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Fermat’s Two Squares Theorem Revisited

Bhaskar Bagchi

The Two Squares Theorem

Throughout this article, p is a prime such that p = 1
(mod 4). IN and Z will denote, as usual, the set of all nat-
ural numbers (excluding zero) and the set of all integers
(positive, negative or zero), respectively. Recall that the
celebrated two squares theorem (first stated by Fermat and
proved by Euler) says that p can be written as a sum of two
perfect squares. Clearly one of these two squares must be
even (and the other one is odd). Therefore this theorem may
be formulated as saying that there exists (z,y) € IV x IN
such that z? +4y% = p. Any such pair (x,y) will be referred
to as a representation of p. (Actually, as is well known,
the representation is unique. For a proof, see for instance —
Niven and Zuckerman(2].)

Permutations

G H Hardy writes that the two squares theorem ‘is ranked,
very justly, as one of the finest in arithmetic’. So it comes
as a surprise to learn that its finest proof was found only
in 1990. In that year, D Zagier modified a proof of the two
squares theorem due to Heathbrown to create a remarkably
short and elegant proof. Although Zagier’s proof was pre-
sented in detail by Shirali in a Resonance article[3], we shall
begin with a brief account of this proof. To do so, we need
to recall some facts about permutations.

If X is a finite set then by a permutation of X we mean a
function from X into itself under which each element of X
has a unique pre-image. If 7 and o are any two permutations
of X then we can form their ‘product’ 7o by composition:
mo(z) := m(o(z)), zin X. If X is of size n, there are only n!
permutations of X and they form a group with this product
rule. (Though, strictly speaking, we need no group theory
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for this article, familiarity with the elements of this theory
will still be useful.) Since we have defined the product of
any two permutations, in particular we can form the powers
7 =7, 72 .. of any given permutation 7. Since there are
only finitely many distinct permutations of X, some two of
the powers of m must actually be equal. By cancellation,
it follows that there must exist a natural number m such
that 7™ is the identity permutation id fixing all elements of
X. The smallest such number is called the order of 7. A

permutation of order two is called an involution.

Any permutation 7 of X breaks up (‘partitions’) X into one
or more parts such that two elements z and y of X are in
the same part if and only if some power of 7 takes = to y.
These parts are called the orbits of m. The singleton orbits
are just the fixed points of m. A permutation of X is said
to be transitive on X if it has only one orbit (namely the
whole of X).

It is easy to convince oneself that the size of any orbit of a
permutation divides the order of the permutation. In partic-
ular, if the permutation 7 has prime order ¢ then (as 1 and ¢
are the only divisors of ¢) each orbit is either a fixed point or
has size ¢. It follows that, in this case, the number of fixed
points of 7 is congruent modulo g to the size n of X. Hence
7 has a fixed point if n is not a multiple of g. As a special
case (g = 2) of this observation we see that an involution of
X has a fixed point in X if X is an odd set (i.e., the number
of elements of X is odd). This is the key fact which makes
Zagier’s proof (and its constructive versions presented here)
work.

Zagier’s Proof

Now we come to Zagier’s proof. Let S denote the subset of
IN x IN x IN defined by ‘

S={(z,y,2) € N x IN X IN : 2° + 4yz = p}.

Clearly S is a finite set. Zagier defines two involutions o
and B of S by
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(T + 22,2,y —z - 2) ifer<y-—z,
az,y,2) = Y-z, y,2+2—y) fy-z<z<y,
(w—2y,a:+z~—y,y) if x > 2y.

B(z,y, z) = (z, Z’y‘)'

The involution « of the finite set S has a unique fixed point
(namely (1,1, 222)). It follows that S is an odd set. There-
fore, the involution g8 of the odd set S must have an odd
number (hence at least one) of fixed points in S. But (z,y) —
(z,y,v) is a bijection of the set of representations of p.onto
the set of fixed points of 3. Hence p has at least one repre-
sentation (as a sum of two squares). This completes Zagier’s
proof of the two squares theorem.

Shirali’s Conjecture

Zagier notes in his paper that his proof ‘is not constructive:
it does not give a method to actually find the representa-
tion of p as a sum of two squares’. Perhaps provoked by
this statement, S A Shirali gave a conjectural way to ‘con-
structivize’ this proof. Shirali’s conjecture may be phrased
as follows. Define a finite subset S of Z x IN x IV by

S={(z,9,2) € ZXxIN x N : z+y >z and z° + 4yz = p}.

Define a function 4 : § — § by

A "_ ($+22,y—fx—z,z) if:r+z<y,
’Y(x1y’z)-{(2y_x,$+z——y,y) 1f.’L'+Z>y-

Then Shirali conjectures that the orbit of the point (1, 7’—21, 1)

under 4 contains a point of the form (z,y,y). That is, to
obtain a point (z,y,y) € S (and hence a square plus square
representation of p), begin with the point (1, 2—2—1, 1) and look
at the successive iterates (powers) of 4 on this point until a
point (z,y,y) is obtained.

(Actually, Shirali defines his function on the (iﬁﬁnite) set of
all points (x,y,2) in Z X Z x Z satisfying 2 +4yz = p, and

RESONANCE | July 1999 V\/\/\/\/\F

6l




GENERAL | ARTICLE

proposes to begin with the o-fixed point (1,1, B—Z—l) How-
~ever, we observed that this function fixes the finite subset
S introduced above and on this subset it restricts to v as
defined. Though the o-fixed point itself does not belong
to this subset, its image under Shirali’s original function is
(1,27%,1), which does belong. Therefore our formulation
of the conjecture is entirely equivalent to Shirali’s original
formulation. )

A Constructive Version of Zagier’s Proof

Notice that the function 4 is a ‘perturbation’ of the permu-
tation v := a8 of S obtained by composing Zagier’s involu-
tions o and 8. So it is natural to ask if Shirali’s conjecture
is valid with 4 replaced by 7. In the following theorem, we
show that this modified conjecture is indeed correct. Note
that we now stay within the set S, and this is closer to Za-
gier’s original proof.

Theorem. Let k denote the size of the orbit T under v :=
o which contains the a-fized point a. Thenk is odd; T con-
tains a unigque B-fized point b and it is given by the formula
b= *=/2(a). In fact, the orbit T satisfies the symmetry
'relatzon Y¥=1=7(a) = B(v*(a)) for 0 <n < k —1.

Thus, to obtain a B-fixed point (z,y,y) (and hence a rep-
resentation p = z? + (2y)?), begin with the a-fixed point
and iterate o8 on it; in a finite number of steps you will
reach a (-fixed point. This theorem shows that exactly half
of the orbit has to be traversed before this point is reached;
and the remaining half of the orbit may be found (in reverse
order) simply by applying 8 to the first half.

Proof of the Theorem

Since o and 8 are involutions, o ‘normalises’ v: oya~! =

Ba = vy, Therefore o maps the orbits of 7y to orbits of
7. (To see this, let s; and sz be two points from a com-
mon v-orbit. By definition, this means that there is an in-
teger £ such that 7*(s1) = s2. Then a(sy) = orfz(sl) =
oo (afs1)) = v¢(a(s1)). Thus, whenever s;,s; in S
are from a common ~y-orbit, c(s1) and a(s2) are also in a
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common 7-orbit. So the image under « of any ~-orbit is
again a ~y-orbit.) In particular, if T is the orbit under y
which contains the fixed point a of o, then o(T) is an orbit
which meets the orbit T in this ﬁxed point, hence we must
have o(T) = T. Since the restriction of & to T is an involu-
tion of T' with a unique fixed point, it follows as. before that
T’ is an odd set. Since both o and v fix T, so does 8 = ay.
Thus (the restriction to T of) 3 is an involution of the odd
set T' and hence 8 must have a fixed point b in T'. So there
isan ¢, 0 < ¢ <k — 1, such that b = +*(a) is fixed by 8. To
prove the uniqueness of this fixed point, it suffices to show
that k = 2¢+ 1 is forced on us.

For m € Z, we have B(y™(b)) = By™B71(B(b)) = y~™(b).
Substituting v¢(a) for b, we find that the orbit T has a two
fold symmetry around its £th term: -

¥+™ () = B(v*"™(a)) Ym € Z.

In particular, taking m = ¢+ 1 in this 1dent1ty, we get

v¥+1(a) = By~1(a) = B2a(a) = a(a) = a. From the defini-
tion of k one sees that an integer h satisfies 7*(a) = a iff b is
an integral multiple of k. Since h = 2¢ + 1 satisfies this con-
dition, 2¢ + 1 is a multiple of k. Since 1 < 2£ +1 < 2k, this

forces 241 = k. Finally, substituting £ = £#=1 m = ’“51 —-n
in the displayed identity, we get the last assertlon of the the-
orem. o

Shirali’s Conjecture Vindicated

Define the involutions & and 3 of the finite set S as follows.
&(z,y,2) = 2z —z,z +y — 2,2),

5 _f(~z,y,2) ifz+z<y,
B(x’y’z)—{(x,z,y) ifx+2z>y.

One readily verifies that (i) these are indeed involutions of
S, (ii) & has a unique fixed point, namely & := = (1,24,1),
and (z,y) — (z,y,9) is a bljectlon from the representations
of p onto the fixed points of ﬁ Thus, in Zagier’s proof,
one may replace a, 8, S by &, 8, S respectively. Finally,
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Shirali’s function 4 is related to these involutions by 4 =
(54,_@. Therefore the indicated substitutions in the proof of
the above theorem yields a ‘hatted’ version of the theorem.
In particular, this proves Shirali’s conjecture:

Uniqueness of the Square Plus Square Representa-
tion of p

Aside from being non-constructive, Zagier’s proof has an-
other shortcoming. As already mentioned, the prime p has
a unique representation as a sum of two squares. Or, what
amounts to the same thing, 3 also has a unique fixed point
in S. But this does not emerge from Zagier’s proof (or from
its constructive variations given above). We are unable to
remedy this defect. Notice, however, that in view of the
uniqueness assertion in the above theorem, it would suffice
to show that -y acts transitively on S. (For, this would mean
that T = S, and we know that 8 has a unique fixed point
in T.) Computations by hand show that this is indeed cor-
rect for the primes below hundred. One might therefore be
tempted to conjecture that, generally, v acts transitively on
S. If correct, this would provide a neat explanation for the
uniqueness of the g-fixed point. Unfortunately this conjec-
ture is incorrect. Its validity for small primes turns out to
be yet another instance of the ‘strong law of small numbers’.
(If you have never heard of this law then you are urged to
take a look at the beautiful article by Guy[1]).

We see this as follows.

For each fixed z, the numberzof points in S with the given
first co-ordinate equals d(®5~). Therefore we have the' for-
mula,

#5) = Y255,

where the sum is over all odd numbers z in the range 1 <
z < /p. (Here d(-) is the usual divisor function : for n € IN,
d(n) is the number of divisors of n including 1 and n.)

Let p be of the form k% + 4 (for an odd number k). Then
in the iterates under « of the point a = (1,1, P—}l), the first
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co-ordinate increases in steps of 2 until the point b = (k,1,1)
is reached, then it decreases in steps of 2 until we reach the
end point (1, 2;—1, 1) of the orbit. This shows that in this
case , the size k of the orbit T is related to the prime p by
P = k®+4. Also, the sum in the formula for #(S) given
above has (k +1)/2 terms of which one term equals 1 while
the remaining (k — 1)/2 terms are > 2. Since d(n)=2iff n
is a prime, it follows thai for a prime of the form p=k>+4,
7 is transitive on S (i.e., k = #(S)) iff (p—2%)/4 is a prime
Jor all odd numbers x in the range 1 < z < k. This shows,
for instance, that we do not have transitivity for p = 229,

Inefficiency of the Algorithm

Clearly, the a0 algorithm needs at most %—#(S) steps. Since
d(n) = O(n®) and the formula for #(S) has O(p%) terms in
1
1t, the number of necessary iterations is O(p2*¢). The exam-
ple of primes of the form square plus four (presumably there
are infinitely many such primes) shows that this estimate is
close to best possible. In [4], Wagon describes known algo-
rithms whose complexity is polynomial in log p, and the -3
algorithm compares very unfavourably. But it may be that
we have looked at the worst case, and for some large class
of primes its performance is much better. More over, it may
be possible to significantly improve on the performance of
the algorithm as follows. The set S can be partitioned into
three parts on each of which 7 is linear (the permutation
7 is even better in this respect: we have a partition of S
into two parts on each of which ¥ is linear.). The runs of
iteration during which the iterates stay in the same piece of
S may easily be combined into single step.

A Combinatorial Lemma

The perceptive reader may have suspected by now that the
theorem presented above does not have much to do with
primes or their representations by squares. This is indeed
correct, and the theorem is a manifestation of combinato-
rial phenomenon. Namely, we have:

Lemma. For any two involutions o and B of a finite set S,
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there are only three possibilities for any af-orbit: (i) neither
involution has a fized point in the orbit, or (ii) each of them
has a unique fired point in the orbit, or (ii3) one of them has
two fized points in the orbit while the other has none.

At first glance, this statement may look very strange. (For
readers with a reasonable amount of familiarity with groups
and group actions, here is a hint for a group theoretic proof
of this lemma: think of the group of isometries of a regu-
lar polygon.) But here is an elementary (‘graph theoretic’)
proof.

Let v = af. Fix a y-orbit T. If neither a nor B has a fixed
point in T then there is nothing to prove: we are in case (i)
of the lemma. So assume that one of these two involutions
has at least one fixed point. Then, arguing as in the proof
of the above theorem, one sees that T is fixed by both « and
8. Thus T is a union of a-orbits as well as of B-orbits. If
T is a singleton then we are in case (ii) and again there is
nothing to prove. So we may assume that T has at least two
clements. Hence no element of T is fixed by ~.

Now consider the graph G defined as follows. The vertices
of G are the elements of T. Two distinct elements z, y of
T are joined by an edge in G if (and only if) y = a(z) or
y = B(z) (i.e., if {z,y} is an orbit of one of the involutions).
Clearly this is an undirected graph. Note that, for each x
in T, a(z) and B(z) are distinct elements of T' — or else x
would be fixed by ~, contrary to our assumption. It follows
that each vertex z is of degree 1 or 2 in G (i.e., z is joined
to one or two vertices) — according as  is or is not fixed by
one (and only one) of the two involutions. Since we have
assumed. that at least one of them has a fixed point in T, it
follows that G has at least one vertex of degree one. Also,
since v = af3 is transitive on T (T is a ~-orbit!), it follows
that G is connected. Now, here is the punch line: the only
connected graphs with all vertices of degree < 2 and at least
one vertex of degree 1 are the paths. Hence G is a path.
So G has exactly two vertices of degree 1 (the two ends of
the path) and hence we are in case (ii) or (ii1). This proves
the lemma. (Exercise: Continue this argument to see that
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if the elements of T are arranged on a circle according to
the action of v, then the two ends of G are placed opposite
to each other. This explains the symmetry observed in the
theorem.)

A Prime Testing Algorithm?

Ifn =1 (mod4) is a number (not necessarily a prime)
which is not a perfect square, then S, «, 3 may be defined
as before with n replacing p. What happens if one runs
the -3 algorithm in this case ? Our combinatorial lemma,
shows that if we look inside the orbit T' containing the fixed
point (1,1, "T“l) of a, either we may find a fixed point of
B and hence a representation of n as a sum of two squares
or we find a second fixed point (z,,z) of o and hence a
nontrivial factorisation n = z(z + 42) of n. The second
case is bound to occur if the square free part of 7 has a 3
(mod 4) factor (since in this case n has no representation as
a sum of two squares). In the former case, of course, we are
unable to decide whether n is a prime or not (for instance,
this case occurs if n is a number of the form k2 + 4, even
when n is composite). If, however, we happen to know a
two squares representation of n and the algorithm is lucky
enough to produce a second representation, then we can still
conclude that n is composite (because a prime has at most
one such representation). Perhaps it will be interesting to
characterise those numbers n for which the first case occurs.
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1 !

Iy “Any biographical sketch of Pierre de Fermat (1601-1665) is bound to be short, His
‘ ! ? life spanned the first two-thirds of the seventeenth century but was, truth to tell,
J rather dull. He never held an appointment at a university nor occupied a chair at a
royal academy. By training a lawyer, by profession a magistrate, Fermat published
almost nothing during his lifetime, instead conveying his ideas through
correspondence and unpublished manuscripts. Because he was not a professional
mathematician, Fermat has been dubbed the ‘prince of amateurs’. But, if by
‘amateur’ we mean ‘marginally talented novice’, the moniker is totally inaccurate.”

The Mathematical Universe

William Dunham
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