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Abstract

Let X,., denote the fth-order statistic of a random sample of size n from a continuous distribution with distribution
function £. It is shown that if £ is a decreasing failure rate (DFR) distribution, then X, is fess dispersed than X} » for
iz jand n—iz=m—j. Let ¥;.x denote the jfth-order statistic of a random sample of size m from a continuous distribution
. We prove that if & is less dispersed than 7 and either F or 7 is DFR, then Xi.. is less dispersed than ¥, .o for i</
and n— fzm— f.
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1. Introduction

Order statistics play a central role m statistics and a lot of work has been done o the Iiterature on different
aspects of this problem. For a glimpse of this, see the two volumes of papers on this topic by Balakrishnan
and Rao (1998a,b).

Throughout this paper we shall be assuming that all mandom vanables under consideration are nonnegative
and their distribution functions are strictly increasmg on (0, o0) or on some mterval of (0,00). We shall use
“mereasmg” (“decreasing” ) to mean “nondecreasing” (“nonincreasing™ ).

One of the basic eriteria for comparing vanability in probability distnbutions is that of dispersive ordering.
Let X and ¥ be two random vanables with distribution functions F and G, respectively. Let £ and 7!

dis
be their right continuous inverses (quantile functions). We say that X 15 less dispersed than ¥ (X —'Eplr'} if
FUM—F Y ay=G (B — G Ya), for all 0sa< f<1. This means that the difference between any two
quantiles of F s smaller than the difference between the corresponding quantiles of . A consequence of
disgp

sz ¥ s that X — X5 s stochastically smaller than | ¥y — ¥s| and which in tum implies var( X)) var( Y ) as
well as E[LY; — Xa|| E[|Y) — Ya|), where X, X5( Y, ¥5) are two independent copies of X (¥). For details,
see Section 2.8 of Shaked and Shanthikumar (1994 ).
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Let F and G denote the survival functions and # and r; denote the hazard rate functions of mandom
varables X and ¥, respectively. We say that X is smaller than ¥ in the hazard mte ordenng (denoted by
X <, Y) if G(x)/F(x) is nondecreasing in x, which is equivalent to rg(x)=rg(x) for all x, if X and ¥ are
continuous random variables. Bagail and Kochar ( 1986) noted a connection between hazard rate ordering and

dispersive ordering. They observed that if X<, Y and either F or & is DFR (decreasing failure rate), then
disp
X=<vY.
Let X7,....4, be a random sample of size n from a continuous distribution with distribution function &
and let X; ., denote the ith-order statistic of this random sample. David and Groeneveld (1982) proved that if
F 15 a DFR distribution, then var(X; ., ) < var(X;.,) for i< j. Kochar (1996) strengthened this result to prove

disp
that under the same condition, X7, =X, for i </,
In this paper we further extend these results to compare the variabiliies of order statistics based on samples
of possibly different sizes. We consider both, thL one-sample as well as the two-sample problems. 1t is proved

in the next section that if F 15 DFR, then X5, —«X, w fori=jand n—izm—j Let ¥, denote the jth-order

statistic of a mndom sample of size m taken from a probability distabution with continuous distribution
disp dn;r
function ¢ It is proved in the next section that if X =Y and if cither F or & 1s DFR, then X;., =< ¥; ., for

iz jand n —izm — j. This result also holds if] mhtuid we assume that X =, Y and ether £ or & 15 DFR.
We shall be using the following results to prove the main results in the next section,

diap
Theorem 1.1 (Saunders, 1984). The random varichle X satisfies X=X + Y for any random variable ¥
independent of X i and only iF X hay a log-concave densicy.

Theorem 1.2 (Hickey, 1986). Let Z he a random varviable independent of random vaviables X and Y. If
digp
X=Y and Z has a log-concave density, then

disg
X+z‘<1f +Z

This result leads to the following corollary.

disp
Corollary 1.1. Let X X V0, Ya be independent random variables with log-concave densities. Then X;=Y;
Jor i= 1,2 implies

disp
b e ety (1.1)

Proof. Smce X5 is independent of Xy and ¥y and it has a log-concave density, it follows from Theorem 1.2
disp
that X =5 ¥} imphes

disp
X +XH=5) +X (1.2)
dn-]r
Using the same argument it follows that X5 = ¥ implies
disp
Fi+Xh=Y¥4r. (1.3}

Combining (1.2) and ( 1.3), we get the required result.
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2. Main resulis

Boland et al. (1998) proved that if Xj.... X, 15 a random sample of size # from an exponential distnbunon,
disp
then X, =X, for i</, In the next lemma we extend this result to the case when the order statistics are
based on samples of possibly different swes.

Lemma 2.1. Let X, be the ith-order siativiic of o rendom sample of size n from an exponentiol diviribution.
Then

disp
Xow=X;m forisj and n—izm—j. (2.1)

Proof. Suppose we have two independent mndom samples, X, ... &, and X{.....X of sizes n and m from

a

an exponential distribution with failure rate £, The ith-order statistie, &7, can be written as a convolution of
the sample spacings as

*‘YJ':M = {,"YJ':JI = "YJ'—l :JI} o e +{X2:J| = XI :JI}+X| tn
¥ Eiiin, (2.2)

where for k=1,... i, E,_;; 15 an exponential random vanable with failure rate (n—i+ k)4 It 15 a well-known
fact that E, ;s are independent. Similarly, we can express X[, as

i
¢ dim ]
X,u':m - Z 'Em—_,l'+.'i:1 {25}
=1
where again for k = 1....j. E| ., is an exponential random vanable with failure rate (m — j + £)4 and
disgy
‘Ea:.—m& s are independent. It is easy to verify that £, '%Em_ﬁl forn—izm— |

Since the class of distabutions with log-concave densities is closed under convolutions (ef. Dharmadhikari
and Joeg-dev, 1988, p. 17), it follows from the repeated applications of Corollary 1.1 that

disg

Z By ira % Z e (2.4)

A smee Zi ST ks being the sum of mdependent exponential mndom variables has a log-concave
density and since it 1s independent of Z};_l it follows from Theorem 1.1 that the RHS of (2.4) is

less dispersed than Z& |
That 15,

i
dia
"YJ':JI = Z -E.l|—1'+.'::
k=1

Since X, and X

JI—J‘-.'::’

E, iy for i)

d.l'qr

. d.l'ﬂ i
Z m—j+k " X

. are stochastically equivalent, (2.1) follows from this. [

The proof of the next lemma can be found in Bartoszewicz (1987).

Lemma 2.2, Lev b 0 By — By be a funciion such that ¢(0) =0 and (x) —x is increasing. Then for every
convex and strictly inereasing function - B — By the fimetion g~ (x) —x iy increasing.
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In the next theorem we extend Lemma 2.1 to the case when F 1s a DFR distribution.

Theorem 2.1. Let X, be the ith-order statistic of a random sample of size n from a DFR disivibution F.
Then
disp
*XJ':M'-‘-\: -t _flur;"h{-_.f and n_f--}-‘m_.lf

Proof. The distribution function of X, 15 Fyo.(x) = By WF(x), where B; ., 15 the distobution function of
the beta distribution with pammeters ( jm — j+ 1)

Let & denote the distabution function of a unit mean exponential mndom vanable. Then H, (x )=8;. ., Gix)
15 the distribution function of the jth-order statistic in a random sample of size m from a unit mean exponential
distobution. We can express Fy., as

Fi m(x) = B GG~ 'Fix) = H; G~ 'F(x). (2.5)
To prove the required result, we have to show that for i< j and n —izm — §,

FEL,F;;,,{I}-I 15 INCreasmg i x

& F'GH[ ,H; ,G™'F(x) —x is increasing in x. (2.6)
By Lemma 2.1, H[, H; ,(x)—x is increasing in x for i< j and n—i 2 m—j. Also the function i(x)=F ' G(x)
is strictly inereasing and it is convex if F s DFR. The required result now follows from Lemma 220 O

Remark. A consequence of Theorem 2.1 is that if we have random samples from a DFR distribution, then

disp diap
"YII:JI+|%X}:JI%X}+|:JI+| fori=1....n

In the next theorem we establish dispersive ordering between order statistics when the random samples are
drawn from different distributions,

Theorem 2.2, Let Xy, X, be a random sample of size n from a continuous diviribution Foand let ¥y, 0,
be a random sample of size m from another continuows distribution G either F or G & DFR, then

disp disp
X=Y=X =Y., forigj and n—izm— | (2.7)

Proof. Let £ be a DFR distribution. The proof for the case when & s DFR is similar. By Theorem 2.1,
disp disp disp
Xiw= X for iy and n—izm—j. Battoszewicz (1986) proved that if X =5 ¥ then X}, = ¥; .. Combining
these we get the required result.
disp
Since the property X =, Y together with the condition that either F or & 1s DFR implies that X <Y, we
get the following result from the above theorem.

Corollary 2.1. Let Xy, . X, be a vandom sample of size n from a continuous distribution Foand ¥, .Y,
he a random sample of size m from another continuows diseribution G, I either F oor G s DFR, then

X disp )
X gll:r}. __}XJ':JI !;;' }_J'!ul-
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