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Abstract

Let tp denote the hitting time of B(0: r) for a multidimensional diffusion process. We
give verifiable criteria for finiteness/infiniteness of E_l-(fr'”]-. As an application we exhibit
classes of diffusion processes which are recurrent but E_l-(rr'”]- is infinite ¥p = 0, [x| =
¢ = (0 this includes the two-dimensional Brownian motion and the reflecting Brownian
motion ina wedge with a certain parameter ¢ = 0.
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1. Introduction

Recently, Menshikov and Williams (1996) have given conditions for finitenessfinfiniteness
of pth moments (p = 0) of passage times of 8 conlinuous non-negative stochastic process in
terms of sub/super-martingale inequalities for powers of the process. In this note we use these
ideas to get conditions in terms of suitable Lyapunov-type functions for finitenessfinfiniteness
of E{rr'n}l where 7. denotes the hittmg tme of B(0 : ) for 2 multidimensional diffusion
process; and then use such functions in turn 1o obtain easily verifiable criteria in terms of
the diffusion coefficients. No non-degeneracy assumption is made.

If a diffusion is ransient it follows that E,.(z7) = oo for any p = 0, |x| = r. Howeverif
the diffusion s recurrent, E_l-{rr'”}l can be finite only for certain p e A fF'ur.iunL dimensional
Brownian motion Edrf}l < oo (or E1{rr?]| =oo)for p=3 I:i.]-l' P .,}l ; this can
be seen using Section 3 of Menshikov and Williams (1996). }l In fact, as an dpplu_atmn of
our results, we exhibit a class of recurrent diffusions in . 1 for which E, {rr } = oo for all
p = 0 |x| = r,r = 0. Thisclass meludes the two- -:thnslunuI Brownian motion and the
reflecting Brownian motion in a wedge with the Varadhan-Williams parameter ¢ = 0.

2. Criteria for multidimensional diffusions

Let (22, 7, {F:}. P) be a complete filtered probability space; let {Z{t) 1t = 0} be a d-
dimensional F-adapted diffusion process with generutor
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If L is non-degenerite we need to assume only continuity of aji -}, bil-); if L is degenerate we
have woassume that ai-) ;= ({a;; (-))) has a Lipschitz-continuous square root and that & (-) are
Lipschitz continuous so that the diffusion is well defined. In the context of the question we are
mvestigating we can as well assume that the processes are non-cxplosive.

Denote by § the collection of all u € C*{(IP¥ : ) such that

(A =0,u() =0 ulx) = ocas x| — oo;

(b) for each r = 0 there exist 0 < rp < 2 < oo with

w0, 1D S BO:r) S u ([0, 1)) (2)

Note. Suppose n € Ced - ey satisfies (2) above and is of the form w(x) = w(rinz(9),
where x = (r, #) 15 the polar decomposition; then i € §.

Foruw € §.r = O define the non-negative process X ir) = wiZ(r)), r = 0 and the stopping
times 7, =inf{t =0: |Z(1)| =rl, 0 =inf{t = 0 : Xit) = r}. Foru € §, r,ry,rz satisfying
(2) note that

O = Tr =0p. (3
Foruw € §, g = 0 by Lid's formula observe that
w(Z(1) — w9 (Z(s)) = M(1) — Mis) + fI qui T (Z (@) u(Z(e) Lu( Z (@)
+ -_lr'[ffh— IMa(Z{a ) Vu(Zia)), VulZiad)]de, (&)
where M(-) 1% a stochastic integral.
Theorem 1. Letr = 0, p = 0 be fivad. Suppose there exist u € §. e = 0 such that
w(z)(Lu(z) + 11{2;1— LHalz)Vi(z), Vu(z))} = —ep (2)

Jorallz € u_l{[rl,:x:”l. Then for z € u“'{[n, :3c|}|,E:{1}ﬁ}l =< o forall ) = < pif
p=l,andalsoforf =pifp= 1.

Pmaf. Fix £ € u"{[rl, ool) and let Z{0) = z. In view of (3} it is enough to prove that
E{a’ﬁ?} < o0 for concerned 8. Putting X{r) = Xt Aoy ). by (4) and (5) we get for <5 <t,

(X)) = (XY + Mit rap) — M(s Aay) — zpfuf La(o)(X (@)™ 2 da
where A = [0, gy, |. Consequently,
E((X(t Aqi))*P | Fo) < (X(s )P — zpenE( f I (@)(X (@) da | r) . (6)

where {i;} is a seguence of localizing stopping times for the local martingale {M (1)}, and
B; = [0, gy & mi]. Letting oy 1 o0 10 (6) we get

I
E(X(O)FP | F) = (X)) — 2anE(f_ Lafa)(X (@)™~ da | 3’1) N

The required result now follows in view of (7) and Theorem 2.1 of Menshikov and Williams

(1996).
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Corollary 1. Let r = 0 be fived. Suppose there exist u € § such that (i) LuZ(z) = 0,7 €
([, o)), (i) inf{{a(z)Vu(z), Vi(z)} : z e w{[r, e} = 0. Then E;(zf) < oc for
alldl =p =1,z ¢ w1y, oo,

Pmof. Clear as p = 1 and 2uln 4+ (2p — 1){aVu, Vu} = Lu?+ (2p —20aVu, Vu}.
Corollary 2. Letr = 0 be fived. Suppose there existu € §, p = 1, € > Osuchthat Lu*P(z) <
—enP2(z),z € ' {[r1, o0)). Then E;(t)) < ocforallg = p, z € u='{[r1, oc)).

Pmof. Immediate as Lu™ = 2pu™~'Lu + p(2p — 1P~ HaVu, Vu).

Theorem 2. Let r = 0, p = 0 be fived. Suppose there existu € §.0 = K = o0, by = o0
such that

O = wiz)Luz) + ,15{2;: —1a(z)Vuiz), Vu(z)} = K (85)
Jorall z € ul ([r2. o)), and

sup{{a(z)Vu(z), Vu(z)} : 2 € u="([r2, 2c))} < Ap. ()

Then E:{rr'g} =ocforall f = p,.z € ! ({2, o))

Prrmf Fix z € u~ 1{,-,, o0l un-:! let Z(0) = z. In view of (3) it is enough to prove
that E{a},}l =oo for § = p. Put X{f}l = Xt a‘\a},}l t = 0. Using (4), the first inequality in
(8) and an argument as in the proof of Theorem 1, we get that {{J{'{f}}?"’ t =0} is a local
submartingale. Next observe that

uln+ HaVu, Vu) = ulu+ 3(2p— 1)aVu, Vu) — (p— 1)iaVu, Vu).

Therefore using the first inequality in (8), (9) and a similar argument shows that {i’lu} +
pit Aoge) o = 0} is a local submartingle for any g = Ap[{p — 1) v 0]. Similady for any
¥ =(lw p),

uli + 32y — 1){aVu, Vu) = ulu + $(2p — 1){a Vi, Vu) + (y — p)aVu, Vu).

Hence (4), the second inequality in (8), (9) and an analogous argument give that for y =
(1w p), (X — u_m Irle)( X (@) 1da : t = 0} is a local supermartingale for any
v = K +(y — plhp, where F = [0, g, ]. Now apply Corollary 2.4 of Menshikov and
Williams ( 1996) 1o get the result.

Corollary 3. Let v = 0, p = 0 be fived. Suppose there existu € §,4p = 00,0 = K = o0
such that {9) holds and
—2(p — D{afz)Vu(z), Vu(z)) < Li(z) < K,
forz € u=\ir. o0c)). Then E.(zF) = o forall f > p.z € u="({r2. 20)).
Pmoaf. Since Lu?=2ulu+ {aViu, Vi) it 1s immediate.
Next for x £ ) set

o o o

A = ) ag(oxx/IxPP, B =Y ai(),  Cx) =2 xibifx).

ij=1 =1 =l
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Theorem 3. Let r = 0 be fixed.

(a) Suppose there existe = 0, p = 0 such that
Bix) + Cix)+2(p— 1)A(x) = —e¢

Jorall |x| = r. Then E, {1'1:&} <o forall) = f < pifp < 1, andalsofor f = p if
p =L forany|x| = r.

(b) Suppose there exist p =0, by = 00,0 <= K < oo such that
0=Blx)+Clx)+2{p—-1Alx) = K
Alx) = Ap
forall |x| = r. Then Ex(t’) = 0 forall f = p. |x| = r.
() If eigenvalues of al-) are bounded and bounded away from zem then for |x| = r,

E_l{rr’rs}l < oo forall p<inf{l —[{B(x)+ Clx))/2A(x)] : |x| = r},
E'_l-{rr'u}l =oc forall p>=sup{l —[{B{x)+ Cix))2A(x)] : x| = r}.

Pmoof. If ui{x) = |x| outside a neighbourhood of the ongin note that

Luix) = tlr[ (Bix) 4+ Clx) — Alx))

1

away from the origin. So assertions (a) and (b) are easy to see applying Theorems 1 and 2.
Under the non-degeneracy hypothesis in (c) one can divide by Aix); so (¢) follows using
(a), (b

To illustrate our results we consider the following class of examples. Recurrence and
transience of this class of diffusions have been studied by Friedman (1975).
Example 1. Let bi-) = 0, and
ajjlx) =8 + ———
where g (-3 15 a continuous function vanishing near 0, and

—1l = u= i?fg{r} =supgir) = v = oo, (10
F

Observe that Cix) =0, Bix) =d + gilx|). Alx) = 1 + g{|x|); therefore

o BEEEW. L, L (an
2A(x) 2 201+ g(xn
Also, by (10),0 = 1+ = A(x) = v+1 < oc;and by (10)and (11)
1 d—1 l_ﬂ{.r}+c|[.r}{l_ d—1 _ (12)

2 Al+pw) = 24(x) — 2 214w
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Using (103~(12), in view of Theorem 3(c), the following are casily obtained.
(1) For a diffusion in this class E. (1) = s for any p = % x| = r.

(b) For a diffusion in this class with g = (d — 2), we have E_l-{rr"?} < oo forany r = (),

|:1 -1 =
-~ g e ——cd [ X| > r
P13+ il

{In particular, for any one-dimensional diffusion in this class E_l-{rr'”}l < o0 forany p =
-'1. X=>r)

{c) For a diffusion in this class with —1 = p = v = (d —2) we get E_-l{l'r'”}l = oo for any
p=0r=0x>r

i(d) Supposed = 2, and gir) = {d —2—h{r))/(1+h{r)), where h is a non-negative function
with fifry = 1/ logr for all large r. In such a case the diffusion is known 1o be recurrent; see
pp. 202-203 of Fnedman (1975). Also it is easily seen that —1 = g = v = {d —2). Thus
E.(tf) = ocforany p = 0, |x| = r > 0 for such a diffusion. Observe that the two-
dimensional Brownian motion is such a diffusion.

Example 2. Take a;; = dij, bi(x) = — 1/, for [x]| = r. By Theorem 3(c), it is seen that for
x| = r.

Extf) <o ifp<ild+2),
Edtly=oc ifp=Lid+2.

3. Reflecting Brownian motion in a wedpe

Let D denote the two-dimensional wedge given in polar coordinates by D = {{(r.8) 1 r =
0.0 = & = £y where £ € (0, 27); the two arms of D are 10 = {(n &) :r = 0,8 =
Ot D={{r,8):r 20,8 =£}. Fori =1, 21let vy be avector such that {v;, n;} = 1 where
n; 15 the inward normal vector to 8; 2000, 03} letd; denote the angle vy makes with ny, with&;
being positive if and only if v; points towards the corner. Observe that 0 = & < ﬁ-;r, i=1,2.
Define o = (8) +#)/E.

Itis a fundamental result due to Varadhan and Williams ( 1985) that if @ < 2 then a unigue
reflecting Brownian motion {Z(t) -+ = 0} in D exists with direetions of reflection on the
boundary given by vy on 8.0 {0, 0}, § = 1, 2; the process has been defined as the solution of
the appropriate submartingale problem. Moreover, if o < 0 the process never hits (0, () and
15 transient; if 0 = o = 2 the process hits (0, 0) with probability one and is recurrent; ifo = 0
the process 18 recurrent but does not hit the corner point (0, 0); see Williams (1985).

We apply our analysis to the stopping time 1, = inf{t = 0: |Z{)] = rl,r = 0 1o get the
following.

Theoremn 4. Let r = 0 be fixed. [fo = (0 then E:{tr'p}l =oaforanyp =0, |z| = r.

Fimof. By the obvious modifications necessary 1o make the proof of Theorem 2 go through
in the present context, for each r = 0, p = 0 we need a function w € § such that w vanishes
near (0, () and

0= wiAu@ +32p— DIVa) =K. zew 'rnoopnd (13
sup{|Vu(z))? 1z € w N[, o0)) N D} < o, (14
(i, Vu(z)} =0, zew'(m.00)NdD, i=12 (15)
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Let ryp be arbitrary but fixed. Let ¢, v be functions such that

@i, 8) =logr +8 tand),
uir, d) = expigh (r, )) = rexp(f tand) ),

forr = ,—ir.;], 0 = # < 27. Note that u can be extended to T2 so thatu € § and w = () near
(0, (). Observe that
du 1d
Vu = j Lkl =uVi,
dr rod
and

2w ldu 1 #u

a2 T rar  rf2ae?
Ayt 1 faghy?
-s[ao+ (52) +2(50)

on B{0 : %m}". Since {v;, Vo) = 0 on & D it is clear that (15) 1s satisfied with m = . Also
for any p = (0,

An =

utAu+ 52p — DIVul* = p(1 + tan® 8;) exp(26(tan 6,)) (16)
[Wul* = (1 + tan® &) ) exp (26(tand, )) (17

on B(D : al_prn}l". As = 8 = é.rr, {13} and (14) are now clear from (16),(17) for any p = (.
This completes the proof.

Remark 1. If & = 0, using the function uir, #) = ricos{od — ﬁ'l}l}”“ analogously one cian
obtain Theorem 4.1 of Menshikov and Williams ( 1996); this is what is essentially being done
in their proof.
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