 41

2.6 Reflecting statistics of input data (a) 2-D normally distributed input data

(b) A 10× 10 SOM trained with the input data. . . . . . . . . . . . . . . 50

3.1 Distance based visualization of topological ordering process during the

training. The gray values depict the normalized internode distances. The

upper right triangle of the matrix depicts the inter-node distances on the

SOM grid, the lower left triangular matrix depicts the internode distances

in the input space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Topology preservation during different stage of training of SOM measured

with topographic product P . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Topology violation during different stage of training of SOM measured

with V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Topology preservation during different stage of training of SOM measured

with T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 The twisted SOM at an intermediate stage of training . . . . . . . . . . . 79

3.6 The procedure for selecting connected nodes in case 1 . . . . . . . . . . . 82

vii



3.7 The graphical results when the probability of absence of a link is propor-

tional to the interneuron distance. (a) Views of some SOMs with different

link densities. (b) Variation of topographic product P with link density.

(c) Variation of V with link density. (b) Variation of T with link density. 83

3.8 The graphical results when the probability of absence of a link is random.

(a) Views of some SOMs with different link densities. (b) Variation of

topographic product P with link density. (c) Variation of V with link

density. (b) Variation of T with link density. . . . . . . . . . . . . . . . . 84

3.9 Lateral feedback functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 (a)Visual display of standard SOM trained with Uniform square data.

(b),(c) and (d) are visual displays for SSOM(Gaussian), SSOM(Quadratic)

and SSOM(Linear) respectively . . . . . . . . . . . . . . . . . . . . . . . 90

3.11 (a)Visual display of standard SOM trained with of Y-data. (b),(c) and

(d) are visual displays for TSOMs using complete tree, restricted tree and

arbitrary tree neighborhood respectively. . . . . . . . . . . . . . . . . . . 91

3.12 Visual display of the neighborhood function of three TSOMs for uniform

square data. The nodes are marked with their lattice coordinates. . . . . 91

3.13 Visual display of the neighborhood function of three TSOMs for Y data.

The nodes are marked with their lattice coordinates. . . . . . . . . . . . 92

3.14 Result of skeletonization experimentations with 3 TSOMs. . . . . . . . . 94

4.1 Scatterplot of the Glass data along two most significant principal compo-

nents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Scatterplot of first two features of the Vowel data. . . . . . . . . . . . . . 111

4.3 Scatterplot of the Two-Dishes data. . . . . . . . . . . . . . . . . . . . . . 113

4.4 Comparison of average test error rates of 10-fold cross-validation for the

proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 Plot of soft-match operator against q. . . . . . . . . . . . . . . . . . . . . 147

5.2 Band-1 of Satimage2 (After histogram equalization). . . . . . . . . . . . 155

5.3 Band-4 of Satimage3 (After histogram equalization). . . . . . . . . . . . 156

5.4 The ground truth for Satimage2. The classes are represented by different

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



5.5 The ground truth for Satimage3. The classes are represented by different

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.6 The classified image for Satimage2 (Training set 1). The classes are rep-

resented by different colors. . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.7 The classified image for Satimage3 (Training set 2). The classes are rep-

resented by different colors. . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.8 Bar diagram of qis of the rules for Satimage2 for initial qi -10, 1 and 10

(when the initial rules were context tuned with q=-10.0 for all rules). . . 165

5.9 Bar diagram of qis of the rules for Satimage1 for initial qi -10, 1 and 5

(when the initial rules were not context tuned). . . . . . . . . . . . . . . 166

5.10 Bar diagram of qis of the rules for Satimage2 for initial qi -10, 1 and 5

(when the initial rules were not context tuned). . . . . . . . . . . . . . . 166

6.1 The classified image for Satimage2 (Training set 1, Method 3). The classes

are represented by different colors. . . . . . . . . . . . . . . . . . . . . . . 185

6.2 The classified image for Satimage3 (Training set 1, Method 4). The classes

are represented by different colors. . . . . . . . . . . . . . . . . . . . . . . 185

6.3 The result of grid search for optimal value of w using a 100×100 sub-image

of Satimage2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.4 The result of grid search for optimal value of w using a 100×100 sub-image

of Satimage3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.1 Original Lena image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2 (a) Reconstructed Lena image with VQ using original vectors. PSNR =

27.62 dB. (b) Reconstructed Lena image with VQ using mean-removed

vectors. PSNR = 29.61 dB. Here the VQ is trained with the Lena image

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.3 The training image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4 (a) Reconstructed Lena image with VQ using SOM weight vectors as

reconstruction vectors. PSNR = 28.19 dB. (b) Reconstructed Lena image

with VQ using surface fitting. PSNR = 28.49 dB. . . . . . . . . . . . . . 202

7.5 (a) Enlarged portion of Lena image shown in figure 3(a). (b) Enlarged

portion of Lena image shown in figure 3(b). . . . . . . . . . . . . . . . . 202

ix



7.6 The frequency distributions of (a) actual block averages and (b) difference

coded block averages for Lena image. . . . . . . . . . . . . . . . . . . . . 204

7.7 The frequency distributions of (a) indexes of encoded training image and

(b) indexes of encoded Barbara image. . . . . . . . . . . . . . . . . . . . 205

7.8 (a), (c), (e) Compressed Lena images using proposed algorithm. (b), (d),

(f) Compressed Lena images using JPEG. . . . . . . . . . . . . . . . . . 208

7.9 Results on 512×512 Barbara image. (a) Original image, (b) reconstructed

image for VQ with 8×8 blocks, (c) reconstructed image for VQ with 4×8

blocks and (d)reconstructed image for VQ with 4× 4 blocks. . . . . . . . 209

7.10 Results on 512 × 512 Boat image. (a) Original image, (b) reconstructed

image for VQ with 8×8 blocks, (c) reconstructed image for VQ with 4×8

blocks and (d)reconstructed image for VQ with 4× 4 blocks. . . . . . . . 210

7.11 Results on 256×256 images. (a) Original images, (b) reconstructed images

for VQ with 8×8 blocks, (c) reconstructed images for VQ with 4×8 blocks

and (d)reconstructed images for VQ with 4× 4 blocks. . . . . . . . . . . 211

7.12 Convolution mask corresponding to the Laplacian operator. . . . . . . . . 213

8.1 Grouped histogram of the index offsets for exhaustive search vector quan-

tization of the Lena image. . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.2 Histogram of the transformed offset values for exhaustive search vector

quantization of the Lena image. . . . . . . . . . . . . . . . . . . . . . . . 225

8.3 The training images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.4 The reproduced images for . (a) Exhaustive search, (b) SOM window

search (Strategy 1), (c) Level 2 SOM search (Strategy 2) and (d) Proposed

Combined search method for Lena image. . . . . . . . . . . . . . . . . . . 228

8.5 The histogram of offset values . (a) Exhaustive search, (b) SOM window

search (Strategy 1), (c) Level 2 SOM search (Strategy 2) and (d) Proposed

Combined search method for Lena image . . . . . . . . . . . . . . . . . . 229

8.6 Variation of number of distance calculation with search window size and

quality threshold for quantizing Lena image. . . . . . . . . . . . . . . . . 230

8.7 Variation of reproduction quality (Measured in PSNR) with search win-

dow size and quality threshold for quantizing Lena image. . . . . . . . . 230

8.8 Variation of number of level2 SOM searches (i.e, derailments) with search

window size and quality threshold for quantizing Lena image . . . . . . . 231

x



List of Tables

2.1 Correspondence between the generalized Lloyd algorithm with noise and

the SOM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Performance measure of the standard SOM and SSOMs with respect to

topology preservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Performance measure of the standard SOM and TSOMs with respect to

topology preservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Total quantization errors for standard SOM and three TSOMs for four

data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Distribution of data points among different classes for group A data sets 107

4.2 Distribution of data points among different classes for group B data sets 108

4.3 Performance of the 1-NMP classifier for the group A data sets. . . . . . 109

4.4 Performance of the 1-NMP classifier for the group B data sets. . . . . . . 109

4.5 Performance of the 1-MSP classifier for the group A data sets. . . . . . 118

4.6 Performance of the RBF networks for the group A data sets. . . . . . . . 120

4.7 Performance of the 1-MSP classifier for the group B data sets. . . . . . . 120

4.8 Results with MLP networks for group the B data sets [191]. . . . . . . . 122

4.9 Results with RBF networks for the group B data sets [191]. . . . . . . . 122

4.10 Training and test partition sizes for the cross-validation experiments . . . 124

4.11 Results of 10-fold cross validation for 1-NMP classifiers . . . . . . . . . . 124

4.12 Results of 10-fold cross validation for 1-MSP classifiers . . . . . . . . . . 125

4.13 Result of 10-fold cross-validation experiment with k-NN classifiers: The

statistics of test misclassification rates are reported. The numbers in the

parentheses denote the values of standard deviation. . . . . . . . . . . . . 127

xi



4.14 Result of 10-fold cross-validation experiment with SVM classifiers . . . . 127

4.15 Classification performances of 1-NMP classifiers designed using different

training sets for the multispectral satellite images . . . . . . . . . . . . . 131

4.16 Classification performances of 1-MSP classifiers designed using different

training sets for the multispectral satellite images . . . . . . . . . . . . . 132

5.1 Performance of fuzzy rule based classifiers for group A data sets . . . . . 150

5.2 Performance of fuzzy rule based classifiers for group B data sets . . . . . 150

5.3 Fuzzy rule based classifiers: results of 10-fold cross validation . . . . . . . 152

5.4 Different classes and their frequencies for Satimage1 . . . . . . . . . . . 154

5.5 Classes and their frequencies in the Satimage2. . . . . . . . . . . . . . . 155

5.6 Classes and their frequencies in the Satimage3. . . . . . . . . . . . . . . . 156

5.7 Performance of the fuzzy rule based classifiers designed with context-free

reasoning scheme for 4 different partitions of Satimage1 data set. . . . . 158

5.8 Performances of fuzzy rule based classifiers designed with context-free rea-

soning scheme for different training sets for Satimage2 . . . . . . . . . . 159

5.9 Performances of fuzzy rule based classifiers designed with context-free rea-

soning scheme for different training sets for Satimage3 . . . . . . . . . . 159

5.10 The rules for classes 1, 2 and 3 with corresponding fuzzy sets for Satim-

age2. These rules are obtained using the training set 1. . . . . . . . . . 162

5.11 Performance of the rule based classifiers designed with context-sensitive

reasoning scheme for 4 different partitions of Satimage1 data set. . . . . 163

5.12 Classification performances designed with context-sensitive reasoning scheme

for 4 different training sets for Satimage2. . . . . . . . . . . . . . . . . . 163

5.13 Performance analysis of context-sensitive inferencing for rule based clas-

sifiers (when the initial rules were context tuned with q=-10.0 for all rules) 164

5.14 Performance analysis of context-sensitive inferencing for rule based clas-

sifiers (when the initial rules were not context tuned) . . . . . . . . . . . 165

6.1 Performances of fuzzy rule based classifiers using spatial neighborhood

information aggregation methods for decision making for different training

sets for Satimage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xii



6.2 Performances of fuzzy rule based classifiers using spatial neighborhood

information aggregation methods for decision making for different training

sets for Satimage3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 Class-wise average classification performance for Satimage2 . . . . . . . . 186

6.4 Class-wise average classification performance for Satimage3 . . . . . . . . 187

6.5 Classification performances of classifiers using modified Method 4 with

w = 0.35 on Satimage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.1 Performance of the vector quantizers on training images. . . . . . . . . . 206

7.2 Performance of the vector quantizers on test images and their comparison

with baseline JPEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.3 Comparison of performances regarding preservation of psychovisual fi-

delity between the vector quantizers using SOM code books and surface

fitting code books. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.1 Comparison of VQ with exhaustive search and restricted searches (Strate-

gies 1,2 and the combined method). . . . . . . . . . . . . . . . . . . . . . 227

xiii



Chapter 1

Introduction and Scope of the

Thesis



1.1 Introduction

In this thesis we develop several techniques for performing different pattern recognition

tasks. In particular, the pattern recognition tasks considered here are classification and

vector quantization. We propose several methods for designing classifiers and address

various issues involved in the task. For vector quantization, we develop a method for

image compression with superior psychovisual reproduction quality. We also propose a

method for fast codebook search in a vector quantizer. We exploit different properties

of Self-organizing Map (SOM) network for developing these methods. Along with SOM,

we also use fuzzy sets theory and Dempster-Shafer theory of evidence to design classi-

fiers with enhanced performance. In the thesis we also report results of some empirical

studies on the robustness of SOM with respect to topology preservation under several

modification of basic SOM. In the following we provide a brief introduction to the pat-

tern recognition problem and its different aspects, including the techniques used in the

thesis.

Pattern recognition (PR) is the most important trait of cognitive ability, be it of

humans or animals. The ability to recognize patterns is central to intelligent behavior.

We receive signals from environment through our sensory organs which are processed

by the brain to generate suitable responses. The whole process involves extraction of

information from the sensory signals, processing it using the information stored in the

brain to reach a decision that induces some action. All these information we work with

are represented as patterns. We recognize voices, known faces, scenes, written letters

and a multitude of other objects in our everyday life. In other words, our very survival

hinges on our pattern recognition ability. Even more remarkable is the fact that more

often than not we perform these tasks in non-ideal or noisy environments. Not only

we use pattern recognition with actual signals from the environment, but also we are

capable of doing it at intellectual level. For example, faced with a problem of abstract

nature, often we recall a similar problem we have faced earlier or have read about, and

get a clue to the solution of the problem in hand.

The pattern recognition ability is so natural to us that we almost take it for granted.

However, the exact details of the underlying process is still mostly shrouded in mystery

and is in itself a vast field of research involving several disciplines like neurobiology,

psychology etc. Here we are mainly concerned with automated pattern recognition or the

pattern recognition tasks performed by machines. Thus we are faced with the task of

teaching a machine to recognize patterns. This is, to say the least, a formidable task.

Many experts defined the task from different perspectives. Some of them are as follows:

Duda and Hart [88] “pattern recognition, a field concerned with machine recognition

2



of meaningful regularities in noisy or complex environments.”

Pavlidis [273] “the word pattern is derived from the same root as the word patron and,

in its original use, means something which is set up as a perfect example to be imitated.

Thus pattern recognition means the identification of the ideal which a given object is

made after.”

Bezdek [31] “pattern recognition is a search for structure in data.”

Schalkoff [301] “Pattern recognition (PR) is the science that concerns the description

or classification (recognition) of measurements.”

Essentially the discipline of Pattern Recognition (henceforth we shall use the term

“pattern recognition” to mean “pattern recognition by machine” unless stated other-

wise) deals with the problem of developing algorithms and methodologies/devices that

can enable the computer-implementation of many of the recognition tasks that humans

normally perform. The motivation is to perform these tasks more accurately, or faster,

and perhaps, more economically than humans and, in many cases, to release humans

from drudgery resulting from performing routine recognition tasks repetitively and me-

chanically. The scope of PR also encompasses tasks humans are not good at, such as

reading bar codes, supervising manufacturing and other processes under hazardous con-

ditions etc. The goal of pattern recognition research is to devise ways and means of

automating certain decision-making processes that lead to classification and recognition.

The field of pattern recognition has witnessed a tremendous amount of research activ-

ity in last few decades. This fact can be discerned from the numerous books [32, 82, 89,

271, 270, 273, 301] devoted to it. Pattern recognition can be broadly divided into three

branches, namely, feature analysis, pattern classification and clustering [261]. Excellent

review of the major approaches in these branches can be found in [227], [139, 189] and

[140, 353] respectively. Though the subject has considerably matured during the last

five decades, new challenges continue to come up. There are several factors contributing

to the high level of activities we find in PR. The cross-fertilization of ideas from sev-

eral disciplines such as computer science, mathematics, statistics, physics, psychology,

neurobiology, engineering and cognitive science opens new approaches to the solutions

of the PR problems. Secondly, rapid developments in technology, especially for sensors,

has enabled deployment of automated systems in different fields such as manufacturing,

remote sensing, surveillance, medical diagnostic etc. whose functioning are largely de-

pendent on various pattern recognition techniques. Lastly, due to cheap availability and

huge proliferation of computers and information technology in a wide variety of organiza-

tions, there is a constant need for developing PR techniques for summarizing/exploring

mountain-load of accumulated data for useful nuggets of knowledge. So there is an explo-

sive growth of new fields of applications. Here we name a few, data mining for business

3



and scientific applications, bioinformatics and computational genomic, financial compu-

tation for prediction of various financial and economic indicators, land cover analysis

and weather prediction from remotely sensed data, image and document retrieval etc.

All these applications fuel an ever increasing demand for new PR techniques capable of

handling more challenging and computationally demanding tasks.

The rest of this chapter is organized as follows: in section 1.2 an overview of the

various steps of pattern recognition task is provided, in section 1.3 different approaches

for solving the pattern recognition problems are discussed and in section 1.4 the scope

of the current thesis is provided.

1.2 Steps in a pattern recognition task

A typical pattern recognition system consists of three phases, namely, data acquisition,

feature extraction/selection and using the extracted/selected features for performing clas-

sification or clustering. In the data acquisition phase, depending on the environment

within which the objects are to be classified/clustered, data are gathered using a set of

sensors. These are then passed on to the feature extraction/selection phase, where the

dimensionality of the data is reduced by retaining the discriminating power of the orig-

inal data set to the extent possible. This stage significantly influences the performance

of the PR system because only good features can lead to good PR systems. Finally,

in the classification/clustering phase, the extracted/selected features are passed on to

the classifier/clustering algorithm that evaluates the incoming information and makes

a decision. This phase basically establishes a transformation between the features and

the classes/clusters. There are various approaches, such as statistical, neural and fuzzy

set-theoretic approaches for realizing this transformation.

• There are many statistical methods of classification including Bayesian rule, near-

est neighbor rule, linear discriminant functions, perceptron rule, nearest prototype

rule. Statistical clustering algorithms include k-means algorithm, mixture decom-

position algorithm and others. [82, 89].

• Using artificial neural networks also there are many clustering and classification

algorithms, such as Multi-layer Perceptron (MLP) [297], Radial Basis Function

(RBF) network [213], Self-organizing Map (SOM) [169], Support Vector Machine

(SVM) [333], Learning Vector Quantizer (LVQ) [169] etc.

• Fuzzy set theory has also been used to design classification and clustering algo-

rithms. To name a few, we have Fuzzy Rule based Classifiers [32, 191], Fuzzy

4



k-nn classifiers [158], Fuzzy c-means (FCM) clustering algorithm [31] and its many

variants, possibilistic clustering algorithms [32] etc.

1.2.1 Data acquisition

Pattern recognition techniques are applicable in a wide variety of problem domains,

where the data may be numerical, linguistic, pictorial, or any combination thereof. The

collection of data constitutes data acquisition phase. Generally, the data structures

that are used in pattern recognition systems are of two types : object data vectors

and relational data. Object data, set of numerical vectors, are represented as X =

{x1,x2, . . . ,xN}, a set of N feature vectors in the p-dimensional measurement space ΩX .

An s-th object, s = 1, 2, . . . , N , observed in the process has vector xs as its numerical

representation; xsi is the i-th (i = 1, 2, . . . , p) feature value associated with the s-th

object. Relational data is a set of N2 numerical relationships, say {rsq}, between pairs

of objects. In other words, rsq represents the extent to which s-th and q-th objects are

related in the sense of some binary relationship ρ. If the objects that are pairwise related

by ρ are called O = {o1, o2, . . . , oN}, then ρ : O ×O → <. In the current thesis we shall

deal exclusively with object data.

The data acquired is utilized to develop a system in the following manner:

Let X = {x1,x2, ...,xN} ⊂ <p (often known as source space) and Y = {y1,y2, ...,yN} ⊂
<t (target space) and let there be an unknown function S : <p ⇒ <t such that yk =

S(xk) ∀k = 1, ..., N. In other words, there is an unknown function S which transforms

x to y. S can represent many types of systems. S can be an algebraic system, where S

does not evolve with time, and thus can be represented by a set of algebraic equations.

On the other hand, S can be a dynamical system, which evolves with time, and hence

differential equations are required to characterize them. Again, S can be characterized

by the type of output it produces. The output may be continuous numerical valued or

they can be decisions as in a classifier.

Finding S from the input-output data (X,Y ) is often called system identification. S

can be of two types: regression or function approximation (FA) type when the elements

in Y are continuous, and classifier type when Y contains class labels (or categorical

decisions). In both cases it is assumed that the input-output data (X,Y ) are generated

from a time invariant but unknown probability distribution. The data set T = (X, Y ) =

{(xi,yi) : i = 1, ..., N} that is used to find S is called a training set. During training,

xi, (i = 1, 2, ..., N) is used as the input and the outputs yi, (i = 1, 2, ..., N) acts as a

teacher. The design methodology uses this training set T to learn (build) a system with

a hope that the obtained system will work well not only on the training inputs but also

on data points which are not present in the training set. The performance of such a

5



system is measured by its performance on future data, commonly called test data. The

test data set is independent of the training set, and it is also assumed that the test data

follow the same probability distribution as that of the training data. There is another

kind of application where the target data set Y is not available. Only the input X is

present and the problem is to find homogeneous groups in X. This is clustering of X.

1.2.2 Feature selection/extraction

Feature extraction and selection tasks, along with feature ranking form an important

branch of pattern recognition activity known as feature analysis. All features that are

present in a data set may not be useful for the task at hand. Some features present may

be redundant and some may be bad too. Thus selecting the most relevant and useful

features from a given set of features is useful as it helps in building systems with low

complexity and may save computational time as well as economize future data collection

efforts. Also it has been shown that due to finite sample size effects [123, 139] reducing

the number of features may lead to an improvement of the prediction accuracy. Moreover,

a system built with a smaller number of features is more readable, has less parameters

and is expected to have better generalization abilities.

Feature analysis deals with finding a transform Φ : <p → <q using a criterion J on

a training set T = (X, Y ) = {(xi,yi)|xi ∈ <p,yi ∈ <t, i = 1, 2, ..., N}. Typically, J

is related to the problem that we intend to solve using T . The transform Φ is said to

perform dimensionality reduction if q < p.

Feature analysis can be divided into three basic types: feature extraction, feature

selection and feature ranking. Feature extraction is a method to generate a q dimensional

vector from a given p dimensional input vector. For feature extraction it is not necessary

that q < p. There may be applications where one needs to find a richer description

of objects by increasing the number of features. Extracting additional features from a

given feature vector is common in many image processing and other signal processing

applications. However, while designing a pattern recognition system, the designer is

mostly interested in transformations which perform a reduction in the dimensionality of

the input space.

A special case of feature extraction is feature selection, where the components of Φ(x)

are some components of x, i.e., in this process some components of the original vectors

are discarded and others are retained as they are. Thus, in feature selection a subset of

the original set of features is selected using some criteria.

Feature ranking methods aim at ranking features according to their suitability for the

task at hand. The ranking algorithm assigns some real number to each of the features,

6



and one can order the features according to these real numbers. Feature selection may

then be performed based on these ranks. But ranking individual features is not the best

way to look at the problem because two correlated features may get high ranks, while

only one of them is required for the task.

Feature selection algorithms can be characterized based on two attributes namely the

feature subset evaluation criterion function J and the search technique. J can be of

two types, problem independent criteria and problem dependent criteria [227]. The

algorithms using the first category are called filter algorithms. Such criteria are based

on distance or separability measures, information measures, dependency or correlation

measures and consistency measures. For the second category, the criteria is based on

the performances of feature subsets in a specific pattern recognition task such as the

classification error rate. [71]. The algorithms employing such criterion are also called

wrapper methods. Once the criteria J gets fixed, the problem of feature selection reduces

to a search problem. There are 2p possible subsets of the feature. The number of feature

subsets with q or less dimensions is
∑q

i=1

(
p
i

)
. An exhaustive search for an optimal q-

space would require examining
(

p
q

)
possible q subsets of the original feature set. The

number of possibilities grows exponentially making exhaustive search impractical even

for moderate values of p. However, there exists heuristics like branch and bound and

beam search that reduce the search space. A recent survey of feature selection algorithms

can be found in [227]. In [227] the authors also provide a taxonomy of state-of-the-art

feature selection algorithms based on the evaluation criteria, search techniques and target

pattern recognition tasks. Also there are many methods which do not explicitly use a

search technique, but use a transformation on the available features to obtain a reduced

set of features. In this thesis we do not consider the feature analysis further.

1.2.3 Classification and clustering

The problem of designing a classifier is basically one of partitioning the feature space into

regions, one region for each category of input. Thus, it attempts to assign every data

point in the entire feature space to one of the possible (say, M) classes. In real life, the

complete description of the classes is not known. We have instead, a finite and usually

a small number of samples which often provide partial information for optimal design of

classification algorithms. Typically, it is assumed that these samples are representative

of the classes. Such a set of typical patterns is called a training set. On the basis of

the information gathered from the samples in the training set, the classifier systems are

designed. If the class-conditional probability densities are known, statistical methods

such as Bayes decision theory can be applied directly to obtain the optimal solution [88].

However, if the class-conditional densities are not known, the system must be developed

7



by learning from the data.

In pattern recognition, the learning tasks are mainly of two types. When the training

data contain two parts, input and output, and the learning algorithm uses this output

information, the learning is known as supervised learning. Here the goal of learning is to

model the mapping of the input data points to the output. If the outputs are discrete

class labels, the system is called a classifier; while for continuous valued output, the

system is known as a function approximation type system. On the other hand, when

the training data set does not contain the label information, the learning is known as

unsupervised learning. Here the aim is to discover homogeneous groups in the data.

To realize a PR system the system designer can choose among several available and

well developed approaches apart from pure statistical ones. These approaches include

neural networks and fuzzy set theoretic approaches. There is also immense research

activity directed towards developing pattern recognition systems based on more than

one of these approaches, known collectively as computational intelligence approaches,

which apart from the above include genetic algorithms and rough sets.

1.3 Approaches to Pattern Recognition

In this section we discuss in some details four approaches for solving the pattern recog-

nition problems. They are namely, statistical approach, neural network based approach,

fuzzy set theoretic approach and Dempster-Shafer evidence theoretic approach. The

works reported in the current thesis use mostly the later three approaches. However,

the statistical approach being the most widely used one and historically often used as

a benchmark for comparing other approaches, we include it in our discussions. Each of

these approaches provide a number of algorithms for performing pattern classification as

well as clustering tasks. In the following we discuss some of these algorithms under each

approaches for both the tasks.

1.3.1 Statistical Pattern Recognition

Given a pattern vector x ∈ <p, the classification task is viewed as one of assigning x into

one of a set of c known classes {ω1, ω2, . . . , ωc}, where a class can be viewed as a source

of patterns whose distribution in the feature space is governed by a probability density

specific to the class [140]. On the other hand, the task of clustering is defined in [140]

as follows:

Clustering techniques attempt to group patterns so that the classes thereby

8



obtained reflect the different pattern generation processes represented in the

pattern set.

Thus, according to this definition the task of clustering is aimed at discovering previously

unknown groups from the data set. Here first we look into the classification tasks, then

we shall discuss clustering in the later part of this subsection.

Classification

Bayesian decision theory [26] is a fundamental statistical approach to the problem of

pattern classification [89]. Under this approach, the decision problem is posed in proba-

bilistic terms and it is assumed that all relevant probability values are known. A pattern

is represented in terms of p measurement or feature values and treated as a point in

the p-dimensional Euclidean space <p, often called the feature space. Here each pattern

belonging to a class is considered to fall within a compact region of the space. Thus,

the distribution of the pattern classes can be represented by a set of probability density

(mass) functions, known as class conditional probability p(x|ωi), i = 1, 2, . . . , c. To clas-

sify a new pattern, the Bayesian approach uses the parameters of the density functions to

calculate the posterior probabilities p(ωi|x), i = 1, 2, . . . , c of the new pattern belonging

to different classes. Bayes rule is used for computing the posterior probability p(ωi|x) as

p(ωi|x) =
p(x|ωi)P (ωi)

p(x)

where P (ωi) is the a priori probability for class ωi and

p(x) =
c∑

j=1

p(x|ωj).

The Bayes decision rule minimizes the risk or expected loss by assigning x to class ωi

such that the conditional risk R(ωi|x) < R(ωj|x)∀i 6= j, where

R(ωi|x) =
c∑

j=1

L(ωi, ωj)p(ωi|x).

L(ωi, ωj) is the element of loss matrix indicating the loss incurred in assigning x to ωi

while its true class is ωj. In case of 0/1 loss function the decision rule simplifies to

maximum a posteriori (MAP) rule:

Assign x to ωi if p(ωi|x) > p(ωj|x)∀i 6= j.

Bayes rule produces the optimal classification performance if all the class-conditional

probabilities are completely known [88]. However, they are usually not known in real-life

9



problems and must be learned from the available training samples. If the form of the

class-conditional densities are known (e.g., multivariate normal), but the parameters of

the densities are unknown, then first we estimate the parameters using the training data

and use these estimated values to make decisions. Such a classifier is often known as

Bayes plug-in classifier [139]. If the form of class-conditional densities is not known then

one uses nonparametric density estimation methods like Parzen window [88]. A detailed

exposition of Bayesian approach of pattern recognition can be found in [30].

There is a general class of nonparametric classifiers, known as prototype based classi-

fiers. Prototypes are a set of patterns, representative of the training data set. A new

point x is classified using the prototypes according to the label(s) of the prototype(s)

most similar to it. However, the actual design of the classifier varies depending on the

method adopted for generating the set of prototypes. We shall discuss more about pro-

totype based classifiers and develop a novel method for generation of prototype sets in

Chapter 4. A special case of prototype based classifiers are k-nearest neighbor (k-NN)

classifier, where the training set, also called the reference set, itself is the set of proto-

types. To classify a new pattern x, first k points in the reference set nearest to x are

identified. Then x is classified using the k-NN rule as follows:

Assign x to class ωi if majority of k nearest neighbors of x are from class ωi.

The properties of nearest neighbor classifiers are studied by Cover and Hart [68]. They

proved that for 1-NN classifiers, the probability of error P = lim
n→∞

Pn(e), where Pn(e) is

the n-sample error rate, is bounded with respect to the optimal Bayesian error rate PB

as follows:

PB ≤ P ≤ PB

(
2− c

c− 1
PB

)
.

Thus, the error rate is bound from above with 2PB. It was further shown by Devroye

[83] that with increasing k the upper bound approaches the lower bound.

The simplicity as well as performance make NN classifiers lucrative choice for designing

classification systems. However, for application in real-life problems, the method, in its

naive form, suffers from space complexity of O(n) and computational complexity of

O(pn), for classifying each pattern x ∈ <p. Various methods for reducing the complexity

are studied by researchers and a comprehensive account of them can be found in [70].

There are mainly three techniques for reducing the complexity. Using partial distance,

i.e., the distance calculated in a subspace of the original space, relies upon the fact it

is nondecreasing with contribution of additional dimensions [110]. There are methods

employing prestructuring those build search trees based on the distances among the

10



training patterns for efficient searching of nearest neighbors [103]. The editing techniques

remove from the sample data set the samples whose k nearest neighbors come from the

same class as itself, thus retaining only the samples corresponding to decision boundaries

[349]. There are many variants of k-NN classifiers [70] including those using fuzzy set

theory [158] and Dempster-Shafer theory of evidence [76].

The other class of statistical classifiers is based on discriminant functions. Here the

form of a discriminant function (i.e., decision boundary) is decided first, then the optimal

values of parameters of the function are learned from the training data through gradient

descent or relaxation or by other search methods. This approach has its origin in classic

work of Fisher [98]. A review of early works on linear discriminant function can be found

in [127]. In its simplest form, the linear discriminant functions are capable of classifying

patterns from linearly separable classes only. However, for dealing with more complex

problems the generalized linear discriminant functions [89] map the data nonlinearly into

higher dimensional spaces and create linear decision surfaces therein. This is inspired by

the famous Cover’s theorem on separability of patterns [67], which states:

A complex pattern-classification problem cast in a high-dimensional space

nonlinearly is more likely to be linearly separable than in a low-dimensional

space.

Discriminant analysis approach is also known as geometric approach and bears functional

similarity with some neural network methods [139]. One such method, the support vector

machine (SVM) has become very popular. Here we present a brief overview of two-class

SVMs.

The SVM [63, 333, 124] is a machine learning method with its root in statistical learning

theory and is being used in many pattern recognition problems. In its basic form SVM is

formulated for two-class pattern classification problems. If the training data have linearly

separable classes, then SVM finds an optimum decision hyperplane that maximizes the

separation between the decision surface and each of the two classes.

Consider a training set {xi, di}N
i=1, where xi ∈ <p is a pattern vector, and di ∈ {−1, +1}

is the class label associated with xi. The learning problem of SVM is to find optimum

values of the weight vector w and the bias b of the decision hyperplane such that they

satisfy the constraints

w.xi + b ≥ 1 for ∀di = +1

and

w.xi + b ≤ 1 for ∀di = −1,

11



written together

di(w.xi + b) ≥ 1 for ∀i.

This problem is solved by finding the value of w that minimizes the cost function

Φ(w) =
1

2
wTw

subject to the above constraints. This is a quadratic optimization problem and can

be solved using the method of Lagrange Multipliers. A unique solution exists if the

classes are linearly separable. For the optimal hyperplane, the data points which satisfy

the equality constraints are known as ‘support vectors’. Actually, the dual problem of

the above primal optimization problem, set entirely in terms of the training data set, is

solved to find the support vectors first and then they are used to compute the optimal

hyperplane.

If the classes are overlapping, the optimality problem is reformulated using a set of

non-negative scaler variables {ξi | i = 1, ..., N}, known as slack variables. Now the

constraints take the form

di(w.xi + b) ≥ 1− ξi for ∀i

and the cost function becomes

Φ(w) =
1

2
wTw + C

n∑
i=1

ξi,

where C is a regularization parameter that controls the tradeoff between the complexity

of the machine and the number of nonseparable points.

To handle classes not linearly separable in the input space, SVMs use inner-product

Kernels. This in effect maps the training data in a higher dimensional feature space

using a nonlinear mapping φ. This action is in accordance with the Cover’s theorem of

separability [67] stated earlier. Then SVM computes the optimal hyperplane separating

the classes in the higher dimensional space. For computing the decision hyperplane

inner-product kernels of the form

K(x,xi) = (φ(x).φ(x))

are used. They facilitate easier solution of the dual optimization problem. Three

popular kernels used in SVMs are

12



Polynomial kernel of degree d: K(x,xi) = (x.xi + 1)d

Radial Basis Function (RBF): K(x,xi) = e−γ‖x−xi‖2

and

Sigmoid: K(x,xi) = tanh(kx.xi + θ), for k > 0 and θ < 0.

In Chapter 4 of this thesis we have compared our proposed classification methods with

k-NN and SVM classifiers.

Clustering

Next we consider the clustering problem. In this case, no class label is available. The

problem is to find homogeneous groups in the data. For most of the clustering algo-

rithms either the number of groups is known or it is to be assumed. Depending on the

information available, there are mainly two types of statistical methods of unsupervised

learning, namely, mixture resolving and cluster analysis [139]. The former is adopted

when partial information about the data is available. The set of conditions under which

mixture resolving can be applied is as follows [89]:

1. The samples come from a known number of c classes.

2. The forms of class-conditional probability densities p(x|ωj, θj), j = 1, 2, . . . , c are

known.

3. The value of the c parameter vectors θ1, . . . , θc are unknown.

Let P (ωj) be the prior probability of class j. Then the probability density of the samples,

known as mixture density, is represented as a mixture or superposition of c component

densities p(x|ωj, θj)s as follows:

p(x|θ) =
c∑

j=1

p(x|ωj, θj)P (ωj), where θ = [θ1, . . . , θc]
T .

The goal of mixture resolving is to estimate the unknown parameter vector θ and p(ωj)

from the samples and thus decomposing the mixture into its constituent components.

Mostly the Maximum-likelihood Estimate method is employed for mixture resolving and

often the component densities are assumed to be Gaussian [89]. However, due to finite

sample size, mixture resolving methods sometime face the problem of unidentifiability

[322], where no unique solution exists.

There are other types of algorithms which do not make any assumption about the

densities but try to partition the data based on similarity. The points belonging to

13



the same cluster should have more similarity than those belonging to different clusters.

Clearly, the concept of similarity is fundamental to the definition of a cluster and a

measure of similarity between two patterns is essential to the clustering procedures.

Commonly, instead of similarity, a measure of dissimilarity or distance between the

patterns in feature space is used [140]. Most popular metric for continuous features

is the Euclidean distance. In addition to this, there are many other distances such as

cosine distance, Mohalanobis distance, Tanimoto distance. Various distance measures for

strings etc. are also used in clustering procedures depending on the nature of data and

problem domain. There are even some non-metric distance measures used with success

by several researchers [140].

The clustering algorithms can broadly be divided into two families, hierarchical clus-

tering and partitional clustering. A hierarchical clustering algorithm produces a nested

grouping of all patterns and similarity levels at which the groupings are formed. Typ-

ically, hierarchical clusters can be represented by a dendrogram. The dendrogram can

be broken at various levels to produce different clustering of the data set [140]. There

are several variants of hierarchical algorithms such as, single-link, complete-link etc.

However, for real-life problems with large data sets the construction of a dendrogram is

computationally prohibitive [140]. Henceforth we shall not be discussing the hierarchical

algorithms.

A partitional clustering algorithm produces a partition of the data. Most partitional

algorithms require the number of clusters to be supplied externally, as a parameter, to the

algorithm. A partitional clustering algorithm typically uses a criterion function whose

optimization leads to the production of the clusters. Most intuitive and frequently used

criterion function is the squared error criterion, which is known to work very well if the

clusters are isolated and compact. Given a data set X = {xi|xi ∈ <p and i = 1, . . . , N},
and a clustering L, where {cj|cj ∈ <p and j = 1, . . . , K} are the set of K cluster

centroids, the squared error is defined as

e2(X,L) =
K∑

j=1

nj∑
i=1

‖x(j)
i − cj‖

2
,

where cj is the cluster center closest to x
(j)
i and nj is the number of data points for

which cj is the closest cluster center. Popular k-means algorithm [89] (also known

as Generalized Lloyd’s Algorithm (GLA) [228]) uses the squared error criterion. The

algorithm is as follows:

1. Choose k cluster centers randomly from the hypervolume containing the data or

from the data points themselves.

2. Assign each pattern to the closest cluster center.

14



3. Recompute the cluster centers using the set of closest patterns.

4. If a convergence criterion is not met, go to step 2. Typical convergence criteria in-

clude “no reassignment of the patterns to cluster centers” or “insignificant decrease

in squared error”.

Though very popular, the algorithm is highly sensitive to the initialization. Several

variants of the basic algorithm, mostly involving improved initialization for attaining

global minima can be found in [10]. Further, the number of clusters is fixed in k-means

algorithm, while ideally that should depend on the distribution of data. To change

the number of clusters, ISODATA algorithm [18] allows merging and splitting of the

clusters depending on the data distribution. Among other variants, dynamic clustering

algorithm [85] permits cluster representations other than centroids, Mao and Jain [238]

used regularized Mahalanobis distance to obtain hyperellipsoidal clusters. In a recent

paper Yu [364] provided a generalized framework for k-means clustering that encompasses

other objective function based partitional algorithms including various variants of their

fuzzy counterparts also. The paper also reviews the issue of cluster validity. A survey

of state-of-the-art clustering techniques can be found in [353]. An excellent survey of

clustering techniques from data mining perspective can be found in [29]. We shall not

be working with the statistical approaches in this thesis.

1.3.2 Neural Networks for Pattern Recognition

Artificial Neural Network (ANN) or simply Neural Network (NN) is a computational

paradigm inspired by the information processing system found in biological world. The

brain is at the core of the system which has a huge number of small processing units

called “neurons”. They are heavily interconnected and operate parallelly. Though each

neuron individually performs some elementary transformation of the signal at a very

slow speed compared to a digital/electronic device, the brain as a whole accomplishes

very complex perceptual and other cognitive tasks within a very small time. The study

of neural networks tries to analyze and implement this computational paradigm using

electronic devices. A neural network can be defined as follows [124]:

A neural network is a massively parallel distributed processor made up of simple pro-

cessing units, which has a propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

15



h

x

x

x

1

2

n

w

1

2

n

w

y

u

1

0

θ(.)

w

Figure 1.1: McCulloch-Pitts neuron

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

Research in neural networks started from the search of a feasible computational model

of the nervous system. In 1943, McCulloch and Pitts proposed a binary threshold unit

(Figure 1.1) as a computational model for an artificial neuron [243]. Mathematically,

the neuron computes a weighted sum of its input xis and apply a threshold function to

generate a binary (0/1) output. Thus, formally the output y can be written as:

y = θ

(
n∑

i=1

wixi − u

)
, where, θ(.) is a unit step function at 0.

The positive weights correspond to excitatory synapses and negative weights model in-

hibitory ones. They proved that a synchronous arrangement of such units with suitably

chosen weights are capable of universal computation. The McCulloch-Pitts neuron can

be generalized in various ways, most importantly using activation functions θ(.), other

than threshold, such as linear, piecewise linear, logistic, Gaussian etc. In 1949, Hebb

[125] pointed out the fact that neural pathways are strengthened each time they are

used, a concept fundamentally essential to the ways in which a human learns. These two

works probably were the pioneers in neural network research. In the 1950’s, Rosenblatt’s

work [296] resulted in a two-layer network, the perceptron, which was capable of learn-

ing certain classification tasks by adjusting connection weights. Although the perceptron

was successful in classifying certain patterns, it had some limitations. The perceptron

was not able to learn the classic XOR (exclusive or) problem or in general, any linearly

nonseparable classification problem. In [248] Minsky and Papert systematically pointed

out this and few other deficiencies of perceptron. Further, though multilayer networks

are capable of solving linearly nonseparable problems, at that point of time no effec-

tive learning algorithm for them was known. Consequently, interest in neural networks

dipped for quite sometime. However, the perceptron had laid foundations for later work

in neural computing. Interest in neural networks again revived in the eighties with some

pathbreaking works like self-organizing map [169], the Hopfield network [130], multilayer

16



perceptron [297] as well as error-backpropagation learning algorithm [346], adaptive res-

onance theory [43] etc. An excellent commentary on the development of neural networks

can be found in the survey paper [244].

The historical perspective of neural networks was in building biologically plausible

systems. The objective was more towards building a model for the nervous system. But in

the last decade, it was observed that neural networks, both the traditional architectures,

and their variants, have great potential to solve real life problems even though they may

not mimic computation in the brain. The thrust of research for the last ten years were

more to develop systems which can be used to solve practical problems than to look

for biological plausibility. Of course, there have been many advances towards modelling

the biological nervous systems and thereby gaining new insights into the process of

brain functioning. These issues are nowadays dealt within the subject of computational

neuroscience [92, 327]. We shall not be venturing further into those issues.

Neural networks are lucrative for their interesting properties of learning and generaliza-

tion. They can be applied without any assumptions regarding the distributions and other

statistical characteristics of data. Theoretical issues about learning have been extensively

studied. Valiant [330] proposed a mathematical theory of learning that addressed the

issues of learnability and computational complexity of learning in a restricted framework

called the “Probably approximately correct” (PAC) learning. The PAC framework pro-

vides a reasonable setup to study the theoretical basis of learning. There have been a

variety of theoretical studies encompassing learning in general and in particular, learning

in neural networks [333, 336]. All these studies helped to gain a better understanding

of the learning and generalization process. Consequently these have helped to develop

better learning systems.

Classification

Artificial neural networks have been successfully used in pattern recognition and many

other fields. There are specific neural architectures which can perform the various pattern

recognition tasks [37, 124]. For example, there are neural networks that can learn the

input-output mapping from a set of examples (or training data) through a learning

algorithm. During the learning stage the network adjusts the connection weights to

implement the desired mapping. As discussed earlier, for pattern classification task,

usually labelled data is used and the training is supervised one. Perceptrons, the simplest

of the NNs can implement a linear decision boundary of the form

y =

p∑
i=1

wixi − b = 0,

17



and classify the patterns from two linearly separable classes according to the rule:

x ∈ class 1 if y ≥ 0, otherwise x ∈ class 2.

The required values of the weights {wi} can be learned from labelled (1 for class 1

and 0 for class 2) training data using the perceptron learning algorithm based on error-

correction principle [296] as follows:

1. Initialize the weights and the threshold b to small random numbers.

2. Present an augmented (including an input 1 corresponding to bias b = w0) pattern

vector x = [1, x1, x2, . . . , xp]
T as the input and evaluate the output y.

3. Update the augmented weight vector w = [w0, w1, w2, . . . , wp]
T using the eq:

w(t + 1) = w(t) + η(d− y)x.

where d is the desired output (i.e., the label of x), t is the iteration number and

η(0 ≥ η ≥ 1) is the learning parameter. The learning rule is also known as delta

rule and attributed to Widrow and Hoff [347].

The algorithm is terminated when all the training data are correctly classified. Rosen-

blatt [296] also proved that if the training data comes from two linearly separable classes,

the algorithm converges after a finite number of iterations (perceptron convergence the-

orem).

The popular feed-forward networks like the multilayer perceptrons (MLP) [297], radial

basis function (RBF) [213] networks can learn any non-linear input-output mapping

under a fairly general set of conditions [124, 131]. MLP architecture is consisted of one

input layer of nodes (a fan-out layer) and one or more hidden layers along with one

output layer. The output of the nodes in one layer form the input of the nodes in the

next layer. The nodes are completely connected between two successive layers. Like

perceptron, the learning algorithm of MLP is also based on error-correction. However,

due to multilayer architecture, the error of hidden nodes can be estimated indirectly

only. Thus the popular error back-propagation learning algorithm [346] computes the

local gradient δl
i for the i-th node in layer l as follows:

δL
i = g′(hL

i )
[
di(t)− yL

i

]
if l = L, i.e., output layer

and

δl
i = g′(hl

i)
∑
j

wijδ
l+1
j for l = (L− 1, . . . , 1), nodes in hidden layers,

where, g′ is the derivative of the activation function g, hl
i is the weighted sum of the

inputs to the node and wij is the weight connecting the node i in layer l and node j in

18



layer l + 1. The weights are updated using the equation:

wl
ji(t + 1) = wl

ji(t)− η ∂E(t)

∂wl
ji(t)

= wl
ji(t) + η∆wl

ji(t)

where

∆wl
ji = ηδj

i y
l−1
j .

This is also known as generalized delta rule. Following Werbos’s original backpropagation

algorithm [346], various modified as well as alternative approaches of learning has been

used by researchers. Detailed accounts of these can be found in [37, 124, 346].

While the MLP generally realizes complicated decision boundaries, RBF works on the

principle of finding a linear decision boundary in a higher dimension, to which the data is

mapped using a set of nonlinear basis functions. The theoretical grounding for RBF can

be traced to the Cover’s theorem of separability [67, 124]. RBF is a three-layer network,

with one hidden layer containing radially symmetric nonlinear activation functions and

output layer containing perceptrons with linear activation function. The hidden layer

nodes map the input data nonlinearly to a (usually) higher dimensional space, where

the classes are linearly separable. The output nodes implement the linear discriminant

functions in the higher dimensional space. Usually the learning algorithm is a hybrid

one. It is performed in two stages, first the parameters of the basis functions are learned

in an unsupervised manner, then the weights of the output nodes are learned using a

supervised gradient descent method. However, fully supervised, single stage learning

algorithms also exist [124]. These networks have been successfully used as classifiers and

function approximation tools for variety of applications.

Variants of the Learning Vector Quantizer (LVQ) [169], LVQ1 and LVQ2 are supervised

learning techniques, which fine tune the placement of prototype vectors obtained by a

vector quantization [110] algorithm for improved classification performance. In [169]

Kohonen described these variants of LVQ techniques, where the vector quantization is

performed with Self-organizing Map (SOM). More details about various neural networks

used for classification can be found in [37, 124].

Clustering

Most of the Neural network based clustering techniques employ competitive learning

rules. In a competitive learning network, the output nodes compete among themselves

for activation and only one output unit is activated for an input. The idea of competitive

learning may be traced back to the works of von der Malsburg [341]. Competitive learning

also found to exist in biological neural networks [90]. Competitive learning categorizes

the input data so that similar patterns are grouped by the network and represented by

a single output unit.

19



In its simplest form, a competitive learning network consists of an input layer and

a single output layer. Each of the units i in the output layer are connected to each

unit j in the input layer through a weighted connection wij. Thus, each output node

is associated with a weight vector wi = [wi1, wi2, . . . , wip]
T . Each output unit is also

connected with other output units via inhibitory connections while has a self-feedback

excitatory connection. When an input x ∈ <p is presented to the network, only the

output unit with weight vector most similar to the input becomes winner. If Euclidean

distance is used, then for the winner node r

‖wr − x‖ ≤ ‖wi − x‖ ∀i 6= r

The competitive learning rule can be stated as

∆wi(x) =

{
η(x−wi) if i = r

0 if i 6= r.

It may be noted that only the winner node is updated. This is known as winner-takes-

all strategy. Competitive learning can be used to find clusters while the weight vectors

become the cluster centers or prototypes. It can also be seen that for stability of the

system, the learning parameter should reduce gradually, approaching zero towards the

end of training. Otherwise, in successive iteration a data point may be assigned to

different nodes.

Self-organizing Map (SOM) [169] and Adaptive Resonance Theory (ART) [43] are two

very popular neural clustering techniques [353]. In SOM the output nodes are arranged

in a regular lattice structure and a neighborhood function of the winner over the lattice

is defined. During training the winner as well as neighboring nodes are updated. This

results in several interesting properties of SOM. Since SOM is discussed in details in the

next chapter, here we do not duplicate the effort. The ART is developed by Carpenter

and Grossberg to solve the stability-plasticity dilemma. The ability of a network to

adapt to new data is known as the plasticity of the network. However, as mentioned

earlier, for achieving stability in competitive learning networks, it is imperative that the

learning rate decreases gradually towards zero. This leads to freezing of the network.

Hence, it loses the ability to adapt to new data. ART is capable of learning arbitrary

input patterns in a stable, fast and self-organizing way, thus, overcoming the effect of

stopping the learning that plagues many other competitive networks [353]. However,

ART itself is not a neural network, rather a learning theory, that deals with resonance

in neural circuits resulting in a fast learning. The theory encompasses a large class of

neural networks.

The simplest ART network is a vector quantizer – it accepts as input a vector and

classifies it into a category depending on the stored prototype it most closely resembles.

20



Once a prototype is found, it is modified (trained) to resemble the input vector. If the

input vector does not match any stored prototype within a certain tolerance, represented

by a vigilance parameter ρ(0 ≤ ρ ≤ 1), then a new category is created by storing a

new prototype similar to the input vector. Consequently, no stored prototype is ever

modified unless it matches the input vector within a certain tolerance. This means that

an ART network has both plasticity and stability; new categories can be formed when

the environment does not match any of the stored prototypes, but the environment

cannot change stored prototypes unless they are sufficiently similar. There are many

different variations of ART available today. For example, ART1 performs unsupervised

learning for binary input patterns, ART2 is modified to handle both analog and binary

input patterns and ART3 performs parallel searches of distributed recognition codes

in a multilevel network hierarchy. ARTMAP combines two ART modules to perform

supervised learning. A survey of various ART networks can be found in [353]. The same

article also includes a survey of many other clustering algorithms.

Among other neural networks, the Hopfield network can be used as an associative

memory, which can store and recall patterns [126, 371]. In addition, Hopfield nets

have been successfully used for various computationally hard combinatorial optimization

problems [126]. There are numerous work in the literature which discusses variants of

these networks and use of them for various practical problems. A glimpse of these

voluminous research can be found in many books related to neural networks [37, 124,

126, 336, 371, 372, 61].

In the current thesis, we are mainly interested in solving the problems of pattern clas-

sification and vector quantization. The works described in the thesis use Self-organizing

Map (SOM) extensively. These include empirical studies on some properties of SOM rel-

evant to pattern recognition tasks, development of SOM-based algorithms for designing

prototype based classifiers and fuzzy rule based classifiers, design of vector quantizers

for image compression and development of fast codebook searching methods for VQ. We

shall provide a detailed description of SOM in the next chapter. In the current thesis

we shall be referring to other NN models mainly for the purpose of comparing their

performances with the methods proposed here.

1.3.3 Fuzzy Set Theoretic Approach to Pattern Recognition

Human mind is adept at dealing with uncertain, imprecise information. It is crucial to

us because our sensory organs allow us to receive signals from the physical environment

in a vague, imprecise form and our brain processes them without the aid of any kind

of exact mathematical reasoning. Still we are capable of reaching at surprisingly good

and robust decisions. The procedure is often known as approximate reasoning. So it is

21



expected that the PR systems developed with capability of handling uncertainty would be

more robust as well as their working might be closer to human understanding. However,

handling uncertainty using conventional mathematical framework is almost impossible,

since conventional mathematical structures are based on the concept of classical sets,

where an object is either an element of a given set or it is not, i.e., the membership can

have only two values, 1 and 0. This situation is changed in 1965 by Zadeh [365] with

the introduction of fuzzy sets. The concept of fuzzy sets is based on the premise that

key elements of human thinking involve dealing with objects whose membership to one

category or another is graded or gradual rather than abrupt. It also focuses on the fact

that the logic behind human reasoning process is not bi-valued or multivalued but a logic

dealing with fuzzy truth and fuzzy rules of inferences. Thus fuzzy sets can be used for

representing imprecision/vagueness in everyday life in a novel way. This theory provides

a reasoning system that deals with the imprecise concepts embodied in fuzzy sets. It

also provides an approximate yet robust means for modelling systems which are too

complex or ill-defined to admit precise mathematical analysis [366, 367]. Fuzzy set theory

is a generalization of classical set theory and it has greater flexibility to capture and

deal with various aspects of uncertainty, imprecision and incompleteness/imperfection

in information about a situation. Fuzzy set theory allows one to model complex and

nonlinear input-output mappings in terms of fuzzy if-then rules [282], thus simplifying

the task of system modelling. A brief overview on the application of fuzzy sets for pattern

recognition can be found in [279].

In 1975 Mamdani and Assilian proposed a method of developing fuzzy controllers

[236]. It had the striking feature that it did not require any mathematical model of the

system to be controlled, instead it had used a set of simple control rules supplied by the

human operator. In essence, the idea is to model an experienced human operator. In

controller applications the input variables as well as the output signal are almost always

continuous valued. Hence, in a Mamdani controller a fuzzy rule is viewed as a fuzzy

Cartesian product of its fuzzy inputs and fuzzy outputs, i.e, a rule represents a fuzzy

point or granule (often overlapping) in the input-output space. Thus, the rule base is a

collection of fuzzy points determining the input-output relationship.

In pattern recognition problems we are faced with imprecise information from several

fronts. Instrumental error and environmental noise contribute to imprecision in measure-

ments. The class boundaries often overlap due to natural pattern distribution and/or

fuzziness or randomness of observation. When a new pattern falls into such a region,

classifying that to a particular class may lead to erroneous decisions. Instead, it is much

desirable for the system to generate a graded membership pertaining to the belonging of

the pattern to multiple classes. The membership values will reflect the confidence of the

system in favor of one decision or another. Further, since it is inspired by human rea-

22



soning process, fuzzy set theoretic methods lead to the design of interpretable systems.

So one can study the system to get a good understanding of the process the system is

modelling. All these facts have made fuzzy set theory a very powerful tool for designing

pattern recognition systems.

Classification

Though there is no clear-cut definition of a fuzzy classifier. According to Kuncheva [191],

some semi-formal definitions are as follows:

1. A fuzzy classifier is any classifier which uses fuzzy sets either during its training or

during its operation.

2. A fuzzy or probabilistic classifier, is any possibilistic classifier for which

c∑
i=1

µi(x) = 1

where the x ∈ <p is a data point and c is the number of classes.

A possibilistic classifier [32] is defined as a mapping

Dp : <p → [0, 1]c − 0

i.e, it assigns a soft class label (vector) µ(x) = [µ1(x), . . . , µc(x)]T , where the value

µi(x) denotes the degree of confidence for the hypothesis that x belongs to the i-th

class.

3. A fuzzy classifier is a fuzzy if-then inference system (a fuzzy rule base system)

which yields a class label (crisp or soft) for x.

Clearly these three definitions are not equivalent. A probabilistic classifier may not use

fuzzy sets, hence do not qualify according to 1. A fuzzy rule based classifier uses fuzzy

sets but they may not conform to the definition 2. Further, there may be fuzzy classifiers

other than rule based ones, e.g., fuzzy k-NN classifiers [158]. However, the definitions

give us a rough idea of fuzzy classifiers. Fuzzy rule based classifiers are by far most

popular of fuzzy classifiers. In Chapter 5 of the current thesis we develop a data-driven

method for designing fuzzy rule based classifiers. A discussion on them is included in

the same chapter. More detailed discussions can be found in [191] and [32].

Though the rule based classifiers occupy place of pride among fuzzy classifiers, there

are several other approaches investigated by the researchers. Among early approaches

Watada et al. [345] proposed a method for fuzzy linear discriminant analysis, where

23



elements of data set are represented as fuzzy numbers and fuzzy arithmetic is used for

computation. However, the requirement for implementation of fuzzy arithmetic limited

its scope of application to real life problems. In [159] fuzzy perceptron was proposed.

It used data with fuzzy labels for training. Classifiers based on fuzzy relations are also

studied by several researchers [276, 282]. However, these methods are now more of theo-

retical value rather than useful [191]. Among others, fuzzy k-nearest neighbors classifiers

and its variants as well as prototype based classifiers with fuzzy labels (sometimes also

known as fuzzy prototype based classifiers) are investigated by many researchers [191].

Fuzzy k-NN classifiers [158], in their simplest form are straightforward extension of

their crisp counterpart, provided the reference data set has soft/fuzzy label, i.e., the

label for a data point xi is u(xi) ∈ [0, 1]c. Thus for a data point x′, if X(x′) ={
x(1)(x′), . . . ,x(k)(x′)

}
is the set of k nearest neighbors, then

µ(x′) =
1

k

k∑
i=1

u(x(i)(x′)). (1.1)

The simplest classification rule uses the maximum membership value as follows:

Assign x′ to class ωi if µi(x
′) = max

1≤j≤c
{µj(x

′)} .

Evidently this is equivalent to crisp k-NN rule when the reference vectors are crisply

labelled (i.e., u(x′) ∈ {0, 1}c) and the classification is done by the maximum member-

ship value. Though in (1.1) summation is used, other fuzzy aggregation operators can

also be used [191]; however, there is no theoretical guideline available for making the

choice. Given a data point x′, many authors considered the distance of the neighbors for

calculating a soft class label µi(x
′) for class i. For example, Bereau and Dubuisson [28]

propose

µi(x
′) = max

1≤j≤k

{
ui(x

(j)(x′)). exp

[
−λ

(
dj

dm
i

)]}
,

where dj is the distance between x′ and its j-th nearest neighbor x(j)(x′), dm
i is the

average distance for class ωi (in [28] it is said to be the average distance between the

data points in the reference set X with high membership in ωi) and λ ∈ [0, 1] is a

parameter controlling the decrease of the exponent term. Since these methods work on

the data with soft labels, if the data points have crisp labels, then a suitable pre-labelling

scheme for converting the labels into soft ones is used before applying them. Various

such schemes are discussed in [191]. In [360] Yang and Chen proposed a generalized

framework incorporating various fuzzy k-NN models. They also showed some theoretical

results about their asymptotic behavior.

Fuzzy prototype based classifiers have been studied by many researchers. Here the

prototypes have fuzzy label and unlike their crisp counterpart, the number of prototypes

24



may be less than the number of classes. A common framework, known as General-

ized Nearest Prototype Classifier (GNPC) is proposed by Kuncheva and Bezdek [193].

According to the framework:

The Generalized Nearest Prototype Classifier (GNPC) is the 5-tuple (V,LV ,s,T ,S)

where

• V = {v1, . . . ,vv},vi ∈ <p is the set of prototypes.

• LV ∈ [0, 1]c×v is the label matrix for the prototypes in c classes.

• s(∆(x,vi); θ) is a norm-induced similarity function, where ∆(.) is a

norm metric in <p and θ is a set of parameters of s.

• T is a t-norm defined over fuzzy sets and S is an aggregation operator.

For an input x ∈ <p, the similarity vector I = [s1, . . . , sv]
T is calculated. Then the

label vector µ(x) is computed by the composition

µ(x) = LV ◦ I,

where the composition operator ◦ consists of T and S. The classification is made as

Assign x to class ωi if µi(x) = max
1≤j≤c

{µj(x)} .

Depending on the choice of the elements of the 5-tuple, GNPC model encompasses

various families of prototype based classifier. A detailed discussion on various fuzzy

classifiers can be found in [191] and [32]. Other fuzzy set theoretic methods such as

weighted fuzzy pattern matching [87], fuzzy integral based methods [157], fuzzy decision

tree method [48] etc. are also used for designing classifiers.

Clustering

The clustering techniques discussed so far are called hard or crisp clustering since they

assign each data point to only one cluster. In fuzzy clustering, an object can belong

to all of the clusters with a certain degree of membership. This allows us discover

more detailed relationship between an object and the set of clusters. The fuzzy c-means

(FCM) [31] is by far most popular fuzzy clustering algorithm. Given a set of data points

X = {xj|xj ∈ <p, j = 1, . . . , N} FCM attempts to find a fuzzy c-partition that minimizes

the cost function

J(U, V ) =
c∑

i=1

N∑
j=1

(ui,j)
mDij

25



where U = [ui,j]c×N is the fuzzy partition matrix, ui,j ∈ [0, 1] is the membership of

xj to i-th cluster, V = [v1, . . . ,vc] is the cluster prototype matrix, m ∈ [1,∞) is the

fuzzification parameter and Dij = D(xj,vi) is an inner product induced distance measure

between xj and vi. In the following we provide a sketch of basic FCM algorithm where

Euclidean distance is used as the distance measure:

1. Select values for m, c and a small number ε. Initialize V randomly. Set t = 0.

2. Calculate (at t = 0) or update (for t > 0) the membership matrix U as follows:

u
(t+1)
ij = 1

/(
c∑

l=1

(
Dlj/Dij

)1/(1−m)
)

for i = 1, . . . , c and j = 1, . . . , N.

3. Update the prototype matrix V as follows:

v
(t+1)
i =

(
N∑

j=1

(
u

(t+1)
ij

)m

xj

)/(
N∑

j=1

(
u

(t+1)
ij

)m
)

for i = 1, . . . , c.

4. Repeat steps 2 and 3 until
∥∥V (t+1) − V (t)

∥∥ < ε.

There are numerous variants of FCM reported in the literature. They vary in the way

cost function is formulated, the distance measure used, the way fuzziness is controlled

and the optimization technique adopted. An account of many of these variants as well

as other fuzzy clustering techniques (e.g. mountain method [355], possibilistic c-means

(PCM) [187], conditional FCM [277, 283] etc.) can be found in [19, 31, 32, 353, 278].

Neural networks and fuzzy set theory, each has its own advantages and disadvantages.

So, many attempts have been made in PR research to design systems exploiting the ben-

efits of both. They employ both neural network as well as fuzzy set theoretic techniques

[216, 215, 218, 214, 270, 152, 280]. Such combined techniques are often called neural-

fuzzy or neuro-fuzzy techniques. Apart from the huge volume of research literature, there

are also a large number of books [31, 32, 164, 191, 216, 271, 270] covering various aspects

of fuzzy set theoretic pattern recognition.

In the current thesis we develop methods for designing and fine tuning fuzzy rule based

classifiers. We also investigate the issue of context-sensitive tuning of the rule base.

Further we develop schemes using the outputs of the fuzzy rule base as possibilistic label

vectors to aggregate contextual information for more robust classification.

1.3.4 Evidence Theoretic Approach to Pattern Recognition

Dempster-Shafer theory of evidence [304] deals with a particular form of uncertainty,

different from fuzziness. We shall describe it with the help of an example. Consider a

26



patient visits a doctor in a hospital. The doctor conducts several examinations (physical

and clinical) and thinks about a possible set of diseases {D1, D2, D3}, one of which the

patient might be suffering from. Depending on the results of examinations the doctor

finds different amount of evidences supporting the diagnosis that the disease may be

identified as D1 or D2 or D3, or any one of D1 and D2 and so on, i.e., there could

be evidence in support of any subset of the set of diseases. The quantified amount of

such evidences in support of different subsets of the set of diseases are called a body of

evidence. Note that, here there is no fuzziness involved with the fact that the patient is

suffering from a disease. The uncertainty arises solely from the available evidence that

expresses the degree of belongingness of the ailment to different crisp subsets of diseases.

This type of uncertainty can be handled using the evidence theory. Further, consider

that the doctor has also referred the patient to one of his colleagues who has also come

up with a body of evidence over the same set of diseases. Naturally the two bodies

of evidence are not likely to be identical. Now the doctors can meet and discuss their

findings and come up with a diagnosis, which is essentially making a final diagnosis about

the ailment and identify the disease(s). This requires a way of aggregating the available

evidences from multiple sources (two doctors here). Such situations where information

is available from multiple sources in form of bodies of evidence, the Dempster-Shafer

theory of evidence can be applied to handle the information and their aggregation in a

mathematically consistent manner.

The Dempster-Shafer theory is used in designing pattern classification systems for a

long time. However, it was mainly used for aggregation of information from different

sources, for example, classification of multispectral [211] or multisource [112] images.

Using DS theory for designing general purpose classifiers is a relatively recent approach

pioneered by Denœux and his coworkers [76, 369]. In [76] Denœux proposed an evidence

theoretic k-NN rule, where each of the k nearest neighbors becomes a source of evidence

corresponding to the hypothesis that the test point belongs to the class of the neighbor.

The k bodies of evidence are combined using Dempster’s rule of combination to make

the final classification. Here both the class of the neighbor as well as its distance from

the test data is considered for basic probability assignment (BPA) of the corresponding

body of evidence. In [369] Zouhal and Denœux studied the evidence theoretic k-NN rule

with respect to various parameter optimization. Later Denœux [77] also proposed a feed-

forward neural network classifier employing evidence theory based learning. Evidence

theoretic rank nearest neighbor rules are also proposed in [265].

Very recently application of evidence theory for clustering of relational data also pro-

posed by Denœux and Masson [78]. The proposed method, given a matrix of dissimilar-

ities between n objects, assigns a belief to each object in such a way that the degree of

conflict between the BPAs given to any two objects reflects their dissimilarity. Then a

27



credal partition is computed to identify the clusters. In another paper [242] the authors

proposed evidence theoretic clustering technique for interval-valued dissimilarity data.

In the current thesis we do not aim to develop general purpose evidence theoretic

pattern recognition techniques. Here we develop several schemes for using contextual

information generated by fuzzy rule base as supplementary evidence. Evidence theory

is then used for aggregating the evidence to achieve a more robust decision making.

However, one of the schemes developed here follows the spirit of evidence theoretic k-NN

method.

1.4 Scope of the Thesis

In this thesis we propose some novel Self-organizing Map (SOM) based methods for per-

forming pattern recognition tasks as well as present results of some empirical studies

on properties of SOM. The empirical studies reported here include studies on topology

preservation ability of SOM under non-ideal internode connections, study of topology

preservation property of some variants of SOM with simplified lateral feedback func-

tions and study of topology preservation as well as vector quantization property of some

variants of SOMs with tree-structured neighborhood functions.

The pattern recognition tasks we considered here are of two types: (1) pattern clas-

sification and (2) vector quantization. For pattern classification we have developed a

dynamic prototype generation algorithm, a method of extracting and fine-tuning fuzzy

rules from the data and several evidence theoretic schemes for improved decision making

with fuzzy rule based classifiers. In our work on vector quantization we have developed a

scheme for designing vector quantizers for image compression using SOM and a surface

fitting method that results in better psychovisual qualities of the reproduced images. We

have also devised a scheme for fast codebook searching in a SOM-based vector quantizer

that enables us to use large codebooks with high dimensional codevectors while avoiding

huge computational load associated with such conditions.

The effectiveness of the proposed methods is demonstrated using several synthetic as

well as real life data sets. Especially the fuzzy rule based classifiers are used for the

complex classification problem of landcover analysis from multispectral satellite images.

The proposed methods for VQ design are tested with several benchmark images. The

results obtained with all the proposed methods are compared with benchmark results

available in the literature. The organization of the thesis is summarized bellow under

different chapter headings.

28



1.4.1 The Self-Organizing Map (SOM)

Since all the works reported in the current thesis utilize the SOM algorithm directly

or indirectly, in Chapter 2 we present an overview of the Self-organizing Map. We

describe the SOM architecture and algorithm, followed by a discussion on its properties.

Here we also provide a brief review of several variants of SOM and research works both

on theoretical aspects of SOM as well as its applications in solving various pattern

recognition problems.

1.4.2 SOM: robustness, simplification and topology preserva-

tion [199, 202]

In Chapter 3 first we introduce a rank correlation coefficient based new quantitative

index for measuring topology preservation in SOM. We report a comparative study of

this index with two other indexes. Next we study the robustness of SOM algorithm in

preserving topology in partial absence of lateral feedback connections between the SOM

nodes. Such absence or sparsity of links causes irregularity in the neighborhood update.

We have considered two types of sparsity, systematic and random. The experiments

show that SOM can withstand systematic sparsity to a large extent, while the topology

preservation is very sensitive to random sparsity. The findings may lead to economic

hardware design for SOM where systematic sparsity of connection can be allowed.

Our other empirical studies in Chapter 3 includes the study of two classes of vari-

ants of SOM. The first variety involves SOMs with simplified lateral feedback functions,

specifically, Gaussian neighborhood function without explicit boundary, quadratic neigh-

borhood function and linear neighborhood function. The study reveals their almost

equivalent performance in preserving topology. These neighborhood functions are easier

to implement in hardware than the one with explicit neighborhood boundary. The other

class of variants consists of SOMs with tree-structured neighborhood function. It was

found in [147] that SOMs with Minimal Spanning Tree (MST) neighborhood function

are better than standard SOM with a square or hexagonal neighborhood function in

extracting prototypes from complex and non-linear data. Here we proposed a new SOM

with MST neighborhood where the cost of computation of MST is less as well as topology

preservation is better. We also proposed a SOM with an arbitrary tree neighborhood

that performs equally well at prototype extraction but avoids the cost of computing MST

repeatedly altogether. We also studied the ability of skeletonization of shapes by these

SOMs.

29



1.4.3 Extraction of prototypes and designing classifiers [203,

204, 266]

In Chapter 4 we propose a novel SOM-based method for extracting prototypes and de-

signing prototype based classifiers. First we develop a SOM-based algorithm for dynamic

prototype generation using a mixture of unsupervised and supervised training. The al-

gorithm is data-driven and generates an adequate number of prototypes without the

need of user specifying the same. The prototypes are used successfully to design nearest

prototype (NP) classifiers, called “1-Nearest Multiple Prototype (1-NMP)” classifiers.

Next we proposed a method of associating a hyperspherical zone of influence with each

prototype and fine-tuning them to design “1-Most Similar Prototype (1-MSP)” classifiers

with better performance.

1.4.4 Extraction of fuzzy rules for classification [206, 267]

Fuzzy rule based classifiers are popular for their interpretability, ability of handling

uncertainty, and ability to deal with large variation in variances of features. These

properties make them good choices for classifying complex data sets. In Chapter 5 we

propose a comprehensive scheme for designing fuzzy rule based classifiers. The proposed

methodology attempts to design fuzzy rule based classifiers with a small but adequate

number of rules for computational efficiency. The scheme uses the prototypes generated

using the algorithm proposed in Chapter 4. The prototypes are then converted into an

initial set of fuzzy rules. A gradient-descent based algorithm is then devised for fine-

tuning of the rule base. We have studied two variants of rule base, using (1) product

and (2) softmin as conjunction operator. The classifiers are designed and tested for the

complex task of landcover classification using multispectral satellite images.

The softmin operator is a special case of a soft-match operator, that can implement

a whole family of operators including average, max etc. depending on the value of a

parameter. We also investigated the possibility of context-sensitive reasoning. Here each

rule is allowed to have its own conjunction operator based on the context in the feature

space it is representing. We developed an algorithm for tuning the parameter of the

soft-match operator and studied its effectiveness. The proposed methods are compared

with several existing methods and found to produce superior results.

30



1.4.5 Evidence theory-based decision making for fuzzy rule based

classifiers [201, 207]

The output of a fuzzy rule based classifier can give more information than just a single

class label. The rule base provides confidence values with respect to the membership of

an input data point to various classes. Often it may happen that for multiple classes

the rule base produces high and close values of confidence, thereby indicating a high

level of uncertainty. In such a case, one should try to use additional information, if

available to resolve the uncertainty. Such an opportunity exists when each data point

can be identified in same spatial or temporal context of some other data points and high

correlation is expected among the data points in the same context. For such data types

it is possible to devise more robust decision making schemes by aggregating contextual

information. Multispectral satellite image data provide such correlated spatial contexts.

In Chapter 6 four schemes are proposed for decision making using contextual infor-

mation provided by the fuzzy rule base proposed in Chapter 5. Of the four schemes

developed, one is a simple aggregation scheme similar to fuzzy k-NN rule, while others

use Dempster-Shafer theory of evidence for aggregation of contextual information. The

fuzzy rule base is used to generate a possibilistic label vector for each pixel. For final

classification of a pixel, the possibilistic label vectors associated with the pixel of interest

as well as with its neighboring pixels are used. In the simple aggregation scheme the

possibilistic label vectors are averaged and the pixel is assigned to the class with the

highest average confidence value. In other schemes the information is converted into

evidences in support of various hypotheses through basic probability assignments(BPAs)

and then the BPAs (evidences) are combined to identify the hypothesis with the highest

support. The schemes differ in the way bodies of evidence are formed and the basic prob-

ability assignment is done. For example, one of the schemes focuses only on singletons

(Bayesian belief) while another one focuses on sets with one and two elements. The ag-

gregation schemes are useful for classifying ‘mixed pixels’ and pixels at class boundaries

because for those pixels the uncertainty is higher in the information captured. Efficacy

of the aggregation schemes is studied using two multispectral satellite images and the

classification performance is found to improve over simple fuzzy rule based classifiers. It

is also observed that the suitability of a particular scheme depends, to some extent, on

the nature of spatial distribution of the landcover classes.

31



1.4.6 Designing vector quantizer with SOM and surface fitting

for better psychovisual quality [205]

In Chapter 7 we propose a method of designing vector quantizers for image compression.

The SOM algorithm is used to generate the initial codebook. Due to the density matching

property and topology preservation property of SOM the codebook is expected to result

in less ‘granular error’ and ‘overload error’. The SOM is trained with mean-removed

vectors obtained from a set of training images. The performance of the scheme is studied

on a different set of images. Further, the use of mean-removed vectors makes it possible

to quantize large image blocks by exploiting the statistical redundancy in the data more

effectively and thus increases the efficiency of the quantization process. For images

compressed with VQ the reconstructed images suffer from blockyness, i.e., the boundaries

of the image blocks become pronounced, leading to degradation of psychovisual quality.

We propose here a unique surface fitting technique for smoothing the codevectors that

leads to refinement of the initial SOM-generated codebook. This results in a substantial

reduction of the blocking effect in the reconstructed images. Two quantitative indexes

are also developed for measuring the psychovisual quality of the reconstructed images

with respect to blockyness. Since the scheme uses mean-removed vector, one needs to

store/transmit the block averages along with the indexes for reconstruction of the images.

To improve the compression ratio further, we use Huffman coding of the indexes and the

difference coded block averages.

1.4.7 Fast codebook searching in a SOM-based vector quantizer

[200]

While designing a vector quantizer, apart from the algorithm used for finding good

codevectors, one is faced with two design issues: the dimension of the vectors and the

size of the codebook. A large vector enables the quantizer to exploit the statistical

redundancy existing in the data to a greater degree. However, this may increase the

reproduction error unless codebook size is also large. The bigger is the codebook size,

the finer is the representation of the input space. While encoding a vector, the encoder

needs to search the codebook. An exhaustive search of a large codebook in high dimension

requires a high computational overhead. This may result in a performance bottleneck.

To circumvent this problem researchers have proposed many methods. Usually some

constraints on the structure of the codebook are imposed, which are exploited during the

search. In Chapter 8 we propose a method for fast codebook searching in SOM-generated

codebooks. The method performs a non-exhaustive search of the codebook to find a

good match for a input vector. Our scheme combines two SOM-based codebook search

32



strategies, each of which is an independent search method, but somewhat complementary

in nature.

In SOM due to the neighborhood update strategy employed during the training, some

constraint is implicitly imposed on the organization of the nodes which leads to topology

preservation. Hence, if two successive vectors are well-correlated, a good code for the

later vector is likely to be found among the neighbors of the code for the former in the

SOM lattice. This possibility is exploited by the method developed in Chapter 8. The

first strategy searches for a good match among the weight vectors of the neighbors within

a small window over the lattice centered at the node corresponding to the code of the

previous vector. If a match exceeding a quality threshold is found, then that is accepted;

otherwise, an exhaustive search is conducted. The second strategy first uses a smaller

SOM which is trained with the weights of the basic codebook. Thus the codes of basic

codebook are partitioned according to their closeness of the nodes in the smaller SOM.

To search the code for a vector, the smaller SOM is searched first for the best matching

node, then the best match in the corresponding partition is accepted. In the combined

method the search is conducted in the same way as the first strategy, i.e, with a window.

But if a good match is not found within the search window, then the search is performed

as in the second strategy.

1.4.8 Conclusion and future works

In Chapter 9 we summarize and conclude the contributions in the thesis. Here we also

explore various possibilities of extension and/or modification of the work reported in the

thesis.

33



Chapter 2

The Self-Organizing Map (SOM)



2.1 Introduction

The neural network models vary widely in connection topologies, computational ele-

ment’s capabilities and learning algorithms. In [174] Teuvo Kohonen provided a catego-

rization of neural network models as follows:

1. Signal-Transfer networks, which map the input signals into output signals. The

transformation is usually learned from the data in a supervised manner. Multilayer

perceptrons [297], radial-basis-function networks, madaline etc. are representatives

of this category. They are also known as feedforward networks.

2. State-Transfer networks or feedback networks, which define the initial activa-

tions of the processing elements from the input signals, and go through a sequence

of state transitions, at the end settling to a stable state and producing the out-

put. Here the connection strengths are usually pre-assigned (not trained) to the

network. Examples of this category include Hopfield networks [130], Boltzmann

machines [124], bidirectional associative memory (BAM) etc.

3. Competitive, self-organizing networks, where the processing units (neurons)

compete against each other for activation. They are characterized by existence

of lateral interaction among neurons that enables them to compete and activate

selectively. The training is done in an unsupervised manner and the network adapts

the connection strengths based on the properties of the input data.

The Self-organizing Map (SOM) (also known as Self-organizing Feature Map (SOFM),

Kohonen’s Self-organizing Map (KSOM)) proposed by Kohonen in early 1980s belongs to

the third category and is one of the most widely used neural network models. SOM is a

two-layer network with a fan-out input layer of linear nodes, connected to a competitive

output layer where the processing units or “neurons” are arranged in a regular lattice

structure. Each node in the input layer is connected to every neuron in the competitive

layer through weighted connections. During the learning stage the neurons become tuned

to different signal patterns so that when a signal is presented to the network only the

neurons best representing the signal become active and the response is concentrated in

a small neighborhood in the output lattice. During the training process the responses of

the neurons become spatially ordered over the lattice, i.e., two similar input signals will

activate same or nearby neurons on the SOM lattice. This leads to the distinguishing

properties of SOM, namely, 1) topology preservation and 2) density matching. According

to Kohonen [174],

In the pure form, the SOM defines an “elastic net” of points (parameter,

35



reference, or codebook vectors) that are fitted to the input signal space to

approximate its density in an ordered fashion.

The model of the SOM is inspired by the findings in physiology and neuroscience. For a

long time the researchers in these fields studying the organization of the brain, were aware

of the existence of topographical organizations in different areas of the brain, especially

in the cerebral cortex. Their studies on functional deficits and behavioral impairments

induced by lesions, tumors, hemorrhages etc. have uncovered that different regions in the

brain are responsible for different kind of activities. Later various modern methods such

as positron emission tomography (PET) have also led to more detailed study unearthing

numerous topographic maps in the brain. Popular examples include “tonotopic maps”

in auditory cortex, where there are topologically ordered areas for processing different

frequencies of auditory signals. In the visual cortex various topographically ordered

computational maps exist to represent various features of visual input like angle of tilt

of a line, movement of an object. Details of such studies can be found in [11, 165].

Originally Kohonen described the SOM algorithm as a system of coupled differential

equations [166, 167]. The model was inspired by the true biological system. In the model,

though acting parallelly, each neuron is functionally independent, i.e., there is no syn-

chronizing clock or higher level coordination of the unit activities. The self-organization

and topology preservation is effected due to various lateral feedback connections that

correlate the activity of nearby units during the winner search stage. The system can

be simulated in a serial computer, but is computationally intensive and for a full imple-

mentation a parallel computer with many nodes are needed. Thus, use of the original

algorithm for practical applications was very difficult. Consequently, for practical appli-

cations a simplified algorithm [169, 176] was proposed by Kohonen that avoids mimicking

the biological system too closely, but leads to functional appearance of the Self-organizing

Maps. The algorithm can be efficiently implemented in a serial computer. Henceforth

we shall be using the simplified model only.

2.2 The SOM architecture and algorithm

2.2.1 The SOM architecture

SOM is a two-layer network comprising of a fan-out input layer and a competitive output

layer. The number of input nodes is the same as the number of dimensions p of the input

data. Each node in the input layer is connected to all the nodes in the output layer by a

weighted connection. Thus, with each output node a weight vector w ∈ <p is associated.

The output nodes are arranged in a regular q dimensional grid V (<q). The nodes occupy

36



p

�� ��

��

������

��

��

����

Nr

1,1

i,j

m,n

r

O2 V(R  )2Viewing Plane

x x xx1 2 j p

Input vectors X in R

. . . . . .

. . . . . .
w w w w11 12 ij mn

Competitive layer O

p

p

Logical Association
OO 2

Figure 2.1: SOM architecture.

lattice positions of the rectangular (or sometimes hexagonal) grid. Figure 2.1 depicts the

architecture of the SOM for q = 2. There also exists (not shown in the figure) lateral

feedback connections among the output nodes through which the winner neuron can

inhibit other neurons from activating and induce update to its neighbors. Since SOM

is often treated as an algorithmic display transformation from <p to V (<q) [34], it is

denoted as AD
SOM : <p → V (<q).

In principle, SOM can be used for transforming the data X = {xi ∈ <p | i = 1, 2, . . . N}
onto a display lattice <q for any q. However, in practice, one seldom uses q > 3 and

in most cases choices are restricted to q = 1 and 2. In the current thesis we shall be

concentrating on SOMs with one dimensional and two dimensional output spaces with

m and m× n nodes respectively.

37



Input vectors x ∈ <p received by the input nodes are distributed to each of the m× n

output nodes in the competitive output layer. Each node in the output layer has a weight

vector wij attached to it as shown in Fig. 2.1. Let Op = {wij} ⊂ <p denote the set of

m × n weight vectors. Thus Op is (logically) connected to a display grid O2 ⊂ V (<2).

(i, j) in the index set {1, 2, . . . , m}×{1, 2, . . . , n} is the logical address of the cell. Thus,

the k-th component of the weight vector wij, wijk
is the weight of the connection between

output node (i, j) and the k-th input node that receives the k-th component of the input

vector x. There is a one-to-one correspondence between the m × n p-vectors wij and

the m×n cells ({i, j}),i.e., Op ←→ O2. In the literature, the display cells are sometimes

called nodes, or even neurons, in deference to possible biological analogues.

2.2.2 The SOM algorithm

SOM begins with a (usually) random initialization of the weight vectors {wij}. For

notational clarity we suppress the double subscripts. Now let x ∈ <p enter the network

and let t denote the current iteration number. Let wr,t−1 be the weight vector that best

matches x in the sense of minimum Euclidian distance in <p. wr,t−1 is called the winner

in the t-th iteration. Note that, the winner can be decided using other distance functions

also. Some of them will be discussed later. This vector has a (logical) “image” which is

the cell in O2 with subscript r. Next a topological (spatial) neighborhood Nr(t) centered

at r is defined in O2, and its display cell neighbors are located. For example, as shown

in Figure 2.1, a 3× 3 window N(r), centered at r corresponds to nine prototypes in <p,

associated with the cell r and its eight neighbors on the lattice. Finally, wr,t−1 and the

other weight vectors wi,t−1 associated with cells within the spatial neighborhood Nt(r)

are updated using the rule

wi,t =

{
wi,t−1 + hri(t)(x−wi,t−1) ifi ∈ Nr

wi,t−1 ifi /∈ Nr

(2.1)

Here r is the index of the “winner” prototype found as:

r = arg min︸ ︷︷ ︸
i

{‖x−wi,t−1‖}, (2.2)

where ‖∗‖ is the Euclidian norm on <p. The function hri(t) which expresses the strength

of interaction between cells r and i in O2, usually decreases with t, and for a fixed t it

decreases as the distance (in O2) from cell r to cell i increases. hri(t) is usually expressed

as the product of a learning parameter αt and a lateral feedback function gt(dist(r, i)).

A common choice for gt is gt(dist(r, i)) = exp−dist2(r,i)/σ2
t . αt and σt both decrease with

time t. The topological neighborhood Nt(r) also decreases with time. This scheme, when

38



repeated long enough, usually preserves spatial order in the sense that weight vectors

which are metrically close in <p generally have, at termination of the learning procedure,

visually close images in the viewing plane. A schematic description of the SOM algorithm

is provided in Figure 2.2. Figure 2.3(b) shows 1-D SOM trained with data resembling

noisy sine curve (2.3(a)), Figures 2.4 and 2.5 depict 1-D and 2-D SOMs respectively

trained with 2-D data uniformly distributed over a square.

In the above we assumed the data as real-valued vectors and used Euclidean distance

as the metric. However, the applicability of the algorithm is not restricted to this choice.

It can deal with other types vectorial data such as binary vectors, also the distance

metric chosen can vary according to the requirement of the problem. One can use city-

block distance, Minkowsky distance, Tanimoto measure etc [174]. However, the winner

matching and updating laws should be compatible with the metric used. For example,

if “dot-product” similarity is used as the metric, the winner is found as,

r = arg max︸ ︷︷ ︸
i

{x •wi,t−1},

and the update equation becomes

wi,t =

{
wi,t−1+hri(t)x

‖wi,t−1+hri(t)x‖ ifi ∈ Nr

wi,t−1 ifi /∈ Nr

In neural network literature it is often suggested that the input data be normalized

for better result [124]. In case of SOM, normalization is not necessary in principle [174],

though it may improve numerical accuracy to some extent.

2.2.3 The generalized SOM algorithm

The above SOM algorithm is often termed as the “original incremental SOM algorithm”

[174]. Here the input data are restricted to numerical vectors, for which suitable distance

metrics can be used. A generalization of the algorithm for items that may not be vectorial

was proposed by Kohonen [172] in 1996. In such a case the incremental learning rule

(2.1) is no more applicable. Instead a batch computation procedure is adopted resulting

in so called “batch map” algorithm. Here we provide a brief sketch of the generalized

algorithm.

Consider the network as an ordered, one or two-dimensional array of nodes, each node

having a general model mi associated with it (here we use the notation mi instead of wi

due to possible nonvectorial nature of the models and data). The initial values of the

mi may be selected at random, preferably from the domain of the input samples. Next

39



AlgorithmAd
SOM (Kohonen) :

Begin

Input X /** unlabelled data set X = {xi ∈ <p : i = 1, 2, . . . , N} **/

Input m,n /** the display grid size a rectangle m× n is assumed **/

Input maxstep /** maximum number of updating steps **/

Input N0 /** initial neighborhood size **/

Input α0 /** the initial step size (learning coefficient) **/

Input σ0 and σf /** parameters to control effective step size **/

/** Learning phase **/

Randomly generate initial weight vectors

{wij , i = 1, 2, . . . , m; j = 1, 2, . . . , n,wij ∈ <p}
t ← 0

While(t < maxstep)

Select randomly x(t) from X;

find r = arg min︸ ︷︷ ︸
i

{‖x(t)−wi(t)‖}

/** r and i stands for two-dimensional indices that

uniquely identify a weight vector in Op **/

wi(t + 1) ← wi(t) + αtgt(dist(r, i))[x(t)−wi(t)] ∀i ∈ Nt(r)

wi(t + 1) ← wi(t) ∀i 6∈ Nt(r)

/** dist(i, j) is the Euclidean distance between the centers of

nodes r and i on the display lattice,gt(d) is the lateral

feedback function, usually gt(d) = e−d2/σ2
t **/

t ← t + 1

αt ← α0(1− t/maxstep)

Nt ← N0 − t(N0 − 1)/maxstep

σt ← σ0 − t(σ0 − σf )/maxstep

/** there are other ways to readjust αt, Nt and σt,

and many choices for gt **/

End While

/** Display phase **/

For each x ∈ X find

r = arg min︸ ︷︷ ︸
i

{‖x−wi‖},and mark the associated cell r in O2.

End.

Figure 2.2: Kohonen’s Self-organizing Map algorithm.

40



Figure 2.3: 1-D SOM trained with 2-D data distribution of a noisy sine curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SOM output

X >>>

y 
>

>
>

0

1

2

3

4

5
6 7

8
9

10
11

12

13

14
15

16

17
18

1920

21
2223

24

2526

27
28

29
30

31
32

33

3435

36

37

38 39

40

41

42

43

44
45 46

47

48

49

50

51
52

53

54

55 56
57

58 59

60

61

62

63
64

6566

67
68

69
70

71

72
73

74

7576

7778

798081

82

83
84

8586

87

88 89

90

91

92

93

94
95

96

97
98

99

Figure 2.4: 1-D SOM trained with 2-D data uniformly distributed over a square.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SOM output

X >>>

y 
>

>
>

0
1

2 3 4 5 6 7 8
9

10
11

12 13
14

15 16
17 18 19

20 21
22 23

24 25
26

27
28 29

30 31 32 33
34

35 36
37

38 39

40
41

42

43 44
45 46 47 48 49

50

51

52
53

54
55 56

57
58

59

60
61

62
63

64 65
66 67 68 69

70
71

72 73

74
75

76 77 78 79

80
81

82 83
84

85
86 87

88
89

90 91
92

93
94

95 96 97 98 99

Figure 2.5: 2-D SOM trained with 2-D data uniformly distributed over a square.

41



consider a list of input samples x(t), t being an integer valued index. In this scheme the

samples x(t) and models mi may be vectors, strings of symbols or some more general

item. It will suffice for the algorithm that a distance measure d(x,mi) is defined over

all occurring x and a sufficiently large set of models mi. The training algorithm is as

follows:

For the input sample x(t) the best-matching node r(t) is found as

r(t) = arg min︸ ︷︷ ︸
i

{d(x(t),mi)}. (2.3)

Now x(t) is added to a sublist Sr of input samples maintained for the winner node

r(t). The process is continued for all input samples and they are distributed into sublists

under respective best-matching models. Now for the update of model mi, the union

of the sublists of the models within the corresponding neighborhood set Ni is selected.

Then the “middlemost” sample xi, i.e., the sample with smallest sum of distance from

all the samples x ∈ ⋃
j∈Ni

Sj is computed. xi is called the generalized median of the union

of sublists. If xi is restricted to the set of samples x(t), it is called the generalized set

median. Note that, for Euclidean vectors the generalized median is simply the arithmetic

mean. The models mis are updated by replacing their values with respective xis. The

procedure is carried out through several iterations after which the models approximate

the input samples in an orderly fashion.

The convergence of the algorithm, at least to a unique equilibrium, is not yet mathe-

matically proven [174]. In practice, convergence means the sublists do not change with

iterations when repeated for sufficiently large number of iterations. Convergence proof

of the algorithm under slightly modified conditions for Euclidean space can be found in

[53].

Kohonen and Sumervuo used the generalized algorithm for building SOM of protein

sequences [179, 180]. In a recent work Günter and Bunke [115] proposed a further

generalization of SOM for items represented as graphs, which includes strings and trees

as special cases. Thus, it extends the utility of SOM to structural pattern recognition

also.

2.3 Properties of SOM

The SOM induces an algorithmic transformation from the input space <p onto the out-

put/viewing plane V (<q) that preserves the metric-topological relationships and distri-

butional density properties of the feature vectors/signals X in <p [174]. These properties

42



are popularly known as the topology preservation property and density matching prop-

erty of SOM. Both of these properties are results of updating neighborhood neurons

during the training phase and distinguishes the SOM from other competitive learning

networks. Most of the applications based on SOM depend critically on these properties

(explicitly or implicitly) for their success.

2.3.1 Topology preservation property of SOM

A map, be it natural or artificial [165, 174], projects a pattern in an input space onto a

position in an output space, thus encoding the information as the location of an activated

node in the output space. Further, an essential property of these maps is the preservation

of neighborhood relations. This dictates the requirement that nearby vectors in the input

space are mapped onto the neighboring locations in the output space. This is known

as the “topology preservation property” of the maps. Apart from SOM, there exists

a number of neural network models for adaptively forming topology preserving maps

[90, 320, 341, 348]. However, Kohonen’s SOM is by far most widely studied and applied

one.

The topology preservation property is a direct consequence of the update equation

(2.1), that forces the weight vector wr of the winning neuron r(x) and those of its neigh-

bors toward the input vector x. Thus the map can be visualized as an elastic/virtual net

with topology of a one or two-dimensional lattice (when the output nodes are arranged

in a 1-D or 2-D grid) in the output space and weight vectors of the nodes as coordinates

in the input space <p. During the training process the elastic net folds onto the “cloud”

formed by input data.

The degree of perfection to which a SOM preserves the topology is dictated by var-

ious factors. The two most important factors are the complexity of the distribution

of input patterns and dimensionality mismatch between the output space and input

space. The learning parameters sometimes also play important roles. There could also

be cases of various kind of distortions such as twisting of the map for certain initial-

ization. In case of one or two dimensional maps with one or two dimensional (and to

some extent three dimensional) input patterns, it is possible to subjectively assess the

quality of topology preservation by visual inspection (e.g. Figures 2.3, 2.4 and 2.5).

But for higher dimension it is very difficult to assess the quality of the map formed.

Many researchers tried to quantitatively measure the topology preservation property

[22, 73, 80, 79, 241, 294, 317, 339, 370]. A review of different approaches to measure the

topographic order preservation in SOM can be found in [285]. Though the concept of

topology preservation is intuitively well understood, it is an extremely difficult task to

arrive at an operational definition and derive a quantitative measure. Different authors

43



define it in different ways and derive the measure accordingly. So they might reflect dif-

ferent facets of the problem. The topographic product introduced by Bauer and Pawelzik

[22] is one of the popular measures. However, this measure reflects more strongly the

dimensional mismatch between the intrinsic feature space and the output space and

often it is difficult to interpret when the lack of topology preservation is due to other

causes. Su et al. [317] have recently proposed a measure of topology violation based on

an intuitive understanding of the property and it produces a fairly good estimate irre-

spective of the cause. Here we give brief descriptions of these two measures. In the next

chapter we shall introduce a new measure of topology preservation based on Kendall’s

rank correlation coefficient [160]. We shall be using these measures in the next chapter

for studying topology preservation property of SOM under various modified conditions.

Topographic Product: a measure of topology preservation

The topographic product [22] is a measure of the preservation of neighborhood relations

by SOM. For notational convenience we shall denote the output space Rq and input

space (i.e., weight space) Rp as U and V respectively in the following discussion.

The Euclidian distance in U is denoted as

dU(j, j
′
) = ‖j − j

′‖ (2.4)

and in V

dV (wj,wj′ ) = ‖wj −wj′‖ (2.5)

where j, j
′ ∈ {1, 2, . . . ,m× n}.

The notation of nearest neighbor indices is as follows:

Let nU
k (j) denote the k-th nearest neighbor of node j with the distance measured in

output space, i.e.,

nU
1 (j) : dU(j, nU

1 (j)) = min
j′∈U\{j}

dU(j, j
′
)

nU
2 (j) : dU(j, nU

2 (j)) = min
j′∈U\{j,nU

1 (j)}
dU(j, j

′
)

...

In the same way let nV
k (j) denote the kth neighbor of j but with the distance measured

in the input space between wj and wj′ :

nV
1 (j) : dV (wj,wnV

1 (j)) = min
j′∈V \{j}

dV (wj,wj′ )

nV
2 (j) : dV (wj,wnV

2 (j)) = min
j′∈V \{j,nV

1 (j)}
dV (wj,wj′ )

44



...

Using the nearest neighbor indexing, define the ratios

Q1(j, k) =
dV (wj,wnU

k
)

dV (wj,wnV
k
)

(2.6)

and

Q2(j, k) =
dU(j, nU

k )

dU(j, nV
k )

. (2.7)

From these definitions we have Q1(j, k) = Q2(j, k) = 1 only if the nearest neighbors of

order k in the weight space and output space coincide. But this is highly sensitive to

local stretching of the map induced by a gradient in the input stimulus density [22].

This problem can be overcome by multiplying the Qν(j, k) for all orders of k. Authors

in [22] defined two new indices

P1(j, k) =

(
k∏

l=1

Q1(j, l)

)1/k

(2.8)

and

P2(j, k) =

(
k∏

l=1

Q2(j, l)

)1/k

. (2.9)

For these indices P1 and P2 we have

P1(j, k) ≥ 1

and

P2(j, k) ≤ 1.

In P1 and P2 a different ordering of nearest neighbors is cancelled, as long as the first

set of k nearest neighbors in U and in V are the same (not regarding their order).

The products P1 and P2 have the important property of being insensitive to constant

gradients of the map and remain close to 1 as long as the second order contributions

average out locally [22]. For the case where second derivatives do not average out locally,

we combine P1 and P2 multiplicatively in order to find

P3(j, k) =

(
k∏

l=1

Q1(j, l)Q2(j, l)

)1/2k

. (2.10)

As a consequence of the inverse nature of P1 and P2, the contributions of curvature

are suppressed while the violations of neighborhoods are detected by P3 6= 1. Also, since

P1 > 1/P2 if the input space folds itself into the output space, and P1 < 1/P2 if the

45



output space folds itself into the input space, deviation of P3 above or below 1 indicates

whether the embedding dimension DU is too large or too small, respectively [22].

A simple averaging of logarithm of P3(j, k) by summing over all nodes and all neigh-

borhood orders gives the full-blown formula for the topographic product P :

P =
1

N(N − 1)

N∑
j=1

N−1∑

k=1

log(P3(j, k)) (2.11)

P is a numerical estimate of overall topology preservation. P = 0 indicates perfect

preservation of the topology.

A measure of topology violation

The SOM transforms the patterns in feature space into responses of nodes in one or

two dimensional lattice of neurons. This transformation retains metric-topological re-

lationship among the feature vectors. A quantitative measure of topology preservation

captures the extent to which the metric-topological relationship is retained. There can

be different choices for constraints to be satisfied for a “perfect” topology preservation.

Perhaps, the strongest is that for each pair of points in the feature space, the distance

should be equal or proportional to the distance of the mapped points. A weaker one

demands that the distances in the two spaces should have the same order. The topo-

graphic product [22], a popular measure, is based on the weaker constraint. Su et. al

[317] proposed another kind of weaker constraint and a measure based on that. They ob-

served that if a map is topologically ordered then the weight vector of each node should

be more similar to the weight vectors of its immediate neighbors (8 neighbors for a 2-D

SOM) on the lattice than to the weight vectors of its non-neighbors. Their measure is

designed to detect the violation of this condition. The measure is especially suitable if

the SOM is used for visualizing cluster structure of the data.

The method for 2-D SOM can be formulated as follows:

Let Λr be the set containing the immediate 8 neighbors of node r and Ωr denote the set

containing the nodes which are not immediate neighbors of node r. Let the size of the

map be m× n. Consider a node i ∈ Ωr and another node ir ∈ Λr such that

ir = argmin︸ ︷︷ ︸
k∈Λr

‖pi − pk‖,

where, pi = (pi1, pi2) is the position vector of the node i in the lattice plane and ‖pi−pk‖
is the Euclidean distance between the nodes i and k. Since node r is closer to the

neighboring node ir than to i in the lattice plane, the weight vector of node r should be

more similar to the weight vector of the node ir than to the weight vector of the node

46



i. Therefore, if the map is preserving the topology then for each node r the following

relation should hold:

‖wi −wr‖ ≥ ‖wir −wr‖ for 1 ≤ r ≤ m× n, ir ∈ Λr and i ∈ Ωr. (2.12)

Now the quantitative measure of topology violation V is defined as:

V =
m×n∑
r=1

∑
i∈Θr

[1− exp−‖pi−pr‖2 ]
‖wir −wr‖ − ‖wi −wr‖

‖wir −wr‖ , (2.13)

where Θr = {i : ‖wi −wr‖ < ‖wir −wr‖ for i ∈ Ωr and ir ∈ Λr} is the set of nodes in

Ωr which violate the condition (2.12) with respect to node r. The measure of violation

V has the following properties:

1. V = 0 if Θr = ∅, i.e., the topology is perfectly preserved.

2. The larger the value of V the greater is the violation.

3. If i ∈ Θr and the nodes r and i is far apart in the lattice plane, their contribution

to V will be high due to the factor (1− exp−‖pi−pr‖2).

Usually, perfect topology preservation (i.e., V = 0) is achieved if the dimensionality

match is perfect and the distribution of the training data has strong similarity with the

distribution of the nodes in the lattice plane. Otherwise, even though the dimensionality

matches, there could be some topology violation due to existence of cluster structures

and variation of density within the data. However, if the dimensionality matching exists,

the violations are typically small and can be attributed to the disturbances produced due

to the non-uniformity of the data in unfolding of the map during training. On the other

hand, for high dimensional data, when the violation is caused by dimension mismatch,

the value of the topology violation for same training data increases rapidly with the size

of SOM.

2.3.2 The density matching property

The density matching property of the SOM is essentially a combination of two related

properties. The first property concerns the ability of the SOM to approximate the input

space by the set of weight vectors {wi}. This property relates SOM with vector quan-

tizers. The other property is unique to SOM and concerns its ability to place weight

vectors in the input space in (approximate) proportion of the probability of occurrence

of sample data, thus making it possible to reflect the statistics of the data. These prop-

erties make the SOM algorithm attractive for many applications including clustering,

47



data reduction and visualization of the input data. For clarity we shall discuss these

properties separately in the following.

Approximation of the input space

The SOM, considered a collection of weight vectors {wi} ⊂ <p provides a good approxi-

mation of the input space. In other words, the SOM stores the information about a large

set of input vectors x ⊂ <p by finding a smaller set of prototypes {wi}. This aspect of

SOM relates it to the theory of vector quantization [110]. The relation between vector

quantization and SOM algorithm is studied by Luttrell [230, 231]. A vector quantizer

(VQ) can be thought of consisting two parts, an encoder and a decoder. Given an input

vector x the encoder selects from a codebook, containing vectors representing the input

space, a codevector c(x). The decoder reproduces the x′(c) which is an approximation

of the original vector x. The error/distortion introduced in the process is d(x,x′). The

optimal design of the VQ strives to minimize the expected distortion defined by

D =
1

2

∫ ∞

−∞
fx(x)d(x,x′)dx,

where fx(x) is the probability density function for the distribution of the input vectors.

Commonly the square of the Euclidean distance between the vectors are used as the

distortion measure. Then D takes the following form:

D =
1

2

∫ ∞

−∞
fx(x)‖x− x′‖2dx. (2.14)

The necessary conditions for minimization of the expected distortion D are embodied

in generalized Lloyd algorithm (also known as LBG algorithm) [110] as follows:

Condition A: Given the input vector x, choose the code c = c(x) to minimize the

squired error distortion ‖x− x′‖2 (Nearest-neighbor condition).

Condition B: Given the code c, compute the reconstruction vector x′ = x′(c) as the

centroid of the input vectors x satisfying condition A (Centroid condition).

The generalized Lloyd algorithm operates in batch mode and alternately optimizes the

encoder and the decoder in accordance with conditions A and B respectively.

Now if we consider existence of additive noise ν in the communication channel between

the encoder and decoder contaminating c, the expected distortion takes the form:

D =
1

2

∫ ∞

−∞
dxfx(x)

∫ ∞

−∞
dνπ(ν)‖x− x′(c(x) + ν)‖2, (2.15)

48



Table 2.1: Correspondence between the generalized Lloyd algorithm with noise and the

SOM algorithm.

Generalized Lloyd Algorithm SOM Algorithm

with additive noise

Encoder c(x) Best-matching node i(x)

Reconstruction vector x′(c) Weight vector wi

Probability density function π(c− c(x)) Neighborhood function gi,j(x)

where π(ν) is the probability density function of the noise component ν. With this

scenario Luttrell [230, 231] showed that the conditions A and B must be modified as

following:

Condition A′: Given the input vector x, choose the code c = c(x) to minimize the

distortion measure

D′ =
∫ ∞

−∞
dνπ(ν)‖x− x′(c(x) + ν)‖2. (2.16)

Condition B′: Given the code c, compute the reconstruction vector x′ = x′(c) to satisfy

the condition

x′(c) =

∫∞
−∞ dxfx(x)π(c− c(x))x∫∞
−∞ dxfx(x)π(c− c(x))

. (2.17)

It was further demonstrated by Luttrell that if the pdf π(ν) is a smooth function and

the additive noise ν is small compared to the original reproduction distortion ‖x− x′‖2,

the condition A′ can be approximated by condition A, while condition B′ can be realized

by stochastic learning. The stochastic learning involves choosing the input vectors x

at random using the factor
∫

dxfx(x), and update the reconstruction vectors x′(c) as

follows:

x′new(c) ← x′old(c) + ηπ(c− c(x))[x− x′old(c)] (2.18)

where η is the learning-rate parameter and c(x) is the nearest neighbor encoding

approximation to condition A. The update equation is identical to the SOM algorithm

with the correspondence listed in Table 2.1. Thus it can be stated that the generalized

Lloyd algorithm for vector quantization is equivalent to the batch training version of

SOM with zero neighborhood size.

So the SOM algorithm can be treated as a vector quantization algorithm, which pro-

vides a good approximation of the input space. Further, as demonstrated by Luttrell,

the SOM update equation can also be derived from the viewpoint of vector quantization.

49



Figure 2.6: Reflecting statistics of input data (a) 2-D normally distributed input data

(b) A 10× 10 SOM trained with the input data.

The derivation also supports modelling of the neighborhood function in form of a prob-

ability density function, which is a common practice. In fact Luttrell [232] later proved

that a zero mean Gaussian model is appropriate for such a system.

Reflecting sample statistics

Apart from approximating the input space, the SOM exhibits the property of capturing

the variations in the statistics of the training data. The regions of the input space <p

from which the samples are drawn with higher probability of occurrence are mapped onto

larger domains of the output space than the regions in <p from which samples are drawn

with lower probability of occurrence. As a consequence the higher probability regions

are represented in the map with better resolution. Figure 2.6 shows (a) a normally

distributed 2-D data and (b) a 2-D SOM trained with the data. From the figures the

similarity in the distributional property can be easily discerned visually. However, it

can also be seen that the capturing of the input statistics is not an exact one, rather

approximate.

To discuss the property formally, let fx(x) be the multidimensional probability density

function of the random input vectors x. By definition

∫ ∞

−∞
fx(x)dx = 1.

Now let m(x) be the magnification factor of the map. Thus if there is a total number

50



of l nodes in the SOM, then ∫ ∞

−∞
m(x)dx = l.

Exact matching of the input density demands

m(x) ∝ fx(x).

Unfortunately, for a general SOM, the magnification factor m(x) cannot be expressed

as a simple function of fx(x). Only for the case of 1-dimensional SOMs two different

results based on two variants of encoding scheme are available:

1. Luttrell [232] showed that if all the higher order terms in the distortion measure

D′ in Eq. (2.16) due to the noise π(ν) are retained then

m(x) ∝ f 1/3
x (x).

2. Ritter [291] showed that for standard form of the SOM algorithm we have

m(x) ∝ f 2/3
x (x).

Thus the property of SOM regarding reflecting input statistics is not a perfect one

as shown for 1-D case, but an approximate one. Though theoretical results for other

configurations of SOM are not available, computer simulations show that regions of low

input density tends to be overrepresented while those of high density underrepresented.

Many researchers proposed various modifications to the standard SOM algorithms to

make the representations faithful. Two of the important approaches involve (1) modifica-

tion of the competitive process [81] that reduces the probability of winning for frequently

winning neurons and (2) modification of the adaptive process [24, 219], where the weight

update rule for each neuron within the neighborhood is controlled.

In a different approach Linsker [224] derived the learning rules for formation of to-

pographic map using the principle of maximization of mutual information between the

output and input signals. In this model, an exact correspondence between the output

and input distribution is achieved. Similar information-theoretic approach was used by

Van Hulle [331, 332].

2.3.3 Some limitations of SOM

Though the SOM algorithm is easy to implement, comprehensive theoretical analysis

of SOM still eludes the researchers. Theoretical treatments of SOM under some spe-

cial/simplified conditions have been carried out, an overview of which is provided in

51



Section 2.4.1. SOM is capable of vector quantization as well as vector projection. The

vector projection is achieved through the nonlinear topology preserving mapping of the

vectors onto the output (viewing) plane. The training of SOM and the formation of

the map depend on several factors including the initialization, the sampling pattern of

input data, the learning rate and the size of the neighborhood. Among these the learn-

ing rate and the size of the neighborhood decrease monotonically with time. Variation

of these factors may lead to different results for the SOMs trained even with the same

input data. Online SOM is order dependent, i.e., the final weight vectors are affected

by the order of input sequence. In some cases different types of distortions of the map

such as twists, rotation and mirroring may occur which lead to different neighborhood

properties of SOMs [39]. The desired size of the output lattice, the step size and the size

of the neighborhood may have to be found empirically for each data set to achieve useful

results [19]. In [39] de Bodt et al. discussed these issues and proposed some statistical

tools for assessing the reliability of SOMs.

The mapping produced by SOM is a very useful tool for visualization of the inherent

structure and interrelationship of the data. However, for satisfactory results the network

architecture of SOM need to be adequate with respect to the input data. SOM uses a

fixed architecture in terms of number of nodes as well as their arrangements, which has

to be defined prior to the training. Therefore, in case of unknown input data it is a non-

trivial task to determine a network architecture beforehand that will give satisfactory

result [240]. There are a few other problems with visualization. For example, in case

of a discontinuous data cloud, interpolating units are positioned between data clusters.

In visualization, these may give false cues of the data shape [334]. Typically the map

is rectangular in shape, but the axes of the map grid usually do not have any clear

interpretation. Moreover, The projection implemented by SOM alone is quite crude.

The projection of a data sample is typically defined as the location of its best matching

unit (BMU). It is often very hard to infer about the global shape of the data using the

raw map grid alone. Sometimes this drawback is addressed by making a separate vector

projection of the prototype vectors using e.g., Sammon’s projection [145].

Further, the dimensionality of the input data may affect the topology preservation

property of SOM. It was found that if the intrinsic dimension of the input data is

significantly higher than the dimension of the SOM lattice, the network may not be able

to fully represent the structure of the data [185]. This is caused by folding of the low

dimensional SOM lattice in the high dimensional data space. As a result, data points

from distinctly separate and distant clusters may be mapped onto neighboring nodes

without any apparent order. On the other hand, given a data point there may be several

nodes from different parts of the map with matches almost as good as the match with

the BMU [334]. Conceptually, SOM can be built with lattice of any dimension to match

52



the dimensionality of the input data. However, in practice, the dimension of SOM lattice

is at most 3 and usually 1 or 2. This limitation is a result of our inability to visualize a

map beyond 3 dimensions.

The use of neighborhood update is crucial to the usefulness of SOM. However, for the

nodes near the border of the lattice the neighborhood definition is not symmetric. Thus,

compared to a node near the center, a winner node at the border will have less number of

neighboring nodes that will be updated. This results in difference in density estimation

for the border nodes compared to the center nodes. This is known as the border effect

[209].

Although SOM have many other usages, it is often used as a clustering tool. In [19]

Baraldi and Blonda discussed SOM in connection with several clustering algorithms.

They have pointed out some limitations of SOM. For example, since SOM does not

minimize any known objective function, termination is not based on optimizing any

model of the process or its data. They also opined that “SOM should not be employed

in topology-preserving mapping when the dimension of the input space is larger than

three. SOM tries to form a neighborhood-preserving inverse mapping φ−1
T from lattice G

to input manifold X, but not necessarily a neighborhood-preserving mapping φT from X

to G. To obtain a topologically correct map by running SOM algorithm, the adjacency

structure of the preset graph G has to match the topological structure of the unknown

manifold X”.

Despite several limitations, SOM has been used successfully in numerous applications.

Various modifications and variants of SOM have been invented to overcome many of

these limitations when required by the applications. In Section 2.3.5 and Section 2.4.2

we shall discuss some of them.

2.3.4 Relationship between SOM and k-means clustering algo-

rithm

While SOM is a neural network originally inspired by the neurobiological maps found

in the brain [174], the k-means clustering algorithm owes its origin to statistical data

analysis [233]. Both of them employ unsupervised learning and often classified as com-

petitive learning methods [107]. However, due to the neighborhood update during the

training, some authors [19, 107] distinguish SOM learning method from that of k-means

(also known as hard k-means) as soft competitive learning. There are many variants

of k-means algorithm [10]. Most popular one is the batch k-means algorithm [89, 140]

discussed in Section 1.3.1. The batch algorithm minimizes a squared error criterion and

converges to a local minima in a finite number of steps. Its convergence properties can

53



be studied as a limiting case of fuzzy c-means [31] algorithm. On the other hand, though

batch SOM algorithm is useful for various types (even non-numerical) of data, the basic

and popular version of SOM uses online updates and is described in Section 2.2. The-

oretical studies on finding a single, closed form objective function whose optimization

can lead to the formulation of the SOM learning algorithm still eludes the researchers

[174]. It is to be noted that the version of k-means proposed by MacQeen [233] is also an

online algorithm. However, MacQeen proposed decreasing the learning rate following the

harmonic series ε(t) = 1
t
. Since the series diverges, there is no strict convergence of the

algorithm [107]. Nevertheless, MacQueen’s k-means algorithm and SOM algorithm are

quite similar when the later is run with winner-only update scheme (which is often in-

corporated in the final stage of SOM learning). In the following, unless stated otherwise,

we shall consider the batch k-means and the online version of SOM only.

SOM performs two-fold task, vector quantization and topology preserving mapping of

the input data on a regular lattice. On the other hand, k-means algorithm is similar

to the popular LBG algorithm [222], also known as generalized Lloyd algorithm (GLA)

[228] used for vector quantization (VQ) [107, 300]. Thus, SOM and k-means are often

compared from VQ perspective. The relation between them has been theoretically stud-

ied by Luttrell [230, 231] and briefly presented in Section 2.3.2. In [232] Luttrell studied

the relationship between the SOM algorithm with Gaussian lateral feedback function

and VQ with zero-mean Gaussian additive noise in the communication channel. Some

authors [229, 363, 62] studied the optimality of SOM as vector quantizer and found that

SOM is naturally an optimal VQ in minimizing the mean-square-error between reference

vectors and data space [361] and often superior to k-means algorithm [62].

Note that, like k-means, even though SOM weight vectors generate a Voronoi tessel-

lation of the data space, the goal originally envisaged for SOM is not clustering in the

usual pattern recognition sense (finding homogeneous groups). This is an excellent tool

for data reduction and visualization of the structure in high dimensional data through

a low dimensional lattice space. The number of nodes in SOM is usually much larger

than the number of clusters. Thus SOM places multiple weight vectors within a clus-

ter and tries to match the density of the data distribution. However, some researchers

compared SOM and k-means algorithm empirically [13, 17, 247, 303] from clustering

perspective. Their approach is to use data sets with known number of clusters and train

SOM with the same number of nodes for comparison. However, no definitive result has

emerged. For example, Balakrisnan et al. [17] reported worse clustering performance of

SOM compared to the k-means. Mingoti and Lima [247] reported similar results. On

the other hand, Schreer et al. [303] reported better or equivalent performance of SOM in

clustering. Similarly, Bacão et al. [13] obtained consistently better performance of SOM

compared to the k-means algorithm. A well-known drawback of k-means algorithm is its

54



dependency on the initialization of the cluster centers [88]. With improper initialization,

there may be several ‘dead units’, i.e., initial cluster centers that are not updated [107].

The SOM, due to its neighborhood update usually overcomes this problem. Further, for

the same reason SOM is less likely to be trapped in a local minima [13, 19]. Thus SOM

is expected to perform well in problems with multiple optima [13].

2.3.5 Variants of SOM

Though the basic SOM is a very useful neural network model, many modifications have

been proposed by various researchers [174]. The objectives behind such modifications

are to improve the efficiency and scope of application of SOM. One of the major mod-

ifications, as discussed earlier, is the generalized SOM or “batch map” algorithm, that

can self-organize nonvectorial objects also. In [146, 147] the use of weighted Euclidean

distance in the matching law is proposed. In the following we shall briefly discuss some

other important variants of SOM.

Tree-structured SOM for reducing the complexity of searching the winner has been

proposed by Koikkalainen and Oja [181]. Here starting from the root level one neuron

SOM, larger SOMs are trained successively in lower levels. While training a lower level

SOM, the higher level trained SOM is used for searching the “winner” within a subset of

neurons in the lower level using a tree. Another technique for quick search of winner is

proposed by Kohonen [173]. The technique is based on maintaining a table of pointers to

tentative winners for the training samples based on the result of previous winner search.

Thus, if the SOM is already roughly ordered, to search for the winer for a training vector,

one can use the pointer to the previous winner and is likely to find the new winner within

its neighborhood. SOM with Minimal Spanning Tree (MST) neighborhood is proposed

in [147]. With such a neighborhood, though the self-organizing process does not lead to

spatially ordered mapping, it makes vector quantization significantly faster and stabler

[174]. In [118] Hagiwara derived a momentum term for accelerating the SOM training

process. Walter and Ritter [342] investigated the application of a parameterized SOM

that is capable of rapid learning from small training data sets, for computer vision and

robotics. In a recent work Su and Chang [315] proposed a three-stage algorithm for fast

training of SOM. In this method first k-means algorithm is used to select N2 points,

then a heuristic is applied for distributing these points over a N ×N array. Finally the

SOM algorithm with a fast cooling regime is applied for fine-tuning the map.

Many researchers noted that the fixed structure and size of conventional SOM impose

some limitation on its ability to form quality mapping. Neural maps project data from

an input space onto a neuron position in an output space (often lower dimensional)

preserving neighborhood relation. A map-learning algorithm can achieve an optimal

55



neighborhood preservation only if the output space topology roughly matches the effective

structure of the data in the input space. Martinetz and Schulten [240] observed the

following:

To obtain optimal result concerning the conservation of topology of the map-

ping as well as optimal utilization of all neural units, the topology of the

employed network has to match the topology of the manifold of data which

is represented. This requires prior knowledge about the topological structure

of the manifold M , which is not always available or might be difficult to ob-

tain if the topological structure of M is very heterogeneous, e.g., composed

of subsets of different effective dimensions or disjunct and highly fractured.

To address the above problem different adaptive network architectures are proposed.

Martinetz and Schulten [240] introduced the “neural-gas” networks, where there is no

prefixed neighborhood relation. During the training neighborhood links are established

between nearby nodes in the input space. Neural-gas algorithm results in a compact

network with good preservation of neighborhood relations. However, the resulting map

usually have the same dimension as the input space, making it difficult to use for vi-

sualization and no dimension reduction is achieved. In [105] Fritzke proposed “growing

neural gas” network, where the neural gas network can increase the number of nodes

adaptively based on the accumulated quantization error of the nodes. In another ap-

proach, to accommodate data visualization and dimensionality reduction along with

the ability of adapt, Fritzke proposed [104, 106] “growing grid” self-organizing network.

Here the nodes are located in an array of neurons, however, during the training new rows

and/or columns of neurons can be inserted to the network. In [25, 338] Bauar and Vill-

mann proposed “growing SOM (GSOM)” network that adapts with the data by growing

along the existing dimension as well as increasing the dimension, if needed. Thus here

the output space is restricted to hypercubic lattice. It can be observed that in all the

above variants the focus is to produce an equal distribution of the input patterns across

the map by adding neighbor units to the nodes which represent disproportionately high

number of input data. In [74, 75] Deng and Kasabov proposed a dynamic version of the

SOM, where network structure is evolved in an on-line adaptive mode.

To handle the data with hierarchical structures Miikkulainen [246] proposed a hierar-

chical feature map. Here instead of training a single flat SOM, a balanced hierarchical

structure of SOMs is trained. Data mapped onto a unit is represented with more de-

tail in the lower layer SOM assigned to the unit. In a recent paper [289] Rauber et al.

proposed the “growing hierarchical self-organizing map (GHSOM)” that is consisted of

growing grid model [106] of SOMs arranged in a tree hierarchy. Starting with the top

level map, each map grows in size to represent a collection of data at a specific level of

56



detail. After a certain level of granularity of data representation is achieved, the units

are analyzed. The units representing higher level of input data diversity are expanded

to form new growing SOM at the next level. The lower level SOM will represent the

data mapped into parent unit in greater detail. Recently Atukorale and Suganthan [15]

proposed a hierarchical overlapped neural-gas network for classifier design. Marsland et

al. [239] proposed a neural-gas network that adaptively grows with requirement, which

is suitable for mapping dynamic data (i.e., when the distribution of input data changes

with time). In a different approach to represent the hierarchical data Ritter [292] pro-

posed SOM with non-Euclidean, especially “hyperbolic” output space. He observed that

the hyperbolic space geometry is such that the size of a neighborhood around a point

increases exponentially with its radius r. This property fits nicely with exponential

scaling behavior of hierarchical, tree-like structures, where number of items r steps away

from the root grows as br, where b is the branching factor. Hence the mapping, under

suitable projections, aids interactive visualization of the hierarchical structure. Kasabov

and Peev [151] used hierarchical SOM and fuzzy systems for phoneme recognition. In a

recent work [260] Ontrup and Ritter proposed a hierarchically growing hyperbolic SOM

for interactive data analysis and demonstrated the method with a large data set. They

also introduced a fast winner-search strategy that substantially reduces the training

time. In most of the tree-structured and hierarchical variants of SOM the training is

performed layer by layer. In a recent paper [352] Xu et al. proposed a new architecture

“Self-organizing topological tree (SOTT)” for training all the layers simultaneously in

a tree-structured SOM. In the training they have considered not only spatial neighbor-

hood within the same layer, but also the inter layer neighborhood through parent-child

relationship among the nodes. Further, to avoid the non-optimality of tree-based winner

search, they introduced a multi-path winner search procedure and the concept of “winner

path”.

Along with these structural variants discussed above, there are several functional vari-

ants of SOM proposed by the researchers. The “adaptive subspace SOM (ASSOM)”

introduced by Kohonen [171] learns to detect input patterns invariant to translation,

rotation and scaling. In ASSOM various map units adaptively develop filters of basic

invariant features. The novel aspect of ASSOM is that the mathematical form of the

filters are not prefixed, but learned from transformation occurring in the observations.

A detailed account of it can be found in [174]. In [281] Pedrycz and Card introduced

a fuzzy version of SOM. Another interesting class of modifications of SOM deals with

sequential data. In its original form the input data to SOM are static vectors. In se-

quential data analysis along with individual observations, their context information is

also important. Often “windowing” of the input stream is employed for capturing the

context information, thus converting the sequential data into static data. However, this

57



approach leads to loss of information as well as increase in dimensionality [314]. In

response to this problem various modifications of SOM are proposed to accommodate

unsupervised recurrent learning for straight sequence processing. Among the prominent

methods, in “temporal Kohonen map (TKM)” [50], the neurons implement recurrence

in terms of leaky signal integration. For a sequence (x1, . . . ,xt), where xi ∈ <p, the

integrated distance of neuron i is computed by

di(t) =
t∑

j=1

α(1− α)(t−j) ‖xj −wi‖2 .

This distance is used for winner search and takes into account an exponentially weighted

past along with the current input. The parameter 0 ≤ α ≤ 1 controls the rate of

signal decay during the summation. However, the update rule is the same as standard

SOM using the unintegrated current input. In [183] Koskela et al. proposed “recursive

SOM (RSOM)” which is an improvement over TKM. It takes into account integrated

direction change for distance calculation as well as weight update. Among other methods

“recursive SOM” proposed by Voegtlin [340] maintains the context information in the

form of activation of the entire map in the previous time step and the distance calculation

as well as the update use the context information. In [314] Strickert and Hammer

describes the “merge SOM” where the weight and context of the last winner is merged by

a weighted linear combination to form a context descriptor. Principe et al. [286] studied

a self-organizing network motivated by reaction diffusion mechanisms. The network

is capable of creating localized spatio-temporal neighborhoods for clustering. A good

review of recursive SOM models can be found in [119].

Recently the use of SOM has been extended to the field of structural pattern recognition.

In structural pattern recognition usually the objects are represented as nodes of a graph

and the relation between these objects are modelled through edges connecting the nodes.

Labels or attribute vectors are often attached to the nodes and edges of the graph.

Thus it is possible to capture both unary properties of individual objects as well as

interrelationship among them with a graph representation. In [115] Günter and Bunke

proposed a self-organizing map for clustering of structured data represented as graphs.

Strings can also be treated as special cases of the general graph. They have used graph

edit distance as a distance measure and also derived a suitable update rule based on

the edit distance. In [117] Hagenbuchner et al. proposed an extension of self-organizing

map for processing structured data, namely labelled directed acyclic graphs (DAGs). A

discussion on more variants of SOM can be found in [174].

58



2.4 A brief survey of the SOM: Theory and Appli-

cation

So far we have talked about different properties of general nature and different vari-

ants of SOM. Now we shall discuss some theoretical results on SOM and present some

applications of SOM. We have seen that SOM algorithm is easy to understand and im-

plement. Often its results are visually verifiable. The algorithm was received with much

enthusiasm in the neural network community and within a short time many successful

applications based on SOM were reported. However, the theoretical studies on different

properties of SOM did not achieve the same degree of success. In most of the cases

successful theoretical studies are restricted to various special cases, a general theoreti-

cal treatment of the SOM algorithm still remains elusive. To our knowledge, the first

comprehensive survey of research works on SOM appeared in 1990 in [169]. Two almost

exhaustive bibliography of research papers on SOM can be found in [155] and [257] cover-

ing the periods from 1981 to 1997 (more than 3000 papers) and from 1998 to 2001 (more

than 2000 papers) respectively. In this section first we provide a brief overview of some

theoretical results. Then we shall have a brief look into the recent developments in SOM

in response to different problems arising out of some emerging fields of applications. A

more detailed account of the researches on SOM can be found in [174].

2.4.1 Theoretical analysis of SOM algorithm

SOM presents a neural model of self-organization. Algorithmically SOM can be con-

sidered a generalization of well-known competitive learning or vector quantization al-

gorithm. Only significant difference is the use of neighborhoods among the neurons

arranged in a regular lattice. Cottrell et al. [65] provide an excellent survey of the the-

oretical studies on SOM. According to them, the theoretical issues investigated by the

researchers regarding SOM can roughly be divided into four types. They are as follows:

1. Vector quantization properties of SOM.

2. Derivation of SOM learning algorithm from some energy functions.

3. Self-organization or ordering of the units in the map.

4. Convergence of the weight vectors in the map.

Investigations into the vector quantization properties of SOM is aimed at comparing

the performance of SOM with generalized Lloyd algorithm, also known as Linde-Buzo-

Gray (LBG) algorithm and an alternative derivation of the SOM algorithm from VQ

59



perspective. Both issues are considered by Luttrell [230, 231]. Luttrell proved SOM as a

generalization of the LBG algorithm where additive noise in the communication channel

between the encoder and the decoder can be included into the model. Luttrell also

succeeded to demonstrate that under such a condition a stochastic learning algorithm

can be derived, which is equivalent to the SOM learning algorithm. A brief sketch of

this work is already provided in Section 2.3.2.

Formal studies on SOM could have been much simplified if one can derive the adapta-

tion laws as a process of minimization of some energy function. Then standard techniques

like Liapunov function approach can be applied to study the convergence properties. Use

of energy functions for the standard SOM algorithm have been studied in several papers

[93, 170, 295, 324]. Here we provide a brief sketch of the formulation of energy function

by Erwin et al. [93].

Erwin et al. used one dimensional SOM with one dimensional input for the derivation.

A chain of N SOM nodes divide the input space Ω into Voronoi cells. Let us denote the

Voronoi cell corresponding to the i-th node by Ω(i). At the end of the training the nodes

are ordered such that for two indexes a and b if a < b then wa < wb, where wa and wb are

the weights of the nodes a and b respectively. During the training (i.e., when the nodes

are not yet ordered) at any instance the nodes can be represented by a permutation of

the index values. For each input, due to the update, a new permutation will arise and

the index of a node will change. Let the transformation from a new index a to the old

one i of a node be i = T (a).

The adaptation will induce an average change in the weight wi of the i-th node as

Vi(w) = α

N∑
c=1

hci

∫

x∈Ω(c)

(x− wi)P (x)dx, (2.19)

where c is the index of the winning node, hci is the neighborhood function and P (x) is

the probability density function of the input x. Assuming the range of the input patterns

is 0 and 1, i.e., x ∈ [0, 1], the Voronoi cells can be given as:

Ω(1) = {x | 0 < x < (wT (1) + wT (2))/2}
Ω(n) = {x | (wT (n−1) + wT (n))/2 < x < (wT (n) + wT (n+1))/2}, ∀1 < n < N

Ω(N) = {x | (wT (N−1) + wT (N))/2 < x < 1}. (2.20)

Further assuming the sample pdf P (x) constant [93] (i.e. uniform) and taking into

account the above Voronoi cell definitions, we obtain the average change

60



VT (a)(w) =
N−1∑

b=2

hT (b)T (a)[(w
2
T (b+1) − w2

T (b−1))/8

+wT (b)(wT (b+1) − wT (b−1))/4 + wT (a)(wT (b+1) − wT (b−1))/2]

+hT (1)T (a)[(wT (1) + wT (2))
2/8− wT (a)(wT (1) + wT (2))/2]

+hT (N)T (a)[1/2− wT (a) − (wT (N) + wT (N−1))
2/8

+wT (a)(wT (N) + wT (N−1))/2] (2.21)

The change can be considered an average force acting on the weight wT (a). Thus the

problem of finding the energy function reduces to finding out a potential function E(w)

such that
∂E(w)

∂wi

= −Vi(w). (2.22)

The potential function E(w) would be the required Liapunov function. Erwin et al. [93]

proved that such a function cannot exist for input signal with a continuous probability

density function P (x).

However, even though no global energy function can be found, in an earlier work Tolat

[324] suggested that the update equations can be derived by minimizing a set of energy

functions separately, one for each node. In [324] a simple system of three nodes in a one

dimensional SOM is considered and the corresponding energy functions are derived. In

[93] the set of energy functions are derived with more generality. The energy function

for the node i = T (a) is

ET (a)(w) = ẼT (a)(w) + XT (a)(w)

= ε

N∑

b=1

hT (a)T (b)

∫

x∈Ω(b)

1

2
(x− wT (a))

2P (x)dx (2.23)

+
ε

48

N∑

b=2

(wT (b) − wT (b−1))
3(1− hT (b)T (b−1))P (

1

2
(wT (b) + wT (b−1))).

The first term in the above energy function is the weighted quantization error due to

the locations of the weight values, while the second term is a correction to the total

energy due to the change in Voronoi cells during the training process. At the beginning

of the learning process the second term dominates while as the map becomes ordered

the first term becomes bigger.

Though no global energy function is found to exist for continuous input pdf, in [291]

and [170] existence of an error function is demonstrated for discrete cases of SOM, i.e.,

when the input is generated from a finite set of samples. Ritter et al. [291] considered the

61



SOM algorithm a Markov process with some transition probabilities between different

states {wi | i = 1, . . . , N}. They were able to show that for a discrete probability density

P (x) =
∑N

i=1 piδ(x− xi) there exists an error function V (w) such that

V (w) =
1

2

∑
ci

hci

∑

xj∈Fc(w)

pj(xj − wi)
2, (2.24)

where Fc(w) is the Voronoi cell of the best matching unit c.

Kohonen [170] derived a similar error function. A locally weighted mismatch of sample

x was defined as

E1 = E1(x,w1, w2, · · · , wN) =
N∑

i=1

hci‖x− wi‖2. (2.25)

For a discrete set of inputs S = {x1, x2, · · · , xT} one can define a global mismatch

metric

E2 =
1

T

T∑
t=1

∑
i

hci‖xt − wi‖2. (2.26)

This should be minimized. Using stochastic approximation technique, E2 can be min-

imized using local approximation, i.e., by minimizing E1 per sample basis. Thus we

have

wi(t + 1) = wi(t)− 1

2
α(t)∇wi(t)E1

= wi(t)− α(t)hci[x(t)− wi(t)], (2.27)

which is the standard SOM update equation. In the same paper Kohonen suggested an

error functional for the continuous case as follows:

E =
∑

i

∫

x∈Ωi

∑

k

hik‖x− wk‖2p(x)dx, (2.28)

where the integration is done over the Voronoi cells Ωi.

Almost all successful studies on the self-organization of SOM are limited to one di-

mensional SOM with one dimensional input space. The usual approach is to use Markov

chain tools to prove:

Given the input space x ∈ [0, 1] with pdf P (x) and a set of SOM nodes

with weights {wi} arranged in a linear chain, after the training the weights

converge to one of the ordered configurations given by the following sets

F+
N = {0 < w1 < w2 < · · · < wN < 1}

62



and

F−
N = {0 < wN < wN − 1 < · · · < w1 < 1}.

The two sets F+
N and F−

N are called absorbing states.

In the Markov chain approach, an arrangement of nodes F (t) is considered as a Markov

process defined on the common probability space (Ψ, T , π), where Ψ is a sample space,

T is a σ-algebra over Ψ and π is a probability measure on T such that π(Ψ) = 1. To

prove self-organization one requires to show that ∃ T < ∞ and δ > 0 for which

πF (0)({ψ ∈ Ψ : τd ≤ T}) ≥ δ ∀ F (0), (2.29)

or the probability πF (0), of finding the set of samples ψ in the sample space Ψ which

takes the neuron weights F from all initial conditions F (0) to the organized configuration

in a finite time τd is non-zero. Many researchers were able to prove self-organization

using different assumptions about the neighborhood function and/or the input pdf P (x).

Cottrell and Pagès [66] have shown that from all initial conditions with wi 6= wj∀i 6= j

and with a uniform pdf P (x) and using two neighbors, the weights almost surely converge

to an ordered state. In successive works [40, 94, 99, 100, 102, 298] the self-organization

under different generalizing conditions are demonstrated.

However, there is little progress in the case of multidimensional SOM. This is mainly

hindered by lack of comprehensive definition of the ordering in a multidimensional map.

Even with 0-neighborhood case the Markov chain is found to be irreducible (i.e., no

absorbing state exists). For details see Cottrell et al. [65].

Though the convergence of the weight values are related to the ordering property, it

requires a separate treatment because the weight values may converge to unique fixed

values even if the units are not ordered. Such a situation can occur when the algorithm

has local minima due to an unsuitable neighborhood function. Erwin et al. [94] demon-

strated existence of metastable states due to local minima. In [168] Kohonen studied the

convergence of weight values for one-dimensional SOM with five nodes and neighborhood

function having width 2 (i.e, winner and its 2-neighbors). He was able to prove the exis-

tence of an equilibrium solution. Solutions for more generalized cases are considered by

Cottrell et al. [65]. They suggested a method using the ordinary differential equations

(ODE) for the purpose. The issue of magnification factor of the map is also related to

the convergence. We have already mentioned some related results in Section 2.3.2.

2.4.2 Applications of SOM

There are literally numerous applications where SOM is successfully applied. As early as

in 1990 Kohonen [169] listed the following problems where SOM was applied successfully:

63



• statistical pattern recognition, especially recognition of speech,

• control of robot arms and other problems in robotics,

• control of industrial processes, especially diffusion processes in the production of

semiconductor substrates,

• automatic synthesis of digital systems,

• adaptive devices for various telecommunication tasks,

• image compression,

• radar classification of sea ice,

• optimization problems,

• sentence understanding,

• application of expertise in conceptual domain and even

• classification of insect courtship song.

Since then the SOM has been used for solving such a wide spectrum of problems, it is

no longer possible to enumerate them individually. Instead, Oja et al. [257] provide the

following taxonomy of generic problem domains for which SOM has been used:

• image and video processing (548),

• pattern recognition (487),

• mathematical techniques (427),

• artificial intelligence (347),

• software (300),

• engineering in biology and medicine (268),

• information theory and coding (265),

• speech recognition (166),

• control problems (158),

• signal processing (157),

• design of circuits (92),

64



• information science and documentation (83),

• business and administrative problems (73),

where the numbers in the parenthesis indicate the number of papers related to the

respective topics as found in the bibliographies [155] and [257]. A good description of

several applications of SOM in various fields such as process and machine monitoring,

speech processing, robotics, telecommunication, text processing (including a detailed

discussion on famous WEBSOM project) etc. can be found in the book by Kohonen

[174]. In [178] application of SOM in engineering problems are described.

Instead of trying to discuss the whole range of applications of the SOM, in the following

we briefly review the recent advances on a few emerging fields of application, where SOM

is increasingly being used for pattern recognition tasks. Namely, we choose data mining,

information retrieval, bioinformatics, multichannel satellite image analysis, and image

processing and coding. Some of these applications are related to the present thesis.

The SOM algorithm is often used in conjunction with other techniques such as fuzzy

logic to perform these tasks. Several researchers proposed modifications of the SOM

architecture and learning algorithm to make it more suitable for solving particular prob-

lems.

Data mining is the most vital step in knowledge discovery in databases (KDD). In re-

cent time, with the easy availability of computational equipment and a mature database

technology, processes across various fields are being automated to enhance operational

efficiency. This trend resulted in capture and storage of massive amount of data, often

running into terabytes. This accumulated data hold the promise of containing useful

nuggets of information, which if discovered and understood, likely to lead to better deci-

sion making and improved performance. However, our ability to analyze and understand

such large data sets lags far behind our ability to gather and store the data. The emerging

field of “knowledge discovery in databases” (KDD) is aimed at developing computational

techniques and tools for extraction of useful knowledge from rapidly growing volumes of

data. KDD is defined by Fayyad et al. [96] as

The nontrivial process of identifying valid, novel, potentially useful and ulti-

mately understandable patterns in data.

The KDD process typically consists of several steps such as data selection, data cleaning

and preprocessing, data mining, interpretation and validation of the result and finally

using the discovered knowledge. The data mining stage concerns applying appropri-

ate techniques or algorithms to understand and/or discover useful knowledge from the

65



data. Data mining includes tasks such as data visualization, classification, clustering,

regression, predictive modelling, association analysis etc.

In data mining applications, usually the data are in high dimension and are enormous in

volume. The analyst usually starts with very little knowledge of the patterns/knowledge

hidden in the huge mass of data. So the data mining process is iterative and interactive

in nature and extensively utilizes various exploratory data analysis and visualization

tools/techniques. In this respect SOM is one of the very useful tools. Visualization tech-

niques allow the analyst to choose proper methods for subsequent analysis as well as help

to form hypotheses about the clusters/patterns existing in the data. Proper visualization

of high-dimensional data requires structure-preserving projection of the data points to a

lower dimensional space. The SOM algorithm itself produces a topology preserving non-

linear projection of the input data to the lattice plane. The SOM essentially performs

two tasks: vector quantization and vector projection. Vector quantization produces from

the original data set a smaller but representative data set in the form of weight vectors

or prototypes which follow the distribution of the original data closely. This allows one

to use SOM for data reduction. Due to the vector projection property, SOM forms a

topologically ordered nonlinear mapping of the original high dimensional data onto a low

dimensional regular grid. These properties can be exploited to form various hypotheses

about the data.

The visualization of the raw map is possible only for data up to 3-dimension. However,

researchers have developed several visualization methods for discovering the properties

of the data. One of the simple yet effective methods for visualizing the possible cluster

structures in the data on a 2-D SOM grid uses the unified distance matrix (U-matrix)

introduced by Ultsch and Siemon [329]. At each node on the grid, it depicts the average

distance of the associated prototypes with its neighbors using a gray scale representation.

Thus it shows the clusters as patches of light color (or valley, if 3-d representation is made)

separated by regions of darker color (or mountains in 3-D). A comprehensive account of

various visualization methods for high dimensional data using standard 2-D SOM can be

found in [334]. Recently several sophisticated schemes for SOM-based data visualization

and analysis have appeared. In [156] Kaski et al. proposed a scheme for coloring the

nodes of SOM through a nonlinear projection of the map into a suitable color space. The

projection method preserves the important local distances as well as the global order.

Subsequent projection to a lower dimension (say, 2-D) reveals the cluster structures in

the data. Though SOM produces a topology preserving mapping, it is not distance-

preserving. On the other hand Sammon’s projection [145] tries to preserve the distance,

but does not produce any mapping function. Thus to accommodate new data points,

whole projection has to be computed again. In [264] Pal and Eluri proposed a method

of using SOM to perform data reduction first, then apply Sammon projection to the

66



set of weights generated by SOM. Then a multi-layer perceptron (MLP) is trained with

the weight vectors as input and the corresponding Sammon projections as the target.

Thus, the MLP is able to realize the mapping which is equivalent to the Sammon’s

projection. Now the MLP is used for projection of complete data set for achieving a

distance preserving projection. The method also serves the purpose of dimensionality

reduction of the data. In [182] König proposed a scheme which first uses SOM for data

reduction and then Sammon’s non-linear mapping (NLM) of the prototypes followed by

a NLM recall (NMLR) algorithm for a distance and topology preserving mapping of the

whole data set. In the same paper he also proposed a fully connectionist method similar

to Pal and Eluri. He applied the methods to large data sets and found that the hybrid

method (using NMLR) is more stable and efficient than the fully connectionist method.

In [316] Su and Chang proposed a new variant of SOM called “double self-organizing

map” (DSOM) where the position vector of the nodes are also modified along with the

weight vectors so that for similar data both the weights as well as node positions of

the nodes are close. In [362, 361] Yin introduced a novel method called “visualization-

induced SOM” (ViSOM) for multivariate data projection. Here also the aim is to produce

a mapping with preservation of both topology and distance. Here the SOM update rule

for the neighbors are modified to constrain the lateral contraction force between the

neighboring neurons and the winner neuron. In [177] Kohonen and Oja proposed a

method for visual feature analysis using SOM. Among others Rauber et al. [289] used a

growing hierarchical SOM (GHSOM) for exploratory analysis of high-dimensional data.

The method enables the analyst to discover hierarchical structure in massive volume of

data. Alahakoon et al. [7, 8] used a dynamic growing SOM that can be used to discover

cluster structures in the data in different level of details. Marsland et al. [239] proposed

a growing SOM suitable for handling dynamic input distribution and novelty detection.

A number of visualization methods for exploration of financial data are presented in [72].

Apart from using SOM for gaining information about the structure of the data distribu-

tion, it has also been used for finding the actual clusters. However, unlike most clustering

algorithms, which attempt to find as many prototypes as the number of clusters, in SOM

each potential cluster usually is presented by many prototypes. To make the clustering

result interpretable, smaller number of clusters need to be identified. Hence to detect

the clusters the SOM is usually augmented by a clustering of its prototypes. Such an

approach can be found in [335], where SOM is used for data reduction and subsequently

clustering of the prototypes is performed. Apart from the generic SOM based methods

for data mining described above, SOM has been used in many application-specific data

mining schemes. Among such recent works, in [308] SOM is used to prepare a map of

web pages based on user navigation pattern. Kim and Cho [163] used fuzzy integral

based method with an ensemble of adaptive SOMs for classifying web pages. Laakso et

67



al. [195] used SOM for mapping web link information. In [210] and [223] SOM-based

tools for customer segmentation is developed. In [132] and [133] Hsieh used SOM for

developing behavioral scoring model and credit scoring model respectively. SOM is also

used for mining association rules in [49]. Kasbov et al. [150] used SOM for On-line de-

cision making and prediction of financial and macroeconomic parameters. In [23] Bauer

developed a SOM based tool for strategic decision-making in investment.

The SOM is also finding increasing attention for information retrieval tasks such as

classification and indexing of text documents and images. With huge proliferation of

text documents in electronic format, the traditional methods for searching documents

such as keyword searching, manual categorization and indexing are becoming increas-

ingly inadequate. For effective retrieval of documents one needs automated methods for

content-based organization and retrieval. The first attempt to use SOM for information

retrieval using text documents was probably due to Lin et al. [221] back in 1991. They

formed a small map of scientific documents using the words in the titles only. However,

to devise such methods effectively, one requires to represent the information content of

a whole document in form of a numerical vector. A common method is to form a vector

describing a document such that each component refers to some word and it is repre-

sented by some increasing function of the word frequency multiplied by an importance

factor. This is known as vector space model. However, here each document vector has

the dimension equal to the size of the vocabulary, which is vary large (usually of the or-

der of tens of thousands for document collections of even moderate size). To reduce the

dimensions to a manageable level various methods such as manual restrictions on the size

of the vocabulary, latent semantic indexing, MatchPlus method etc have been devised

[154, 245]. There are other issues like context sensitivity, synonymous words etc. which

complicates the problem. In a comprehensive work, Kohonen and his coworkers devel-

oped the WEBSOM [154] method based on SOM algorithm that produces a document

map based on the similarity of document contents. The method addresses several issues

involved with text document organization and retrieval. Here random mapping method

[293] used for dimensionality reduction without reduction of vocabulary. The average

context of the words are encoded using SOM by forming a “word category map”. The

final document map is generated using the response of the word category map to the

input vectors. The resulting map can be produced graphically to provide a graphic inter-

face for document searching. A web-based demonstration of the method can be found in

the WWW address http://websom.hut.fi/websom/. The method has been further refined

with introduction of a batch version of SOM algorithm in [175]. Among other works on

document classification using SOM, Lin [220] extended the earlier work in [221] to use

full-text documents. The hierarchical SOM is used by Merkl [245] to cluster documents

containing descriptions of software library components. Chen et al. [51] used SOM for

68



categorization and searching of internet documents. Recently Pullwitt [287] attempted

to enhance the document clustering performance by integrating contextual information.

Yang and Lee [358] proposed a SOM-based text mining method for generation of web

directories. In [259] Ong et al. demonstrated an application of a hierarchical knowledge

map for online news.

Content-based image retrieval (CBIR) is another challenging task related to informa-

tion retrieval. Researchers have applied SOM to develop quite a few CBIR methods. In

[51] an interactive method was developed where the local color features of a region-of-

interest are used for image retrieval. Laaksonen et al. [196, 198, 197] developed PicSOM,

that uses tree-structured SOM for interactive image retrieval. The method utilizes rel-

evance feedback to fine tune the search process. Liu et al. [225] developed a retrieval

method for lung CT images that utilizes the texture and geometrical shapes in the query

image. Wu et al. [351] developed a SOM-based system for image retrieval from web

that utilizes textual information about the image also. In [318] and [359] CBIR methods

based on the shape of the objects in the images are developed.

The SOM has been used extensively for pattern recognition tasks in bioinformatics area

( 268 research papers as identified in [257]). Analysis of gene expression data and protein

sequence data are among the most challenging tasks in bioinformatics. In [253] Nikkilä

et al. developed a SOM based method for analysis and visualization of gene expression

data. In the same article they also provided a review of contemporary works in the field.

In a more recent work Ressom et al. [290] proposed a method using adaptive double self-

organizing map for clustering of gene expression profiles. Similarly, SOM has been used

extensively for analysis of proteins [12, 97, 111, 134]. Recently Kohonen and Somervuo

[180, 312] developed an extension of SOM algorithm that can handle nonvectorial data

which is suitable for analyzing sequence data in its original symbolic form.

Analysis of satellite images is another area of immense practical value where there is an

ever increasing demand for sophisticated pattern recognition techniques. Neural network-

based techniques have always been used extensively for this purpose [14, 27, 36, 112, 272].

Many researchers have developed SOM based systems for the same [19, 46, 60, 258,

323, 337, 354]. In [217] Lin et al. used multiple SOMs, each working with different

set of features, cascaded with a neural fuzzy network for multispectral satellite image

classification. In the current thesis we develop SOM based methods for generating and

tuning fuzzy rule bases for classification task which are tested successfully for the analysis

of multichannel satellite images with good performance. Here we also develop classifiers

those use context information for the final decision making. Such contextual schemes

are eminently suitable for satellite image analysis tasks.

69



The image and signal processing are other areas where SOM has been used extensively

[255, 256] (548 papers on image and video processing and 157 papers on signal processing

as counted by Oja et al. [257]). The excellent vector quantization capability of SOM

algorithm makes it especially suitable for designing vector quantizers for image/signal

compression. First use of SOM for designing vector quantizer for image compression

probably was due to Nasrabadi and Feng [249] back in 1988. Subsequently many re-

searchers developed data compression systems using SOM [9, 20, 35, 44, 45, 86, 120, 121,

212, 235, 284, 311, 321, 357]. In the current thesis we develop SOM based methods for

vector quantizer design. These methods deal with two aspects of VQ design, (1) design

of VQ aimed at reducing blockyness in the reproduced images and (2) fast codebook

search methods for efficient encoder design.

70



Chapter 3

SOM: Robustness, Simplification

and Topology Preservation1

1First part of this chapter has been published in [199] and the rest has been published in [202].



3.1 Introduction

We have seen in Section 2.3 that SOM has some interesting as well as useful properties.

As a consequence, SOM algorithm has been investigated by many researchers and been

applied to diverse fields of applications (Section 2.4). In the current thesis we develop

some methods based on SOM for designing classifiers and vector quantizers. Before we

describe them, in this chapter we report the results of some empirical studies on the

robustness of the SOM algorithm. One of the most interesting properties of SOM is

the topology preserving mapping of the input data to a regular output lattice. Several

methods for quantitatively measuring the topology preservation of an SOM has been

proposed by researchers [22, 73, 80, 79, 241, 294, 317, 339, 370]. In Section 2.3.1 we have

described the popular measure “topographic product (P )” due to Bauer and Pawelzik

[22] and the “topology violation measure (V )” introduced by Su et al. [317]. In this

chapter we introduce a new quantitative measure of topology preservation based on the

Kendall’s rank correlation coefficient [160]. We use these three measures in two empirical

studies reported in this chapter. We also propose a visualization scheme, that helps one

to assess the level of topology preservation quite easily. First we study the robustness of

SOM algorithm with respect to systematic as well as random absence of lateral feedback

connections. Subsequently, we shall study some simplified variants of SOM with respect

to topology preservation and vector quantization.

3.2 A new quantitative measure of topology preser-

vation

The measure for topology preservation developed here is based on its most intuitive

definition, i.e., under a topologically ordered mapping, two data points, close to each

other in the input space are mapped to the same point (node) or nearby points in the

output space of the map. Since the weight vectors of the SOM nodes are known to

represent the distribution of input data, if topological order is preserved, the nodes

located further on SOM lattice should have higher dissimilarity between their wight

vectors than those which are closer together on the SOM lattice. Thus if we consider

an individual node of the map, if topological ordering is preserved in the map, then the

list of remaining nodes in SOM ranked by their distance from the chosen node in the

input space and the same in the output space (i.e., SOM lattice) should have significant

similarity. A quantitative measure of this similarity will indicate topology preservation

with respect to the selected node. Kendall’s rank correlation coefficient [160] can be

used for such a measure. For assessing the overall topology preservation of the map the

72



average of the measures for individual nodes can be used.

3.2.1 Rank Correlation

When objects are arranged in order according to some quality/properties which they all

possess to a varying degree, they are said to be ranked with respect to that quality. The

arrangement as a whole is called a ranking. If the objects possess another such quality,

another ranking of the same objects can be obtained. Thus several rankings of the same

set of objects are possible depending on different qualities they possess. Naturally, if

there is any relationship among these qualities, then it is likely to be reflected in the

corresponding rankings also. Kendall’s τ [160] coefficient is a measure of such relation.

It is called rank correlation between coefficient two rankings.

Kendall’s τ coefficient is computed as follows:

Let R1 and R2 be two rankings of a set of n objects. Define the natural order

1,2,... as direct order (i.e., the pair, say, 2,3 is said to be in direct order and

3,2 is said to be in inverse order). Now for every distinct pair of objects from

the set of n objects, set the value v1 = +1 if they are in direct order in R1, set

v1 = −1 if they are in inverse order. Similarly set v2 according to the order

in R2. Multiply v1 and v2 to obtain the score for the pair of the objects. Let

S be the sum of the scores for all pairs of objects (total n(n−1)
2

pairs). Then

τ is defined as,

τ =
2S

n(n− 1)
(3.1)

τ has the following properties:

1. If the rankings are in perfect agreement, i.e., every object has the same rank in

both, then τ is +1, indicating a perfect positive correlation.

2. If the rankings are in perfect disagreement, i.e., one ranking is the inverse of other,

then τ is -1, indicating a perfect negative correlation.

3. For other arrangements τ should lie between these limiting values. Increase of

values from -1 to +1 corresponds to increasing the agreement between the ranks.

However, it may happen that several objects possess a quality to the same degree. This

is the case of tied ranks. The common practice is to mark such objects in the rankings

and make their contribution to the score 0 (thus, the score due to a tied pair in any of

73



the ranking becomes 0). If there are u objects tied among themselves in R1, then u(u−1)
2

pairs will contribute zero to the score S. Similarly, v tied objects in R2 will cause v(v−1)
2

pairs to contribute 0 to S. So total number of tied pairs in R1 is

U =
1

2

∑
u(u− 1)

and in R2 is

V =
1

2

∑
v(v − 1)

where the summation
∑

is over all tied scores in the respective ranking. Thus, τ for

tied rankings is defined as

τ =
S√[

1
2
n(n− 1)− U

] [
1
2
n(n− 1)− V

] (3.2)

3.2.2 Rank Correlation-based measure of topology preserva-

tion

In an earlier work Bezdek and Pal [33] proposed a rank correlation based index of topol-

ogy preservation using Spearman coefficient [160]. However, they have used the rankings

of the elements of internode distance matrix computed in the input space and the output

grid. In our approach, in the line of [22], we first consider each individual node and then

aggregate the result to arrive at the overall figure. Consider a node j in a SOM with

N nodes. Given node j, two ordered lists of N − 1 nodes can be prepared based on

their distances from the node j in the output space and in the input space. Similar

orderings of nodes are also used for computing topographic product [22]. Though we

have discussed them in the earlier chapter (Section 2.3.1), for the sake of completeness

of the discussion we present the concept again.

Let us denote the output space, a finite regular grid V (<q) ∈ <q and input space (i.e.,

weight space) Rp of SOM as U and V respectively in the following discussion.

The Euclidean distance in U is denoted as

dU(j, j
′
) = ‖j − j

′‖ (3.3)

and in V

dV (wj,wj′ ) = ‖wj −wj′‖ (3.4)

where j, j
′ ∈ {(x, y) | x = 1, 2, . . . , m and y = 1, 2, . . . , n} for q = 2.

The notation of nearest neighbor indices is as follows:

Let nU
k (j) denote the k-th nearest neighbor of node j with the distance measured in

output space, i.e.,

nU
1 (j) : dU(j, nU

1 (j)) = min
j
′∈U\{j}

dU(j, j
′
)

74



nU
2 (j) : dU(j, nU

2 (j)) = min
j′∈U\{j,nU

1 (j)}
dU(j, j

′
)

...

In the same way let nV
k (j) denote the k-th neighbor of j but with the distance measured

in the input space between wj and wj′ :

nV
1 (j) : dV (wj,wnV

1 (j)) = min
j′∈V \{j}

dV (wj,wj′ )

nV
2 (j) : dV (wj,wnV

2 (j)) = min
j
′∈V \{j,nV

1 (j)}
dV (wj,wj

′ )

...

It is easy to see from the definition of nU
k (j) and nV

k (j) that the degree of topology

preservation with respect to the node j is reflected in the degree of similarity of these two

rankings. For good topology preservation these two rankings should be highly correlated.

We can measure the degree of correlation using Kendall’s rack correlation coefficient τ .

However, due to regular grid structure of the output space, there will be considerable

number of ties in the distance values measured in the output space (i.e., the sequence

{nU
k (j)}). Therefore, we need to use the Eq. (3.2) for computing τj, the rank correlation

between {nU
k (j)} and {nV

k (j)}. An overall estimate of topology preservation for the whole

map can be obtained by averaging the τjs as follows:

T =

∑N
j=1 τj

N
. (3.5)

The topology preservation measure T proposed here do not attend the extreme values

(+1/-1) due to large number of ties in the distance values over the output space, however

as we shall demonstrate, it is very useful in comparing the topology preservation between

SOMs of equal sizes.

3.2.3 Experimental study on the topology preservation mea-

sures

To have a closer look at the behaviors of three quantitative measures of topology preser-

vation, we conduct an experiment. We take several snapshots of a 6×6 map being trained

with 2-D data uniformly distributed over a square, at various intermediate stages of train-

ing. During the training the topological ordering builds up with increasing iteration. We

measure the degree of topology preservation for these snap shots using the indexes P , V

and T and compare them to get an idea of effectiveness of these measures. Before that,

75



Iteration no. 1

10 20 30

5

10

15

20

25

30

35

Iteration no. 10

10 20 30

5

10

15

20

25

30

35

Iteration no. 100

10 20 30

5

10

15

20

25

30

35

Iteration no. 1000

10 20 30

5

10

15

20

25

30

35

Iteration no. 5000

10 20 30

5

10

15

20

25

30

35

Iteration no. 10000

10 20 30

5

10

15

20

25

30

35

Figure 3.1: Distance based visualization of topological ordering process during the train-

ing. The gray values depict the normalized internode distances. The upper right triangle

of the matrix depicts the inter-node distances on the SOM grid, the lower left triangular

matrix depicts the internode distances in the input space.

to visualize the progress of topological ordering with iteration, we present a internode

distance based visualization of the SOM under training. In this visualization we combine

the internode distances in the SOM grid and in the input space in a single matrix. The

upper right triangle contains the internode distances on the SOM lattice and the lower

left triangle contains the internode distances in the input space. Both types of distances

are scaled to lie in [0,1]. To visualize the matrix elements are represented by gray values

[0,255] in proportion of their values. The distance matrices for the training snapshots are

shown in Figure 3.1. From the figure the level of topological ordering is easily discernible

from the level of similarity of two triangular halves of the matrices. The successive panels

in the figure clearly show the gradual improvement in topological ordering of the SOM

with progress of the training.

The variation of topology preservation property during the training as measured with

76



10
0

10
1

10
2

10
3

10
4

10
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration number

T
op

og
ra

ph
ic

 p
ro

du
ct

 P

Variation of P with iteration

Figure 3.2: Topology preservation during different stage of training of SOM measured

with topographic product P

the indexes P , V and T is depicted in Figures 3.2, 3.3 and 3.4 respectively. It can

be seen from the figures that all of them depict the gradual improvement of topology

preservation of the SOM as the training progresses. However, some differences in the

behavior of the measures can be observed.

The topographic product P approaches the value zero for the perfect topology preser-

vation. The magnitude of difference from zero indicates the lack of topology preservation.

Though, in Figure 3.2 the variation of P clearly demonstrates the progress of SOM with

iterations in preserving topology, the range of values for P is very small. Even at the

beginning (i.e., before the training started), its value is only 0.05. Hence, this measure is

difficult to use meaningfully for a single SOM. It can be better used in comparing prop-

erties of different SOMs. This measure is also affected heavily with dimension mismatch

between the SOM lattice and the input data.

The measure for topology violation V becomes zero when topology is preserved and in-

creases rapidly with violation. As can be seen from Figure 3.3, it starts with a high value

(77) and varies rapidly. Thus it gives a good resolution when topology is significantly

violated. However, as can be seen from the figure, it attains low values at iteration 500

onwards. Thus, it lacks differentiation ability when topology preservation is reasonably

good and cannot detect further improvement. Its range of values increases rapidly with

increase of SOM size. Hence, it is difficult to use it to compare SOMs of different sizes.

The rank correlation based index T (Figure 3.4) proposed here is an intuitive yet useful

measure with good resolution both at the lower and the higher ends. Its value increases

with increase of topology preservation. The value varies here over a range of 0 to 0.35

77



10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

Iteration number

T
op

ol
og

y 
vi

ol
at

io
n 

V

Variation of topology violation V with iteration 

Figure 3.3: Topology violation during different stage of training of SOM measured with

V

10
0

10
1

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number

T
op

ol
og

y 
pr

es
er

va
tio

n 
in

 T

Topology preservation with iteration measured in T

Figure 3.4: Topology preservation during different stage of training of SOM measured

with T

78



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
SOM output at iteration 1000

X >>>

y 
>

>
>

Figure 3.5: The twisted SOM at an intermediate stage of training

(approximately). Thus, it overcomes the major shortcomings of other two measures

studied here. Further, it can be seen in Figure 3.4 that the value drops at iteration 1000.

This is due to the fact that the map is twisted (Figure 3.5) at that stage of training. Out

of the three measures studied, only T is capable of identifying such a situation clearly.

3.3 Robustness of SOM in preserving topology with

respect to link density

Robustness of a system implies its ability to retain functional properties under non-ideal

operating conditions. The theoretical studies of robustness of neural networks are also

part of the general theoretical studies on them. Here, usually the aim is to explore

the boundary conditions of the system and environmental parameters within which the

network performance can be assured. The theoretical studies on the properties of SOM

are reviewed in Section 2.4.1. However, in case of SOM, satisfactory theoretical results

are available mostly in very simple cases, whereas SOM is applied in practice to handle

many complex problems. Here we are interested in studying the capability of SOM

to retain its important functional property “topology preservation” when certain type

of partial system failure occurs. In [226] Liu and Michel analyzed the robustness of a

class of bipolar associative memory neural networks with sparse interconnection under

perturbation. They analyzed the upper bound of the perturbation of parameters and

presented an economic design procedure for VLSI implementation of the networks. In

this work we analyze empirically the robustness of SOM under certain conditions.

79



The SOM is originally inspired by the discovery of different spatially ordered maps in

the brain [11, 165, 174]. Many of them are found in cerebral cortex area for different

perceptual tasks. Originally Kohonen modelled the SOM algorithm in the form of a

system of coupled differential equations [166, 167]. The computer simulation using them

treated each neuron independently and did not demand any synchronization among the

neurons. The topological ordering is achieved due to various lateral feedback connections

among the neighbors. However, such a simulation (mimicking the biological neurons) is

computationally intensive and ill-suited for practical applications. For practical purposes

a simpler algorithm [169] is used which leads to functional appearance of the topologically

ordered maps.

The simplified SOM algorithm (described in Figure 2.2) is usually implemented by

simulating it on serial computers. During the training, in each iteration, the update

of the winner and its neighbors are done in a way equivalent to a parallel operation.

For quick learning, initially the neighborhood is defined large enough to cover almost

whole viewing plane (i.e., SOM lattice). Thus there is an implicit assumption at work

that every neuron (a possible winner) is connected to all the other neurons by some

kind of direct communication link, so that the winner can induce the update of another

neuron if it happens to fall within the neighborhood of the winner. Such a scenario

of complete connection among biological neurons is highly unlikely. Also in hardware

implementation of SOM, where parallel operations can be achieved, this kind of complete

connection is difficult to maintain. Here we investigate the effect of partial absence of

such connections on the topology preservation property of the practical SOM algorithm.

The absence of the connection between a neuron (say a) and another (say b) will result

in no update of b when a is a winner, even though b falls within the neighborhood of

a. We shall call the proportion of existing connections between a neuron and rest of the

neurons as the “link density” of the neuron, expressed in percentage value. A value of

100% means complete connection (the usual SOM), while 0% signifies total absence of

connection, that results in absence of neighborhood update (i.e., the learning becomes

simple competitive learning).

In this context, we can think about two different types of deviations from full connec-

tivity. The first case can be thought as natural or systematic one. A neuron is more likely

to be connected to the nearby neurons than to those far away. This can be modelled

using a probability distribution such that the probability of a link between two nodes

being present is inversely proportional to the Euclidean distance in the output space

between the nodes. This situation is analogous to what can be expected in biological

networks or may be desirable for designing hardware implementations economically.

The other situation involves random absence of links. The situation is analogous to

80



damage caused in the biological maps due to accident and diseases or random failures

of components in hardware implementations. In the following we investigate empirically

both the situations separately with different levels of link densities. The study will

provide some indication of the robustness/fault-tolerance of the algorithm especially if

the training algorithm is implemented on hardware to run in parallel mode. To measure

the topology preservation property we use three indexes, (1) topographic product [22]

P (Eq. (2.11)), (2) measure of topology violation V proposed by Su et. al [317] (Eq.

(2.13)) and (3) rank correlation based measure T (Eq. (3.5)) introduced in this chapter.

3.3.1 Experimental Results

The data set used in all experimental studies reported here contains ten thousand 2D

points uniformly distributed over a square. We have studied both the cases described

above: 1) when the probability of a link existing between two nodes is inversely propor-

tional to their distance on the SOM lattice and 2) when the absence of links are random.

The former situation is simulated using the procedure SelectNeighbors(j). Given a

target value of link density LD, in a SOM of size N×N , each node j should be connected

to n = (N2 − 1)× (LD/100) other nodes in the SOM. The outline of the procedure for

node j with lattice coordinate (a, b) is given in the Figure 3.6.

For the second case, for a node j, n connected nodes are chosen randomly from the set

of N2 − 1 remaining nodes.

For both the cases we have experimented with link densities varying from 0% to 100%

in steps of 5%. For each value of link density 5 SOMs are trained. All the SOMs are

of size 10 × 10. For a particular link density, all parameters except the randomization

seeds for different runs, are identical. The results for case 1 and case 2 are summarized

graphically in Figures 3.7 and 3.8 respectively. Each of the figures is divided into four

panels. The panel (a) contains the view of the maps for some selected SOMs with

different link densities. The panels (b)-(d) depict the variation of topology preservation

property w.r.t the link density measured in topographic product P (Eq. 2.11), index

of topology violation V (Eq. 2.13) and the rank correlation based index T (Eq. 3.5)

respectively. In each of these panels the measurements for 5 SOMs for each link density

is marked with the symbols ◦, +, ×, ¦ and ¤ respectively and the solid line represents

the averages of 5 measurements.

As expected, in both of the cases, with decrease in link density the topology preser-

vation suffers. All the three indexes agree over that. However, the topological product

values are difficult to interpret in this context since its deviation from 0 (the perfect

preservation) is more of a indicative of dimensional mismatch between input and out-

81



Procedure NeighborSetj = SelectNeighbors(j)

For all nodes k with lattice coordinate (x, y), k 6= j compute

dinv(k) ← 1√
(a−x)2+(b−y)2

End For

For i = 1 to i = N2 − 1

Pr(i) ← dinv(i)PN2−1
k=1 dinv(k)

End For

For i = 2 to i = N2 − 1

CumPr(i) ← Pr(i) + Pr(i− 1)

End For

NeighborSetj = φ

While | NeighborSetj |< n

Generate a random number R from a uniform random number generator.

Perform a binary search in CumPr to find the entry, nearest and larger than R.

Convert the index of the entry found to the corresponding lattice coordinate (x′, y′).

If (x′, y′) 6∈ NeighborSetj

NeighborSetj ← (x′, y′).

End If

End While

Figure 3.6: The procedure for selecting connected nodes in case 1

82



Figure 3.7: The graphical results when the probability of absence of a link is proportional

to the interneuron distance. (a) Views of some SOMs with different link densities. (b)

Variation of topographic product P with link density. (c) Variation of V with link

density. (b) Variation of T with link density.

83



Figure 3.8: The graphical results when the probability of absence of a link is random. (a)

Views of some SOMs with different link densities. (b) Variation of topographic product

P with link density. (c) Variation of V with link density. (b) Variation of T with link

density.

84



put spaces. The other two indexes reflect the situations better, though V shows relative

insensitivity to lack of topology preservation due to cases like twisting of the map. More-

over, beyond a threshold on link density, V increases rapidly. The variation of the third

coefficient T is more consistent with the visual inspection of the maps. T depicts, what

one can expect looking at the maps. It is also sensitive to the changes due to twisting

of map.

All three measures indicate good robustness of the SOM algorithm in case 1. It can

be seen from Figure 3.7 that the significant decrease of topology preservation cannot be

detected until the link density falls to nearly 40%. In contrast, in case 2 considerable

decrease in topology preservation can be observed even at link density as high as 90%.

3.4 Simplified SOMs

The topology preservation property of SOM is attributed to the neighborhood update

mechanism of SOM during the training stage. During the training, for a winner node r,

the node i is updated according to the rule [169]:

wi,t =

{
wi,t−1 + hri(t)(x−wi,t−1) if i ∈ Nt(r)

wi,t−1 otherwise,
(3.6)

where hri(t) is the product of a learning parameter αt and a lateral feedback function

gt(dist(r, i)). Thus the update of a node i for winner node r depends on two factors, 1)

the strength of lateral feedback function and 2) the width of the neighborhood function

Nt(r). The first factor determines the extent of the update while the second determines

whether the node qualifies for update at all. These two restrictions together implement a

localized nature of the learning. In [174] the “mexican hat” function (Figure 3.9(a)) was

recommended as an ideal lateral feedback function as it is closer in functionality to the

kind of interaction observed in biological systems. However, in practice that is seldom

used. Instead the Gaussian function (Figure 3.9(b)) gt(dist(r, i)) = exp−dist2(r,i)/σ2
t is used

almost exclusively. Though the Gaussian function is a monotonically decreasing one, it

attains value 0 only at infinite distance. Hence to use the function alone without explicit

neighborhood boundary will require update of all nodes, though for most of them the

amount of update is negligible. This necessitates explicit definition of the neighborhood

boundary to achieve computational efficiency in simulation of standard SOM algorithm

on a sequential computer. On the contrary, for a hardware implementation of SOM

that could exploit the high degree of parallelism inherent in the architecture, the design

becomes more complicated by the notion of an explicit neighborhood boundary and a

complex form of lateral feedback function used in the algorithm. Hence, it would be

85



−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Mexican hat
−5 0 5
0

0.2

0.4

0.6

0.8

1

(b) Gaussian

−5 0 5
0

0.2

0.4

0.6

0.8

1

(c) Quadratic
−5 0 5
0

0.2

0.4

0.6

0.8

1

(d) Linear

Figure 3.9: Lateral feedback functions.

useful if simpler lateral feedback functions, for which explicit neighborhood boundary

need not be specified, can be found with similar performance. They can ease hardware

implementations of SOM significantly.

On the other hand, there are cases where a special neighborhood function might be

useful. It was noted by the researchers that due to fixed size and lattice structure of

standard SOM, for good quality of mapping it is necessary that the intrinsic dimension

of the input data and the SOM lattice should approximately match [240]. We have

discussed this issue and various variants of SOM for high dimensional complex data

proposed by researchers in the section 2.3.5. Though topology preservation is one of

the most interesting property of SOM, it is also an attractive tool where the aim is to

extract prototypes or data reduction. This is due to the fact that with neighborhood

update during the training, under-utilization of the prototypes is less likely compared

to clustering algorithms like k-means. This problem is considered in [147] and it was

found that for standard SOM due to its rigid lattice structure and the conventional

neighborhood function defined over the lattice, for complicated data sets, there might

sill be some prototypes placed in a region where no data point exists. Kangas et al.

[147] proposed the use of alternative neighborhood functions. They specifically studied

the “minimal spanning tree (MST)” neighborhood and reported that to be superior to

standard SOM with square neighborhood function for prototype extraction tasks from

86



non-uniform input data distribution. It must be noted that by using such a specialized

neighborhood function, the topology preservation is likely to suffer [174]. However, if the

major aim is prototype extraction, a neighborhood function compatible with the data

distribution is likely to perform better.

In the following we describe several simplified variants of SOM and their performances.

We divide the variants into two broad classes. The first one consists of SOMs with

different forms of lateral feedback functions which are detailed in subsection 3.4.1, the

other has the SOMs with several variation of tree neighborhoods and these are described

in subsection 3.4.2. We call the former class simplified SOM (SSOM) and the later tree

SOM (TSOM). The topographic product P and the rank correlation coefficient-based

measure T are used as measures of the topology preservation. The data sets used include

(1) uniform square (uniform distribution of 2-D points over a square), (2) two spheres

(3-D points distributed uniformly over two spheres), (3) iris data (150 4-d points), and

(4) Y-data (2-d points randomly distributed on a Y).

3.4.1 Simplified SOMs

Though the possibility of several different lateral feedback functions for Kohonen’s SOM

is mentioned in [124], no detailed studies of these possibilities have come to our notice.

Here we explore three lateral feedback functions. The first one is the Gaussian lateral

feedback function:

gt(d) = expd2/σ2
t ,

σt being the standard deviation of the Gaussian distribution. But the update of neighbors

are not limited by the explicit neighborhood Nt(r). All the nodes are updated. The

extent of update depends on the value of gt(d), where d = dist(r, i), r being the winner

node. We call this one as SSOM with pure Gaussian neighborhood. We call it simplified

as we abandon the use of any explicit neighborhood limit.

Other two SSOMs explored here employ quadratic and linear feedback functions as

follows:

The quadratic function:

gt(d) = 1− d2

b2
t

(Figure 3.9(c))

The linear function:

gt(d) = 1− d

bt

(Figure 3.9(d))

where d is the distance on the lattice of the node from the winner and bt is the radius

of the circle centered at the winner beyond which gt(d) = 0. bt decreases with time.

87



3.4.2 SOMs with Tree Neighborhood

Tree structures are suitable for defining an unambiguous neighborhood on the set of

weight vectors because they are acyclic by definition. The effect of the neighborhood

defined over a minimal spanning tree (MST) constructed on the set of weight vectors is

studied in [147]. It was found to be more efficient in terms of prototype placement for

non-uniform data. In [147] it was not clearly mentioned on which underlying graph the

MST was constructed. To construct an MST we can use different graphs depending on

various constraints imposed on the internode connectivities over the SOM lattice. Here

we study two possibilities: (1) a complete graph on the weight vectors so that there

exists one edge between every pair of nodes, which we assume to be the case studied

in [147] and (2) a graph on the weight vectors in which each node is connected to its

immediate neighbors in the logical output space (i.e., SOM lattice). We call the MST

constructed over the former as complete MST (CMST) and the later as restricted MST

(RMST). As evident from their construction, RMST requires much less computations

than CMST because for the former the underlying graph has much less number of edges.

We investigate the performance of both in terms of prototype placement as well as

topology preservation.

In recent time the SOMs with tree neighborhood has been used for skeletonization of

shapes in an image [306]. For this problem, along with good prototype extraction, a

spatial connectivity among the prototypes is very useful for automated processing of the

skeletonized shape. This can be achieved with suitable TSOMs. In [306] Singh et al.

used MST-based SOM proposed in [147]. The TSOM with restricted MST neighborhood

proposed here can be a computationally less expensive alternative for the task than the

TSOM with CMST neighborhood.

Authors of [147] suggested re-computation of the MST once in every 200-500 iterations.

However, computation of MST is quite expensive. If the aim is to extract prototypes

from complex data without under-utilization of the prototypes, not topology preserva-

tion, then the essential requirement is to define an unambiguous neighborhood function,

so that for a given winner there exists an unambiguously identifiable set of other nodes

to be updated. In this regard, any tree neighborhood defined over the nodes will suf-

fice. Also the recomputation of the tree is not necessary. In this section we propose a

computationally inexpensive tree neighborhood. Here a complete graph is assumed, a

list of available nodes is kept, from which nodes are deleted as soon as they are included

in the tree. Initially the list contains all nodes. A starting node is picked at random

and then on each step an available node is picked at random and added to the tree as

a neighbor of a node randomly picked from those already on the tree. This is continued

till all the available nodes are exhausted. This tree is used to define the neighborhood

88



SOM Uniform Square Two Spheres Iris Y-Data

Type P V T P V T P V T P V T

SOM 0.0031 0 0.3546 0.0096 0.3609 0.2979 0.0287 2.3089 0.2065 0.0294 5.5005 0.1935

Standard

SSOM 0.0025 0 0.3944 0.0123 0.2928 0.2928 0.0279 1.0966 0.2441 0.0326 4.6675 0.1974

Gaussian

SSOM 0.0030 0 0.3484 0.0054 1.6225 0.2353 0.0243 1.4319 0.2552 0.0303 5.5246 0.1630

Quadratic

SSOM 0.0031 0 0.3652 0.0072 1.3682 0.2162 0.0235 2.2408 0.2378 0.0929 5.4401 0.1878

Linear

Table 3.1: Performance measure of the standard SOM and SSOMs with respect to topol-

ogy preservation.

throughout the training, i.e., the tree is not recomputed during the training. We call this

one arbitrary tree neighborhood (ATN). This variant of TSOM is not likely to preserve

topology, but can be used for prototype extraction in an inexpensive way. This can be

more preferable than a pure competitive learning network (i.e., with no neighborhood

update) since it has less chance of under-utilizing the prototypes.

3.4.3 Experimental Results

The visual displays of the standard SOM and the three SSOMs trained with the Uniform-

square data and plot of their topographic products are shown in Figure 3.10. The visual

displays show, the simplified versions are at least as good as, if not better than, the

usual SOM. This is also confirmed by the results obtained on topology preservation

as presented in Table 3.1. In this respect SOM is quite robust with respect to lateral

feedback function and choice of neighborhood.

Table 3.1 shows the quantitative measure of the topology preservation of the SOMs

measured by topographic product P , topology violation V and rank correlation-based

measure T for 4 training data sets. In all experiments a 6×6 SOM is used. The reported

figures are averages of five runs with different initializations. For each data set the SOMs

are trained for the same number of iterations with the same computational protocols.

Figure 3.11 shows the visual displays of standard SOM and three TSOMs trained with

Y-data. For Y-data prototype placement is better for the SOMs with tree neighborhood.

When the data have linear structure, tree neighborhood is expected to be better for

prototype generation. The performances of the TSOMs for several input data sets with

respect to topology preservation are summarized in the Table 3.2. Table 3.2 includes

the results for standard SOM also for an ease of comparison. As expected, topology

preservation is not good with tree neighborhood.

89



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Standard SOM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

SSOM (Gaussian)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

012345

67
8

910
11

12
13

141516
17

181920212223

242526
27

2829

303132333435

SSOM (Quadratic)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

012345

6
78910

11

12
13

14
151617

18
19

20
212223

24
2526

27
2829

30
3132333435

SSOM (Linear)

Figure 3.10: (a)Visual display of standard SOM trained with Uniform square data.

(b),(c) and (d) are visual displays for SSOM(Gaussian), SSOM(Quadratic) and

SSOM(Linear) respectively

SOM Uniform Square Two Spheres Iris Y-Data

Type P V T P V T P V T P V T

SOM 0.0031 0 0.3546 0.0096 0.36 0.2979 0.0287 2.31 0.2065 0.0294 5.50 0.1935

Standard

TSOM 0.0081 59.85 0.0265 0.0510 62.70 0.0232 0.0823 63.83 0.0286 0.0947 59.69 0.0261

Comp. MST

TSOM 0.0078 20.36 0.0962 0.0273 22.52 0.1297 0.0425 24.10 0.1011 0.0453 16.91 0.1194

Rest. MST

TSOM 0.0141 74.83 0.0117 0.0576 88.21 0.0093 0.0718 75.65 0.0082 0.1108 86.81 0.0124

Arb. Tree

Table 3.2: Performance measure of the standard SOM and TSOMs with respect to

topology preservation.

90



6 8 10 12 14
5

10

15
Standard SOM

X >>>

y 
>

>
>

6 8 10 12 14
5

10

15
MST Neighborhood

X >>>

y 
>

>
>

6 8 10 12 14
5

10

15
Restricted MST Neighborhood

X >>>

y 
>

>
>

6 8 10 12 14
5

10

15
Arbitrary Tree Neighborhood

X >>>

y 
>

>
>

Figure 3.11: (a)Visual display of standard SOM trained with of Y-data. (b),(c) and

(d) are visual displays for TSOMs using complete tree, restricted tree and arbitrary tree

neighborhood respectively.

(1,1)

(2,1)
(3,1)

(4,1)

(5,1)

(6,1)(1,2)

(2,2)

(3,2)

(4,2)

(5,2)
(6,2)

(1,3)

(2,3)

(3,3)

(4,3) (5,3)

(6,3)(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)
(6,5)

(1,6)

(2,6)
(3,6)

(4,6)

(5,6)(6,6)

MST Neighborhood

(1,1)
(2,1)

(3,1)

(4,1)
(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)(6,2)

(1,3)

(2,3)

(3,3)
(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)
(5,4)

(6,4)

(1,5)

(2,5)

(3,5)

(4,5)(5,5)

(6,5)

(1,6)
(2,6)

(3,6)
(4,6)

(5,6)

(6,6)

Restricted MST Neighborhood

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3)

(2,3)

(3,3)
(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,5)

(2,5)

(3,5)
(4,5)

(5,5)

(6,5)

(1,6)

(2,6)

(3,6)(4,6)

(5,6)
(6,6)

Arbitrary Tree Neighborhood

Figure 3.12: Visual display of the neighborhood function of three TSOMs for uniform

square data. The nodes are marked with their lattice coordinates.

91



5 10 15
5

6

7

8

9

10

11

12

13

14

15

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3) (2,3)

(3,3)
(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)
(5,4)

(6,4)

(1,5)
(2,5)

(3,5)

(4,5)

(5,5)
(6,5)

(1,6)

(2,6)

(3,6)
(4,6)

(5,6)
(6,6)

MST Neighborhood

5 10 15
5

6

7

8

9

10

11

12

13

14

15

(1,1)
(2,1)

(3,1)(4,1)

(5,1)

(6,1)

(1,2)
(2,2)

(3,2)
(4,2)

(5,2)

(6,2)

(1,3)(2,3)
(3,3)

(4,3)

(5,3)

(6,3)

(1,4)

(2,4)
(3,4)

(4,4)

(5,4)

(6,4)

(1,5)
(2,5)

(3,5)

(4,5)
(5,5)

(6,5)

(1,6)

(2,6)
(3,6)

(4,6)

(5,6)
(6,6)

Restricted MST Neighborhood

5 10 15
5

6

7

8

9

10

11

12

13

14

15

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,5)
(2,5)

(3,5)

(4,5)

(5,5)
(6,5)

(1,6)
(2,6)

(3,6)

(4,6)

(5,6)
(6,6)

Arbitrary Tree Neighborhood

Figure 3.13: Visual display of the neighborhood function of three TSOMs for Y data.

The nodes are marked with their lattice coordinates.

92



SOM type Uniform Square Two Spheres Iris Y-data

SOM Standard 47.19 476.77 12.46 12.32

TSOM Comp. MST 57.36 483.92 11.46 9.86

TSOM Rest. MST 57.50 514.11 11.90 9.80

TSOM Arb. Tree 58.77 490.86 11.32 10.65

Table 3.3: Total quantization errors for standard SOM and three TSOMs for four data

sets

It can be seen from Figure 3.11 that for Y-data standard SOM places quite a few

prototype in wrong positions. This is clearly due to incompatibility between the data

distribution and the network topology. Three TSOMs exhibit better performances than

the standard SOM for non-uniform data in terms of prototype placement but their perfor-

mances degrades when topology preservation is considered. Among the TSOMs studied,

the TSOM with RMST neighborhood shows the best performance in topology preser-

vation. In the Figures 3.12 and 3.13 the tree neighborhoods of the trained TSOMs

for the uniform square data and Y data are presented. In these figures the nodes are

marked with their lattice coordinates. Visual observation of these figures also reveals

that for the TSOM with RMST neighborhood there is a tendency of the nodes close on

the lattice being placed closer in the tree neighborhood. This is due to the fact that

the graph considered for constructing the RMST neighborhood takes into account the

spatial neighborhood of the nodes in the output space. This is completely ignored in

other two TSOMs.

Since the major goal of the TSOMs are to extract prototypes efficiently, their ability

in this regard can be measured by computing the “total quantization error” of the pro-

totypes. Let Xi be the set of training samples mapped onto the i-th node (prototype),

i.e.,

Xi = {xk |‖ wi − xk ‖≤‖ wj − xk ‖ ∀j 6= i},
where wi is the weight vector of the i-th node. Then the quantization error due to node

i is

QEi =
∑

xk∈Xi

‖ wi − xk ‖2 .

Thus, for a N ×N SOM the total quantization error is

TQE =
N2∑
i=1

QEi =
N2∑
i=1

∑
xk∈Xi

‖ wi − xk ‖2 .

The total quantization error of the TSOMs along with those of standard SOM for

comparison are presented in Table 3.3. The values included in the table are the average

93



50 100 150 200

0

50

100

150

Image

(a)
50 100 150 200

0

50

100

150

Complete MST neighborhood

(b)

50 100 150 200

0

50

100

150

Restricted MST neighborhood

(c)
50 100 150 200

0

50

100

150

Arbitrary tree neighborhood

(d)

Figure 3.14: Result of skeletonization experimentations with 3 TSOMs.

of five SOMs for each type and each data set. It can be seen from the table that for

Uniform Square the standard SOM has the least error, while with TSOMs the error

increases by roughly 20%. This is expected, since for this data the SOM lattice structure

matches very closely with the data distribution. For the Two Sphere data though the

error for standard SOM is marginally lower, the errors for all four SOMs are fairly close

with a mean about 490 and a ±4% variation. For the Iris data all three TSOMs have

lower error with the TSOM with arbitrary tree neighborhood having the lowest error

(nearly 10% lower than standard SOM). For the Y data also the TSOMs have lower

error, with TSOM using restricted MST neighborhood scoring lowest value 9.8, more

than 20% less than the standard SOM. Therefore, if the prototype extraction is the sole

aim and the data distribution may not match the regular lattice structure of SOM, the

SOMs with tree neighborhoods make good choices. Further, the TSOM with arbitrary

tree neighborhood (ATN) can be a lucrative choice due to its lesser computational cost.

In Figure 3.14 the results of the skeletonization experiments with three TSOMs along

94



with the training image (Figure 3.14(a)) is presented. In the figures (b-d) the prototypes

are connected according to their connectivity on the neighborhood tree at the end of

training. It can be observed that both TSOMs with CMST and RMST neighborhoods

perform an excellent skeletonization. The adjacency of the prototypes on the tree gives

the connectivity information for further processing for higher level tasks such as recogni-

tion or indexing. However, for the TSOM with arbitrary tree neighborhood, though good

placement of the prototypes is achieved, the tree represents the connectivity information

very poorly. This is expected since the tree is built randomly and not altered during

training. Thus adjuscent parts of the tree get tuned to the data region far away.

3.5 Conclusions

In this chapter we reported some empirical studies on properties of SOM. The studies

mainly involve topology preservation property of SOM in various circumstances. In sec-

tion 3.2 we introduced a quantitative measure of topology preservation property based on

the concept of rank correlation. In section 3.3 we pointed out the underlying assumption

about the existence of links between each pair of nodes in the network, so that neigh-

borhood update can be achieved (as in a parallel hardware or a biological system). We

studied the effect on topology preservation ability of the network due to different degrees

of presence (link density) of the links. The experimental results suggest that when the

links to nearer nodes are more likely to be present than those to far away nodes, even

with a fairly low link density (≈ 40%) the SOM preserves topology satisfactorily. This

also supports the localized nature of SOM learning.In other words, if the local connec-

tions remain more or less undisturbed, the system performs satisfactorily. On the other

hand, the experiments with all links having equal probability of being absent reveal that

the performance of the SOMs degrade rapidly with link density. This is due to the

randomness of the disturbance that affect the local structure much more severely. As a

whole the study brings out several facet of SOM algorithm such as, localized learning,

fault-tolerance to systematic disturbances, sensitivity to random disturbances etc. These

findings may be exploited for designing of SOM hardware economically.

In section 3.4.1 we have studied the topology preservation properties of three variants of

SOM with simplified lateral feedback functions, namely Gaussian without explicit neigh-

borhood boundary, quadratic and linear. They are found to perform at par with the

standard SOM which uses the Gaussian lateral feedback function with explicit neigh-

borhood boundary. Such simplified lateral feedback functions hold much promise in

simplifying the hardware implementation of SOM.

In section 3.4.2 we have studied variants of SOM with tree structured neighborhoods

95



for update. Two of the variants use minimal spanning trees to define the neighborhood

of the nodes. The MSTs are calculated over the space of the weight vectors, using the

inter-weight distance as the weight of the associated edge. In the first variant all possible

pairs of nodes are considered, thus treating the SOM as a complete graph. We called

this complete MST (CMST) neighborhood. In contrast, the other MST is computed

over the graph with edges existing between nodes which are spatial neighbors on the

SOM lattice. We named this as restricted MST (RMST). The third variant uses an

arbitrary tree structure for neighborhood (ATN) definition. The results showed that the

tree neighborhoods do not perform well in terms of topology preservation, while they

show superior performance in prototype extraction from non-uniform data compared to

the standard SOM. However, the SOMs with RMST neighborhood exhibit a significant

level of topology preservation also. Further, for shape skeletonization tasks, it appears

to be a computationally economic alternative to TSOM with CMST neighborhood. If

prototype extraction is the only consideration, then the SOMs with ATN neighborhood

can be quite useful due to their lower computational overhead.

96



Chapter 4

Extraction of Prototypes and

Designing Classifiers1

1Parts of this chapter have been published in [203] and [266], the whole of it is published in [204].



4.1 Introduction

A classifier designed from a data set X = {xi | i = 1, ..., N,xi ∈ <p} can be defined as a

function

D : <p → Nc,

where Nc = {ei | i = 1, ..., c, ei ∈ <c} is the set of label vectors, p is the number of features

and c is the number of classes. If D is a fuzzy classifier then eij ≥ 0 and
∑c

j=1 eij = 1. If

D is a crisp classifier, ei is a basis vector with components eij = 0 ∀ i 6= j and eii = 1;

consequently, here also
∑c

j=1 eij = 1. However, for a possibilistic classifier
∑c

j=1 eij ≤ c

[32]. Designing a classifier involves finding a good D. D may be specified parametrically,

e.g., Bayes classifier [30], or nonparametrically e.g., nearest neighbor (NN) classifiers

(crisp and fuzzy) [88, 32], nearest prototype (NP) classifiers (crisp or fuzzy) [88, 32],

neural networks [37, 124] etc.

Although Bayes classifier is statistically optimal, it requires complete knowledge of

prior probabilities Pj; j = 1, 2, · · · , c and class densities p(x | j); j = 1, 2, · · · , c, which

is almost never possible in practical cases. Usually no knowledge of the underlying

distribution is available except that it can be estimated from the samples.

In the present chapter two new approaches to design prototype-based classifiers are

introduced. The problem of finding the required number of prototypes as well as the

prototypes themselves are addressed together. A set of c (the number of classes) initial

prototypes is generated from a set of labelled training data (without using the label infor-

mation) using Kohonen’s SOM algorithm [169]. Then the prototypes are labelled using

the class information following a “most likely class” heuristic. The proposed algorithm,

during the tuning stage evaluates the performance of the prototypes and depending on

the evaluation result, prototypes are deleted, merged and split. This is continued un-

til the performance of the prototypes stabilize. The procedure takes into account the

intra-class and inter-class distribution of the training data and tries to produce an “opti-

mal” set of prototypes. This set of prototypes is then used to design a nearest prototype

classifier. This is our first classifier. To keep parity with the next classifier designed

here we call it “1-Nearest Multiple Prototype (1-NMP) classifier”. 1-NMP classifier has

some limitations as will be demonstrated later. To address these limitations the set of

prototypes is further processed through a fine-tuning stage. During this stage, a zone

of influence for each prototype is defined. A “similarity measure” and an error func-

tion are also defined. Then the position of each prototype and its zone of influence are

modified iteratively in order to minimize the error function. Any unknown data point

is then classified according to its maximum similarity with the prototypes. We call this

classifier “1-Most Similar Prototype (1-MSP) classifier”. Both classifiers are tested with

several data sets and compared with some benchmark results as well as k-NN classifiers

98



and support vector machine (SVM) classifiers.

4.2 Generation of a good Set of Prototypes

Prototype-based classifiers are conceptually simple, easy to understand and computa-

tionally efficient. Evidently, their performance depends on the quality of the prototypes,

i.e., the degree to which the inter-class as well as intra-class distributions of the data are

captured by the prototypes used. Overall, while designing a prototype-based classifier

one faces three fundamental issues.

1. How to generate the prototypes?

2. How many prototypes are to be generated?

3. How to use the prototypes for designing the classifier?

Depending on the schemes adopted to address these questions, there are a large num-

ber of classifiers. To illustrate the point we discuss the simplest of them, the nearest-

prototype classifiers with one prototype per class. The number of prototypes is equal to

the number of classes in the training data, i.e., ĉ = c. In this kind of classifier the proto-

type for a class is usually generated by taking the mean of the training data vectors from

that class. The third issue is commonly addressed using a distance function δ. A vector

x ∈ <p is classified using the prototype set V = {vi, li | i = 1, ...c,vi ∈ <p, li ∈ Nc},
where c is the number of classes and li is the label vector associated with vi, as follows.

Decide x ∈ class i

⇔ DV,δ(x) = li

⇔ δ(x,vi) ≤ δ(x,vj) ∀ j 6= i.

This simple scheme and its variants work quite well for many problems. However,

such a classifier has been proved inadequate if the data from one class are distributed

into more than one cluster or if the data from two different classes cannot be separated

by a single hyperplane, as demonstrated in the famous “XOR” data [371]. Therefore,

a generalized classifier design scheme must keep provision for multiple prototypes for a

class.

If multiple prototypes are used for a class, the three issues concerning the prototypes

become more difficult to address, but in this case a lot of sophisticated techniques become

99



available for dealing with them. Usually the three issues can be addressed independently,

but in some cases the strategy used for answering one issue may depend on the strategy

used for dealing with others or a single strategy may take care of more than one issue.

We now briefly review some commonly used schemes for addressing these issues. The

optimal number of prototypes required depends on both the inter-class as well as the

intra-class distributions of the data. One can use suggestions of a domain expert, or

some clustering algorithm to find cluster centroids in the training data set with enough

prototypes to represent each class. However, most of the clustering algorithms (e.g.

c-means algorithm) require the of number clusters to be supplied externally or to be

determined using some cluster validity index . The k-NN algorithms [88] use each data

point in the training data set as a prototype.

Given the number of prototypes there are many procedures for generating them; for

example, clustering algorithms like c-means [88], fuzzy c-means [31], mountain cluster-

ing method [355], etc. Other approaches include learning vector quantization (LVQ)

methods, neural network based methods such as Kohonen’s SOM, random search meth-

ods, gradient search methods etc. Each method has its own advantages and limitations.

Often more than one method are used together for producing a good set of prototypes.

Once the prototypes are generated, there are several ways of using the prototypes in the

classifier. To mention a few, in a nearest prototype classifier a data point is assigned the

class label of the prototype closest to it. In a fuzzy rule-based classifier, each prototype

can be used to generate a fuzzy rule to define a fuzzy rule base [137]. This rule base is

then used for classifying the data.

Here we develop a scheme for generation of a set of prototypes using Kohonen’s Self-

Organizing Map (SOM) algorithm [169]. The scheme provides an integrated approach

to the solution of first two of the three issues mentioned above. Once a good set of pro-

totypes is obtained, we present two approaches to classifier design using the prototypes.

4.2.1 The SOM-based prototype generation scheme

The prototype generation method developed here uses SOM algorithm as its backbone.

SOM algorithm is used here in to find a good set of prototypes which is adequate for the

classification task. As customary with approaches to classifier design, a set of labelled

training data is used for designing purposes. First a SOM is trained using the feature

vectors (not the labels) of the training data. The weight vectors of the trained SOM

are treated as the initial set of unlabelled prototypes/cluster centers. Use of SOM for

clustering is advantageous in several ways. In most of the clustering algorithms such

as c-means the resulting clusters sensitive to initialization. That may often result in

100



under-utilization of the prototypes. The algorithm can end up with several prototypes

representing no data point (i.e., due to initialization condition they were not updated

subsequently). Further, existence of outlier points may cause the cluster centers to get

stuck to them.

In SOM under-utilization of nodes is unlikely to happen, since even if some node is

initialized outside the data, due to neighborhood update they will eventually move into

the region of feature space containing the input data. Also due to the same neighborhood

update feature a node near an outlier is eventually likely to move towards a dense region.

This makes SOM algorithm relatively insensitive to noise.

In clustering algorithms, the aim is to find substructures in the data. However, when

we want to use the cluster centers as the prototypes for classification purpose, it may

not be adequate to find them with unsupervised method only. In general, finding cluster

centers and assigning them class labels do not result in a good set of prototypes for

classifier design. The distribution of the classes may not form distinct clusters, classes

may be very close together and/or overlapping. Also it may not be possible to represent

a class with a single prototype. Usually deciding on an adequate number of prototypes

for classification is a formidable problem.

For computational efficiency it is desirable to have a small number of prototypes for

each class. The number of prototypes should be just enough to capture the class-

distributional property of the training data. Here we develop a user-friendly scheme

for extraction of prototypes. In this method the user need not guess or go through mul-

tiple trials to determine the number of prototypes needed, the algorithm determines the

number of prototypes automatically and generates them.

In the second stage, the proposed method uses the initial unlabelled prototypes from

the SOM and the training data along with the class labels. First the initial prototypes

are tentatively labelled using a majority voting scheme. Then the nearest-prototype

classification performance of the prototypes are evaluated in each iteration. Depending

on their performance, the prototypes may go through one or more of the following oper-

ation, deletion, merge, split and modification to generate a new set of prototypes. Then

the new set of prototypes are again fine tuned using SOM algorithm. Iterations continue

till the error rate falls to a satisfactory level. This drastically reduces the number of

parameters to be decided by the user. One needs to specify only two parameters re-

garding the acceptability of a prototype, which basically embodies the intuitive concept

of the user regarding quality of prototypes, namely representativeness, i.e., a prototype

should represent enough number of training data and purity, i.e, it should predominantly

represent data from a single class.

Though the user need not guess the final number of prototypes, one has to decide

101



upon the number of nodes in the first stage SOM. There are two very easy guidelines

to that. First, one can start with a reasonably large SOM, the redundant nodes will be

removed in the second stage. In the second approach one can start with minimal number

of nodes, which is equal to the number of classes. If the class structure corresponds to

the cluster structure, then they will eventually become final prototypes, otherwise in

the second stage additional prototypes will be generated. Clearly the second option is

computationally more efficient and does not need the user to exercise any specific choice

for the required number of clusters. We follow this approach in this chapter.

4.2.2 Generation and labelling of initial set of prototypes

In this work we use a 1-D SOM, but the algorithm can be extended to 2-D SOM also.

First we train a one-dimensional SOM using the training data. Although, the class

information is available, SOM training does not use it. The number of nodes in the

SOM is the same as the number of classes c. This choice is inspired by the fact that the

minimum number of prototypes that are required is equal to the number of classes. At the

end of the training the weight vector distribution of the SOM reflects the distribution of

the input data. These unlabelled prototypes are then labelled using class information.

For each of N input feature vectors we identify the prototype closest to it, i.e., the

winner node. Since no class information is used during the training, some prototypes

may become the winner for data from more than one classes, particularly when the

classes overlap or are very close to each other. For each prototype vi we compute a score

Dij, which is the number of data points from class j to which vi is the closest prototype.

The class label Ci of the prototype vi is determined as

Ci = arg max︸ ︷︷ ︸
j

Dij. (4.1)

This scheme will assign a label to each of the c prototypes, but such a set of prototypes

may not classify the data satisfactorily. For example, from Eq. (4.1) it is clear that∑
j 6=Ci

Dij data points will be wrongly classified by the prototype vi. Hence we need

further refinement of the initial set of prototypes V0 = {v10,v20, ...,vc0} ⊂ <p.

4.3 Generating a better set of prototypes

The prototypes generated by the SOM algorithm represent the overall distribution of the

input data. A set of prototypes useful for classification job must be capable of dealing

with class specific characteristics (such as class boundaries) of the data. In this section

102



we present a DYNAmic prototype GENeration algorithm (DYNAGEN) for generating a

set of prototypes that is a better representative of the distribution of training data and

takes into account the class specific characteristics. The strategy involves a modification

procedure starting with the initial set of prototypes V0. In each iteration the prototype

set is used in a nearest-prototype classifier and the classification performance is observed.

Depending on the performance of the individual prototype in the classifier, prototypes

are modified, merged, split and deleted, leading to a new set of prototypes. This process

of modification is repeated until the number of prototypes and their performance stabilize

within an acceptable level. The final set of prototypes, when used to design prototype-

based classifiers is expected to enhance the performance of the classifier. We use the

term ‘performance of a prototype’ to indicate the ‘performance of the prototype when

used in a nearest-prototype classifier’.

In the t-th iteration, the prototype set Vt−1 from previous iteration is used to generate

the new set of prototypes Vt. The labelled set of prototypes Vt−1 is used to classify a

set of training data. Let Wi be the number of training data to which prototype vi is

the closest one (winner). Let Si = max
j
{Dij} = DiCi

. Thus, when vi is labelled as

a prototype for class Ci, Si training data points will be correctly classified by vi and

Fi =
∑

j 6=Ci
Dij data points will be incorrectly classified. Consequently, Wi = Si + Fi

and Wi =
∑

j Dij.

In the training data X = {x1, ...,xN}, let there be Nj points from class j. The refine-

ment stage uses just two parameters K1 and K2 to dynamically generate c + 1 retention

thresholds known as global retention threshold α and a set of class-wise retention thresh-

old βk (one for each class), to evaluate the performance of each prototype. The thresholds

α and βk are computed dynamically (not fixed) for the t-th iteration using the following

formulae:

αt =
1

K1 | Vt−1 | (4.2)

and

βkt =
1

K2 | V ∗
kt |

, (4.3)

where V ∗
kt = {vi | vi ∈ Vt−1, Ci = k}. We emphasize that the algorithm uses just two

(not c + 1) user supplied parameters.

Based on the classification performance of the prototypes, different operations are

performed to generate a new set of prototypes. In the following first we define these

operations, later while describing the algorithm we state when to use them.

103



4.3.1 The operations

Merging of a prototype with respect to a class: Let a prototype vi represent Dik

training data point from class k. To merge vi w.r.t. class k, we identify the

prototype vl closest to vi where Cl = k (i.e., vl is a prototype for class k). Let us

denote Xij as the set of training data vectors from class j whose nearest prototype

is vi. When we merge vi with vl w.r.t. class k, vl is updated according to the

equation,

vl =
Wlvl +

∑
x∈Xik

x

Wl + Dik

. (4.4)

Note that, we do not say here when to merge. This will be discussed later.

Modifying a labelled prototype: A prototype vi is modified according to the follow-

ing equation,

vi =

∑
x∈XiCi

x

DiCi

. (4.5)

Splitting a prototype: If vi represent data from r classes, then the prototype vi is

split into r new prototypes for r different classes according to Eq. (4.6).

vl =

∑
x∈XiCl

x

DiCl

. (4.6)

The subscript l in Eq. (4.6) is used to indicate one of r classes represented by vi.

The prototype vi is deleted. So after the splitting, the number of prototypes is

increased by r − 1.

Deleting a prototype: A prototype, say vi, is removed from the set of prototypes so

that number of prototypes is reduced by one.

4.3.2 The DYNAmic prototype GENeration (DYNAGEN) al-

gorithm

Now we are in a position to describe the DYNAGEN algorithm for dynamic generation

and enhancement of the prototypes.

Algorithm DYNAGEN:

• Repeat for all vi ∈ Vt−1 until the termination condition is satisfied:

104



• 1. If Wi 6= DiCi
and Wi < αtN and there is at least another prototype for class

Ci then delete vi. (Global deletion).

Comment: If a prototype is not a pure one (i.e., it represents data

from more than one class) and does not represent a reasonable number

of points, it fails to qualify to become a prototype. However, if there

is no other prototype for class Ci the prototype is retained.

2. Else if Wi > αtN but Dij < βjtNj for all classes then merge vi for the classes

for which Dij > 0 using Eq. (4.4) and delete vi. (Merge and delete)

Comment:The prototype represents a reasonable number of points,

but does not represent an adequate number of points from any par-

ticular class, so it cannot qualify as a prototype for any particular

class. But we cannot ignore the prototype completely. We logically

first split vi into s prototypes vi1,vi2, ...vis, s ≤ c, s is the total num-

ber of classes for which Dij > 0, and then merge vij to its closest

prototype from class j. vi is then deleted.

3. Else if Wi > αtN and DiCi
> βCitNCi

but Dij < βjtNj for all j 6= Ci then

merge vi with respect to all the classes other than Ci for which Dij > 0 using

Eq. (4.4) and modify vi using Eq. (4.5). (Merge and modify)

Comment:The prototype represents points from more than one class;

however, the points from only one class are well represented by the

prototype. According to our labelling scheme the prototype is labelled

with the most represented class. Thus, we merge vi with respect to

the classes other than Ci using Eq. (4.4) and then modify vi by Eq.

(4.5).

4. Else if Wi > αtN and Dij > βjtNj for more than one class then merge vi w.r.t.

classes for which Dij < βjtNj by Eq. (4.4) and split vi into new prototypes

for the classes for which Dij > βjtNj by Eq. (4.6). Add these new prototypes

to the new set of prototypes Vt. (Merge and split)

Comment:The prototype represents reasonably well number of points

from more than one class. So we merge the prototype with respect to

the classes whose data are not well represented and split the prototype

into one for each class whose data are reasonably well represented by

vi.

• Let Vt be the union of all unaltered prototypes of Vt−1 and the modified as well as

new prototypes.

105



• Run the SOM algorithm on Vt with winner-only update (i.e., no neighbor is up-

dated) strategy using the same training data as input.

Comment:At this stage we want only to fine tune the prototypes. If the

neighbors are also updated the prototypes again might migrate to represent

points from more than one class.

• Repeat the procedure with the new set of prototypes Vt if any of the termination

conditions is not met.

• Termination Conditions

The algorithm terminates under any one of the following two conditions.

1. Achievement of a satisfactory recognition score defined in terms of percentage

of correct classifications (ε).

2. A specified number of iterations (Imax) is reached.

Comment:Proper use of condition (1) requires some knowledge of

the data. However, even if we do not have the same, we can always

set a high (conservative) percentage for (ε), say 95%.

Condition (2) is used to protect against infinite looping of the al-

gorithm for some data with highly complex structures for which the

chosen values of ε may not be reachable.

We now design the nearest prototype classifier, which we call 1-NMP classifier, using

the set of prototypes generated by DYNAGEN.

4.3.3 Results of 1-NMP classifier

We report the performance of the classifier for ten data sets. The data sets are divided

into two groups A and B. Group A consists of 6 data sets Iris, Glass, Breast Cancer,

Vowel, Norm4, and Two-Dishes; while group B contains Cone-torus, Normal

Mixture, Satimage1 and Phoneme. For group A data sets some results are available

in the literature but the details of the experimental protocols (such as training-test

division, learning parameters etc.) used are not available. Hence, we have randomly

divided each data set in group A into two (approximately) equal subsets. We then use

these subsets alternately as training and test sets and report the performance. For the

group B data sets many benchmark results for different classifiers are documented in

[191] along with computational protocols. We have used the same partitions as reported

in [191] and have compared our results with those reported in [191].

106



Table 4.1: Distribution of data points among different classes for group A data sets

Class Iris Glass B. cancer Vowel Norm4 Two-Dishes

Training Set

1 25 35 178 36 100 250

2 25 38 106 44 100 500

3 25 8 86 100

4 6 75 100

5 4 103

6 14 90

Total 75 105 284 434 400 750

Test Set

1 25 35 179 36 100 250

2 25 38 106 45 100 500

3 25 9 86 100

4 7 76 100

5 5 104

6 15 90

Total 75 109 285 437 400 750

Iris data [11] have 150 points in 4-dimension that are from 3 classes, each with 50

points. Glass data [129] consist of 214 samples with 9 attributes from 6 classes. Breast

Cancer [237] have 569 points in 30-dimension from two classes. A normalized version

of the Breast Cancer data is generated by dividing each component by the largest value

of that component. The Vowel [268] data set consists of 871 instances of discrete pho-

netically balanced speech samples for the Telugu vowels in consonant-vowel nucleus-

consonant (CNC) form. It is a 3-dimensional data containing the first three formant

frequencies. The 871 data points are unevenly distributed over 6 classes. The data set

Norm4 [262] is a sample from a mixture of four normals in 4-dimension. It has 800

points, with 200 points each from the four components. The Two-Dishes is a synthet-

ically generated data set consisting of 1500 2-D data points distributed uniformly over

two well-separated dishes of different radii. The scatterplot of this data set is shown

in Figure 4.3. Each dish has 750 points. The distribution of the data points among

different classes for group A data sets is shown in Table 4.1. Table 4.1 reveals that for

Glass, Breast Cancer and Vowel data sets there are large variations in the distribution

of data points in different classes.

In group B the Cone-Torus data set has 201 and 199 2-D points in the training and

test sets respectively [191, 1]. There are three classes each representing a different shape,

107



Table 4.2: Distribution of data points among different classes for group B data sets

Class Cone-torus Normal Mixture Satimage1 Phoneme

Training Set

1 46 125 104 354

2 50 125 68 146

3 105 108

4 47

5 58

6 115

Total 201 250 500 500

Test Set

1 46 500 1429 3464

2 49 500 635 1440

3 104 1250

4 579

5 649

6 1393

Total 199 1000 5935 4904

a cone, a half torus and a Gaussian shape. In the Normal Mixture data each of the two

classes comes from a 2-D normal distribution [2, 191]. The training set contains 250

points and the test set contains 1000 points. The Satimage1 data set is generated from

a Landsat Multi-Spectral Scanner image [191, 108]. The present data set covers an area

of 82 × 100 pixels. The data set, as available from [108] has 36 dimensions containing

the gray values of 9 (a 3 × 3 neighborhood) pixels captured by 4 sensors operating in

different spectral regions. However, adhering to the protocol followed in [191], we also

use the data for the central pixel only, thus reducing the dimension to four. The data

set has 6 classes representing different kinds of ground covers. The training set has

500 points and the test set has 5935 points. The Phoneme data set contains vowels

coming from 1809 isolated syllables (for example: pa, ta, pan, ...) in French and Spanish

languages [191, 108]. Five different attributes are chosen to characterize each vowel.

They are the amplitudes of the five first harmonics AHi, normalized by the total energy

Ene (integrated on all frequencies), AHi/Ene. Each harmonic is signed positive when it

corresponds to a local maximum of the spectrum. Otherwise, it is signed negative. The

Phoneme data set has two classes, nasal and oral. The training set contains 500 points

and the test set contains 4904 points. The class-wise distribution of the data points for

group B data sets is presented in Table 4.2.

108



Table 4.3: Performance of the 1-NMP classifier for the group A data sets.

Data Size No. of prototypes % of Error Average

Set Trng. Test Initial Final Trng. Test Test Error

Iris 75 75 3 5 2.66% 8.0%

75 75 3 5 4.0% 5.33% 6.66%

Glass 105 109 6 28 16.19% 34.86%

109 105 6 26 19.26% 33.33% 34.09%

Breast 284 285 2 4 10.91% 11.58%

Cancer 285 284 2 5 9.12% 12.67% 12.13%

Normalized 284 285 2 8 8.8% 5.61%

Breast Cancer 285 284 2 4 6.66% 10.56% 8.08%

Vowel 434 437 6 21 18.4% 19.22%

437 434 6 15 20.82% 22.35% 20.78%

Norm4 400 400 4 4 4.25% 3.5%

400 400 4 4 4.0% 4.0% 3.75%

Two-Dishes 750 750 2 2 6.13% 5.33%

750 750 2 2 5.6% 6.53% 5.93%

Tables 4.3 and 4.4 summarize the classification performances of 1-NMP classifier for

group A and group B data sets respectively. We used the values K1 = 3, K2 = 6, ε =

95% and Imax = 10 for all data sets. The % of error column shows the percentage of

misclassification for the training and the test data.

It is well known that classes 2 and 3 of Iris have some overlap and the typical re-

substitution error with a nearest prototype classifier using 3 prototypes obtained by

some clustering algorithm is about 10% error [32]. The average test performance of the

proposed system with 5 prototypes is quite good resulting only 6.66% error.

Glass data shows a high percentage of error; this is possibly unavoidable, because a

Table 4.4: Performance of the 1-NMP classifier for the group B data sets.

Data Size No. of prototypes % of Error

Set Trng. Test Initial Final Trng. Test

Cone-Torus 201 199 3 12 18.25% 22.5%

Normal Mixture 250 1000 2 4 14.0% 9.5%

Satimage1 500 5935 7 27 13.6% 15.65%

Phoneme 500 4904 2 5 21.8% 21.31%

109



1 2 3 4 5 6 7 8 9 10 11
8

9

10

11

12

13

14

15

16

17

18

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

−Class 1

−Class 2

−Class 3

−Class 4

−Class 5

−Class 6

Figure 4.1: Scatterplot of the Glass data along two most significant principal components.

scatterplot (Figure 4.1) of the first two principal components shows that the data for

class 3 are almost randomly distributed among the data points from other classes. In

fact, the points from class 3 (represented by +) are not visible in the scatterplot. In

[137] the recognition score reported for the Glass data is 64.4%, i.e., about 35% error.

Our classifier could realize more than 66% accuracy with 26 prototypes in the best test

result and the average test error is 34.09%.

Breast Cancer data have been used in [237] to train a linear programming-based diag-

nostic system by a variant of multisurface method (MSM) called MSM-Tree and about

97.5% accuracy was obtained. Breast cancer data of a similar kind have also been used in

a recent study [137] with 74.0% accuracy with 100 rules. Our classifier could achieve as

low as 12.13% average test error with only 4-5 prototypes and it is quite good. With the

normalized Breast Cancer data the 1-NMP classifier exhibits a much better performance.

Although the Vowel data set has three features, like other authors [268] we used only

the first two features. Bayes classifier for this data set [269] gives an overall recognition

score of 79.2%. Figure 4.2, the scatterplot of Vowel data (different classes are represented

110



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Feature 1

F
ea

tu
re

 2

−Class 1

−Class 2

−Class 3

−Class 4

−Class 5

−Class 6

Figure 4.2: Scatterplot of first two features of the Vowel data.

111



by different symbols) depicts that there are substantial overlaps among different classes

and hence some misclassification is unavoidable. The proposed classifier could achieve

an average of 79.22% correct classification.

The performance on Norm4 [262] with only 4 prototypes, i.e., one prototype per class

is quite good. For this relatively simple data set the DYNAGEN based classifier could

achieve up to 96% accuracy with only 4 prototypes.

The Two-Dishes data is a synthetic one generated for investigating the limitations of

the 1-NMP classifier. Although the classes are linearly separable, the 1-NMP classifier

achieves an accuracy of 96% with two prototypes only. Our tuning algorithm could

have produced more prototypes and thereby could reduce the error. But we used only

two prototypes to demonstrate the effectiveness of our next classifier described in the

following section.

Table 4.4 shows that for all of the group B data sets, the 1-NMP classifier generalizes

quite well. For two data sets the performance on the test sets is little better than that

on the training sets while for the other two cases the performance on the training sets

are little better.

4.3.4 Properties of 1-NMP classifiers

It is evident from the results obtained that the 1-NMP classifiers designed with the

prototypes generated by the DYNAGEN algorithm are quite efficient. As with any

prototype based classifier, the performance of these classifiers depend on the quality of

the prototype set used, i.e., how faithfully the distribution of the data is represented by

the set of prototypes. In our case the DYNAGEN algorithm is ultimately responsible for

the quality of the prototype set. On closer examination of the DYNAGEN algorithm,

one can find following general tendencies acting on the prototypes.

• The DYNAGEN algorithm tries to generate a small number of prototypes while at

the same time it tries to keep the error rate as low as possible. This is achieved

by means of two opposing actions: (1) splitting of prototypes and (2) deletion of

prototypes. The former leads to an increase in the number of prototypes, with a

view to ensuring that class boundaries are taken care of; while the later decreases

the number of prototypes by deleting prototypes, which do not represent an ade-

quate number of data points. These two actions together try to realize that there

are enough prototypes to represent the distribution of the data and each prototype

represents a substantial number of data points. In other words, the number of pro-

totypes does not increase in an uncontrolled manner to become comparable with

the number of training data points.

112



−2 0 2 4 6 8 10

2

3

4

5

6

7

8

9

10

11

Feature 1

F
ea

tu
re

 2

Class 1

Class 2

Figure 4.3: Scatterplot of the Two-Dishes data.

• The DYNAGEN algorithm tries to place each prototype at the center of a dense

set of points. This is achieved by the retraining of the prototype set using SOM

algorithm with the winner-only update scheme at the end of each modification

cycle. This step reduces the effect of outlier data points on the positioning of the

prototypes in the feature space.

The above capabilities make the tuning algorithm suitable for generating quality pro-

totypes even for complex training data sets with linearly non-separable classes or for data

sets for which points from the same class are divided into more than one cluster. These

desirable qualities of the prototype set is reflected in the performance of the classifiers.

However, the result obtained for the Two-Dishes data set (Figure 4.3) indicates that

just placement of prototypes at the center of each class in some situations can turn into

a weakness of the algorithm. Though the 1-NMP classifier with 2 prototypes generates

only 5.93% error rate for Two-Dishes, it is not good enough. Figure 4.3 shows that the

data from the two classes are linearly separable and each class forms a distinct cluster.

But the two classes have considerably different variances. One can reasonably expect

that this data set should be classified with very high accuracy with only two prototypes.

But it is beyond the capability of 1-NMP classifier. This is due to the fact that the

tuning process places a prototype at the “center” of a cluster and in case of clusters

having considerably different variances, such a set of prototypes, when used in a nearest

prototype classifier may not classify some of the data points correctly.

To address this problem, we propose a new strategy of fine-tuning the prototypes and

design a new classifier. In this new strategy, each prototype is associated with a zone of

113



influence. This modification is expected to improve the classification performance over

the nearest prototype classifier and it might reduce the number of prototypes also. The

scheme is described in the next section.

4.4 A new classifier and fine-tuning of prototypes

We describe the design of a new prototype based classifier, the “1 Most Similar Prototype

(1-MSP)” classifier and the fine-tuning of the prototype set in order to achieve better

classification performance.

4.4.1 The 1-MSP classifier

Given a set of labelled prototypes V = {vi | vi ∈ <p and i = 1, . . . , ĉ}, we define a zone

of influence for each prototype. The influence of a prototype vi at a point x ∈ <p is

defined by the equation,

α(vi,x) = exp−‖vi−x‖2/σi (4.7)

where σi > 0 is a parameter associated with the prototype vi. α(vi,x) is a decreasing

function of the Euclidean distance ‖vi − x‖. The surface of constant influence for a

prototype is a hypersphere in <p centering at the prototype. Note that, other choices of

α are also possible.

The function α(vi,x) also serves as a measure of similarity between the prototype vi

and the point x. The 1-MSP classifier is designed to classify a data point x as follows:

Decide x ∈ class i

⇔ DV,α(x) = li

⇔ α(x,vi) ≥ α(x,vj) ∀ j 6= i.

4.4.2 Fine tuning of the prototypes

Let V be a set of labelled prototypes (| V |= ĉ ≥ the number of classes) generated from

the training data X by the DYNAGEN algorithm discussed in Section 4.3 or by some

other means. Let xi ∈ X be from class c and vci be the prototype for class c having the

greatest similarity αci, with xi. Also let v¬ci be the prototype from an incorrect class

having the greatest similarity α¬ci with xi. Thus,

114



αci = exp−‖xi−vci‖/σci

and

α¬ci = exp−‖xi−v¬ci‖/σ¬ci ,

where σci and σ¬ci are the values of the σ parameters associated with the prototypes

vci and v¬ci respectively.

We use an error function E,

E =
∑
x∈X

Ex =
∑
x∈X

(1− αci(x) + α¬ci(x))2. (4.8)

Such an error function has been used by Chiu [58] in the context of designing a fuzzy

rule-based classifier. The fine-tuning algorithm developed here involves minimization of

the instantaneous error Ex following the steepest descent search to modify the prototypes

and their zones of influence. The algorithm is presented bellow.

Prototype fine-tuning algorithm:

Begin

• Set the learning parameters ηm and ηs.

• Set a parameter reduction factor 0 < ε < 1.

• Set the maximum number of iteration maxiter.

• Compute E0 using Eq. (4.8) for V0 = (v0
1,v

0
2, ...,v

0
ĉ).

• Compute the misclassification M0 of 1-MSP classifier using V0.

• While (t < maxiter) do

– For each xi ∈ X

∗ Find the prototypes vt−1
ci and vt−1

¬ci .

∗ Compute αci and α¬ci.

∗ Modify the prototypes vt−1
ci and vt−1

¬ci and their zones of influence using

the following equations:

115



vt
ci = vt−1

ci − ηm
∂E

∂vt−1
ci

= vt−1
ci + ηm(1− αci + α¬ci)

αci

σt−1
ci

(xi − vci)

vt
¬ci = vt−1

¬ci − ηm
∂E

∂vt−1
¬ci

= vt−1
¬ci − ηm(1− αci + α¬ci)

α¬ci

σt−1
¬ci

(xi − v¬ci)

σt
ci = σt−1

ci − ηs
∂E

∂σt−1
ci

= σt−1
ci + ηs(1− αci + α¬ci)

αci

σt−12

ci

‖ xi − vci ‖2

σt
¬ci = σt−1

¬ci − ηs
∂E

∂σt−1
¬ci

= σt−1
¬ci − ηs(1− αci + α¬ci)

α¬ci

σt−12

¬ci

‖ xi − v¬ci ‖2

– End For

– Compute Et using Eq. (4.8) for the new set of prototypes Vt.

– Compute the misclassification Mt of 1-MSP classifier using Vt.

– If Mt > Mt−1 or Et > Et−1 then

∗ ηm ← (1− ε)ηm

∗ ηs ← (1− ε)ηs

∗ Vt ← Vt−1

Comment:If the error is increased, then possibly the learning

coefficients are too large. So, decrease the learning coefficients,

and retain Vt−1 and continue.

– End If

– If Mk = 0 or Ek = 0 then

∗ Stop

– End If

• End While

End

In each iteration, for each data point, the algorithm finds the prototype which has

the maximum possibility of being responsible for correctly classifying the point and the

116



prototype which has the maximum possibility of being responsible for wrongly classifying

the point. Then the parameters associated with these two prototypes are modified so

that the possibility of correct classification of the data point increases while that of wrong

classification decreases.

When the algorithm terminates we have the final set of prototype VFinal, which is

expected to give a very low error rate when used with the 1-MSP classifier.

4.4.3 Implementation and results of 1-MSP classifiers

To implement the above prototype refinement and classification scheme one question

needs to be answered: How to get an initial estimate of the zones of influence, i.e., σi’s

for the initial prototypes?

In our implementation we have used the prototype set generated by our previous SOM-

based DYNAGEN algorithm. If we set the initial values of σis as

σi = constant ∀ i,

then theoretically the tuning starts with a set of prototypes whose performance in a

1-MSP classifier is the same as its performance in a 1-NMP classifier since

α(vi,xk) ≥ α(vj,xk)

⇔ ‖vi − xk‖ ≤ ‖vj − xk‖ ∀ vi,vj,xk ∈ <p.

Then with the progress of tuning, the prototypes and σis will be modified to reduce

E. However, there are a few practical considerations. If the constant is not chosen

judiciously, the tuning may not yield the desired result. To elaborate this point, if the

σis are too small then there will be a sharp fall of α with distance and this may cause loss

of important digits due to finite precision on a digital computer. Consequently, unless

high precision is used, the performance of 1-NMP and untuned 1-MSP classifiers may

be slightly different. On the other hand, if the σis are too large then for a data point,

many prototypes may produce high α values and during training, the reduction of the

error may be too slow making the tuning less effective. So, we get an initial estimate of

the zones of influence (σis) for the prototypes as follows.

For each prototype v0
i in the set V0 = {v0

i | i = 1, ..., ĉ,v0
i ∈ <p} (the prototype set

generated by the DYNAGEN algorithm and used as the initial set for tuning), let Xi be

the set of training data closest to v0
i . For each v0

i a set

Si = {σij | j = 1, ..., p, σij = (
√

(
∑

xk∈Xi

(xkj − vij)
2))/ | Xi |}

117



Table 4.5: Performance of the 1-MSP classifier for the group A data sets.

Data Size No. of % of Error Average

Set Trng. Test prototypes Trng. Test Test Error

Iris 75 75 5 2.66% 2.66%

75 75 5 2.66% 4.0% 3.33%

Glass 105 109 28 14.28% 34.86%

109 105 26 13.76% 27.62% 31.24%

Normalized 284 285 8 5.63% 4.21%

Breast Cancer 285 284 4 4.91% 7.04% 5.62%

Vowel 434 437 21 16.82% 18.53%

437 434 15 17.39% 17.51% 18.02%

Norm4 400 400 4 4.25% 4.25%

400 400 4 4.0% 3.5% 3.87%

Two-Dishes 750 750 2 0% 0.13%

750 750 2 0% 0% 0.07%

is computed. Then the set of initial σis is computed as

S = {σi | i = 1, ..., ĉ, σi = (
∑

σij∈Si

σij)/p}.

Thus, σi is the average of the standard deviations of the individual components of data

vectors x ∈ Xi about the prototype v0
i . This is just a choice for the initial σis, other

choices are possible too.

Table 4.5 summarizes the result of 1-MSP classifier for six data sets in Group A. We

have used the same training and test division for all data sets as used for the 1-NMP

classifier. For most of the data sets the results show marked improvement over those

of 1-NMP classifier while for the rest the performance remains almost the same. We

emphasize on the Two-Dishes data set to explain our motivation for the design of 1-

MSP classifier. The result shows an average of 0.07% error rate for Two-Dishes with

only two prototypes and the best result obtained shows zero error.

However, the 1-MSP classifier fails in case of the original Breast Cancer data set. Our

algorithm assumes hyperspherical clusters in the feature space. This is expected when in

a cluster the standard deviations of all features are nearly equal. But the Breast Cancer

data have 30 features, of which majority have values of the order of 10−2 and some are

of the order of 103, and the standard deviations of different features are considerably

different. Our initialization scheme computes the average of these standard deviations

to associate a hyperspherical zone of influence with each prototype. Since most of the

118



components have small values, the σis are small and αs for most of the data points

become very small, leading to loss of precision and high misclassification rates. However,

if the σis are increased artificially (by a factor of 400, say), the performance matches

that of the 1-NMP classifier, but the reduction of the error function E becomes very

slow during training. Such a data could be better handled if the zones of influence of the

prototypes are not limited to hypersphere. But such schemes (like using Mahalanobis

distance instead of Euclidean distance) would lead to more computational overhead. So,

here we try to get around this problem by normalizing the data over each component.

The Normalized Breast Cancer data exhibits an excellent performance of the 1-MSP

classifier.

Apparently the 1-MSP classifier has some similarity with the Radial Basis Function

(RBF) network, since each prototype is associated with a zone of influence and the

strength of the influence is determined by a Gaussian function of the Euclidean distance

from the prototype. The hidden nodes in a RBF network also use the Gaussian functions

as activation functions (there are other possibilities too). However, in the conventional

RBF network, a linear aggregation function is used between the hidden layer and the

output layer. There is complete connection between the hidden layer and the output

layer. If we think of an RBF-like architecture for the 1-MSP classifier we cannot have

the complete connection between the hidden layer and the output layer. The aggregation

function in each output node would be a max operator, not a linear function. Moreover,

the α-function used here need not necessarily be a basis function. As we shall see, in

general, the RBF network needs more nodes for similar performances. However, our

algorithm can be used as a preprocessing stage for RBF classifier, where the weight

vectors of RBF nodes can be initialized with the positions of the prototypes and the

spreads of the activation functions can be initialized with the value of the corresponding

σ. To make a comparison we have classified the group A data sets (same as in Table 4.5)

using RBF networks with the same number of RBF nodes as the number of prototypes

used by the 1-MSP classifier. We have used the routines available in the Neural Network

Toolbox of Matlab-5. For all experiments we used 2.0 for the spread of the radial basis

functions. The results for the RBF classifiers are summarized in Table 4.6.

Table 4.6 shows higher error rates for the RBF classifiers compared to 1-MSP classifiers

for most of the data sets. For Iris and normalized Breast Cancer the RBF network shows a

slightly better performance. However, it should be noted that depending on the data set,

the performance of RBF classifiers is highly sensitive to the choice of various parameters

such as number of hidden nodes, the spread parameters etc. In contrast, while building

1-MSP classifiers, the user needs to specify only two parameters K1 (eq. 4.2) and K2

(eq. 4.3). Further, the choice of these parameters does not need to be varied much

for different data sets. In fact, for all classifiers reported in this thesis, we have used

119



Table 4.6: Performance of the RBF networks for the group A data sets.

Data Size Network % of Error Average

Set Trng. Test configuration Trng. Test Test Error

Iris 75 75 4-5-3 4.0% 2.66%

75 75 4-5-3 2.66% 2.66% 2.66%

Glass 105 109 9-28-6 22.8% 49.54%

109 105 9-26-6 30.27% 43.8% 46.67%

Normalized 284 285 30-8-2 3.17% 2.45%

Breast Cancer 285 284 30-4-2 3.51% 5.98% 4.21%

Vowel 434 437 2-21-2 55.06% 56.97%

437 434 2-15-2 48.28% 50.46% 53.71%

Norm4 400 400 3-4-4 36.5% 36.25%

400 400 3-4-4 37.25% 38.5% 37.37%

Two-Dishes 750 750 2-2-2 9.6% 10.13%

750 750 2-2-2 6.66% 6.0% 8.06%

Table 4.7: Performance of the 1-MSP classifier for the group B data sets.

Data Size No. of % of Error

Set Trng. Test prototypes Trng. Test

Cone-Torus 201 199 12 16.5% 14.75%

Normal Mixture 250 1000 4 13.4% 9.7%

Satimage1 500 5935 27 13.4% 15.6%

Phoneme 500 4904 5 19.8% 20.53%

the same values for these two parameters and obtained fairly consistent and satisfactory

classification performance.

Table 4.7 summarizes the performance of the 1-MSP classifiers for the group B data

sets. For each of the data sets the training error is lower for the 1-MSP classifier than the

1-NMP classifier. The test error for Cone-Torus data decreases substantially. Test error

for Normal Mixture and Satimage1 remains almost the same, while for the Phoneme

data there is some improvement in the performance on the test set.

In case of the Normal Mixture data set it can be observed that the test error is substan-

tially lower than the training error for both 1-NMP and 1-MSP classifiers. Though such

a result is not very common, it may occur due to the nature of the data distribution and

its representation in the training-test partition. At least two situations can be readily

identified that can produce such results. In the first situation the classes are overlapped

120



and there is a relatively higher concentration of the data points in the training set from

the overlapping region compared to that in the test set. Typically a classifier makes

more mistakes for the data points in the overlapped region. Since the test data contain

lower proportion of points in the overlapped region compared to the training data, over-

all classification performance on the test data may be better than that on the training

data. This has happened with the training-test partition used for the Normal Mixture

data set. Similar trend can be observed in the results for other classifiers using the same

partition (MLP in Table 4.8 and RBF in Table 4.9). On the other hand, when different

partitions are used, as in the cross-validation experiments described later in Table 4.11

and Table 4.12, the test error is close to the training error.

In the other situation, even if the classes are not overlapped, it can happen when the

class distribution of training data is different from that of the test data. If there is some

class for which the classifier performs better on the training set and if that class has a

higher proportions in the test data, then the classifier may show a higher performance

on the test data. This has happened with the data sets Satimage2 and Satimage3 used

in the thesis. In these cases the training data sets contain equal number of points from

each class, while in the test sets there is a large variation in the number of points from

different classes.

The data sets in group B, as mentioned earlier, have been extensively investigated in

[191]. We reproduce here some results using MLP (multilayer perceptron) and RBF on

these data sets in Table 4.8 and Table 4.9 respectively. To make a fair comparison, for

both networks, we have chosen two architectures having the number of nodes closest to

the number of prototypes used by our 1-MSP classifier.

Comparison of Table 4.7 with Table 4.8 shows that for the Cone-Torus data the per-

formance of the 1-MSP classifier with 12 prototypes is comparable to the average perfor-

mance of the MLP with 10 and 15 hidden nodes. For Normal Mixture, the performance

of 1-MSP with 4 prototypes is also comparable with the performance of MLP networks

with 5 and 10 hidden nodes. For Satimage1 the 1-MSP classifier produces 13.4% train-

ing error and 15.6% test error, but the MLP even with 64 hidden nodes produces 24.4%

training error and 23.08% test error. The performance of MLP with 20 hidden nodes

is very poor (79.2% training error and 75.92% test error!). For the Phoneme data the

MLP with 5 hidden nodes produces a little better result than 1-MSP with 5 prototypes.

Comparing Table 4.9 with Table 4.7 we find that the performance of 1-MSP classifier

and RBF network is comparable for Normal Mixture; for Satimage1 and Phoneme the

1-MSP classifier performs a little better than the RBF network, while for Cone-Torus

the performance of RBF network is a little better than the 1-MSP classifier.

121



Table 4.8: Results with MLP networks for group the B data sets [191].

Data Network Trng Test

Set Size Error Error

Cone-Torus 2-10-3 15.25% 14.25%

2-15-3 13.50% 12.00%

Average 14.37% 13.12%

Normal Mixture 2-5-2 12.00% 10.00%

2-10-2 12.80% 10.30%

Average 12.40% 10.15%

Satimage1 4-20-6 79.20% 75.92%

4-65-6 24.40% 23.08%

Average 51.80% 49.50%

Phoneme 5-5-2 14.00% 18.23%

5-10-2 16.80% 21.04%

Average 15.40% 19.63%

Table 4.9: Results with RBF networks for the group B data sets [191].

Data Network Trng Test

Set Size Error Error

Cone-Torus 2-10-3 16.50% 13.75%

(σ = 3) 2-15-3 17.00% 14.00%

Average 16.75% 13.87%

Normal Mixture 2-5-2 14.00% 9.50%

(σ = 1.5) 2-10-2 12.40% 10.00%

Average 13.20% 9.75%

Satimage1 4-15-6 14.80% 17.02%

(σ = 10) 4-20-6 12.80% 15.52%

Average 13.80% 16.27%

Phoneme 5-5-2 21.00% 23.65%

(σ = 2) 5-10-2 18.80% 21.31%

Average 19.90% 22.48%

122



4.5 Cross-validation and comparison with k-NN and

SVM classifiers

While studying the performance of a pattern classification scheme, it is important to

study the stability or consistency of the learning method adopted by the scheme. For this

we have conducted 10-fold cross-validation experiments and analyzed the performance

of different classifiers using error statistics.

In this section we first report the results of cross-validation experiments with the

proposed 1-NMP and 1-MSP classifiers. Then we present the results of cross-validation

with the k-NN and support vector machine (SVM) classifiers and compare them with

those of the proposed classifiers.

4.5.1 Results of cross-validation with proposed classifiers

For convenience, we list in Table 4.10 the sizes of training-test partitions of different

data sets for the cross-validation experiments. The results are summarized in Table

4.11 and Table 4.12 for 1-NMP classifiers and 1-MSP classifiers respectively. For the

reasons explained earlier in this chapter we do not include the Breast Cancer data set

but use the normalized Breast Cancer data set. Columns 3 and 4 of Table 4.11 display

the average training and test error percentages along with their standard deviations

(standard deviations are shown within parentheses). In addition to the error rates, since

generation of prototypes is a part of the learning task performed by the 1-NMP classifier,

in Table 4.11 we also report the average and standard deviation of number of prototypes.

Since the corresponding 1-MSP classifiers also have the same number of prototypes, we

do not repeat these statistics in Table 4.12.

Comparing the test error statistics reported in Table 4.11 and Table 4.12, it can be

observed that 1-MSP classifiers show significantly lower average error rates than the 1-

NMP classifiers for the Iris, Normalized Breast Cancer, Vowel, Two-dishes and Phoneme

data sets. Among other data sets, for Glass, Cone-torus and Satimage1, 1-MSP classifiers

show marginally lower average error rates; while for Norm4 and Normal Mixture 1-NMP

classifiers perform marginally better. Overall, for most of the data sets, the 1-MSP

classifiers exhibit better or marginally better average error rates than those for 1-NMP

classifiers. This is also evident from Fig. 4.4, which displays the average test error for

all data sets for the two classifiers. The standard deviations of the error rates are very

close for the two types of classifiers for most of the data sets. For Glass, Vowel and

Cone-Torus data sets the 1-MSP classifiers resulted in higher standard deviation values.

This is probably due to the overlapped class structure of the data sets.

123



Table 4.10: Training and test partition sizes for the cross-validation experiments

Data Set Size of Training Set Size of Test Set

Iris 135 15

Glass 189 21

N. B. Cancer 504 56

Vowel 783 87

Norm 720 80

Two-Dishes 1350 150

Cone-Torus 720 80

Normal Mixture 1125 125

Satimage1 5787 643

Phoneme 4860 540

Table 4.11: Results of 10-fold cross validation for 1-NMP classifiers
Data No. of prototypes Etr (%) Ete (%)

Set Avg. (St. D.) Avg. (St. D.) Avg. (St. D.)

Iris 5.00 (0.00) 9.33 (0.80) 10.00 (4.71)

Glass 27.70 (3.80) 22.33 (2.31) 34.29 (10.48)

N. B. Cancer 4.50 (0.85) 8.02 (0.72) 7.86 (2.69)

Vowel 23.40 (2.50) 19.80 (1.39) 20.34 (3.25)

Norm4 4.00 (0.00) 4.14 (0.28) 4.00 (1.42)

Two-Dishes 2.00 (0.00) 6.73 (0.81) 7.00 (2.42)

Cone-Torus 10.80 (1.62) 9.89 (0.87) 9.88 (2.73)

Normal Mixture 4.00 (0.00) 9.10 (0.52) 9.04 (2.85)

Satim1 23.60 (1.90) 15.45 (0.41) 15.72 (1.27)

Phoneme 6.10 (0.74) 22.11 (0.57) 21.81 (1.96)

124



Table 4.12: Results of 10-fold cross validation for 1-MSP classifiers
Data Etr (%) Ete (%)

Set Avg. (St. D.) Avg. (St. D.)

Iris 4.52 (1.37) 6.00 (4.92)

Glass 20.37 (2.47) 33.81 (10.15)

N. B. Cancer 5.22 (0.44) 5.36 (3.04)

Vowel 18.28 (1.13) 18.53 (5.23)

Norm4 4.11 (0.25) 4.50 (1.47)

Two-Dishes 0.00 (0.00) 0.00 (0.00)

Cone-Torus 8.86 (1.28) 9.13 (5.14)

Normal Mixture 8.80 (0.41) 9.60 (2.69)

Satim1 15.50 (0.51) 15.61 (1.46)

Phoneme 20.67 (0.24) 20.81 (2.05)

Figure 4.4: Comparison of average test error rates of 10-fold cross-validation for the

proposed methods

125



4.5.2 Comparison of the proposed classifiers with k-NN and

SVM classifiers

The k-NN classifier, due to its simplicity, is one of the most popular classification tech-

niques. We have discussed it in Section 1.3.1 along with other statistical classifiers. The

SVM classifier for two-class problems has also been discussed in the same section. Al-

though there have been a few attempts to design multi-class SVMs [6], typically two-class

SVM is used to solve the multiclass problem. Usually either One vs. One [252] or One

vs. All [333] strategy is used. We use the One vs. One method for our multiclass data

sets. In this method, for a c class problem we build c(c−1)
2

two-class classifiers, one for

each pair of distinct classes, trained with the training data from the corresponding pair

of classes. An unknown sample x is classified by each of the classifiers into one of the

classes for which it is trained. The sample is assigned to the class which receives the

majority of the votes.

To compare the proposed schemes experimentally with the k-NN and SVM classifiers

we have conducted 10-fold cross-validation experiments with group A and group B data

sets. For k-NN classifiers, for each data set we have experimented with 5 different values

of k, namely, 1, 3, 5, 7 and 9. For SVM classifiers we conducted experiments with two

variants, namely, linear SVM and SVM with RBF kernel. For building SVM classifiers

we have used the SV MLight [142] package which has a built-in mechanism to compute

the value of the regularization parameter C. For the SVMs with RBF kernel we have

used the spread parameter γ = 0.1. We have experimented with a few other choices of

γ and for this choice, the performance of the classifiers for most of the data sets were

found quite good.

Table 4.13 and Table 4.14 depict the error statistics of the k-NN and SVM classifiers

for both group A and group B data sets. The test error statistics of 1-NMP and k-NN

classifiers in Table 4.11 and Table 4.13 reveal that for Iris, Normalized Breast Cancer,

Two-dishes and Phoneme data sets the k-NN classifiers perform significantly better.

This is due to the fact that for data sets with good class structures the k-NN works very

well as a large number of representative points are maintained in the training set. For

the Vowel data set the 1-NMP classifier performs better. For Cone-torus data set with

complex class structures the 1-NMP classifier result in a significantly lower average error

rate. For Norm4 and Normal Mixture also 1-NMP classifiers show better performance.

For the Glass data set, with lower values of k (1,3) k-NN performs better, but for higher

k values (5,7 and 9), the performance degrades and becomes worse than that of 1-NMP.

This is probably because of the very complex and overlapped structure of the data. For

Satimage1 the performance of k-NN is marginally better for larger values of k (5,7 and

9), while for lower k values (1,3) 1-NMP outperforms k-NN.

126



Table 4.13: Result of 10-fold cross-validation experiment with k-NN classifiers: The

statistics of test misclassification rates are reported. The numbers in the parentheses

denote the values of standard deviation.
Data k=1 k=3 k=5 k=7 k=9

Set Av.(St. D.) Av.(St. D.) Av.(St. D.) Av.(St. D.) Av.(St. D.)

Iris 4.00 (4.66) 4.00 (4.66) 3.33 (4.71) 2.67 (4.66) 3.33 (4.71)

Glass 27.14 (5.96) 31.43 (7.84) 35.71 (7.86) 36.67 (11.89) 39.52 (11.46)

N. B. Cancer 3.21 (2.50) 2.68 (2.27) 3.04 (2.80) 2.68 (2.27) 3.04 (2.39)

Vowel 33.68 (3.34) 26.90 (3.12) 23.10 (3.09) 23.68 (2.72) 20.69 (3.07)

Norm4 7.13 (2.89) 5.00 (2.76) 5.13 (3.25) 4.50 (2.90) 4.63 (2.70)

Two-Dishes 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Cone-Torus 17.50 (5.77) 17.00 (6.21) 17.50 (4.71) 17.00 (4.38) 15.00 (4.41)

Normal 11.36 (2.89) 10.00 (2.45) 10.48 (2.40) 10.00 (2.83) 10.00 (3.00)

Mixture

Satimage1 18.37 (2.24) 15.89 (1.26) 15.58 (0.97) 14.87 (0.97) 14.56 (0.82)

Phoneme 9.43 (1.54) 10.74 (1.47) 11.28 (1.76) 12.35 (1.73) 12.74 (1.61)

Table 4.14: Result of 10-fold cross-validation experiment with SVM classifiers

Data Linear RBF kernel

Set Etr (%) Ete (%) Etr (%) Ete (%)

Avg. (St. D.) Avg. (St. D.) Avg. (St. D.) Avg. (St. D.)

Iris 6.67 (2.18) 9.33 (7.83) 3.04 (1.13) 2.67 (3.44)

Glass 63.81 (0.87) 62.96 (7.82) 35.71 (2.62) 43.92 (8.17)

N. B. Cancer 3.83 (0.28) 3.93 (2.35) 3.75 (0.22) 4.11 (2.39)

Vowel 24.21 (0.59) 24.25 (6.38) 24.21 (0.59) 24.25 (6.38)

Norm4 4.10 (0.20) 5.00 (2.57) 3.47 (0.60) 4.75 (2.34)

Two-Dishes 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Cone-Torus 25.19 (0.66) 25.75 (5.28) 16.92 (0.69) 17.50 (3.54)

Normal Mixture 11.76 (0.44) 11.76 (3.42) 11.13 (0.39) 11.12 (3.51)

Satim1 15.81 (0.26) 15.85 (1.79) 9.57 (0.16) 16.10 (1.09)

Phoneme 22.49 (0.23) 22.67 (1.56) 18.65 (0.33) 19.07 (2.24)

127



Compared to the 1-MSP classifiers (Table 4.12) the k-NN classifiers show better test

performance on Iris, Normalized Breast Cancer and Phoneme data, while both classifiers

show zero test error rates for the Two-Dishes data set. On the other hand, for Vowel,

Norm4, Cone-torus and Normal Mixture data sets the 1-MSP classifiers show lower

average test error rates and comparable standard deviations. For Glass data set, for

k=5,7 and 9 the 1-MSP outperforms k-NN. For the Satimage1, like 1-NMP, the 1-MSP

classifier shows better performance than the k-NN classifiers with k=1 and 3.

We have demonstrated that the 1-MSP classifier, which is an improved version of the

1-NMP classifier, performs better than the 1-NMP classifier for majority of the data sets

studied. So here we compare the 1-MSP classifier with the SVM classifier. Table 4.12

and Table 4.14 reveal that except for Normalized Breast Cancer and Two-dishes, the

1-MSP classifier outperforms the linear SVM in terms of average test error rates. For

Two-dishes both classifiers achieve zero error rates and for Iris, Glass, Vowel, Cone-torus,

Normal Mixture and Phoneme the average error rates for the 1-MSP classifiers are much

lower than those for the SVM classifiers. In most of the cases the standard deviations of

error rates are comparable for both types of classifiers.

While using SVMs with RBF kernels, the performance improves significantly for sev-

eral data sets. Compared to 1-MSP classifiers, the SVMs with RBF kernels result in

lower average test error rates for Iris, Normalized Breast Cancer and Phoneme data sets.

However, for Glass, Vowel, Cone-torus and Normal Mixture data sets the 1-MSP clas-

sifier achieves lower average error rates. For Norm4 also the 1-MSP classifier performs

marginally better. It is interesting to observe that for several data sets with complex

and overlapped class structure the 1-MSP classifier is found to perform better.

There are a few points those distinguish the proposed classifier design approaches from

the k-NN and SVM classifiers. Though k-NN classifiers are simple and usually perform

quite well, a straightforward implementation of a nearest-neighbor classifier requires

large memory (the complete set of training samples X has to be kept in memory) and

involves large computational overhead (the distance between x and each of the training

data points has to be computed). This makes it difficult to use the k-NN methods for

large and high dimensional data. There have been several attempts to minimize the

computational overhead of k-NN algorithm [109, 70], some of which approximate the

k-NN scheme. We have not considered such implementations here. Theoretically, with

increase in the value in k the performance of k-NN classifier improves and approaches

the optimal Bayes error rate [83]. However, due to the finite size of the training data it

is often not so in real life cases. It can be observed from Table 4.13 that for the data

sets Glass and Phoneme the average error rates increase with k.

In prototype-based classifiers, such as those proposed here, the training data set is

128



represented by a set of prototypes V = {(vi, li) | i = 1, ..., ĉ} where, ĉ ≥ c, which is

much smaller than the number of training samples. Each prototype can be thought as a

representative of a subset of X. Thus, they overcome the problems of large memory and

computational requirements. Moreover, the prototype based classifiers are more readable

than k-NN classifiers because prototypes represent typical cases in the data set. Further,

our objective in the next chapter is to develop fuzzy rule based classifiers, where the

prototypes are converted into fuzzy rules. To retain the advantage of interpretability of

a fuzzy rule based system, it is most desirable for us to devise a scheme that uses small

number of prototypes with good performance.

The support vector machines provide a robust means of building classifiers with good

performance. The theoretical foundation behind its formulation also makes it attrac-

tive to use. A system built with linear SVM is quite understandable but when kernel

functions are used for implicit nonlinear projection to high dimensional space, the under-

standability of the structure of data as well as of the decision boundaries suffers heavily.

In contrast, the prototype based classifiers proposed in this chapter are conceptually

very simple and easily understandable. Moreover, from the experiments it is found that

their performance is quite comparable with those of the SVM for several data sets. For

a given data set often the performance of SVM is highly sensitive to the choice of the

kernel parameters. This is not the case with the proposed classifiers.

4.6 Classifying landcover types from multispectral

satellite images

In the following two chapters we shall develop schemes for building fuzzy rule based

classifiers for complex pattern recognition tasks. Those schemes use the DYNAGEN

algorithm described in this chapter for generation of initial prototypes. The fuzzy rule

based classifiers are designed with the aim of performing classification of large and com-

plex data sets. To test the performance of these fuzzy rule based classifiers we use

two multispectral satellite images for classifying landcover types. We call these images

Satimage2 and Satimage3 respectively. Apart from the fact that these two data sets

pose difficult classification problems, we use them because in Chapter 6 we shall pro-

pose several classifiers that exploit spatial contextual information. Though the fuzzy rule

based classifiers outperform both 1-NMP and 1-MSP classifiers for these data sets, for

the sake of continuity we report here the performances of 1-NMP and 1-MSP classifiers

with these multispectral satellite images.

129



4.6.1 The multispectral satellite image data

Satimage2 is a Landsat Thematic Mapper (Landsat-TM) image available along with full

ground truth in the catalog of sample images of the ERDAS software and used for testing

various algorithms [190]. The image covers the city of Atlanta, USA and its surrounding.

Satimage3 is also a Landsat-TM image depicting outskirts of the city of Vienna, Austria

[36].

The Satimage2 is of size 512 × 512 pixels, captured by seven detectors operating in

different spectral bands from Landsat-TM3 multispectral scanner. Each of the detectors

generates an image with pixel values varying from 0 to 255. The 512× 512 ground truth

data provide the actual distribution of classes of objects captured in the image. From this

data we produce the labelled data set with each pixel represented by a 7-dimensional

feature vector and a class label. Each dimension of a feature vector comes from one

channel and the class label comes from the ground truth data.

Kumar et al. [190] studied Satimage2 using a number of techniques including the

maximum likelihood classification, artificial neural network and fuzzy integral method.

They found the fuzzy integral method to produce the best performance in their study.

Satimage3 also is a seven channel Landsat-TM image of size 512× 512. However, due

to some characteristic of the hardware used in capturing the image the first row and the

last column of the images contain gray value 0. So we did not include those pixels in our

study and effectively worked with 511 × 511 image. The ground truth containing four

classes is used for labelling the data. More details about Satimage2 and Satimage3 are

provided in the next chapter.

Satimage3 has been studied by Bischof et al. [36] using the maximum likelihood

classifier (MLC) and neural networks. They reported better performance with neural

networks compared to MLC.

In our studies we generated 4 sets of training samples for each of the images. For

Satimage2 each training set contains 200 data points randomly chosen from each class.

This choice is made to conform to the protocol followed in [190]. For Satimage3 we

include in each training set 800 randomly chosen data points from each of the four

classes. The training set used in [36] contains unequal number of points from different

classes. The lowest number of points chosen from a class in [36] was 922 (water). We

use 800 points from each class in a training set for the purpose of comparing our result

with the reported ones. The classifiers designed with the training data are tested on the

whole images. Note that, the training sets used here are very small compared to the sizes

of the whole data sets. For Satimage2 the training set is 0.61% of the total data and for

Satimage3 the same is 1.22% only. We shall be using the same training sets for building

130



Table 4.15: Classification performances of 1-NMP classifiers designed using different

training sets for the multispectral satellite images

Data Training No. of Error Rate in Error Rate in

Set Prototypes Training Data Whole Image

Satimage2 1. 30 26.7% 22.2%

2. 25 24.4% 23.0%

3. 25 22.7% 18.7%

4. 27 25.8% 18.2%

Satimage3 1. 14 20.0% 17.6%

2. 14 19.5% 19.8%

3. 12 21.3% 21.8%

4. 11 21.9% 23.9%

the fuzzy rule based classifiers also.

4.6.2 Experimental results

Each training set is used to design a 1-NMP classifier and a 1-MSP classifier and then

tested on the whole image. The performance of the 1-NMP classifiers and 1-MSP clas-

sifiers are summarized in Table 4.15 and Table 4.16 respectively. Table 4.15 shows that

the best result for Satimage2 on the test data yields 81.8% correct classification and the

average classification performance is 79.47%, which is better than the best classification

rate 78.15% achieved by Kumar et al. [190] using fuzzy integral based method on the

same image. 1-MSP classifiers for Satimage2 shows improvement in performance ranging

from 1% (training set 3) to 4.8% (training set 2), while for training set 4 we get lowest

error rate of 16.4%.

For Satimage3 the reported result [36] shows 84.7% accuracy with the maximum-

likelihood classifier and 85.9% accuracy with a neural network based classifier. For

Satimage3 the best 1-NMP classifier achieves 82.4% test accuracy with training set 1,

which is comparable with the reported result. Other classifiers show slightly higher error

rates. The performance of the 1-MSP classifiers are marginally better, except for training

set 3, which shows a slight reduction in accuracy.

131



Table 4.16: Classification performances of 1-MSP classifiers designed using different

training sets for the multispectral satellite images

Data Training No. of Error Rate in Error Rate in

Set Prototypes Training Data Whole Image

Satimage2 1. 30 24.8% 21.1%

2. 25 22.3% 18.2%

3. 25 22.3% 17.7%

4. 27 22.6% 16.4%

Satimage3 1. 14 21.1% 17.2%

2. 14 18.8% 18.9%

3. 12 21.5% 22.8%

4. 11 21.8% 22.7%

4.7 Conclusion

We have presented two comprehensive schemes for designing prototype based classifiers.

The schemes address all major issues involved with the design. Based on the training data

set, the proposed SOM-based DYNAGEN algorithm takes care of prototype generation

as well as determination of an adequate number of prototypes needed for the classification

tasks by a nearest-prototype classifier, here named 1-NMP classifier. It may seem that

other clustering algorithms can be used for prototype generation. However, the proposed

DYNAGEN algorithm offer several advantages. If hard c-means (HCM) clustering is

used, the number of prototype need to be guessed. There also remains the possibility of

underutilization of the prototypes. On the other hand, if fuzzy c-means (FCM) clustering

algorithm is used, though underutilization of prototypes is avoided, while tuning the

prototypes, the training starts from the beginning, i.e., the information extracted till the

last iteration is lost. In contrast, the SOM-based approach proposed here is incremental

in nature. However, neural gas algorithm [240] (which is a variant of SOM) may be used

for prototype generation with the same effect.

The performance of the 1-NMP classifier is quite good. However, as pointed out earlier,

the nearest-prototype classifier cannot take care of large variations in the variances of the

data from different classes. To equip the classifier to deal with such a situation it must

use the variance of the data represented by each prototype. In our second classifier (1-

MSP) we associate with each prototype a zone of influence that tries to cover the spread

of the data represented and thereby it accounts for the class variance. To measure the

proximity we use a (Euclidean) norm-induced similarity measure that implicitly defines

132



the limit of the zone of influence of each prototype.

Apparently one can think of two ways of using Mahalanobis distance to deal with

data having non-hyperspherical class/subclass structure: (1) Running some clustering

algorithm on the whole training data, and computing the covariance matrix for each

cluster. But in this method the class information is ignored and a cluster may contain

data from different classes. This may particularly defeat the purpose of the exercise. (2)

Clustering the data from each class separately to generate the prototypes and computing

the covariance matrix of the data points closest to each prototype. This ‘closeness’

criterion is again based on Euclidean distance. So the computation of Mahalanobis

distance based on the covariance matrix thus obtained may not solve the problem, unless

it is updated during training, as in Gustafson and Kessel [116]. Moreover, although this

option uses the class label information, it cannot capture interaction between classes and

this has to be accounted during refinement of the prototypes.

In the following chapter we shall develop a generalization of 1-MSP classification

scheme leading to realization of a fuzzy rule-based classifier, where the rules are ob-

tained in a data-driven manner.

133



Chapter 5

Extraction of Fuzzy Rules for

Classification 1

1Part of this chapter has been published in [206] and the whole of it is published in [267].



5.1 Introduction

In recent times fuzzy rule based classifiers [31, 32, 137, 191] have attracted attention

of many researchers due to their several useful features compared to more traditional

distance based classifiers. At the conceptual level their working is closer in spirit to

human reasoning. At the practical level they can be used very easily to handle several

problematic situations. For example, outliers can be detected by small firing strengths

of the rules, highly overlapped regions can be detected by high firing strength of rules

from different classes. Most interestingly, the problem of high variation in the variances

of different features, which often degrades the performance of a distance based classifier

substantially, can be handled naturally by fuzzy rules due to the atomic nature of the

antecedent clauses. Although theoretically the Maximum Likelihood Classifiers (MLCs)

assuming Gaussian mixture model can also handle this problem, they face the formidable

problem of density estimation.

In this chapter we describe a comprehensive scheme for designing fuzzy rule based clas-

sifiers. This is a multi-stage scheme. In the first stage a set of labelled prototypes repre-

senting the distribution of the training data is generated using the Self-organizing Map

(SOM) based prototype generation algorithm proposed in Chapter 4. Other methods of

labelled prototype generation can also be used. The algorithm employs a combination

of unsupervised and supervised clustering of the training data to generate an adequate

number of prototypes representing the overall as well as class-specific distribution of the

training data. Then each of these prototypes is converted to a fuzzy rule. Each of the

fuzzy rules represents a region, may be overlapped, in the feature space. We call this

region the context of the rule. Note that, throughout this chapter the word “context”

is used to mean a region in the feature space, not pixels in the neighborhood of another

pixel in an image.

Next we develop a tuning algorithm for the fuzzy rules that fine-tunes the peaks as

well as the spreads of the fuzzy sets associated with the rules. We call this the context

tuning stage. The exact implementation of the tuning algorithm is dependent on the

conjunction operator used to represent the AND connective in the antecedent part of

the rules. Here we develop the tuning algorithms for two different conjunction operators,

namely the product and the softmin. The tuned rules are used to classify the unknown

samples based on the firing strengths of the rules. A test sample is assigned to the class

of the rule generating the highest firing strength.

The softmin operator, based on the value of a parameter, can approximate a whole

family of operators including min, average and max. This raises the possibility of using

a set of rules where each rule is free to use a different conjunction operator depending

135



on the context it operates on. This is known as context-sensitive reasoning. Here,

depending on the context the reasoning scheme may change. To realize this possibility

we also develop an algorithm for tuning the parameters of the softmin operators on a per-

rule basis. The schemes, which use the same conjunction operator (reasoning scheme)

for all rules will be called context-free reasoning in this chapter.

The chapter is organized as follows: in section 5.2 we discuss various issues related

to designing a fuzzy rule based classifier and how these issues are dealt with by other

researchers. Section 5.3 we describe the proposed method for extraction of fuzzy rules

from data using prototypes generated by SOM-based method developed in the previous

chapter. The idea of tuning the fuzzy rule base for context-sensitive inferencing is devel-

oped in Section 5.4. The implementation details and experimental results are presented

in Section 5.5. We conclude the chapter in Section 5.6.

5.2 Fuzzy rule based systems for pattern classifica-

tion

5.2.1 Which type of fuzzy rules to use

A fuzzy rule based system consists of a set of fuzzy rules {Ri | i = 1, 2, · · · ,M} . The

rules can have different structures. The structure of the Mamdani and Assilian [236] or

MA rules has the following form

Ri : If x1 is Ai1 AND x2 is Ai2 AND · · · AND xp is Aip then y is Bi,

where xk is the k-th component of the input vector x ∈ <p, Aik is a fuzzy set used in the

i-th rule and defined on the domain of xk, i.e., on the universe of the k-th input feature

and Bi in the consequent part is a fuzzy set defined on the domain of the output variable

y. These fuzzy sets are often designed to have semantic meaning (such as low, medium,

high etc.) with respect to the particular feature and also called linguistic values. The

use of linguistic values, allows one to model human-like reasoning systems with fuzzy

rules. Naturally such a system can be used as tool for approximate reasoning with good

degree of tolerance to imprecision and uncertainty that may exist in real-life systems.

Geometrically each rule can be viewed as a fuzzy point or information granule in the

combined input-output space. When a sample data point x ∈ <p is presented to the

system, the LHS or the antecedent part of the rule calculates a firing strength

αi(x) = T (µi1(x1), µi2(x2), · · · , µip(xp)), , (5.1)

136



where, µik(xk) is the membership value of xk to the fuzzy set Aik and T is a T-norm

[164] implementing the AND operation between the antecedent clauses. The output of

Ri is the fuzzy set Bi clipped at the height αi. In general, more then one rules fire with

non-zero firing strength. These rules together produce a fuzzy set which is the union of

all clipped Bis. This output fuzzy set is then “defuzzified” using some defuzzification

method such as Center of Gravity (COG) or Mean of Maxima (MOM), to obtain a

crisp value for the output of the system [164]. As it can be observed, MA rules deal

with continuous valued output variables and they have found numerous applications in

control, prediction, function approximation etc. [251].

There is also another type of rules due to Takagi and Sugeno [319]. This type of rules

are known as Takagi-Sugeno rules or TS rules. The general form of this rule is as follows:

Ri : If x1 is Ai1 AND x2 is Ai2 AND · · · AND xp is Aip then y is ui(x).

The set of functions {ui : <p 7→ <q : 1 ≤ i ≤ M} comprise the consequent part of the

rule base. In general, each ui is a vector field whose components are scalar fields of some

specified form (e.g., constant, linear, affine, quadratic, Gaussian etc.). The output of the

rule base is the vector STS computed by the convex combination of M output functions

as

STS(x) =

∑M
i=1 αi(x) · ui(x)∑M

j=1 αj(x)
. (5.2)

When in a rule base ui’s are all polynomials of the same order, the TS system is said to

have the same order. When the components of the output function are all constant, TS

rules are said to be of 0-th order. TS rules have also found many application in control,

forecasting, function approximation and pattern recognition [32, 191].

For pattern classification tasks the situation is different. Here the output is not a

continuous variable, but a class label. The requirement here is to find information

granulation in the input space and associate each of the granules with a crisp class

label. In this case, MA and TS type of rules are not appropriate. The fuzzy rules for

classification task should have a categorical label value in its consequent part. Thus the

fuzzy rules for classification are of the type [59]:

Ri : If x1 is Ai1 AND x2 is Ai2 AND · · · AND xp is Aip then class is j.

Since output of such rules are class labels, even though they bear an apparent similarity

with TS rules of 0-th order, aggregation of outputs using (5.2) is not meaningful. In this

case we need a different strategy to compute the rule base output. For classification,

137



when a sample data point x ∈ <p is presented to the system, the firing strength αi of

each rule is computed. For a given x, if the firing strength of a rule is α, and the rule

represents, say class k, then one can interpret α as the degree of support that x is in

class k. The simplest decision rule that can be used is:

Decide x ∈ Class k,

If αj(x) = arg max︸ ︷︷ ︸
i

{αi} and k = consequent(Rj).

Note that, in the literature use of MA type rules for classification is also suggested

where the rule consequents are fuzzy sets defined on [0,1] and interpreted as certainty

(not class labels) [191]. For such systems the center of gravity type defuzzification has

been used but this is conceptually not attractive. We shall explain the issue with the

help of an example:

Suppose, for a data point two rules R1 and R2 are fired. The firing strength of R1

is 1.0 and that of R2 is 0.2. The consequent of R1 is a fuzzy set very low with high

specificity, while the consequent of R2 is very high with low specificity. In this case,

although the output certainty should be close to very low, due to the effect of COG type

defuzzification, it will be heavily biased towards very high. This is counter-intuitive.

This happens, because the output linguistic variable is artificial and the defuzzification

scheme is not appropriate (certainty is not an additive concept in context of a rule-base).

In view of the above reason, in this thesis we use the rules where the consequents are

class label, i.e., the rule type due to Chiu [59] as described above.

5.2.2 Design issues

For designing a fuzzy rule based classifier there are three issues that need to be addressed:

I1 How many rules are needed?

I2 How to generate the rules?

I3 How to use the rules to decide a class?

The simplest way of tackling the above issues is to take the help of a domain expert and

create the fuzzy rules to represent his/her domain knowledge. But in a typical pattern

classification problem, such domain knowledge is usually not available. So a scheme is

needed for designing fuzzy rule based classifiers based on the training samples. In other

words, one need to extract the rules from the training data.

138



Two major approaches to fuzzy rule extraction can be identified, namely, decision tree

based approach and prototype based approach. The tree based approach was introduced

by Chang and Paladins in their famous paper [48] in 1977. In such a classifier the

number of rules are equal to the number of leaf nodes. Subsequently many researchers

[56, 141, 234, 344] developed methods of fuzzy rule extraction from data. In general,

these methods produce interpretable rules and often are capable of handling patterns

with both numerical and non-numerical features. Typically, first the tree is generated

and then from the tree a set of rules are generated. When rules are generated from the

tree, all rules may not use all the input variables in the antecedent.

The prototype based approaches try to exploit geometric properties of the data. This

approach can be regarded as special case of more general clustering based approach to rule

extraction from data, which can be also used for function approximation and control,

apart from classifier design. Actually, pattern classification tasks can be thought as

a special case of function approximation task, where the output variable has discrete

values. There are many theoretical studies available on the universal approximation

(UA) properties of fuzzy rule based systems. A good review of such works can be found

in [186]. In [192] Kuncheva discussed specifically the UA properties of fuzzy rule based

classifiers. Though such results provide theoretical assurance about the quality of fuzzy

rule based systems, they help little in the way of actually designing a system. In the

next paragraph we briefly mention some of the approaches to designing the rule base.

Given a set of input and output observations, extracting fuzzy rules involves creat-

ing fuzzy partitions in the input and output space by associating fuzzy sets with each

variable. There are chiefly two ways of doing it: data independent partition and data

dependent partition. In the former, the input space is partitioned in a predetermined

grid-like fashion, i.e., domain of each input feature is divided into a predetermined num-

ber of fuzzy sets, so that the input space is partitioned into a number of fuzzy hyperboxes

(each corresponding to a rule). The partition of output space is then performed in a su-

pervised manner. In [343] Wang and Mendel adopt this approach. Despite being very

simple and highly interpretable, this approach suffers from two drawbacks. 1) The in-

formation in the training set is not fully exploited. 2) The scheme suffers from “curse

of dimensionality”, i.e., with increase in dimension, the number of fuzzy rules increases

exponentially. However, in [137] Ishibuchi et al. used such a grid type partition for high

dimension data, where they utilized “don’t care” as an antecedent fuzzy set and thereby

retaining only a small set of useful rules. They used genetic algorithm to find a set of

good rules. In the other approach the partitions are dictated by the structure of the

data. They generally involve first learning the structure of the data and then creating

partitions. In [254] ensemble of rule tables with different fineness of granulation is used.

A grade of certainty was associated with the rules during training. Finally, the rules from

139



the multi-table are pruned using the certainty grades. Abe and Lan [3] extracted rules

from data by means of creating action hyperboxes and inhibition hyperboxes in the input

space. In [4] Abe et al. developed classifiers with ellipsoidal regions in the input space,

which are initially found through a clustering algorithm. Then the membership func-

tions are tuned by changing their slopes in a supervised manner. Since there are a large

number of parameters to be learned during the data dependent rule extraction, neural

network based methods (also known as neuro-fuzzy systems) [52, 153, 149, 215, 218] and

genetic algorithm [57, 136, 128, 138, 350] have also been used for fine tuning the rule

bases.

SOM has been used for generation of fuzzy rules by Chi et al. in [54] and [55] for

classification of handwritten numeric characters. Their approach involved training an

SOM with the data to obtain the prototypes. Then each prototype is labelled and

converted into a fuzzy rule using triangular membership function for each linguistic

variable according to the method proposed by Dickerson and Kosko [84]. The number

rules are reduced by merging narrowly separated fuzzy regions. In a typical example

reported in [55] they used a 30× 30 SOM and generated 809 fuzzy rules.

5.3 Designing fuzzy rule based classifiers

In this section we develop a prototype based method for designing a fuzzy rule based

classifier. The scheme tries to achieve computational efficiency by using a small number

of rules that is enough to span the data distribution and representing class structures.

Here the prototypes are generated using the SOM-based prototype generation method

DYNAGEN described in Section 4.3 of the previous chapter. We have already observed

that the prototypes obtained from DYNAGEN show very good performance when used

in a nearest prototype classifier. Hence these prototypes can be used to generate an

initial set of rules which can be further fine tuned to obtain a good fuzzy rule based

system. We use a gradient descent based technique of fine tuning both the peak and

width of each fuzzy set.

5.3.1 Generating the fuzzy rule base

A prototype (representing a cluster of points) vi for class k can be translated into a fuzzy

rule of the form :

Ri: If x is CLOSE TO vi then the class is k.

140



Where the fuzzy set “CLOSE TO” can be represented by a multidimensional member-

ship function such as

µCLOSETO(x) = exp
− ||x−vi||2

σi
2 , (5.3)

where σi > 0 is a constant. This is equivalent to using prototypes with hyperspherical

zones of influence centered at vis. The 1-MSP (most similar prototype) classifier uses

such membership values and it has been studied in [204] and described in the previ-

ous chapter. Such a classifier does not perform quite well when different features have

considerably different variances.

To overcome this shortcoming, “x is CLOSE TO vi” can be written as a conjunction

of p atomic clauses :

x1 is CLOSE TO v1 AND · · · AND xp is CLOSE TO vp.

So the i-th rule Ri representing one of the c classes takes the form

Ri : x1 is CLOSE TO vi1 AND · · · AND xp is CLOSE TO vip then class is k.

Note that, this is just one possible interpretation of “x is CLOSE TO vi”. The first

form requires a multidimensional membership function while the second form requires

several one dimensional membership functions and a conjunction operator. In general,

the two forms will not produce the same output because they are not exactly equivalent.

Depending on the choice of the membership function and the conjunction operator, the

forms may lead to the same output.

The fuzzy set CLOSE TO vij can be modelled by a triangular, trapezoidal or Gaussian

membership function. In this investigation, we use the Gaussian membership function,

µij(xj; vij, σij) = exp−(xj − vij)
2/σij

2. (5.4)

Given a data point x with unknown class, we first find the firing strength of each

rule. Let αi(x) denote the firing strength of the i-th rule on a data point x. We assign

the point x to class k if αr = max
i

(αi(x)) and the r-th rule represents class k. The

computational method used for the firing strength αi(x) depends on the choice of the

conjunction operator (for AND operation).

The performance of the classifier depends crucially on the adequacy of the number of

rules used and proper choice of the fuzzy sets used in the antecedent part of the rules. In

our case each fuzzy set is characterized by two parameters vij and σij. Let the initial set

141



of fuzzy rules be R0 = {R0
i | i = 1, 2, . . . , ĉ}. The parameters v0

ij and σ0
ij for fuzzy sets

in the antecedent part of a rule R0
i ∈ R0 are obtained from the prototype vfinal

i ∈ V final

as follows:

v0
ij = vfinal

ij (5.5)

σ0
ij = kw(

√
(

∑
xk∈Xi

(xkj − vfinal
ij )2))/|Xi|, (5.6)

where Xi is the set of training data closest to vfinal
i and kw > 0 is a constant parameter

that controls the initial width of the membership function. If kw is small, then specificity

of the fuzzy sets defining the rules will be high and hence each rule will model a small

area in the input space. On the other hand, a high kw will make each rule cover a bigger

area. Since the spreads are tuned, in principle kw should not have much impact on

the final performance, but in practice the value of kw may have a significant impact on

the classification performance for complicated data sets because of the local minimum

problem of gradient descent techniques. In the current work the values of kws are found

experimentally. One can use a validation set for this.

The initial rule base R0 thus obtained can be further fine tuned to achieve better

performance. But the exact tuning algorithm depends on the conjunction operator (im-

plementing AND operation for the antecedent part) used for computation of the firing

strengths. The firing strength can be calculated using any T-norm [32]. Use of different

T-norms result in different classifiers. The product and the minimum are among most

popular T-norms used as conjunction operators. Using product, the firing strength of

the r-th rule is computed as follows:

αr(x) = Πj=p
j=1µrj(xj; vrj, σrj). (5.7)

and the same when computed using the minimum is

αr = min
j
{µrj(xj; vrj, σrj)}. (5.8)

Clearly it is much easier to formulate a calculus based tuning algorithm if product is

used.

In the current study we design two different classifiers one using product and the other

using the Softmin operator. We shall see that the softmin operator enables us to realize

a novel context-sensitive inferencing scheme.

142



5.3.2 Tuning the rule base

Let x ∈ X be from class c and Rc be the rule from class c giving the maximum firing

strength αc for x. Also let R¬c be the rule from the incorrect classes having the highest

firing strength α¬c for x.

We define the error function E as follows:

E =
∑
x∈X

Ex =
∑
x∈X

(1− αc(x) + α¬c(x))2. (5.9)

This kind of error function has been used by Chiu [58] also. With a view to minimizing

E, we consider the instantaneous error Ex. Note that, Ex is a function of the parameters

vcj, v¬cj and σcj, σ¬cj of the two rules Rc and R¬c. The tuning algorithm will refine the

rules with respect to their contexts.

Here the index j corresponds to clause number in the corresponding rule, i.e., for the

first antecedent clause j = 1, for the second clause j = 2 and so on. The tuning process

is repeated until the rate of decrement in E becomes negligible or a maximum number

of iterations are over. Next we give an algorithmic description of the rule refinement

algorithm when product is used to compute the firing strength.

Rule refinement (context-tuning) algorithm:

Begin

• Choose learning parameters ηm and ηs.

• Choose a parameter reduction factor 0 < ε < 1.

• Choose the maximum number of iteration maxiter.

• Compute the error E0 for the initial rule base R0.

• Compute the misclassification M0 Corresponding to initial rule base R0.

• t ← 1

• While (t ≤ maxiter) do

– For each vector x ∈ XTr (The training set)

∗ Find the rules Rc and R¬c using αc and α¬c.

143



∗ Modify the parameters of rules Rc and R¬c as follows:

∗ For k = 1 to p do

(A) vnew
ck = vold

ck − ηm
∂E

∂vold
ck

= vold
ck + ηm(1−αc + α¬c)

αc

σold2
ck

(xk − vold
ck )

(B) vnew
¬ck = vold

¬ck−ηm
∂E

∂vold
¬ck

= vold
¬ck−ηm(1−αc +α¬c)

α¬c

σold2
¬ck

(xk−vold
¬ck)

(C) σnew
ck = σold

ck − ηs
∂E

∂σold
ck

= σold
ck + ηs(1−αc + α¬c)

αc

σold3
ck

(xk− vold
ck )2

(D) σnew
¬ck = σold

¬ck−ηs
∂E

∂σold
¬ck

= σold
¬ck−ηs(1−αc+α¬c)

α¬c

σold3
¬ck

(xk−vold
¬ck)

2

∗ End For

– End For

– Compute the error Et for the new rule base Rt.

– Compute the misclassification Mt for Rt.

– If Mt > Mt−1 or Et > Et−1 then

∗ ηm ← (1− ε)ηm

∗ ηs ← (1− ε)ηs

∗ Rt ← Rt−1

∗ End If

Comment:If the error is increased, then possibly the learning

coefficients are too large. So, decrease the learning coefficients,

and retain Rt−1.

– If Mt = 0 or Et = 0 then

∗ Stop.

– End If

– t ← t + 1

• End While

End

At the end of the rule base tuning we get the final rule base Rfinal which is expected

to give a very low error rate.

Since a Gaussian membership function is extended to infinity, for any data point all

rules will be fired to some extent. In our implementation, if the firing strength is less

than a threshold, ε (≈ 0.01), then the rule is not assumed to be fired. The threshold

is set considering approximate 2σ limit of the Gaussian membership functions. Thus,

under this situation, the rule base extracted by the system may not be complete with

respect to the training data. This can happen even when we use membership functions

144



with triangular or trapezoidal shapes. This is not a limitation but a distinct advantage,

although for the data sets we used, we did not encounter such a situation. If no rule is

fired by a data point, then that point can be thought of as an outlier. If such a thing

happens for some test data, then that will indicate an observation not close enough to

the training data and consequently no conclusion should be made about such test points.

5.3.3 Softmin as a conjunction operator

Though product is a valid T-norm and has some attractive mathematical properties,

its use is conceptually somewhat unattractive. To illustrate the point let us consider a

rule having two atomic clauses in its antecedent. If the two clauses have truth values

a and b, then intuitively the antecedent is satisfied at least to the extent of min(a, b).

However, if product is used as the conjunction operator, we always have ab ≤ min(a, b).

Thus we always under-determine the importance of the rule. This does not cause any

problem for non-classifier fuzzy systems as the defuzzification operator usually performs

some kind of normalization with respect to the firing strength. But in classifier type

applications a decision may appear to be taken with very low confidence, when actually

it is not the case. Further, in certain cases, such as under evidence theory framework

used in next chapter, this may lead to overemphasis on total ignorance. For example, if

each antecedent clause is satisfied to the extent 0.9 and there are 10 antecedent clauses,

the firing strength becomes 0.910 = 0.3487! Thus to avoid the use of product and at the

same time to be able to apply calculus to derive update rules we use a softmin operator.

The soft-match of n positive number x1, x2, ..., xn is defined by

SM(x1, x2, ..., xn, q) =

{
(xq

1 + xq
2 + ... + xq

n)

n

}1/q

.

where q is any real number. SM is known as an aggregation operator with upper bound

of value 1 when xi ∈ [0, 1]∀i. This operator is used by different authors [91, 263] for

different purposes. It is easy to see that

lim
q→∞

SM(x1, x2, ..., xn, q) = max(x1, x2, ..., xn)

and

lim
q→−∞

SM(x1, x2, ..., xn, q) = min(x1, x2, ..., xn).

Thus we define the softmin operator as the soft-match operator with a sufficiently nega-

tive value of the parameter q. The firing strength of the r-th rule computed using softmin

is

αr(x) =

{∑j=p
j=1(µrj(xj; vrj, σrj))

q

p

}1/q

. (5.10)

145



In the current study we use q = −10.0.

Using the same error function E, as in the previous section we derive the rule update

equations L, M, N, and O bellow.The tuning algorithm remains the same except equations

A, B, C and D are replaced by L, M, N, and O respectively.

(L) vnew
ck = vold

ck − ηm
∂E

∂vold
ck

= vold
ck + ηm(1− αc + α¬c)

αcPj=p
j=1 µq

cj

µq
cj

σold2
ck

(xk − vold
ck )

(M) vnew
¬ck = vold

¬ck − ηm
∂E

∂vold
¬ck

= vold
¬ck − ηm(1− αc + α¬c)

α¬cPj=p
j=1 µq

¬cj

µq
¬cj

σold2
¬ck

(xk − vold
¬ck)

(N) σnew
ck = σold

ck − ηs
∂E

∂σold
ck

= σold
ck + ηs(1− αc + α¬c)

αcPj=p
j=1 µq

cj

µq
cj

σold3
ck

(xk − vold
ck )2

(O) σnew
¬ck = σold

¬ck − ηs
∂E

∂σold
¬ck

= σold
¬ck − ηs(1− αc + α¬c)

α¬cPj=p
j=1 µq

¬cj

µq
¬cj

σold3
¬ck

(xk − vold
¬ck)

2

The use of softmin is also consistent with our perception of AND connective in the

antecedent parts of the fuzzy rules. Since for reasonably big negative value (such as

-10.0) of q the softmin approaches direct min, when the trained system is used for

testing/deployment, direct min may be used for computational benefit.

5.4 Context-sensitive inferencing

The use of softmin operator opens up a host of theoretical possibilities. The important

fact to be noted is that the softmin operator is just one member of the family of aggre-

gation operators generated by the soft-match operator for q ∈ [−∞,∞]. The family of

operators covers a large spectrum from minimum to maximum including the average

(for q = 1). Figure 5.1 shows that softmin varies from the minimum of its arguments to

their maximum via the average.

In fuzzy rule based systems for pattern classification tasks, we use rules of the form

Ri : If x1 is Ai1 AND · · · AND xp is Aip then class is j,

Even if we use a tunable conjunction operator typically all rules in a system use the

same conjunction operator. We can raise a fundamental question at this point. Is it

really necessary to have the same conjunction operator for all rules in a system? It is

very difficult to have a definite answer. A rule is considered to be a tool for reasoning

in a small area of input feature space, each rule can be thought as a different context

of reasoning. Thus drawing an analogy with the reasoning of human experts, we can

recognize the possibility that within the same system there could be rules using different

conjunction operators. So a system may contain some rules for which minimum is the

146



Figure 5.1: Plot of soft-match operator against q.

appropriate conjunction operator while there could be others whose firing strength is

larger than the minimum of the membership values of atomic propositions. There could

even be some rules whose conjunction operator are closer in spirit to the maximum. This

leads to a concept called context-sensitive inferencing. Human being often do context-

sensitive inferencing. Depending on the cost involved with a decision an expert may

adopt different level of conservatism in inferencing [263].

Thus while designing a scheme for rule extraction from the data, if the conjunction

operator for each rule can also be learnt from the data, the resulting system is expected

to achieve better performance.

In our present scheme we use the softmin as the conjunction operator. As mentioned

earlier, it can act as different conjunction operators for different values of its parameter

q. So we can calculate the firing strength for the r-th rule Rr as

αr(x) =

{∑j=p
j=1(µrj(xj; vrj, σrj))

qr

p

}1/qr

. (5.11)

i.e., qr is the parameter for conjunction operator corresponding to the r-th rule. The

change in the value of the parameter qi changes the nature of inferencing implemented by

rule Ri. Therefore, we call the parameter qi the inferencing parameter of rule Ri. Also

for the sake of clarity, in places where distinction is needed, we shall call the parameters

controlling the position and spread of fuzzy sets vij and σijs as rule parameters or rule

base parameters. Hence, the error function, as a function of inferencing parameters qis

can be written as

E(q1, q2, · · · q|R|) =
∑
x∈X

Ex =
∑
x∈X

(1− αc(x) + α¬c(x))2, (5.12)

147



where R is the set of rules. Now we can use calculus to formulate an update scheme

for qis for reducing the error function. The algorithm for tuning consequent operators is

given bellow.

The conjunction operator (inferencing parameter) refinement

algorithm:

Begin

• Choose learning parameter ηq.

• Choose a parameter reduction factor 0 < ε < 1.

• Choose the maximum number of iteration maxiter.

• Compute the error E0 for the initial rule base R0.

• t ← 1

• While (t ≤ maxiter) do

– For each vector x ∈ X

∗ Find the rules Rc and R¬c using αc and α¬c.

∗ Modify the parameters qc and q¬c of rules Rc and R¬c respectively as

follows:

qnew
c = qold

c −ηq
∂E

∂qold
c

= qold
c +ηq(1−αc+α¬c)

αc

qc

(Pj=p
j=1 µqc

cj ln µcjPj=p
j=1 µqc

cj

− ln αc

)

qnew
¬c = qold

¬c−ηq
∂E

∂qold¬c
= qold

¬c−ηq(1−αc+α¬c)
α¬c

q¬c

(Pj=p
j=1 µq¬c

¬cj ln µ¬cjPj=p
j=1 µq¬c

¬cj

− ln α¬c

)

– End For

– Compute the error Et for the modified rule base Rt.

– If Et > Et−1 then

∗ ηq ← (1− ε)ηq

∗ Rt ← Rt−1

Comment:If the error is increased, then possibly the learning

coefficients are too large. So, decrease the learning coefficients,

and retain Rt−1.

– End If

– t ← t + 1

148



• End While

End

The initial set of rules used in this algorithm can be the set obtained from the tuning

algorithm described in the previous section. Thus, the earlier tuning scheme finds a

suitable context, i.e., the rule parameters for each rule using softmin and then we tune

the inferencing scheme depending on the context. In the new algorithm, unlike the

previous two, the stress is put on the reduction of total error as defined in Eq. (5.12).

The algorithm starts with the same inferencing parameter in the soft-match operators

for all rules and then the operator for each rule is tuned separately.

5.5 Implementation and results

The classifier designing scheme proposed in this chapter is a general one and can be used

for any pattern classification task with object data. However, the major motivation of

developing this scheme is to design classifiers for complex data sets while using a small

training set for the design purpose. Though the 1-NMP and 1-MSP classifiers proposed

in the previous chapter work well with several data sets, their performance for complex

data sets like Satimage2 and Satimage3 (Section 4.4.3) can be further improved. Thus in

this chapter we conduct detailed experiments with the data sets Satimage1 (from Group

B data sets in previous chapter), Satimage2 and Satimage3. Before that, we present the

performance of fuzzy rule based classifiers for other data sets (i.e., the group A data sets

and the group B data sets excluding Satimage1) studied in Chapter 4.

5.5.1 Classification of group A and group B data sets

The classifiers reported here employ context-free reasoning for both variants of rules

proposed in this chapter, namely, product rules using Eq. 5.7 as conjunction operator

and softmin rules using Eq. 5.10 as conjunction operator. A detailed description of these

data sets and the training-test partitions are provided in Section 4.3.3. Here we use the

same training-test partitions.

The initial fuzzy rule base for each of the data sets is derived from the corresponding

prototype sets used to build the 1-NMP classifiers as reported Chapter 4. Thus the

number of rules for a classifier is the same as the number of prototypes in corresponding

1-NMP classifiers. The designing of the rule base involves a very few parameters and we

have used the same values of parameters for all data sets. Strictly speaking, designing

149



Table 5.1: Performance of fuzzy rule based classifiers for group A data sets

Data No. of % of error

set Rules Product Rules Softmin Rules

Trng. Test Avg. Trng. Test Avg.

Iris 5 2.67 2.67 1.33 4.00

5 2.67 6.67 4.67 0.00 4.00 4.00

Glass 28 38.10 53.21 22.86 35.78

26 19.27 34.29 43.75 24.77 35.24 35.51

Breast 4 14.08 12.63 6.69 3.86

Cancer 5 14.74 16.90 14.77 3.86 8.45 6.16

Normalized 8 7.04 6.32 4.93 4.91

B. Cancer 4 5.96 7.75 7.04 2.46 7.75 6.33

Vowel 21 18.20 19.22 16.59 17.62

15 18.31 19.35 19.29 16.70 19.59 18.61

Norm 4 4.75 4.25 3.25 3.75

4 3.25 4.75 4.50 3.50 5.25 4.50

Two-Dishes 2 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2: Performance of fuzzy rule based classifiers for group B data sets

Data No. of % of error

set Rules Product Rules Softmin Rules

Trng. Test Trng. Test

Cone-Torus 12 14.57 19.40 15.58 14.43

Normal Mixture 4 11.60 10.00 13.66 9.40

Phoneme 5 19.60 20.39 20.80 21.24

150



of the rule based classifier involves only three parameters, the two learning coefficients

ηm, ηs and kw. An appropriate value of kw may expedite the learning, its optimal choice

will depend on the structure in the data and can be determined by a few trials with the

training set. However, the ultimate output is not much dependent on its value because

it just initializes the spreads of the membership functions which are finally tuned using

the training data. Thus, this parameter can be ignored, i.e., we can use kw =1 for all

data sets. The other two parameters are the learning coefficients. If we keep them fixed

throughout the training, then their choice, like any other gradient search, will decide

the local minima that the rule base settles at. However, in our tuning algorithms when

the average error increases with the current learning rate we have an in-built mechanism

of reverting to the previous rule base and reducing the learning rates. This makes the

scheme much less sensitive to the choice of the learning parameters. We have used the

same values of learning parameters (ηm = 0.1, ηs= 0.05 and kw= 2.0) for all data sets.

The DYNAGEN algorithm discussed in Chapter 4 uses two parameters K1 and K2.

Although K1 and K2 are not parameters of the fuzzy rule based systems, we discuss

about their choices because the prototypes extracted by the DYNAGEN are used to

initialize the rule base. Essentially, these two parameters are used to judge whether a

prototype is adequately represented by training points with respect to the overall data

structure as well as with respect to a class. Smaller values of K1 and K2 demand each

prototype to be represented by a larger number of points and thus lower the number

of prototypes, and hence the number of rules. Loosely speaking these two parameters

implement a kind of lower bound for the concept of adequacy and hence it is possible to

find a fixed set of values that work reasonably well with most data sets. That is what

we did here. Based on a few trails, we suggested K1 = 3 and K2 = 6 for all data sets

and used the same for all results reported.

The results for group A data sets are presented in Table 5.1. Results for both product

rule classifiers as well as the softmin rule classifiers are included. For each data set,

similar to the results reported in Table 4.3, two classifiers are built with the training and

test partitions interchanged. The 5-th and 8-th columns in Table 5.1 report the average

of test errors of two classifiers for each data set. Comparing with the 1-NMP classifiers, it

can be seen that for all but the Glass data set, the fuzzy rule based classifiers, especially

those using softmin rules show significantly better performance. Except for Glass the

performance of the fuzzy rule based classifiers are fairly close to those of the corresponding

1-MSP classifiers (Table 4.5). The 1-MSP classification scheme, as reported earlier, did

not work well for the Breast Cancer data set due to high variation of the range of its

components. The fuzzy rule based classifiers could overcome this difficulty. The softmin

rules based classifiers achieve significantly lower error rates (average 6.16%) for this data

set compared to the 1-NMP classifiers (average 12.13%).

151



Table 5.3: Fuzzy rule based classifiers: results of 10-fold cross validation

Data Product rules Softmin rules

Set Etr (%) Ete (%) Etr (%) Ete (%)

Avg. (St. D.) Avg. (St. D.) Avg. (St. D.) Avg. (St. D.)

Iris 3.78 (1.07) 6.00 (4.92) 2.37 (0.77) 4.00 (4.66)

Glass 22.80 (3.24) 42.38 (7.60) 20.37 (4.15) 37.62 (6.13)

N. B. Cancer 6.43 (1.69) 7.50 (3.05) 3.95 (0.92) 5.71 (1.84)

Vowel 17.82 (1.25) 18.74 (4.85) 16.93 (1.09) 20.46 (3.46)

Norm4 4.17 (0.30) 4.13 (1.67) 3.81 (0.29) 4.75 (2.19)

Two-Dishes 0.77 (0.10) 0.80 (0.88) 0.00 (0.00) 0.00 (0.00)

Cone-Torus 8.15 (1.14) 9.25 (3.94) 6.28 (0.47) 7.88 (2.13)

Normal Mixture 9.44 (0.42) 10.00 (2.45) 9.12 (0.28) 9.52 (2.81)

Satim1 14.96 (0.34) 14.74 (1.15) 14.32 (0.37) 14.53 (1.45)

Phoneme 20.52 (0.36) 20.69 (1.83) 18.15 (0.52) 19.26 (2.27)

The performance of the classifiers for three group B data sets is reported in Table

5.2. The training-test partitions are the same as those used in Table 4.4. Comparing

Table 5.2 with the Table 4.4 and Table 4.7, it can be observed that for these data sets,

the fuzzy rule based classifiers perform better than corresponding 1-NMP classifiers and

their performance are comparable to those of corresponding 1-MSP classifiers.

5.5.2 Results of cross-validation experiments

We have also reported in Table 5.3 the results of 10-fold cross-validation experiments for

both the group A and group B data sets. Comparing the results in Table 5.3 with cross-

validation experiments for the 1-MSP classifiers in Table 4.12, we find that for the Iris

data set the product rule classifier shows the same performance as the 1-MSP classifier

while the softmin rule classifier exhibits better performance. For Glass and Normalized

Breast Cancer the 1-MSP performs better but the performance of softmin rule classifier

is fairly close. For both these data sets the performance of fuzzy rule based classifiers is

more consistent because the standard deviation of error rates are much smaller than those

of 1-MSP. For the Vowel and Norm4 data sets the product rule classifiers exhibit better

performance while softmin rule classifiers have marginally higher error rates compared

to 1-MSP classifiers. The product rule classifier shows a small error rate for the Two-

dishes but the softmin rule classifier achieves zero error rate. For Cone-torus and Normal

Mixture the 1-MSP classifiers perform marginally better than the product rule classifiers,

but the softmin rule classifiers achieve lower error rates than the 1-MSP classifier. For

Satimage1 and Phoneme data sets both fuzzy rule based classifiers achieve lower error

152



rates. It is interesting to note that for all group B data sets the softmin rule classifiers

perform better than the 1-MSP classifiers.

5.5.3 Landcover classification from multispectral satellite im-

ages

Classification of multispectral satellite images is a very important field of application of

pattern recognition techniques. Currently huge amount of information about the earth

is routinely being generated by the satellite-based sensors. As mentioned in Chapter 4,

this information is often captured by multispectral scanners, that acquire data at several

distinct spectral bands producing multispectral images. Such data sets capture more

information since a sensor operating in certain spectral region might be more sensitive

to certain classes of objects than the others. Analysis of such data demands advanced

techniques for data fusion and pattern recognition. This requirement led to development

of numerous techniques for data fusion and classification. To name a few, statistical

methods [309, 272], Dempster-Shafer theory [211], neural networks [14, 27, 36, 272] etc.

Many researchers have studied different fuzzy methodologies for landcover classification

using multispectral satellite images. For example, in [101, 42] authors have used fuzzy

c-means algorithm [31], Kumar et al. [190] have applied fuzzy integral based method.

Fuzzy rule base has been used for classification by many researchers [32, 137] for diverse

fields of application. Fuzzy rules are attractive because they are interpretable and can

provide an analyst a deeper insight into the problem. There have been a few attempts

to use fuzzy rule based systems for land cover analysis. In a recent paper Bárdossy and

Samaniego [21] have proposed a scheme for developing a fuzzy rule based classifier for

analysis of multispectral images. They employed simulated annealing for optimizing the

performance of a randomly selected initial set of rules. In [188] Kulkarni and McCaslin

have used a fuzzy neural network for rule extraction.

Analysis of satellite images has many important applications such as prediction of

storm and rainfall, assessment of natural resources, estimation of crop yields, assessment

of natural disasters, and landcover classification. In this work we focus on land cover

classification from multispectral satellite images. We consider a set of independent de-

tectors of a sensor, operating in different spectral bands and producing homogeneous

data (i.e., same type of information, namely pixel values). Each pixel is represented by

a vector, each component of which comes from a detector.

Satimage1 is prepared from a four channel Landsat image and consisting of 6435 pixels.

So there are 6435 vectors in <4. There are six (c=6) types of landcover classes as shown in

Table 5.4. This is a benchmark data set and available on the web at [108]. Performance

153



Table 5.4: Different classes and their frequencies for Satimage1

Land-cover types Frequencies

Red soil 1533

Cotton crop 703

Gray soil 1358

Damp gray soil 626

Soil with 707

vegetation stubble

Very deep 1508

gray soil

Total 6435

of many classifiers for this data set can be found in [191]. In the previous chapter also

this data set (Satimage1 data set in group B) is used for testing the 1-NMP and 1-MSP

classifiers.

For Satimage1 the data set X is partitioned into XTr and XTe such that X = XTr∪XTe

and XTr ∩XTe = φ. The training-test partition used in [191] is available at [108]. The

number of pixels of different land-cover types in the training set are : Red soil = 104;

Cotton crop = 68; Gray soil = 108; Damp gray soil = 47; Soil with vegetation stubble =

58; Very deep gray soil = 115. We use this partition as our first partition and generate

three more random partitions keeping the same number of representations from different

classes in the training and test sets.

We have already mentioned in Chapter 4 that Satimage2 is a Landsat-TM image

available along with full ground truth in the catalog of sample images of the ERDAS

software. In Satimage2, each pixel is represented by a 7-dimensional feature vector. Each

dimension of a feature vector comes from one channel. The class distribution of the pixels

in Satimage2 is given in Table 5.5. Figure 5.2 shows the channel 1 image for Satimage1

and Figure 5.4 shows the ground truth for it where different classes are indicated with

different colors.

Kumar et al. [190] studied Satimage2 using a number of techniques including the max-

imum likelihood classifier, artificial neural network and a fuzzy integral based method.

The fuzzy integral based method is reported to produce the best performance in their

study.

Satimage3 is also a Landsat-TM image. Different classes and their frequencies for

Satimage3 are described in Table 5.6. Figure 5.3 shows the channel 4 image for Satimage3

154



Table 5.5: Classes and their frequencies in the Satimage2.

Classes Frequencies

Forest 176987

Water 23070

Agriculture 26986

Bare ground 740

Grass 12518

Urban area 11636

Shadow 3197

Clouds 358

Total 262144

Figure 5.2: Band-1 of Satimage2 (After histogram equalization).

155



Figure 5.3: Band-4 of Satimage3 (After histogram equalization).

Table 5.6: Classes and their frequencies in the Satimage3.

Classes Frequencies

Built-up land 48502

Forest 161522

Water 2643

Agriculture 48554

Total 261121

and Figure 5.5 shows the ground truth for it where different classes are indicated with

different colors.

As described in Section 4.6.2, in our study we generated 4 sets of training samples

for both Satimage2 and Satimage3. For Satimage2 each training set contains 200 data

points randomly chosen from each class. For Satimage2 we include in each training set

800 randomly chosen data points from each of the four classes. The classifiers designed

with the training data are tested on the whole images. The performance of 1-NMP

classifiers and 1-MSP classifiers for these data sets are presented in Section 4.6.2.

We divide the remaining part of this section in two parts. In the first part (context-

free inferencing, Section 5.5.4) we describe performance of two types of fuzzy rule based

classifiers. The first type uses product as the conjunction operator. The other type

156



Figure 5.4: The ground truth for Satimage2. The classes are represented by different

colors.

Figure 5.5: The ground truth for Satimage3. The classes are represented by different

colors.

157



Table 5.7: Performance of the fuzzy rule based classifiers designed with context-free

reasoning scheme for 4 different partitions of Satimage1 data set.

Partition Number of kw % of Error

Number Rules Product rules Softmin rules

Trng. Test Trng. Test

1 27 2.0 12.8% 15.51% 10.8% 15.58%

2 26 2.0 12.2% 15.6% 10.0% 16.16%

3 25 2.0 16.0% 15.26% 12.8% 15.92%

4 20 2.0 12.0% 17.1% 9.4% 16.29%

uses softmin as the conjunction operator with a constant q value for all rules in a

classifier. In the current study all these classifiers use q = −10. In the second part

(context-sensitive inferencing, Section 5.5.5) we report results using the context-sensitive

inferencing scheme, i.e., different conjunction operator for different rules.

5.5.4 Performance of the classifiers with context-Free inferenc-

ing

Table 5.7 depicts the performance of the fuzzy rule based classifier on Satimage1. Both

fuzzy rule based classifiers show consistently almost similar performances. In all cases

the softmin based classifiers show some improvement in the training error. While for test

sets the product based classifier shows slightly better performance in three cases and the

softmin based classifier is better in the remaining case. Satimage1 has been extensively

studied in [191]. Comparing our results in Table 5.8 with the results in [191] (reproduced

in Tables 4.8 and 4.9 in previous chapter) we find that our classifier outperforms MLP

of comparable sizes and at par with RBF networks. For example, in [191] the test error

reported using an MLP is 23.08% while that by RBF networks varied between 14.52% -

15.52%.

In Table 5.8 we present the results on four different random partitions of Satimage2. It

shows an excellent performance of the rule based classifiers. Both types (product based

and softmin based ) classifiers exhibit consistent and comparable performances. For all

partitions the softmin based classifiers show lower training errors while for the whole

data the product based classifier performs better in only one case. Figure 5.6 shows a

typical classification result (corresponding to the first partition) which is almost identical

to Figure 5.4.

158



Table 5.8: Performances of fuzzy rule based classifiers designed with context-free reason-

ing scheme for different training sets for Satimage2

Training No. of kw Product rules Softmin rules

Set rules Error Rate in Error Rate in Error Rate in Error Rate in

Training Data Whole Image Training Data Whole Image

1. 30 5.0 19.3% 13.8% 12.0% 13.6%

2. 25 6.0 14.4% 13.6% 14.3% 14.47%

3. 25 5.0 16.5% 13.7% 12.0% 13.03%

4. 27 4.0 16.0% 13.8% 12.6% 12.5%

Table 5.9: Performances of fuzzy rule based classifiers designed with context-free reason-

ing scheme for different training sets for Satimage3

Training No. of kw Product rules Softmin rules

Set rules Error Rate in Error Rate in Error Rate in Error Rate in

Training Data Whole Image Training Data Whole Image

1. 14 2.0 17.03% 15.41% 16.31% 14.14%

2. 14 2.0 16.75% 15.22% 16.30% 14.04%

3. 12 2.0 18.72% 14.63% 17.09% 14.01%

4. 11 2.0 18.59% 15.43% 17.34% 14.23%

The same data set (Satimage2) has been used by Kumar et al. [190] in a comparative

study using several classification techniques. The best result obtained by them using a

fuzzy integral based scheme achieves a classification rate of 78.15%. In our case, even

the worst performance is about 5% better than the results in [190].

The performance of the fuzzy rule based classifiers for Satimage3 is summarized in

Table 5.9. For this image, the softmin rules perform slightly better than the product

rules for all four training sets. Performance of all classifiers are significantly better than

1-MSP classifiers using the same training sets which are reported in Table 4.16 in the

previous chapter.

For Satimage3 the reported result [36] shows 84.7% accuracy with maximum likelihood

classifier (MLC) and 85.9% accuracy with a neural network based classifier. In our case,

for all training-test partitions the fuzzy rule based classifiers using product rules perform

similar to the MLC classifiers and classifiers with softmin rules outperform the MLC and

159



Figure 5.6: The classified image for Satimage2 (Training set 1). The classes are repre-

sented by different colors.

Figure 5.7: The classified image for Satimage3 (Training set 2). The classes are repre-

sented by different colors.

160



are at par with the result reported for neural network (actually for the second and third

training sets our results depict marginal improvement). Note that, the training set used

in [36] is considerably larger and the points are carefully chosen to represent different

sub-categories of the data. It was also reported in [36] that though there are four classes,

there exists a number of distinct sub-categories in each class. They identified through

statistical analysis, twelve such subcategories in the data for which the spectral data

can be represented approximately by normal distributions. Our method dynamically

extracted nearly the same number (14, 14, 12 and 11 respectively) of fuzzy rules, which

is consistent with the observation reported in [36]. This fact points to the effectiveness of

the dynamic rule extraction procedure developed and used here. A typical classification

result for Satimage3 using the softmin rules (Training set 1) is shown in Figure 5.7.

It can be observed from the above tables that in a few cases classifiers with fewer

number of rules perform better than those with larger number of rules. This is due to

the fact that each classifier is trained with different randomly generated training sets

and there is some randomness involved in the SOM based prototype generation scheme.

These result in different rule bases, where one with more number of rules may have a

few rules in partial conflict.

In Table 5.10 we show the rules obtained for classes 1, 2 and 3 of Satimage2 using the

training set 1. Column 1 of Table 5.10 shows the class number while column 2 lists the

rule identification number. Column 3 describes the rules using the membership functions

in the antecedent part of the rules. Since it is a seven dimensional data, each rule involves

seven atomic antecedent clauses (fuzzy sets). Each fuzzy set is represented by a 2-tuple

(µij, σij), where µij and σij are the center and spread of a Gaussian membership function

modelling the j-th antecedent clause of i-th rule. Thus for clause 1 of rule number 2, the

tuple (µ21, σ21) = (65.7, 11.9) represents a clause “gray value from channel 1 is CLOSE

to 65.7” where the fuzzy set CLOSE to 65.7 is represented by a Gaussian function

with center at 65.7 and spread 11.9. Inspection of the parameters of rules for class

1 reveals that between rule 2 and rule 6 all features change, but features 4, 5 and 7

changes significantly. Comparing rules 6 and 8 we find that features 3, 5, 6 and 7 change

significantly. This indicates that each rule represents a distinct volume (fuzzy granule)

in the feature space.

Table 5.10 also suggests that data from class 2 probably form a nice cluster in the

feature space that can be modelled by just a single rule. This is further confirmed by

the fact that the spread of the membership functions for features 2, 4, 5, 6 and 7 are

relatively small.

Similarly, for class 3, different rules model different areas in the feature space. For rules

14 and 15 although µs for features 1 and 2 do not change much, the µs for other features

161



Table 5.10: The rules for classes 1, 2 and 3 with corresponding fuzzy sets for Satimage2.

These rules are obtained using the training set 1.

Class Rule No. Fuzzy sets in form of (µij, σij) tuples, j = 1, 2, · · · , 7
1 2 (65.7,11.9), (23.6,6.8), (22.8,10.2), (50.9,19.8)

(41.7,16.2), (130.3,6.1), (13.9,12.4)

6 (67.5,11.4), (24.8,7.0), (25.4,10.6), (56.5,22.1)

(56.5,19.7), (131.9,4.8), (18.3,4.2)

8 (68.8,11.7), (27.4,8.7), (30.7,12.2), (57.0,19.4)

(62.1,24.8), (126.5,8.5), (7.9,11.9)

2 4 (65.5,12.1), (22.0,7.5), (17.1,9.4),(9.1,2.2)

(4.9,6.7), (128.7,6.9), (2.1,8.2)

3 7 (67.1,13.3), (24.9,7.7), (20.6,11.3), (45.4,21.7)

(59.1,17.6), (130.7,5.7), (27.1,4.3)

9 (66.2,8.5), (25.0,9.3), (24.7,10.1), (53.9,20.2)

(77.3,12.3), (137.1,6.4), (27.1,14.5)

14 (71.5,13.3), (27.9,7.7), (23.8,9.9), (88.4,17.3)

(89.5,16.9), (137.2,12.1), (41.8,13.7)

15 (71.9,22.3), (26.3,22.7), (27.2,45.0), (72.7,39.5)

(84.7,46.6), (133.8,12.0), (29.7,40.2)

162



Table 5.11: Performance of the rule based classifiers designed with context-sensitive

reasoning scheme for 4 different partitions of Satimage1 data set.

Partition Number of % of Error

Number Rules Trng. Test

1 27 11.0% 15.58%

2 26 9.8% 16.19%

3 25 12.8% 15.96%

4 20 9.6% 16.22%

Table 5.12: Classification performances designed with context-sensitive reasoning scheme

for 4 different training sets for Satimage2.

Training No. of Error Rate in Error Rate in

Set rules Training Data Whole Image

1. 30 11.87% 13.5%

2. 25 14.6% 14.45%

3. 25 12.19% 13.18%

4. 27 12.75% 13.1%

change considerably between the two rules. Depending on the complexity of the class

structure, the required number of rules also changes. The number of rules for a given

class may also vary depending on the training set used. However, this variation across

the training sets is not much. For example, the number of rules for class 1 obtained

using 4 training sets are 3, 2, 3 and 4 respectively. Similar results are obtained for other

classes too. This indicates good robustness of the proposed rule generation and tuning

algorithm.

5.5.5 Performance of the classifiers with context-sensitive in-

ferencing

To study the effect of context-sensitive inferencing scheme on the classifiers we performed

several experiments with the multispectral satellite image data sets. In this section we

report the results on a small data set Satimage1 and a large data set Satimage2. We

take the set of rules obtained after context tuning (i.e., the rule tuning for context-

free inferencing) stage. As mentioned earlier, when the context tuning of the rules is

performed, we have used a fixed value of q (=-10.0) for all rules. Now, this rule set is

163



Table 5.13: Performance analysis of context-sensitive inferencing for rule based classifiers

(when the initial rules were context tuned with q=-10.0 for all rules)

Training Initial Training) Training Misclassification in test

data qi Error (E) Misclassification data or whole image

Initial Final Initial Final Initial Final

Satimage1 -10.0 176.26 175.9 54 (10.8%) 55 (11.0%) 925 (15.6%) 917 (15.4%)

1.0 359.71 176.02 72 (14.4%) 55 (11.0%) 1000 (16.8%) 915 (15.4%)

5.0 468.09 176.28 116 (23.2%) 54 (10.8%) 1536 (25.9%) 908 (15.3%)

Satimage2 -10.0 688.07 685.06 192 (12.0%) 189 (11.8%) 35657 (13.6%) 35202 (13.4%)

1.0 1283.42 724.98 274 (17.1%) 202 (12.6%) 37241 (14.2%) 35585 (13.5%)

5.0 1487.01 684.86 414 (25.8%) 190 (11.8%) 50330 (19.2%) 35082 (13.4%)

tuned for qis (i.e., every rule is allowed to have its own value of q).

The performances of the context-sensitive classifiers after conjunction operator tuning

are summarized in Tables 5.11 and 5.12 for Satimage1 and Satimage2 respectively. It

can be observed that for the case of tuning the rule set, with qis initialized at -10.0,

the performances in terms of classification rate do not improve significantly. However,

some improvement in terms of training error as defined by Eq. (5.12) is observed in all

cases. It is further seen that after tuning, the qis for all rules remain negative, which

makes every rule to use approximately the minimum as the conjunction operator. This

is hardly surprising, since the initial rules are already context tuned with a fixed value

of q = −10.0 for every rule. So, it indicates that the context tuning with fixed q has

developed the rule set to correspond to a minima of the energy function.

To investigate this issue further, we take the same set of rules (i.e., the context tuned

rules with fixed q = −10.0). We initialize the qis with different values, namely, 1.0 and

5.0 and tune the reasoning parameter qis. All classifiers, with the same training data

set have shown strong tendencies of convergence to similar set of conjunction operators,

irrespective of the initial value of the qis. We present the result of the classifiers designed

with the partition 1 of Satimage1 and Satimage2 with initial values of qis 1.0 and 5.0

in Table 5.13. We emphasize that the initial value of 1.0/5.0/-10.0 corresponds to the

initial value of qi of every rule for the tuning of the inference parameter. But the rule

base parameters vijs and σijs are already tuned using a fixed value of q = −10.0. Column

2 of Table 5.13 (and 5.14) shows the initial value of qis for all rules in the rule base when

the q-tuning for every rule (to realize context-sensitive inferencing) starts.

Table 5.13 shows that for both cases with initial qis 1.0 and 5.0, though the initial value

of error and misclassification rates are quite high, after the tuning they are much lower

and very close to those corresponding to classifiers with initial qi -10.0 for the respective

data set. This fact is reflected for the training sets as well as the test sets. It was further

observed that for all initial settings of qi the final values of qi become negative making

164



Figure 5.8: Bar diagram of qis of the rules for Satimage2 for initial qi -10, 1 and 10 (when

the initial rules were context tuned with q=-10.0 for all rules).

Table 5.14: Performance analysis of context-sensitive inferencing for rule based classifiers

(when the initial rules were not context tuned)

Training Initial Training) Training Misclassification in test

data qi Error (E) Misclassification data or whole image

Initial Final Initial Final Initial Final

Satimage1 -10.0 258.42 235.39 70 (14.0%) 67 (13.4%) 1035(17.4%) 958(16.14%)

1.0 345.41 245.15 74 (14.8%) 67 (13.4%) 1097 (18.5%) 941 (15.8%)

5.0 471.22 246.02 116 (23.2%) 68 (13.6%) 1680 (28.3%) 1042 (17.5%)

Satimage2 -10.0 1198.47 1081.71 426 (26.6%) 398 (24.8%) 68070 (25.9%) 62873 (23.9%)

1.0 1280.22 1096.01 417 (26.0%) 382 (23.8%) 63645 (24.2%) 56464 (21.5%)

5.0 1446.36 1143.70 472 (29.5%) 404 (25.2%) 74299 (28.3%) 57174 (21.8%)

the operator more or less equivalent to the minimum operator. These are observed to

attain values close in magnitude also. A small but interesting exception occurs in case

of Satimage2 (training set 1). Figure 5.8 shows the bar diagram of the tuned q values of

the rules for Satimage2. In the figure each group of three bars shows the tuned q values

for a particular rule for three different initial values of q = −10.0 (white), 1.0 (gray)

and 5.0 (black) respectively. For rule 1 with initial q1 = 1.0, it can be observed that q1

remains 1.0. We analyzed the case and found that the rule was not fired at all and the

value remained the same as the initial value. The results in Tables 5.13 and 5.14 suggest

that the context tuning using softmin has successfully reduced the error and developed

a set of rules such that the optimal performance of the classifiers can be obtained with

minimum-like operators.

To investigate the validity of the above we carried out another set of experiments. Here

165



Figure 5.9: Bar diagram of qis of the rules for Satimage1 for initial qi -10, 1 and 5 (when

the initial rules were not context tuned).

Figure 5.10: Bar diagram of qis of the rules for Satimage2 for initial qi -10, 1 and 5 (when

the initial rules were not context tuned).

166



we used the initial rule set as obtained from the prototype generation stage, i.e., the rules

are no more context-tuned. In other words, the rule base parameters are initialized from

the set of prototypes, but not tuned. We tuned inferencing parameters qis for these rules

with initial qis -10.0, 1.0 and 5.0 respectively. The results of tuning for the partition 1

of Satimage1 and Satimage2 are summarized in Table 8. As evident from the results,

in all the cases both initial and final performances are worse than those in the previous

experiment. However, the results also reveal that the conjunction operator (context-

sensitive) tuning have produced a substantial improvement in performances for all cases.

Thus it shows that if the initial rule base is not very good, then the context-sensitive

inferencing can result in substantial improvement in performance.The bar plots of the

tuned qi values of the rules for Satimage1 and Satimage2 are shown in figures 5.9 and

5.10 respectively. It can easily be discerned from the figures that the final set of qi

values, unlike the previous experiment, differ substantially for different initial values of

the qis. This clearly indicates that the system in this case attains different error minima

in qi-space for different initialization.

5.6 Conclusion

Fuzzy rule based classifiers are capable of dealing with data having different variances in

different features and also different variances for different classes. In such a system a rule

represents a region in the input space, which we call the context of the rule. Here we

proposed a scheme for designing a fuzzy rule based classifier. It starts with generation of

a set of prototypes. Then these prototypes are converted into fuzzy rules. The rules are

then tuned with respect to their context. We have developed two variants of the context

tuning algorithm, one for rules using product as the conjunction operator and the other

is used when the conjunction operator is softmin. The rule based classifiers are tested

with several data sets and found to produce very good classification results.

The fuzzy rule based classifiers are then extensively used to classify multispectral satel-

lite images and the performances obtained are very good. The classifier performance for

such image data may further be improved using features other than gray levels. Also use

of other T-norms can alter the performance of the classifier.

If softmin is used as the conjunction operator, then using different q (a parameter of

softmin, we call it the inferencing parameter) for different rules, each rule can be made

to use effectively a different conjunction operator. Such a scheme is called context-

sensitive inferencing. We have developed an algorithm for tuning the q parameter for

different rules.

Our experimental result suggests that if the context tuning (with fixed q value for

167



all rules) is carried out properly then subsequent context-sensitive inferencing offers

marginal (if any) improvement. However, if the rules are not context tuned, the context-

sensitive inferencing can improve the performance of the classifier substantially.

Some other facts have also come to light from these experiments. The results of q

tuning of the context-tuned rules suggest possible existence of a deep error minima with

respect to the q parameters to which the system reaches when it is context-tuned. But

the results for the rule sets without context-tuning indicate that the system lands up in

different minima for different initializations of qis.

In light of above we can suggest two possible benefits for using context-sensitive rea-

soning for classification: (1) if the context tuning is not good enough, the performance

may be enhanced with context-sensitive reasoning and (2) the results of tuning the qis

with different initializations may be used for judging the quality of a rule base as a whole.

168



Chapter 6

Evidence Theory based Decision

Making for Fuzzy Rule based

Classifiers 1

1Part of this chapter has been published in [201] and the whole of it is published in [207].



6.1 Introduction

In the previous chapter we have developed a comprehensive scheme for designing fuzzy

rule based classifiers. The method starts with generating a set of prototypes using the

SOM-based prototype generation algorithm introduced in Chapter 4. Then each of the

prototypes is converted into a fuzzy rule which is further fine tuned to obtain the final

rule base. The decision making procedure in the system involved classifying an unknown

data into the class of the rule producing the highest firing strength for the data. Thus the

classification result is obtained in form of a crisp label with an accompanying confidence

value, i.e., the firing strength α of the rule used for decision making. The magnitude of

α (to be precise (1−α)) is an indicator of the uncertainty involved in the classification of

the data. The uncertainty may be due to different factors, such as, measurement error,

random noise, overlapping of the class boundaries etc. However, we have not used this

information to take any action (other than detecting the points with unacceptably low

value of α as outlier).

A closer look at the functionality of the fuzzy rule base reveals that the rule base can

be used to produce outputs with more information. The output of the rule base can

be obtained in the form of a possibilistic label vector α ∈ <c, where c is the number

of classes and the k-th component of α, αk (0 ≤ αk ≤ 1) is the highest firing strength

among the rules belonging to class Ck. Thus the possibilistic label vector allows us not

only to find the option with the highest confidence, but also to look at other alternatives,

which sometimes may be very close to the highest one. This difference in firing strength

could be genuine (i.e., true class corresponds to the highest firing strength) or it may

be due to the uncertainty of the classification process (i.e., the true class is one of the

alternatives with slightly lower firing strength). In such a situation it might be prudent

to use additional information, if available, for the final decision making. In an image,

usually, the spatial neighbors are correlated. This becomes more relevant for satellite

image analysis as one can exploit the information available with the spatial neighborhood.

If we can judiciously use information from the neighbors, it is likely to produce more

accurate decisions. In this chapter we use Dempster-Shafer theory of evidence to develop

several decision making strategies for classifying landcover types in multispectral satellite

images. Hereafter we shall develop the decision making schemes from the perspective

of multispectral satellite image analysis but they can be applied with little modification

to other problem domains (such as speech data) where contextual correlation can be

expected. In these schemes the output of the rule base (possibilistic label vector) for

a pixel of interest as well as its spatial neighbors are used together to decide the class

membership of the pixel of interest.

The rest of the chapter is organized as follows. We discuss the problem of landcover

170



classification from multispectral satellite images in Section 6.2. Here we also point out

the need for aggregating information from spatial context for the task. In section 6.3 we

provide an overview of the Dempster-Shafer theory of evidence. The process of generating

possibilistic label vectors using fuzzy rule base is discussed in Section 6.4. In section 6.5

we describe four methods for aggregation of spatial contextual information for decision

making. We present the experimental results and discussions in section 6.6. Section 6.7

concludes the chapter.

6.2 The Landcover analysis problem

Although, in the previous chapters, we have briefly talked about landcover classification,

this chapter focus on only landcover classification from multispectral satellite images. In

particular, we develop some schemes for aggregation of spatial (contextual) information.

Hence, we provide a reasonably detailed discussion of the landcover analysis problem.

Landcover is one of the most fundamental geographical variables and plays a crucial role

in a host of enquiries like land erosion rate, depletion of forest cover, species dispersion

routes, use of water bodies, resource planning and utilization etc. It was long recognized

that the landcover data collected through traditional ground based methods are often

out-of-date or of poor quality [325] and also difficult to acquire [95]. So land cover

classification using remotely sensed images is considered to be a cost effective and reliable

method for generating up-to-date landcover information [101]. As mentioned earlier,

usually such images are captured by multispectral scanners (such as Landsat TM), that

acquire data at several distinct spectral bands producing multispectral images. However,

analysis of such data calls for sophisticated techniques.

In response to the challenges posed by this problem numerous techniques have been

developed. Most widely used techniques employ statistical modelling involving discrim-

inant analysis and maximum likelihood classification [272, 309]. Though such classifiers

can theoretically offer optimal performance [88], the underlying assumptions for such

a claim is that all class-conditional probability densities are known. This condition is

never achieved in practice. To avoid this problem several methods employing artificial

neural networks [14, 27, 36, 272] have been studied. These systems learn about the data

from a set of training samples, without any prior assumptions.

However, neural network based classifiers always classify a sample to the class for

which maximum support is obtained, no matter how small this amount of support may

be. Such system will use the same principle to make decision even if there is another class

for which the support is very close to the maximum. This particular feature received

considerable criticism from several authors [101, 326] in context of their applicability to

171



landcover classification. They argued for suitability of “soft” classifiers which can pro-

duce a measure of confidence in support of the decision as well as indicate measures of

confidence in support of alternative decisions, which can be used for further processing

presumably using auxiliary information and this can result in a more robust and accu-

rate system. Their arguments stemmed from the following observations regarding the

landcover analysis problems:

• A user defined class may actually correspond to different sub-classes in the data.

For example, an analyst may be interested in determining the portion of land

under cultivation. But different crops may have different spectral signatures, even

the same crop at different stages of maturity may have different spectral signatures.

• The spectral signature of the same object may vary significantly due to microcli-

matic variations such as existence of cloud, slope of the ground etc.

• Due to the limit of spatial resolution of the sensor, each pixel in an image corre-

sponds to a significant area of the land. If the area corresponding to a pixel contains

objects from different classes, each of them will contribute their spectral signature

to the radiance captured by that pixel. Such pixels are termed as “mixed” pixels

as against “pure” pixels which correspond to the landcover area containing objects

belonging to a single class.

In developing soft classifiers for landcover analysis two approaches have gained pop-

ularity. These are based on (1) fuzzy set theory [87] and (2) Dempster and Shafer’s

evidence theory [304]. There is, of course, the probabilistic approach, this we do not

pursue further. In the previous chapter we have developed a comprehensive method for

designing fuzzy rule based classifiers and used them for classifying landcover types from

multispectral satellite images. A short review of different fuzzy set theoretic approaches

used for the same purpose is provided in Section 5.5.3.

The other approach to design soft classifiers uses the evidence theory developed by

Dempster and Shafer [304]. Designing general purpose classifiers using Dempster-Shafer

theory is an active area of research [76, 265, 369, 143]. As observed by Lee et al. in [211],

for multispectral image analysis, there may be a great incentive for applying Dempster-

Shafer theory of evidence. Since the theory of evidence allows one to combine evidences

obtained from diverse sources of information in support of a hypothesis, it seems a

natural candidate for analyzing multispectral images for landcover classification. This

approach is found to produce good results when applied to multispectral image analysis

[313, 275, 162]. In all these works, the approach is to treat each channel image as a

separate source of information. Each image is analyzed to associate each pixel with

172



some degree of belief pertaining to its belonging to each member of a set of hypotheses

known as the frame of discernment. Usually some probabilistic techniques are employed

to assign the degree of belief. In the next stage these beliefs from all images for a pixel

are combined using Dempster’s rule of combination [304] to calculate the total support

for each hypothesis.

In a satellite image, usually the landcover classes form spatial clusters, i.e., a pixel

belonging to a particular class is more likely to have neighboring pixels from the same

class rather than from other classes. Thus, inclusion of contextual information from

the neighboring pixels is likely to increase classification accuracy. An overview of com-

mon contextual pattern recognition methods can be found in [122]. Recently contextual

methods based on Markov Random Field (MRF) models have become popular for classi-

fication of multispectral [299] as well as multisource [310, 328] satellite images. Typically

a Bayesian framework is used to model the posterior probability. To determine the values

of the model parameters an energy function is minimized using optimization techniques

like simulated annealing, genetic algorithm etc. These methods typically utilize the con-

textual information in the training stage. Also their accuracy depends on the correctness

of the assumption about the class-conditional density functions.

In this chapter we propose a scheme for classifier design that uses both fuzzy sets

theory and Dempster-Shafer theory of evidence. This is a two stage scheme. In the first

stage a fuzzy rule based classifier is developed. This classifier is noncontextual and for

each pixel it generates a possibilistic label vector. In the next stage we aggregate the

responses of the fuzzy rules over a 3 × 3 spatial neighborhood of a pixel to make the

classification decision about that pixel. Thus, the decision making process takes into

consideration the information available from the spatial neighborhood of the pixel. In

other words, spatial contextual information is exploited to make a better decision. Note

that, unlike MRF model-based methods, the spatial neighborhood information of the

pixels are used in the decision making stage only, not in the training stage. Further, in

this scheme there is no need to make assumptions about class-conditional densities. We

propose four methods for decision making. The first one is a simple aggregation of the

fuzzy labels of the neighboring pixels while the rest are based on the theory of evidence.

The evidence theoretic methods vary in three respects, (1) how the sources of evidence

are identified, (2) which focal elements are selected and (3) how the basic probability

assignments (BPAs) are computed.

173



6.3 Handling uncertainty with theory of evidence

We face different types of uncertainty while designing information processing systems.

Fuzzy sets provide us with tools for modelling one form of uncertainty. For a fuzzy subset

A defined over the universal set Θ, each element x ∈ Θ belongs to A by the amount

µA(x), in other words, µA(x) expresses the degree of belongingness of x to A. However,

we are often faced with a situation when we need to assign a crisp label to x. But due to

inadequacy of information we cannot be very specific and instead of assigning only one

label, we may be able to assign some confidence over a subset of possibilities, when the

true label (say θ) is one of the elements in the subset. To put it more concretely we cite

here an example from [164]:

“Consider the jury members for a criminal trial who are uncertain about the guilt

or innocence of the defendant. ... the set of people who are guilty of the crime and

the set of innocent people are assumed to have very distinct boundaries. The concern,

therefore, is not with the degree to which the defendant is guilty but with the degree to

which the evidence proves his or her membership in either the crisp set of guilty people

or in the crisp set of innocent people. We assume that perfect evidence would point to

full membership in one and only one of these sets. Our evidence, however, is rarely, if

ever, perfect, and some uncertainty usually prevails.”

As described in the above example, the universal set is consisted of two clearly defined

crisp sets, an element cannot be a partial member of both sets (i.e., he/she must be either

guilty or innocent). This type of uncertainty can be represented by assigning a value to

each possible crisp subset to which the element can belong. This value represents the

degree of evidence supporting the element’s inclusion in the set. A fuzzy measure can be

used to represent this type of uncertainty. A fuzzy measure is defined as follows:

Let Θ be the universal set and P (Θ) be its power set. Any function

g : P (Θ) → [0, 1]

is a fuzzy measure if it satisfies the following three axioms [164]:

• g1 : g(∅) = 0 and g(Θ) = 1.

• g2 : For every A,B ∈ P (Θ), if A ⊂ B then g(A) ≤ g(B).

• g3 : For every sequence (Ai ∈ P (Θ) | i = 1, 2, · · ·) of subsets of Θ, if either

A1 ⊆ A2 ⊆ · · · or A1 ⊇ A2 ⊇ · · ·, then

lim
i→∞

g(Ai) = g( lim
i→∞

Ai).

174



Axiom g1 states that the element cannot be in the empty set and must be within

universal set. In other words, since the empty set does not contain any element, it

cannot contain our element of interest. The universal set contains all the elements,

hence it must contain the element of interest. This is often known as the “closed world

assumption”. According to axiom g2 the evidence supporting the membership of an

element in a set is at least as great as the evidence that the element belongs to any

subset of that set.

g3 is applicable only for infinite universe and in the present context since Θ is finite,

g3 can be disregarded. Belief and Plausibility functions introduced by Dempster and

Shafer [304] are two important and well developed special types of fuzzy measures. They

provide a comprehensive and easy framework of representing the uncertainty arising out

of lack of perfect evidence. They also allow combination of evidence available from

different sources to reach at an aggregated evidence in a consistent manner.

6.3.1 Dempster-Shafer theory of evidence

A Belief measure is a function Bel : P (Θ) → [0, 1] that satisfies the axioms g1 through

g3 of fuzzy measures and the following additional axiom:

• Bel(A1 ∪A2 ∪ · · · ∪An) ≥ ∑
i Bel(Ai)−

∑
i<j Bel(Ai ∩Aj) + · · ·+ (−1)nBel(A1 ∩

· · · ∩ An), for every n and for every collection of subsets of Θ.

There is a plausibility measure with each belief measure defined by

Pl(A) = 1−Bel(Ac)∀A ∈ P (Θ).

In evidence theory framework the universal set Θ is known as the frame of discernment

[304]. These measures can be interpreted as follows:

• Given a hypothesis, Bel(A) is a quantitative measure of the belief that the “true”

hypothesis is contained in A.

• Pl(A) is the measure of belief that the “true” hypothesis is not contained in the

complementary set of A.

Every belief measure and its dual plausibility measure can be expressed in terms of a

Basic Probability Assignment (BPA) function m defined as:

m : P (Θ) → [0, 1] is called a BPA whenever m(∅) = 0 and
∑

A⊆Θ m(A) = 1.

175



Here m(A) is interpreted as the degree of evidence supporting the claim that the “truth”

is in A and in absence of further evidence no more specific statement can be made. A

belief measure and a plausibility measure are uniquely determined by m through the

formulae:

Bel(A) =
∑
B⊆A

m(B). (6.1)

Pl(A) =
∑

B∩A6=∅
m(B) ∀A ⊂ Θ. (6.2)

From Eq. (6.1) and Eq. (6.2) we see that,

Pl(A) ≥ Bel(A) ∀A ∈ P (Θ).

Every set A ∈ P (Θ) for which m(A) > 0 is called a focal element of m. The BPA m(Θ)

assigned to whole frame of discernment is interpreted as the amount of ignorance.

Evidence obtained in the same context from two distinct sources and expressed by

two BPAs m1 and m2 on some power set P (Θ) can be combined by Dempster’s rule of

combination to obtain a joint BPA m1,2 as:

m1,2(A) =

{ P
B∩C=A m1(B)m2(C)

1−K
if A 6= ∅

0 if A = ∅. (6.3)

Here

K =
∑

B∩C=∅
m1(B)m2(C).

Equation (6.3) is often expressed with the notation

m1,2 = m1 ⊕m2.

The rule is commutative and associative. Evidence from any number (say k) of distinct

sources can be combined by repetitive application of the rule as:

m = m1 ⊕m2 ⊕ · · · ⊕mk = ⊕k
i=1m

i.

If m1 is vacuous (i.e., m1(Θ) = 1 and m1(A) = 0∀A ⊂ Θ), then m1 and m2 are combin-

able and m1 ⊕m2 = m2. If m1 is Bayesian (i.e., m1(A) = 0∀A such that | A |> 1) and

m1 and m2 are combinable, then m1 ⊕m2 is also Bayesian.

6.3.2 Pignistic probability

Given a body of evidence we are often required to make decisions based on the available

evidence. In such case Θ becomes the set of decision alternatives and the function Bel

176



denotes our belief about the choice of an optimal decision θ0 ∈ Θ. However, in general

it is not possible to select the optimal decision directly from the evidence embodied in

the function Bel. We need to construct a probability function PΘ on Θ in order to

select the optimal decision. The transformation between the belief function Bel and the

probability function PΘ is known as pignistic transformation [307] and it is denoted here

by ΓΘ. Thus

PΘ = ΓΘ(Bel).

PΘ is called a pignistic probability, which can be used for making decision. The pignistic

probability for θ ∈ Θ can be expressed in terms of BPAs as follows:

PΘ(θ) =
∑

A⊆Θ,θ∈A

m(A)

| A | (6.4)

Optimal decision can now be chosen in favor of θ0 with the highest pignistic probability.

6.4 Generating fuzzy label vectors from the fuzzy

rule base

We use the fuzzy rule base extracted from the data using the method described in the

previous chapter. However, the output of the fuzzy rule base for a data point x is

computed in a different manner. Let there be c classes, C={C1, C2, · · ·Cc}. For each

data point x the fuzzy rule base generates a fuzzy label vector

α(x) = [α1(x), α2(x), . . . , αc(x)]T ∈ <c,

such that the value of the k-th component of α(x), αk(x) (0 ≤ αk ≤ 1) represents the

confidence of the rule base supporting the fact that the data point x belongs to class

Ck. Strictly speaking, α ∈ <c is a possibilistic label vector [32]. The value of the k-th

component αk(x) of the label vector α(x) is computed in the following manner:

Let the size of the rule base {Ri} be ĉ (i.e., | {Ri} |= ĉ), where ĉ ≥ c. Since c ≤ ĉ,

there could be multiple rules corresponding to a class. Let {Rk
i } ⊂ {Ri} be the subset

of rules corresponding to class Ck. We designate firing strength of a rule Rj ∈ {Rk
i } for

x as αk
j (x). Then, the k-th component of the possibilistic label vector α is

αk(x) = arg max︸ ︷︷ ︸
j, Rj∈{Rk

i }

{αk
j (x)}.

In other words, αk(x) is the highest firing strength produced by the rules corresponding

to the class Ck for x. We treat this value as the confidence measure of the rule base

177



pertaining to the membership of x to the class Ck. However, if αk is less than a threshold,

say 0.01, it is set to 0.

In the present context each data vector x is associated with a pixel p of the multispectral

image and has a spatial coordinate denoting its position in the image. This allows us to

identify a data vector in its spatial context.

6.5 Aggregation of spatial contextual information for

decision making

We develop four decision making schemes. The first one involves a simple aggregation

of the possibilistic label vectors of the neighboring pixels. The scheme is modelled after

the well known fuzzy k-nearest neighbor algorithm proposed by Keller et al. [158]. The

other three methods use Dempster-Shafer theory of evidence.

In our decision making schemes, we consider a pixel together with the pixels within

its 3 × 3 spatial neighborhood. We identify the pixel under consideration as p0 and its

eight neighbors as p1, p2, · · · , p8. The corresponding possibilistic label vectors assigned

to these nine pixels are denoted as α0,α1, · · · , α8.

6.5.1 Method 1: Aggregation of possibilistic labels by fuzzy

k-NN rule

This is a simple aggregation scheme modelled after the fuzzy k-NN method of Keller et

al. [158]. Given a set of nine label vectors {α0,α1, · · · , α8} an aggregated possibilistic

label vector αA is computed as follows:

αA =

∑8
i=0 αi

9
. (6.5)

The pixel p0 is assigned to class Ck such that

αA
k ≥ αA

i ∀ i = 1, 2, · · · , c.

Note that, though the label vector α0 corresponds to the pixel to be classified, no special

emphasis (importance) is given to it in this aggregation scheme.

178



6.5.2 Method 2: Aggregation with Bayesian belief modelling

This aggregation method as well as the next two use the evidence theoretic framework

of Dempster-Shafer. Within this framework the set of classes, C, is identified as the

frame of discernment Θ. A body of evidence (BOE) is represented by a BPA m over the

subsets of C. There are 2c possible subsets of C. The value m(A) denotes the belief in

support of the proposition that the true class label of the pixel of interest is in A ⊂ C.

In the context of our problem we shall

1. identify distinct bodies of evidence (BOE),

2. formulate a realistic scheme of assigning the BPAs to the relevant subsets of C,

3. combine evidences provided by all BOEs,

4. compute the pignistic probability for each class from the combined evidence and

5. use maximum pignistic probability rule to make the decision.

In this scheme we identify eight BOEs for eight neighbor pixels with corresponding

BPAs denoted as m1, m2, · · · ,m8. We consider the Bayesian belief structure, i.e., each

focal element has only one element. Assigning BPA to a subset essentially involves

committing some portion of belief in favor of the proposition represented by the subset.

So the scheme followed for assigning BPAs must reflect some realistic assessment of the

information available in favor of the proposition. We define mi as follows:

mi({Ck}) =
(αi

k + α0
k)

S
, k = 1, 2, ..., c (6.6)

where S =
∑k=c

k=1(α
i
k + α0

k) is a normalizing factor. Thus, each BPA contains c focal

elements, one corresponding to each class and the assigned value mi({Ck}) is influenced

by the magnitudes of firing strengths produced by the rule base in support of class Ck

for the pixel of interest p0 and its i-th neighbor pi. Clearly the label vector α0 influences

all eight BPAs. Hence it is expected that in the final decision making, the influence of

α0 will be higher than any neighbor. Such an assignment is motivated by the fact, the

spatial neighbors usually are highly correlated, i.e., pixel p0 and its immediate neighbors

are expected from the same class.

Thus for eight neighboring pixels we obtain eight separate BOEs. Since each of the

sources has the same set of focal elements, the evidences are combinable and the global

BPA for the focal elements can be computed by applying the Dempster’s rule repeatedly.

It can be easily seen that the global BPA mG is also Bayesian and can be computed as

mG({Ck}) =

∏8
i=1 mi({Ck})∑c

l=1

∏8
i=1 mi({Cl})

. (6.7)

179



In this case the pignistic probability P C(Ck) is the same as mG({Ck}). So the pixel p0

is assigned to class Ck such that

mG({Ck}) ≥ mG({Cl}) ∀ Cl ∈ C.

6.5.3 Method 3: Aggregation with non-Bayesian belief

Here also the BOEs are identified in the same way as in the previous method. However,

we allow the assignment of belief to subsets of C having two elements i.e., the subsets

{Cl, Cm : l < m and l,m = 1, 2, · · · , c}. We define mi as follows:

mi({Ck}) =
(αi

k + α0
k)

S
, k = 1, 2, ..., c (6.8)

mi({Cl, Cm : l < m}) =
(αi

l + α0
m) + (αi

m + α0
l )

2S
, l, m = 1, 2, ..., c (6.9)

where

S =
k=c∑

k=1

(αi
k + α0

k) +
l=c−1∑

l=1

m=c∑

m=l+1

[(αi
l + α0

m) + (αi
m + α0

l )].

In Method 2 we exploited only the correlation of spatial neighbors. For satellite images

when a pixel falls at the boundary of some landcover type, it may correspond to more

than one landcover type. Since the chance of a pixel to have representation from more

than two landcover types is not high, we restrict the cardinality of the focal elements to

two. Using Eq. (6.8) and Eq. (6.9) for eight neighboring pixels we obtain eight separate

bodies of evidence. Since each of them has the same set of focal elements, the evidences

are combinable and the global BPA for the focal elements can be computed applying

Dempster’s rule repeatedly. In [76, 265] some comprehensive formulae are derived for

computing the global BPA in one step using evidences from a number of sources. It

was possible because they worked with simple support functions, where each source of

evidence assigns a BPA to one focal element containing only one class and the rest of the

belief is assigned to the whole frame of discernment. In our previous method we could use

Eq. (6.7) to compute the global BPA since we dealt with singleton focal elements only.

Unfortunately, in the present case the belief functions are not simple support functions.

We have to compute the global BPA in steps, combining two bodies of evidence at a time

and preparing an intermediate BOE which will be combined with another BOE and so

on. Thus in our scheme the combined global BPA mG is computed as follows:

mG = ⊕8
i=1m

i = (· · · ((m1 ⊕m2)⊕m3)⊕ · · ·m8). (6.10)

It is easily seen that:

180



m(i,j)({Ck}) = mi({Ck})⊕mj({Ck})

=





mi({Ck})mj({Ck})
+mi({Ck})

∑
l 6=k mj({Ck, Cl})

+mj({Ck})
∑

l 6=k mi({Ck, Cl})
+

∑
l 6=k mi({Ck, Cl})

∑
m6=k,l m

j({Ck, Cm})





1−K
,

k = 1, 2, ..., c (6.11)

and

m(i,j)({Cl, Cm}) = mi({Cl, Cm})⊕mj({Cl, Cm})
=

mi({Cl, Cm})mj({Cl, Cm})
1−K

, l,m = 1, 2, ..., c, l 6= m (6.12)

where K is given by

K =
∑c−1

k=1 mi({Ck})
∑c

l=k+1 mi({Cl})
+

∑c
k=1 mi({Ck})

∑c
l,m6=k mj({Cl, Cm})

+
∑c

k=1 mj({Ck})
∑c

l,m 6=k mi({Cl, Cm})
+

∑c

l 6=r,s, and m6=r,s
mi({Cl, Cm})mj({Cr, Cs}).

Once mG is obtained the pignistic probability for each class is computed. The following

formula is used for computing the pignistic probability of class Ck:

P C(Ck) = mG({Ck}) +

∑c
l=1, l 6=k mG({Ck, Cl})

2
. (6.13)

The pixel p0 is assigned to the class Ck such that

P C(Ck) ≥ P C(Cl) ∀ Cl ∈ C.

6.5.4 Method 4: Aggregation using evidence theoretic k-NN

rule

This method is fashioned after the evidence theoretic k-NN method [76] introduced by

Denœux. Here nine BPAs m0,m1, · · · ,m8 are identified corresponding to the possibilistic

label vectors α0, α1, · · ·α8. The BPA mi is assigned as follows:

Let q = arg max︸ ︷︷ ︸
k

(αi
k), (6.14)

181



then

mi({Cq}) = αi
q (6.15)

mi(C) = 1− αi
q (6.16)

mi(A) = 0 ∀A ∈ P (C)\{C, {Cq}} (6.17)

Thus there is only one focal element containing one element in each BOE. The rest

of the belief is assigned to the frame of discernment C, which can be interpreted as the

amount of ignorance. The evidences are then combined as follows:

Let Φq be the set of BPAs for which the focal element is {Cq}. If Φq 6= ∅ then the

corresponding BPAs can be combined as mq =
⊕

mi∈Φq mi as follows,

mq({Cq}) = 1−
∏

mi∈Φq

(1−mi(C)), (6.18)

mq(C) =
∏

mi∈Φq mi(C). (6.19)

If Φq = ∅, then mq is simply the BPA associated with the vacuous belief function:

mq(C) = 1. The global BPA mG can be obtained by combining these class specific BPAs

as mG =
⊕c

q=1 mq such that

mG({Cq}) =
mq({Cq})

∏
r 6=q mr(C)

K
q = 1, 2, · · · , c (6.20)

mG(C) =
Qc

q=1 mq(C)
K

(6.21)

where K =
∑c

q=1 mq({Cq})
∏

r 6=q mq(C) +
∏c

q=1 mq(C).

The pignistic probability PG(Ck) can be calculated as

PG(Ck) = mG({Cq}) +
mG(C)

c
.

However, since the term mG(C)
c

is same for all the classes, the pixel p0 is classified to class

Ck if

mG({Cq}) ≥ mG({Cl}) ∀ Cl ∈ C.

Like Method 1, in this method also no special emphasis is given to the pixel under

consideration, p0, over the neighboring pixels. Whereas in Method 2 and Method 3, α0

influences all the BPAs, i.e., α0 plays a special role. It can be seen later in experimental

results that these two approaches provide different classification efficiencies depending

on the nature of the spatial distribution of the classes in the image. Intuitively, if pixels

corresponding to different landcover types are scattered all over the image, neighboring

182



pixels should not be given the same importance as that of the central pixel for optimal

performance of the classifier. On the other hand, if pixels of a particular landcover type

form compact spatial clusters, then giving equal importance to the neighboring pixels

may be desirable. However, the optimal weight to be given to the neighboring pixels to

get the best performance should depend on the spatial distribution of different landcover

types on the image being analyzed. To realize this, we modify the BPA assignment

scheme of current method as follows:

Let q = arg max︸ ︷︷ ︸
k

(αi
k),

then

m0({Cq}) = α0
q , for i = 0 (6.22)

mi({Cq}) = wαi
q, otherwise (6.23)

m0(C) = 1− α0
q , for i = 0 (6.24)

mi(C) = 1− wαi
q, otherwise (6.25)

mi(A) = 0 ∀A ∈ P (C)\{C, {Cq}} (6.26)

where 0 ≤ w ≤ 1 is a weight factor that controls the contribution of the neighboring

pixels in the decision making process. The optimal value of w for the best classification

performance depends on the image under investigation and can be learnt during training

using a grid search.

6.6 Experimental results

We report the performances of the proposed classifiers for the two multispectral satellite

images, Satimage2 and Satimage3. Though in the previous chapter we have used three

multispectral satellite images, the pixel position information, which is crucial for the

methods proposed here, is not available for the first of them (Satimage1). Hence we use

only Satimage2 and Satimage3 in the current study. The description of these data sets

is already provided in Section 4.6.1 as well as in Section 5.5.3 with more details. The

channel 1 image of Satimage2 and the ground truth is presented in the Figures 5.2 and

5.4. The channel 4 image and ground truth for Satimage3 are depicted in Figures 5.3

and 5.5 respectively.

The performances of the fuzzy rule based classifiers for Satimage2 and Satimage3

using firing strengths directly for decision making are reported in Tables 5.8 and 5.9

respectively in the previous chapter. Comparison of these results with the published

results is provided in Section 5.5.4. Here we report the performances of the four methods

that use contextual information for decision making.

183



Table 6.1: Performances of fuzzy rule based classifiers using spatial neighborhood infor-

mation aggregation methods for decision making for different training sets for Satimage2

Training No. of Error Rate in Whole Image

Set rules Method 1 Method 2 Method 3 Method 4

1. 30 13.32% 11.93% 11.48% 13.43%

2. 25 14.00% 13.01% 12.62% 14.38%

3. 25 13.66% 11.54% 11.23% 13.90%

4. 27 12.98% 11.01% 10.45% 13.18%

Table 6.2: Performances of fuzzy rule based classifiers using spatial neighborhood infor-

mation aggregation methods for decision making for different training sets for Satimage3

Training No. of Error Rate in Whole Image

Set rules Method 1 Method 2 Method 3 Method 4

1. 14 11.55% 12.96% 12.64% 11.75%

2. 14 11.55% 12.75% 12.48% 11.65%

3. 12 11.24% 12.45% 12.23% 11.35%

4. 11 11.24% 12.53% 12.28% 11.44%

Tables 6.1 and 6.2 summarize the performances of the four classifiers using different

methods of aggregation of spatial information for Satimage2 and Satimage3 respectively.

We used the same set of fuzzy rules as used in the previous chapter to generate the

inputs to the four proposed methods.

Comparison between Table 6.1 and Table 5.8 shows that for Satimage2 Method 3

performs the best with improvements varied between 1.12% and 2.05% and the best

performing classifier (for training set 4) achieves an error rate as low as 10.45%. This

is closely followed by Method 2. Method 1 and Method 4 show marginal improvement

for training sets 1 and 2 while for training sets 3 and 4 their performance degrades a

little. Comparison of Table 6.2 and Table 5.9 show that although the classifiers using

Method 3 increase the classification accuracy by about 1.5%, Method 1 is clearly the best

performer for Satimage3 with improvements ranging between 2.49% and 2.99%. Similar

performances are achieved by Method 4. Method 4 used w = 1 for both Table 6.1 and

Table 6.2.

Figure 6.1 shows the classified image corresponding to training set 1 using Method 3

for Satimage2. Figure 6.2 displays the classified image (for training set 1 using Method

4) for Satimage3.

184



Figure 6.1: The classified image for Satimage2 (Training set 1, Method 3). The classes

are represented by different colors.

Figure 6.2: The classified image for Satimage3 (Training set 1, Method 4). The classes

are represented by different colors.

185



Table 6.3: Class-wise average classification performance for Satimage2

Landcover Average classification rate (%)

types Method 1 Method 2 Method 3 Method 4

Forest 93.25 90.80 91.33 94.47

Water 90.95 90.42 90.64 92.29

Agriculture 68.49 83.60 83.12 60.12

Bare ground 58.15 65.46 65.92 55.10

Grass 53.19 73.75 75.65 55.59

Urban area 80.82 80.83 79.76 75.32

Shadow 48.97 96.09 95.68 40.42

Clouds 99.78 99.78 99.78 99.79

Our experimental results demonstrate that for Satimage2 Method 2 and Method 3

work well while the other methods work better for Satimage3. These differences in

performances can be explained if we look into the way the neighborhood information

is aggregated in each method and the nature of the spatial distribution of the classes

in the images. In Method 1 the fuzzy label vectors of the central pixel (the pixel of

interest) and its eight neighboring pixels are treated in same way for aggregation. The

same is true for Method 4 though evidence theoretic approach is used for information

aggregation. In Method 2 and Method 3 eight BPAs are defined, each of them is assigned

using the possibilistic label vector of the central pixel and that of one of the eight

neighboring pixels. Thus all the BPAs are heavily influenced by the central pixel, and

consequently, so is the final decision. Hence, it is expected that for the images dominated

by large stretches of homogeneous areas (i.e., area covered by single landcover type) can

be classified better by Method 1 and Method 4. Also for Method 4 there may exist

an optimal weight for neighborhood information (different from w = 1) with improved

performance. We shall see later that this is indeed the case. Comparison of Figure

5.5 (ground truth for Satimage3) with Figure 5.4 (ground truth for Satimage2) reveals

that Satimage2 mostly consists of small (often very small) patches of landcover types,

while Satimage3 has large patches of landcover types. So for Satimage2 neighborhood

information needs to be used judiciously to get an improved classifier. This is what

achieved by Method 2 and Method 3.

To have a closer look at class-wise performances of the proposed methods we have

presented in Table 6.3 and Table 6.4 the class-wise classification performances for Satim-

age2 and Satimage3 respectively. It can be seen from the table that for Satimage3 all

four methods perform comparably for each of the four classes, with a slender edge in

186



Table 6.4: Class-wise average classification performance for Satimage3

Landcover Average classification rate (%)

types Method 1 Method 2 Method 3 Method 4

Built-up land 85.83 84.09 84.38 85.55

Forest 95.46 94.00 94.22 95.68

Water 96.02 93.77 94.32 96.13

Agriculture 68.20 68.03 67.79 66.92

favor of Method 1 and Method 4. However, for Satimage2, which contains more compli-

cated spatial distribution of the classes, there is a significant class-specific variation of

performance among different methods. For the classes Forest, Water, Urban area and

Clouds all methods perform nearly equally (the variation is within 5% approximately)

well, however for other classes the performances differ significantly. For Agriculture, the

second largest class, Method 2 and Method 3 have accuracy of over 83%, while Method 1

and Method 4 are 68.49% and 60.12% accurate respectively. For the class Bare ground,

Method 2 and Method 3 outperform the others comfortably. For the class Shadow, there

is a huge performance gap between the {Method 2, Method 3} (≈ 96%) and the {Method

1 (49%), Method 4 (40%)}. However, since the frequency of the Shadow class is very

small, this variation does not affect the overall accuracy significantly.

Now we use the modified Method 4 (Eqs. 6.22-6.26) which incorporates a weight factor

w that controls the contribution of the information from the neighborhood in the decision

making process. The value w = 1.0 makes the method same as the original Method 4.

To find the optimal values of w we use a 100× 100 sub-image from each image and find

optimal w based on these blocks. We use grid search to find the optimal w. Note that,

the rule bases are the same as used earlier. For example, for Satimage2, for each of the

four rule sets we find the optimal w using the classification error on the selected block

of image. Figure 6.3 depicts the variation of classification error as a function of w for

Satimage2. It is interesting to observe that for Satimage2 for all four rule bases the best

performances are achieved around w = 0.35. So we should use the modified Method 4

with w = 0.35 for each of the four rule bases. Table 6.5 displays the classification errors

on the whole image for w = 0.35. Comparing Table 6.5 with column 6 of Table 6.1, we

find a consistent improvement with w = 0.35 in all four cases. The improvement varied

between 2.14% and 2.75%. We also tried to find the optimal w for each of the four rule

bases for Satimage3. Figure 6.4 displays the classification error as a function of w. In

this case, for all four rule bases we find an optimal value of w = 1.0. This again confirms

the fact that when different landcover types form spatially compact clusters, neighbor

187



Figure 6.3: The result of grid search for optimal value of w using a 100× 100 sub-image

of Satimage2.

Figure 6.4: The result of grid search for optimal value of w using a 100× 100 sub-image

of Satimage3.

188



Table 6.5: Classification performances of classifiers using modified Method 4 with w =

0.35 on Satimage2

Training Set 1 2 3 4

Error rate 11.10% 12.24% 11.31% 10.33%

and central pixels play equally important roles in the decision making.

6.7 Conclusion

The problem of landcover classification in multispectral satellite images has some unique

features that can be used to achieve better performance. To exploit this advantage we

have developed decision making schemes that use information from spatial neighborhood.

For assigning a class label to a pixel the schemes use information generated by the fuzzy

rule base extracted in he previous chapter. The fuzzy rule base generates possibilistic

label vectors for the pixel as well as its eight spatial neighbors. These schemes are based

on the rationale that each fuzzy rule captures information regarding the characteristic

of a particular landcover type and in an image, more often than not, neighboring pixels

belong to the same landcover type.

So for most of the pixels (we may call them pure pixels) the maximum firing strength

produced by the rule base is high and considerably higher than the firing strengths of

all other rules. So the classification scheme developed in the previous chapter works

well for such pixels. However, in an image there exists a considerable number of pixels

which correspond to the boundary regions of landcover objects from different classes.

The spectral signatures captured in such pixels usually do not match well with the

characteristic signature of any particular class. We call such pixels mixed pixels. For such

a pixel, though there will always be a rule that gives the highest firing strength, there may

be some other rules whose firing strengths could be pretty close to the highest. Thus we

face a problem of lack of confidence while making a decision. So, to make a better decision

we need to look for more information. Here we have tried to exploit the information

provided by the spatially neighboring pixels. We have proposed four different schemes

for aggregation of spatial neighborhood information for decision making. Three of these

schemes use evidence theoretic framework, the remaining one is based on the fuzzy k-NN

rule. Our extensive experiments using Satimage2 and Satimage3 have revealed very good

performances by the four proposed methods.

For pure pixels the proposed schemes simply enhance the confidence in the decision that

189



would have been made considering firing strength directly. However, for mixed pixels

these schemes allow one to make a better decision by taking into account the context

(spatial neighborhood) information. The suitability of a particular scheme depends to

some extent on the nature of the image to be classified. Specifically, Method 1 and

Method 4 are more suitable for images having spatially compact classes, while Method 2

and Method 3 are better for images when different classes are sparsely distributed all over

the image. One can use the performance of the methods on a validation data to decide

on the best classifier for a given situation. One of the methods has a parameter that can

be tuned based on the training data to get a classifier with improved performance.

Although, the four proposed classifiers aggregated contextual information, generated

by a fuzzy rule based system, the aggregation methods can be used with any other

classifier which can produce a fuzzy/probabilistic/possibilistic label vector for each pixel.

For example, one can use the output of a neural network and generate such label vectors

and the aggregation methods can be used on them.

190



Chapter 7

Designing Vector Quantizer with

SOM and Surface Fitting for Better

Phychovisual Quality 1

1Content of this chapter has been published in [205].



7.1 Introduction

So far we have discussed classifier designs based on prototypes generated by Self-organizing

Maps. In this chapter and Chapter 8 we consider a different patten recognition appli-

cation of SOM, i.e., image compression. With the advent of World Wide Web and

proliferation of multimedia contents, data compression techniques have gained immense

importance. Data compression has become an enabling technology for efficient storage

and transmission of multimedia data. In this chapter we propose a method for image

compression by vector quantization of the image [110] using Self-organizing Map [169]

algorithm. We also propose refinement of the codebook using a method of bicubic surface

fitting for reduction of psychovisually annoying blocking effect.

A vector quantizer (VQ) [110] Q of dimension k and size S can be defined as a mapping

from data vectors (or “points”) in k-dimensional Euclidean space, <k into a finite subset

C of Rk. Thus,

Q : <k → C (7.1)

where C = {y1,y2, ...,yS} is the set of S reconstruction vectors, called a codebook of size

S and each yi ∈ C is called a code vector or codeword. For each yi, i ∈ I = {1, 2, ..., S} is

called the index of the code vector and I is the index set. Encoding a data vector x ∈ <k

involves finding the index j of the code vector yj ∈ C such that ‖x−yj‖ ≤ ‖x−yi‖ ∀ i 6= j

and i, j ∈ I. The decoder uses the index j to look-up the codebook and generates the

reconstruction vector yj corresponding to x. The distortion measure d(x,yj) = ‖x−yj‖
represents the penalty of reproducing x with yj. If a VQ minimizes the average distortion,

it is called the optimal VQ of size S.

Vector quantization has been used for image compression successfully by many re-

searchers [9, 16, 121, 148, 144, 184, 249, 250]. The oldest as well as most commonly used

method is the generalized Lloyd algorithm (GLA) [228] or LBG algorithm [222]. The

algorithm is similar to the k-means algorithm used for statistical cluster analysis [300].

GLA is an iterative gradient descent algorithm that tries to minimize an average squared

error distortion measure. Design of an optimal VQ using GLA has been proposed and

studied in [222]. However, GLA being a greedy algorithm, its performance is sensitive

to initialization and it converges to the local minima closest to the initial point. Fuzzy

k-means algorithms [31] and several other fuzzy vector quantization techniques have been

studied and used for image compression in [148]. Zeger et al. [368] proposed methods for

designing globally optimal vector quantizer using stochastic relaxation techniques and

simulated annealing.

Self-organizing Map (SOM) [169], as described in Chapter 2, is a competitive learning

neural network with excellent vector quantization capability along with several other

192



interesting properties. Consequently, it has attracted attention of the researchers in the

field of vector quantization [9, 249, 356]. The learning scheme of SOM is an application

of the least mean square (LMS) algorithm where the weights of the neurons are modified

“on the fly”, for each input vector, as opposed to the usual batch update scheme of GLA.

Thus the codebook is updated using an instantaneous estimate of the gradient, known as

stochastic gradient, which does not ensure monotonic decrease of the average distortion.

Therefore, the algorithm has a better chance of not getting stuck at a local minima. GLA

can also incorporate incremental update through purely competitive learning. However,

due to incorporation of neighborhood update (opposed to the “winner only” update in

pure competitive learning) in the training stage, SOM networks exhibit the interesting

properties of topology preservation and density matching [169]. The former means that

the vectors near-by in input space are mapped to the same node or nodes near-by in the

output space (lattice plane of the SOM nodes). The density matching property refers to

the fact that after training the distribution of the weight vectors of the nodes reflects the

distribution of the training vectors in the input space. Thus, more code vectors are placed

in the regions with high density of training vectors. In other clustering algorithms, a

dense and well separated cluster is usually represented by a single cluster center. Though

it is very good if the clusters are subsequently used for pattern classification task, in case

of vector quantization, where the aim is to reduce the reconstruction error, this may not

be that good.

The total reconstruction error of a VQ is the sum of granular error and overload error

[110]. The granular error is the component of the quantization error due to the granular

nature of the quantizer for an input that lies within a bounded cell. Due to the density

matching property, SOM places several prototypes in a densely populated region and

thus makes the quantization cells small in such area. This leads to the reduction in

the granular error component resulting in preservation of finer details. This is a highly

desirable property in a VQ. The overload error component of quantization error arises

when the input lies in any unbounded cell representing data at the boundary of training

sample distribution. Since the distribution of the codewords replicate the distribution of

the training data, the overload error is also low when the distribution of the test data is

well represented by that of the training data.

In [47] Chang and Gray introduced an on-line technique for VQ design using stochastic

gradient algorithm which can be considered a special case of the SOM algorithm and it

is shown to perform slightly better than GLA. Nasrabadi and Feng [249] also used SOM

for VQ design and demonstrated performance better than or similar to GLA. Yair et al.

[356] used a combination of SOM and stochastic relaxation and obtained consistently

better performance than GLA. Amerijckx et al. [9] used SOM algorithm to design a

VQ for the coefficients of discrete cosine transform of the image blocks. The output of

193



VQ encoder is further compressed using entropy coding. They reported performance

equivalent to or better than standard JPEG algorithm.

In this chapter we propose a scheme for designing a spatial vector quantizer (SVQ)

for image compression using the SOM [169] algorithm and surface fitting. We use a set

of training images to design a generic codebook that is used for encoding the training

as well as other images. The codebook is designed with mean-removed (also known as

residual) [110, 16, 184] vectors. The mean is added to the reproduced vectors by the

decoder. An initial codebook is generated by training a SOM with the training vectors.

Then to achieve better psychovisual fidelity, each codevector is replaced with the best-fit

cubic surface generated by the training vectors mapped to the respective codevector.

The set of code indexes produced by the encoder is further compressed using Huffman

coding. A scheme of difference coding for the average values of the blocks is used. The

difference coding enables us to utilize Huffman coding for the averages which also leads

to more compression.

In Section 7.2 we describe the VQ design scheme in detail. In 7.3 we present the

scheme for processing the block averages for efficient Huffman coding. We report the

experimental results in Section 7.4. The chapter is concluded in 7.5. We use peak signal

to noise ratio (PSNR) as one of the performance measures of the VQ. The PSNR in

deciBel (dB) for a 256 level image of size h× w is defined as

PSNR = 10 log10

2552

1
hw

∑h
i=1

∑w
i=1(xij − x̂ij)2

, (7.2)

where xij is the value of the ij-th pixel in the original image and x̂ij is that of the recon-

structed image. In addition, we also propose two indexes for quantitative assessment of

psychovisual quality in the context of blocking effect. We use them to demonstrate the

improvement of reconstruction quality by the surface fitting codebooks over the initial

SOM generated codebooks.

7.2 Scheme for designing vector quantizers

Here we adopt a multi-stage approach for developing a comprehensive scheme for design-

ing vector quantizers to achieve good psychovisual quality of the reconstructed image

with high compression ratio. First we prepare mean-removed (residual) training vectors

from a set of training images. A 2-dimensional SOM is trained with them to obtain

the initial codebook. Then surface fitting scheme is employed for improving the quality

of the codevectors. We also develop a difference coding scheme for the block averages.

Finally, variable length codewords are assigned to the difference coded block averages

194



as well as the block indexes to achieve further compression through Huffman coding. In

following we describe our scheme in full detail.

7.2.1 Preparing the image vectors

To produce the feature vectors an h × w image is divided into p × q blocks. Then

each block is represented by a vector x ∈ Rk, where k = pq and each component xi of

x represents the value of (lexicographically ordered) i-th pixel in the block. The pixel

values in the p×q image block are presented in row-major fashion in the feature vector x.

We convert each vector x to a mean-removed or residual vector x′ such that x′ = x− x̄1

where x̄ = 1
k
Σk

i=1xi is the average pixel value of the block and 1 is a k-dimensional

vector with all components 1. We use the residual vectors to train the SOM as well

as for encoding of the images. The averages are separately transmitted to the decoder

and added to the reproduction vectors such that the reconstructed vector x̂ = yi + x̄1,

where yi is the code vector corresponding to x. This conversion essentially has the effect

of reducing the dimension of the input space by one, i.e., from k to k − 1 and thereby

can reduce the potential number of clusters. To demonstrate this effect of the process

here we present some results using 512 × 512 Lena image. The original image is shown

in Figure 7.1. We divide the image into 8 × 8 blocks which produces 64 dimensional

vectors. We use the vectors to train a 16 × 16 SOM to prepare a codebook of size 256.

The weight vectors of SOM nodes are used as reproduction vectors. The reconstructed

image is shown in Figure 7.2(a). The PSNR achieved is 27.62 dB. Figure 7.2(b) shows

the result of the same experiment using the mean-removed vectors. In the second case

the PSNR achieved is 29.61 dB.

Thus, using mean-removed vectors significant improvement of VQ performance can be

achieved. Hereafter in this paper the term vector will be used for mean-removed vectors

unless explicitly stated otherwise.

7.2.2 Preparing training data for construction of a generic code-

book

In most of the experimental works on vector quantization the codebooks are trained with

the test image itself. However, this poses a problem in practical use of such algorithm for

transmission/storage of the compressed image. While transmitting a compressed image,

both the compressed image and the codebook must have to be transmitted. The overhead

in transmitting the codebook diminishes the compression ratio to considerable extent.

This problem can be avoided if a generic codebook is used by both the transmitter and

195



Figure 7.1: Original Lena image.

Figure 7.2: (a) Reconstructed Lena image with VQ using original vectors. PSNR =

27.62 dB. (b) Reconstructed Lena image with VQ using mean-removed vectors. PSNR

= 29.61 dB. Here the VQ is trained with the Lena image only.

196



Figure 7.3: The training image.

the receiver [300]. Construction of such a generic codebook poses a formidable problem,

since in general, if an image is compressed using a codebook trained on a different image,

the reconstruction error tends to be substantially high.

Here we explore the possibility of construction of a generic codebook that can be used

to encode any image (i.e., images other than those used to construct the codebook) with

acceptable fidelity. Such a codebook can allow us one time construction of the encoder

and the decoder and making the codebook a permanent part of it. To achieve this, we

select a set of images having widely varied natures in terms of details, contrasts and

textures. We use these images together for construction of the generic codebook. We

prepare a 768 × 512 training image (Figure 7.3) which is a composite of six smaller

256 × 256 images and train the SOM using this training image and then construct the

surface fitting codebook for the VQ.

We emphasize that, the generic codebook constructed by the above mentioned method

197



can neither be claimed as universal nor as the best possible generic codebook. Our aim is

merely to demonstrate experimentally that a generic codebook constructed from some

judiciously chosen images can be used for effective compression of other images having

“similar characteristics”. If the images to be compressed are of radically different na-

ture, say, containing texts or geometric line drawings, use of another generic codebook

constructed with images of similar type will be appropriate. Note that, when we say

images of “similar” characteristics, we do not refer to images which are visually similar,

but images with similar distribution of gray level over small blocks of size, say, 8× 8.

7.2.3 Surface fitting

Once the SOM is trained, the codebook can readily be designed using the weight vectors

as the reconstruction vectors. Images can be encoded by finding out, for each image

vector, the code vector with the least Euclidean distance. However, all spatial vector

quantizers produce some blockyness in the reconstructed image [250, 302, 288], i.e.,

in the reconstructed image the boundaries of the blocks become visible. Even though

the reconstructed image shows quite good PSNR, this effect often has some adverse

psychovisual impact. Often transform and/or subband coding is used to overcome this

effect. But this adds substantial computational overhead since the raw image has to

be transformed into frequency domain before encoding using the quantizer and also in

decoder the image has to be converted back into the spatial domain from the frequency

domain.

In our method we adopt a scheme of polynomial surface fitting for modifying the code-

vectors generated by SOM algorithm that reduces the blockyness of the reconstructed

image and improves its psychovisual quality. In this case the computational overhead

occurs only at the codebook design stage, not during encoding or decoding of an image.

Although in computer graphics polynomial surfaces serve as standard tools for mod-

elling the surface of graphical objects [274], in image coding their application is mostly

restricted to image segmentation and representation of segmented patches. In [194, 305]

low degree polynomials are used for local approximation of segmented patches, while in

[38] Bezier-Bernstein polynomials are used for image compression by globally approxi-

mating many segmented patches by a single polynomial with local corrections. To the

best of our knowledge there is no reported work that uses polynomial surfaces in context

of vector quantization.

For using polynomial surfaces one has to decide on the degree of the surface to be used.

Lower degree polynomials are easier to compute but they have less expressive power. On

the other hand, higher degree polynomials, though have more expressive power, they

tend to replicate the training data exactly and lose the power of generalization, and thus

198



unacceptable results may be produced when presented with an image not used in the

training set. There is also the issue of solving for the coefficients of the polynomial. If a

small block size is used, there may not be enough points in a block to find a solution of

a high degree polynomial.

In our work we have experimented with block sizes 4 × 4, 4 × 8 and 8 × 8. It is

found that for 4× 4 blocks biquadratic surfaces give performances comparable to that of

bicubic surfaces, while for larger block sizes bicubic surfaces perform significantly better.

Surfaces of degree 4 do not improve the performance significantly for test images. So we

use the bicubic surfaces throughout our work.

In this scheme we try to find for each reconstruction block a cubic surface centered at

the middle of the block so that the gray value x of a pixel at (α, β) (with respect to the

origin set at the middle of the block) can be expressed by the bicubic equation,

x(α, β) = a0 + a1α
3 + a2β

3 + a3α
2β + a4αβ2

+a5α
2 + a6β

2 + a7αβ + a8α + a9β

= pTa (7.3)

where

p = [1, α3, β3, α2β, αβ2, α2, β2, αβ, α, β]T

and

a = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]
T .

Thus, for a whole block containing k pixels we can write

P =




pT
1

pT
2
...

pT
k




k×10

, (7.4)

where pi is the p vector for i-th component of feature vector x.

To find the coefficients of the polynomials corresponding to the codevectors generated

by the SOM, we partition the training vectors into k subsets such that a training vector

belongs to i-th subset, if it is mapped to the i-th codevector. Let X = {x ∈ <k} be the

set of training vectors and X(i) = {x(i)
1 ,x

(i)
2 , ...,x

(i)
ni } ⊂ X where ni =| X(i) |, be the set

of training vectors mapped to the i-th code vector. We write for the set X(i)

199



G(i) =




x
(i)
1

x
(i)
2
...

x
(i)
ni




kni×1

and

a(i) = [a
(i)
0 , a

(i)
1 , ...a

(i)
9 ]T .

Then Eq. (7.3) can be written in a matrix form for all the vectors mapped to the i-th

code vector as

G(i) = P(i)a(i), (7.5)

where

P(i) =




P1

P2

...

Pni




kni×10

and Pi = P ∀ i = 1, 2, ..., ni.

Thus the total squared error due to reconstruction of all blocks corresponding to vectors

in X(i) using the i-th reconstruction block generated by cubic surface specified by the

coefficient vector a(i) can be expressed as

E = ‖G(i) −P(i)a(i)‖2. (7.6)

Differentiating (7.6) with respect to a(i) we obtain

∂E

∂a(i)
= P(i)T (G(i) −P(i)a(i)). (7.7)

Thus the coefficient vector a(i) corresponding to the minimum of E can be obtained by

solving the equation

P(i)T (G(i) −P(i)a(i)) = 0 (7.8)

for a(i). From (7.8) we obtain

a(i) = (P(i)TP(i))−1P(i)TG(i) = P(i)+G(i), (7.9)

where P(i)+ = (P(i)TP(i))−1P(i)T is the pseudoinverse of P(i).

We compute the coefficient vectors a(i)s for all codevectors obtained from SOM. Once

the a(i)s are available, the codebook can be designed to contain the coefficients {a(i)}. If

we do so, then for encoding we have to do the following:

200



1. For each polynomial (a(i)), generate the surface by computing each of the pq real

values corresponding to the position of the pixels of a block.

2. Round these real values subject to the constraint that all values lie in {0, 1, ..., L−
1}, where L is the number of gray value levels.

Notice here, that given a coefficient vector a(i), the surface generated x̂i remains the same

irrespective of the spatial location of the associated block on the image. The reason is

that for every block we use the central point of the block as the origin. So we can avoid

a lot of useless computation, if instead of storing a(i)s, we store the x̂is in the code book.

Let these generated surfaces be {x̂i, i = 1, 2, ..., S}. Then for every block of size pq of

the image we find the closest x̂k and use its index to encode. Then, while decoding, we

reverse the procedure using x̂is and the indexes used to code the blocks. In other words,

we do not store the a(i)s but the code vectors reconstructed using a(i)s.

We use the new codebook for encoding as well as decoding subsequently. We have

tested the effectiveness of this method using several images. Although the quality im-

provement in terms of PSNR appears marginal, significant improvement in terms psy-

chovisual quality is observed consistently. Figure 7.4(a) shows the reconstructed Lena

image using SOM codebook (block size 8×8 and codebook size 256), while Figure 7.4(b)

depicts the same using surface fitting codebook. Though the surface fitting codebook

marginally increases the PSNR (0.3 dB) for this image, reduction of blockyness and im-

provement of psychovisual quality are evident. To demonstrate the effect more clearly

we show in Figure 7.5 enlarged portions (containing lips) of the images in Figure 7.4(a)

and Figure 7.4(b).

7.3 Processing the block averages and indexes for

Huffman coding

Usually in image compression schemes using vector quantization, the indexes are encoded

using some lossless entropy coding scheme such as Huffman coding to achieve further

compression [110]. The rationale behind it is that the codewords do not appear uniformly

in a quantized image, rather there is a distinct non-uniform distribution of codewords.

Thus encoding the indexes with variable length codes can achieve more compression.

In the vector quantization scheme proposed here one needs to store/transmit one code

index and a block average value for each quantized block of the image. In this section

we develop a suitable transformation for the block average values and describe a scheme

for efficient Huffman coding of the indexes and the block averages.

201



Figure 7.4: (a) Reconstructed Lena image with VQ using SOM weight vectors as re-

construction vectors. PSNR = 28.19 dB. (b) Reconstructed Lena image with VQ using

surface fitting. PSNR = 28.49 dB.

Figure 7.5: (a) Enlarged portion of Lena image shown in figure 3(a). (b) Enlarged

portion of Lena image shown in figure 3(b).

202



7.3.1 Difference coding of the block averages

An image of size h×w divided into p×q blocks produces N = hw
pq

blocks. In our scheme,

while encoding an image, for each block the encoder produces one codebook index and

one average pixel value and for the whole image the blocks are processed in a row-major

fashion. The encoded image is represented by a set of indexes I = {`i : `i ∈ I, i =

1, 2, ..., N} and the set of block averages M = {mi : mi ∈ [0, 255], i = 1, 2, ..., N}. Thus,

an average value can be rounded off to nearest integer and encoded with a byte value.

However, in images substantial correlation exists among the neighboring blocks. So the

difference of the average values between neighboring blocks is usually very small. In

the set of differences of block averages D = {di : d1 = m1 and di = mi −mi−1, i =

2, 3, ..., N}, most of the dis will have small absolute values and thus can be encoded more

efficiently using Huffman coding scheme. But this will make the potential range of dis

[-255,255], thereby requiring 511 codewords for Huffman encoding.

Here we develop a scheme of transformation of difference coding that requires 256

codewords for Huffman encoding. The scheme is as follows:

Step 1: Convert the set of averages M to M ′ = {m′
i : m′

i = 2 ∗ (int)(mi

2.0
+ 0.5), i =

1.2, ..., N}.

Step 2: Compute the set of differences of block averages D = {di : d1 = m′
1 and di =

m′
i −m′

i−1, i = 2, 3, ..., N}.

Step 3: Due to the conversion in Step 1 all the dis are even. So we can use all positive

odd numbers to represent the negative difference values. We convert D to D′ =

{d′i : if di ≥ 0 then d′i = di otherwise d′i = −(di + 1)}.

Thus, the transformation encodes each positive difference value to its nearest posi-

tive even number, while each negative difference value is represented by a positive odd

number nearest in absolute value. This scheme will allow the decoder to identify the

positive and negative difference values unambiguously. The loss in information due this

transformation is negligible.

Usually in the images large portions can be found that has no or little variation in

brightness. When such a region is divided into blocks, the average gray value of two

neighboring blocks differ very little. Thus, all over the image the difference of average

gray values of neighboring blocks are more likely to be small. To demonstrate this

fact we display in Figure 7.6 the frequency distributions of actual averages as well as

the difference coded averages for the Lena image quantized with 8 × 8 blocks. Similar

distributions are observed for all the other images we studied. It is evident from Figure

203



Figure 7.6: The frequency distributions of (a) actual block averages and (b) difference

coded block averages for Lena image.

7.6(b) that the distribution of the difference coded average values can be approximated as

a monotonically decreasing distribution and significant data compression can be achieved

using Huffman coding scheme to encode the difference coded averages.

7.3.2 Huffman coding of the indexes and difference coded av-

erages

Huffman coding [135] is a lossless compression scheme that achieves nearly optimal per-

formance in terms of entropy. The scheme involves assigning variable length codewords

to the symbols in a set of input symbols. The higher is the probability of occurrence of

an input symbol, shorter is the codeword assigned to it. However, the implementation

of the scheme requires a priori knowledge of the input probability. This information is

often not available in practice.

In our scheme we use mean-removed vectors for VQ design. These vectors in effect

contain the information about the variation among the components. Further, due to use

of SOM clustering algorithm, the distribution of code vectors in <k approximates the

distribution of the input vectors. Since a wide variety of images is used for training the

system, the distribution of the index values of training image is expected to give a fairly

good approximation of the distribution of indexes for other images encoded using the

204



0 50 100 150 200 250 300
0

200

400

600

800

1000

(a) The frequency distribution of indexes for the Barbara image.

0 50 100 150 200 250 300
0

500

1000

1500

2000

(a) The frequency distribution of indexes for the training image.

Figure 7.7: The frequency distributions of (a) indexes of encoded training image and (b)

indexes of encoded Barbara image.

same codebook. This can be seen from Figure 7.7, that displays the distribution of (a)

indexes of the training image and (b) indexes of the Barbara image of size 512 × 512,

both encoded using the same codebook.

Hence, for a given codebook we can use the knowledge of distribution of indexes for

the training image as (approximate) a priori knowledge about the distribution of indexes

for any image encoded using the same codebook. Thus, the same assignment of variable

length codewords to the index values can be used for Huffman coding of indexes of the

images (not used in the training) encoded using the same codebook. Also the difference

coding scheme for the block averages allows us to approximate the distribution of average

values as a monotonically decreasing one. So the use of the same set of variable length

codewords for the difference coded average values enables us to compress the averages

for all encoded images.

7.4 Experimental results

We study 3 vector quantizers using block sizes 8 × 8 (VQ1), 4 × 8 (VQ2) and 4 × 4

(VQ3) respectively. Each of the VQs uses a codebook of size 256 (constructed with

a 16 × 16 SOM)and is trained with mean-removed vectors. Then the codebooks are

205



Table 7.1: Performance of the vector quantizers on training images.
Image Size VQ1 (Blocksize 8× 8) VQ2 (Blocksize 4× 8) VQ3 (Blocksize 4× 4)

PSNR (dB) CR (bpp) PSNR (dB) CR (bpp) PSNR (dB) CR (bpp)

Blood Cell 256× 256 28.52 0.21 30.75 0.44 33.50 0.89

Cameraman 256× 256 23.58 0.16 24.65 0.34 26.51 0.65

Chair 256× 256 31.25 0.14 32.39 0.28 34.99 0.54

Keyboard 256× 256 30.28 0.17 31.01 0.36 33.92 0.67

Lena 256× 256 26.42 0.21 27.82 0.44 30.49 0.82

Peppers 256× 256 25.49 0.22 27.05 0.45 29.36 0.86

modified applying the surface fitting method. In later part of this section when we report

the study on improvement of psychovisual quality due to surface fitting, we distinguish

them as “SOM VQ” and “surface fitting VQ”. Thus, to represent each block in the

encoded image 1 byte is required for the index and another byte is required for the block

average. This makes the compression ratios 0.25 bpp (bits per pixel), 0.5 bpp and 1 bpp

for VQ1, VQ2 and VQ3 respectively. To achieve more compression, lossless Huffman

encoding is applied separately to the indexes and the block averages. The codeword

assignment for the indexes is based on the frequency distribution of the codevectors in

the encoded training image. Because of strong correlation between neighboring blocks,

the absolute differences between average values of neighboring blocks are found to have

a monotonically decreasing distribution and codewords are assigned exploiting this.

Each VQ is trained in two stages using SOM algorithm and surface fitting method

using the image shown in Figure 7.3. The training image is a composite of six 256× 256

images. The individual images in the training set are Blood cell, Peppers, Keyboard,

Lena, Cameraman and Chair. We report the test results for six images, of which

Lena, Barbara and Boat have size 512 × 512 and Bird, House and Mattface are

of size 256 × 256. Please note that the Lena images used in training and test set are

different. The former is of size 256 × 256 while the later has the size 512 × 512. The

performances of the vector quantizers for the training images are summarized in Table

7.1 and those for the test images are summarized in Table 7.2. In Table 7.2 we also

present the performances of standard JPEG algorithm. For every image, while using

the JPEG algorithm we tried to maintain the same compression rates as achieved by

our scheme. We used the routines available in Matlab 5 software to generate the JPEG

images.

Our results for the test images show that the proposed algorithm consistently performs

better than the JPEG in terms of PSNR for the lowest bit rate studied. In this case

the difference of PSNR value between the images produced by our scheme and JPEG

varied between 0.23 dB for Lena image to 5.10 dB for the Bird image. For the higher

bit rates JPEG shows consistently higher PSNR values than the proposed algorithm at

206



Table 7.2: Performance of the vector quantizers on test images and their comparison

with baseline JPEG.
Image Compression VQ1 (Blocksize 8× 8) VQ2 (Blocksize 4× 8) VQ3 (Blocksize 4× 4)

Algorithm PSNR (dB) CR (bpp) PSNR (dB) CR (bpp) PSNR (dB) CR (bpp)

Lena Proposed 28.47 0.18 30.14 0.38 33.03 0.74

(512× 512) JPEG 28.24 0.20 33.28 0.38 36.43 0.73

Barbara Proposed 23.85 0.19 24.33 0.41 25.09 0.79

(512× 512) JPEG 23.48 0.19 27.16 0.41 31.12 0.73

Boat Proposed 26.44 0.17 28.11 0.35 31.11 0.69

(512× 512) JPEG 24.10 0.17 30.35 0.36 34.14 0.68

Bird Proposed 30.27 0.15 32.56 0.30 35.60 0.57

(256× 256) JPEG 25.17 0.16 34.42 0.29 38.63 0.54

House Proposed 25.39 0.16 26.39 0.33 29.51 0.67

(256× 256) JPEG 24.20 0.18 30.15 0.33 34.36 0.64

Mattface Proposed 28.69 0.18 31.96 0.37 35.46 0.69

(256× 256) JPEG 27.04 0.19 35.35 0.37 39.60 0.66

similar compression rates. To compare the psychovisual qualities we display in Figure

7.8 the Lena images compressed using the proposed algorithm and JPEG algorithm.

The images 7.8(a), 7.8(c) and 7.8(e) are compressed using the proposed algorithm with

block sizes 8 × 8, 4 × 8 and 4 × 4 respectively. The images 7.8(b), 7.8(d) and 7.8(f)

are compressed using the JPEG algorithm with bit rates similar to the corresponding

images in the left panels. It is evident form the images shown in Figure 6 that despite a

small difference in PSNR values at the lowest bit rate (0.23 dB), the image compressed

by the proposed algorithm is quite superior to the JPEG image in terms of psychovisual

quality. For higher bit rates though the JPEG images have significantly higher PSNR

values, their psychovisual qualities are similar to the corresponding images compressed

with the proposed algorithm. Similar results are obtained for other images studied in

this paper. For all other test images the original images and the images reconstructed

using the proposed algorithm for three VQs are shown in Figs. 7.9-7.11. The PSNR and

the compression rates for these images (panels (b), (c) and (d) of Figs. 7.9-7.11) are

reported in Table 7.2.

A plethora of studies on the Lena image are available in the literature. Many of

them can be found in the excellent survey paper of Cossman et al. [64]. However, they

have concentrated exclusively on vector quantization of image subbands and the results

reported cannot be readily compared with those of the spatial vector quantization (SVQ)

techniques. Instead we compare our results with other works using SVQ techniques.

Zeger et al. [368] developed a variant of simulated annealing for VQ design and compared

it with GLA. They used Lena and Barbara images of size 512×512 to test the algorithms.

They used 4 × 4 block size and a codebook size of 256. The reported PSNRs are 30.48

dB and 25.80 dB respectively for GLA and 30.59 dB and 25.87 dB respectively for

simulated annealing. Thus, the results reported here are comparable for Barbara image

207



Figure 7.8: (a), (c), (e) Compressed Lena images using proposed algorithm. (b), (d), (f)

Compressed Lena images using JPEG.

208



Figure 7.9: Results on 512 × 512 Barbara image. (a) Original image, (b) reconstructed

image for VQ with 8 × 8 blocks, (c) reconstructed image for VQ with 4 × 8 blocks and

(d)reconstructed image for VQ with 4× 4 blocks.

209



Figure 7.10: Results on 512 × 512 Boat image. (a) Original image, (b) reconstructed

image for VQ with 8 × 8 blocks, (c) reconstructed image for VQ with 4 × 8 blocks and

(d)reconstructed image for VQ with 4× 4 blocks.

210



Figure 7.11: Results on 256 × 256 images. (a) Original images, (b) reconstructed im-

ages for VQ with 8 × 8 blocks, (c) reconstructed images for VQ with 4 × 8 blocks and

(d)reconstructed images for VQ with 4× 4 blocks.

211



and significantly superior for the Lena image. Karayiannis and Pai [148] developed

several variants of a fuzzy vector quantization algorithm. They also reported results for

VQs using traditional k-means algorithm and fuzzy k-means algorithm. They used the

256 × 256 Lena image for both training and testing. In their study they used image

blocks of size 4 × 4 and considered codebooks of different sizes. For a codebook of size

256 they reported the PSNRs 27.06 dB using k-means algorithm, 29.91 dB using fuzzy

k-means algorithm, 29.60 dB, 29.93 dB and 29.95 dB for three different variants of fuzzy

vector quantization algorithms. These results are similar to the results reported here

for the Lena image used in the training set. In [9] SOM algorithm is used for designing

a VQ. Here SOM is trained with the low order coefficients of discrete cosine transform

(DCT) of 4 × 4 image blocks. The output of the encoder is further compressed using

a differential encoding scheme. The result reported for the Lena image shows a PSNR

of 24.7 dB with a compression rate 25.22 (i.e., 0.32 bpp approximately). In a recent

work Schnaider et al. [302] studied wavelet based lattice vector quantization methods.

For the same image they reported a PSNR 32.06 dB at a compression ratio 24:1 (i.e.,

0.33 bpp approximately). All other images studied here also show high PSNR with good

compression rates.

7.4.1 Quantitative assessment of psychovisual quality preser-

vation

Our goal is to devise a simple scheme of designing VQ that can compress images with

good perceptual fidelity. It is a well established fact that the mean squared error (MSE)

based distortion measures such as PSNR are not very good for measuring perceptual

fidelity. However, there is no universally accepted quantitative measure for psychovisual

quality. We presented a surface fitting method for quantization that smoothens the re-

constructed image resulting in reduction of blocking effect. Sometimes, it may introduce

some blurring of sharp features. However, moderate blurring is not considered annoying

by a human observer since it is a “natural” type of distortion [288]. The effectiveness

of the proposed scheme for preserving psychovisual quality in the reconstructed images

has been demonstrated visually in Figs. 7.8-7.11. The increased ability of reducing the

blocky effect by surface fitting scheme is also demonstrated visually in Figure 7.4 and

Figure 7.5. Figure 7.5 depicts enlarged views of some portion of the images shown in

Figure 7.4. The portion is selected in such a way that it contains fine detail as well as

smooth non-linear intensity variation.

Now we define two quantitative indexes that can assess the preservation of psychovi-

sual quality with respect to blocking effect. The development is based on the following

observations made by Ramstad et al. [288].

212



0 -1 0

-1 4 -1

0 -1 0

Figure 7.12: Convolution mask corresponding to the Laplacian operator.

1. The blocking effect is a natural consequence of splitting the image into blocks

and independent processing of each block. The quantization errors will lead to

appearance of the blocks that the image is split into.

2. Blocking effects are visible in smooth image areas, whereas in complex areas, such

as textures, any underlying blocking effect is effectively masked.

Thus the degradation of psychovisual quality is contributed by (1) the reduction of

smoothness due to the difference between an image block and the quantized block that

replaces it and (2) the additional discontinuity imposed across the block boundary due

to quantization. So we develop a pair of quantitative indexes. The first one measures

the loss of smoothness per pixel across the block boundary due to vector quantization.

We call it boundary smoothness mismatch index (BSMI). The second index deals with

difference of smoothness per pixel between the original image and the reconstructed

image for the non-boundary pixels (i.e., all pixels in a block that are not on the boundary

of the block). We call it inner smoothness difference index (ISDI). Evidently for both

indexes lower values imply better preservation of psychovisual quality.

The development of these indexes are based on the fact that the second derivative, i.e.,

Laplacian of a surface at a point can be used as a measure of the lack of smoothness at

that point. This fact is often used for detection of edges in an image [113], where the

pixels showing abrupt variation of intensity with respect to their neighbors are detected.

In our approach we use the Laplacian to measure the lack of smoothness in intensity

variation. The discrete realization of the operator in form of a convolution mask is

shown in Figure 7.12. Henceforth we shall denote this mask as L(i, j), where (i, j)

denotes the coordinate of the pixel on which the mask is applied.

Now we present the formulae for computing the indexes. Let PB denote the set of

pixels at the block boundaries and PI be the set of non-boundary pixels in an image.

Then the boundary smoothness mismatch index (BSMI) of an image is defined as

BSMI =

∑
(i,j)∈PB

[xij ∗ L(i, j)]2

Number of pixels in PB

. (7.10)

The inner smoothness difference index (ISDI) is computed for a reconstructed image

with respect to the original image and is defined as

213



Table 7.3: Comparison of performances regarding preservation of psychovisual fidelity

between the vector quantizers using SOM code books and surface fitting code books.

Image Code book Blocksize 8× 8 Blocksize 4× 8 Blocksize 4× 4

used BSMI ISDI BSMI ISDI BSMI ISDI

Lena SOM 527.95 494.35 467.90 398.79 433.22 337.73

(512× 512) Surface fit 488.36 385.90 415.84 375.38 405.29 330.05

Barbara SOM 666.77 2605.70 979.52 2285.50 1788.10 1562.50

(512× 512) Surface fit 570.73 2556.60 703.03 2535.60 1151.50 2177.90

Boat SOM 737.51 711.16 761.78 607.40 700.26 487.01

(512× 512) Surface fit 704.76 623.99 636.32 597.27 660.99 491.98

Bird SOM 429.23 209.12 312.93 185.65 270.50 150.17

(256× 256) Surface fit 388.41 168.04 298.22 163.57 257.19 141.68

House SOM 758.57 872.20 681.49 932.19 599.03 430.73

(256× 256) Surface fit 756.92 647.84 658.20 978.57 562.31 592.54

Mattface SOM 540.77 209.37 411.19 190.10 312.87 161.88

(256× 256) Surface fit 512.84 133.09 365.63 136.58 251.44 110.99

ISDI =

∑
(i,j)∈PI

[xij ∗ L(i, j)− x̂ij ∗ L(i, j)]2

Number of pixels in PI

, (7.11)

where xij and x̂ij denote the intensities of the (i, j)-th pixel in the original image and

the reconstructed image respectively. Note that, for both measures, lower the value, the

better is the performance. We report the results of our study using the proposed indexes

in Table 7.3.

As shown in Table 7.3 for all eighteen cases the surface fitting codebooks show bet-

ter performances in terms of BSMI. This clearly indicates that for the surface fitting

codebooks the block boundaries maintain better continuity. Table 7.3 also reveals that

for thirteen (out of eighteen) cases the ISDI values for the surface fitting codebook are

smaller than the corresponding ISDI values using SOM codebook. This means that

in these thirteen cases the similarity of the blocks reconstructed by the surface fitting

codebook is more to the original image than the similarity of SOM VQ reconstructed

images with original ones. The remaining five cases involve three images with small block

sizes (Barbara and House images with block sizes 4× 8 and 4× 4 and Boat image with

block size 4 × 4). These results can be attributed to the fact that each of these images

(original) contains substantial portions covered with complex texture-like areas and for

smaller block sizes the gain due to surface fitting over the SOM is not reflected in ISDI

values. Overall, Table 7.3 indicates that the replacement of the codevectors obtained

214



directly from SOM with the codevectors obtained by least square-error surface fit results

in VQs preserving the psychovisual fidelity to a better extent.

7.5 Conclusion

We presented a comprehensive scheme for designing vector quantizers for image compres-

sion using generic codebooks that produce reconstructed images with good psychovisual

quality. The scheme exploits the special features of SOM for codebook generation and

introduces a novel surface fitting scheme for refinement of the codevectors generated by

SOM algorithm to reduce the blockyness in the reconstructed images. To achieve better

compression, it also puts together some well known concepts such as entropy coding of

indexes and difference coded mean values. The proposed scheme, as a whole, achieves

compression at low bit rates with good quality reconstructed images.

Due to the density matching and topology preservation properties of SOM, it can be

used to generate a good set of code vectors. Use of mean removed vectors reduce the

reconstruction error significantly but it necessitates doubling of the amount of the data

to be stored or transmitted. However, lower reconstruction error allows us to use larger

image blocks with acceptable fidelity. The use of cubic surface fitting for refinement of

the codevectors enables us to decrease unpleasant blocking effect that appears in spatial

VQs at low bit rates. The improvement due to surface fitting is demonstrated visually

as well as quantitatively using two indexes proposed in this chapter. The computational

overload due to surface fitting as proposed here is restricted to the codebook generation

stage only, unlike the transform or subband coding techniques where every image has to

be transformed into frequency domain at the encoder side and inverse transformed into

spatial domain at the decoder side.

The use of generic codebook not only enables us to construct the codebook only once,

but the knowledge of distribution of indexes for the training images can also be exploited

as the a priori knowledge of distribution of indexes for the test images. This is used for

devising an entropy coding scheme for the index values. Further, Huffman coding of the

average values is done through the difference coding of the means of the image blocks.

We have reported results with three VQs using block sizes 8 × 8 (VQ1), 4 × 8 (VQ2)

and 4 × 4 (VQ3). Among them, as expected, VQ1 gives the highest compression rate

but PSNR is comparatively low. On the other hand, VQ3 produces excellent quality

of the reconstructed images with the lowest compression rate. VQ2 paves a middle

path by achieving nice reconstruction fidelity at a good compression rate. We have

compared our results with standard JPEG algorithm. VQ1 is found to be superior

to JPEG at comparable bit rates both in terms of PSNR and psychovisual quality.

215



VQ2 and VQ3 scored less than the corresponding JPEG images in terms of PSNR, but

produced comparable psychovisual quality. We have compared our method with some

published work and found that our results are superior or comparable to other spatial

VQs. Further, we compared our results with two recently published work using DCT and

wavelets respectively and our results for Lena image are comparable to them in terms of

PSNR.

We proposed two indexes for quantitative assessment of “blockyness” introduced in

the reconstructed images by the VQ process. The first index, BSMI, measures the lack

of continuity/smoothness at the block boundaries in the reconstructed images. The

other index, ISDI, measures the deviation of the reconstructed image from the original

image in terms of smoothness property of the non-boundary pixels. We have compared

the images reconstructed using the codevectors generated directly from SOM and those

using the codevectors obtained by surface fitting method. We found that the surface

fitting codebooks produce images with better psychovisual quality with respect to the

blockyness.

216



Chapter 8

Fast Codebook Searching in a

SOM-based Vector Quantizer 1

1Content of this chapter is submitted to [200].



8.1 Introduction

In the previous chapter we have presented a method for generation of codevectors that

can realize high compression ratio along with good psychovisual quality of reconstructed

images. Apart from finding good codevectors the VQ performance depends crucially on

the size of the codebook and the dimension of the vectors. Increasing the codebook size,

the input space can be represented to a finer degree. The VQ exploits the inter-block

statistical redundancies. A larger block enables the quantizer to exploit the statistical

redundancy existing in the data to a greater degree [110]. However, using large number

of codevectors and high dimensional vectors introduces a serious performance bottleneck

on the part of the encoder. Given any vector to be encoded, the encoder has to search the

codebook for the best matching codevector. Thus, to make full search of a large codebook

with high dimensional vectors, the encoder incurs a high computational overhead. To

circumvent this difficulty various techniques have been developed [110]. These techniques

apply various constraints on the structure of the codebook and use suitably altered

encoding algorithm. These techniques can be divided into two major categories. The

memoryless VQs perform encoding/decoding of each vector independently. Well known

examples in this category include tree-Structured VQ (TSVQ), classified VQ, shape-

gain VQ, multistage VQ, hierarchical VQ etc [110, 114]. Methods in the other category

depend on the past information (thus having memory) for their operations. Prominent

members include predictive VQ, recursive or feedback VQ, finite state VQ (FSVQ) etc

[110, 114]. Comprehensive reviews of these methods can be found in [5]. All these

techniques are aimed at reducing the codebook search complexity without significant loss

in reproduction quality. Among some of the recent works, in [208] Lai and Liaw developed

a fast codebook searching algorithm based on projection and triangular inequality that

use the characteristics of the vectors to reject impossible codes. In [161] a method

for designing predictive vector quantizer using deterministic annealing is proposed. An

approach to design an optimal FSVQ is proposed in [69]. A novel method of designing

TSVQ can be found in [41].

8.2 Codebook searching in a SOM

In the previous chapter we discussed the merits of SOM-based VQs in general. Here we

explore the advantage of using SOM-based VQs from the perspective of fast codebook

searching. If SOM is used to generate the VQ codebook, the training algorithm implicitly

introduces some constraints on the structure of the codebook through its “neighborhood

update” feature. This results in the topology preservation property and density matching

property of SOM. In a SOM with 2-dimensional lattice, the weight vectors corresponding

218



to the network nodes are used as the codevectors. Thus, a code index can be expressed

by a pair of (x, y) coordinates of the corresponding node on the lattice. Due to topology

preservation property of SOM, similar vectors are mapped onto same or nearby nodes

on the lattice. In an image adjuscent blocks often bear close similarity. Thus, for two

adjuscent blocks, if the lattice coordinate of the codeword of one is known, the codeword

for the other block is more likely to be found among the nearby nodes of the previous

codeword on the lattice. Thus, a limited search in the codebook can find a good match

for the second block. There is another possibility of performing fast codebook search

with SOM. One can train a smaller SOM with the codewords in the larger SOM-based

main codebook. Then the codewords of the main codebook are partitioned according to

their proximity to the nodes of the smaller SOM. Now the codebook search for a vector

can be performed as a two-step process, finding the best matching node in the smaller

SOM and then selecting the best matching codeword from the subset corresponding to

that node.

In the current chapter we exploit the above possibilities to develop two strategies for

fast codebook search and finally combine them to propose a fast codebook search method

with several desirable features. Though in this work we design spatial vector quantizer

(SVQ) for image data to demonstrate the power of the proposed methods, they are

applicable to vector quantization of any kind of signals where two successive inputs have

some correlation. These methods also offer a scope for efficient Huffman coding of the

index values.

Like previous chapter, here also we use mean-removed vectors for vector quantization.

For preparing the image vectors we follow the procedure described in Section 7.2.1. Thus,

here also we need the indexes as well as the block averages to reconstruct the quantized

image. We compress indexes and block averages further using Huffman coding. For

efficient Huffman coding of the block averages we use the scheme proposed in Section

7.3.1. Now in the following we shall describe the SOM-based fast codebook searching

method and the scheme for Huffman coding the indexes generated by the proposed

codebook search method.

8.3 Searching the codebook

First we design and analyze two strategies for searching the codebook in a restricted

manner to reduce the search complexity. The first one uses the basic SOM generated

codebook and exploits its topology preservation property. The second one uses a smaller

SOM along with the basic codebook. The smaller SOM is trained with the codevectors

of the basic codebook, we call it Level2-SOM (L2-SOM). Then we propose a combined

219



method that uses the L2-SOM and the basic codebook and utilizes the topology preser-

vation property of the basic codebook, thus exploiting the best features of strategies 1

and 2. It should be noted that the strategies 1 and 2 are also independent methods for

searching the codebook. Here we call them strategies simply to differentiate them from

the final method that combine both of them. The methods are described bellow.

8.3.1 Strategy 1: Restricted window search over SOM lattice

This strategy is fashioned after Finite State Vector Quantizers (FSVQ)[110]. FSVQs

belong to a more general class of VQs known as recursive or feedback vector quantizers.

Given an input sequence of vectors {xn}, n = 1, 2, · · ·, the encoder produces both a set

of code indexes {un}, n = 1, 2, · · ·, and a sequence of states {sn}, n = 1, 2, · · ·, which

determines the behavior of the encoder. A FSVQ is characterized by a finite set of K

states S = {1, 2, · · · , K} and state transition function f(u, s). Given the current state s

and last code index u, when presented with the next vector x of the input sequence, the

FSVQ enters a new state determined by the state transition function f(u, s). Associated

with each state s is a smaller codebook Cs, known as state codebook for state s. The

search for the codevector for the new vector x is now restricted to Cs, which is much

smaller than the full codebook, also known as super codebook, C =
⋃

s∈S Cs. The major

challenge in designing a FSVQ involves the design of the state transition function and

finding the codebooks corresponding to each state.

One of the simplest and popular techniques for finding a next-state function is called

conditional histogram design [110]. This approach is based on the observation that each

codeword is followed almost invariably by one of a very small subset of the available

codevectors. This happens due to the existence of high degree of correlation between

successive vectors in an input sequence. Thus, the performance of the VQ should not

degrade much if these small subsets form the state codebooks. So, the training sequence

is used to determine the conditional probability p(j | i) of generating the j-the codevector

following the generation of i-th codevector. The state codebook for state i of size Ni

consists of the Ni codevectors {yj} with highest values of p(j | i). However, with this

design, especially for data outside the training sequence, the optimal codevector may lie

outside the state codebook. Thus often a threshold on the degree of matching is used.

If no codevector with match exceeding the threshold is found in the state codebook, the

system is said to ‘derail’ [69]. In such a situation usually an exhaustive search over the

super codebook is performed for re-initializing the search process.

While using SOM for generation of the codebook, one can associate with each of the

codevectors a tuple describing the position of the corresponding node in the SOM lattice.

Further, due to topology preservation property of SOM, the nodes nearby on the lattice

220



plane encode vectors with higher similarity than the nodes which are located far away on

the lattice. Since the input vectors corresponding to two adjacent blocks in the image are

likely to be correlated (i.e., expected to have high similarity), the codevectors associated

with them are also likely to be associated with nodes those are close to each other on the

lattice. Thus, if the codevector for an input vector corresponds to a node c on the lattice,

then the codevector for an adjacent block is likely to be within a small neighborhood Nc

of c. This property can be exploited to reduce codebook search time.

We define a search window size sh × sw and a quality threshold T . The image vectors

to be quantized are prepared as described in Section 7.2.1. For the first vector an

exhaustive search is performed and the index in the form of (x1, y1) pair is generated.

For the subsequent k-th vector the search is performed among the nodes on the SOM

lattice falling within the search window centered at the node (xk−1, yk−1) (we call it the

previous index). Due to topology preservation property of SOM and the characteristic

similarity between neighboring image blocks there is a high possibility of finding a good

match within the window. If the best match within the window exceeds the threshold

T , then the index (xk, yk) of the corresponding node is accepted; otherwise (i.e., in case

of derailment), rest of the codebook is exhaustively searched to find the best match.

Now (xk, yk) becomes the previous index for k + 1-th vector. Thus, we can identify the

full codebook generated by the SOM as the super codebook of FSVQ, the current states

as the predecessor index (xk−1, yk−1), and the state codebook as the set of codevectors

within the SOM lattice window of size sh × sw centered at (xk−1, yk−1).

There are two issues to be taken care of. The first one concerns the case when the

previous index is close to the boundary of the SOM lattice and the window cannot be

centered at it. In such a case, we align the edge of the window with the edge of the

lattice. The second issue relates to the image blocks at the beginning of a row of blocks,

i.e., the blocks at the left edge of the image. Since the image blocks are encoded in a

row-major fashion, for other blocks the previous index corresponds to the index for the

immediate left block. For a leftmost block we use the index of a leftmost block in the

previous row (i.e., the block at the top of current block) as the previous index.

There is also a design issue regarding the choice of the window size as well as the quality

threshold T . For a given threshold T , smaller window sizes will reduce the window

search time, but the instances of derailment will be higher. Again, for a fixed window

size, the higher the threshold, the more is the instances of derailment. It is difficult

to predict theoretically a suitable choice of these parameters because optimal choices of

these parameters are likely to depend on the distribution of the codebook vectors over

the SOM lattice as well as the distribution of the image vectors being quantized. In the

‘Experimental results’ section we have presented some empirical studies regarding the

221



choice of these parameters.

Apart from facilitating fast codebook searching, the SOM based method has another

advantage. Since the indexes are expressed in terms of 2-tuple values of lattice position

and majority of the code indexes are found within a small neighborhood of the previous

index, we can express the indexes as 2-tuple of offset values from the previous index. In

such a scheme the values in majority of the index tuples are likely to be much smaller

than tuples with absolute values. As we shall see later, this feature can be exploited for

efficient Huffman coding of the indexes.

8.3.2 Strategy 2: Codebook searching with L2-SOM

Though the above scheme results in a significant speed-up in the codebook searching

procedure, for the cases when a suitable match is not found within the search window,

full codebook search is employed. To ensure the reproduction quality, we usually set

the quality threshold T reasonably high. In turn, this may lead to significant number

of cases for which full codebook search is conducted. To avoid the exhaustive searches

we develop a two level scheme for codebook searching. The scheme follows the design

principle of classified VQs (CVQ) [110], where the super codebook is partitioned into

smaller codebooks using some heuristic. In CVQ, quantization of a vector involves first

selecting one of the smaller codebooks and then finding the best match within it. Here

we train a smaller SOM, known as Level-2 SOM (L2-SOM) with the codevectors of the

basic SOM. This allows us to partition the codevectors into groups according to their

proximity to the weight vectors of the L2-SOM. Thus, for a vector to be coded, the

encoder first looks up to the L2-SOM to find the best matching node. Then the best

matching codevector is found from the group of basic codevectors associated with the

best matching node. This can also be viewed as a hierarchical SOM.

Under this scheme, we do not use any search window or any threshold for finding the

next codevector. Though the scheme results in huge benefit in terms of search time, the

index values (the members of the tuples) have the tendency of spreading over a much

larger range. This affects adversely the additional compression achieved by Huffman

coding of the index values.

8.3.3 Combined Method: Restricted window search with L2-

SOM look-up for re-initialization

The proposed method combines the features of strategies 1 and 2 to achieve better

results. Here, like strategy 1, to find the code index corresponding to the current vector a

222



window centered at the node corresponding to the previous index is searched. However,

the computation bottleneck in strategy 1 due to exhaustive searches for initialization

(1st vector) and re-initialization (when we fail to find a good match within the window

according to the threshold condition) is removed using the L2-SOM. In other words,

whenever an exhaustive search is required under first strategy, the best matching L2-

SOM node is found and the group of basic codevectors corresponding to the node is

searched for the best match.

It will be seen in the experimental results that this method will increase the search

efficiency, as well as tend to restrict the components of index offset values to smaller ones

leading to more efficient Huffman coding of the indexes. Thus, this method incorporates

faster codebook searching as well as good compression ratio without significant loss in

reproduction quality.

8.4 Transformation and Huffman coding of the in-

dexes

For a codebook generated with an m×n SOM the range of the components of indexes are

0 to m−1 and 0 to n−1 respectively. However, due to the topology preservation property,

even without restricting the search, neighboring image blocks are mapped into nearby

nodes on the SOM lattice. So instead of using the absolute values of the coordinates,

if we express the index of a vector in terms of offsets from the previous index, i.e.,

(xo
k, y

o
k) = (xk − xk−1, yk − yk−1) then xo

k and yo
k are more likely to have small values.

Figure 8.1 depicts the histograms of the index components expressed as offset values for

512×512 Lena image for a VQ using 32×32 SOM with 8×8 blocks (i.e., 64 dimensional

vectors) employing exhaustive search. For a restricted search the distribution is expected

to have even sharper peak around 0.

Clearly, coding of indexes in terms of offset values will allow us to perform efficient

Huffman coding. However, using offset values stretches the range of index component

values from −(m − 1) to (m − 1) and from −(n − 1) to (n − 1) respectively. Hence

we need more code words. We can restrict the range of component values of the offset

(xo
k, y

o
k) values within 0 to (m− 1) or (n− 1) whichever is greater, if the index values are

further transformed into (xo′
k , yo′

k ) as follows:

• If xo
k ≥ 0 then xo′

k = xo
k

• Otherwise xo′
k = xo

k + m

• If yo
k ≥ 0 then yo′

k = yo
k

223



Figure 8.1: Grouped histogram of the index offsets for exhaustive search vector quanti-

zation of the Lena image.

• Otherwise yo′
k = yo

k + n

Figure 8.2 depicts the histogram corresponding to the transformed offsets for the Lena

image (corresponding to the index offsets shown in Figure 8.1).

The decoder computes the index values (xk, yk) from (xo′
k , yo′

k ) as follows:

• If xo′
k ≤ (m− xk−1) then xk = xk−1 + xo′

k

• Otherwise, xk = xk−1 + (xo′
k −m)

• If yo′
k ≤ (n− yk−1) then yk = yk−1 + yo′

k

• Otherwise, yk = yk−1 + (yo′
k − n)

8.5 Experimental results

In our experiments we have trained a 32× 32 SOM with training vectors generated from

a composite of sixteen 256 level images each of size 256 × 256. The training image is

shown in Figure 8.3. The block size used is 8× 8. Thus the vectors are in 64 dimension

and the basic codebook size is 1024. Here we report the test results with three 512×512

images Lena, Barbara and Boat. Note that, though the Lena and Barbara images are

used in training, the test images are not the same as the training images. In the training

set 256× 256 images are used. The experimental setup for the results reported here are

as follows:

224



Figure 8.2: Histogram of the transformed offset values for exhaustive search vector quan-

tization of the Lena image.

The search window is set to 8× 8 and the quality threshold T is set at 30 dB

PSNR (per block). A 6×6 Level-2 SOM is trained with the 1024 codevectors

in the basic codebook. The experimental results for Strategy 1, Strategy 2

and the Combined method are summarized in Table 8.1. We note here that

each of Strategy 1 and Strategy 2 are fully implementable restricted search

methods on its own.

In Table 8.1 the search complexity is expressed in terms of the number of codevectors

examined during the search procedure. For the exhaustive search, for 4096 blocks in a

test image the number of codevectors examined is 4096*1024=4194304. For the restricted

search methods the complexity is expressed as percentage of the number of codevectors

examined with respect to the exhaustive search (shown in parenthesis). It is evident

from the results that compared to the exhaustive search all three proposed methods

substantially decrease the search time without any significant sacrifice in the reproduction

quality. The Strategy 1 nearly halves the search complexities with negligible decrease in

PSNR values for all the images. The Strategy 2 reduces the search complexity for all

the images to 15%-16%, i.e., 1/6-th with drop of PSNR 0.37, 0.26 and 0.34 dB for Lena,

Barbara and Boat images respectively, compared to the exhaustive search. The proposed

Combined method reduces the search complexity to about 11% with a decrease of PSNR

0.48 dB for Lena. For Barbara the search complexity to about 14% with a drop in PSNR

225



Figure 8.3: The training images.

226



Table 8.1: Comparison of VQ with exhaustive search and restricted searches (Strategies

1,2 and the combined method).

Image Search PSNR No. of Distance calculations Compression

method (dB) (% w.r.t. exhaustive search) ratio(bpp)

Lena Exhaustive 28.95 4194304 0.227

Strategy 1 28.82 1993984 (47.5%) 0.218

Strategy 2 28.58 687393 (16.4%) 0.226

Combined 28.47 472071 (11.3%) 0.218

Barbara Exhaustive 24.37 4194304 0.231

Strategy 1 24.34 2710144 (64.6%) 0.227

Strategy 2 24.11 654899 (15.6%) 0.232

Combined 24.09 604710 (14.4%) 0.228

Boat Exhaustive 26.97 4194304 0.207

Strategy 1 26.93 2348224 (56.0%) 0.203

Strategy 2 26.63 656693 (15.6%) 0.207

Combined 26.61 512804 (12.2%) 0.203

of 0.28 dB, while for Boat the search overhead to 12% with loss of PSNR by 0.36 dB.

Therefore, the Combined method results in a significant decrease in search complexity

with a very little sacrifice in quality.

The compression ratios reported here are the final value with Huffman coding of the

transformed index offsets and the difference coded block averages. As can be seen from

the results, Strategy 1 and Combined method produce almost the same compression ratio

for all images while the exhaustive search and Strategy 2 results show marked similarity

in compression ratio. This is the consequence of the restriction imposed on Strategy

1 and Combined method through the use of the search window. Figure 8.4 shows the

reproduced Lena image quantized using standard VQ and Strategy 1, Strategy 2 and

Combined method in the panels (a) to (d) respectively. Visual inspection reveals almost

no difference of quality among them. Figure 8.5 shows the histograms of offset values

for the methods studied.

The Figures 8.5(a) and 8.5(c) show marked similarity while 8.5(b) and 8.5(d) are almost

identical with more concentration of the offset values at and around zero. This explains

the higher compression rates achieved by the Strategy 1 and Combined method due to

more efficient Huffman coding of the indexes.

Now we compare the overall performance of the three schemes based on the three

factors, namely reproduction quality, search complexity and compression ratio. Strategy

227



Figure 8.4: The reproduced images for . (a) Exhaustive search, (b) SOM window search

(Strategy 1), (c) Level 2 SOM search (Strategy 2) and (d) Proposed Combined search

method for Lena image.

228



Figure 8.5: The histogram of offset values . (a) Exhaustive search, (b) SOM window

search (Strategy 1), (c) Level 2 SOM search (Strategy 2) and (d) Proposed Combined

search method for Lena image

1 has the best reproduction quality (see Figure 8.4). Its compression ratio is either lowest

(for Barbara) or the same as that of the combined method. However, it has a much higher

search complexity compared to the Strategy 2 and Combined method. Strategy 2 reduces

the search complexity to a great extent with a slight decrease in reproduction quality,

but it has compression ratio higher than Strategy 1. The Combined method reduces the

search complexity further with a negligible decrease in reproduction quality, but achieves

low compression ratio similar to Strategy 1. Thus considering the three factors together

the Combined method outscores both Strategy 1 and Strategy 2 when applied separately.

As mentioned earlier, for the design of the encoder, the choice of the search window

size sh × sw and the choice of thequality threshold T play an important role. We have

conducted an empirical study by designing the VQ with the Combined method with

various choices of the search window sizes and quality thresholds, and collected the

statistics for quantizing the Lena image. In Figure 8.6 the variation in number of distance

calculations for different window sizes and quality thresholds are depicted. It can be

observed that for both increase of window size as well as threshold value, the number

of distance computations increases. However, the variation is much less with respect

to threshold value compared to the variation with respect to window size. This clearly

indicates the strong possibility of finding a good match within a small window. In Figure

229



20
22

24
26

28
30

32

4

6

8

10

12

14

16
0

5

10

15

20

25

30

Quality threshold TSearch window size (s
w

=s
h
)

N
o.

 o
f d

is
ta

nc
e 

ca
lc

ul
at

io
n

in
 %

 o
f e

xh
au

st
iv

e 
se

ar
ch

Figure 8.6: Variation of number of distance calculation with search window size and

quality threshold for quantizing Lena image.

20
22

24
26

28
30

32

4

6

8

10

12

14

16
25.5

26

26.5

27

27.5

28

28.5

29

Quality threshold TSearch window size (s
w

=s
h
)

Q
ua

lit
y 

of
 r

ep
ro

du
ce

d 
im

ag
e 

m
ea

su
re

d 
w

ith
 P

S
N

R
 (

dB
)

Figure 8.7: Variation of reproduction quality (Measured in PSNR) with search window

size and quality threshold for quantizing Lena image.

230



20
22

24
26

28
30

32

4

6

8

10

12

14

16
0

500

1000

1500

2000

2500

Quality threshold TSearch window size (s
w

=s
h
)

N
o.

 o
f d

er
ai

lm
en

t (
L 2 S

O
M

 s
ea

rc
h)

Figure 8.8: Variation of number of level2 SOM searches (i.e, derailments) with search

window size and quality threshold for quantizing Lena image

8.7 the variation of the reproduction quality is presented. Here it is evident that the

quality threshold has more influence on the reproduction quality than the window size.

Figure 8.8 depicts the frequency of Level 2 SOM searches caused by the derailments.

This also indicates a greater influence of the quality threshold than the window size.

8.6 Conclusion

Self-organizing Map is used by several researchers for designing the codebook of a vector

quantizer. However, these methods are restricted mainly to the use of SOM as a cluster-

ing algorithm. In this work, apart from utilizing the clustering property we exploited the

other notable properties of SOM, topology preservation and density matching, to formu-

late encoding method with reduced search complexity. First, we designed two separate

strategies using SOM for fast codebook search. The first strategy used the main SOM

generated codebook and exploited the topology preservation property by restricting the

codebook search to a small window. This strategy is designed in line with the finite state

VQs, without explicit calculation of state codebooks. However, exhaustive search of the

codebook is performed for re-initializations of the encoder. The second strategy uses

along with the basic SOM another smaller SOM (L2-SOM) trained with the weight vec-

tors of the basic SOM and produces a partitioning of the codevectors. This strategy does

231



not exploit the topology preservation property but partitions the codebook into smaller

sub-codebooks. The procedures developed here eliminated the need for an exhaustive

search of codebooks altogether. Finally, we proposed a method that combined the best

features of both strategies, i.e, the L2-SOM as well as restricted search within a window,

to deliver a good overall performance. The use of SOM and restricted search combined

with suitable transformations of index values and block averages enabled us to apply

Huffman encoding to enhance the compression ratio without compromising reproduction

quality.

Choices of two design parameters, “the search window size” and the “quality thresh-

old” influence the computational load of the encoder significantly. However, our empirical

study shows that the rate of increase in computational load with increase of the quality

threshold for a fixed window size is greater than that when the threshold is kept con-

stant and the window size is increased. This indicates that if a match satisfying certain

threshold is to be found within the search window, more often than not it is found within

a small neighborhood of the previous index. This finding also indicates the suitability of

SOM-based codebook search methods proposed in this work.

Though we have designed the spatial vector quantizer for image compression, the

schemes are general in nature and can be used for other data types such as audio where

successive inputs are likely to be correlated.

232



Chapter 9

Conclusion and Future Works



9.1 Conclusion

In this thesis we have presented some Self-organizing Map (SOM)-based new methods

for pattern recognition tasks, namely, pattern classification and vector quantization. We

have also presented results of some empirical studies on SOMs under various conditions.

In Chapter 1 we have presented a brief overview of the field of pattern recognition in

general, including brief descriptions of statistical, fuzzy set theoretic, evidence theoretic

and neural networks based approaches to solve this problem.

An overview of SOM along with its properties is provided in Chapter 2. We also

discussed different variants of the standard SOM, theoretical studies on SOM and appli-

cations of SOM in several emerging fields involving pattern recognition tasks.

In Chapter 3 we have introduced a new quantitative measure of topology preservation

(T ) in SOM. The index proposed here is based on rank correlation coefficient and reflects

intuitive understanding of topological ordering. Comparative studies of the proposed

index are made with two other measures, topographic product (P ) [22] and a measure

of topology violation (V ) [317]. The proposed index is found to be an effective measure

with a good resolution power over a range of topological ordering starting from very low

value for the randomly initialized SOM to a high value for the final ordering at the end

of the training. It is also found to be sensitive to degradation of topological ordering due

to twisting of the map at intermediate stage of the training.

In the same chapter we have then studied the robustness of SOM in preserving topology

under sparse lateral feedback interconnections among the SOM nodes. Lateral feedback

interconnections in SOM are responsible for communication to neighbors of the winner

node so that they can be updated. In hardware realizations of SOM, where parallel

operation is achieved, these connections are needed to be implemented in one form or

other. Here we defined a concept of “link density” of a node reflecting its level of

connection with other nodes. We studied the effect of different levels of link density

for two types of sparsity: systematic absence of connections and random absence of

connections.

Systematic absence of connections: In this situation the probability of a node to

have a lateral feedback connection with another node is taken as inversely propor-

tional to their distance over the SOM lattice. Such a scenario may have a plausible

biological analogue or may be introduced intentionally in economic design of a

hardware realization.

Random absence of connections: In this case the absence of a lateral feedback con-

nection between any pair of nodes is a random event with equal probability.

234



The empirical studies have shown that the SOM algorithm has good resilience in the

first case tolerating nearly 50% absence of connections. However, in the second case the

performance is found to degrade very quickly.

Other studies reported in Chapter 3 include different variants of SOM with simplified

lateral feedback functions (we call them simplified SOM or SSOM) and variants of SOM

with tree-structured neighborhood function (TSOMs). The SSOMs are easier to imple-

ment in hardware because they do not need explicit neighborhood boundary. They also

have simpler functional forms. We studied SOMs with Gaussian, quadratic and linear

(without explicit boundary) neighborhood functions. We have trained the variants of

SOM with several data sets and have found them to perform equally well with respect

to topology preservation.

It was observed by many researchers that though SOM is a powerful algorithm for

topology preservation and vector quantization, in its standard form, due to fixed lattice

structure and size its performance degrades if the data are complex and intrinsic dimen-

sion of the data is different from that of SOM lattice.We also proposed two variants of

SOM with tree neighborhood functions. The first one has a MST neighborhood function

but the graph over which the MST is computed is a restricted one having only the edges

over a neighborhood. Thus it reduces the computation required in building MST. Though

the TSOMs are not designed for topology preservation, our proposed variant preserves

topology to some extent. In the MST-based SOMs the trees need to be recomputed

several times (usually once in every 200-500 iterations). We argued that if prototype ex-

traction is the sole aim, one only needs to define an unambiguous neighborhood function

for implementing the neighborhood update. Thus we proposed a variant of SOM with

Arbitrary Tree Neighborhood (ATN), where a tree is defined randomly over the nodes

and no recomputation of the tree is performed during training. We demonstrated that

with respect to prototype extraction the SOM with ATN neighborhood is as good as

other TSOMs. We also investigated the capability of the TSOMs in skeletonization of

shapes from images. It was found that the two SOMs with MST neighborhood perform

equally well.

In Chapter 4 first we have developed a SOM-based algorithm for prototype generation.

We call it “DYNAmic prototype GENeration (DYNAGEN)” algorithm. In most design

schemes for prototype based classifiers usually some clustering algorithm such as k-

means, is used for finding the prototypes. Typically, the number of prototypes to be

found has to be supplied as a parameter. However, the number of prototypes required

for the task is dependent on the data itself and is often very difficult to guess correctly.

In the DYNAGEN algorithm developed here the user need not specify the number of

prototypes. The algorithm is a combination of unsupervised and supervised learning.

235



The algorithm performs several operations, such as deleting, splitting and merging of

the prototypes in a data-driven manner and produces an adequate number of labelled

prototypes.

We have designed “1-Nearest Multiple Prototype (1-NMP)” classifiers for several bench-

mark data sets using prototypes generated by the DYNAGEN algorithm. They compare

favorably with the published results for these data sets. Next we have developed a

method of associating a zone of influence with each prototype and an algorithm for fine-

tuning the prototypes. This results in a “1-Most Similar Prototype (1-MSP)” classifier

with performances superior to 1-NMP classifiers for most of the data sets.

In Chapter 5 we build further upon our work reported in Chapter 4. In this chapter we

develop a scheme for converting the prototypes generated with the DYNAGEN algorithm

into a set of fuzzy rules. Then a fine-tuning algorithm is used to generate a good quality

fuzzy rule base. The rule base is used for classification. Though in this chapter we

reported the performance of the classifiers on the data sets used in the previous chapter,

its true power is revealed through the landcover analysis task from multispectral satellite

images. We have performed landcover classification from three multispectral satellite

image data and the performance of the classifiers are found superior to published results

on these data sets.

In this chapter we have discussed the problems of using product as the conjunction

operator for classification tasks and then used softmin, a special case of a soft-match

operator as the conjunction operator. The softmin has functional similarity to the min

but being analytic, allows an easy computability of tuning rules. Further, we have

studied the possibility of context-sensitive inferencing by tuning a parameter of soft-

match operator so that each rule can use a different conjunction operator based on the

nature of the data context it represents.

Though the simplest way to use a fuzzy rule base for pattern classification is to assign

a pattern to the class corresponding to the rule with the highest firing strength, the

approach adopted in Chapter 5, it is possible to use the fuzzy rule base to produce more

information-rich output. In Chapter 6 we use the fuzzy rule base to generate output in

the form of a possibilistic label vector with one component for each of the classes. The

value of a component reflects the confidence of the rule base regarding the belongingness

of the pattern to that particular class. In real life, it may happen that more than one

component value are high and pretty close. In such a scenario it will be wise to use

additional information for the final decision making, rather than simply going for the

highest value. In some applications additional information can be obtained from the data

itself, where each pattern is expected to have high correlation with other patterns within

some identifiable context. For example, such situations can be found in image analysis,

236



where patterns can be associated with other patterns in a spatial context; speech signal

analysis, where patterns have temporal context etc. In Chapter 6 we have developed

four schemes for using context information and applied them to classify landcover types

from multispectral satellite images. To classify a pixel , the proposed methods use

the outputs (i.e., possibilistic labels) of the rule base for the pixel under consideration

and its neighboring pixels. The first scheme (Method 1) is the fuzzy k-NN scheme for

classification that finds the mean of the label vectors for nine pixels (the pixel of interest

and its eight neighbors) and classify the pixel to the class corresponding to the maximum

component value of the mean label vector.

Other three schemes are based on Dempster-Shafer theory of evidence for aggregation of

information. The three methods differ in the ways the sources of evidence are identified,

focal elements are chosen and how the basic probability assignments (BPA) to the focal

elements are computed. For the first two (Method 2 and Method 3) methods, eight

sources of evidence, each corresponding to the information from the pixel of interest and

one of its eight neighboring pixels are identified. In the first case we use the Bayesian

belief modelling. In the second case the BPAs focus on sets with one and two elements.

In the third evidence theoretic approach (Method 4) we use each of the nine pixels (the

pixel of interest and its eight neighbors) as a separate source of evidence. Here each body

of evidence has only two focal elements, a singleton containing the class Ck corresponding

to highest valued component of the label vector, with BPA m(Ck) equal to the component

value. The rest of the belief, 1−m(Ck) is assigned to the set of all classes and represents

ignorant. In all these method Dempster’s combination rule is applied to compute the

combined evidence. The final decision is made based on pignistic probability. These

methods are experimentally tested on two multispectral satellite images are found to

perform noticeably better than the straightforward fuzzy rule based methods studied in

Chapter 5. It was also observed that the efficiency of these four methods vary depending

on the nature of spatial distribution of the classes. It was found that for complex spatial

distribution of classes, Method 2 and Method 3 outperform Method 1 and Method 4.

While in case the classes form large spatial clusters Method 1 and Method 4 perform

better. We have also developed a modified version of Method 4 with a tunable parameter.

It was found that after tuning of the parameter, modified Method 4 performed as well

as Method 2 and Method 3 for complex spatial distribution of classes.

In Chapter 7 we focus on the problem of vector quantization using SOM for image com-

pression. We have put forward the arguments relating suitability of SOM for designing

VQ. In our work we have used mean-removed vector to accommodate large block sizes

for increasing efficiency of VQ with respect to exploiting the statistical redundancy. We

have studied the construction of a generic codebook also. Further, it is well known that

the reconstructed images compressed with VQs show psychovisually annoying blocky

237



effect. Here we developed a novel “surface fitting” method using polynomial (bicubic)

surfaces for smoothing the code vectors. This results in an improvement of psychovisual

quality of the reconstructed image with noticeable reduction in blockyness. We have also

developed two quantitative indexes for measuring the psychovisual quality with respect

to blockyness.

In our work, we have used the mean-removed vectors, which necessitates the transmis-

sion/storage of the block averages along with the indexes of codewords for reproduction

of the images. We have exploited the correlation among neighboring blocks to develop a

difference based representation of the block averages that is suitable for Huffman coding.

For the code indexes also, we have observed that there is a significant similarity of code-

word distribution between the set of training images and test images. Hence, we have

used the codeword distribution for the training set for assigning variable length codes

for Huffman coding of the indexes. The scheme is tested with several benchmark test

images and the results are compared with published results as well as standard JPEG

algorithm. The results are found to be superior or comparable to other published results

in terms of PSNR. Also it is found to be superior to JPEG at very low bit rates and

similar in psychovisual quality at higher bit rates.

Although a VQ with large vector size and large codebook size is desirable, it demands

huge computation while searching the codebook exhaustively for the best-matching code-

word. To avoid the computational overhead while using large vectors and codebooks,

researchers have developed several approaches to perform non-exhaustive search of code-

book to find a code with good, but not necessarily best, match. These approaches usually

impose some constraint on the structure of the codebook and exploit the structure in

the searching method.

The topology preservation property of SOM places similar vectors in the nearby po-

sition on the SOM lattice and the density matching property places more codewords in

the densely populated regions of feature space. There is also the property of images that

neighboring blocks have, more often than not, high degree of similarity. Exploiting these

facts, in this chapter we have developed a method for fast codebook searching in a VQ

where the codebook is generated by the SOM algorithm. The method is a combination of

two separate but complimentary strategies which are also developed in the same chapter.

The first strategy exploits the topology preservation property of SOM. Since the neigh-

boring image blocks have good similarity, and in SOM similar codewords are positioned

nearby on the lattice, in this strategy given the index of one block, the match for the

next (neighboring) block is restricted to a small search window defined over the SOM

lattice and centered at the position of the codeword of the previous block. If the best

match within the window exceeds a prefixed quality threshold, it is accepted as the code-

238



word. Otherwise, rest of the codebook is exhaustively searched for the best match. In

the second strategy we train a smaller SOM with the codewords of the main codebook.

Then we partition the codewords in the main codebook according to their closeness to

the nodes of the smaller codebook. Now, for finding the codeword for a block first we

search for the best-matching node in the smaller SOM and then select the best-matching

codeword from corresponding subset of the main codebook.

Our proposed method is combination of the above two strategies. Here, first a search

is made within the window as per Strategy 1. If a good match is not found, instead of

exhaustive search, the codeword is chosen through the smaller codebook and its associ-

ated set of codewords of the main codebook as prescribed in Strategy 2. Both Strategy

1, Strategy 2 and the combined method are tested by constructing a large codebook

with large vectors and using some benchmark test images. It was found that a very

significant reduction in computation, compared to exhaustive search, can be achieved

through these methods, especially the combined method. Further, it can be observed

that in most cases, the best codeword is found within a small search window around the

previous codeword. Thus, if the indexes of the codewords are expressed by their lattice

coordinates and successive indexes are expressed in the form of difference of lattice co-

ordinates, then the indexes will be represented as tuples having mostly small numbers.

This observation is used here to develop a scheme for efficient Huffman coding of the

indexes.

9.2 Future works

There are several possible extensions and/or improvements that can be envisaged for the

works reported in this thesis. In Chapter 3 we have proposed a rank correlation based

measure for topology preservation in SOM. Though the measure is very useful, due to

the large number of ties among the distances calculated over the SOM lattice, the index

effectively does not span the entire range [-1,1]. If the effective range can be extended,

the resolution of the measure will also be increased. Further, there is a possibility of

using the topology preservation measures for identifying information rich feature subsets

from high dimensional data. If in the data there exists some random, information-poor

components, their contribution to the formation of the map is expected to be limited.

Thus, if an index of topology preservation of the SOM for a subset of features, excluding

the random features is computed and that of a subset including the random features is

computed, then the index is likely to produce a higher value in the former case.

For the fuzzy rule extraction method reported in Chapter 5 a neural fuzzy system may

be designed for the same purpose. Also there is a possibility of devising pruning/merging

239



techniques for the fuzzy rules. However, in the present case since the effort is made from

the beginning to keep the number of rules low, such techniques are not likely to have

much effect.

The works on evidence theoretic decision making for fuzzy rule based classifiers re-

ported in Chapter 6 can be extended in several ways. Variants of the schemes proposed

here can be customized for other data types with contextual correlation such as speech

signal, various financial time series etc. However, in each case the customization of these

schemes must take into consideration the domain-specific nature of the problems. There

is also a scope of generalizing the proposed schemes for any type of data (i.e. data sets

without identified context). There the context of the pattern under consideration has

to be identified by the method itself. One such scheme might be using the training

data along with the fuzzy rule base, so that “k-nearest neighbors” of the pattern under

consideration form the context and the fuzzy labels of the k neighbors along with the

fuzzy label of the pattern can be used for decision making. Further, since the k nearest

neighbors are at different distances from the pattern of interest, the contribution of the

neighbors in decision making can be made weighted.

In Chapter 7 we have presented a spatial vector quantization (SVQ) scheme for image

compression. The scheme can be easily modified to work with temporal signals like

audio signals. One can also look into the possibility of applying the same for transform

coded signals, such as cosine transform or various wavelet transforms. However, then

the formulation of the smoothening scheme for the codevectors with surface fitting needs

to take into account the transform-specific characteristics. There is another interesting

possibility. While forming the surface fitting codebook, the codewords may be stored in

form of coefficient vectors and the vector to be quantized is also presented in form of

a coefficient vector corresponding to a polynomial surface representing the block. The

search for the matching codeword is to be carried out based on similarity of the coefficient

vectors. However, the space spanned by coefficient vectors can no longer be treated as

Euclidean, since the coefficients corresponding to terms of different order have different

level of impact in constructing the surface.

The SOM-based fast codebook search method for VQ can be extended for temporal

signals as well as transform coded signals. Further, there is a potential application of the

method in encoding image sequences, such as frames in video streams, where successive

frames have a high correlation. Here the method can exploit both the spatial correlation

as well as temporal correlation of the blocks in the image frames to find a good codevector

in a SOM-based codebook.

240



Bibliography

[1] http://www.bangor.ac.uk/ mas00a/z.txt.

[2] http://www.stats.ox.ac.uk/ riplay/prnn.

[3] S. Abe and M. S. Lan. A method for fuzzy rule extraction directly from numerical

data and its application to pattern classification. IEEE Trans. Fuzzy Systems,

3(1):18–28, 1995.

[4] S. Abe and R. Thawonmas. A fuzzy classifier with ellipsoidal regions. IEEE Trans.

Fuzzy Systems, 5(3):358–368, 1997.

[5] H. Abut. IEEE Reprint Collection, chapter Vector Quantization. IEEE Press,

Piscataway, New Jersey, MAY 1990.

[6] F. Aiolli and A. Sperduti. Multiclass classification with multi-prototype support

vector machines. Journal of Machine Learning Research, 6:817–850, 2005.

[7] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan. Dynamic self-organizing maps

with controlled growth for knowledge discovery. IEEE Trans. Neural Networks,

11(3):601–614, 2000.

[8] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan. Data Mining and Coputational

Intelligence, volume 68 of Studies in fuzziness and soft computing, chapter Mining

a growing feature map by data skeleton modelling, pages 217–250. Physica-Verlag,

New York, 2001.

[9] C. Amerijckx, M. Verleysen, P. Thissen, and J. Legat. Image compression by

self-organized kohonen map. IEEE Trans. Neural Networks, 9(3):503–507, 1998.

[10] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York,

1973.

[11] J. A. Anderson, A. Pellionisz, and E Rosenfeld, editors. Neurocomputing 2: Direc-

tions for Research. MIT Press, Cambridge, Mass., 1990.

241



[12] M. A. Andrade, G. Casari, C. Sander, and A. Valencia. Classification of protein

families and detection of the determinant residues with an improved self organizing

map. Biol. Cyb., 76:441–50, 1997.

[13] F. Bac ao, V. Lobo, and M. Painho. Computational Science ICCS 2005, volume

LNCS 3516, chapter Self-organizing maps as substitutes for k-means clustering,

pages 476–483. Springer-Verlag, Berlin, 2005.

[14] P. M. Atkinson and A. R. L. Tatnall. Neural networks in remote sensing: An

introduction. Int. J. Remote Sensing, 18:699–709, 1997.

[15] A. S. Atukorale and P. N. Suganthan. Hierarchical overlapped neural-gas network

with application to pattern classification. Neurocomputing, 35:165–176, 2000.

[16] R. L. Baker and R. M. Gray. Differential vector quantization of achromatic imagery.

Proc. Int. Picture Coding Symp., pages 105–106, 1983.

[17] P. V. Balakrishnan, M. C. Cooper, V.S. Jacob, and P.A. Lewis. A study of the clas-

sification capabilities of neural networks using unsupervised learning: a comparison

with k-means clustering. Psychometrika, 59(4):509–525, 1994.

[18] G. H. Ball and C. J. Hall. Isodata, a novel method of data analysis and clasification.

Tech. rep., Stanford University, Stanford, CA, 1965.

[19] A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for pattern

recognition part i and ii. IEEE Trans. Syst., Man, Cybern. B, Cybern., 29(6):778–

801, 1999.

[20] J. M. Barbalho, A. D. D. Neto, J. A. E. Costa, and M. L. A. Netto. Hierarchical

SOM applied to image compression. In Proceedings of the International Joint

Conference on Neural Networks, volume 1, pages 442–447, 2001.

[21] A. Bárdossy and L. Samaniego. Fuzzy rule-based classification of remotely sensed

imagery. IEEE Trans. Geosci. Remote Sensing, 40(2):362–374, 2002.

[22] H. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of self-

organizing feature maps. IEEE Trans. on Neural Networks, 3(4):570–579, 1992.

[23] H. U. Bauer. Exploiting topography of neural maps: A case study on invest-

ment strategies for emerging markets. IEEE IAFE Conference on Computational

Intelligence for Financial Engineering (CIFEr), pages 216–219, 1998.

[24] H. U. Bauer, R. Der, and M. Hermman. Controlling the magnification factor of

self-organizing feature maps. Neural Computation, 8:757–771, 1996.

242



[25] H. U. Bauer and T. Villmann. Growing a hypercubical output space in a

self-organizing feature map. IEEE Transactions on Neural Networks, 8(2):218–

26, 1997.

[26] T. Bayes. An essay towards solving a problem in the doctrine of chances. Philo-

sophical Transactions of the Royal Society (London), 53:370–418, 1763.

[27] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy. Conjugate-gradient neural

networks in classification of multisource and very high-dimension remote sensing

data. Int. J. Remote Sensing, 14:2883–2903, 1993.

[28] M. Bereau and B. Dubuisson. A fuzzy extended k-nearest neighbor rule. Fuzzy

Sets and Systems, 44:17–32, 1991.

[29] P. Berkhin. Survey of clustering data mining techniques.

http://citeseer.nj.nec.com/berkhin02survey.html, 2002.

[30] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, New York, 1996.

[31] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum, New York, 1981.

[32] J. C. Bezdek, J. Keller, R. Krishnapuram, and N. R. Pal. Fuzzy Models and

Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston, 1999.

[33] J. C. Bezdek and N. R. Pal. Index of topological preservation for feature extraction.

Pattern Recognition, 28(3):381–91, 1995.

[34] J. C. Bezdek and N. R. Pal. A note on self-organizing semantic maps. IEEE Trans.

on Neural Networks, 6(5):1029–1036, 1995.

[35] S. M. Bhandarkar, J. Koh, and M. Suk. A hierarchical neural network and its

application to image segmentation. Mathematics and Computers in Simulation,

41(3–4):337–55, 1996.

[36] H. Bischof, W. Schneider, and A. J. Pinz. Multispectral classification of landsat-

images using neural networks. IEEE Trans. on Geosci. Remote Sensing, 30(3):482–

490, 1992.

[37] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,

1995.

[38] S. Biswas. Segmentation based compression for gray level images. Pattern Recog-

nition, 36:1501–1517, 2003.

243



[39] E. D. Bodt, M. Cottrell, and M. Verlysen. Statistical tools to assess the reliability

of self-organizing maps. Neural Networks, 15:967–978, 2002.

[40] C. Bouton and G. Pagès. Self-oraganization and asymptotic convergence of the one-

dimensional kohonen algorithm with non-uniformly distributed stimuli. Stochastic

Processes and Their Applications, 47:249–274, 1993.

[41] M. M. Campos and G. A. Carpenter. S-tree: self-organizing trees for data clustering

and online vector quantization. Neural Networks, 15(505–525), 2001.

[42] R. L. Cannon, J. V. Dave, J. C. Bezdek, and M. M. Trivedi. Segmentation of a

thematic mapper image using the fuzzy c-means clustering algorithm. IEEE Trans.

Geosci. Remote Sensing, 24(3):400–408, 1986.

[43] G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-

organizaing neural pattern recognition machine. Computer Vision, Graphics and

Image Processing, 37:54–115, 1987.

[44] S. Carrato. Image vector quantization using ordered codebooks: Properties and

applications. Signal Processing, 40(1):87–103, 1994.

[45] G. Cazuguel, A. Cziho, B. Solaiman, and C. Roux. Medical image compression

and characterization using vector quantization: an application of self-organizing

maps and quadtree decomposition. In S. Laxminarayan and E. Micheli-Tzanakou,

editors, Proceedings. 1998 IEEE International Conference on Information Tech-

nology Applications in Biomedicine, ITAB ’98, pages 127–32. IEEE, New York,

NY, USA, 1998.

[46] J. C. W. Chan, DeFries R. S., and J. R. G. Townshend. Improved recognition of

spectrally mixed land cover classes using spatial textures and voting classifications.

In Computer Analysis of Images and Patterns. 9th International Conference, CAIP

2001. Proceedings (Lecture Notes in Computer Science Vol.2124). Springer-Verlag,

Berlin, Germany, pages 217–27, 2001.

[47] P. C. Chang and R. M. Gray. Gradient algorithms for designing adaptive vector

quantizer. IEEE Trans. ASSP, ASSP-34:679–690, 1986.

[48] R. L. P. Chang and T. Pavlidis. Fuzzy decision tree algorithms. IEEE Tr. on Syst.

Man and Cyberns., 7(1):28–35, 1977.

[49] S. W. Changchien and T. C. Lu. Mining association rules procedure to support

on-line recommendation by customers and product fragmentation. Expert Systems

with Application, 20:325–335, 2001.

244



[50] G. J. Chappell and J. G. Taylor. The temporal Kohonen map. Neural Networks,

6:441–445, 1993.

[51] H. Chen, C. Schuffels, and R. Orwig. Internet categorization and search: a

self-organizing approach. Journal of Visual Communication and Image Repre-

sentation, 7(1):88–102, 1996.

[52] Y. Chen and J. Z. Wang. Support vector learning for fuzzy rule-based classification

systems. IEEE Trans. Fuzzy Syst., 11(6):716–728, 2003.

[53] Y. Cheng. Convergence and ordering of kohonen’s batch map. Neural Computing,

9:1667–1676, 1997.

[54] Z. Chi, J. Wu, and H. Yan. Handwritten character numeral recognition using

self-organizing maps and fuzzy rules. Pattern Recognition, 28(1):59–66, 1995.

[55] Z. Chi and H. Yan. Handwritten character numeral recognition using a small

number of fuzzy rules with optimized defuzzification parameters. Neural Networks,

8(5):821–827, 1995.

[56] Z. Chi and H. Yan. Id3-derived fuzzy rules and optimized defuzzification. IEEE

Trans. Fuzzy Syst., 4(1):24–31, 1996.

[57] C.-K. Chiang, H.-Y Chung, and J.-J. Lin. A self-learning fuzzy logic controller

using genetic algorithms with reinforcements. IEEE Trans. Fuzzy Syst., 7:460–467,

1997.

[58] S. L. Chiu. Fuzzy model identification based on cluster estimation. J. Intell. and

Fuzzy Syst., 2:267–278, 1994.

[59] S. L. Chiu. Fuzzy Information Engineering, chapter Extracting fuzzy rules from

data for function approximation and pattern classification, pages 149–162. Wiley

and Sons, 1997.

[60] C. I. Christodoulou, S. C. Michaelides, C.S. Pattichis, and K. Kyriakou. Classifica-

tion of satellite cloud imagery based on multi-feature texture analysis and neural

networks. In IEEE International Conference on Image Processing, volume 1, pages

497–500, 2001.

[61] I. Cloete and J.M. Zurada, editors. Knowledge-Based Neurocomputing. MIT Press,

Cambridge, Massachusetts, 2000.

[62] J. A. Corral, M. Guerrero, and P. J. Zufria. Image compression via optimal vec-

tor quantization: A comparison between som, lbg and k-means algorithms. In

Proceedings of IJCNN, pages 4113–4118, 1994.

245



[63] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297,

1995.

[64] P. C. Cossman, R. M. Gray, and M. Vetteri. Vector quantization of image subbands:

A survey. IEEE Trans. Image Processing, 5, 1996.

[65] M. Cottrell, J. C. Fort, and G. Pagès. Theoretical aspects of som algorithm.

Neurocomputing, 21:119–138, 1998.

[66] M. Cottrell and G. Pagès. Ètude d’un processus d’auto-organisation (in french).

Annales de l’Institut Henri Poincaé, 47:1–20, 1987.

[67] T. M. Cover. Geometrical and statistical properties of systems of linear inequalities

with application in pattern recognition. IEEE Trans. Electronic Computers, EC-

14:326–334, 1965.

[68] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans.

Information Theory, IT-13(1):21–27, 1967.

[69] A. Czihó, B. Solaiman, I. Lováni, G. Cazuguel, and C. Roux. An optimization of

finite-state vector quantization for image compression. Signal Proc. Image Comm.,

15(545–558), 2000.

[70] B. Dasarathy. Nearest Neighbors Pattern Classification Techniques. IEEE Com-

puter Society Press, 1991.

[71] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis,

1(3):131–156, 1997.

[72] G. Deboeck and T. Kohonen, editors. Visual Exploration in Finance with Self-

Oraganizing Maps. Springer-Verlag, London, 1998.

[73] P. Demartines and F. Blyao. Kohonen self-organizing maps: Is the normalization

necessary? Complex Syst., 6:105–123, 1992.

[74] D. Deng and N. Kasabov. ESOM: An algorithm to evolve self-organizing maps

from on-line data streams. In Proceedings of the International Joint Conference

on Neural Networks, volume 6, pages 3–8, Piscataway, NJ, 2000. Univ of Otago,

IEEE.

[75] D. Deng and N. Kasabov. On-line pattern analysis by evolving self-organising

maps. Neurocomputing, 51:87–103, 2003.

[76] T. Denœux. A k-nearest neighbor classification rule based on dempster-shafer

theory. IEEE Trans. Systems Man Cyberns, 25(5):804–813, 1995.

246



[77] T. Denœux. A neural network classifier based on dempster-shafer theory. IEEE

Trans. Syst., Man, Cybern. A, 30:131150, 2000.

[78] T. Denœux and M.-H. Masson. Evclas: Evidential clustering of proximity data.

IEEE Trans. Syst., Man, Cybern. B, 34(1):95–109, 2004.

[79] R. Der, M. Herrmann, and T. Villmann. Time behavior of topological ordering in

self-organized feature mapping. Biol. Cybern., to appear, 1994.

[80] R. Der and T. Villmann. Dynamics of selforganizing feature mapping. New Trends

in Neural Computation, LNCS 686:312–315, 1993.

[81] D. DeSieno. Adding a conscience to competitive learning. IEEE Intl. Conf. on

Neural Networks, 1:117–125, 1988.

[82] P. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-

Hall, New Jersey, 1982.

[83] L. P. Devroye. On inequality of cover and hart in nearest neighbor discrimination.

IEEE Trans. Patt. Anal. Mach. Intell., PAMI-3(1):75–78, 1981.

[84] J. Dickerson and B. Kosko. Fuzzy function learning with covariance ellipsoids.

In Proc. IEEE Intl. Conf. Neural Networks, volume III, pages 1162–1167, San

Fransisco, CA, 1993.

[85] E. Diday. The dynamic cluster method in non-hierarchical clustering. J. Comput.

Inf. Sci., 2:61–88, 1973.

[86] Robert D. Dony and Simon Haykin. Neural network approaches to image com-

pression. Proc. of the IEEE, 83(2):288–303, 1995.

[87] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Application. Aca-

demic, New York, 1980.

[88] R. Duda and P. Hart. Patern Classification and Scene Analysis. Wiley Interscience,

NY, New York, 1973.

[89] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).

Wiley-Interscience, New York, 2000.

[90] R. Durbin and G. Mitchison. A dimension reduction framework for understanding

cortical maps. Nature, 343:644–647, 1990.

[91] H. Dyckhoff and W. Pedrycz. Generalized means as models of compensative con-

nectives. Fuzzy Sets and Systems, 14:143–154, 1984.

247



[92] P. Dylan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathe-

matical Modeling of Neural Systems. MIT Press, 2001.

[93] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: Ordering, con-

vergence property and energy functions. Biological Cybernetics, 67(1):47–55, 1992.

[94] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: Stationary states,

metastability and convergence rate. Biological Cybernetics, 67(1):35–45, 1992.

[95] J. E. Estes and D. W. Mooneyhan. Of maps and myths. Photogrammetric Engi-

neering and Remote Sensing, 60:517–524, 1994.

[96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith. The kdd process for extracting

useful knowledge from volumes of data. Communications of ACM, 39(11):27–34,

1996.

[97] E. A. Ferran. Self-organized neural maps of human protein sequences. Protein

Science, 3(3):507–521, Mar 1994.

[98] R. A. Fisher. The use of multiple measurement in taxonoic problems. Annals of

Eugenics, 7 Part II:179–188, 1936.

[99] J. A. Flanagan. Sufficient conditions for self-organization in the one-dimensional

som with a reduced width neighborhood. Neurocomputing, 21:51–60, 1998.

[100] J. A. Flanagan. Self-organization in the one-dimensional som with a decreasing

neighborhood. Neural Networks, 14:1405–1417, 2001.

[101] G. M. Foody. Approaches for the production and evaluation of fuzzy land cover

classifications from remotely-sensed data. Int. J. of Remote Sensing, 17(7):1317–

1340, 1996.

[102] J. C. Fort and G. Pagès. On the asymptotic covergence of the kohonen algorithm

with a general neighborhood function. Annals of Applied Probability, 5(4):1177–

1216, 1995.

[103] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for for finding

best matches in logarithmic expected time. ACM Trans. Mathematical Software,

3(3):209–266, 1977.

[104] B. Fritzke. Growing cell structures—a self-organizing network for unsupervised

and supervised learning. Neural Networks, 7(9):1441–1460, 1994.

248



[105] B. Fritzke. Advances in Neural Information Processing Systems, volume 7, chap-

ter A growing neural gas network learns topologies, pages 625–632. MIT Press,

Cambridge MA, 1995.

[106] B. Fritzke. Growing grid—a self-organizing network with constant neighbourhood

range and adaptation strength. Neural Processing Letters, 2(5):9–13, Sept 1995.

[107] B. Fritzke. Some competitive learning methods. Draft

document, 1998. http://www.neuroinformatik.ruhr-uni-

bochum.de/ini/VDM/research/gsn/DemoGNG.

[108] ftp://ftp.dice.ucl.ac.be/pub/neural nets/ELENA.

[109] F. Fukunaga and P .M. Narendra. A branch and bound algorithm for computing

k-nearest neighbors. IEEE Trans. on Computers, 24:750–753, 1975.

[110] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer

Academic Publishers, Boston, 1992.

[111] A. Golbraikh, P. Bernard, and J. R. Chretien. Validation of protein-based align-

ment in 3d quantitative structure-activity relationships with coMFA models. Eu-

ropean Journal of Medicinal Chemistry, 35(1):123–136, Jan 2000.

[112] P. Gong. Integrated analysis of spatial data from multiple sources: Using evi-

dential reasoning and artificial neural network techniques for geological mapping.

Photogrammetric Engineering and Remote Sensing, 62(5):513–523, 1996.

[113] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addision-Wesley,

Reading, Mass., 1992.

[114] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans. Information Theory,

44(6):1–63, 1998.

[115] S. Günter and H. Bunke. Self-organizing map for clustering in the graph domain.

Pattern Recognition Letters, 23:405–417, 2002.

[116] E. E. Gustafson and W. Kessel. Fuzzy clustering with a fuzzy covariance matrix. In

Proc. IEEE Conf. on Decision and Control, San Diego, pages 761–766, Piscataway,

NJ, 1979. IEEE Press.

[117] M. Hagenbuchner, A. Sperduti, and A. Tsoi. A self-organizing map for adaptive

processing of structured data. IEEE Trans. Neural Networks, 14(3):491–505, 2003.

[118] M. Hagiwara. Self-organizing feature map with a momentum term. Neurocomput-

ing, 10(1):71–81, January 1996.

249



[119] B. Hammer, A. Michelli, A. Sperduti, and M. Strickert. Recursive self-organizing

network models. Neural Networks, 17:1061–1085, 2004.

[120] R. Hamzaoui. Codebook clustering by self-organizing maps for fractal image com-

pression. Fractals, 5(suppl. issue):27–38, 1997.

[121] R. Hamzaoui and D Saupe. Combining fractal image compression and vector

quantization. IEEE Trans. on Image Processing, 9(2):197–208, 2000.

[122] R. M. Haralick. Decision making in context. IEEE Trans. Pattern Anal. Machine

Intell., PAMI-5:417–428, 1983.

[123] T. Hastie, R. Tibshirani, and J Friedman. The Elements of Statistical Learning.

Springer, New York, 2001.

[124] S. Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Addison

Wesley Longman, Singapore, 1999.

[125] D.O. Hebb. The Organization of Behaviour. John Wiley and Sons, New York,

1949.

[126] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural com-

putation. Addison-Wesley Publishing Company, CA, USA, 1995.

[127] W. H. Highleyman. Linear decision functions with application to pattern recogni-

tio. Proceedings of IRE, 50:1501–1514, 1962.

[128] H.Ishibuchi, T.Nakashima, and T.Murata. A fuzzy classifier system that generates

linguistic rules for pattern classification problems, volume 1152 of Lecture Notes in

Artificial Intelligence, pages 35–54. Springer-Verlag, Berlin, 1996.

[129] R. C. Holte. Very simple classification rules perform well on most commonly used

data sets. Machine Learning, 11:63–91, 1993.

[130] J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554–2558, 1982.

[131] K. Hornik, M. Stinchcombe, and H. White. Multilayered feedforward networks are

universal approximators. Neural Networks, 2:259–366, 1989.

[132] N. C. Hsieh. An integrated data mining and behavioral scoring model for analyzing

bank customers. Expert Systems with Applications, 27:623–633, 2004.

[133] N. C. Hsieh. Hybrid minig approach in design of credit scoring model. Expert

Systems with Applications, 28:655–665, 2005.

250



[134] W. Huaichun, J. Dopazo, L. G. de la Fraga, Y. P. Zhu, and J. M. Carazo. Self-

organizing tree-growing network for the classification of protein sequences. Protein

Science, 7(12):2613–2622, 1998.

[135] D. A. Huffman. A method of construction of minimum redundancy codes. Pro-

ceedings of IRE, 40:1098–1101, 1952.

[136] H. Ishibuchi and T. Nakashima. Effect of rule weights in fuzzy rulebased classifi-

cation systems. IEEE Trans. on Fuzzy Systems, 9(4):506–515, August 2001.

[137] H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation of fuzzy clas-

sifier systems for multi-dimensional pattern classification problems. IEEE Trans.

on Syst. Man and Cybern: B, 29(5):601–618, 1999.

[138] H. Ishibuchi and T. Yamamoto. Fuzzy rule selection by multi-objective genetic

local search algorithms and rule evaluation measures in data mining,. Fuzzy Sets

and Systems, 141(1):59–88, 2004.

[139] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review.

IEEE Trans. Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

[140] A. K. Jain, M. N. Murthy, and P. J. Flynn. Data clustering: a review. ACM

Computing Surveys, 31(3):264–323, 1999.

[141] C. Z. Janikow. Fuzzy decision trees: issues and methods. IEEE Tr. on Syst. Man

and Cyberns.-Part B, 28(1):1–14, 1998.

[142] T. Joachims. SVM-light support vector machine, 2002.

http://svmlights.joachims.org.

[143] A. Jouan and Y. Allard. Land use mapping with evidential fusion of features

extracted from polarimetric synthetic aperture radar an hyperspectral imagery.

Information Fusion, 5:251–267, 2004.

[144] A. B. R. Klautau Jr. Predictive vector quantization with intrablock predictive

support region. IEEE Trans. on Image Processing, 8(2):293–295, 1999.

[145] J. W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Trans.

Comput., C-18:401–409, 1969.

[146] J. Kangas, T. Kohonen, J. Laaksonen, O. Simula, and O. Ventä. Variants of

self-organizing maps. In Proc. IJCNN’89, International Joint Conference on Neural

Networks, volume II, pages 517–522, Piscataway, NJ, 1989. IEEE Service Center.

251



[147] J. A. Kangas, T. K. Kohonen, and J. T. Laaksonen. Variants of self-organizing

maps. IEEE Trans. on Neural Networks, 1(1):93–99, 1990.

[148] N. B. Karayiannis. Fuzzy vector quantization algorithms and their application in

image compression. IEEE Trans. Image Processing, 4(3):1193–1201, 1995.

[149] N. Kasabov. On-line learning, reasoning, rule extraction and aggregation in locally

optimised evolving fuzzy neural networks. Neurocomputing, 41:25–41, 2001.

[150] N. Kasabov, D. Deng, L. Erzegovezi, M. Fedrizzi, and A. Beber. On-line decision

making and prediction of financial and macroeconomic parameters on the case

study of the european monetary union. In H. Bothe and R. Rojas, editors, Pro-

ceeding of the ICSC Symposia on Neural Computation (NC’2000). ICSC Academic

Press, 2000.

[151] N. Kasabov and E. Peev. Phoneme recognition with hierarchical Self Organised

neural networks and fuzzy systems—a case study. In Maria Marinaro and Pietro G.

Morasso, editors, Proc. ICANN’94, International Conference on Artificial Neural

Networks, volume I, pages 201–204, London, UK, 1994. Springer.

[152] N. Kasabov and Q.Song. Denfis: Dynamic evolving neural-fuzzy inference sys-

tem and its application for time series prediction. IEEE Trans. Fuzzy Systems,

10(2):144–154, 2002.

[153] N. K. Kasabov. Learning fuzzy rules and approximate reasoning in fuzzy neural

networks and hybrid systems. Fuzzy Sets and Syst., 82(2):135–149, 1996.

[154] S. Kaski, T. Henkela, K. Lagus, and T. Kohonen. Websom – self-organizing maps

for document collections. Neurocomputing, 21:101–117, 1998.

[155] S. Kaski, J. Kangas, and T. Kohonen. Bibliography of self-organizing map

(som) papers: 1981–1997. Neural Computing Survays (online Journal at

http://www.cse.ucsc.edu/NCS/), 1:102–350, 1998.

[156] S. Kaski, J. Venna, and T. Kohonen. Coloring that reveals cluster structures in mul-

tivariate data. Australian-Journal-of-Intelligent-Information-Processing-Systems,

6:82–88, 2000.

[157] J. M. Keller, P. Gader, H. Tahani, J.-H. Chiang, and M. Mohamed. Advances

in fuzzy integration for pattern recognition. Fuzzy Sets and Systems, 65:273–283,

1994.

[158] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy k-nearest neighbor algorithm.

IEEE Trans. Syst. Man Cybern, 15(4):580–585, 1985.

252



[159] J. M. Keller and D. J. Hunt. Incorporating fuzzy membership function into the

perceptron algorithm. IEEE Trans. Patt. Anal. Machine Intell., 7:693–699, 1985.

[160] M. Kendall and J. D. Gibbons. Rank Correlation Coefficient. Edward Arnold,

1990.

[161] H. Khalil and K. Rose. Predictive vector quantizer design using deterministic

annealing. IEEE Trans. Signal Processing, 51(1):244–254, 2003.

[162] H. Kim and P. H. Swain. Evidential reasoning approach to multisource-data classifi-

cation in remote sensing. IEEE Trans. on Syst. Man and Cybern, 25(8):1257–1265,

1995.

[163] K. J. Kim and S. B. Cho. Fuzzy integration of structure adaptive soms for web

content mining. Fuzzy Sets and Systems, 148:43–60, 2004.

[164] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, New Jersy,

1995.

[165] E. I. Knudsen, S. Du Lac, and S. D Esterly. Computational maps in brain. Ann.

Rev. Neurosci., 10:41–65, 1987.

[166] T. Kohonen. Automatic formation of topological maps of patterns in a self-

organizing sysyem. Proc. 2nd Scandinavian Conf. on Image Analysis, pages 214–

220, 1981.

[167] T. Kohonen. Self-organized formation of topologically correct feature maps. Biol.

Cybern., 43:59–69, 1982.

[168] T. Kohonen. Self-organization and associative memory. Springer Series in Infor-

mation Sciences. Springer-Verlag, Berlin, 2 edition, 1988.

[169] T. Kohonen. The self-organizing map. Proc. IEEE, 78(9):1464–1480, 1990.

[170] T. Kohonen. Artificial Neural Networks, chapter Self-organizing maps: Optimiza-

tion approaches, pages I–891–990. North Holland, 1991.

[171] T. Kohonen. The Adaptive-Subspace SOM (ASSOM) and its use for the imple-

mentation of invariant feature detection. In F. Fogelman-Soulié and P. Gallinari,

editors, Proc. ICANN’95, International Conference on Artificial Neural Networks,

volume I, pages 3–10, Nanterre, France, 1995. EC2.

[172] T. Kohonen. Self-organizing maps of symbol strings. Technical Report A42, Lab-

oratory of Computer and Information Science, Helsinki University of Technology,

Finland, 1996.

253



[173] T. Kohonen. The speedy SOM. Technical Report A33, Helsinki University of

Technology, Laboratory of Computer and Information Science, Espoo, Finland,

1996.

[174] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 3 edition, 2001.

[175] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero, and

A. Saarela. Self-organization of a massive document collection. IEEE Tr. Neu-

ral Networks, 11(3):574–585, 2000.

[176] T. Kohonen and E. Oja. A note on a simple self-organizing process. Report TKK-

F-A474, Helsinki University of Technology, Espoo, Finland, 1982.

[177] T. Kohonen and E. Oja. Visual feature analysis by the self-organising maps. Neural

Computing & Applications, 7:273–286, 1998.

[178] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Engineering applications

of the self-organizing map. Proceedings of the IEEE, 84(10):1358–84, 1996.

[179] T. Kohonen and P. Somarvuo. Self-organizing maps on symbol strings. Neurocom-

puting, 21:19–30, 1998.

[180] T. Kohonen and P. Somarvuo. How to make large self-organizing maps for non-

vectorial data. Neural Networks, 15:945–952, 2002.

[181] P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In Proc.

IJCNN-90, International Joint Conference on Neural Networks, Washington, DC,

volume II, pages 279–285, Piscataway, NJ, 1990. IEEE Service Center.

[182] A. König. Interactive visualization and analysis of hierarchical neural projections

for data mining. IEEE Transactions on Neural Networks, 11(3):615–624, 2000.

[183] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski. Recurrent som with local

linear models in time series prediction. In 6th European Symposium on Artificial

Neural Networks. ESANN’98. Proceedings, pages 167–172, Brussels, Belgium, 1998.

D-Facto.

[184] F. Kossentini, W. Chung, and M. Smith. Conditional entropy constrained residual

vq with application to image coding. IEEE Trans. on Image Processing, 5:311–321,

1996.

[185] M. A. Kraaijveld, J. Mao, and A. K. Jain. A nonlinear prjection method based

on kohonen’s topology preserving maps. IEEE Tr. Neural Networks, 6(3):548–559,

1995.

254



[186] V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen. Fuzzy Systems: Modeling and

Control, chapter Fuzzy rule based modelig as a universal approximation tool, pages

136–195. Kluwer Academic Publisher, 1998.

[187] R. Krishnapuram and J. Keller. A possibilistic approach to clustering. IEEE Trans.

Fuzzy Syst., 1(2):98–110, 1993.

[188] A. Kulkarni and S. McCaslin. Knowledge discovery from multispectral satellite

images. IEEE Geosci. Remote Sensing Letters, 1(4):246–250, 2004.

[189] S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification - a

survey. IEEE Trans. Information Theory, 44(6):2178–2206, 1998.

[190] A. S. Kumar, S. Chowdhury, and K. L. Majumder. Combination of neural and

statistical approaches for classifying space-borne multispectral data. Proc. of

ICAPRDT99, pages 87–91, 1999.

[191] L. Kuncheva. Fuzzy Classifier Design. Physica-Verlag, Heidelberg, 2000.

[192] L. I. Kuncheva. How good are fuzzy if-then classifiers? IEEE Trans. Syst. Man

and Cyberns.: Part B, 30(4):501–509, 2000.

[193] L. I. Kuncheva and J. C. Bezdek. An integrated framework for generalized nearest

prototype classifier design. International Journal of Uncertainty, Fuzzyness and

Knowledge-based Systems, 6(5):437–457, 1998.

[194] M. Kunt, M. Benard, and R. Leonardi. Recent results in high compression image

coding. IEEE Trans. Circuits Systems, 34:1306–1336, 1987.

[195] S. Laakso, J. Laaksonen, M. Koskela, and E. Oja. Self-organising maps of web link

information. In N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Advances

in Self-Organising Maps, pages 146–151. Springer, 2001.

[196] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja. PicSOM—content-based image

retrieval with self-organizing maps. Pattern Recognition Letters, 21(13–14):1199–

1207, 2000.

[197] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja. Self-organising maps as a

relevance feedback technique in content-based image retrieval. Pattern Anal. Appl.,

4((2-3)):140–152, 2001.

[198] J. Laaksonen, M. Koskela, and E. Oja. PicSOM—self-organizing image retrieval

with mpeg-7 content descriptors. IEEE Trans. Neural Networks, 13(4):841–853,

2002.

255



[199] A. Laha. An empirical study on the robustness of som in preserving topology

with respect to link density. In Proceedings of 11th International Conference on

Neural Information Processing (ICONIP 2004), volume LNCS 3316, pages 142–

149, Berlin, 2004. Springer-Verlag.

[200] A. Laha, B. Chanda, and N. R. Pal. Fast codebook searching in a som-based vector

quantizer for image compression. Image and Vision Computing (Communicated).

[201] A. Laha and J. Das. Fuzzy rules and evidence theory for satellite image analysis.

In Proc. 5-th Intl. Conf. Advances in Pattern Recognition (ICAPR 2003), pages

453–457, 2003.

[202] A. Laha and N. R. Pal. On different variants of self-organizing feature map and

their properties. In Proceedings of the 1999 IEEE Hong Kong Symposium on

Robotics and Controls, volume 1, pages I–344–I–349, 1999.

[203] A. Laha and N. R. Pal. Dynamic generation of prototypes with self-organizing

feature maps for classifier design. Pattern Recognition, 34(2):315–321, 2000.

[204] A. Laha and N. R. Pal. Some novel classifiers designed using prototypes extracted

by a new scheme based on self-organizing feature map. IEEE Trans. on Syst. Man

and Cybern: B, 31(6):881–890, 2001.

[205] A. Laha, N. R. Pal, and B. Chanda. Design of vector quantizer for image com-

pression using self-organizing feature map and surface fitting. IEEE Trans. Image

Processing, 13(10):1291–1303, 2004.

[206] A. Laha, N. R. Pal, and J. Das. Designing prototype-based classifiers and their

application to classification of multispectral satellite images. In Proceedings of 6th

International Conference on Soft Computing (IIZUKA2000), pages 861–868, 2000.

[207] A. Laha, N. R. Pal, and J. Das. Land cover classification using fuzzy rules and ag-

gregation of contextual information through evidence theory. IEEE Trans. Geosc.

and Remote Sensing, 44(6):1633–1641, 2006.

[208] J. Z. C. Lai and Y.-C. Liaw. Fast-searching algorithm for vector quantization

using projection and triangular inequality. IEEE Trans. on Image Processing,

13(12):1554–1558, 2004.

[209] J. Lampinen and T. Kostiainen. Generative probability density model in the self-

organizing map. In U. Seiffert and L. Jain, editors, Self-organizing neural networks:

Recent advances and applications, page 7594. Physica Verlag, Berlin, 2002.

256



[210] J. H. Lee and S. C. Park. Intelligent profitable customers segmentation system

based on business intelligence tools. Expert Systems with Applications, 29:145–

152, 2005.

[211] T. Lee, J. A. Richards, and P. H. Swain. Probabilistic and evidential approaches for

multispectral data analysis. IEEE Trans. on Geosci. Remote Sensing, 25:283–293,

1987.

[212] R. Y. Li, J. Kim, and N. Al-Shamakhi. Image compression using transformed

vector quantization. Image and Vision Computing, 20(1):37–45, Jan 1 2002.

[213] W. Light. Approximation Theory VII, chapter Ridge functions, sigmoidal functions

and neural networks, pages 163–205. Academic Prss, Boston, 1992.

[214] C. T. Lin, F. B. Duh, and D. J. Liu. A neural fuzzy network for word information

processing. Fuzzy Sets and Systems, 127(1):37–48, 2002.

[215] C. T. Lin and C. S. G. Lee. Neural network-based fuzzy logic and control and

decision system. IEEE Trans. Comput., 40(12):1320–1336, 1991.

[216] C. T. Lin and C. S. G. Lee. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent Systems. Prentice-Hall International, New Jersey, 1996.

[217] C. T. Lin, Y. C. Lee, and H. C. Pu. Satellite sensor image classification using

cascaded architecture of neural fuzzy network. IEEE Tr. Geosci. Remote Sens.,

38(2):1033–1043, 2000.

[218] C. T. Lin and Y. C. Lu. A neural fuzzy system with fuzzy supervised learning.

IEEE Trans. Syst. Man, and Cybern. B, 26(5):744–763, 1996.

[219] J. K. Lin, D. G. Grier, and J. D. Kowan. Faithful representation of separable

distributions. Neural Computation, 9:1305–1320, 1997.

[220] X. Lin. Map displays for information retrieval. Journal of the American Society

for Information Science, 48:40–54, 1997.

[221] X. Lin, D. Soergel, and G. Marchionini. A Self-organizing semantic map for in-

formation retrieval. In Proc. 14th. Ann. Int. ACM/SIGIR Conf. on R & D In

Information Retrieval, pages 262–269, 1991.

[222] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design.

IEEE Trans. Commun., COM-28:84–95, 1980.

257



[223] P. Lingras, M. Hogo, M. Snorek, and C. West. Temporal analysis of clusters of

supermarket customers: conventional versas interval set approach. Information

Sciences, 172:215–240, 2005.

[224] R. Linsker. How to generate ordered maps by maximizing the mutual information

between input and output signals. Neural Computation, 1:402–411, 1989.

[225] C. T. Liu, P. L. Tai, A. Y. J. Chen, C. H. Peng, and J. S. Wang. A content-

based scheme for CT lung image retrieval. In IEEE International Conference on

Multi-Media and Expo, pages 1203–1206, 2000.

[226] D. Liu and A. Mitchel. Robustness analysis and design of a class of neural networks

with sparse interconnecting structure. Neurocomputing, 12:59–76, 1996.

[227] H. Liu and L. Yu. Toward integrating feature selection algorithms for classification

and clustering. IEEE Trans. on Knowledge and Data Engineering, 17(4):491–502,

2005.

[228] S. P. Lloyd. Least-squares quantization in pcm. IEEE Trans. Inform. Theory,

IT-28:129–137, 1982.

[229] S. P. Luttrell. Hierarchical self-organising networks. In Proceedings of IEE Inter-

national Conference on Artificial Neural Networks, pages 2–6, 1989.

[230] S. P. Luttrell. Self-organization: A derivation from first principle of a class of

learning algorithms. Proc. IEEE Conference on Neural Networks, pages 495–498,

1989.

[231] S. P. Luttrell. Derivation of a class of training algorithms. IEEE Tr. Neural

Networks, 1:229–232, 1990.

[232] S. P. Luttrell. Code vector density in topographic mapping: Scalar case. IEEE Tr.

Neural Networks, 2:427–436, 1991.

[233] J. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. Proceedings of 5-th Burkeley Symposium on Mathematical Statistics and

Probability, pages 281–297, 1967.

[234] P. E. Maher and D. St. Clair. Uncertain reasoning is an id3 machine learning

framework. In Proc. IEEE Int. Conf. on Fuzzy Systems, pages 7–12. IEEE Press,

1992.

[235] B. Mailachalam and T. Srikanthan. A robust parallel architecture for adaptive color

quantization. In Proceedings International Conference on Information Technology:

258



Coding and Computing. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 164–9,

2000.

[236] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy

logic controller. Int. J. of Man-Machine Studies, 7:1–13, 1975.

[237] O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagnosis

and prognosis via linear programming. Operations Research, 43(4):570–577, 1995.

[238] J. Mao and A. K. Jain. A self-organizing network for hyperellipsoidal clustering.

IEEE Trans. Neural Networks, 7(1):16–29, 1997.

[239] S. Marsland, J. Shapiro, and U. Nehmzow. A self-organizing network that grows

when required. Neural Networks, 15:1041–1058, 2002.

[240] T. Martinetz and K. Schulten. A ”Neural-Gas” network learns topologies. In

T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Proc. International

Conference on Artificial Neural Networks (Espoo, Finland), volume I, pages 397–

402, Amsterdam, Netherlands, 1991. North-Holland.

[241] T. Martinetz and K. Schulten. Topology preserving networks. Neural Networks,

7(3):507–522, 1994.

[242] M.-H. Masson and T. Denœux. Clustering interval-valued proximity data using

belief functions. Pattern Recognition Letters, 25:163171, 2004.

[243] W. S. McCulloch and W.H. Pitts. A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biophys, 5:115–133, 1943.

[244] D. A. Medler. A brief history of connectionism. Neural Computing Survey (online

journal), http://www.icsi.berkeley.edu/ jagota/NCS,, 1:61–101, 1998.

[245] Dieter Merkl. Text classification with self-organizing maps: some lessons learned.

Neurocomputing, 21(1):61–77, 1998.

[246] R. Miikkulainen. Script recognition with hierarchical feature maps. Connection

Science, 2(1):83–101, 1990.

[247] S. A. Mingoti and J. O. Lima. Comparing som neural network with fuzzy c-means,

k-means and traditional hierarchical clustering algorithms. European Journal of

Operational Research, To be published, 2005.

[248] M. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press, Cambridge, MA, 1969.

259



[249] N. M. Nasrabadi and Y. Feng. Vector quantization of images based upon the

kohonen self-organization feature maps. Proc. 2nd ICNN Conf., 1:101–108, 1988.

[250] N. M. Nasrabadi and R. A. King. mage coding using vector quantization: A review.

IEEE Trans. Commun., 36(8):957–971, 1988.

[251] H. T. Nguyen and M. Sugeno, editors. Fuzzy Systems: Modeling and Control.

Kluwer Academic, Boston, 1998.

[252] M. N. Nguyen and J. C. Rajapakse. Multi-class support vector machines for protein

secondary structure prediction. Genome Informatics, 14:218–227, 2003.

[253] J. Nikkilä, P. Törönen, S. Kaski, J. Venna, E. Castrén, and G. Wong. Analysis and

visualization of gene expression data using self-organizing maps. Neural Networks,

15:953–966, 2002.

[254] K. Nozaki, H. Ishibuchi, and H. Tanaka. Adaptive fuzzy-rule based classification

system. IEEE Trans. Fuzzy Systems, 4(3), 1996.

[255] E. Oja. Neural networks in image processing and analysis. In Proc. Symp. on

Image Sensing and Processing in Industry, pages 143—152, Tokyo, Japan, 1991.

Pattern Recognition Society of Japan.

[256] E. Oja. Self-organizing maps and computer vision. In Harry Wechsler, editor,

Neural Networks for Perception, vol. 1: Human and Machine Perception, pages

368–385. Academic Press, New York, NY, 1992.

[257] M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map

(som) papers: 1998–2001. Neural Computing Survays (online Journal at

http://www.cse.ucsc.edu/NCS/), 3:1–156, 2002.

[258] S. Oka, Y. Takefuji, and T. Suzuki. Feature extraction of IKONOS images by

self-organization topological map. In Proceedings of the International Conference

on Imaging Science, Systems, and Technology. CISST’2000. CSREA Press - Univ.

Georgia, Athens, GA, USA, volume 2, pages 687–91, 2000.

[259] T. Ong, H. Chen, W. Sung, and B. Zhu. Newsmap: a knowledge map for online

news. Decision Support Systems, 39:583–597, 2005.

[260] J. Ontrup and H. Ritter. A hierarchically growing hyperbolic self-organizing map

for rapid structuring of large data sets. In Proc. 5-th Workshop on Self-organizing

Maps (WSOM05), page (To appear), 2005.

[261] N. R. Pal. Soft computing for feature analysis. Fuzzy Sets and Systems, 103:201–

221, 1999.

260



[262] N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE

Trans. on Fuzzy Systems, 3(3):370–379, 1995.

[263] N. R. Pal and C. Bose. Context sensitive inferencing and reinforcement type

tuning algorithms for fuzzy logic systems. International Journal of Knowledge-

Based Intelligent Engineering Systems, 3(4):230–239, 1999.

[264] N. R. Pal and V. K. Eluri. Two efficient connectionist schemes for structure preserv-

ing dimensionality reduction. IEEE Transactions on Neural Networks, 9(6):1142–

1154, 1998.

[265] N. R. Pal and S. Ghosh. Some classification algorithms integrating dempster-shafer

theory of evidence with the rank nearest neighbor rule. IEEE Trans. Syst. Man

and Cybern: Part A, 31(1):59–66, 2001.

[266] N. R. Pal and A. Laha. A multi-prototype classifier and its application to remotely

sensed image analysis. Australian Journal of Intelligent Information Processing,

6(2):110–118, 2000.

[267] N. R. Pal, A. Laha, and J. Das. Designing fuzzy rule based classifier using self-

organizing feature map for analysis of multispectral satellite images. International

Journal of Remote Sensing, 26(10):2219–2240, 2005.

[268] S. K. Pal and D. Dutta Majumder. Fuzzy sets and decision making approaches in

vowel and speaker recognition. IEEE Trans. Syst. Man, Cybern, 7:625–629, 1977.

[269] S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets, and classification. IEEE

Trans. on Neural Networks, 3(5):683–697, 1992.

[270] S. K. Pal and S. Mitra. Neuro-fuzzy Pattern Recognition: Methods in Soft Com-

puting. John Wiley, New York, 1999.

[271] S. K. Pal and A. Pal, editors. Pattern Recognition: From Classical to Modern

Approaches. World Scientific, Singapore, 2001.

[272] J. D. Paola and R. A. Schowengerdt. A detailed comparison of backpropagation

neural network and maximum likelihood classifiers for urban land use classification.

IEEE Trans. on Geosci. Remote Sensing, 33:981–996, July 1995.

[273] T. Pavlidis. Structural Pattern Recognition. Springer-Verlag, New York, 1980.

[274] T. Pavlidis. Algorithms for Graphics and Image Compression. Springer-Verlag,

New York, 1982.

261



[275] D. R. Peddle. An empirical comparison of evidential reasoning, linear discriminant

analysis and maximum likelihood algorithms for land cover classification. Canadian

J. Remote Sensing, 19:31–44, 1993.

[276] W. Pedrycz. Classification in a fuzzy environment. Pattern Recognition Letters,

3:303–308, 1985.

[277] W. Pedrycz. Conditional fuzzy c - means. Pattern Recognition Letters, 17:625–632,

1996.

[278] W. Pedrycz. Industrial Electronics Handbook, chapter Fuzzy pattern recognition,

pages 1207–1230. CRC Press, 1996.

[279] W. Pedrycz. Fuzzy sets in pattern recognition: accomplishments and challenges.

Fuzzy Sets and Systems, 2:171–176, 1997.

[280] W. Pedrycz. Computational Intelligence and Applications, chapter Computational

Intelligence: An Introduction, pages 3–17. Physica-Verlag, Heidelberg, 1999.

[281] W. Pedrycz and H. C. Card. Linguistic interpretation of self-organizing maps. In

Proc. IEEE Int. Conf. on Fuzzy Systems, pages 371–378, San Diego, 1992.

[282] W. Pedrycz and M. Reformat. Rule-based modelling of nonlinear relationships.

IEEE Trans. Fuzzy Systems, 2:256–269, 1997.

[283] W. Pedrycz and J. Waletzky. Fuzzy clustering with partial supervision. IEEE

Trans. Syst., Man, and Cybern., 5:787–795, 1997.

[284] S. C. Pei and Y. S. Lo. Color image compression and limited display using self-

organization Kohonen map. IEEE Transactions on Circuits and Systems for Video

Technology, 8(2):191–205, 1998.

[285] D. Polani. Self-Organizing Neural Networks, chapter Measures for the Organization

of Self-Organizing Maps, pages 13–44. Physica-Verlag, Heidelberg, 2002.

[286] J. Principe, N. Euliano, and S. Garani. Principles and networks for self-

organization in space-time. Neural Networks, 15:1069–1083, 2002.

[287] D. Pullwitt. Integrating contextual information to enhance som-based text docu-

ment clustering. Neural Networks, 15:1099–1106, 2002.

[288] T. A. Ramstad, S. O. Aase, and J. H. Husøy. Subband Compression of Images:

Principles and Examples. Elsivier Science B. V., Amsterdam, 1995.

262



[289] A. Rauber, D. Merkl, and M. Dittenbach. The graowing hierarchical self-organing

map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Networks,

13(6):1331–1341, 2002.

[290] H. Ressom, D. Wang, and P. Natarajan. Adaptive double self-organizing maps for

clustering gene expression profiles. Neural Networks, 16:953–966, 2003.

[291] H. Ritter. Asymptotic level density for a class of vector quantization processes.

IEEE Tr. Neural Networks, 2:173–175, 1991.

[292] H. Ritter. Self-organizing maps on non-euclidean spaces. In E. Oja and S. Kaski,

editors, Kohonen Maps, pages 97–110. Elsevier, Amsterdam, 1999.

[293] H. Ritter and T. Kohonen. Self-organizing semantic maps. Biol. Cybernet., 61:241–

254, 1989.

[294] H. Ritter, T. M. Martinetz, and K. Schulten. Neural Computation and Self-

Organizing Maps. Addison Wesly, Reading, MA, 1992.

[295] H. Ritter and K. Schulten. Kohonen self-organizing maps: exploring their compu-

tational capabilities. Proc. Intl. Conf. on Neural Networks, pages 109–116, 1988.

[296] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386–488, 1958.

[297] D. E Rumelhart, G. E. Hinton, and R. J Williams. Learning Distributed Processing:

Exploration in the Microstructure of Cognition. Vol 1: Foundation. MIT Press,

Cambridge, Mass, 1986.

[298] A. Sadeghi. Self-organization property of kohonen’s map with general type of

stimuli distribution. Neural Networks, 11:1637–1643, 1998.

[299] A. Sarkar, M. K. Biswas, B. Kartikeyan, V. Kumar, K. L. Majumder, and D. K.

Pal. A mrf model-based segmentation approach to classification for multispectral

imagery. IEEE Trans. Geosci. Remote Sensing, 40(5):1102–1113, 2002.

[300] K. Sayood. Introduction to Data Compression (2nd ed). Morgan Kaufmann, 2000.

[301] R. Schalkoff. Pattern Recognition: Statistical, Syntactic and Neural Approaches.

John Wiley and Sons, New York, 1992.

[302] M. Schnaider and A. P. Papliński. Still image compression with lattice quantization

in wavelet domain. Advances in Imaging and Electron Physics, 119, 2000.

263



[303] J. F. Schreer, R. J. H. O’Hara, and K. M. Kovacs. Classification of dive profiles:

A comparison of statistical clustering techniques and unsupervised artificial neural

networks. Journal of Agriculture Biological and Environmental Statistics, 3(4):383–

404, 1998.

[304] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Prince-

ton, New Jersey, 1976.

[305] L. Shen and M. Rangayyan R. A segmentation based lossless image coding method

for high resolution medical image compression. IEEE Trans. Med. Imaging, 16:301–

307, 1997.

[306] R. Singh, V. Cherkassky, and N. Papanikolopoulos. Self-organizing maps for the

skeletonization of sparse shapes. IEEE Trans. Neural Networks, 11(1):241–248,

2000.

[307] P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence,

66:191–234, 1994.

[308] K. A. Smith and A. Ng. Web page clustering using a self-organizing map of user

navigation patterns. Decision Support Systems, 35:245–256, 2003.

[309] A. H. S. Solberg, A. K. Jain, and T. Taxt. Multisource classification of remotely

sensed data: Fusion of landsat tm and sar images. IEEE Trans. on Geosci. Remote

Sensing, 32(4):768–777, 1994.

[310] A. H. S. Solberg, T. Taxt, and A. K. Jain. A markov random field model for

clasification of multisouirce satellite imagery. IEEE Trans. Geosci. Remote Sensing,

34(1):100–113, 1996.

[311] H. Soliman and A. Abdelali. Colored image compression using neural networks.

Parallel and Distributed Computing and Systems. IASTED/ACTA Press, Ana-

heim, CA, USA; 2000; 2 vol, 1:229–31, 2000.

[312] P. Somervuo and T. Kohonen. Clustering and visualization of large protein se-

quence databases by means of an extension of the self-organizing map. In Discovery

Science. Third International Conference, DS 2000. Proceedings (Lecture Notes in

Artificial Intelligence Vol.1967). Springer-Verlag, Berlin, Germany, pages 76–85,

2000.

[313] A. Srinivasan and J. A. Rechards. Knowledge-based techniques for multi-source

classification. Int. J. Remote sensing, 11:501–525, 1990.

264



[314] M. Strickert and B. Hammer. Merge som for temporal data. Neurocomputing,

64:39–71, 2005.

[315] M. C. Su and H. T. Chang. Fast self-organizing feature map algorithm. IEEE

Transactions on Neural Networks, 11(3):721–733, May 2000.

[316] M. C. Su and H. T. Chang. New model of self-organizing neural networks and its

application in data projection. IEEE Transactions on Neural Networks, 12(1):153–

158, 2001.

[317] M. C. Su, H. T. Chang, and C. H. Chou. A novel measure for quantifying the

topology preservation of self-organizing feature maps. Neural Processing Letters,

15(2):137–145, 2002.

[318] P. N. Suganthan. Shape indexing using self-organizing maps. IEEE Tr. Neural

Networks, 13(4):835–840, 2002.

[319] T. Takagi and M. Sugeno. Fuzzy identification of systems and its implication to

modelling and control. IEEE Trans. on Systems Man and Cybernetics, 15:116–132,

1985.

[320] A. Takeuchi and S. Amari. Formation of topographic maps and columner mi-

crostructure. Biolaogical Cybernetics, 35:63–72, 1979.

[321] R. Talumassawatdi and C. Lursinsap. Fault immunization concept for self-

organizing mapping neural networks. International Journal of Uncertainty, Fuzzi-

ness and Knowledge Based Systems, 9:781–790, 2001.

[322] H. Teicher. Identifiability of mixtures. Annals of Mathematical Statistics,

32(1):244–248, 1961.

[323] B Tian, M. A. Shaikh, M. R. Azimi Sadjadi, Thomas H. Vonder H., and D. L.

Reinke. Study of cloud classification with neural networks using spectral and

textural features. IEEE Transactions on Neural Networks, 10(1):138–151, 1999.

[324] V. V. Tolat. An analysis of kohonen’s self-organizing maps using a set of energy

functions. Biological Cybernetics, 64(2):155–164, 1990.

[325] J. Townshend, C. Justice, W. Li, C. Gurney, and J. McManus. Global land cover

classification by remote sensing: present capabilities and future possibilities. Re-

mote Sensing of Environment, 35:243–255, 1991.

[326] J. R. G. Townshend. Land cover. Int. J. Remote Sensing, 13:1319–1328, 1992.

265



[327] T. Trappenberg. Fundamentals of Computational Neuroscience. Oxford University

Press, 2002.

[328] B. C. K. Tso and P. M. Mather. Classification of multisource remote sensing

imagery using a gentic algorithm and markov random fields. IEEE Trans. Geosci.

Remote Sensing, 37(3):1255–1260, 1999.

[329] A. Ultsch and H. P. Siemon. Kohonen’s self organizing feature maps for exploratory

data analysis. In Proc. INNC’90, Int. Neural Network Conf., pages 305–308, Dor-

drecht, Netherlands, 1990. Kluwer.

[330] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984.

[331] M. M. Van Hulle. Topographic map formation by maximizing unconditional en-

tropy: A plausible strategy for on-line unsupervised competitive learning and non-

parametric density estimation. IEEE Tr. Neural Networks, 7:1299–1305, 1996.

[332] M. M. Van Hulle. Nonparametric density estimation and regression achieved with

topographic maps maximizing the information-theoretic entropy of their outputs.

Biological Cybernetics, 77:49–61, 1997.

[333] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[334] J. Vesanto. Som-based data visualization methods. Intelligent Data Analysis,

3:111–126, 1999.

[335] J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE Trans-

actions on Neural Networks, 11(3):586–600, 2000.

[336] M. Vidyasagar. Theory of Learning and Generalization, with Application to Neural

Networks and Control Systems. Springer, New York, 1997.

[337] T. Villmann, , and E. Merényi. Extensions and modifications of the som and its

application in satellite remote sensoring processing. In H. Bothe and R. Rojas,

editors, Proceeding of the ICSC Symposia on Neural Computation (NC’2000) May

23-26, 2000 in Berlin, Germany, 2000.

[338] T. Villmann and H.-U. Bauer. Applications of the growing self-organizing map.

Neurocomputing, 21((1-3)):91–100, 1998.

[339] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz. Topology preservation

in self-orfanizing feature map: exact definition and measurement. IEEE Trans. on

Neural Networks, 8(2):256–266, 1997.

266



[340] T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15, 2002.

[341] von der Malsburg and J. D Willshaw. How to label nerve cells so that they can

interconnect in an ordered fashion. Proc. National Academy of Sciences USA,

74:5176–5178, 1977.

[342] J. Walter and H. Ritter. Rapid learning with parameterized self-organizing maps.

Neurocomputing, 12:131–153, 1996.

[343] L. Wang and J. Mendel. Generating fuzzy rules by learning from examples. IEEE

Trans. Syst. Man and Cyberns., 22(6):1414–1427, 1992.

[344] Q. R. Wang and C. Y. Suen. Large tree classifier with heuristic search and global

training. IEEE Trans. Patt. Anal. and Machine Intell, 9(1):91–102, 1987.

[345] J. Watada, H. Tanaka, and K. Asay. Fuzzy discriminant analysis in fuzzy groups.

Fuzzy Sets and Systems, 19:261–271, 1986.

[346] P. J. Werbos. Backpropagation through time: What it does and how to do it.

Proceedings of IEEE, 78:1550–1560, 1990.

[347] B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON

Convention Record, pages 96–104, 1960.

[348] J. D Willshaw and von der Malsburg. How patterned neural connections can be set

up by self-organization. Proc. Royal Socoiety of London, Section B, 194:431–445,

1996.

[349] D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data.

IEEE Trans Syst. Man and Cybern., 2:408–420, 1972.

[350] C.-C Wong and C.-C. Chen. A ga-based method for constructing fuzzy systems

directly from numerical data. IEEE Trans. Syst. Man Cyberns. B, 30:904–911,

2000.

[351] Q. Wu, S. S. Iyengar, and M. Zhu. Web image retrieval using self-organizing feature

map. Journal of the American Society for Information Science and Technology,

52(10):868–875, 2001.

[352] P. Xu, C.-H. Chang, and A. Paplinski. Self-organizing topological tree for on-

line vector quantization and data clustering. IEEE Trans. Syst. Man Cybern. :B,

35(3):515–526, 2005.

[353] R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Trans. Neural

Networks, 16(3):645–678, 2005.

267



[354] M. Yacoub, F. Badran, and S. Thiria. A topological hierarchical clustering: Ap-

plication to ocean color classification. In Artificial Neural Networks-ICANN 2001,

PROCEEDINGS, pages 492–499, 2001.

[355] R. R. Yager and D. P. Filev. Approximate clustering by the mountain method.

IEEE Trans Syst. Man and Cyberns, 24(8):1279–1283, 1994.

[356] E. Yair, K. Zager, and A. Gersho. Competitive learning and soft competition for

vector quantizer design. IEEE Trans. Signal Processing, 40(2):394–309, 1992.

[357] T. Yamamoto. Vector quantization for image compression using circular struc-

tured self-organization feature map. In IEEE International Conference on Image

Processing, volume 2, pages 443–446, 2001.

[358] H. Yang and C. Lee. A text mining approach on automatic generation of web

directories and hierarchies. Expert Systems with Application, 27:645–663, 2004.

[359] H. C. Yang. Shape-based image retrieval by spatial topology distances. In Pro-

ceedings of the ACM International Multimedia Conference and Exhibition, pages

38–41, 2001.

[360] M.-S. Yang and C.-T. Chen. On strong consistency of fuzzy generalized nearest

neighbor rule. Fuzzy Sets and Systems, 60:273–281, 1993.

[361] H. Yin. Data visualization and manifold mapping using visom. Neural Networks,

15:1005–1016, 2002.

[362] H. Yin. ViSOM-a novel method for multivariate data projection and structure

visualization. IEEE Transactions on Neural Networks, 13(1):237–243, January

2002.

[363] H. Yin and N. M. Allinson. On the distribution and convergence of feature space

in self-organising map. Neural Computation, 7:1178–1187, 1995.

[364] J. Yu. General c-means clustering model. IEEE Trans. Pat. Anal. Mach. Intel.,

27(8):1197–1211, 2005.

[365] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[366] L. A. Zadeh. The concept of a linguistic variable and its application to approximate

reasoning: Parts 1, 2 and 3. Information Sciences, 8, 8 and 9:199–249, 301–357,

43–80, 1975.

[367] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and

Systems, 1:3–28, 1978.

268



[368] K. Zeger, J. Vaisey, and A. Gersho. Globally optimal vector quantizer design by

stochastic relaxation. IEEE Trans. Signal Processing, 40(2):310–322, 1992.

[369] L. M. Zouhal and T. Denœux. An evidence theoretic k-nn rule with parameter

optimization. IEEE Trans. Syst. Man and Cybern: Part C, 28(2):263–271, 1998.

[370] S. Zrehen. Analyzing kohonen maps with geometry. Proc. Int. Conf. Artificial

Neural Networks, pages 609–612, 1993.

[371] J. M. Zurada. Introduction to Artificial Neural Systems. West Publ. Co., St. Paul,

MN, 1992.

[372] J. M. Zurada, W. Jedruch, and M. Barski. Neural Networks. Polish Scientific

Publishers, Warsaw, Poland, 1996.

269



List of Publications of the Author

1. A. Laha and N. R. Pal, Some novel classifiers designed using prototypes extracted

by a new scheme based on Self-Organizing Feature Map, IEEE Trans. on Syst.

Man and Cybern: B, Vol. 31, no. 6, pp. 881–890, 2001.

2. A. Laha and N. R. Pal, Dynamic generation of Prototypes with Self-Organizing

Feature Maps for classifier design, Pattern Recognition, Vol. 34, no. 2, pp. 315–

321, 2000.

3. A. Laha, N. R. Pal and B. Chanda, Design of Vector Quantizer for Image com-

pression using Self-organizing Feature Map and surface fitting, IEEE Trans. Image

Processing, Vol. 13, no. 10, pp. 1291–1303, 2004.

4. N. R. Pal, A. Laha and J. Das, Designing fuzzy rule based classifier using self-

organizing feature map for analysis of multispectral satellite images, International

Journal of Remote Sensing, Vol. 26, no. 10, pp. 2219–2240, 2005.

5. A. Laha, N. R. Pal and J. Das, Land cover classification using fuzzy rules and ag-

gregation of contextual information through evidence theory, IEEE Trans. Geosc.

and Remote Sensing, Vol. 44, no. 6, pp. 1633–1641, 2006.

6. N. R. Pal and A. Laha, A Multi-prototype classifier and its application to remotely

sensed image analysis, Australian Journal of Intelligent Information Processing,

Vol. 6, no. 2, pp. 110–118, 2000.

7. A. Laha, B. Chanda and N. R. Pal, Fast codebook searching in a SOM-based vector

quantizer for image compression, Image and Vision Computing (Communicated).

8. A. Laha, An empirical study on the robustness of SOM in preserving topology with

respect to link density, Proceedings of 11th International Conference on Neural

Information Processing (ICONIP 2004), Vol. LNCS 3316 (Springer-Verlag), pp.

142–149, 2004.

9. A. Laha and N. R. Pal, On different variants of Self-Organizing Feature Map and

their properties, Proceedings of the 1999 IEEE Hong Kong Symposium on Robotics

and Controls, Vol 1, pp. I-344–I-349, 1999.

10. N. R. Pal and A. Laha, Design of a Nearest-Prototype Classifier with Dynami-

cally Generated Prototypes Using Self-Organizing Feature Maps, Proceedings of

International Conference on Neural Information Processing (ICONIP’99), Perth,

Australia, Vol. 2, pp. 746–751, 1999.

270



11. A. Laha, N. R. Pal and J. Das, Designing Prototype-based Classifiers and Their

Application to Classification of Multispectral Satellite Images, Proceedings of 6th

International Conference on Soft Computing (IIZUKA2000), pp. 861–868, 2000.

12. A. Laha, N. R. Pal and J. Das, Satellite Image Analysis with Fuzzy Rules and The-

ory of Evidence, Fuzzy Set Theory and its Mathematical Aspects and Applications,

A. K. Srivastav (Ed.), Allied Pub. Pvt. Ltd, New Delhi, 2003.

13. A. Laha and J. Das, Fuzzy Rules and Evidence Theory for Satellite Image Analysis,

Proc. 5-th Intl. Conf. Advances in Pattern Recognition (ICAPR 2003), pp. 453–

457, 2003.

271


