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INTRODUCTION

The general theory of linear estimation, without involving the assumpions of nor-
mality or independence of variates was first given by Markoff in his book Calculus of
Probability published in Russian. Sheppard (1912 and 1914) working independently
published some results which are approximately on the same lines ax that of Markoff, but
of a less general charaoter. A distinct advance was made by Aitken (1936) who removed
the unnecessary limitations in both Sheppard's and Markoff's results. Recently David and
Nevman ({1938) have published an article giving a slight extension of Murkofi’s theorem,

A significant step in generalising the theyry of linear estimation is due to Raj
Chandra Bore (1943), who, for the first time, introduced the coneept of nonestimable parametric
Sunctions. He distinguishes two types of linear functions of stochastic variates ; the estimating
functions and the error functions. A linear function BY'=(b,y, +b.y,+ ....+4-boy,} of the
stochastic variates is said to belong to error if E(BY')=0. The totality of the indepencent
vectors such as B constitute a veotor upace which is called the ervor space. The vector space
orthogonel. to this errror space is called the estimation space, and the best unbiassed estimate
of any estimable j ric funclion comes out as the sealar product of the vector
Y=(y,, ¥s- ..., o) of the stochastic variates and a vector C of the estimation space. The
present paper is the result of ideas suggested by Bose's results (1943) and his post-graduate
lectures in the Calcutta University in 1943-44 on the general theory of linear estimation
and the fundamental structure of the analysis of variance.

The object of the present paper is firstly to take up the most general problem
in the theory of linear estimation and get suitable generalisations of the previous results and
secondly to derive teats of significance connected with linear bypotheses.

2. THE GENERAL PROBLEM OF LINEAR ESTIMATION.

Let Y={(y, y:....y.) be the vector of n stochastic variates y,, ys...., Yo and
©=(0, 8, .... 8,) be the vector of expectations of y,, ¥s,..... ¥.. 1t ia given that @=TA”
where T=(7, 7,..7,) i3 & row matrix of m unknown parameters and A is a known matrix
with n rows and m columns.  The transpose of a matrix is denoted by a dash.  Here we do not
assume any equalily or inequality relations between n and m or make any restrictions on the rank
of A. The raunk of A is, evidently, less than or equal to the smaller of m and n. Asstming
that there aro no functional relationships among the y’a we can get a positive definite matrix
A of rank n as ,\=E(Y—@)' (Y—@) where E stands for the mathematical expectation in
which case A-js referred to as the dispersion matrix of the stochastio variates of Y. We
assume that A is known apart from a constant multiplier and that its elements are finite.

The set of equations E(Y)=TA’ are known as observational equations and »
linear function such as LT’ where L is a given row matrix is called a parametrio function.
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The problem of lincar estimation is to find & linear function BY® of the stochastio variates

such that
() E(BY') =LT’ independently of T @.n

and (b) V(BY") is minimum (2.2)
where V' oatands for the variance, [f there exists a vector B such that (a) is satisfied then
L7 is snid to be extimable and BY' is called an unbiassed estimate of LT". If further, (b) is
satisfied then BY’ is called the best unbiassed eatimate of LT'.

3. THE GENERAL SOLUTION OF THE PROSLEM OF LINEAR ESTIMATION.
The definition of unbinssedness involved in (2.1) gives that if,

LT'=E(BY’)=: BE(Y')=BAT" (3.1)
then, L= BA. Alsv if B is such thut L=BA then L'["=BAT =E(BY"). This gives the
result : the necesdary and sufficient condition that LT" ix extimable is thal there exists a veclor
B such that L=BA.

From the set of B's satisfying the condition L=BA we haveto choose B such that
V(BY’) is the lenst.
VIBY')=E[B(Y'—@') (Y—©)B’]=BaAB’ Lo (3.2)
Introducing the vector 2C=2(c,c.....cy) of Lagrangian multipliers we have to minimise
BAB’'—2((A’B’—L’) with respect to the elements of B and C. This leads to
BA=CA’ and L=BA (3.2

Defining A" us the inverse of A we get

BAA'=CA"A" or B=CA"A! .o (3.22)
Using the relution L=BA we get, L=BA=CA'A"A whichis another form of the necessary
and sufficient condition. If C is found lo satisfy L=CA’A"' A then B=CA'A"" and the best
unbaissed estimate of LT" is given by BY'=CA'A™'Y".

We prove here some uniqueness result«. 1f C, and C, are two vectors satisfying
the relation L=CA’A~'A, then 0=(C,—C,)A’A"'A. If B, and B, are the two vectors derived
from (3.22) corresponding to C, and C, then (B,—B.)=(C,—C.)A’A". Since

VB, - B, Y9=((!, —C,)A’A"AA'A(C, - C.) .
={C, —C)A’ATA(C, —C.) =0 ((,—C)' =0 (3.3)
we get that B,=B, for the variance of a linear function of stochastic variates cannot be
zero without the coefficients being zero. This leads to the result that the vector B or the bext
unbinssed estimate BY' is wnique for all C's satisfying the relation L=CA4'A"' 4.

If B is the vector derived in (3.22) and D is any other vector such that L=DA
and is also u best unbinssed estimate of LT’ then

V(DY')=DATY=BAB'+{D—B)AB'+BA(IY —B) L (B—D)A(B'—D")

=BAB'+(B—~D)A(B'=D") RGN
for BA(D'—B’)=(D—B)AB'=(D—B)AATAC =(D—B)A(" =0 .. (34D
{B—D)A({B’—D’) boing positive definite cannot be negative. Hence the least varinnce is
given whon B—D=0, which leads to the result that the calcrlations involved in (3.22) give a
unigque veclor B such that V(BY’) iz the leaat.
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4. EXTENSION OF MABKUFF'S PRINCIPLE
From Y. we construet the vector Q={Q, Q,....Qu composed of m linear func-
tions of y's defined by Q=YA'A. If LT’ is estimable then we have L~CA’A-1A which
givex thut LT'=CA’A 'AT'=CH’ where,

H=E(Q)=E(Y)A "A=TA’A 'A 4D

Since the best unbinssed cstimate is given by BY'=CA’A"'Y'=CQ’ we can restate the result
of section 2 as, if there exists a veclor C such that LT'=CH', then LT is eatimable and the best
unbiassed estimate of LT’ is given by CQ" where H and Q are as defined in (4.1)and it ix
unique for all C's satisfying relation LT'=CH’.

Let T=(t, t;....4) be a solution of the equations Q=H. Since LT'=CH’ we
get LT'=CH’=CQ’ where H denotes the matrix obtained from H by replacing T by T. So
we get the following rule of estimating any estimable parametric function. We get a solution
of the equations Q=H solved for v's, und substitute the U's for 'a in the given paramelric function.
This gives the best unbiassed estimate of LT and is unique for all solutions of v's. The proof
of the latter part of the statement follows from the faot that whatever may be the solution.
0 long as H gives Q we get LT'=CQ’ where LT'=CH".

We shall now study the effect of substituting s solution of Q =H in a non-estima-
able parametric funotion NT'. If T,, and T, are two solutions of Q=H, such that T;5¢T,,
then B(NT",)s4E(NT",). For if E(NT',)==E(NT",) then

E[N(T",~T2)]=0 or N(T",-T.)=0 Lo 42)

for (T. ~Ty being a ull solution of the & B equations H=9, is independent of
Q’s and hence, of the stochastic variates. The result (4.2) shows that N belongs to the
matrix of equations H=0 or N=CA’'A"A which meana that NT' is estimable contrary to our
supposition. Again, if T is & solution of Q=H, and if NT" is homogeneous in y, yz...., %
then E(NT')=NT’ when and ouly when NT" is estimable for otherwise it means that there
exists a linear homogeneous function of Y's such that its expectation is NT". Also the
result of substitution of T in an estimable parametric function NT' leads to a homogeneous
expression in y's. So we get thal the result of substitution of any solution T of Q=H in a
parametric function LT’ leads to the best unbiassed estimate of LT’ if and only if

i) LT" is homogeneous in y’s
~ 4.21

@) ELTy=LT 20
A non-estimable parametric function will show forth either in violation of (i) or (i7) or in
giving two different expressions for two different solutions of Q=H. We need not test for
estimability before applying Markoff’s principle of substitution. The above discussion shows
that we can add e consistent, and a convenient and i conventionally ch set of
equations in 7’s not necessarily linear to Q=H and get a solution for substitution.

The equations Q=H are called normal equations and are readily obtained by

oguating the partial derivatives of

l!k‘ My —8) (y,—8)) o 43)

where A3, j=1,2,...., n) are elements of the matrix A'!, with respect to vy, 7,000, T 1O
zero.  The above equations Q=H are always ~xolvable. To prove this it is enough to show that
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if D is & vector such that DH'=0, then DQ'=sD. DH'==0 implivs that DA’A"A=0 and

V(DQ')=V(DA’A'Y)=DA’A~AATAD'=DA’A’'AD’ =0D"'=0 Lo (4d)
which shows that DQ'ss() if, DH'=0.

We now prove some results  which give the number of estimable and non
estimable parametric functions.

(a) If NQ'e=0, then the parametric function NT' is not estimablo. Kor, if NT' is
estimable then N=CA’A'A and NN'=NA’A"TAC’=0 for NQ'=0 implies that NH'=0 and
this (NN’=0) is impossible unless N=0,

(b) There cannot be any non-vanishing linear funation of Q’s whose expectation is
zero for it can be essily shown that the varianoe of such a linear function, if it exists, ahould

be zero.
(c) The rank of A’A-'A is the same as the number of Q's which are linearly

independent, and also of the number of linear parametric functions that are estimable. This
follows from (a) and (b) given above. Since the rank of A’A~'A is the same aa that of A it
follows that the number of estimable parametric functions is equal to ‘s’ the rank of A which
is leas than' or equal to the amaller of m and ». The number of non-estimable parametric
functions is therefore. (m—a4). 1f the rank of A is m, then all parametric functions are estim-

able.
5. INTRINSIC PROPERTIES OF NORMAL EQUATIONS.

The normal equations are Q=TA’A~'A. The dispersion matrix of Q,,Q,, ..., Qnis
E[(Q'—H") (Q— H)]=F[AA (Y =) (Y —0)1'A]
=A'A"A0 "A=AA B
which shows that variance (Q,)=coefficient of 7, in the i-th normal equation and covariance
{Q; Q))=rcoeflicient of 7; in the i-th normal equation.

If L, T’ is estimated by C, Q".(k=1,2, .... ) then
VICQ)=CiA"AAC, =L,C)’
Cov [(C,Q) (CQ)=CATAC, =10 = LT, .62
Let us elimi 7, from the equati Q=TA’A'A by the usnal method of sweep-

out, We divide both sides of the first equation by the coefficient of r, and subtract it, after
multiplying it by the coefficient of r, in the i-th equation from the i-th equation. We now
get (m—1) equations which can be represented by Q,=T,B’. It is easy to show that these
equations also satisfy the properties of normal equations given in (3.1} and (5.2) above. The
dispersion matrix of Qs is B and if L,, T", is estimated by C,, Q', then
Vi(C, Q'1)=L{| cy

Cov [(Cy Q') (Cyy Q)]=Ly, =14, C, - (33
These results hold good even if we eliminate more than one =, the resulting equations satisfy
these intrinsic properties of normal cquations.

6. THE NATURE OF LINEAR HYPOTHESES.
The hypothesis involved in the theory of linesr estimation is the assignment of
the values of a single parametric function or & set of parametric functions. The necessary
statisticsand their distributi when the stochastic variates form & multivariate normal
system arc discussed below. The problem of distributionk for other types of populations
will be disoussed in & future communieation.
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If LT is an estimsble parametric funstion with a specified value ¢ and its best
unbiassed estimate ia CQ’ then to test the hypothaais LT’ =¢ we construct the statistic

»=(0Q’ —§)/V UL’ o {8h)
which becomes a normal deviate with anit variance. We can extend this result to test the
composite hypothesis L, T'=§i(1=1,2,..k<s). Let P=(P, P,....P,) be the vector giving
the . estimates of LT — §,, L,T' — &, .... L, T'—§ with the dispersion matrix of
P's as D. Following-Fisher's (1939) technique we take GP* & linear compound of P’s, where
G=(g, g....¢) with its variance GDG’ and maximise the statistic

v*=(GP')*/GDG’ L. (82)
If we denote by V. the inaximum value of v* we get V aa the root of the determinental
equation |P'P—VD|=0. This gives V=% 5d" P, P; where d' are the elements of matrix
D', the inverse of D. This may be called the generalised variance statistic. ‘This statistic
is invariant for any set of relations derived by lincar combinations of the relations L, T"- ¢,
For in every case, we will be led to maximise the expression

V=(GP')//GDG’ .82

where the elements of Q are linear binations of the el s of G with which we started.

Under the normality assumption we get the distribution of Ps as

Const. c_i $or . dP; (1 )
where $=3xd' P, P .. {6.31)
from which it immediately follows that the distribution of V' is

Const. [ezp (vi2] V™ av (832

which is the distribution of x* with £ degrees of freedom and it supplics the distribution of
the V.statistic on the null hypothesis.

If the quantities ¢;=L, T'—§540 for at least a single , then there s departure
from the null-hypothesis. We define the quantity

¢=33d4 ¢, ¢ .. (64)

which is also invariant for any lincar combinations of «'x. If we transform the estimating
functions P's to R’s by linear combinations to make them independent and having unit
varinnces the distribution (6.3) transforms to

Conat. e—3¢ dR, dR... .dR, . (6.4])
where ¢=(Ri—p )+ (Ry—p. )+ . ... F(Re—p)* .. (642)
nnd'p's are linear combinations of p's. V and ¢ trunsform to R=3R*and p=Xp* By
an argument similar to Bose (1935) we get the distribution of R or V as
-2 .
Const. [exp(V/2] V T ( Ve)dV .. (8.43)
where [ ig the Bessel function of the second kind. This is the distribution of the generalised
variancs statistio V on the non null hypothesis and is dependent on k and g only.

13



Vou 7| SANKHYA: THE INDIAN JOUKRNAL OF STATISTICN [ Part |

We consider here a class of linear hypotheses whioh are of upecial interest in tests

of significance d with bi ics and field experi i Thess ate no doubt,
special cases of the general composite hypothesix discussed above, but are amonable to a logieal
deduction of the PSSArY istic. The hypothesi ists in speoifving the cquality of a
number of paramectric {unctions such an
LT=LT=. =1, T . (6.3)
If P,, P, ..., P, are the estimates of these linear functions then we take the linear cumpmmd
@ Pitg Pt g By .. (851)

such that ¢, +¢,+....+¢,=0 and miximise the expression
‘v=(GP')}GDG’ .. (8.82)

Thix comes to testing for a suitable contrast of the parametric functions Ly T". The maxi-
misation leads to the determinental equation

|(,—P) (P,—P)~VD|=0 .. (833

where P=3 P(xd")/3 xd) .. (B.54)
b 1 [}

which gives V=x3d'(P,—P) (P,—P) .. (853

The distribution of this follows directly from previous considerations for it is designed to test
a hypothesis concerning (k—1) independent parametric functions. Hence F follows the
distribution

Const. [ep(V:2)] V" 4y L. (636
on the null hypothesis and-
Const. JeapVIV T 1 LTy BT
=3y
oo the non-null hypothesis, « being defined as
¢ =3 (9, ~§) (6;,—8) .o {6058)

where g, stands for L, T" and § is the same functions of 8,'s as P is of P,’s.

In the caseof the multinomial distribution with the proportions . 7y, .7 in the
k clanses the linear observational equations corresponding to a sample of 5y, a1, - .7 (£2, =N}
in the k olosses are E(n))=N =,(i=1,2, ..k). We want to test the hypothesis whether the
sample is a reasonable one from the population with the assigned proportions 7, =z .. Ty
The observational equations E(m)=Nm(i=1,2,..k—1) which may be taken to be indepen-
dent will th Ives bo estimati Using the propertics

Vimy=m(t—m)N - (68
Cov (m) my)=-m mN - 681
we try to maximum the statistic
k=1
v= % ¢i(m =N [ 57 mil —m)N—33gi gy mi m) NJ' - (582

The maximum value comes out as
k
V=3 (n,—N m)%:Nnm .. (8A3)
1=
whioh is the same as the x*-statistio of Karl Pearson.
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The discussion in the above paragraphs form the basis of the perimeter test de-
rived by the author and discussed in another paper (1944). There are £, p-variate popula-

tions with means given by the matrix ((my))) i=1,2, .... p referring to the variates of a
population j=1,2,....t referring to the populati the hypothesis to be tested is that
My =mMyz....=my, ((=1,2,...:p) ..o (8.7

There are p(¢—1) indepondent parametric functions to be tested. Making use of previous
resitlts wo get the generalised variance statistic as

, t PP _ _ — -

V= ‘21 T et -F) Ey—Eny )]

N

where ja™ are the elements reciprocal to the variance and covariance matrix for the j-th
p-variate population from which a sample of gize #; is drawn and Z,; is the sample mean for
the r-th character in the j-th population and Z, is defined by

Lew €z eer g [ PIRR Y A TRPRY
(__'”,5_’1; Cap Cop voon Cxp | . Cnpee Copy By Capy oo Gy B
l”nl Cpz -+ Cpn lcnln'cnr-ldbcpr.l--'cnv

where

'
ja" By ny and eyp= S g™ o {6.T8)
=1

‘The distribution of this statistic on the null and non-null hypotheses are obtained directiy
from (6.32) and (6.43) by putting k=p(t—1).

An important problem inthe classification of three p variate populations z, . =,
and 7, is to test whether «, is nearer to =, Br w, which are known to be differont. If m,,
is the mean of the j-th character in the i-th population we have to test the composite

hypothesis
2myy=my+my j=(1, 2,... -p .o {8.8)

If Z,; is the sample mean for the j-th character of the i-th population and = is the sample
size for the i-th population then the necessary statistiv is

V=3 SdV(2%,)—%,j—Fy)) (28, —Fy) .. (BRD)
where a'! are the elements of the matrix reciprocal to
o (& (2]
gy Lo g e - Lo (6.8
(s =5)) ‘

where ¥y is the covariance of the i-th und the j-th characters in the k-th population. The
distribution of V on tke null and non-null hypotheses are obtained from (8.32) and (6.43) by
putting k=p.

‘The necessary statistics. when the variances and the covariances are not known
are obtained by studentising the above statistics and their distributions in the studentised
forms have been derived and are being used in the Statistical Laboratory at Caleutta for
various probl . A detailed di jon will be attempted in another paper.
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