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Abstract: A general theory for constructing a weak Markov dilation of a uniformly
continuous quantum dynamical semigroup 73 on a von Neumann algebra 4 with respect
to the Fock filtration is developed with the aid of a coordinate-free quantum stochastic
caleulus. Starting with the structure of the generatorof T;, existence of canonical structure
maps (in the sense of Evans and Hudson) is deduced and a gquantum stochastic dilation
of T; s obtained through solving a canonical flow equation for maps on the nght Fock
module 4@T {LE{H_ L kb, where &p s some Hilbert space arising froma representation
of A", This gives rise 10 a s-homomorphism j; of 4. Moreover, it is shown that every
such flow 15 implemented by a partial 1sometry-valued process. This leads 1o a natural
construction of a weak Markov process (in the sense of [B-FP[) with respect w Fock
filtration.

1. Introduction

Given a uniformly continuous gquantum dynamical semigroup T on a von Neumann
algebra A, a general theory for constructing a (weak ) Markov dilation of T} with respect
to the Fock-filtmbon s developed. While doing this, we introduce in a natural way (in
Sect. 2) a coordinate-free stochastic caleulus and quantum [o formula which combines
the initial space and the Fock space. The Sect. 3 s devoted to the solution of a class of
quantum stochastic differential equations, both of the Hudson-Parthasarathy as well as
the Evans—Hudson types. Here we find that the language of Hilber right A-modules is
very uselul to describe a quantum sl{J-LhasliL flow equation which 15 now a differential
equation for maps on the module A& {L ([ kp)), where kp is a certain Hilbert space
associated with a representation of A" The proof of the s-homomorphism property of
the solution f; (x) of the flow equation (see [Mo-5]) becomes particularly transparent in
this language needing no extra assumptions as in [Mo-5]. We also prove that every such
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flow can be implemented by a partial isometry-valued process, and that { ;. F(DE; }-n
is an example of a weak Markov process (see [B-P]), where E; denotes the conditional
expectation in Fock space . We would like to add that there s some overlap in the study
of Evans—Hudson flows in Sect. 3 with the work of Lindsay and Wills ([L-W]).

Let us consider a unital von Neumann algebra 4 in B(h), where h is a (not neces-
sarily separable) Hilbert space. Let (7)), =g be a uniformly continuous quantum dynam-
ical semigroup (that is, a contractive, normal, completely positive semigroup) with the
bounded generator £ ¢4 — A It is known due o Christensen and Evans ([C-E]) that
there exist a Hilbert space K, bounded operator R @ i — K, normal s-representation
7. A — B{k)and £ £ 4 such that,

Lix)= R*m(x)R + {Tx + x L. (1.1}

We say that (T;)r=p s conservative if L£{1y = 0, which is equivalent to saying that
Ty =1 fort = 0. It is simple to note that in case when 7(1) = 1 and £(1) =10,

1 1
Lix) = R*wix)R - :)R*R.r — ;A-R*R +i[H, x], (1.2}

where H =il + %R*R}l,a self-adjoint element of 4, and B*7(x)R € Aforallx € 4.
By replacing K by K. = 7(1)K; and R by B = 7(1)R, it is clear that

B0 R+ Py +xf = R*r(Dim(0mi IR + *x + xf = £{x).

Smee the range of 7ix) 15 contained in Kforalx € A, = may be thought of asa
s-representation from 4 1o Bi .K"}l In view of this, we may assume that 7(1) = 1. That
we can also put £(1) = 0 follows by a slight modification of the reasoning in Theorem
2.13 of [B-P].

It has been observed elsewhere ([5, A-L]) that the symmetne or bosonic Fock space
often acts as a model for a heat-bath or reservoir. While the evolution of the state of the
combined system, consisting of the observed physical object and the reservoir to which
it 15 coupled, s given by a quantum stochastic differential equation (or equivalently in
the dual picture, by a quantum stochastic flow equation of the observables), that of the
observed subsystem is given by some Kind of averaging or expectation with respect o
the Fock variables. Thus though the total evolution is not given by a group, the evolution
of the observed subsystem is given by a quantum dynamical semigroup. However, in
maost cases of physical inlerest, the semigroup is expected to be only strongly continuous
and not uniformly continuous as has been assumed here. In this study, we are interested
only in the structural aspects of the theory and the more realistic cases of a strongly
continuous dynamical semigroup can often be discussed as a suitable limit of a sequence
of uniformly continuous ones and will be treated elsewhere.

2. A Coordinate-Free Quanium Stochastic Caleulus
Thus we shall assume that (1) = L, £(1) = 0 for the rest of the article. Our present

aim s W develop a coordinate-free theory of quantum stochastic caleulus, which will be
needed for constructing a dilation of (T )i=n.
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2.1. Basic processes. LetH |, Hz betwoHilbent spaces and A be a(possibly unbounded)
lincar operator from H) to H ) ® Hz with domain D, For each f & Hz, we define a
linear operator { f, A} with domain T and taking value in H | such that,

{f, A, v}y = {Au, v @ f) (2.1}

forw € T, v € M. This definition makes sense because we have, [{Aw, v @ )| =
lAwl] 1F10 v, and thus H; 2 v — {Aw,v & [} is a bounded linear functional.
Moreover, ||[{f, Al = |Au]| | Fll. for all k. € T, f € Ha. Similarly, for each fixed
weDve H,, Hr 3 f— {Au, v @ f) is a bounded linear functional, and hence
there exists a unigue element of Ha, 1o be denoted by A, satisfying

{Apu. fy={Am, v @ = {{f, A, v}, (2.2

Wi shall denote by (A, f} the adjoint of {f, A}, whenever it exists. Clearly, if A is
bounded, thenso is { f, Ayand |[{ £, A = |4 || F].Similarly, forany T e B{H | @ Ha)
and f € Ha, one can define Ty € B(H, H) ® Ha) by setting Tyn = T{u @ f). For
any Hilbert space H. we denote by T'(H) and T'/(H) the symmetric Fock space and
the full Fock space of ‘H. For a systematic discussion of such spaces, the reader may
be refemed to [Par], from which we shall borrow all the standard notations and results.
Now, we define amap § : T/ (H2) — T'(Ha) by setting,

1
S @@ - @g)= ZHG[I]@"'@,_{,{.:;[H]. (2.3)
£S5,

n— 1) 2

and lincardy extending it to H'Eﬂ . where 8, is the group of permutations of n objects.
Clearly, || 5]y,2# || = n. We denote by § the operator 14, & §.

Let us now define the creation operator a’ (A) abstractly which will act on the linear

span of vectors of the form vg®" and ve(g) (where g% denotes g @ --- @ g).n = 0,
—_——
H times
withv € D, g € H,. ILis to be noted that we shall often omit the tensor product symbol

# between two or more vectors when there 15 no confusion. We define,
|

SiAav) @ g% 2.4
i ((Av)@ g™ ) (24)

a (A)weg®) =

i

T
It is casy o observe that Z —I||.r1'l\'fl}ll\:.lg'ﬁ"‘f}|||2 < oo, which allows us to define
n!

=0

ﬂ+{r’1}|{ue{g}l} as the direct sum @ i nf{A}l{ug'S'k}. We have the following simple
n=i (n!)?

but useful observation, the proof of which is strmightforward and hence omitted.

Lemma 2. L1. ForveD, we Mg heHa,

d
{ﬂ+{ﬂ}{l'f{£}}. ne(h)} = (A, 0, Aielg), elh)} = E{f{g +eAy ), et e=n.
' (25)
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In the same way, one can define annihilation and number operators in Hy & TiHz)

for Ae BiH,. Hy @ Ha)and T € B{H | @ Ha) as:
alAe(h) = (A hluelh),

AT uelh) = ﬂWT,}}ﬂf{h}l_
One can also verily that in this case ﬂ+{r’1}l is the adjoint of a(A) on H) & E(Ha),
where £{Hz2) is the linear span of exponential vectors eig), g € Haz. Next, w define
the basic processes, we need some more notations. Let &y be a Hilbert space, £ =
LRy, ko), ke = L2([0, 1) ® ko k' = LA((1, 00)) ® ko, Ty =T k), ' =T(K), T
=" (k). We assume that & € B(h, h @ ky) and define Rf‘ hal;, - hal, &k for
t = Oand a bounded mterval Aoan (f, o) by,

RMuy) = P((ly @ xa)(Ru) @ ),
where ya : kg — &' is the operator which takes o o ya(- o for ¢ € ky, and P is the
canonical unitary somorphism from A L@ T o h @1 ® &£ We define the ereation field
ﬂ;{ﬂ.}l on either of the domains consisting of the finite linear combinations of vectors
of the form u; & _,f"':'-‘j'ﬂ orofu, @el ffoforu, eh @y, ffel, n=10as

al (A) =at(RD), (2.6)

where ﬂWRf‘}l carries the meaning discussed before Lemma 2.1.1, with T = £(H3),
Hi=h®@T;, Ha= K. Similady the two fields ag{A) and Ap{A) can be defined as:

ag(A)(uel( 1)) = '['[f{-"l Fishds)ue(f), 2.7
E

and for T € Bih @ kp).
Ar(A)ure(f) = a'(TE) (el ). (2.8)

In the above, Tﬁ‘ ch@aT, — h @@k s defined as,

Th(uay) = P(1® fa)(T(uf") @ ar), (29)

and T € Bih ® L2((t. 00), ko)) is given by, T{up)(s) = Tiug(s)), s = 1, and ja is
the multiplication by ya(-) on LE{{I, oa), ko). Clearly, | T|| = |7, which makes Tﬁ‘

bounded. We note here that objects similar to ﬂg{.}l,n;{.}l and Ap(.) were used in [H-
P2]. however ina coordinatized form. Inwhat follows, we shall assume that (H;);-q and
{H;}':a:] are two operator-valued Fock-adapted processes (in the sense of [Par]), having
all vectors of the form ve( f; )" in their domains, where v e b, f; € ke, ' & ' We
also assume that there exist constants ofr, f) and <" (r, f) such that for ¢ = 0,

sup | Hy (eed £ = cle. Fillell,  sup | H (wel £33 = e, Flleel. (2.1

0= =1 D= =1
W shall often denote an operator B and its tivial extension B E) 1 to some bigger
space by the same notation, unless there 15 any confusion indoing so. We also denote the
unitary somorphism from i @k @ Uik onwo i @0k @ &g and that from i @k & k)
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ontoh @ Uik @ & by the same letter P. Clearly, B P oacts on any vector of the form
w @ elg), where w € Ay ko, g € k and Usup | H; Plwe{gh|| = elt. g)|lw]. This
<5=1

allows one to extend H; P on the whole of the domain containing vectors of the form
welg), w € h@ky, g€k We denote this extension again by H, P. Similarly we define
H:P.Whun P is taken w be the isomorphism from f @ & @ Tik) onto A @ Tk @ &,
we define H P and H P in an exactly parallel manner,

Next we prove g few preliminary results which will be needed for establishing the
quantum [to formula in the next subsection.

Lemma 2.1.2. Let A, A" C {1, 0o) be intervals of finite length, R, § €
Bih . h @k u,ve h; g f ek Thenwe have,
(Haf(A)(ve(g)). Hla (A ue(f)))
= el SH{H, R velg)), HSY (ue(f)))
+{{f", H: R yve(go), (8", H/S[ yue(f)}}
= f ((H, PR)(ve(g)), (H,PS)ue(f)))ds
A’
- f f {{fs), H PR} (ve(g)). (g(s"). HPS)ue(f)))ds ds'. (2.11)
A A

Proaf For the present proof, we make the convention of wriling "r‘:,f]l_::m for the

IinﬁLJrEmwn{j'{sg] + l} — Filea)) whenever it exists, and R will denote {1 @ 34 )R €
Bih.h@kifor R e éi{f!.f! @ kp). Letus now choose and fix orthonormal bases {e, },..
and {kgteer of @ Ty and T respectively (r = 0). We also choose subsets Jy and Iy,
which are al most countable, of J and 1 respectively as follows. Let Jy be such that
{HPRalve(g)), ep @ k) =0 = e, @ ke, H PSa(ue( 1)) foralle € I whenever
v & Jp. Fixing this Jp, we choose fp tobethe unionof fy . ve p. n=1.2,..., o0,
such that

1 . .
{‘-'Lf'.'l =+ ;1H: PRa}e.-.t'ﬂm]l ket =0 = {ke, "-'{JFI ik ;{H: PS&’}'L«.-.JM[L]}}
for all @ % I, , whenn < oo, and
{e(g), ky) = 0= {ky. e(F')) for @£ I, 0.
We have now,
{Hya (Al (welg)), Hlall A" (el f)))
= 3 (Hiapy (A)veig)), ev ® kaller ® ka. Hag(Aue(f)

vedp
il

o o
= E ':;;'}'_"f"'fa'! +EH PR Ay vergey) Kalle=0) = ia'r'J feCf" + niH P S Doy et a)s Kardlg=0)
e )
el

a

2

= 3 o (N felg SO PRA Y, o) Kb €0 4 0O PS 00, et ) Het=)
|:|.=.|'|_|IEI i o £ &y
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2

2 . : 3
= 3 gy lets’ +e(H: PRaYe, wetg). eUf" +0UHIP S Ve ety Wle=omy)
efg

L L r ”
- Ee% FYHUHPRA ey vetmyr (HIP S A ey et fi))
rEdy

+ (PR Aoy vetgn £ 18 (H PS A ey el i)

Before proceeding further, let us justify the intermediate step in the above caleu-
lations, which involves an interchange of summation and limit, by appealing o the
dominated convergence theorem. Indeed, for any fixed o € Ty, o, " € &', if we wrile
kX for the projection of k. on ¥ in = 0), then {e{g’ + &), ko) can be expressed
as Yo "e!, where ¢ = ¥, '\“};‘,7{’;'}{3"3’”' ® v k), where g =
g @---@g', and 1,5‘3"” = W@ - - 6@ L L can be easily verified that the above 15 an
— — — —

I—times (1 —i)—times
ahsolutely summable power series in &, converging uniformly for £ € [0, M|, say, for
any fixed M = 0. Similar analysis can be done for {k, e( /" + mi")). By Mean Value
Theorem and some straight forward estimate, we have that for ey, &', 5" in [0, M],

> Ilelg" + ev).ka) — lelg" + £ W) ka))
el

X({ke, (" + nyr')} — (ko e(f" + 0’ IDI
ij.mMiti-2 (n) (m)
= Z s nlm! i i

EELINETN
O=i=p = j=m

(g — &) — )

i} enim=1} rnil} aim=t
x D1 @v® LK) (kD ST et )
we

f_f:‘,-;":-é—_,l-_z (") (m) P el L @l
= % 1| & Il @ |
HEJ. Walm! o A g 8 L 4 l

[since{k!'}, o1, are mutually orthogonal for any fixed n,

with [|k2)| = 1Va]

mallg" | £ (I + 1 D™ M A+ !
= ; W min! Sl

=i

This allows us o apply dominated convergence theorem.
Let us now choose a countable subset I of T sothat 0 = ((H, PRA),, veig)r ke =
ke, (HP8Sar)e, werryt for anotin &y, for all v e Jy.
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Clearly, we have
2, VHP R, vetg)s (HY PSA ey et )

= Z ((H PRaMve(gi)), ey ® ko) (€0 @ ko (HPSa ) uel fi)))
ve b el

= {(H; PRa)(ve(g:)), (H PS s Wue(fi))).

Fl 5 5 - .
We choose sequences o™, o™ of vectors which can be written as finite sums of the
|
() _ () 3] k- (4} (w) N 5 T LEC I P
fome™ =3 " @8 . 0" =31 Qa ., whern;" v €h, f7 ;] €

Arl

kg, and "™ — Ru, @™ — 5w as n — oo, Then we have,

| H: P(1 @ xa) (@™ @elg)) — H PRalve(g))|
< clt, g)|lw™ — (Rv)|| |A] — Dasn — oo,

where | A denotes the Lebesgue measure of A, Similarly,
| H P{l par) {u}’wl el i) —(H PSa el fi))|| — Oasn — oo. Hence we oblain

((H:P Ra)(ve(g), (H{ P Sa(ue( f)))
= lim (HP(1® a)@"e(z)), H/P(1® za)" e(f))

= A0 f (H (" ®eg) ® B"). H(Y u” @ e(f) ® &l xana (s)ds

= lim |ANA[{(H P)w"e(g)). (H P)o"e(fi))
= |ANA|{(H PR)(ve(g). (HPS)(ue( f)))

= f{H,PR{uf{g,}}, H/PS{ue( f;)))ds.

ArAd
Moreover,
Z{{H: Fﬂﬁ}e.-.ue[g;]' J”]' {31 {H:Psa’}e'p.m‘[ﬁ]}
ey
= E{{f’. Hy PR} ve(g:)), ev) lev. (g H/ PS4} (wel f1)))
vedy

= {{f'. HiPRalvel(g)). (g". (H/PSs) el fi))},

where the last step follows by Parseval’s identity, noting the fact that for v ¢ Jy,
{{F", HiPRaYuve(ge)), ey =0 because for such v, {((H; PR ve(g ), ep @ ke ) =0
for all @ € I; and similarly {e,. (g’ (H;PSa)}uel i)} = 0¥v & Jo.

We complete the proof by observing that

(f' H R = f{j'{s}, H,PR)ds, and
A

o HR Y= [ (g(s"), H PS)ds’.
'a*
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To see this, itis enough to note that forw € i, hy € &, we have,

{f", HiRM ) (ve(g), welh,)) = f{l[H; PR)(velg)). welh;) @ f'(s))ds,
A

which can be justified by considering '™ as before and applying dominated convergence
theorem.

Since A € {r, oo) and hence f'(s) = fis) fors & A, the above expression can now
be wrilten as

f{{H: PR velg:)), welh) fis)hds = f{{f{-ﬂ'}. HyPRy(vel(g ). welhy)ds.
A A

This completes the proof. 0O

Remark 2.1.3. If Hy and H/ are bounded, then (2.11) of Lemma 2.1.2 holds with u, v
replaced by arbitrary vectorsin i @ I, and f, g by the same in &',

Lemma 2.1.4. Let T. T € Bih & ky). Then we have,
((H, T2y ve(g)), (H/TE Yue(f)))
= [{HIPTP*{ue{g}g{:;}},HI'PT'P*{ne{j'}j'{:.-}}}d:.-,
&l’l'lﬁ"

and
& HTh) = f {g(s), H[T (s,
A

where T}’m eBih @ Tk), h ®Ck) 6@ k) is defmed in (2.9).

The proof is omitted since it is very similar to that of Lemma 2.1.2,

Lemma 2.1.5. Forn € kg, {5, H; PRyveig) = H(({n, Riv)eig)), wherev e h, g €
k.

Proof It iseasy w see that by virtueof (2.10), forevery fixed g, f € by € ky.tr =0,
{Hivelgh), ue ()} = {v, M} defines an operator My € Bih). Let My = M, @ 1,
Then we have, forw = v @, w =u®@ o, f € by, w, v eh,

(H; Plwelg)), Plw'e( f))) = (w, Mw").

By the density of hi@Egipko in h @ kg, we have that {H; Plweig)). Plw'e( 1)) =
{w, Myw”™ for all w, w' £ i & kg. Thus

{{n, Hy PRYvelg) nel £} = (H PU{Rv)e(g)). nelfln}
= (H; P((Ru)e(g)), Plune( )} = {Rv, Mi(un)) = {Rv, (M) ® n}
= {{n. Rjv, M} = {H ({5, Rivie(g)), ue(f)}.

This completes the proof, since the vectors of the fom wel flae ol m h® k). O
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2.2, Stochastic integrals and Lefi Quantum Ito formulae. Following [H-P1] and [Par],
we call an adapted process (Hir-p satisfying sup | Hyveig) || = ofr, g)|v| (for all
D=5 =1

veh, f k) tobesimple if H; is of the form,

L]
= ZH” Ko (1),
i=0
where m is aninteger (= D andO = <=n < - < by < Iy = oo If M denotes

one of the four basic processes ag, ﬂ; and Ayp and 7, and if (H;) is simple, then we
I I

define the left and right inu:gralsf H Mids) andf Mids ) Hy respectively in the natural
i} i

MLANNET:

L

[H_, M(ds) = " Hy,M([t;. tic1) N[0, 1]).
i

i=f
fM{d::}H_,- =Y M([ti tiz) N[O, F)H,
f i=i

We call H, to be regular il t — H(uel f)) is continuous for all fixed w € hoand f € k.
Also note that if H, is regular, then so s the extension By P. The next proposition gives
the quantum lto formulae for simple integrands.

Proposition 22.1. Letu,v € h; f.g € L*(By . kg);: R, S. R'. 8 € Bih, h @ ky) and
let T.T" & Bih & kp). Furthermore, assume that E.F, G, H and E', F', G, H are
adapted simple proce sses satisfying the bound given at the beginning of this subsection,
and that

I
X, = f (EAr(ds) + Fuan(ds) + Gyal(ds) + Hds )
r]

N

I
X, = L (E’ Ap(ds) + Flag(ds) + Glal.(ds) + H’d:.') i
Then we have,
(1) (first fundamental formula)
{Xyve(g), uel( ) (2.12)
I
- f ds {{{ f(s), Es PTyiay}+Fs {R. g(0)}+Gy (f(5), S)+HHvelg)), ue(f)).
0
() (second fundamental formula or Quantum Ito formula). For this part suppose that
f. g € KN L®(Ra,Kp). Then
(X veig), X juei £
! ¥ ¥ Fimd o N ¥
= ]; ds [{xh velg), l{gis].E.'_\P'!'J,-I_”:I+f-:.l (®, fi0)) + G, g, 5) +f1’_.|l[uf|f_f']]]|]

i
+ f ds [[{{ Fi5), Ex PTyrn)+ Fo (R, gis)) + G (F (50, 51+ Hadiveig)), Xouei £1]] +
F



A8h [, Goswami, K. B, Sinha

]
+_’:r d.ﬁ'[{E_-.P]':m_.,;.ia-elfg]]. ﬂjp;r}mmeu']]ll+-:E_\H'H,_\,u-eign. P8 el 1)
+ {c;_\ PSivelg)), ELPT ¢, (e _f']]]} + (G PEIve(g)), G P (uel 1']]}]. (213

Smee the proof s very similar in spint o the proofin [H-FP1, Par], it isomitied. However,
a comment with regard to the notation used above is in order. For example, for almost all
5 e B, the expression E; PTlve(gh)is to be understood as (E; @ L, VP T v @
elgh = (E@1 )P(Tv@g(s))@elg)) € h@T @ky. Thusthe operator £, P T, ;) maps
h@ET ino h ® U@ kg and therefore by the discussion in Subsect. 2_1,{_{'{:.'}, E, PT;.-[.;],"
maps i @ [ inte i@ T

For asimple integrand A, one can easily denve the following estimate by Gronwall’s
Lemma as in [Par].

Lemma 2.2.2. Letv, g, X; beas in Proposition 2.2.1 (ii). Then one has

1Xve(g)ll> <€ L ds[IH Es PTy(s) + G, PS}ve(g))|
Hillg(s). EsPTy) + Fo (R, g(9)) + (g(s). G PS) + H, Wve(g)I*]. (2.14)

The extension of the definition of X, to the case when the coefficients (E, F. G, H) are
regular is now faidy standard and we have the following result:

Proposition 223, The integral X; with regular cocfficients (E, F, G, H) exists as a
regular process and the first and second fundamental formulae av well as the estimate
(2. 1d) wemain valid in such a case.

Corollary 2.2.4. (i) Assume that in the above proposition E_F, G, H satisfy C =
sup;]E,EIU{HE_,-H + || EN+ NG+ HD = oo Suppose furthermore that R85, T
are functions of t such that t — Rit)hu, S(th, Tt are strongly continuons for u
belonging to a dense subspace D C Dom{R{r)) NDomi{S{t)) < handyr=u@ fir) €
Domi{T{r)) € h @ kg forall t € [0, 1] with | € C, the set af all bounded continuous
Junctions in LE{H:L, k). Then the integral:

'
X = f (Es Arlds) + Frag(ds) + Gnﬂ;{m'}' + Hyds)
0

defines an adapted regular process satisfving the extimate (2.14) with the constant co-
effwcients T, R, § wplaced by T(x), R(s) and 5(5) respectively.

(i) In the first part of the comllary, if we replace T(t), R(t), 5(t) by adapted processes
denoted by the same symbols respectively but with D replaced by T @y1g E(Cy), where
Oy = C M ky, then the conclusions as in (i) remain valid

Proof (i) Clearly we can choose sequences TV (1), RV(r), V(1) of simple coeffi-
cients such that TV (e, R0 and 5 () converge o T, R(u and 5t
respectively for poand ¥ as mentioned in the sttement of the corollary. With these,
we can define the integral X" (1) on u ® e(f) in a natural way using Proposition
2.2.3. The hypotheses of continuity of the coefficients will allow one 1w pass o the limit
in the integral as well by using the estimate (2.14). For example, || _,f:] Ei{Aqpimds) —
Arim(dsNue(HIF = CENle(AIP fHQL+ILFENIHIT ) —T™ () f (5)) 11 ds

— Dasm, n — oo. The estimate for [ X (rwe( f)]] will also follow by continuity.
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(i) This part follows easily from (1) with obvious adaptations. For instance, in the esti-
mate above we shall have instead || _,I:; E;[Agim (ds) — Agm(ds)ue(f)I* =
Ce' fods(1+ L FOIPINT? () = TN u @ e(f) @ FNIPle(f)IF. O

Remark 2.2.5 Instead of the left integral, one could as well have dealt with the dght
miegral _J:; Mds)H; and obtained formulae similar w those in Propositions 2.2, 1 and

Remark 2.2.6. (1) The Ito formulae derived in Proposition 2.2.3 can be put in a conve-
nient symbolic form. Let my(x) denote v @ 1y and mpix) denote v & lg,. Then the
lio formulae are:

agldt)mo(x)agldt) = R*mp(x)5dt, Ar(dDmo(x) Ar(dt) = Arggor(dt),
Ardngo(xaidn) = al. o c(dr), asd)do(x)Ar(dt) = ares,ostdr), and the
products of all other types are 0.

(i) The coordinate-free approach of quantum stochastic caleulus developed here in-
cludes the old coordinatized version as presented in [Par |. Let us consider for example,
for f € L*{R., kp), the operator Ry defined by Ry = u @ f. forw € h. It is casy
to see that the creation and annihilation operators ﬂ+{R‘f'}l. a(R ) coincide with the
creation and annihilation operators ﬂ+{_,f'}l and a i f) (respectively) defined in [Par | as-
sociated with f. Indeed, it is easy to see that (R ¢)y, o = (. v} f forw, v € f. Thus, for
gl € k {a(Rp)ve(g), ue(D)) = fz (le(g + {u, v} ), e))]e=o = ' {v, ) { £.1)
= {u, n};j%{f{g + £f ) el e=p = {u,:i}{n+{j'}lf{g}l, ell)}. It is also clear that {Ry. g}
= {f. g} and hence a(R ){ve(gh) = { f, glvelg) = via( fle(g)). Finally, the number
operator A({T) in the sense of [Par | for T & Bik) can be identified with A WET-

3. Quanium Stochastic Differential Equations

F.4. Egquations of Hudson—Parthasarethy (H-P) type. We consider the quantum stochas-
tic differential equations {g.s.d.e.) of the form,

dX; = X (ag(dt) + ag(dt) + Ar(dt) + Adr), (3.1)
dY, = (agldt) + al{dt) + Ap(dr) + AdDY,, (3.2)

with prescnbed nitial values f;]@ I and ﬁ] @ 1 respectively, with .f’;], ﬁ] e Bih), where
R.S5eBilh h@ky), T e Blh@ky), Ae Bih).

Proposition 3.1.1. The gs.de s {3.1) and (3.2) admit unigue solutions as regular pro-
CESNES.

FProof The standard proofs of existence and unigueness of solutions along the lines of
that given in [Par] (Sect. 26 for the left equation and Sect. 27 for the right equation) work
here also. For the iteration process in the case of the rght equation to make sense, one
has o take into account Corollary 2.2.4000) while interpreting the right integrals involved.
The estimates in the same corollary also prove the regularity of the solutions as well as
the estimates : supy_, . Al| X ue (] + [[Yue(F)I1} = clr, F)llull, foruweh, feC
and some constant off, f). O
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We now consider a pair of special g.s.de’s:

dUy = Ur{n;{df} + Ar_(det) —ar-gidt) + ((H — %R*R}df}, Uh=1, (33)

dW, = lagldt) + Aps_jldt) — .ﬂ;,R{dr}l —{iH+ %R*R}df}ﬂ-’,, Wo=1: (34)

where T is a contraction in Bih @ ky), R € Bih, h @ ky) and H is a selfadjoint element
of B(h). Then we have:
Proposition 3.1.2 (see [Mo] also).

() The solutions of both Eg. (3.3) and {3.4) exist as vegular contraction-valwed pro-
cesses and W, = UF.

() If furthermore T is a co-isometry, then Wy is an isometry, or equivalently Uy is a
co-Isomety.

(i) If T is wnitary, then Uy is a unitary process.

Proaf (i) We have already seen the existence and unigueness of the solutions L and W,
in the previous proposition. A simple caleulation using the second fundamental formula
in Proposition 2.2.3 and the rght equation (3.4) give foruw, v € hand f, g e C:

I
(Wivelg), W;uf{f}}—{vf{g}.ufl[f}}=[] (Wovelg) (g (s). (TT*=1) pisy) Wone( ),
(3.5)
which implies that W, is a contraction for all r. Since W, € B{h @ I'), an application

of the first fundamental formula in Proposition 2.2.3 shows that U, admits a bounded
extension (which we denote also by U} ) to the whole of i @ U and that UF = W,

(ii) The relation {3.5) shows clearly that W, is an isometry il and only if T is a co-
isometry.

(i) We note the following simple facts:

(a) For fixed g, f € LYNB., ko) M L>=(RB. . kp) and ¢ = 0, there exists a unique operator
M;r'g e Bih) such that {v, M;'"”u} = {Uvelg)), Urlue(fN}.

(b Setting J‘-"‘f‘-‘r:g = M,‘r'x @ lgy, we have for all w, w' € /@ kg,

Uy Pwelg)), U P(uw'e( ) = (w, M5 w').

It 1% an easy computation using the Quantum [to formulae (Proposition 2.2.3) w0 venfy

that,
I

(v, MI %0y — (velg), uel f)) = [ﬂ's[—{u, MIBT*R, Fis)iu)
i

— (e, {g(s), T*RIM] By + (v, MI® (g(s), Ryu) + (vg(s), MT#(T — D(uf ()}

+{1',:'r':"_$r"‘flfH s %R*R}u} + {v, (R, f{s}l}M_;.r'R“}

+ {vg(s), (T* — DM 2 fis)) + (v, (—i H —;R*R}M_;r"‘u}
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+ (Ru, M8 (Ru)) + (Ru, MIS(T — D(uf (s)))
+ {ug (). (T* — DM (Ru)) + (vg(s), (T* — DM (T — Diuf )1

Let us consider maps ¥, i = 1,... 5 from [0, oc) = Bih) to Bik) given by:
Yi(s.A) = —A{T*R, f(s)) — {g(s), T*R)A + A{g(s), R} — ’_lr{r’lR*R + R*RA) +
i[A, HI+(R, fis))A.Ya(s, A) = R*AR where A = A® 1y, ¥als, A) = (gls), {(T*—
DA+A(T =)+ (T*—DAT — D} sy} Yals, A) = ((T*—DA*R, f(s)}.¥5(s, A) =
((T* — DAR, £i5)}*. Then it follows that

T 5
{wr, M,I'HJ:!} —{velg), ue( 1} = [ {v, Z ¥iis, :"r-:"_;r'” It s,

=l

f.a 3
dM fg
d—; == Z Yi(t, JHI ).

i=l

We also have that M“:I'R = {elg)., e( f)}4 is a solution since the sometry property of
T implies that ¥i(r. ) = 0V i. Moreover, ¥i's are linear and bounded, hence by the
unigueness of the solution of the Banach space valued inital value problem, we conclude
that M;r""' = M:{"r" for all ¢, or equivalently that U; is an isometry. O

3.2. Fock modules. For any Hilbert space ‘H., we denote by A @ H the subspace of
Bih, h @ H) consisting of finite sums of the form 3} x; @ a;, where x; € A, o € H.
We also equip A &g H with an 4-valued inner product {-. -} on A &g, H by defining
r @o, v®& A8 = x*y{e. 8) and extending this linearly. One denotes by 4 @ H
the completion of A @, H under the operator norm inherited from Bih. h @ H). It
is casy o see that | X|| = |X*X| = (X, X}||i. This is a usual Hilbert C* module
with 4 being the underlying algebra. For a comprehensive study of such structures,
the reader may be referred to [Lan]. However, instead of the norm topology, we need
to topologize A ., H by the inherited strong operator topology from Bih, h @ H)
and the closure of 4 ®q, H under this topology will be denoted by A & H. Note that
AeH 22X, - X e A@H ifand only if Xyn — Xu ¥u £ h It is clear that
{-, -} extends naturally o both A @, H and 4 ® H; and they also have a natural right
A-module action, namely, (Xa)u ;= Xjau)fora e 4, X € A@-H or A& H.
For other applications of Hilbert modules in quantum stochastic processes, the reader is
referred to [A-L] and [Sk].

Lemma 3.2.1. Any element X of A® H can be writtenas, X = }_,_ ; o @ Yy, where
1V tae s is an orthonormal basis of H and x, € A The above sum over a possibly
uncountable index set J makes sense in the wsnal way: itis strongly convergent and Wu
b, there exists an at most countable subset J, of J such thar Xn = Em:jﬂ (Xelt) ® Vo
Maoveover, once {yo | is fixed, x5 are uniguely determined by X.

Proaf. Set xg = {ye. X} as pernotation of Sect. 2.1, Cleady, if X € A4 @4, H.xp €4
for all . Since any element of A @ H is a strong limit of elements from A ®,;, H: and
since A is strongly closed, if follows that x, € A foran arbitrary X € A® H. Now, fora
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fixed n € f, let J, be the (at most countable) set of indices such that Ve € Jy, v, € A
with {Xu, vy 8 pe} # 0. Then forany v € h and p € 'H, we have with ok = {Vas ¥ s

{(Xu,v@y)= Z cPiXu, v@ ) = Zc‘i{{ym X, v}

e, e,
= E (Tott, UH Ve, ¥} = tZ{rﬂ. & Yalu, vE@ ¥
e, wed,

thatis, X = ZuFJ Xy @ Ve in the sense described in the statment of the lemma. Given
{¥e} the choice of x;'s is unigue, because for any fixed o, {Vuy» X} = oy, which
follows from the previous computation if we take p 1o be py,. O

Corollary3.22. Let X, ¥ c A@H begiven by X = ¥ ;% @ Yo and ¥ =
Y s Yo B Vo as in the lemma above. For any finite subset I of J, if we denote by X
and ¥ the elements EuH. Xy (3 Yo aned Eaﬂ. Vo & Yo respectively, then imp{X;, ¥;) =
(X, Y where the limit is taken over the divected family of finite subsets of 1 with usnal
partial owdering by inclusion.

Proof The proof is an easy adaptation of Lemma 27.7 in [Par]. O

We give below a convenient necessary and sufficient eriterion for verifying whether
an element of Bk, i & H) belongs to 4 & H.

Lemma 3.2.3. Let X € Bih, h@H). Then X belongs o A@H ifand onlyif{y. X1 e A
Sforall y in some dense subser £ of H.

Progf That X & A& H implies {y. X} € AV p & H has already been observed in the
proof of the previous lkemma. Forthe converse, fisstwecliim that {p, X} € Aforall y in &
{where & isdensein H) will imply {y. X} € A forall y € ‘H. Indeed, for any p € H there
existsanet y, € £ suchthaty, — p,andhence [{y, X} — 0. X = lye—rIIX] —
0. Now let us fix an orthonormal basis {py e ey of H and write X = Z{}«'a, X)® vy
wed

by Lemma 3.2 1. Clearly, the net X indexed by finite subsets T of J (partially ordered
by inclusion) converges strongly to X, Since X7 € A @4, H for any such finite subset
Tias{yg. X} .4 ¥ @), the proof follows by noting that .4 is strongly closed. O

In case H = Cik), we call the module A & Cik) as the right Fock 4-module over
k), for short the Fock module, and denote itby A @ T,

3.3, Selution of Evans—Hudson type g.s.de. Inthe previous subsections, we have con-
sidered g.s.d.e.’s on the Hilbert space i @ I Now we shall study an associated class of
g.s.de.’s, but on the Fock module 4 @ T, This is closely related to the Evans—Hudson
type of g.s.d.e’s ([Ev, Par]).

For this part of the theory, we assume that we are given the structwe maps, that
is, the triple of nomal maps (£, 8§, ), where £ € Bid),d e Bid, A@ky) and o &
Bi A A® Biky)) satisfying:

S eoxi=mix)—x @I, = T%r® I, )E — v & I, where T is a partial isometry
in fi @ kg such that 7 is a #-representation on A,

(82) dix) = Ry —w(x)R, where B € Bih, h & ky) so that 4 is a m-derivation, i.e.
dlxy) = 8(x)y +m(x)d(y).
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(53) Cix) = R*7(x)R +{x + x*. where | € A with the condition £(1) = 0 so that £
satisfies the second order cocyele relation with § as coboundary, e,

Lix*y) —x"L(y) — L(x)'y = 8(x)*8(y) Vx, y € A.
Given the generator £ of o g.d.s., that one can choose ky and E such that the hypotheses
(511453) are satisfied will be established in the next section.
To desenbe Evans—Huodson flow in this language, it is convenient to mroduce 4 map 8
encompassing the triple (£, 8, o) as follows:
Lx) 87(x)

Hir) = (MI} a6 ) (3.6)
where x € A, 8 (x) = 8(x*)* : h @ ky — h, so that ©(x) can be looked upon as a
bounded linear normal map from b @kp = b & (T @ ko) into itself. It is also clear from
(51)-(53) that & maps A into 4 & Bky). The next lemma sums up important properties
of 8.
Lemma 3.3.1. Let @ be as above. Then one has:
(1) B)=¥)+Kx1)+xd II.T_.}K*‘ (3.6)

where W : A — A® Biko) is a complerely positive map and K € Blh & ko).
(i) B is conditionally completely positive and satisfies the structure velation:

Oxy) =0(x)y® 1) +(x®1:)0(y) + B(x) 0O (). (3.8)

= 0 0
where (} = (ﬂ lh-mu) ;

(iii) There exists D € Bih ® ko) such that Bl =llx@l )DLV ch® ko.

Proaf Define the following maps with respect to the direct sum decomposition f Rkp =
he(h@ ko)

= 00 & x 0 / 0 = 1 O

o (R —f) A= (um[x}) e (R —élwu) ek (n E)'

Then it is easy to see that (i) is verified withW (x) = R*Z*(x ® 1 )R = R*# (x)R.
Clearly, W s completely positive. That 8 1s conditionally completely positive and sat-
isfies the structure relation (3.8) is also an easy consequence of (i) and (51)-(53). The
estimate in (i) follows from the structure of W given above with the choice of D as

D=|IERI ER+IIK|l L g + K*. O

We now introduce the basic processes. Fix ¢+ = 0, a bounded interval A < (1, o2),
clements xy, v, ... .1, € .4 and vectors fi, f...., fi € k;u € h. We define the
following:

(aa{auz 5 ® el m}) u=")" azun(A)ue(fi)),

=l =l

(a;{a.}{z 5 ® el jj-}}) u=> al (A)uelf)),

=l =l
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(ﬂa{m{Z x5 ® ef fi-}}) w=Y" Agp(A)ue(fi)),

(I::M}{E 5 ® el ﬁ}}) w=_ |ANLE ) ® el /i),

where | A| denotes the length of AL

Lemma 3.3.2. The above processes are well defined on A®,,,E (k) and they take values
in A@ (k).

FProof First note that e{ f1). ... . e{ ) are linearly independent whenever f1... .. fu
are distinet from which itis casy o see that Z:;| xi@el fi) = Dimplies x; = 0¥i, when-
ever fi's are distinet. This will establish that the processes are well defined. The second
part of the lemma will follow from Lemma 3.2.3 with the choice of the dense set £ tobe
E{k) and H =T (k) and by some simple computation, noting the fact that £, 8, o are strue-

ture maps. For example, {f{g},ﬂ;{&}{x el 1) = le(g), el j'}}f{g{x},ﬁ{r}}dﬁ e
A
A, which shows that the mnge of ﬂ; is in A @ k). Similarly, one verifies that
(e(g). Ag(A)x @ el(f))} = (e(g). e(f)) flg(s).o(x)fmids € A, since a(x) €
A
A@Blkg). 0O

Mext, we want to consider the solution of an equation of the Evans-Hudson type
which in our notation can be writlen as:

'
g = id agr + f Jyola +as+ Ao +Ioldr), 0=t <1, (39)
1]

where the solution is looked for as a map from A @& T into itself. For this, we first need
an abstract lemma which allows us to interpret the above mtegral on the right-hand side
and to get an appropnate bound for such integrals.

Lemma 3.3.3 (The Lifting Lemma). Let H be a Hilbert space and V be a vector space.
Let fi: A @ap V — A& H be alincar map satisfving the estimate

1Bx @ plull = cyllix @ Ly ru|| (3.10)

Sfor some Hilbert space H™ and v € Blh h @ H") (both independent of w) and for
some constant ¢y depending on . Then, for any Hilbert space H', we can define a

map f: (A@H)Bag V= ARHOH I WWAGx® [ =P NS ffor
xe A neV, feH. Moreover ﬁ admits the estimate

[1B(X @ mul| = cyl|(X ® Ly)rul|. (3.11)
where X € A®@ H'.

Proaf. Let X e A®@H begiven by the strongly convergentsum X = 3} 1y @y, where
xe €A and {e.} 15 an orthonommal basis of 1. It is easy 1o \-tril;y that IIJE'{Z o Bey @
mull’ = FIIB(xe ® Mull® < ; 3, [1(xa @ Iy drull® = cil(X ® Iy )rull®, and
thus ﬁ 15 well defined and admits the required estimate. 0O
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Corollary 3.3.4. [fwertakeV = Cand identify A@qe Vwith A, then i : A — A@His
a bounded novmal map and § is also a bounded normal map from Az H 10 AgHeaH'.
The proof of this corollary is a simple consequence of the estimates.

We now wunttutjl:linc_ll:; !f'{:.'}lu{n;+ﬂ5 + Ay +Tri(ds), where ¥is) : A@mgﬁ{k} —-
A @ Cik) is an adapted strongly continuous process satisfying the estimate

sup [[¥{){x @ el fhu]] =[x & ly»)ru]l, (3.12)
=1 =6

for x € A, f e C and where H" is a Hilbert space and r € Bih, h @ H"). In this the
integrals corresponding to a3 and Zp belong to one class while the other two belong to
another. In fact, we define ft; Yisholas +Zpdds)(x @ el f)) by setting it to be equal
t{}f!; Yisd((Lix) + {(8(x*), Fis)y) @ el f))ds. For the integral involving the other two
processes, we need to consider ¥ (s) - A @ ko @ Elk;) — A @ Ty & ky as is given by
the previous lemma and fix x € A and g € C (see Corollary 2.2.4). Define two maps
SG) h®@agE(CG) = h@Ts @kpand Ti(s) 1 h @ag EWCs) @ ko — h @ T @ kg by

S(sYue(f;)) = Y (s)5(x) @ e( f; u,
and s
Tishue(g:) @ Fls)) = YisHo(x) pin & elgs)u.
By wvirtue of the hypotheses on Fis), the lifting kermmma and the fact that 5 — e{gg) is
strongly continuous, the families § and T satisfy the hypotheses of Corollary 2.2.44i11).
Therefore we can define the integral _,I;; Fisho{Az(ds) +ﬂ;{d:.'}{.r el f1u by selling
it to be equal w0 (JI:; Arids)+ n;{d;,-}) we( ). Thus we have:

Proposition 3.3.5. The iniegral Z(t) = th; ¥is) o {ﬂ; +az + Ay + Tp)lds), where
Y ix) sarisfies {3.12) is well defined on A Ealg E(C) as a regular process. Moreover, the
integral satisfies an estimate:

IHZ()(x @ el )lu]]” < 2¢' fn expllF IPHIY ()(O(x) 4, ® e(f)ull* +

I{F(s), FsHB(x) piey ® el fiul[* N, (3.13)

where © was as defined earlier, ¥(s) = Y (s)@ Y (s) : A@ kg B £(C;) = ABT @k,
fiz) =1 fis)and f(s) is identified with O & f{s) in kp.
Proof. We have already seen that the integral is well defined. The estimate (3.13) follows
from the estimate (2.14) in Comllary 224 by setting £E = F = G = H = 1 and
recalling the definition of &, O

Now we are ready o prove the main result of this section .

Theorem 3.3.6. (i) There exists a unigue solution J, of equation (3.9), which is an
adapted regular process mapping A ® E(C) into A @& U. Furthermore, one has an
estimate

sup || (x @ e(g)u]| = Clig)l|(x @ Le iy Enotell
0= =1y
where g € C. k = L2([0, tp]. ko), E; € Bh, h @T (k) and T ¥ (k) is the full Fock
space over k.
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(i) Setting fix)ue(g)) = Ji{x @ elg)u, we have
(a) {j(x)ue(g), ji(yivel )} = {uelg), jilx*vive( )} Vg, f € C, and
(b) Jj; extends uniguely to a normal s-homomorphism from A inte A & B(T),
(iii) {f A iv commutative, then the algebra generated by {jiixir € A0 = 1 = iy} is
COMMmMutanve.
(iv) fi(1)=1¥r € [0, ] if and onlv if Z*E = 1pe.

Proaf (1) We wnte for A C [0, o0), M{A) = as(A) + ﬂ;{ﬂt}l 4+ Ag (A +Zp(A), and
set up an iteration by

J:["_:I ]{.r ® t’{f}}l — [] I{[Jr] o Mids)(x @f{f}}, JI[U]{I@ E'{_f}}l _ig @f{f},

with v € Aand f € C fixed. Since 7' = M([0,1]), 7'V is adapted regular and
has the estimate (by the defimtion of M{A), estimate (2.14) and Lemma 3.3, 1(1i1)):
I x@e(f)ull? < delle(HIP f dsO ) @@ FENIPINFEIP < 4lle(f)l]2eo
o dsllF)IFx ® 1)Du @ fls))II*. For the given £, define EV  h s hok
by (E/"u)(s) = Diu ® f(s)]| fils)I]), where fi(s) = x10.1(5) f(5). Then the above
estimate reduces Lo

5" (x @ e(Mull® < Hie(HIFIx @ 1) ENull. (3.14)

Now, an application of the lifting lemma keads 1o

70X @ el Pl < Hle(HIPe®(X @ 1)E ulf,
for X € A ® kp. where as in the previous proposition, J’,“] = J:[” & J’,“]. As un
induction hypothesis, assurme that J;[”] 15 4 regular adapted process having an estimate
1" (x @ e(Nul? = C el HIPI(x @ 1jon ) E;ul|?, where C = de, E;™ : h —
h @ k%" defined as:

(B )51, 52, . .s0) = (D ® Lign-0) Pul(EL ™V u)lsa, . ..s0) ® Fls1) Il s 1)1}

Furthermmore, P, - h@f’ﬁm 2 1‘2].{::] — h 12].{':]12].3:@'” G 15 the operator which interchanges

the second and third tensor components and E}m

= lg. Then by an application of
Proposition 3.3.5 one can verily that J’I['H ' also satisfies a similar estimate. Thus, if we

put =Y, 2" then
Itz @ e(fNull = D 114" (x @ e(f)ull

n={l

20
= e Z Cﬁf‘{:i! _'%H{T ® g )n .}i E;["]HH
n=f)

i cn %
::ueu'}n(zr_.) 11(x ® Ly g ) Extll. (3.15)
n

n=il ;
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where we have set E; th — A ® I"-r{.i“'} by Exn = @::3:“{!!!}1 E;"]u. Itis easy Lo see
that

IEw? = ()3 EMu)®

n=i)
< |l Y _(nh DI I f dsy ....dsill F Nl - . F ol
n=ll (<8 <81 <...50 <F
= Il Y )" DI ey r)",
n=l)

where ppit) = JIH Itf{s}l |[4d:.'. The estimate (3.15) proves the existence of the solution
of Eq. (3.9), as well as its continuity relative to the strong operator topology in Bif).
The unigqueness of the solution follows along standard lines of reasoning.

(i) First we prove the following identity:
(fr(x @e(fNu, J(y @ e(g)v) = {we(f), Ji(x"y @ e(g))v). (3.16)

For this it is convenient o lift the maps J; to the module 4 & ¥ (k) Eag E(C), that is,
replace A by A® '/ (ky). Wedefine J; : A @ T/ (k) ®a1, EC) = ABT® T (ky)
by f; = (J; @ id) P, where P interchanges the second and third tensor components.
Recalling from Sect. 2 that B(x); € Bth,h @ ky) for x € A.¢ € ko, we can define
B : A— Am .ﬂ:g] by B¢ (x) = B(x);, and extend as above to '-’.--?IT; :A® 1"-"'{.{:.;]} —
A® T/ (k) by setting B, | o™ = O ®id . By the lifting lemma, both J; and
lfi-ri:; are well defined and enjoy the estimates as in Theorem 3.3.6 and Lemma 3.3, 1(11)
respectively.

Mext, note that for fixed f, g € Cand x, v € A, one has using Eq. (3.9) for J; and
quantum Ito formula (Proposition 2.2.4) and the structure relaton in Lemma 3.3.101):

{Jx @ el fin, iy @elghviixe @e(f). yv @ elgh)
I e e
+ f ds{F,(© iy, () @ e(f N, Jy (v © &) ® e(g))v)
0

{3.17)
+ {(L(x @ Fls) @ el Fhu, J(8;.(v) @ elg)v)

4+ {8 55 (x) ® el )i, T (O (¥) @ e(g)lv}),

where fi{s)and g{)in kg are identified with O fis)and OF gis)in .I:".:] respectivel y. We
claim that the identity above remains valid even when we replace v v by X, ¥V € A®
I"I{fu} and B¢ (x), B¢y by ﬁ.;{X}, ﬁ; i(¥) respectively, where £ is one of the vectors
f'{:.‘}l, gl?:.'}l, fix ) and gix). To see this, it suffices o observe that in the resulting identity,
both left and rght-hand sides vanish it X € 4 ® Ir:]@k and ¥ € A& kh;]ww withm #n,
and then use the definition of f; and @t to prove the identity for X, ¥ € 4 Halg k“g]gw

Finally, use Cormllary 3.2.2 and strong continuity of J; obtained from the estimate in (i)
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to extend the identity from X = E Yp Beg, ¥ = E.'I-'a @ e (finite sums) to arbitrary
X and ¥. Thus one has upon selting

QX ¥) = {(HX @e( e, (¥ @e(gv) — (ue( f), J (X, ¥) @ e(g)v)

the equation:

GAX, ¥)= | ds{D(O: (X) Tooyl¥
(X.¥) j:] {0 B (X, Ty (1) s

+ D, (T (XD, Oaia)(¥)) + D40 i) (X). Oy (YD)}

fix)
where (X, ¥} is the module inner productin A& I"-r{.ﬁ]} and we have set for £, ny, ...y
[ .ﬁ] the map J':;{.r Bn... B8 =x8m...8n, &, and extend 1t naturally as
a map from A4 & I"-r{.{'“:]}l to itself. It is clear that the estimates in Lemma 3.3, 1(1u) and
Theorem 3.3.601) extend Lo

18 (X)ul| = |I(X @ 1 ) D@ L)

and

3P 13X ® e(ull = €O @ Ly i) Bl

==y

From the above estimates and definition of @, it is clear that |9, (X, ¥
= leellliv X NNYINEGNC (@M ER T (F) + lle( £)l}. This implies, by iterating
the expression (3.18) sufficient number of times, that ©X, ¥) = 0 which leads
to ®x,y) = 0for all x.y € A Since {(velg), ()7 me(fi))} = (K(x*®
e(g)u, Y} we( f;)) by the above identity, it follows that j (x) is well defined on b @y,
E(C), and thus (ii)(a) is proven. The proof of (ii)(b) and (iii) are as in [Ev] and [Par]
respectively. For (iv), we note that (1) = 1 forall ¢ if and only ifd {1 @e(fHin =10
Yueh, fel;and from Eq. (3.9) and (S1) it is clear that this can happen if and only
if 0 = [; ds{ue(f), Js o (Ax+z_r(ds)ve(f))} =— [y ds{ue(f), Ji({f(s), (Z*T —
Nt @el fivilorallt, since w{1)d = 4. Bulthis is possible if and only if {£, (E*E —
Ne} =0% ¢ € by which s same as E*n =1 0O

4. Dilation of a Quantum Dynamical Semigroup

In this section, first a unitary evolution U is constructed in f & I such that the vaccum
expectation of _,r'f]{.r} = Uix @& lr}lUI* gives back the g.ds. 7; that we started with in
Sect. 1. However, _,r'f]{.r} in generil will not satisfy a flow equation of the Evans—Hudson
type. Hereitis also shown that there exists a suitable choice ofa partial isometry in i kg
such that the above kind of flow equation can be implemented by a partial isometry-
valued process in i @ IW. I is o be noted here that in [H-5] an Evans-Hudson type
dilation was achieved with .4 = B(h) for a countably infinite dimensional fi only.
Before proceeding further, we note the following two theorems whose proofs can be
found in their respective references .
Theorem 4.0.1 ([C-E|). Let (Ti);=n be a conservative uniformfy continuows g.d.s. on
Awith £ as its generator Then

(i) There is a wital normal #-representation p of A in a Hilbert space K and a p-
derivation o A — B{K) such that the set T = o (x)u|x € A, u € hi is tom! in
L
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(i) Furthermore, there exists B € Bih, K) such that w(x) = Rx— p(x) R, and Cix) =
R*p(x)R — LR*Rx — LxR*R + i[H. x| with R*p(x)R € A¥x € Aand H a
selfadjoint element in 4.

The property of g-denvation has already been introdoced in (52) of Sect. 3 and note

that the above pair (£, o) satisfy the cocycle relation (53) in Sect. 3.

Theorem 4.0.2 ([Dix]). Every normal #-representation p of a von Neumann algebra A
in a Hilbert space K is of the form p{ix) = I l*{.r @ g, VE ), where k) is a Hilbert space
and T\ is a partial isometry with initial set K and final ser h @k such that the projection
P, = T\ commutes with x @ 1y, jor all v € A If p is unital, then LTI = 1.
Maoveover, in case h is separable, one can choose k| to be separable also.

4.1, Hudson-Parthasarathy (H-P ) dilation. Let p, e, R be as n Theorem 4.1.1 and X,
asin Theorem4.1.2. Then set R = LR, R € B(h. h ®k;) sothat R* = R*E7] and we
hawve

R*(x® 13)R = R*ZH(x ® 13, )T R
= R* p(x)R.

Also, o
R*R =R*ETE|R = R*R, as ETE| = lx.

Mow, we take the unitary process Ly which satisfies the following g.s.d.e. (as in Sect. 3.1)

R*R)dt), Up=1I. (4.1)

I | —

dU; = Us(al(dr) — aglde) + (i H —

Let T' denote T(L*(R. . k1)). Taking j%(x) = U (x ® 15)U;*, we see that for each
t, jﬁ]{-}l 15 4 #-homomorphism. We now claimthat {ve (0}, _,rf]{r}uf{[}}} = {v, Ti{x)u}.To

prowe this, itis enough to show that {ve(0), %_{f]{r}{ue{[}}}} = {v, T{ £{x ). and this

follows from the quantum Ito formula for right integrals as mentoned in Remark 2.2.5.
Indeed we have,
I

HMMWHU®hwﬂmwﬁ=fmwmuﬁwumeh
0

where
* ]' : ]' * w
£ix) = R p(x)R — ;R Rx — ;.rﬁ' R+ i[H, x|
- i How  Home
=R{x@ 1R — ;R Rx— ;.rﬁ' R+i[H. x].
Thus, if we denote by Ey the vacuum expectation map which takes an element G of

Bih @T) to an element EgG in Bih) satisfying (v, (EqGu} = {ve(0), Giue(0))} ifor
u, v € h),then

da
m&ﬂm=ﬂﬁmmx

which implies (since £ is bounded), that Eq j¥(x) = T;(x).
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A simple caleulation using the gquantum [to formula and Eqg. (4.1) shows that

: t
djf(x) = Usla),,,(dt) — agu(dt) + L{x)dr U}, (4.2)
where aix) = Rx— (x@ 1y, }ﬁ' = E|[Rx — p(x)R], for x € A Ingeneral, o{x) may
not be in A @ k) and therefore Eq. (4.2) is not a flow eguation of the Evans-Hudson

type. However, in case A = Bh), it is trivially a flow equation.

4.2, Existence of structure maps and Evans—Hudson dilation of T,. In the context of
Theorems 4.1.1 and 4.1.2, it should be noted that in generul K need not be of the form
h 2 k" and neither p or @ be structure maps as defined in Sect. 3, that is, p need not be
in A& Bk nor e{x) be in 4 & k' However, the following theorem asserts that one
can “mtate” the whole structure approprately so that the “rotated”™ p and o (denoted &
and 4 respectively) become structure maps without changing £ (see also [P-S]).

Theorem 4.2.1. Let T; be a conservative norm-continuous g.d.s. with generator L. Then

there exist a Hilbert space by, a normal s-representation m © A — A ® Biky) and a
7 -derivation § of Ainto A& ky such that the ivpotheses (8 1)—(53) in Sect. 3 are satisfied.

Proaf (i)Let{p, o, D) beas in theorem 4.1. 1. We define amap p” - 4" — B{K), where
A denotes the commutant of 4 in Bih), by

plaeximy=w(x)an,x e A, neh, acd, (4.3)

and extend it lineady to the algebraic span of T
To show that it is well defined, we need to show that whenever Z:":| alxiu; =10
for x; € A, i £ h, one has p'{ﬂ}{Z}"_l o lxphe) = 0. Since o ) a(y) = L(xfy) —

E{_rl.*}_r — .r;‘ Livie Afory e A hy_thu comments at the end of Theorem 4.1.1, we
have fora € A7,
i1} i1}

iﬂ’{ﬂ}{Za{xﬂru}. a(yjv} = Z{ﬂ{r;}ﬂm.a{_r}v}
i=l i=l
= Y wi.a*atu) ey}

i=l

m (44)
= Z{ru. a(x ) a(y)a®v)
i=l
m
= {Z afxu;, olyla*v},
=l
thereby proving that o' is well defined. A similar computation gives,
L] L] "
e @) (Y erlxdu) |2 =D D {ui, a(x ) alx;)atau;). (4.5)
=l i=l j=I

Denoting the operator o Vo () by Ajj, and noting that A = ((Aij;) )i j=1, _m acts as
a positive operator on it & ..o @ &, which commutes with the positive operator C @ Ty,
—_—
m onpics
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where C = ||a III.l — a*a and [, denotes the identity matrix of order m, we observe that
AlC @1, ) isalso apositive operator. Thus, considering i\ Bua@ .. . Bu, e h@ ... B h,
plat st E g v
m oopics
the right-hand side of (4.5) can be estimated as:
il L
ZZ{H"‘ alx; alx)a*au;)
i=1 j=I
/] i
= lal® > i el Y alx ujy)
i=l j=I
il

=) elxi)u | lal.
i=l1

proving that || p"(a)]| = |lal| since T is total in K. Itisalso easy to see from the definition
of p" and (4.4) that it is a unital #-representation of A" in K. Next we show that o' is
normal. For this, take a net {a, } such that 0 < a, t a, where a,,a € A" Itis clear from
the definition of " that p"(agJe(x)u — p'(a)al(xiu for all x € A, u € h, and thus,
p'lag) ", p'la) on K by totality of D in K and since | p'{ag)|| = llagl = |lall ¥ o
() By (i), o' : A" — B(K) is a unital normal *- representation. By Theorem 4.1.2,
there exist a Hilbert space k2, an isometry o 0 K — b @ k2 with K2 = RanZs =K
satisfying,

plla) =E3(a ® 1) Xa, (4.6)

and for all @ € A", a & 1, commutes with P2 = E2EJ. Let us now take 3(x) =
Tra(x), 7 (x) = Eap(x) I3 Itis clear that 4 is a 7-derivation. M{}rmwur,ﬁ{x*}*g{_v} =
ﬂ{.r*}l*E;Egﬂ{}‘}l = a(x*Fo(y) and hence Cixy) — xLiv) — Lix)y = E{x*}l*.’}{}'}
holds. Taking R = T2R € Bih. h ® k), we abserve that d(x) = Taa(x) = Za(Rx —
MRy = Ry — .ﬁ'{r}lﬁ. It is also clear that £(x) = R*7 {.r}lﬁ — ,—iﬁ*ﬁ'r — %.rﬁ'*ﬁ -+
i[H x]= R*p(x)R — }R*Rx — LxR*R + i[H. x].

To show that §(x) € A@ k> forall x € A, it is enough (by Llemma 3.2.3) o verify
that for any [ £ k2. {f. 5‘{.:’}} £ A, or equivalently that {j;E{.r}l} commutes with all
ac A ForfekaeA nvehxedsincePrandia ®lg,) commute, we have,

(f S )au, vy = (§(x)aw, v @ f)
= {Za(x)au, v @ f) = {Tap'(@)a(x)u), v @ f)
= {E:E3(a ® 1) Toa(x)u, v @ f)
= {Prla® lg,) Era(x)u, v@ f}
={{la ® lp)E: 3 Laai(x)u, v ® f)
= {Ea(x)u, (@*v) @ f} = ({f. 5(x)u,a*v)
= {alf. §(x))u. v).

Next, we want o show that 7ix) € A & Biks) for v € 4; and for this it is cnough
to verify T{x)a @ lg,) = (@ @ lp)aix) foralla € A’ Since E3 P = (), and since
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T2 is total in Kz, it suffices to verify that 7(x)a @ 1 )P = (a @ lg)7ix) Py, or
equivalently that T{x)a & g, ) Toa(yu = (@ @ 1,7 (x) o (¥, for all y € A,
i = fi. For this, observe that,

d{xha @ 1 ) Eaa (v = E2p(x)E3a @ L) Taalyn = Eaxpix)p'{adoe(vin

= Top(x)a(ylan = Lo (xylan — Toa(x)yan = Tap'(ale(xy) —a(x)y)u
Eap'(a)pix)aiyiu = 25 (a @ 1, ) Zap(x) B3 (Toa (v)u)
Pola @ 1) (x W Zaa (vh) = (a @ 1 )7 () Eao (¥)ue).

(iii) It follows from the above and Theorem 4.1.2 that 7 (x) = D EJ(xr @ 1), 2 =
T*(x @ 14,)E onh ® k so that E is a partial isometry with initial set Pa(h ® ka) and
final set Pi{h@k)). Nowsetho =k @l and E = £ 40 h@ky — h &k with initial
set (0 Padih @& kg) and finalset (Pr@Mih & k) and mix) = 7 (x ) E0 8 (x)n = d(x)u
for v & A.n e holtis clear that {x) € A& kg, mix) € A @ Bikg) and (S1)-53) arc
satisfied. O

Remark 4.2.20 Although o was assumed to be unmital, 7 chosen by us s not unital.
However, in some cases it may be possible to choose X, kg in such a manner that m s
umital.

We summarise the main result of this section in form of the following theorem:

Theorem 4.2.3. Let (T} )i=0 be a conservative norm-continuons g.d.s. with £ oas its
generator: Then there is a flow J;, @ A®@ EC) — A& T satisfring an Evans-
Hudson rype gade (3.9 with strucrure maps (£, 8, a) sarisfving (81)-(53), where
I = I"{LI{JR_, kp)) and C consists of bounded continnous functions in LZ{JR_-, ko),
such that fo(x) defined in Theorem 336 is a (not necessarily unital) # -homomaorphism
of Ainto A& Biky) and Eg i (x) = Ti(x)¥Vx € A

FProgf The proof 15 immediate by (1) observing the existence of structure maps 4 and
a satisfying (51),(52) from Theorem 4.2.1, {ii) observing that £ satisfies (53), and
finally (iii) constructing the solution J; of Eq. (3.9) with structure maps (£, 4, o) as in
Theorem 3.3.6. That By f{x) = Tiix) ¥x € A follows from the g.sd.e(39). O

Remark 4.2.4 With reference 1o the last sentence in the statement of Theorem 4.1.2,
it may be noted that both the Hilbert spaces &) and &2 and hence & can be chosen o
be separable if the initial Hilbert space h is separable. In such a case, if we choose an
orthonommal basis {e;} in Ay, then the estimate for & in (82) 1s precisely the coordinate-

free form of the condition
i 2 i 2
3 lppul? = Y llxDjul|
= J'EIU

with 377, [1Dgul|* < eq|lul|® in [Mo-S]. The similar conditions on p';(j # 0) as in
[Mo-5] is trivially satisfied by {{uﬁ-}}ﬁ-=l = g and for ;;H = { as can be seen casily
from (51) and (53). It may also be noted that j; satisfies the E-H equation dj(x) =
Z-ul- j}{nﬂ-{r}}dﬂf{r}, with jy = id, in the coordinatized form with the appropriate
choices of _uj-'
coordinate-free modification of the old coordinatized E-H equation given above.

s in terms of £,8 and o as above. The flow equation (3.9) is in fact a
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4.3, Implementation of E — H flow. Combining Theorems 4.1.1 and 4.2.3, we see that
forx e A mix) =E(x @ 1, )T*

e A @ Biky), dix) = Rx —x(x)R € A @ ky for a suitable Hilbent space &y, R €
Bih, h @ kg), T apartial isometry in h & ky. Now let us consider the H-P type gs.d.e.:

1
dV; = Vi(ap(dn) + Ax—1(d1) — az-p(dl) +(H — SR*R)N, Vo= 1. (47)

Then by Proposition 3.1.2, there 1s 2 contraction valued unigue solution ¥y as a regular
processon h @ I The following theorem shows that every Evans—Hudson type flow J;
satislying Eq. (3.9) 1s actually implemented by a process Vi saisfying Eqg. (4.7).

Theorem 4.3.1. Every flow J; satisfving Eq. (3.9) is implemented by a partial isometry
valued process Vy satisfving (4.7), that is, Jix @ e{fim = Vix @ 1p) Vue( ).
Furthermore, the prajection-valued processes Py = Vi V" and Q; = V.V, belong 1o

A@BiT)and A" @ B(T) respectively.

We need a lemma for the proof of this theorem.

Lemma 4.3.2. [f B is a von Newmann algebra in BUH) for some Hifhert space H and
pis a projection in BUH) such that B 3 x — pxp is a s-homomorphism of A, then
pebl.

Proaf af the lemma. Let g be any projection in B, We have by the hypothesis that,

pap =pq"'p=1{(pgp)" ¥nz=1l.

But

_pap-pqp...

(pap)" =(pg)"p = (prqlp=pnrq.

n times

by von Neumann's Theorem, where p g denotes the projection onto Ran(p) 7] Ranig).
Thus we have, (gp)*gp = pgp = p g, which implies that g p is a partial isometry
with the initial space Ran(p ~ g) and hence gp.p A g = gp. Butgp.p A g = p A g,
and thus gp = p ag = (p ~g)* (since p ~ g is o projection) = pg. This completes
the proof because B is generated by its projections. O

Proafaf the theorem. Selling J(x @ e( fu = Vix @ 1r)V e f) foru e h, f e C,
and using Eq. (4.7) we verify easily that Jj = id and J| satisfies the same flow equation
(3.9) as does J;. By the uniqueness of the solution of the initial value problem (3.9) we
conclude that J; = J. Now, as in Theorem 3.3.6, if we set j(x)ue () = Jlx @el i,
it follows that f{x) = Vi (x@1p) V* andthat j( ) is a #-homomorphismof 4. Therefore,
Vilay @ IV = Vilx @ 1r) Oy @ 1r )V for x, v € A In particular Py = fi (1) =
Vi V¥ s a projection, that is. Vr is a partial isometry valued regular process. It also
follows from the same identity that Oy (xy ® 1p) 0y = Oulx @ 1p) Oy @ 1p)i 0y,
that is, v @ 1y — Ovix @ lp)Q; s a s-homomorphism of A & lp. Therefore O €
A@lp) =4"® B(I'), by the Lemma 432, 0O
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5. Weak Markov Process Associated with the £ — H Type Flow

Here we consider the solution J; of Eq. (3.9) or the associated j; and construct a weak
Markov process (see [B-P]) with respect to the Fock filiration. The next theorem sum-
manzes the results:

Theorem 5.0.3. (i) Let j; be as in Theorem 4.2.3. Set F; = j (1)E;, where E; is the
conditional expectation operator given by E (ue{ f)) = we( f;). Then there exists
a nonzero projection jao(1) swch that the family of projections { f(1)} and {F;}
decreases and increases 1o (1) respectively.

(i) The triple {jr. h @ T, Fi} is @ weak Markov pmcess as defined in [B-P], that is,
Eg..fn{r} = xFo, j#(X)F; = Fji(x) = Fji(x)F;, Ef ji(x) = jo(Gi_s(x)) F; for
O=s=t=<oo,xe Awhre EX(X)= F,XF, for X e Blh@T).

{iti) If we set ky (x) = je(x)Fy = ji(0)E, = E; ji{x), then the triple {k; h &, Flis
a conservative weak Markov flow subordinate to | F; | {see [B-F|), that is, k; satisfies
the properties listed in (i) above and also k(1) = F;.

FProaf (1) Inthe notation of Theorem 423, (1) = V:* and therefore taking W, = ¥V *

I
and vsing the relation (3.5) with T replaced by £ owe see that {f,(1)} 15 a decreasing
family of projections. On the other hand, asimple computation shows that fort = 5 = 0,

{ve(g), (F; — Fe)ue(f)} =
(Wve(g), Woue(f)je b~ BELENMET _ W ye(g), W,ue(f) e Jo @S

f_ exp{—f {g(z"), F T {Wrve(g), {g(r), XL, ) Wrue(f))dr,

from which it follows that { F;} is an increasing family of projections. Since E; increases
tofon h&T, and since f;(1) converges strongly tosay (1), we have that F; inereases
Lo fag(1). Therefore fap (1) cannot be the zem projection.

(i) Letu, v € h, f, g € k, x € A Since (1) (1) = ji{l) fors =r, we have,

(F lx b Felvelghh, nel )} = {fel L) fe(xd jo(Dvel ge), el fi )}
= {felxive(gs), we(fi)) = {Jlx @ elgy Vv, el f3)}

{0 @ elg, v, el f,)) + f (A L(x)elg, Ny, wel f, )dT

A

(Sl ) Fe(ve(gh), wel( f)} + [ (Fejr (L)) Felve(g)). uel( f)dr,

because fi(t) =0, gy(t)=0fort > s Thus, if we denote by E; themap .4 3 x +—
Fi i) Fy, then % = E; oL, fors = t. On the other hand, denoting by [1; the
map given by, [T (x) = f (T (200 F;, we can easily verify that % = [; o £. Since
Eilx) = E, ji(x) = jilx)Fy = [ix), the initial values of IT and = agree. Thus by the
standard uniqueness result of differential equations, we conclude that TT; = E; for all
= 3

(iii) The proof of this part is obvious from the definitions. O
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We have no resull with regards to minimality of the above process in the sense of [B-
P|. However, if we denote the closed linear span of Lt alaa) oo fo (g bue (D) x; £
A t=nz=t=... =1, =0}by K for() = r = oo, then it is an easy observation
that K is contained in the range of Fy for each t < oo, and thus K is contained in
Jaot iR @ ). We suspect that K:;C = f(13h @ T'), which we have not been able o
prowe. IF this wrns out w0 be true, then the above provides a complete general theory of
stochastic dilation for a uniformly continuous quantum dynamical semigroup on a von
Neumann algebra. It should also be noted that the final weak Markov process { jq, Fy)
is actually living in i & (&) and its filtration is subordinate 1o that in the Fock space.

Ackmowledgemens. The first author would like to acknowledge a helptul discussion with K. R. Parthasarathy
regarding the material of the Sect. 5. He also wants to give special thanks to Arup Pal for vanous discussions
on Hilhert modules.
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