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“Mathematics is always a continuum, linked to its his-

tory, the past - nothing comes out of zero........ A theorem

is never arrived at in the way that logical thought would

lead you to believe or that posterity thinks. It is usually

much more accidental, some chance discovery in answer to

some kind of question. Eventually you can rationalize it

and say that this is how it fits. Discoveries never hap-

pen as neatly as that. You can rewrite history and make

it look much more logical, but actually it happens quite

differently.....”

Sir Michael Atiyah

Source : Interview with Michael Atiyah and Isadore Singer

http://www.abelprisen.no/en/prisvinnere/2004/interview 2004 1.html
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Notation

In this thesis we denote a field by k. We consider fields of characteristic not 2

unless stated otherwise. The notation k̄ and ks denotes an algebraic closure and

separable closure of k respectively. The symbols Q,R,C will denote fields of rational,

real, complex numbers respectively. The symbol Z will denote the set of integers. We

denote by cd(k) the cohomological dimension of k.

We use G to denote an algebraic group and G(k) to denote the group of k-

rational points of G. Sometimes we abuse notation and denote the group of k̄ points

of G by G. An algebraic group always means a linear algebraic group unless stated

otherwise. The connected component of G is denoted by G0. The Lie algebra of

G is denoted by g. An element g ∈ G(k) is k-real if there exists t ∈ G(k) such

that tgt−1 = g−1. Let H be a subgroup of G. We denote the centralizer of H in

G by ZG(H) = {g ∈ G | gh = hg ∀h ∈ H} and the normalizer of H in G by

NG(H) = {g ∈ G | gHg−1 = H}. The center of G is denoted by Z(G). The general

linear group is denoted by GLn(k) and special linear group by SLn(k). Orthogonal

groups are denoted as O(V, b), On(b) or O(q) where b or q indicates the form. Note

that we use Sp2n(b) or Sp2n(k) to denote the symplectic group and U(V, h) to denote

the unitary group with hermitian form h.

The matrix algebra over field k is denoted by Mn(k). We use the symbol C to

denote octonion (Cayley) algebras in chapters where we deal with groups of type G2.

The symbols ⊗,⊕ are used to denote tensor and direct sum respectively. The end

of a proof is denoted with symbol ¤. Bold face word means the word appears for

the first time and we give definition for that or a possible reference for the definition.

The notation det(A),Hom(M,N),Aut(V ),Gal(K/k) denotes the determinant of a

matrix A, the set of all homomorphisms from M to N , the set of all automorphisms of

V and the Galois group of field K over k respectively. The symbol diag(A,B, . . . , D)

denotes the diagonal matrix where A,B and D themselves are matrices (possibly

1× 1) sitting on the diagonal. Transpose of a matrix A is written as tA and transpose

inverse is written as tA−1.

xi





CHAPTER 0

Prologue

Group theory is ubiquitous in nature and it arises via symmetry aspects of ob-

jects. The most common groups are the set of linear transformations which preserve

symmetry of some object. The way platonic solids are related to finite subgroups of 3-

dimensional orthogonal group has mesmerized us for a long time. It is a striking fact,

but not surprising, that algebraic groups have their origin in differential equations.

It was imagination of S. Lie and later some papers written by Kolchin, to develop

Galois theory for differential equations which gave birth to algebraic groups. To start

with, linear algebraic groups are defined over algebraically closed fields. In many ways

they have properties similar to Lie groups. It is a credit to the great mathematicians

Chevalley, Kolchin, Borel and others, who extensively studied the theory of algebraic

groups. They also brought in the picture of algebraic groups defined over an arbitrary

base field k. In studying algebraic groups over algebraically closed fields one has a lot

of facilities and nice theorems. However studying groups over an arbitrary base field

is equally important from the point of view of group theory and its representations.

In this thesis we deal with the subject of algebraic groups and try to look into the

structure of some of the groups. We hope this thesis adds to the understanding of

algebraic groups.

We now describe the organization of this thesis. The question of determining

real elements in an algebraic group is of great importance from the point of view of

representation theory. A reader who is just interested in looking up the results proved

in this thesis, should go straightaway to Chapter 6 and then move on to Chapter 10 for

connections with representation theory. Since there is no general theory to describe

the main results in answer to our questions we study the question of reality for various

groups case by case. We have mainly dealt with classical groups case by case and

groups of type G2. Indeed we see that the results are coherent and follow a pattern

which guides us towards asking the question in broader sense, i.e., for all algebraic

groups (see Section 10.2). Some general results in Chapter 9 further strengthen our

claim.

1



2 0. PROLOGUE

Chapters 1 to 5 are preliminary in nature and are intended to introduce most of

the basic concepts used in this thesis. We do not aim to give a complete account

of these topics but try to give most of the definitions and results used later and

provide appropriate references for these results. In Chapter 1 we describe the classical

groups with which we deal in this thesis. There are excellent references ([A], [G] to

mention a few) available on this topic and the subject is usually referred in literature

as “Geometric Algebra”. The modern theory, from the point of view of algebraic

groups, is treated very well in [KMRT].

In Chapter 2 we give a brief account of the theory of algebraic groups. In this chap-

ter, we introduce some definitions and terminologies which we keep using throughout

this thesis. For a detailed study of the theory of algebraic groups, we refer the reader

to [S3], [Sp], [Hu], [Bo].

In this thesis we also deal with exceptional groups of type G2. In Chapter 3 we

describe how to obtain all groups of type G2 over k. The book [SV] is an excellent

reference for the subject. We develop the theory to suit our needs and describe results

from some of the papers, specifically from [J] and [W2], which we use while proving

our results.

Galois cohomology is introduced in Chapter 4. We describe how Galois cohomol-

ogy describes forms of certain algebraic groups. The book [Se] is a good source for

this topic.

In Chapter 5 we give a description of maximal tori in SUn. Though a description

of maximal tori in classical groups is available in [Ka] and [R], for our work we need

details of this description for SUn. We also describe how decomposability of tori is

related to representations.

Chapter 6 collects together all main results. Here we describe all the results

obtained in this thesis and known results in that direction. Chapters 7, 8 and 9 are

devoted to the proofs of the results.

For number theoretic preliminaries (e.g. local and global field, ramification theory,

division algebra etc.), we refer the reader to the excellent text [CF].

The problem which we have dealt with is closely related to representation theory.

In Chapter 10 we describe this connection and try to put forward our question in

general theory of representations of algebraic groups. We also take this opportunity

to describe some of the questions that remain to be answered. We hope the results

in this thesis will contribute to the understanding of the subject.



CHAPTER 1

Classical Groups

In this chapter we give a brief introduction to classical groups. For the classical

theory of forms and their isometry groups, we refer the reader to the books by E.

Artin ([A]) and L. C. Grove ([G]) on the subject. For a modern account of the

subject, we refer to the book [KMRT]. Let k be a field. Let V be a vector space of

dimension n over k. We denote the set of all linear automorphisms of V by GL(V ).

The set GL(V ) is a group under the multiplication defined by composition of maps.

Let B = {e1, . . . , en} be a basis of V . Then we can identify GL(V ) with GLn(k) =

{A ∈Mn(k) | det(A) 6= 0}, the set of all n×n invertible matrices. This group is called

the general linear group. The linear automorphisms, which have determinant 1,

constitute a subgroup of GL(V ), denoted by SL(V ). The corresponding matrix group

is denoted by SLn(k) = {A ∈Mn(k) | det(A) = 1}. This group is called the special

linear group .

1.1. Bilinear Forms and Hermitian Forms

Let V be a vector space of dimension n over a field k. A map b : V × V → k is

called a bilinear form if

b(ax+ by, z) = ab(x, z) + bb(y, z)

b(x, ay + bz) = ab(x, y) + bb(x, z)

for all x, y, z ∈ V and a, b ∈ k.

Definition 1.1.1. A bilinear form b is called symmetric if b(x, y) = b(y, x)

for all x, y ∈ V . A bilinear form b is called skew-symmetric or symplectic if

b(x, x) = 0 for all x ∈ V .

Let b be a bilinear form on V . Let {e1, . . . , en} be a basis of V over k. Then there

exists a matrix B such that b(x, y) = txBy. The matrix B has b(ei, ej) as its ijth entry.

Note that a bilinear form b is symmetric (respectively skew-symmetric) if and only if

the corresponding matrix B is symmetric, i.e., B = tB (respectively skew-symmetric,

i.e., tB = −B), with respect to any fixed basis of V .

3



4 1. CLASSICAL GROUPS

Let V be a vector space of dimension n over k. A map q : V → k is called a

quadratic form if

(i) q(ax) = a2q(x), for all a ∈ k and x ∈ V ,

(ii) the map bq : V × V → k defined by bq(x, y) = q(x + y) − q(x) − q(y) is

bilinear.

We note that the bilinear form associated to q is symmetric. Given a symmetric

bilinear form b, we can define the associated quadratic form as q(x) = b(x, x). If

characteristic of k 6= 2, this gives a one-one correspondence between symmetric bilin-

ear forms and quadratic forms.

Let k be a quadratic field extension of a field k0. Let σ be the nontrivial field

automorphism of k over k0. We write σ(a) = ā for a ∈ k. Let V be a vector space of

dimension n over field k. A map b : V × V → k is called a sesquilinear if

b(ax+ by, z) = ab(x, z) + bb(y, z)

b(x, ay + bz) = āb(x, y) + b̄b(x, z)

for all x, y, z ∈ V and a, b ∈ k.

Definition 1.1.2. A sesquilinear form is called hermitian if b(x, y) = b(y, x) for

all x, y ∈ V .

Let {e1, . . . , en} be a basis of V over k. Then there exists a matrix B such that

b(x, y) = txBȳ. The matrix B has b(ei, ej) as its ijth entry. Note that the form b is

hermitian if and only if the corresponding matrix B is hermitian, i.e., tB̄ = B.

Let V be a vector space of dimension n over k. Let σ be an automorphism of field

k such that σ2 = 1 (identity or non-identity). We denote by k0 the fixed subfield of k

under σ when σ is non-identity. We call (V, b) a symmetric or quadratic (sym-

plectic, hermitian) space if the form b is symmetric (skew-symmetric, hermitian)

on V . Let (V, b) be a space with a form b of one of the above types. Then the form

b is called nondegenerate if one of the following equivalent conditions is true:

(i) the subspace {x ∈ V | b(x, y) = 0, ∀y ∈ V } = 0,

(ii) the subspace {y ∈ V | b(x, y) = 0, ∀x ∈ V } = 0,

(iii) the corresponding matrix B to the form is nonsingular.

A quadratic form q on V is called nondegenerate if the corresponding bilinear form

bq is nondegenerate on V . A vector v ∈ V is called isotropic if b(v, v) = 0 otherwise

it is called anisotropic. Let W be a subspace of V . We define W⊥ = {y ∈ V |
b(x, y) = 0 ∀x ∈ W}. A subspace W of V is called isotropic if W ∩W⊥ 6= {0} and
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is called totally isotropic if W = W⊥. A subspace W is nondegenerate if the form

b restricted to W is nondegenerate.

Lemma 1.1.3. Let (V, b) be a symmetric, symplectic or a hermitian space. Let

W be a subspace. Then,

(1) dim(V ) = dim(W ) + dim(W⊥) and

(2) V = W ⊕W⊥ if and only if the form b restricted to W is nondegenerate.

This Lemma is useful in determining whether a subspace is nondegenerate. Let

W1 and W2 be two subspaces of V . We call V is orthogonal sum of W1 and W2

if V = W1 ⊕ W2 and b(w1, w2) = 0 ∀w1 ∈ W1 and w2 ∈ W2. We denote it by

V = W1©⊥ W2.

We will need the notion of tensor product of bilinear forms. Let (V1, b1) and

(V2, b2) be vector spaces over k with bilinear forms. We define b1⊗b2, a bilinear form

on V1 ⊗ V2, by

b1 ⊗ b2(v1 ⊗ v2, w1 ⊗ w2) = b1(v1, w1)b2(v2, w2).

If b1 and b2 both are symmetric then the form b1 ⊗ b2 is symmetric. Hence we have

notion of tensor product of quadratic forms. Let (V1, q1) and (V2, q2) be quadratic

spaces over k. Then (V1 ⊗ V2, q1 ⊗ q2) is a quadratic space where q1 ⊗ q2(v1 ⊗ v2) =

q1(v1)q2(v2).

1.2. Isometry Groups

Let (V, b) be a space with form b which is either symmetric, skew symmetric or

hermitian. An element T ∈ GL(V ) is called an isometry if b(Tx, Ty) = b(x, y)

for all x, y ∈ V . If the form b is symmetric (respectively skew-symmetric or her-

mitian) the group of isometries is called orthogonal (respectively symplectic or

unitary) group of (V, b) denoted by O(V, b) (respectively Sp(V, b), U(V, b)). Let

b be a skew-symmetric form on V . An element T ∈ GL(V ) is called a skew-

symplectic isometry if b(Tx, Ty) = −b(x, y) for all x, y ∈ V . The orthogonal

group is also denoted by O(V, q), where q is the corresponding quadratic form. The

group SO(V, b) = {T ∈ O(V, b) | det(T ) = 1} is called the special orthogonal

group and the group SU(V, b) = {T ∈ U(V, b) | det(T ) = 1} is called the special

unitary group.

In the matrix notation, we fix a basis of V and denote the matrix of b by B.

The matrix groups corresponding to the orthogonal group, symplectic group and the
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unitary group are denoted as On(b) (or On(q)), Sp2n(b) and Un(b) respectively. We

have,

On(b) = {A ∈ GLn(k) | tABA = B}
Sp2n(b) = {A ∈ GL2n(k) | tABA = B}
Un(b) = {A ∈ GLn(k) | tABĀ = B}.

where Ā is the matrix having entries āij where aij is the ijth entry of A.

Let us first analyze the structure of orthogonal and unitary groups. Let V be

a vector space over k with a nondegenerate symmetric bilinear form or a hermitian

form B on it. Then we have,

Proposition 1.2.1. Let (V, b) be as above. Then there exists a basis {e1, . . . , en}
of V such that b(ei, ej) = 0 for all i 6= j.

We call such a basis an orthogonal basis for V . Then the matrix of the form

is diag(λ1, . . . , λn) where λi = b(ei, ei) ∈ k∗ if b is symmetric and λi ∈ k∗0 if b is

hermitian. Over an algebraically closed field, one can choose an orthonormal basis in

the first case and the orthogonal group is On(b) = {A ∈ GLn(k) | tAA = I}.
A transformation τ ∈ O(V, q) is called a reflection if there exist an element v ∈ V

with q(v) 6= 0 such that τ(v) = −v and τ fixes every vector orthogonal to v. We also

denote τ by τv. In fact, we have

τv(x) = x− 2
b(x, v)

q(v)
v.

Theorem 1.2.2 (Cartan, Dieudonne). Let V be a vector space of dimension n

over a field k. Let q be a nondegenerate quadratic form on it. Then every element in

O(V, q) is a product of at most n reflections.

The group SO(V, q) is of index 2 in O(V, q). An element in O(V, q) is called a proper

isometry if it belongs to SO(V, q) otherwise it is improper.

Corollary 1.2.3. With hypothesis as above, if n is odd and τ ∈ O(V, q) is a

proper isometry then τ has a non zero fixed point in V .

Study of involutions in the orthogonal group is of great importance. An involution in

this group corresponds to a nondegenerate subspace of V (see [G], Proposition 6.11).

Proposition 1.2.4. With notation as above, let τ ∈ O(V, q) be an involution, i.e.,

τ 2 = 1. Then there exists a nondegenerate subspace U of V such that τ = −1|U⊕1|U⊥.
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Now we include a discussion about symplectic groups. Let V be a vector space

with a nondegenerate skew-symmetric form b on it. Since the corresponding matrix

is skew-symmetric it follows that the dimension of V is even. Let the dimension of V

be n = 2m.

Proposition 1.2.5. With notation as above, there exists a basis {u1, v1, . . . , um, vm}
of V such that b(ui, vi) = 1, b(ui, vj) = 0, b(ui, ui) = 0 and b(ui, uj) = 0 for all i, j

with i 6= j.

Such a basis is called a symplectic basis for V . The corresponding matrix of the form

with respect to a symplectic basis is B = diag(N, . . . , N) where N =

(
0 1

−1 0

)
.

For a symplectic basis, the matrix B does not depend on k hence we denote the

symplectic group by Sp2n(k). When n = 2, the group Sp2(k) = SL2(k). The center

of Sp(V, b) is {I,−I} and every element of the symplectic group has determinant 1.

1.3. Algebras with Involutions and Classical Groups

We refer to the book [KMRT] for detailed treatment of topics covered in this

section. Let k be a field and A an associative k algebra with identity. An involution

on A is a map (not necessarily k-linear) σ : A→ A such that

σ(x+ y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x) ∀x, y ∈ A

and σ2 = 1. For an algebra A with involution σ, the group Aut(A, σ) of k-linear

automorphisms of A commuting with σ, is an algebraic group defined over k.

We describe here how classical groups arise this way from matrix algebras. Let

V be a finite dimensional vector space over k with a nondegenerate bilinear form

b. Then b̃ : V → V ∗ defined by b̃(x)(y) = b(x, y) is an isomorphism. This defines

a map σb : Endk(V ) → Endk(V ) by σb(T ) = b̃−1tT b̃ where tT ∈ Endk(V
∗). The

map σb is an anti-automorphism of the k-algebra Endk(V ). We call σb the adjoint

anti-automorphism of Endk(V ) with respect to b.

Theorem 1.3.1. The map b 7→ σb gives a one-one correspondence between equiv-

alence classes of nondegenerate bilinear forms on V modulo k∗ and k-linear anti-

automorphisms of the algebra Endk(V ). Under this map a k-linear involution on

Endk(V ) corresponds to a bilinear form on V which is either symmetric or skew-

symmetric.
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An adjoint anti-automorphism σb which is k-linear, is called the adjoint involution.

The idea above could be generalized to central simple algebras with involutions to

get forms of classical groups over field k. A central simple algebra of degree n over

k is a k-algebra A such that A ⊗k k̄ ∼= Mn(k̄) as k̄-algebras. Note that for a central

simple algebra A we have dimk(A) = n2 and the center Z(A) = k. An involution

σ : A→ A maps k to k. Hence σ|k = Id or an automorphism of order 2.

Definition 1.3.2. We call σ an involution of 1st kind if σ|k = Id and of 2nd

kind if σ|k is an automorphism of order 2.

An involution σ of the first kind is said to be of symplectic type if for any

splitting field L and any isomorphism (AL = A ⊗k L, σL) ∼= (EndL(V ), σb), the

bilinear form b is skew-symmetric; otherwise it is called of orthogonal type. We

note that ([KMRT], Corollary 2.8),

Proposition 1.3.3. Let A be a central simple k-algebra with an involution σ of

the first kind. If degree of A is odd, then A is split and σ is necessarily of orthogonal

type. If degree of A is even, then the index of A is power of 2 and A has involutions

of both type.

An involution of second kind is said to be of unitary type. Let (A, σ) be a central

simple k-algebra with involution. A similitude of (A, σ) is an element g ∈ A such

that σ(g)g ∈ k∗. The scalar σ(g)g is called the multiplier of g and is denoted by µ(g).

The set of all similitudes of (A, σ) is a subgroup of A×, the set of all invertible elements

of A, which we denote by Sim(A, σ). The group Autk(A, σ) = {θ ∈ Autk(A) | σθ =

θσ} is a group defined over k which is a form of one of the classical groups defined

in the previous section depending on the type of σ ⊗ 1 on A⊗ k̄ over k̄. Similitudes

with multiplier 1 are called isometries and form a group Iso(A, σ):

Iso(A, σ) = {g ∈ A× | σ(g)g = 1}.

Let (V, b) be a nondegenerate symmetric or skew-symmetric space. Consider the

central simple k-algebra A = Endk(V ) with adjoint involution σb. Then,

Sim(Endk(V ), σb) = {T ∈ Endk(V ) | b(T (v), T (w)) = αb(v, w) α ∈ k∗,∀v, w ∈ V }.

The group Iso(Endk(V ), σb) is O(V, b) if b is symmetric and is Sp(V, b) if b is skew-

symmetric. When b is skew-symmetric we denote the group Sim(Endk(V ), σb) by

GSp(V, b) or GSp(2n, k).
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One can define adjoint involutions corresponding to hermitian forms as well. Let

E be a central simple algebra over a field k and let V be a finitely generated left E

module. Let θ : E → E be an involution on E.

Definition 1.3.4. A hermitian form on V is a bi-additive map

h : V × V → E

such that

(i) h(αx, βy) = αh(x, y)θ(β) for all x, y ∈ V and α, β ∈ E,

(ii) h(y, x) = θ(h(x, y)) for all x, y ∈ V .

The hermitian form h on the left E-module V is called nondegenerate if the only

element x ∈ V such that h(x, y) = 0 for all y ∈ V is x = 0. For every nondegenerate

hermitian form h on V , there exists a unique involution σh on EndE(V ) such that

σh(α) = θ(α) for all α ∈ k and

h(x, f(y)) = h(σh(f)(x), y) for x, y ∈ V.

The involution σh is called the adjoint involution with respect to h. In this case the

isometry group Iso(EndE(V ), h) is denoted by U(V, h).

For more discussion on the forms of classical groups over a field k see Section 4.3.





CHAPTER 2

Linear Algebraic Groups

In this chapter we give a brief account of the theory of algebraic groups. For the

material covered here, we refer the books [S3], [Sp], [Hu] and [Bo], written by some

of the masters of the subject.

2.1. Definition and Examples

Let k̄ be an algebraically closed field. An algebraic group G is a variety over k̄

with a group structure on it such that the maps m : G×G→ G defined by (x, y) 7→ xy

and i : G → G defined by x 7→ x−1 are maps of varieties. If the underlying variety

of G is an affine variety over k̄ then the group is called an affine algebraic group.

We give some examples below.

Examples :

(1) The multiplicative group Gm and the additive group Ga of k̄ are algebraic

groups.

(2) The general linear group GLn is an algebraic group. Following subgroups

of GLn are examples of algebraic group: a finite subgroup, Dn (diagonal matrices in

GLn), Tn (upper triangular matrices inGLn), Un (unipotent upper triangular matrices

in GLn), SLn (special linear group i.e. matrices of determinant 1), On (orthogonal

group), SOn (special orthogonal group), Sp2n (symplectic group).

(3) Elliptic curves are example of algebraic groups which are not affine.

Any affine algebraic group G is a closed subgroup of some GLn. Hence often affine

algebraic groups are called linear algebraic groups. In this thesis we will only deal

with linear algebraic groups and hence we will drop the adjective affine (or linear)

occasionally.

Let k be a field and k̄ be an algebraic closure of k. An algebraic group G is defined

over k (or G is a k-group) if the polynomials defining the underlying variety G are

defined over k, with the group maps m and i defined over k and the identity element

e ∈ G is a k-rational point. We denote the k-points of G by G(k).

11
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Let V be a finite dimensional vector space over k̄. A rational representation

of an algebraic group G in V is a homomorphism of algebraic groups r : G→ GL(V ).

For a group G defined over k we say that a rational representation r is defined over

k if the map is defined over k. We denote by k̄[G] the coordinate algebra of the

algebraic group G. The right translation map of G defined by (g, x) 7→ xg−1 gives

rise to a representation ρ of G:

ρ : G→ GL(k̄[G]) , (ρ(g)f)(x) = f(xg)

where f ∈ k̄[G].

2.2. Jordan Decomposition

We now describe the Jordan decomposition of an element in an algebraic group.

First we recall Jordan decomposition from linear algebra. Let V be a finite dimen-

sional vector space over k̄. An endomorphism T of V is called semisimple if there

is a basis of V consisting of eigenvectors of T . We say that an endomorphism T is

nilpotent if T s = 0 for some integer s ≥ 1 and T is unipotent if T − 1 is nilpo-

tent. For any element t ∈ End(V ) there are unique ts, tn ∈ End(V ) such that ts is

semisimple, tn is nilpotent, tstn = tnts and t = ts + tn. This is called the additive

Jordan decomposition. Let t ∈ GL(V ). There are unique elements ts, tu ∈ GL(V )

such that ts is semisimple and tu is unipotent and t = tstu = tuts (multiplicative

Jordan decomposition).

Jordan decomposition generalises to infinite dimensional vector space for locally

finite endomorphisms. Let V be a vector space (not necessarily finite dimensional)

over k. An element t ∈ End(V ) is locally finite if V is a union of finite dimensional

t-stable subspaces. Let G be an algebraic group. We have for an element g ∈ G ([Sp],

Theorem 2.4.8),

Theorem 2.2.1 (Jordan decomposition). Let g ∈ G. There exist unique elements

gs, gu ∈ G such that g = gsgu = gugs and for any rational representation φ : G →
GL(V ) the element φ(gs) = φ(g)s is semisimple and φ(gu) = φ(g)u is unipotent.

The element gs is called the semisimple part of g and gu is called the unipotent part

of g.

Let G be an algebraic group defined over k. Let g ∈ G(k). Then gs and gu need

not belong to G(k). But if the field k is perfect, the elements gs and gu belong to

G(k) and we have the Jordan decomposition for g over k.
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2.3. Semisimple Algebraic Groups

In this section we briefly recall the structure theory of semisimple algebraic groups.

A linear algebraic group G is diagonalizable if it is isomorphic to a closed subgroup

of some group Dn of diagonal matrices. A group T is a torus if it is isomorphic to

some Dn. Equivalently a torus is a connected commutative algebraic group consisting

of semisimple elements alone. A torus T is a k-torus if T is a group defined over k

and is a torus. A k-torus T is called k-split if T is k-isomorphic to some Dn. Tori

play an important role in the study of algebraic groups.

Let G be a connected linear algebraic group. A maximal torus of G is a torus

in G that is not strictly contained in another torus contained in G. We record some

important results here regarding tori in an algebraic group. Any two maximal tori

of G are conjugate ([Sp], Theorem 6.4.1). The dimension of a maximal torus in G

is called the rank of G. Also every semisimple element of G lies in a maximal torus

([Sp], Theorem 6.4.5). Now let G be a connected linear algebraic group defined over

a field k. Then G contains maximal tori defined over k ([Sp], Theorem 13.3.6) and

every semisimple element of G(k) lies in a maximal k-torus ([Sp], Corollary 13.3.8).

However, conjugacy of all maximal tori in G(k) is no longer true.

Let G be a connected linear algebraic group. A maximal closed, connected, solv-

able normal subgroup of G is called the radical, denoted as R(G), of G. We call a

group G semisimple if R(G) = (e). A maximal closed, connected, unipotent normal

subgroup of G is called the unipotent radical, denoted as Ru(G), of G. In fact,

the maximal, closed, unipotent normal subgroup of R(G) is R(G)u = Ru(G). The

group G is called reductive if the unipotent part of R(G) is trivial. For example

the group GLn is a reductive group with R(GLn) = Dn, the diagonal torus, whereas

SLn is a semisimple group. A torus is a reductive group which is not semisimple. Let

G be a reductive group defined over k. We say that G is split over k or k-split if

G contains a maximal k-torus which is k split. The group G is quasi-split if there

exists a Borel subgroup of G defined over k and anisotropic if none of its proper

parabolic subgroups is defined over k.

Let T be a maximal torus in G. Then the group W = W (G, T ) = NG(T )/ZG(T )

is finite and is called the Weyl group of G with respect to a fixed maximal torus

T . If the group G is reductive then ZG(T ) = T ([Sp], Corollary 7.6.4) and in this

case the Weyl group W = NG(T )/T . This group plays important role in the study of

structure of semisimple groups.
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The next proposition reduces the study of structure of reductive groups to that

of tori and semisimple groups ([Sp], Corollary 8.1.6).

Proposition 2.3.1. Let G be a connected reductive group. Let G′ = [G,G] be the

commutator subgroup of G. Then, G = G′.Z0 where Z0 is the connected component

of the center of G.

In this decomposition G′ is a semisimple group and Z0 is a torus. Moreover, this

decomposition is an almost direct product, i.e., the intersection of G′ and Z0 is a

finite group (or equivalently the connected component of this intersection is triv-

ial). An example of this decomposition is GLn(k̄) = SLn(k̄).Z(GLn(k̄))0 where

Z(GLn(k̄)) = Z(GLn(k̄))0 = k̄∗. The intersection of the components is scalar matri-

ces λI of determinant 1, i.e., λn = 1, which is a finite group.

Let G be a connected semisimple group. We can decompose such a group as an

almost direct product of simple groups. Recall that a group G is a simple (also called

quasi-simple) algebraic group if any proper normal subgroup of G is finite and lies

in the center of G. Some examples of simple groups are SLn, SOn, Sp2n, G2 (all these

groups have been introduced in this thesis) et cetra. We have ([Sp], Theorem 8.1.5),

Proposition 2.3.2. Let G be a connected semisimple group. Then G has a finite

set of closed normal subgroups G1, . . . , Gk such that:

(i) each Gi is simple,

(ii) [Gi, Gj] = 1 if i 6= j,

(iii) G = G1G2 · · ·Gk,

(iv) Gi ∩G1 · · ·Gi−1Gi+1 · · ·Gk is finite for each i.

The Gi are uniquely determined by these conditions. They are called simple com-

ponents of the semisimple group G. Simple groups can be classified via root system

which we recall briefly in next section.

2.4. Root Datum and Reductive Groups

Let G be a connected reductive group over k̄. Let g be the Lie algebra of G.

Then G acts via the Ad representation on the Lie algebra g, i.e., we have a rational

representation Ad: G → GL(g). We fix a maximal torus T in G and denote the

character group of T by X(T ) = Hom(T,Gm). If the rank of the group G is r then

the group X is isomorphic to Zr. The torus T acts on g via the Ad representation.

Since T is a commuting set of semisimple elements, it acts diagonally on g ([Sp],
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Section 7.1). That is, we have

g =
⊕

α∈X

gα

where

gα = {x ∈ g | Ad(t)(x) = α(t)x ∀t ∈ T}.
The subspaces gα are called weight spaces and any non-zero vector in it is called

weight vector. The zero weight space is exactly the Lie algebra t of T . We write

Φ = {α ∈ X(T ) | gα 6= 0} and denote the lattice (subgroup) generated by Φ in X(T )

by Q. We list some properties here and refer to [Sp], Corollary 8.1.2 for the proofs.

We have,

(1) Each gα for α ∈ Φ is one-dimensional and α ∈ Φ if and only if −α ∈ Φ.

(2) The group W , Weyl group, acts naturally on X(T ) and leaves Φ invariant.

(3) Let E = R ⊗Z Q. Then (E,Φ) is an abstract root system (see [Sp], Section

7.4).

A semisimple group can be determined by its root system (E,Φ) and the funda-

mental group X/Q. In view of Proposition 2.3.2 it is enough to classify simple

groups. Simple groups correspond to irreducible root systems which eventually can

be classified as one of the following types:

An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4), E6, E7, E8, F4, G2.

The groups SLn(k̄) for n ≥ 1, SO2n+1(q) for n ≥ 2, Sp2n(k̄) for n ≥ 3 and SO2n(q) for

n ≥ 4 over k̄, introduced in the Chapter 1, are the groups of type An(n ≥ 1), Bn(n ≥
2), Cn(n ≥ 3), Dn(n ≥ 4) respectively. To determine reductive groups one needs more

data which we describe below.

Let us consider the Borel subgroups (a maximal connected closed solvable sub-

group) of G containing a fixed maximal torus T . They are all conjugate under the

action of N(T ) and in fact, W acts simply transitively on this set ([Sp], Corollary

6.4.12). Let B be a Borel subgroup of G containing T . Then B = U o T where

U = Ru(B). The group G has a unique Borel subgroup B−, called opposite Borel,

containing T such that B∩B− = T . We have B− = U−T where U− = Ru(B
−) ([Sp],

Lemma 8.1.4). The subgroups U and U− are connected unipotent groups normalized

by T (in fact, maximal unipotent subgroups of G) and U ∩ U− = 1. Let us denote

the cocharacter group Hom(Gm, T ) of T by Y (T ). Then Y (T ) ∼= Zr where r is the

rank of G. We get a pairing:

X × Y → Z
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defined using Aut(Gm) ∼= Z. For each α ∈ Φ there exists a unique (up to scalars)

homomorphism uα : Ga → G such that tuα(x)t−1 = uα(α(t)x) for all x ∈ Ga and t ∈
T . The image of uα is denoted as Uα, called the root subgroup of G corresponding

to α ([Sp], Proposition 8.1.1). The root subgroups are minimal proper subgroups

of U and U−. Moreover, the uα can be chosen such that there is a homomorphism

φα : SL2 → G such that

φα

(
1 x

0 1

)
= uα(x), φα

(
1 0

x 1

)
= u−α(x).

We define α∨ : Gm → T by α∨(x) = φα

(
x 0

0 x−1

)
. Then α∨ ∈ Y and is called the

coroot associated to α ∈ Φ. We denote the set of coroots by Φ∨.

We have associated a root datum (X(T ),Φ, Y (T ),Φ∨) to a reductive group G

with respect to a fixed maximal torus T in G. One can prove that this data does

not depend on the choice of a maximal torus. Every reductive group is classified by

its root datum ([Sp], Theorem 10.1.1). One can give an abstract definition of root

datum and we have a reductive group corresponding to each root datum. We briefly

describe how the Weyl group W can be defined from root datum. We let Φ+ be

the set of roots arising from root subgroups of U and Φ− be those coming from U−.

Roots in Φ+,Φ− are called positive and negative roots respectively. Let ∆ be the

set of positive roots which can not be written as sum of two positive roots. Roots

in ∆ are called simple roots. The group W (∆) generated by simple reflections, i.e.,

reflections with respect to simple roots, is the Weyl group ([SV], Theorem 8.3.4).

There is an element w0 ∈ W such that w0(Φ
+) = Φ−. This element w0 is unique and

is of order 2 called the longest element.

Let G be a semisimple algebraic group. Let Q ⊂ X be its root lattice. Then the

fundamental group X/Q is a finite group. Let P be the dual lattice of Q. One can

identify P with the weight lattice and we have Q ⊂ X ⊂ P . A semisimple group G

is called simply connected if X = P and adjoint if X = Q.



CHAPTER 3

Groups of Type G2

In this chapter we describe the groups of type G2 over a field k. The fact that all

groups of type G2 can be described this way follows from the computation of Galois

Cohomology for G2 in the next chapter (see Corollary 4.3.5). We shall discuss Galois

Cohomology in the next chapter. For the exposition in this chapter we follow the

book [SV]. Results in this chapter are used later in the proof of one of the main

theorems. Several results are taken from [J], [W2] and [L] and modified suitably to

fulfil our requirements.

3.1. The Group G2 and Octonions

We begin by a brief introduction to the group G2. Any group G of type G2 over a

given field k can be realized as the group of k-automorphisms of an octonion algebra

over k, determined uniquely by G. We will need the notion of a composition algebra

over a field k.

Definition 3.1.1. A composition algebra C over a field k is an algebra over k,

not necessarily associative, with an identity element 1 together with a nondegenerate

quadratic form N on C, permitting composition, i.e., N(xy) = N(x)N(y) ∀ x, y ∈ C.

The quadratic form N is called the norm on C. The associated bilinear form N is

given by : N(x, y) = N(x + y) − N(x) − N(y). Every element x of C satisfies the

equation x2 − N(x, 1)x + N(x)1 = 0. There is an involution (anti automorphism of

order 2) on C defined by x̄ = N(x, 1)1− x. We call N(x, 1)1 = x+ x, the trace of x.

The possible dimensions of a composition algebra over k are 1, 2, 4, 8. Composition

algebras of dimension 1 or 2 are commutative and associative, those of dimension

4 are associative but not commutative (called quaternion algebras), and those of

dimension 8 are neither commutative nor associative (called octonion algebras or

Cayley algebra).

Let C be an octonion algebra and G = Aut(C) be the automorphism group

of C. Since any automorphism of an octonion algebra leaves the norm invariant,

Aut(C) is a subgroup of the orthogonal group O(C, N). In fact, the automorphism

17
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group G is a subgroup of the rotation group SO(N) and is contained in SO(N1) =

{t ∈ SO(N) | t(1) = 1}, where N1 = N |1⊥ . We have ([SV], Theorem 2.3.5),

Proposition 3.1.2. The algebraic group G = Aut(Ck̄), where Ck̄ = C ⊗ k̄ and k̄

is an algebraic closure of k, is the split, connected, simple algebraic group of type G2.

Moreover, G is defined over k.

In fact, any simple group of type G2 over a field k is isomorphic to the automorphism

group of an octonion algebra C over k ([Se], Chapter III, Proposition 5, Corollary; see

Corollary 4.3.5). There is a dichotomy with respect to the norm of octonion algebras

(in general, for composition algebras). The norm N is a Pfister form (tensor product

of norm forms of quadratic extensions) and hence is either anisotropic or hyperbolic.

If N is anisotropic, every nonzero element of C has an inverse in C. We then call C

a division octonion algebra. If N is hyperbolic, up to isomorphism, there is only

one octonion algebra with N as its norm, called the split octonion algebra. We give

below a model for the split octonion algebra over a field k. Let

C =

{(
α v

w β

)
| α, β ∈ k; v, w ∈ k3

}
,

where k3 is the three-dimensional vector space over k with standard basis. On k3 we

have a nondegenerate bilinear form, given by 〈v, w〉 =
3∑

i=1

viwi, where v = (v1, v2, v3)

and w = (w1, w2, w3) in k3 and the wedge product on k3 is given by v ∧ w ∈ k3

where 〈v ∧ w, u〉 = det(v, w, u) for u, v, w ∈ k3. Addition on C is entry-wise and the

multiplication on C is given by,

(
α v

w β

)(
α′ v′

w′ β′

)
=

(
αα′ − 〈v, w′〉 αv′ + β′v + w ∧ w′

βw′ + α′w + v ∧ v′ ββ′ − 〈w, v′〉

)
.

The quadratic form N , the norm on C, is given by

N

(
α v

w β

)
= αβ + 〈v, w〉.

An octonion algebra over a field k can be defined as an algebra over k which, after

changing base to a separable closure ks of k, becomes isomorphic to the split octonion

algebra over ks (see [T]).



3.1. THE GROUP G2 AND OCTONIONS 19

3.1.1. Octonions from Rank 3 Hermitian Spaces. We briefly recall here

from [T], a construction of octonion algebras from rank 3 hermitian spaces over a

quadratic étale algebra over k. First we recall ([KMRT], Proposition 18.3),

Definition 3.1.3. Let E be a finite dimensional k-algebra. Then E is called an

étale algebra if E ⊗k ks
∼= ks × . . .× ks, where ks is a separable closure of k.

Let L be a quadratic étale algebra over k with x 7→ x as its standard involution. Let

(V, h) be a rank 3 nondegenerate hermitian space over L (see Definition 1.3.4). Assume

that the discriminant of (V, h) is trivial, i.e.,
∧3(V, h) ∼= (L,< 1 >), where < 1 >

denotes the hermitian form (x, y) 7→ xy on L. Fixing a trivialization ψ :
∧3(V, h) ∼=

(L,< 1 >), we define a vector product × : V × V −→ V by the identity,

h(u, v × w) = ψ(u ∧ v ∧ w),

for u, v, w ∈ V . Let C be the 8-dimensional k-vector space C = C(L;V, h, ψ) = L⊕V .

We define a multiplication on C by,

(a, v)(b, w) = (ab− h(v, w), aw + bv + v × w), a, b ∈ L, v, w ∈ V.

With this multiplication, C is an octonion algebra over k with norm N(a, v) =

NL/k(a) + h(v, v). Note that L embeds in C as a composition subalgebra. The

isomorphism class of C, thus obtained, does not depend on ψ. One can show that all

octonion algebras arise this way. We need the following ([T], Theorem 2.2),

Proposition 3.1.4. Let (V, h) and (V ′, h′) be isometric hermitian spaces with

trivial discriminant, over a quadratic étale algebra L. Then the octonion algebras

C(L;V, h) and C(L;V ′, h′) are isomorphic, under an isomorphism restricting to the

identity map on the subalgebra L.

We also need the following,

Lemma 3.1.5. Let L be a quadratic field extension of k. Let (V, h) be a rank

three hermitian space over L with trivial discriminant. For any trivialization ψ of

the discriminant, the octonion algebra C(L; v, h, ψ) is a division algebra, if and only

if the k-quadratic form on V , given by q(x) = h(x, x), is anisotropic.

3.1.2. Quaternions from Rank 3 Quadratic Spaces. We note that a similar

construction for quaternion algebras can be done, starting from a rank 3 quadratic

space V over k, with trivial discriminant. Let b : V × V −→ k be a nondegenerate

bilinear form. Assume that the discriminant of (V, b) is trivial, i.e.,
∧3(V, b) ∼= (k,<
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1 >), where < 1 > denotes the bilinear form (x, y) 7→ xy on k. Fixing a trivialization

ψ :
∧3(V, b) ∼= (k,< 1 >), we define a vector product × : V ×V −→ V by the identity,

b(u, v×w) = ψ(u∧v∧w), for u, v, w ∈ V . Let Q be the 4-dimensional k-vector space

Q = Q(k;V, b, ψ) = k ⊕ V . We define a multiplication on Q by,

(a, v)(b, w) = (ab− b(v, w), aw + bv + v × w), a, b ∈ k, v, w ∈ V.

With this multiplication, Q is a quaternion algebra over k, with norm N(a, v) =

a2 + b(v, v). The isomorphism class of Q thus obtained, does not depend on ψ. One

can show that all quaternion algebras arise this way.

Proposition 3.1.6. Let (V, b) and (V ′, b′) be isometric quadratic spaces with

trivial discriminants, over a field k. Then the quaternion algebras Q(k;V, b) and

Q(k;V ′, b′) are isomorphic.

3.2. Some Subgroups of G2

Let C be an octonion algebra over a field k (of characteristic 6= 2). Let L be a

composition subalgebra of C. In this section, we describe subgroups of G = Aut(C),

consisting of automorphisms leaving L pointwise fixed or invariant. We define

G(C/L) = {t ∈ Aut(C) | t(x) = x ∀ x ∈ L}

and

G(C, L) = {t ∈ Aut(C) | t(x) ∈ L ∀ x ∈ L} .

Jacobson studied G(C/L) in his paper ([J]). We mention the descriptions of these

subgroups here. One knows that the two dimensional composition algebras over k

are precisely the quadratic étale algebras over k ([KMRT], Theorem 33.17). Let L

be a two dimensional composition subalgebra of C. Then L is either a quadratic field

extension of k or L ∼= k× k. Let us assume first that L is a quadratic field extension

of k and L = k(γ), where γ2 = c.1 6= 0. Then L⊥ is a left L vector space via the

octonion multiplication. Also,

h : L⊥ × L⊥ −→ L

h(x, y) = N(x, y) + γ−1N(γx, y),

is a nondegenerate hermitian form on L⊥ over L. Any automorphism t of C, fixing

L pointwise, induces an L-linear map t|L⊥ : L⊥ −→ L⊥. Then we have ([J], Theorem

3),
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Proposition 3.2.1. Let the notation be as fixed above. Let L be a quadratic

field extension of k as above. Then the subgroup G(C/L) of G is isomorphic to the

unimodular (special) unitary group SU(L⊥, h) of the three dimensional space L⊥ over

L relative to the hermitian form h, via the isomorphism,

ψ : G(C/L) −→ SU(L⊥, h)

t 7−→ t|L⊥ .

Now, let us assume that L is a split two dimensional étale subalgebra of C. Then

C is necessarily split and L contains a nontrivial idempotent e. There exists a basis

B = {1, u1, u2, u3, e, w1, w2, w3} of C, called the Peirce basis with respect to e,

such that the subspaces U = span{u1, u2, u3} and W = span{w1, w2, w3} satisfy

U = {x ∈ C | ex = 0, xe = x} and W = {x ∈ C | xe = 0, ex = x}. We have, for

η ∈ G(C/L), x ∈ U ,

0 = η(ex) = η(e)η(x) = eη(x), η(x)e = η(x)η(e) = η(xe) = η(x).

Hence η(U) = U . Similarly, η(W ) = W . Then we have ([J], Theorem 4),

Proposition 3.2.2. Let the notation be as fixed above. Let L be a split quadratic

étale subalgebra of C. Then G(C/L) is isomorphic to the unimodular (special) linear

group SL(U), via the isomorphism given by,

φ : G(C/L) −→ SL(U)

η 7−→ η|U .

Moreover, if we denote the matrix of η|U by A and that of η|W by A1, with respect to

the Peirce basis as above, then tA1 = A−1.

In the model of the split octonion algebra as in the previous section, with respect

to the diagonal subalgebra L, the subspaces U and W are respectively the space of

strictly upper triangular and strictly lower triangular matrices. The above action is

then given by,

η

(
α v

w β

)
=

(
α Av

tA−1w β

)
.

We now compute the subgroup G(C, L) of automorphisms of the split octonion alge-

bra, leaving invariant a split quadratic étale subalgebra. We work with the matrix

model for split octonions. Up to conjugacy by an automorphism, we may assume that
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the split subalgebra is the diagonal subalgebra. We consider the map ρ on C given by

ρ : C −→ C(
α v

w β

)
7→

(
β w

v α

)
.

Then ρ leaves the two dimensional subalgebra L =

{(
α 0

0 β

)
| α, β ∈ k

}
invariant

and it is an automorphism of C, with ρ2 = 1.

Proposition 3.2.3. Let C be the split octonion algebra as above and let L be the

diagonal split quadratic étale subalgebra. Then we have,

G(C, L) ∼= G(C/L) oH,

where H is the order two group generated by ρ.

Proof. Let h ∈ G(C, L). Then h|L = 1 or the nontrivial k-automorphism of L.

In the first case, h ∈ G(C/L) and, in the second, hρ ∈ G(C/L). Hence h = gρ for

some g ∈ G(C/L). Moreover, it is clear that H normalizes G(C/L) in Aut(C). Since

H ∩G(C/L) = {1}, we get the required result. ¤

We now give a general construction of the automorphism ρ of an octonion algebra

C, not necessarily split, as above. We first recall the Cayley-Dickson Doubling for

composition algebras :

Proposition 3.2.4. Let C be a composition algebra and D ⊂ C a composition

subalgebra, D 6= C. Let a ∈ D⊥ with N(a) = −λ 6= 0. Then D1 = D ⊕ Da is a

composition subalgebra of C of dimension 2 dim(D). The product on D1 is given by:

(x+ ya)(u+ va) = (xu+ λvy) + (vx+ yu)a, x, y, u, v ∈ D,

where x 7→ x is the involution on D. The norm on D1 is given by N(x + ya) =

N(x) − λN(y).

Let C be an octonion algebra and L ⊂ C, a quadratic composition subalgebra of C.

Let a ∈ L⊥ with N(a) 6= 0. Let D = L⊕La be the double as described above. Then

D is a quaternion subalgebra of C. Define ρ1 : D → D by ρ1(x+ ya) = σ(x) + σ(y)a,

where σ denotes the nontrivial automorphism of L. Then ρ1 is an automorphism of

D, and clearly ρ2
1 = 1 and ρ1|L = σ. We now repeat this construction with respect to

D and ρ1. Write C = D ⊕ Db for some b ∈ D⊥, N(b) 6= 0. Define ρ : C → C by,

ρ(x+ yb) = ρ1(x) + ρ1(y)b.
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Then ρ2 = 1 and ρ|L = σ and ρ is an automorphism of C. One can prove that this

construction yields the one given above for the split octonion algebra and its diagonal

subalgebra. We have,

Proposition 3.2.5. Let C be an octonion algebra, possibly division, and L ⊂ C

a quadratic composition subalgebra. Then G(C, L) ∼= G(C/L) o H, where H is the

subgroup generated by ρ and ρ is an automorphism of C with ρ2 = 1 and ρ restricted

to L is the nontrivial k-automorphism of L.

We mention a few more subgroups of Aut(C). Let D ⊂ C be a quaternion

subalgebra. Then we have, by Cayley-Dickson doubling, C = D ⊕ Da for some

a ∈ D⊥ with N(a) 6= 0. Let φ ∈ Aut(C) be such that φ(x) = x for all x ∈ D.

Then for z = x + ya ∈ C, we have, φ(z) = φ(x) + φ(y)φ(a). But a ∈ D⊥ implies

φ(a) ∈ D⊥ = Da. Therefore φ(a) = pa for some p ∈ D and, by taking norms, we see

that p ∈ SL1(D). In fact, we have ([SV], Proposition 2.2.1),

Proposition 3.2.6. The group of automorphisms of C, leaving D pointwise fixed,

is isomorphic to SL1(D), the group of elements of D whose norm is 1. In the above

notation, G(C/D) ∼= SL1(D).

We describe yet another subgroup of Aut(C). Let D be as above and φ ∈ Aut(D).

We can write C = D ⊕ Da as above. Define φ̃ ∈ Aut(C) by φ̃(x + ya) = φ(x) +

φ(y)a. Then one checks easily that φ̃ is an automorphism of C that extends φ on D.

These automorphisms form a subgroup of Aut(C), which we shall abuse notation and

continue to denote by Aut(D).

Proposition 3.2.7. With notation as fixed, we have G(C,D) ∼= G(C/D)oAut(D).

Proof. Clearly Aut(D) ∩G(C/D) = {1} and Aut(D) normalizes G(C/D). Now,

for ψ ∈ G(C,D), consider the automorphism φ = ψψ̃−1. Then φ fixes elements of H

pointwise and we have ψ = φψ̃ ∈ G(C/D) o Aut(D). ¤

Some of these subgroups are conjugate in the group G. We have a Skolem-Noether

type theorem for composition algebras ([SV], Corollary 1.7.3) which can be used to

describe conjugacy of some of these subgroups.

Theorem 3.2.8. Let C be a composition algebra and let D and D′ be composition

subalgebras of the same dimension. Then, every linear isomorphism from D onto D′

can be extended to an automorphism of C.
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We use this theorem to get following,

Proposition 3.2.9. Let C be an octonion algebra over k and G = Aut(C). Let

D and D′ be two composition subalgebras of C. Suppose D and D′ are isomorphic

composition subalgebras. Then the subgroups G(C/D) and G(C/D′) are conjugate in

the group G. Also the subgroups G(C,D) and G(C,D′) are conjugate in the group G.

Proof. Let φ̃ be the isomorphism of D to D′. By Theorem 3.2.8 φ̃ can be extended

to an automorphism of C, say φ. Then, it is easy to check φG(C/D)φ−1 = G(C/D′)

and φG(C,D)φ−1 = G(C,D′). ¤

Using these results we calculate centralizers of elements in the groups of type G2

(Theorem 8.5.1) and it turns out that they are contained in one of the subgroups

described above.

3.3. Involutions in G2

In this section, we discuss the structure of involutions in G2. Let G be a group

of type G2 over k and C be an octonion algebra over k with G = Aut(C). We call an

element g ∈ G(k) an involution if g2 = 1. Hence nontrivial involutions in G(k) are

precisely the automorphisms of C of order 2. Let g be an involution in Aut(C). The

eigenspace corresponding to the eigenvalue 1 of g ∈ Aut(C) is the subalgebra D of C of

fixed points of g and is a quaternion subalgebra of C ([J], section 4, there it is called a

reflection). The orthogonal complement D⊥ of D in C is the eigenspace corresponding

to the eigenvalue −1. Conversely, the linear automorphism of C, leaving a quaternion

subalgebra D of C pointwise fixed and, acting as multiplication by −1 on D⊥, is an

involutorial automorphism of C (see Proposition 3.2.6). Let ρ be an involution in G(k)

and let D be the quaternion subalgebra of C, fixed pointwise by ρ. Let ρ′ = gρg−1 be

a conjugate of ρ by an element g ∈ G(k). Then, the quaternion subalgebra D′ = g(D)

of C is fixed pointwise by ρ′. Conversely, suppose the quaternion subalgebra D of C

is isomorphic to the quaternion subalgebra D′ of C. Then, by Theorem 3.2.8 there

exists an automorphism g of C such that g(D) = D′. If ρ denotes the involution

leaving D fixed pointwise, ρ′ = gρg−1 fixes D′ pointwise. Therefore, we have,

Proposition 3.3.1. Let C be an octonion algebra over k. Then the conjugacy

classes of involutions in G = Aut(C) are in bijection with the isomorphism classes of

quaternion subalgebras of C.
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Corollary 3.3.2. Assume that 2Br(k), the 2-torsion in the Brauer group of k, is

trivial, i.e., all quaternion algebras over k are split (for example, cd(k) ≤ 1 fields).

Then all involutions in G(k) are conjugates.

We need a refinement of a theorem of Jacobson ([J], Theorem 2), due to Wonen-

burger ([W1], Theorem 5) and Neumann ([N]),

Proposition 3.3.3. Let C be an octonion algebra over a field k of characteristic

different from 2. Then every element of G is a product of 3 involutions.

We will study in Chapter 8, the structure of real elements in G(k), in terms of

involutions. We will show that a semisimple element g ∈ G(k) is real, i.e., conjugate

to g−1 in G(k), if and only if g is a product of 2 involutions in G(k) (Theorem 6.2.2).





CHAPTER 4

Galois Cohomology

In this chapter we give a brief introduction to Galois Cohomology. The book by

Serre ([Se]) is an excellent reference for the subject and the exposition here is drawn

from that book. Another good reference is the notes by Kneser ([K]). Occasionally

we also need the theory of central simple algebras for which we refer to [P]. To

understand the theory of algebraic groups over base field k it is very important to

understand Galois Cohomology.

4.1. Commutative Cohomology and Central Simple Algebra

Let G be a group and let A be a set on which G acts. We denote the action by

s(a) = sa for s ∈ G and a ∈ A. We call A a G-set. If A is a group and the action of G

is via automorphisms then we call A a G-group. Let A be an Abelian G-group. We

define C0(G,A) = A and Ci(G,A) = {a : G× . . .×G︸ ︷︷ ︸
i

→ A} which is the set of all

maps from G× . . .×G︸ ︷︷ ︸
i

to A. We also write a(s1, . . . , si) as as1,...,si
. We define maps

δ0 : C0 → C1 by δ0(a)(s) = sa− a and

δi : Ci → Ci+1 for i ≥ 1

δi(a)(s1, . . . , si+1) = s1a(s2, . . . , si+1)

+
i∑

j=1

(−1)ja(s1, . . . , sjsj+1, . . . , si+1) + (−1)i+1a(s1, . . . , si)

Then

0 → C0 δ0

→ C1 δ1

→ C2 δ2

→ . . .
δi−1

→ Ci δi

→ Ci+1 δi+1

→ . . .

is a chain-complex. We define Z i(G,A) = ker(δi), the group of cocycles and

Bi(G,A) = Im(δi−1), the group of coboundaries. Then Bi(G,A) ⊂ Z i(G,A) and

we define H i(G,A) = Zi(G,A)
Bi(G,A)

, called i-th cohomology group. The cohomology

groups are Abelian groups. We write down first few cohomology groups explicitly.

(1) H0(G,A) = AG = {a ∈ A | sa = a ∀s ∈ G}, the set of fixed points of A by

the action of G.

27
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(2) H1(G,A) =
{a : G→ A | ast = as + sat}

{a : G→ A | as = sc− c for some c ∈ A} .

(3) H2(G,A) =
{a : G×G→ A | as1s2,s3 = s1as2,s3 + as1,s2s3 − as1,s2}

{a : G×G→ A | as,t = sbt − bst + bs for some map b : G→ A} .

Example 1: Let K be a finite Galois extension of a field k. Let G = Gal(K/k)

be the Galois group. Then G acts on the additive group K by evaluation. Then

H0(G,K) = k and H i(G,K) = 0 for all i ≥ 1.

Example 2: Let K be a Galois extension of a field k. Let G denote the Galois

group Gal(K/k). Then G acts on the Abelian group K∗ by evaluation. Then the

cohomology groups are :

(1) H0(G,K∗) = k∗.

(2) H1(G,K∗) = 1 (Hilbert’s theorem 90).

(3) H2(G,K∗) = Br(K/k).

The group Br(K/k) is the relative Brauer group which we introduce below.

4.1.1. Central Simple Algebras and the Brauer Group. Let k be a field.

Let A be a finite dimensional algebra over k. Then A is called simple if it has no

two sided ideals other than 0 and A. A finite dimensional algebra is called a central

simple algebra if it is simple and Z(A) = k. From Wedderburn’s structure theorem

([P], Theorem, Section 3.5) it follows that a central simple algebra A is isomorphic

to Mr(D) where D is a central division algebra over k. Equivalently, a central simple

algebra of degree n over k is a k-algebra A such that A⊗k k̄ ∼= Mn(k̄) as k̄-algebras. We

define an equivalence relation on the set of finite dimensional central simple algebras

over field k as follows. We call A and B equivalent if one of the following equivalent

conditions is satisfied:

(i) If A ∼= Mn(D) and B ∼= Mm(D′) then D ∼= D′.

(ii) There exist m,n such that A⊗Mm(k) ∼= B ⊗Mn(k).

The Brauer group of k ([P], Proposition a, Section 12.5) is the set of equivalence

classes of finite dimensional central simple algebras over k with multiplication defined

by tensor product. It is denoted as Br(k). Brauer group of a field is an Abelian group.

We give few examples here.

(1) Br(F) = {0}, for any finite field F.

(2) Br(k) = {0}, for any algebraically closed field k. In fact, Br(k) = {0}, for

any field k of transcendence degree one over an algebraically closed field.

(3) Br(R) = Z/2Z.
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(4) Br(Qp) ∼= Q/Z, where Qp is the field of p-adic numbers.

Let K/k be a field extension. Then we have a map Br(k) → Br(K) defined by

A 7→ A⊗K. The kernel of this map is called the relative Brauer group, denoted

as Br(K/k). Let A be a central simple algebra. Let K ⊂ A be a subfield containing

k such that ZA(K) = K, then K is called a maximal subfield of A.

Theorem 4.1.1. Let A be a central simple algebra over field k of dimension n2.

Then any maximal subfield K of A is a splitting field of A and [K : k] = [A : K] =

n. Conversely, given any finite field extension K of k of degree n, any element of

Br(K/k) has a unique representative A of degree n2 which contains K as a maximal

subfield.

For the proof of this theorem we refer to [P], Section 13.2 and 14.2. If D is a central

division algebra over k of dimension n2 then there exists a finite Galois extension K

of k which is a splitting field for D. Hence

Br(k) =
⋃

K

Br(K/k)

where union is taken over all finite Galois extensions of k. Here we determine the

structure of any central simple algebra in the context of the Brauer group ([P], Section

14.2).

Proposition 4.1.2. Let K/k be a Galois extension of fields with Galois group

G. Let n be the degree of field extension K/k. Let A be a central simple algebra

over k containing K as its maximal subfield. Then there exists xσ ∈ A,∀σ ∈ G and

a : G × G → K∗, a 2-cocycle, such that A =
⊕

σ∈GKxσ and the multiplication is

given by

αxσ.βxτ = ασ(β)aσ,τxστ .

Conversely we have,

Proposition 4.1.3. Let K/k be a Galois extension of fields with Galois group G.

Let n be the degree of field extension K/k. Let a : G × G → K∗ be a 2-cocycle. We

put A =
⊕

σ∈GKxσ and define multiplication as follows :

αxσ.βxτ = ασ(β)aσ,τxστ .

Then A is a central simple algebra over k containing K as a maximal subfield.
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The algebra obtained in this proposition is denoted by [K,G, a]. Proposition 4.1.3

provides a surjective map form Z2(G,K∗) → Br(K/k) defined by a 7→ [K,G, a]. This

map induces a group isomorphism of H2(G,K∗) and Br(K/k).

Let k be a field. We say k has cohomological dimension ≤ 1 (written as cd(k) ≤
1) if Br(K) = 0 for every algebraic extension K of k. For k with cd(k) ≤ 1, let L/K

be a finite Galois extension with K algebraic over k, then the norm NL/K : L∗ → K∗

is surjective ([Se], Chapter II, Section 3.1, Proposition 5).

A field k is a C1 field if every equation f(x1, . . . , xn) = 0, where f is a homogeneous

polynomial of degree d ≥ 1, with coefficients in k, has a nontrivial solution in kn if

n > d. Let k be a C1 field. Then every algebraic extension K of k is C1 and cd(k) ≤ 1

([Se], Chapter II, Section 3.2, Corollary). A finite field, an extension of transcendence

degree 1 of an algebraically closed field are examples of C1 field. For the notion of Cr

fields see [Se], Chapter II, Section 4.5.

4.2. Non-Commutative Cohomology

Let G be a group and A a set on which G acts. We denote s(a) = sa for s ∈ G and

a ∈ A. We call A a G-set. If A is a group and the action of G is via automorphisms

then we say A is a G-group. We define cohomology groups as follows. Let A be a

G-set. Then H0(G,A) = AG = {a ∈ A | sa = a ∀s ∈ G}, set of fixed points of A

under the action of G.

A map a : G→ A is called a 1-cocycle if

ast = as
sat (s, t ∈ G).

Two 1-cocycles a and b are equivalent if there exists c ∈ A such that bs = c−1as
sc. This

is an equivalence relation on the set of 1-cocycles and the quotient group is denoted as

H1(G,A). The set H1(G,A) need not be a group but it has a distinguished element,

namely, the class of 1-cocycles of the form b−1sb for b ∈ A called the neutral element

or trivial cocycle.

If A is commutative group we can define higher cohomology groups as defined in

Section 4.1.

Example : Let K be a finite Galois extension of k with Galois group G =

Gal(K/k). Let G act on the group GLn(K) entry wise. Then H0(G,GLn(K)) =

GLn(k) and H1(G,GLn(K)) = {1}.

Let A be a G-group. A principal homogeneous space or torsor for G over A

is a non-empty G-set P , on which A acts on the right (compatible with the action of
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G) such that ∀x, y ∈ P , there exists a unique a ∈ A such that y = x.a. Then ([Se],

Chapter I, Section 5.2, Proposition 33),

Proposition 4.2.1. Let A be a G-group. There is a bijection between the set of

classes of principal homogeneous spaces over A and the set H1(G,A).

Next we describe the cohomology exact sequence associated to a subgroup. Let A

be a subgroup of B which are G-groups. The homogeneous space B/A of left A-cosets

of B is a G-set. Then we have ([Se], Chapter I, Section 5.4, Proposition 36),

Proposition 4.2.2. The sequence of pointed sets :

1 → H0(G,A) → H0(G,B) → H0(G,B/A)
δ→ H1(G,A) → H1(G,B)

is exact.

If A is normal in B then the above exact sequence can be extended on its right

up to H1(G,B/A).

4.3. Forms of Algebraic Groups

Let V be a vector space over a field k. Let x be a tensor (1-tensor) on V . Let K

be a Galois extension of the field k and G be the Galois group. Then the tensor x can

be extended to xK over VK = V ⊗K. We call (V, x) and (V ′, x′) are K-isomorphic

if (VK , xK) and (V ′
K , x

′
K) are isomorphic. Let (V, x) be a pair and E(V,x)(K/k) be

the set of k isomorphism classes of (V ′, x′) which are K isomorphic to (V, x). Let

AK = AutK(VK , xK). Then G acts on VK by s.(x⊗λ) = x⊗ s(λ) for any s ∈ G. The

group G acts on AK as follows:

s(f)(x) = s.f(s−1(x)), i.e., s(f) = sfs−1.

This action on GLn(K) is same as the entry wise action.

Let us fix (V, x). We compare E(K/k) = E(V,x)(K/k) toH1(G,AK). Let (V ′, x′) ∈
E(K/k) and f : VK → V ′

K be the map giving isomorphism of (VK , xK) and (V ′
K , x

′
K).

We define a map p : G → AK by s 7→ f−1s(f) = f−1sfs−1. It is easy to check that

p is a 1-cocycle. We define a map θ : E(K/k) → H1(G,AK) by θ(V ′, x′) 7→ p ([Se],

Chapter III, Section 1.1, Proposition 1).

Proposition 4.3.1. The map θ is bijective.

Let us consider a nondegenerate quadratic form q as a tensor. Then the set

E(K/k) is the set of quadratic forms that are K-isomorphic to q. The group AK =
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OK(q), is the orthogonal group of the form over K. We have ([Se], Chapter III,

Section 1.2, Proposition 4),

Corollary 4.3.2. The set H1(G,OK(q)) is in bijective correspondence with the

set of classes of quadratic k-forms that are K-isomorphic to q.

If we take b a nondegenerate alternating (symplectic) form as a tensor then we

get ([Se], Chapter III, Section 1.2, Proposition 3),

Corollary 4.3.3. H1(G,Sp2n(b)) = {1}.

Now we choose V an algebraic variety (e.g. an algebraic group) defined over k. As

before we take K an extension of k and denote by AK the group of K-automorphisms

of VK . Now let K/k be a Galois extension and let V ′ be a K/k-form of V . The

set P of K-isomorphisms of V ′
K over VK is obviously a principal homogeneous space

over the Gal(K/k)-group A(K) = AutV (K). Hence we get a canonical map as before

([Se], Chapter III, Section 1.3, Proposition 5 and Corollary):

θ : E(K/k) → H1(K/k,AutV ).

Proposition 4.3.4. The map θ is injective. If V is a quasiprojective, it is bijec-

tive. Hence if V is an algebraic group, the map θ is bijective.

Corollary 4.3.5. The K/k-forms of simple groups of type G2 is in one-one corre-

spondence with K/k-forms of octonion algebras. Also, K/k-forms of classical groups

with trivial center is in one-one correspondence with K/k-forms of semisimple alge-

bras with involution.

Let Q be a quaternion algebra over k. We associate a group SL1(Q) to it which

is a k-form of SL2 and the rational points of this group can be identified with the

elements of Q with reduced norm 1.

We mention here a theorem about an algebraic group over field with cd(k) ≤ 1.

This theorem is due to Steinberg ([S1], Theorem 1.9; [Se], Chapter III, Section 2.3,

Theorem 1’).

Theorem 4.3.6 (Steinberg). Let k be a perfect field with cd(k) ≤ 1. Then,

H1(k, L) = 0 for every connected linear group L.

If L is connected reductive group then the assumption that k is a perfect field is not

needed in this theorem.



CHAPTER 5

Maximal Tori in SUn

We need an explicit description of maximal tori in the special unitary group of

a nondegenerate hermitian space for our work, we discuss it in this chapter (cf. [R],

Section 3.4). In fact maximal tori in any classical group can be described in this way.

The general theory is known to experts hence we restrict ourself to the specific case.

We refer to [Ka] for the description of maximal tori in classical groups, in general.

5.1. Description of Maximal Tori

Let k be a field (of characteristic different from 2) and L a quadratic field exten-

sion of k. Let V be a vector space of dimension n over L. We denote by ks a separable

closure of k containing L. Let h be a nondegenerate hermitian form on V (see Defi-

nition 1.1.2). Let E be an étale algebra (see Definition 3.1.3) over k. It then follows

that the bilinear form T : E × E −→ k, induced by the trace : T (x, y) = trE/k(xy) for

x, y ∈ E , is nondegenerate.

Lemma 5.1.1. Let L be a quadratic field extension of k. Let E be an étale algebra

over k containing L, equipped with an involution σ, restricting to the non-trivial k-

automorphism of L. Let F = Eσ = {x ∈ E | σ(x) = x}. Let dimL(E) = n. For

u ∈ F∗, define

h(u) : E × E −→ L

h(u)(x, y) = trE/L(uxσ(y)).

Then h(u) is a nondegenerate σ-hermitian form on E, left invariant by T(E,σ) = {α ∈
E∗ | ασ(α) = 1}, under the action by left multiplication.

Proof. That h(u) is a hermitian form is clear. To check non-degeneracy, let

h(u)(x, y) = 0 ∀y ∈ E . Then, trE/L(uxσ(y)) = 0 ∀y ∈ E , i.e., trE/L(xy′) = 0 ∀y′ ∈ E .

Since E is étale, it follows that x = 0. Therefore h(u) is nondegenerate. Now let

α ∈ T(E,σ). We have,

h(u)(αx, αy) = trE/L(uαxσ(αy)) = trE/L(uxσ(y)) = h(u)(x, y).
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Hence the last assertion. ¤

Remark 5.1.2. We note that E = F ⊗k L. If we put F ′ = {x ∈ E | σ(x) = −x}
then E = F ⊕ F ′. Further, if L = k(γ) with γ2 ∈ k∗, then F ′ = Fγ.

Notation : In what follows, we shall often deal with situations when, for an

algebraic group G defined over k, and for any extension K of k, the group G(K) of

K-rational points in G coincides with G(k) ⊗k K. When no confusion is likely to

arise, we shall abuse notation and use G to denote both the algebraic group, as well

as its group of k-points. We shall identify T(E,σ) with its image in U(E , h(u)), under

the embedding via left homotheties.

Lemma 5.1.3. With notation as in the previous lemma, T(E,σ) is a maximal k-

torus in U(E , h(u)), the unitary group of the hermitian space (E , h(u)).

Corollary 5.1.4. Let T 1
(E,σ) = {α ∈ E∗ | ασ(α) = 1, det(α) = 1}. Then T 1

(E,σ) ⊂
SU(E , h(u)) is a maximal k-torus.

Theorem 5.1.5. Let k be a field and L a quadratic field extension of k. We denote

by σ the nontrivial k-automorphism of L. Let V be a L-vector space of dimension n

with a nondegenerate σ-hermitian form h. Let T ⊂ U(V, h) be a maximal k-torus.

Then there exists ET , an étale L-algebra of dimension n over L, with an involution

σh restricting to the nontrivial k-automorphism of L, such that

T = T(ET ,σh).

Moreover, if ET is a field, there exists u ∈ F ∗ such that (V, h) is isomorphic to

(ET , h
(u)) as a hermitian space.

Proof. Let A = EndL(V ). Then A is a central simple L-algebra. Let ET = ZA(T ),

the centralizer of T in A. Note that T ⊂ ET . The hermitian form h defines the adjoint

involution σh on A (see Section 1.3),

σh : A −→ A

h(σh(f)(x), y) = h(x, f(y))

for all x, y ∈ V . Then σh is an involution of second kind over L/k on A (Defini-

tion 1.3.2). We claim that σh restricts to ET : Let f ∈ ET , we need to show σh(f) ∈ ET ,

i.e., σh(f)t = tσh(f) ∀ t ∈ T . This follows from,

h(σh(f)t(x), y) = h(t(x), f(y)) = h(x, t−1f(y)) = h(x, ft−1(y))

= h(σh(f)(x), t−1y) = h(tσh(f)(x), y).
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We have T ⊂ U(V, h) ⊂ EndL(V ) and σh is an involution on EndL(V ), restricting

to the nontrivial k-automorphism of L. There is a canonical isomorphism of algebras

with involutions ([KMRT], Chapter I, Proposition 2.15),

(EndL(V ) ⊗k ks, σh) ∼= (Endks
(V ) × Endks

(V ), ε),

where ε(A,B) = (B,A). Since U(V, h) = {A ∈ EndL(V ) | Aσh(A) = 1}, we have,

U(V, h) ⊗k ks
∼= {(A,B) ∈ EndL(V ) ⊗k ks | (A,B).ε(A,B) = 1}

= {(A,A−1) | A ∈ Endks
(V )}.

We thus have an embedding

T ⊗k ks −→ Endks
(V ) × Endks

(V ), A 7→ (A,A−1).

To prove ET is étale, we may conjugate T ⊗ ks to the diagonal torus in GLn(ks). The

embedding then becomes,

T ⊗k ks
∼= (k∗s)

n −→Mn(ks) ×Mn(ks),

(t1, . . . , tn) 7→ (diag(t1, . . . , tn), diag(t−1
1 , . . . , t−1

n )).

Now, we have,

ET ⊗k ks = ZA(T ) ⊗k ks = ZA⊗kks
(T ⊗k ks)

∼= ZMn(ks)×Mn(ks)

(
{(diag(t1, . . . , tn), diag(t−1

1 , . . . , t−1
n )) | ti ∈ k∗s}

)
= k2n

s .

Hence ET is an étale algebra of k-dimension 2n and L-dimension n. We have, T ⊂
T(ET ,σh) and, by dimension count, T = T(ET ,σh). We have on V , the natural left

EndL(V )-module structure. Since ET is a subalgebra of EndL(V ) and a field, V is a

left ET -vector space of dimension 1. Let V = ET .v for v 6= 0. Let us consider the

dual V ∗ = HomL(V, L), which is a left-ET -vector space of dimension 1 via the action:

(α.f)(x) = f(α(x)), α ∈ ET , x ∈ V . We consider the following elements in V ∗:

φ1 : V = ET .v −→ L

fv 7→ h(f(v), v)

φ2 : V = ET .v −→ L

fv 7→ tr(f).

Since ET is separable, both these are nonzero elements of V ∗. Hence there exists

u ∈ E∗
T such that h(f(v), v) = tr(uf) ∀f ∈ ET . We have,

h(f.v, g.v) = h(f(v), g(v)) = h(σh(g)f(v), v) = tr(uσh(g)f) ∀f, g ∈ ET .
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This will prove the theorem provided we show u ∈ F . For any f ∈ ET we have,

tr(σh(u)f) = tr(σh(u).σh(σh(f))) = σh(tr(uσh(f)))

= σh(h(σh(f)(v), v)) = h(v, σh(f)(v)) = h(f(v), v) = tr(uf).

Since ET is separable, the trace form is nondegenerate and hence σh(u) = u. The map

Φ: (V, h) −→ (ET , h
(u)), fv 7→ f

is an isometry:

h(u)(Φ(fv),Φ(gv)) = tr(uσh(g)f) = h(fv, gv)

by the computation done above. ¤

Corollary 5.1.6. Let the notation be as fixed above. Let T be a maximal torus

in SU(V, h). Then there exists an étale algebra ET over L of dimension n, such that

T ∼= T 1
(ET ,σh).

Remark 5.1.7. The hypothesis in the last assertion in Theorem 5.1.5, that ET

be a field, is only a simplifying assumption. The result holds good even when ET is

not a field.

Let T ⊂ SU(V, h) be a maximal torus. Then from the proof of Theorem 5.1.5 we

see that ET = ZEnd(V )(T
′) is an étale algebra with involution σh such that T = T 1

(ET ,σh),

here T ′ is a maximal torus in U(V, h).

5.2. Tori and Representations

We continue here with notation introduced in the previous section.

Lemma 5.2.1. With notation as above, V is an irreducible representation of T

if and only if ET is a field.

Proof. Suppose ET is not a field. Then ∃0 6= f ∈ ET such that V 6= ker(f) 6= 0.

PutW = ker(f) ⊂ V , which is a L-vector subspace. We claim thatW is a T invariant

subspace. Let x ∈W, t ∈ T .

f(x) = 0 ⇒ t(f(x)) = 0 ⇒ f(t(x)) = 0 ⇒ t(x) ∈W.

Hence, T (W ) = W .

Conversely, let ET be a field and 0 6= W ⊂ V be a T -invariant L-subspace of V .

We shall show that V = W . We know that V is a one dimensional ET vector space.

Thus, it suffices to show that W is an ET subspace of V . Suppose first that k is
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infinite. Let t ∈ T (k) be a regular element (see [Bo], Proposition 8.8 and the Remark

on Page 116). Then ET = L[t] and we have, for f(t) ∈ ET , f(t)(W ) = W , since W

is T -invariant. Now let k be finite. Then ET is a finite field and its multiplicative

group E∗
T is cyclic. The group T (k), being a subgroup of E ∗

T , is cyclic. Then a cyclic

generator t of T (k) is a regular element and arguing as above, we are done in this

case too. ¤

We call a torus indecomposable if it can not be written as a direct product of

subtori.

Corollary 5.2.2. Let T be a maximal torus in SU(V, h). Then T is indecompos-

able if and only if V is an irreducible representation of T . That is if and only if ET

is a field.

Proof. By the above lemma, if V is reducible as a representation of T , ET is not

a field. Hence it must be a product of at least two (separable) field extensions of L,

say ET = E1 × . . . × Er. Then from Corollary 5.1.6, T = T 1
ET

= T 1
E1

× . . . × T 1
Er

.

Hence T is decomposable. Conversely, suppose V is irreducible as a representation

of T . Then, by the above lemma, ET is a field. Suppose the torus T decomposes

as T = T1 × T2 into a direct product of two proper subtori. Suppose first that k is

infinite. Let t ∈ T (k) be a regular element (see [Bo], Proposition 8.8 and the Remark

on Page 116). Then the minimal polynomial (= characteristic polynomial) χ(X) of

t factorizes over k, as can be seen by base changing to ks and conjugating T to the

diagonal torus in SL(n). Therefore ET = L[X]/χ(X) is not a field, a contradiction.

Hence T is indecomposable. When k is finite, the multiplicative group E ∗
T of ET is

cyclic and hence T (k) is cyclic. A cyclic generator t of T (k) is then regular and we

repeat the above argument to reach a contradiction. Hence T is indecomposable. ¤

With this we move on to pose the main question of the thesis and describe the

results proved in this thesis along with known results.





CHAPTER 6

Main Results

In this chapter we discuss the main problem addressed in this thesis. We mention

known results and theorems proved in this thesis. Proof of the theorems will follow

in later chapters. The results proved in this thesis are titled “Theorem” in this

chapter. Results which were known are attributed to the respective author(s) with

label “Proposition”. I appologise for this convention, though limited to this chapter

only.

Let G be an algebraic group defined over a field k. It is desirable, from the

representation theoretic point of view, to study conjugacy classes of elements in G.

We call an element g ∈ G real if there exists h ∈ G such that hgh−1 = g−1. An

element g ∈ G(k) is called k-real if there exists h ∈ G(k) such that hgh−1 = g−1.

We address the following problem in this thesis:

Problem: Characterize real elements of the group G(k).

An involution in G is an element g with g2 = 1. Note that with our convention the

identity element is also an involution. An element in G is called strongly real if it

is a product of two involutions in G. We raise the following question here.

Problem: Let g ∈ G(k) be a k-real element. Is g strongly k-real in G(k)?

Note that a strongly k-real element in G(k) is always k-real in G(k). Conversely,

a real element g ∈ G(k) is strongly k-real if and only if there exists a conjugating

element in G(k) which is an involution, i.e., there exists t ∈ G(k) with t2 = 1 such

that tgt−1 = g−1. This remark is very useful in investigating the structure of real

elements.

It is worth mentioning that the characterization of real elements depends on the

base field. We will give examples of elements in a group G of type G2 which are

not k-real but are strongly real over k̄. We note that every element of a conjugacy

class which contains a real element is real. Such a conjugacy class is called a real

conjugacy class. For finite groups, the number of real conjugacy classes is same

as the number of real irreducible characters. Let G be a finite group. A complex

representation of G is realizable if it is defined over R. It is obvious that a character
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corresponding to a realizable representation is real. An irreducible character χ is

real if and only if there is a non-zero G-invariant bilinear form on the representation

space V . A representation V of G is called orthogonal (symplectic) if there exists

a non-zero symmetric (skew-symmetric) bilinear form on V which is G-invariant. In

fact, an irreducible real character comes from a realizable representation if and only if

the representation V is orthogonal ([JL], Theorem 23.16). Hence our problem seems

to be directly related to the representation theory of G. For a semisimple algebraic

group, there exists an involution h in the center, which acts by 1 in an irreducible

self-dual representation if and only if the representation is orthogonal. For most of

the groups studied in this thesis, we prove that real semisimple elements are strongly

real. If one compares these results to the results proved in [Pr1] and [Pr2], these are

exactly the groups for which irreducible, self dual representations are orthogonal. For

more discussion and explicit references on the connection to representation theory we

refer the reader to Section 10.1.

6.1. Results in Classical Groups

Reality for classical groups over fields of characteristic not 2 has been studied in

[MVW] by Moeglin, Vignéras and Waldspurger.

The following result is due to Wonenburger ([W1], Theorem 1).

Proposition 6.1.1. An element of GLn(k) is real if and only if it is strongly real

in GLn(k).

However, a similar result is false for matrices over division algebras. In [El1] (Lemma

2 and Lemma 3) Ellers constructs an example of a simple transformation of a vector

space V over the real quaternion division algebra H, which is conjugate to its inverse

but is not strongly real. This is also evident by looking at the real quaternion division

algebra H = R.1 ⊕ R.i ⊕ R.j ⊕ R.ij where i, j, k have usual meanings. In the group

GL1(H), the element i is conjugate to its inverse by j which satisfies j2 = −1. The

only nontrivial element of GL1(H) which is an involution is −1 and hence i is not a

product of two involution in GL1(H). For SLn(k), we prove,

Theorem 6.1.2. Let V be a vector space of dimension n over k. Let t ∈ SL(V ).

Suppose n 6≡ 2 (mod 4). Then t is real in SL(V ) if and only if t is strongly real in

SL(V ).

We show by examples that the result fails when n ≡ 2 (mod 4).
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We now consider the group SL1(Q) = {x ∈ Q∗ | Nrd(x) = 1}, for a quaternion

algebra Q over k. A quaternion algebra Q is a central simple algebra over k of degree

2. We note that SL1(Q) is a form of SL2 over k in the sense defined in Section 4.3.

We denote the group SL1(Q)/Z(SL1(Q)) by PSL1(Q).

Theorem 6.1.3. With notation as above, let G = PSL1(Q) and t ∈ G be a

semisimple element. Then, t is real in PSL1(Q) if and only if t is strongly real in

PSL1(Q). Furthermore, SL1(Q) has real elements which are not strongly real.

One can consider the matrix algebra M2(k) as a quaternion algebra and the group

under consideration in this case is G = PSL2(k). Hence we see that a semisimple ele-

ment t0 ∈ PSL2(k) is real in PSL2(k) if and only if t0 is a product of two involutions

in PSL2(k).

We continue our investigation for D, a central division algebra of odd degree n

over a field k. Let G = D∗ or G = SL1(D) = {x ∈ D∗ | Nrd(x) = 1}. Then,

Theorem 6.1.4. Let G be as above. Then the only real elements in G are ±1.

In fact, using this theorem we prove that Iso(D, σ) has no nontrivial real elements.

For σ of the first kind, Iso(D, σ) is a form of orthogonal group and for σ of the second

kind, it is a form of unitary group.

Let V be a vector space over k with a nondegenerate quadratic form q. We denote

the orthogonal group by O(q). Then Wonenburger proved ([W1], Theorem 2),

Proposition 6.1.5. Any element of the orthogonal group O(q) is a product of

two involutions, i.e., the group O(q) is bireflectional. Hence every element of O(q) is

strongly real.

Djoković extended this result ([D], Theorem 1) to fields of characteristic 2. However,

Knüppel and Nielsen proved ([KN], Theorem A),

Proposition 6.1.6. The group SO(q) is trireflectional. It is bireflectional if

dim(V ) 6≡ 2 (mod 4) and hence every element is strongly real in that case.

They give necessary and sufficient condition for an element in the special orthogonal

group to be a product of two involutions ([KN], Proposition 3.3). However, we

classify semisimple real elements in SO(q) without any restriction on dimension.

Theorem 6.1.7. Let t ∈ SO(q) be a semisimple element. Then, t is real in SO(q)

if and only if t is strongly real in SO(q).
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Feit and Zuckermann discuss reality for spin groups in [FZ] (Corollary D). They

prove,

Proposition 6.1.8. Let F be an algebraically closed field. Let (V, q) be an n-

dimensional quadratic space. Suppose n is odd. Then, every element in Spin(q) is

real in Spin(q).

Let V be a vector space of dimension 2n with a symplectic form. We denote the

corresponding symplectic group by Sp(2n, k). Let Sp±(2n, q) be the group consisting

of symplectic and skew-symplectic isometries. Feit and Zuckermann proved ([FZ],

Theorem E).

Proposition 6.1.9. Let F = Fq be a finite field. Then,

(i) If q ≡ 1 (mod 4) then every element of Sp(2n, q) is real.

(ii) If q ≡ 3 (mod 4) then every element of Sp(2n, q) is real in Sp±(2n, q).

Wonenburger proved ([W1], Theorem 2),

Proposition 6.1.10. Any element of Sp(2n, k) is a product of two skew-symplectic

involutions.

That every element of a symplectic group over fields of characteristic 2 is a product

of two involutions is settled in [Ni]. Recently Vinroot ([V], Theorem 2) proved for

GSp(2n, k) over k with characteristic 6= 2,

Proposition 6.1.11. Let g ∈ GSp(2n, k) with similitude factor µ(g) = β. Then

g = t1t2, where t1 is a skew-symplectic involution and t2 is such that µ(t2) = −β with

t22 = βI.

The center of Sp(2n, k) is Z(Sp(2n, k)) = {±1}. We denote the projective symplectic

group by PSp(2n, k) = Sp(2n, k)/Z(Sp(2n, k)). We prove,

Theorem 6.1.12. Let t ∈ Sp(2n, k) be a semisimple element. Suppose t is either

conjugate to t−1 or −t−1. Then the conjugation can be achieved by an element s ∈
Sp(2n, k) such that s2 = −1. Hence a semisimple element of PSp(2n, k) is real if

and only if it is strongly real in PSp(2n, k).

We give an example of a symplectic transformation which can not be written as a

product of two involution but is a real element.

We now determine real semisimple elements in unitary groups. Let K be a qua-

dratic extension of k.
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Theorem 6.1.13. Let (V, h) be a hermitian space over K. Let t ∈ U(V, h) be a

semisimple element. Then, t is real in U(V, h) if and only if it is strongly real.

We also prove similar results for special unitary groups.

Theorem 6.1.14. Let t ∈ SU(V, h) be semisimple. Suppose n 6≡ 2 (mod 4).

Then t is real in SU(V, h) if and only if it is strongly real.

Remark 6.1.15. We exhibit real unipotent elements in SU(V, h) which are not

strongly real in U(V, h).

6.2. Results in Exceptional Groups

We now begin the study of reality properties for exceptional groups. In this

thesis, we have tackled groups of type G2 over fields of characteristic different from

2. We prove reality implies strong reality for all elements in these groups except

for unipotent elements over fields of characteristic 3. One expects similar results for

exceptional groups of type E8 and F4 as well, which is evident from Theorem 6.3.2

and Theorem 6.3.3. By consulting the character table of G2 over finite fields in [CR],

one sees that reality is not true for arbitrary elements of G2 (see also Theorem 8.4.6

and Theorem 8.4.7, in this thesis). Let G be a group of type G2 over a field k of

characteristic 6= 2. We prove,

Theorem 6.2.1. In addition, if char(k) 6= 3, every unipotent element in G(k) is

strongly real in G(k).

For a general element in G(k), we prove,

Theorem 6.2.2. Let characteristic k 6= 2, 3. Then, an element t ∈ G(k) is real

in G(k) if and only if t is strongly real in G(k).

The assumption char(k) 6= 3 is needed only for the case of unipotents. Real semisim-

ple elements are strongly real in G(k) for any field k, char(k) 6= 2. We call a torus

in G indecomposable if it can not be written as a direct product of two subtori,

decomposable otherwise. We show that semisimple elements in decomposable tori

are always real (Theorem 8.1.9). We construct examples of indecomposable tori in G

containing non-real elements (Proposition 8.4.2 and Theorem 8.4.5).

We work with an explicit realization of a group of type G2 as the automorphism

group of an octonion algebra. It is known ([Se], Chapter III, Proposition 5, Corollary)

that for a group G of type G2 over k, there exists an octonion algebra C over k, unique
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up to a k-isomorphism, such that G ∼= Aut(C), the group of k-algebra automorphisms

of C. The group G is k-split if and only if the octonion algebra C is split, otherwise

G is anisotropic and C is necessarily a division algebra. We prove,

Theorem 6.2.3. Any element which is not unipotent in G(k) either leaves in-

variant a quaternion subalgebra or fixes a quadratic étale subalgebra of C pointwise.

This is Lemma 8.1.3 in the thesis. We discuss reality for G2 over special fields (Propo-

sition 8.4.2, Theorem 8.4.5 and Theorem 8.4.6). We show that nonreal elements exists

in G2 over k finite, with characteristic k not 2 or 3 (compare with [CR]), these are

neither semisimple nor unipotent.

As a result of our investigation for groups of type G2 we also get information about

conjugacy classes in such groups. We put this in general frame work of algebraic

groups and describe the results obtained. Let G be an algebraic group defined over

a field k. Let X be a G-space. Two elements x, y ∈ X are said to have same orbit

type if the isotropy subgroups Gx and Gy are conjugate. Let G be a compact Lie

group acting on a compact manifold M . It was conjectured by Montgomery ([Ei],

Problem 45) that there are only finitely many orbit types. Floyd proved that if G is

a torus acting on a compact orientable manifold then there are only a finite number

of distinct isotropy subgroups ([F], 4.5). Using the results of Floyd, Mostow ([M],

Theorem) proved that when G is a compact Lie group acting on a compact manifold

M then there are at most a finite number of inequivalent orbits. One can consider the

action of a group G on itself by conjugation and ask for orbit types. Rony Gouraige

studied conjugacy classes of centralizers in Mn(D) (the algebra of endomorphisms of a

finite dimensional vector space over a central division algebra) in his thesis submitted

at City University of New York in 2004.

In this thesis we calculate conjugacy classes of centralizers of elements for anisotropic

groups of type G2 over a field of characteristic 6= 2. Anisotropic groups of type G2

over k are given by automorphisms of octonion division algebras over k. We specifi-

cally calculate conjugacy classes of centralizers for compact G2 (anisotropic G2 over

R) and prove,

Theorem 6.2.4. Let G be the anisotropic group of type G2 over R. Then there

are exactly five orbit types (conjugacy classes of centralizers).
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6.3. Results in Algebraic Groups

Motivated by several results obtained above we have investigated the structure

of real elements in general algebraic groups. We would like to mention the work of

Tiep and Zalesski (refer [TiZ]) in this connection. They look at a slightly different

question. They were interested in classifying groups in which all elements are real.

They have successfully classified ([TiZ], Theorem 1.2) finite quasi-simple groups in

which all elements are real. They also look at the question of all unipotent elements

being real in simple, simply connected algebraic group over a finite field. However, it

is worth mentioning a theorem about simple algebraic group proved in that paper.

Proposition 6.3.1. Let G be a simple algebraic group over an algebraically closed

field of characteristic p 6= 0. All elements of G are real if and only if G is of type

Bn, Cn, D2n, G2, F4, E7 or E8.

We look to characterize real elements in somewhat the same class of groups considered

by Tiep and Zalesskii but over an arbitrary base field k (not just over algebraically

closed field). An element t in a connected linear algebraic group G is called regular

if its centralizer ZG(t) has minimal dimension among all centralizers. An element is

called strongly regular if its centralizer in G is a maximal torus. We prove,

Theorem 6.3.2. Let G be a connected simple group of adjoint type defined over k.

Suppose the longest element w0 of the Weyl group W of G with respect to a maximal

k-torus T acts by −1 on the roots. Let t ∈ G(k) be a strongly regular element. Then t

is k-real in G(k) if and only if t is strongly k-real in G(k). Moreover, if T (k) contains

a strongly regular element, then every element of T (k) is strongly real in G(k).

We study the question for semisimple elements in groups over fields of cd(k) ≤ 1 and

prove,

Theorem 6.3.3. Let k be a field with cd(k) ≤ 1. Let G be a simple adjoint group

defined over k. Suppose that the longest element w0 in the Weyl group of G with

respect to a maximal torus T acts as −1 on the roots. Then every semisimple element

in G(k) is strongly real in G(k).

We devote next three chapters for the proofs of the theorems mentioned here.





CHAPTER 7

Reality in Classical Groups

In this chapter we discuss structure of real elements in classical groups. These

groups have been described in Chapter 1. We prove the results mentioned in Sec-

tion 6.1. The results in this section are part of [ST2].

7.1. The Groups GLn(k) and SLn(k)

We begin by recording a theorem of Wonenburger ([W1], Theorem 1) for GLn,

which, in fact, is the motivating example for our results.

Proposition 7.1.1. An element of GLn(k) is real if and only if it is strongly real

in GLn(k).

In this section we explore the structure of real elements in SLn(k). We follow the

proof of Wonenburger for GLn(k) ([W1], Theorem 1) and modify it for our purpose.

Theorem 7.1.2. Let V be a vector space of dimension n over k. Let t ∈ SL(V ).

Suppose n 6≡ 2 (mod 4). Then t is real in SL(V ) if and only if t is strongly real in

SL(V ).

Proof. Let δ1(X), . . . , δn(X) be the invariant factors of t in k[X]. Since t is real,

each δi(X) is self-reciprocal. The space V decomposes as V = ⊕n
i=1Vi, where each Vi is

a cyclic, t invariant subspace of V and the minimal polynomial of ti = t|Vi
is the self-

reciprocal polynomial δi(X). We shall construct involutionsHi inGL(Vi), conjugating

ti to t−1
i , with det(Hi) = (−1)m if dimension of Vi = 2m and det(Hi) = (−1)m or

(−1)m+1 when dimension of Vi = 2m+ 1. We then take H = ⊕n
i=1Hi. Then H is an

involution conjugating t to t−1 and det(H) = 1 if dim(V ) 6≡ 2 (mod 4).

Now ti is a cyclic linear transformation on the vector space Vi with characteristic

polynomial χti(X) = δi(X) self-reciprocal. We can write χti(X) = (X − 1)r(X +

1)sf(X) where f(±1) 6= 0 and Vi = W−1 ⊕W1 ⊕W0, where W−1,W1 and W0 are the

kernels of (ti − 1)r, (ti + 1)s and f(ti) respectively. To produce the involution Hi on

Vi as above, it suffices to do so on each of W−1,W1 and W0. Hence it is enough to

47
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consider the following cases. Let S be a cyclic linear transformation on a vector space

W with self reciprocal characteristic polynomial χS(X), of the following two kinds;

(1) the degree of χS(X) is even, say 2m,

(2) χS(X) = (X − 1)2m+1 or (X + 1)2m+1.

We claim that in the first case S is conjugate to S−1 by an involution whose determi-

nant is (−1)m. And in the second case there are involutions with determinant (−1)m

or (−1)m+1 conjugating S to S−1.

Case 1. Since W is cyclic, there is a vector u ∈ W such that E = {u, Su, . . . , S2m−1u}
is a basis of W . By substituting Smu = y we get E = {S−my, . . . , y, . . . , Sm−1y}. Let

B = {y, (S + S−1)y, . . . , (Sm−1 + S−m+1)y, (S − S−1)y, . . . , (Sm − S−m)y}.

Then B is a basis of W . We denote the subspace generated by the first m vectors of

B by P and the latter m vectors by Q. Then S+S−1 leaves P as well as Q invariant.

Also (S − S−1)(P ) = Q and (S − S−1)(Q) ⊂ P . Let H = 1|P ⊕−1|Q. Then H is an

involution which conjugates S to S−1 and has determinant (−1)m.

Case 2. In this case, we have the characteristic polynomial χS(X) = (X − ε)2m+1

where ε = ±1. SinceW is cyclic, there is a vector u ∈ W such that E = {u, Su, . . . , S2mu}
is a basis. By substituting Smu = y we get E = {S−my, . . . , y, . . . , Smy}. As in the

previous case, we consider the basis

B = {y, (S + S−1)y, . . . , (Sm + S−m)y, (S − S−1)y, . . . , (Sm − S−m)y}.

We denote the subspace generated by the first m+1 vectors of B by P and the latter

m vectors by Q. Then S+S−1 leaves P as well as Q invariant. Also (S−S−1)(P ) ⊂ Q

and (S−S−1)(Q) ⊂ P . We consider H1 = 1|P ⊕−1|Q and H2 = −1|P ⊕1|Q. Then H1

and H2 both are involutions which conjugate S to S−1 and have determinants (−1)m

and (−1)m+1 respectively. ¤

Remarks 7.1.3. 1. An element S = diag(α, α−1, β, β−1, γ, γ−1) ∈ SL6(k) such

that all the diagonal entries are distinct, can be conjugated to its inverse by

H = diag

((
0 −1

1 0

)
,

(
0 −1

1 0

)
,

(
0 −1

1 0

))
∈ SL6(k)

where H2 = −1. In fact any element T ∈ SL6(k) such that TST−1 = S−1 is of the

form:

T = diag

((
0 a

ã 0

)
,

(
0 b

b̃ 0

)
,

(
0 c

c̃ 0

))
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where aãbb̃cc̃ = −1. Suppose T 2 = 1. Then aã = 1, bb̃ = 1, cc̃ = 1. This implies that

aãbb̃cc̃ = 1, a contradiction. Hence there is no involution in SL6(k) conjugating S to

S−1, i.e., S is real semisimple but not strongly real in SL6(k).

2. Let us take A =

(
1 1

0 1

)
, a unipotent element in SL2(k). Then any element

X ∈ GL2(k) such that XAX−1 = A−1 has the form X =

(
a b

0 −a

)
. Then, A is

conjugate to A−1 in SL2(k) if and only if −1 is a square in k. In that case (−1 is a

square in k) the element X which conjugates A to its inverse satisfies X2 = −1, not

an involution, and hence A is not strongly real in SL2(k).

7.2. Groups of Type A1

In this section we study real semisimple elements in SL2(k) and PSL2(k) =

SL2(k)/Z(SL2(k)). We fix an algebraic closure k̄ of k. Let G = SL2(k̄). We fix the

maximal torus T = {diag(α, α−1) | α ∈ k̄∗} in G.

Lemma 7.2.1. With notation as above, every semisimple element of G = SL2(k̄)

is real in G. The only involutions in G are {I,−I}, hence non-central semisimple

elements are not a product of involutions. Moreover, every semisimple element of

G is conjugate to its inverse by an involution in GL2(k̄), hence is strongly real in

GL2(k̄).

Proof. Let t ∈ SL2(k̄) be semisimple. First, assume that t = diag(α, α−1) ∈ T .

Let g =

(
0 −1

1 0

)
∈ SL2(k̄). Then g2 = −1 and

gtg−1 =

(
0 −1

1 0

)(
α 0

0 α−1

)(
0 1

−1 0

)
=

(
α−1 0

0 α

)
= t−1.

Hence, for any t ∈ T , gtg−1 = t−1.

Now let n =

(
0 1

1 0

)
. Then we have, for any t ∈ T , ntn−1 = t−1 and n is an

involution with det(n) = −1. Hence, for any t ∈ T , we have t = n.nt, a product

of two involutions in GL2(k̄). Now, if s ∈ SL2(k̄) is semisimple then gsg−1 ∈ T for

some g ∈ SL2(k̄). If gsg−1 = ρ1ρ2, ρi ∈ GL2(k̄), ρ
2
i = 1, then s = g−1ρ1g.g

−1ρ2g, and

g−1ρig are involutions in GL2(k̄). ¤

Corollary 7.2.2. Let G = PSL2(k̄) and t be a semisimple element in G. Then t

is real in G if and only if t is strongly real in G.
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Proof. Let t ∈ PSL2(k̄) be a real semisimple element. Let t0 ∈ SL2(k̄) be a

representative of t. Then t0 is either conjugate to t−1
0 or −t−1

0 in SL2(k̄). When t0

is conjugate to t−1
0 , it follows from the previous lemma that there exists an element

s ∈ SL2(k̄) with s2 = −1 such that st0s
−1 = t−1

0 . Hence we can write t0 = (−s).(st0),
which writes t as a product of two involutions in PSL2(k̄).

Now suppose t0 is conjugate to −t−1
0 in SL2(k̄). Then the characteristic polyno-

mial of t0 is X2 + 1. In this case t itself is an involution in PSL2(k̄). ¤

We record an interesting fact about semisimple elements in SL2(k).

Lemma 7.2.3. Let t ∈ SL2(k) be a semisimple element. Then t is either strongly

regular or central in SL2(k).

Proof. It is enough to prove this over k̄. Let t ∈ SL2(k̄) be a semisimple element.

If t is central then t is either I or −I. Hence we may assume t is a non-central element.

Then, up to conjugation in SL2(k̄), we have t = diag(α, α−1), where α2 6= 1. Then

ZSL2(k̄)(t) = {diag(γ, γ−1) | γ ∈ k̄∗}, a maximal torus in SL2(k̄). Hence t is strongly

regular (i.e. centralizer of t is equal to the maximal torus containing it). ¤

Hence we can produce real elements in SL2(k), as in Lemma 7.2.1, which are not

a product of two involutions in SL2(k).

Proposition 7.2.4. Let t0 ∈ PSL2(k) be a semisimple element. Then t0 is real

in PSL2(k) if and only if t0 is strongly real in PSL2(k).

Proof. Let t ∈ SL2(k) be a representative of t0. Since t0 is real in PSL2(k), it

follows that t is either conjugate to t−1 or −t−1 in SL2(k). In the second case, the

characteristic polynomial of t must be X2 + 1 and hence t2 = −1. For the first case

we prove that there exists s ∈ SL2(k) with s2 = −1 such that sts−1 = t−1.

If t is central, it is either I or −I. Hence we may assume that the element t is

conjugate to the matrix t1 = diag(α, α−1) in SL2(k̄), for some α ∈ k̄ with α2 6= 1. Let

n =

(
0 −1

1 0

)
∈ SL2(k̄). Then nt1n

−1 = t−1
1 and n2 = −1. In fact n conjugates

every element of the torus T1 = {diag(γ, γ−1) | γ ∈ k̄∗} to its inverse. Hence there

exists h ∈ SL2(k̄) such that hth−1 = t−1 and h2 = −I. Moreover, h conjugates every

element of the maximal torus T containing t, to its inverse. Since t is real in SL2(k),

there exists g ∈ SL2(k) such that gtg−1 = t−1. Then g ∈ hZSL2(k̄)(t). Since t is not

central (by Lemma 7.2.3) we have ZSL2(k̄)(t) = T , a maximal torus. We write g = hx
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where x ∈ T . Then g2 = hxhx = −hxh−1x = −x−1x = −I and this proves the

required result. ¤

We now consider Q, a quaternion algebra over k. It is a central simple algebra

over k of degree 2. We note that SL1(Q) = {x ∈ Q∗ | Nrd(x) = 1} is a form of SL2

over k. We denote the group SL1(Q)/Z(SL1(Q)) by PSL1(Q).

Proposition 7.2.5. With notation as above, let G = PSL1(Q) and t ∈ G be a

semisimple element. Then, t is real in PSL1(Q) if and only if t is strongly real in

PSL1(Q). Furthermore, G = SL1(Q) has real elements which are not strongly real.

Proof. We first observe that an element t ∈ Q∗ is either strongly regular or

central. Proof of this fact and the rest of the proposition is on similar lines as in

Lemma 7.2.3 and Proposition 7.2.4. ¤

7.3. SL1(D), deg(D) Odd

We now consider anisotropic simple groups of type An, for n even. These are

the groups SL1(D) for central division algebras of degree n + 1. Let D be a central

division algebra over a field k, with degree D odd. Let G = D∗ or G = SL1(D) =

{x ∈ D∗ | Nrd(x) = 1}. We have,

Theorem 7.3.1. Let G be as above. Then the only real elements in G = D∗ are

±1. In G = SL1(D), there are no nontrivial real elements.

Proof. We first prove that there are no non-central real element in G and there

are no non-central involutions in G. Let t ∈ G be a real element which is not in the

center of D. Then k(t) is a subfield 6= k contained in D and has a field automorphism

defined by t 7→ t−1 of order two. Hence the degree of k(t) over k is even. But degree

of D being odd, D can not contain a field extension of even degree. Hence there are

no real elements which are not in the center of G.

Now let t ∈ G is a non-central involution. Then k(t) is a field extension over k

of even degree. Following similar argument as in the previous paragraph, we get a

contradiction. Hence any involution in G is in the center of G. Since D is central and

degree D is odd, any such involution is trivial. This completes the proof. ¤

Corollary 7.3.2. Let D be a central division algebra over a field k, with degree

D odd. Let σ be an involution on D. Then the group Iso(D, σ) has no nontrivial real

elements.
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Proof. We note that Iso(D, σ) = {x ∈ D | xσ(x) = 1} ⊂ D∗. Hence the result

follows from previous theorem. ¤

We remark that in view of Proposition 1.3.3 the group Iso(D, σ), for σ of the first

kind, is a form of orthogonal group. The group Iso(D, σ), for σ of the second kind, is

a form of unitary group.

7.4. Orthogonal Groups

Let V be a vector space over k with a nondegenerate quadratic form Q. We

denote the orthogonal group by O(Q). Wonenburger proved ([W1], Theorem 2; see

also [El2] and [El3]),

Proposition 7.4.1. Any element of the orthogonal group O(Q) is strongly real,

i.e., the group O(Q) is bireflectional. Hence every element of O(Q) is real.

Djoković extended this result ([D], Theorem 1) to fields of characteristic 2. However,

Knüppel and Nielsen proved ([KN], Theorem A),

Proposition 7.4.2. The group SO(Q) is trireflectional, except when dim(V ) =

2 and V 6= H3, where H3 is the hyperbolic plane over F3. The group SO(Q) is

bireflectional if and only if dim(V ) 6≡ 2 (mod 4) or V = H3, and hence in this case

every element is real.

They give necessary and sufficient condition for an element in special orthogonal

group to be strongly real ([KN], Proposition 3.3).

Proposition 7.4.3. Let t ∈ SO(Q). Then t is strongly real in SO(Q) if and

only if dim(V ) 6≡ 2 (mod 4) or an orthogonal decomposition of V into orthogonally

indecomposable t-modules contains an odd dimensional summand.

In the case dim(V ) ≡ 2 (mod 4), we explore reality for semisimple elements in

SO(Q). First we prove,

Lemma 7.4.4. Let t ∈ SO(Q) where dim(V ) ≡ 2 (mod 4). Let t be a semisimple

element which has only two distinct eigenvalues λ and λ−1 (hence λ 6= ±1) over k̄.

Then t is not real in SO(Q).

Proof. We prove that the element t is not real over k̄. Let dim(V ) = 2m where

m is odd. The element t over k̄ is conjugate to A = diag(λ, . . . , λ︸ ︷︷ ︸
m

, λ−1, . . . , λ−1

︸ ︷︷ ︸
m

)



7.4. ORTHOGONAL GROUPS 53

with λ 6= ±1 in SO(J) where J is the matrix of the quadratic form over k̄ given by

J =

(
0 S

S 0

)
where S =




0 0 . . . 0 1

0 0 . . . 1 0
...

...

1 0 . . . 0 0




, an m×m matrix. Now suppose A

is real in SO(J), i.e., there exists T ∈ SO(J) such that TAT−1 = A−1. Then T maps

the λ-eigen subspace of A to the λ−1-eigen subspace of A and vice-versa. Hence T

has the following form:

T =

(
0 B

C 0

)

for m × m matrices B and C. Since T is orthogonal, it satisfies tTJT = J , which

gives tBSC = S. That is, det(B) det(C) = 1. Hence det(T ) = (−1)m det(B) det(C) =

− det(B) det(C) = −1 since m is odd. This contradicts that T ∈ SO(J). Hence A is

not real in SO(J) and hence t is not real in SO(Q). ¤

Lemma 7.4.5. Let dim(V ) ≡ 0 (mod 4) and t ∈ SO(Q) be semisimple. Suppose

t has only two distinct eigenvalues λ and λ−1(hence λ 6= ±1) over k̄. Then, any

element g ∈ O(Q) such that gtg−1 = t−1 belongs to SO(Q), i.e., det(g) = 1.

Proof. We follow the notation in the previous lemma. Let dim(V ) = 2m, where

m is even. As in the proof of the previous lemma, we may assume t is diagonal. Then

any element T that conjugates t to t−1 over k̄, is of the form T =

(
0 B

C 0

)
. We

have det(T ) = (−1)m det(B) det(C) = det(B) det(C) = 1. Since g is a conjugate of

T , the claim follows. ¤

Now we state the main theorem about special orthogonal groups.

Theorem 7.4.6. Let t ∈ SO(Q) be a semisimple element. Then, t is real in

SO(Q) if and only if t is strongly real in SO(Q).

Proof. If dim(V ) 6≡ 2 (mod 4) then the theorem follows from Propositions 7.4.2

and 7.4.3. Hence let us assume that dim(V ) ≡ 2 (mod 4). Let dim(V ) = 2m where

m is odd. In this case we will prove that the element t is real in SO(Q) if and only

if 1 or −1 is an eigenvalue of t.

First we prove that if 1 and −1 are not eigenvalues then t is not real. It is enough

to prove this statement over k̄. We write V̄ = V ⊗k k̄ and continue to denote t over
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k̄ by t itself. We have a t-invariant orthogonal decomposition of V̄ ;

V̄ = V̄1 ⊕ V̄−1 ⊕ V̄λ±1
1

⊕ · · · ⊕ V̄λ±1
r

where V̄1 and V̄−1 are the eigenspaces of t corresponding to 1 and −1 respectively

and V̄λ±1
j

= V̄λj
⊕ V̄λ−1

j
where V̄λj

is the eigenspace corresponding to λj for λ2
j 6= 1.

Since 1 and −1 are not eigenvalues for t, we have V̄1 = 0 and V̄−1 = 0. If r = 1 it

follows from Lemma 7.4.4 that t is not real. Hence we may assume r ≥ 2. We denote

the restriction of t on V̄λ±1
j

by tj. Let the dimension of V̄λ±1
j

be nj. Since λj 6= ±1,

nj is even and is either 0 (mod 4) or 2 (mod 4). Let the number of subspaces V̄λ±1
j

such that nj is 2 (mod 4) be s. Then s is odd, since dim(V ) ≡ 2 (mod 4). Let

g ∈ SO(Q) such that gtg−1 = t−1. Then g leaves V̄λ±1
j

invariant for all j. We denote

the restriction of g on V̄λ±1
j

by gj. Then gj ∈ O(V̄λ±1
j

) and gjtjg
−1
j = t−1

j . From the

previous lemma, determinant of gj is 1 whenever nj ≡ 0 (mod 4) and the determinant

of gj is −1 whenever nj ≡ 2 (mod 4). Hence the determinant of g is (−1)s = −1,

which contradicts g ∈ SO(Q). Hence t can not be real in SO(Q).

Conversely, if 1 or −1 is an eigenvalue then the subspace V̄1 or V̄−1 is non-zero.

These subspaces are defined over k. Let us denote their descents by V1 and V−1 over

k. The dimension of V1 and V−1 is always even. But the matrix I and −I can be

written as a product of two involutions, each having determinant 1 or −1. Hence in

this case t can be always written as a product of two involutions in SO(Q). ¤

7.5. Symplectic Groups

Now we consider the symplectic group. Let V be a vector space of dimension 2n

with a nondegenerate symplectic form. We denote the symplectic group by Sp(2n, k).

The center of this group Z(Sp(2n, k)) = {±1} and we denote the projective symplec-

tic group by PSp(2n, k) = Sp(2n, k)/Z(Sp(2n, k)).

Lemma 7.5.1. Let t ∈ Sp(2, k̄) be a semisimple element. Suppose that t is

either conjugate to t−1 or −t−1. Then the conjugation can be achieved by an element

s ∈ Sp(2, k̄) such that s2 = −1. Hence a semisimple element of PSp(2, k̄) is real if

and only if it is strongly real in PSp(2, k̄).

Proof. We note that Sp(2, k̄) = SL(2, k̄). Hence proof follows from Corol-

lary 7.2.2. ¤

Lemma 7.5.2. Let t ∈ Sp(4, k̄) be a semisimple element. Suppose that t is

either conjugate to t−1 or −t−1. Then the conjugation can be achieved by an element



7.5. SYMPLECTIC GROUPS 55

s ∈ Sp(4, k̄) such that s2 = −1. Hence a semisimple element of PSp(4, k̄) is real if

and only if it is strongly real in PSp(4, k̄).

Proof. Let J = diag

((
0 −1

1 0

)
,

(
0 −1

1 0

))
. Then Sp(4, k̄) = {A ∈ GL(4, k̄) |

tAJA = J}. We first assume t is conjugate to t−1. We may assume t = diag(λ, λ−1, µ, µ−1).

We let

g = diag

((
0 −1

1 0

)
,

(
0 −1

1 0

))
∈ Sp(4, k̄).

Then g2 = −1 and gtg−1 = t−1.

Now let t be conjugate to −t−1. Then we may assume t = diag(λ, λ−1,−λ,−λ−1).

Let g =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




. Then g belongs to Sp(4, k̄) with g2 = −1 and gtg−1 =

−t−1. ¤

Theorem 7.5.3. Let t ∈ Sp(2n, k) be a semisimple element. Suppose t is either

conjugate to t−1 or −t−1. Then the conjugation can be achieved by an element s ∈
Sp(2n, k) such that s2 = −1. Hence a semisimple element of PSp(2n, k) is real if

and only if it is strongly real in PSp(2n, k).

Proof. First we consider semisimple elements in Sp(2n, k̄). Let t ∈ Sp(2n, k̄) be

semisimple with t conjugate to t−1. Then t can be conjugated to diag(λ1, λ
−1
1 , . . . , λn, λ

−1
n )

and this diagonal element can be conjugated to its inverse by s = diag(N, . . . , N︸ ︷︷ ︸
n

)

where N =

(
0 −1

1 0

)
. Clearly s2 = −1. A conjugate of s then does the job.

Now let us assume t is conjugate to −t−1 in Sp(2n, k̄). Then t can be conjugated

to

diag(λ1, λ
−1
1 ,−λ1,−λ−1

1 , . . . , λr, λ
−1
r ,−λr,−λ−1

r , µ1, µ
−1
1 , . . . , µs, µ

−1
s )
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in Sp(2n, k̄) where µ2
i = ±1. Such an element t can be conjugated to −t−1 by

s = diag(M, . . . ,M︸ ︷︷ ︸
r

, N, . . . , N︸ ︷︷ ︸
s

) ∈ Sp(2n, k̄) where

M =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




and s2 = −1. This concludes the proof of the theorem over k̄.

We now complete the proof over k. Let t ∈ Sp(V ), where V is a 2n-dimensional

vector space over k. We first assume t is real in Sp(V ).

First note that if t1 ∈ Sp(V1) and t2 ∈ Sp(V2), where V1 and V2 are vector space

over k of dimension 2n1 and 2n2 respectively, and if there exist g1 ∈ Sp(V1) and

g2 ∈ Sp(V2) such that gitig
−1
i = t−1

i and g2
i = −1, then t1 ⊕ t2 is conjugate to its

inverse t−1
1 ⊕ t−1

2 by g = g1 ⊕ g2 in Sp(V1 ⊕ V2) and g2 = −1.

Now let t ∈ Sp(V ) be real. We write V̄ for V ⊗ k̄ and V̄α = {x ∈ V̄ | t(x) = αx},
where α ∈ k̄∗. Both V̄1 and V̄−1 are defined over k. Let the subspaces V1 and

V−1 of V be the descents of V̄1 and V̄−1 respectively. We note that the dimension

of V−1 is even, since the determinant of t is 1. We now assume α 6= ±1. We write

W̄α = V̄α⊕V̄α−1 , which is a nondegenerate subspace of V̄ . The subspace W̄α is defined

over the subfield kα of k̄, where kα is the fixed field of the subgroup of Γ = Gal(k̄/k)

fixing the unordered pair {α, α−1}. We denote the descent subspace of W̄α over kα

by Wα. Then Wα is a direct sum of mα two-dimensional subspaces over kα, which are

stable under t and t restricted to each of these 2-dimensional subspace is conjugate

to diag{α, α−1}.
By Lemma 7.5.1, there exists gα ∈ Sp(Wα) with g2

α = −1 such that gαt|Wα
g−1

α =

t|−1
Wα

. The subspace WΓα = ⊕σ∈ΓWσα is defined over k and we denote the restriction

of t to this subspace by tΓα (which is ⊕σ∈Γtσα). Also gΓα = ⊕gσα is defined over k

and conjugates t to t−1 on the subspace WΓα. We note that the g2
Γα = −1.

Now we write V = V1⊕V−1⊕α∈k̄∗WΓα. Since the dimension of V−1 is even, we may

take g−1 as the direct sum of N =

(
0 −1

1 0

)
on this subspace, 1

2
dim(V−1) times.

Since n is even, dimension of V1 is even and we may take g1 as the direct sum of N ,
1
2
dim(V1) times, on this subspace. Finally we take g = g1⊕g−1⊕α∈k̄∗ gΓα ∈ Sp(2n, k).

We have g2 = −1 and gtg−1 = t−1.
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Now let us assume that t is conjugate to −t−1. We follow the same proof as above

except that we consider W̄α = V̄α ⊕ V̄α−1 ⊕ V̄−α ⊕ V̄−α−1 when α2 6= ±1. We construct

gΓα using Lemma 7.5.2 in this case. The rest of the proof is along similar lines as

above. ¤

Remark 7.5.4. We give an example to show that there are semisimple real ele-

ments in Sp(4, k) which are not a product of two involutions. Let

J = diag

((
0 −1

1 0

)
,

(
0 −1

1 0

))

be the matrix of the skew-symmetric (symplectic) form. Then Sp(4, k) = {A ∈
GL(4, k) | tAJA = J}. Let S = diag(λ, λ−1, µ, µ−1) ∈ Sp(4, k) with all diagonal

entries distinct. Then any element T ∈ Sp(4, k), such that TST−1 = S−1, is of the

following type:

T = diag

((
0 −a
a−1 0

)
,

(
0 −b
b−1 0

))

such that T 2 = −1. Hence A is real semisimple but not a product of two involutions.

7.6. Unitary Groups

In this section we deal with unitary groups. Let K be a quadratic field extension

of k. Let V be an n-dimensional vector space with a nondegenerate hermitian form

h. Then

U(V, h) = {t ∈ GL(V ) | h(t(v), t(w)) = h(v, w) ∀v, w ∈ V }

is a k-group. Let k̄ be an algebraic closure of k. We denote V̄ = V ⊗k k̄, a module

over K ⊗k k̄. We define h̄ on V̄ by base change of h to k̄. Then U(V̄ , h̄) is an

algebraic group defined over k and U(V, h) is the group of k-points of U(V̄ , h̄). Let

{e1, . . . , en} be an orthogonal basis of V with respect to h. Let h(ei, ei) = αi ∈ k and

let H = diag(α1, . . . , αn). Then U(V, h) ∼= U(H) = {A ∈ GLn(K) | tAHĀ = H}.

Lemma 7.6.1. Let V be a two dimensional vector space over K with a nonde-

generate hermitian form h. Let e1, e2 be an orthogonal basis of V with h(ei, ei) = hi

and H =

(
h1 0

0 h2

)
. Let A be any diagonal matrix in U(H). Then A is real in

U(H) if and only if h1h2 ∈ NK/k(K
∗) and, in that case, it is strongly real.
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Proof. Let A =

(
ξ 0

0 ξ̄

)
∈ U(H). Let T be an element such that TAT−1 =

A−1. Then T has following form: T =

(
0 b

c 0

)
where h1bb̄ = h2 and h2cc̄ = h1.

Hence A is real in U(H) if and only if h1h2 ∈ NK/k(K
∗). And, if the condition holds,

we can take T =

(
0 b

b−1 0

)
. This proves the result. ¤

Theorem 7.6.2. Let (V, h) be a hermitian space over K. Let t ∈ U(V, h) be a

semisimple element. Then, t is real in U(V, h) if and only if t is strongly real.

Proof. Let t ∈ U(V, h) be a real semisimple element. Let g ∈ U(V, h) be such

that gtg−1 = t−1. We base change to k̄ and argue. Since t is real semisimple, we have

a decomposition of V̄ as follows:

V̄ = V̄1©⊥ V̄−1©⊥λλ̄=1 (V̄λ©⊥ V̄λ−1)©⊥λ6=λ̄−1 ((V̄λ ⊕ V̄λ̄−1)©⊥ (V̄λ−1 ⊕ V̄λ̄))

where V̄1, V̄−1 and V̄λ are eigenspaces corresponding to eigenvalues 1,−1 and λ re-

spectively. Since t is unitary, whenever λ is an eigen value λ̄−1 is also an eigen value.

To verify the orthogonality in the decomposition we take x ∈ V̄λ and y ∈ V̄µ and note

that

h(x, y) = h(t(x), t(y)) = h(λx, µy) = λµ̄h(x, y).

Hence V̄λ and V̄µ are orthogonal if λµ̄ 6= 1. We denote the subspace V̄λ©⊥ V̄λ−1 by W̄λ

when λλ̄ = 1 and (V̄λ ⊕ V̄λ̄−1)©⊥ (V̄λ−1 ⊕ V̄λ̄) as W̄λ in other cases. In the first case, for

x ∈ W̄λ we have t(x) = λ±1x and since gtg−1 = t−1 we get t(g(x)) = λ∓1g(x). This

implies that g(x) ∈ W̄λ which means the conjugating element g leaves W̄λ invariant.

Similarly one can verify that g leaves W̄λ invariant in the other case also. Since V̄λ

(V̄λ ⊕ V̄λ̄−1 in the second case) is nondegenerate (because it is an orthogonal sum),

we can choose an orthogonal basis {e1, . . . , er} for V̄λ (V̄λ ⊕ V̄λ̄−1 in the other case).

We decompose W̄λ in t invariant planes as follows. Let Pi be the subspace generated

by {ei, g(ei)}. Then W̄λ = P1 ⊕ . . .⊕Pr is an orthogonal decomposition. Moreover, t

leaves each of the Pi invariant. The element ni which maps ei to g(ei) and g(ei) to ei,

is a unitary involution conjugating t|Pi
to its inverse. The element s̄ = n1 ⊕ . . .⊕ nr

conjugates t|W̄λ
to its inverse and is a unitary involution.

Let Wλ be the sum of all Galois conjugates of W̄λ and s be the sum of all Galois

conjugates of s̄. Then Wλ is defined over k and t|Wλ
is conjugate to its inverse by the

involution s defined over k. This gives the decomposition of V as V = V1⊕V−1⊕λWλ
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and we have proved that t is a product of two involutions on each component. Hence

t is strongly real. ¤

Corollary 7.6.3. Let t ∈ SU(V, h) be semisimple. Suppose n 6≡ 2 (mod 4). Then

t is real in SU(V, h) if and only if it is strongly real.

Proof. The result follows by keeping track of the determinant of the conjugating

element in the proof of Theorem 7.6.2. ¤

Remarks 7.6.4. 1. Let K be a quadratic extension of k. Let V be a two

dimensional vector space over a fieldK with a nondegenerate hermitian form h defined

as follows. Let {e1, e2} be a basis of V such that h(e1, e1) = 1, h(e2, e2) = −1 and

h(e1, e2) = 0. In the matrix notation, the matrix of the form is H =

(
1 0

0 −1

)

and U(H) = {X ∈ GL2(K) | tXHX̄ = H}. Let A =

(
ξ 0

0 ξ̄

)
∈ SU(H) where

ξ 6= ξ̄. Then A is semisimple. Let T ∈ GL2(K) such that TAT−1 = A−1. Then T is

of the form T =

(
0 b

c 0

)
. Note that A is real in U(H) if and only if there exists

T =

(
0 b

c 0

)
with bb̄ = −1 and cc̄ = −1. The element A is not strongly real in

SU(H). For T to be in SU(H) we need bc = −1 and this implies T 2 = −1. Hence no

involution conjugates A to its inverse. But if K has an element b such that bb̄ = −1,

then A can be conjugated to A−1 by T such that T 2 = −1. For example one can take

K = Q(
√

5) and k = Q.

2. Let V be a two dimensional vector space over K with a hermitian form h on

it. Let K = k(γ). Let {e1, e2} be a basis of V such that h(e1, e1) = 0, h(e2, e2) = 0

and h(e1, e2) = γ = −h(e2, e1). In the matrix notation, the matrix of the form is

H =

(
0 γ

−γ 0

)
and U(H) = {X ∈ GL2(K) | tXHX̄ = H}. Let A =

(
1 1

0 1

)
∈

SU(H). Then A is a unipotent element. Let T ∈ GL2(K) be such that TAT−1 = A−1.

Then T is of the form T =

(
a b

0 −a

)
. Note that A is real in U(H) if and only

if there exists T =

(
a b

0 −a

)
with aā = −1 and ab̄ − āb = 0. Here T 2 = a2I.

The element A is not strongly real in SU(H). For if so, we would have a2 = 1 and

aā = −1, which would imply that γ is a square in k. Hence no involution conjugates
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A to its inverse. But if k has an element a such that a2 = −1, then A is conjugate

to its inverse by T such that T 2 = −1. For example one can take K = Q(
√
−1,

√
5)

and k = Q(
√
−1).



CHAPTER 8

Reality in Groups of Type G2

This whole chapter is devoted to the study of reality properties in groups of type

G2. We give proofs to results mentioned in the Section 6.2. We also obtain results

on conjugacy classes and centralizers in groups of type G2 which we use to calculate

conjugacy classes of centralizers in Section 8.5. The preliminaries for this chapter

have been discussed in Chapter 3. The results in Sections 8.1, 8.2, 8.3 and 8.4 have

appeared in [ST1] and the results in 8.5 are the part of [Si].

8.1. Reality in G2

Let G be a group of type G2 defined over a field k (of characteristic 6= 2). Then,

there exists an octonion algebra C over k such that G ∼= Aut(C) ([Se], Chapter III,

Proposition 5, Corollary). Let t0 be an element of G(k). We will also denote the

image of t0 in Aut(C) by t0. We write C0 for the subspace of trace 0 elements of C.

In this section, we explore the condition so that t0 is conjugate to t−1
0 in G(k). We

prove the following,

Theorem 8.1.1. Let G be a group of type G2 over a field k of characteristic not

2 and 3. Let t0 ∈ G(k). Then, t0 is real in G(k) if and only if t0 is strongly real in

G(k).

In fact the result is true in characteristic 3 also except for unipotent elements. We

let Vt0 = ker(t0 − 1)8. Then Vt0 is a composition subalgebra of C with norm as the

restriction of the norm on C ([W2]). Let rt0 = dim(Vt0 ∩ C0). Then rt0 is 1, 3 or

7. We note that if rt0 = 7, the characteristic polynomial of t0 is (X − 1)8 and t0 is

unipotent. We have,

Lemma 8.1.2. Let t0 ∈ G(k) be a unipotent element. In addition, we assume

char(k) 6= 3. Then t0 is strongly real in G(k).

Proof. Since t0 is unipotent, we have rt0 = 7. In this case, the characteristic

polynomial of t0 on C0 is (X − 1)7. The assertion follows from a theorem of Wonen-

burger ([W2], Theorem 4), which states that if char(k) 6= 3 and the characteristic

61
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polynomial of t ∈ Aut(C) is divisible by (x − 1)3, t is a product of two involutory

automorphisms of C. Hence t0 is strongly real in G(k). ¤

Lemma 8.1.3. Let the notation be as fixed above and let t0 ∈ G(k) be an element

which is not unipotent (e.g. a semisimple element). Then, either t0 leaves a quater-

nion subalgebra invariant or fixes a quadratic étale subalgebra L of C pointwise. In

the latter case, t0 ∈ SU(V, h) ⊂ G(k) for a rank 3 hermitian space V over a quadratic

field extension L of k or t0 ∈ SL(3) ⊂ G(k).

Proof. Since t0 is not unipotent, from the above discussion, we see that rt0 is

1 or 3. If rt0 = 3 , t0 leaves a quaternion subalgebra D of C invariant. In the

case rt0 = 1, L = Vt0 is a two dimensional composition subalgebra and has the form

Vt0 = k.1⊕(Vt0∩C0), an orthogonal direct sum. Let L∩C0 = k.γ withN(γ) 6= 0. Since

t0 leaves C0 and Vt0 invariant, we have, t0(γ) = γ and hence t0(x) = x ∀x ∈ L, so that

t0 ∈ G(C/L). The result now follows from Proposition 3.2.1 and Proposition 3.2.2. ¤

If t0 leaves a quaternion subalgebra invariant, t0 is strongly real in G(k). This

follows from the following theorem (see [W2], Theorem 4).

Theorem 8.1.4. Let C be an octonion algebra. If g is an automorphism of C

which maps a quaternion subalgebra D into itself, then g is a product of two involutory

automorphisms.

Corollary 8.1.5. If an automorphism g of C leaves a nondegenerate plane of C0

invariant, then it is a product of two involutory automorphisms.

We discuss the other cases here, i.e., the fixed points of t0 form a quadratic étale

subalgebra L of C.

(1) The fixed subalgebra L is a quadratic field extension of k and

(2) the fixed subalgebra is split, i.e., L ∼= k × k.

By the discussion in Section 3.2, in the first case, t0 belongs to G(C/L) ∼=
SU(L⊥, h) (Proposition 3.2.1) and in the second case t0 belongs to G(C/L) ∼= SL(3)

(Proposition 3.2.2). We denote the image of t0 by A in both of these cases. We ana-

lyze further the cases depending on the characteristic polynomial of A. We mention

a result of Neumann here ([N], Satz 6 and Satz 8).

Proposition 8.1.6. Let t0 be an element in G(k) and suppose t0 exactly fixes

a quadratic étale subalgebra L of C pointwise. Let us denote the image of t0 by A

in SU(L⊥, h) or in SL(3) as the case may be. Also assume that the characteristic
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polynomial of A over L in the first case and over k in the second, is reducible and the

minimal polynomial of A is not of the form (X − α)3, for α ∈ L in the first case and

for α ∈ k in the second case. Then t0 is strongly real.

We have the following,

Theorem 8.1.7. Let G be a group of type G2 over a field k of characteristic not

2. Let t0 ∈ G(k) be an element which is not unipotent. Then, t0 is real in G(k) if and

only if t0 is strongly real in G(k). In addition, if char(k) 6= 3 then every unipotent

element in G(k) is strongly real in G(k).

Proof. The assertion about unipotents inG(k) follows from Lemma 8.1.2. In view

of Lemma 8.1.3 and discussion following the lemma, we need to consider the case when

t0 ∈ SU(L⊥, h) or t0 ∈ SL(3). In these cases, we look at the characteristic polynomial

χA(X) and the minimal polynomial mA(X) of A. We first assume that χA(X) 6=
mA(X). Hence degree of mA(X) ≤ 2 and χA(X) is reducible. The conditions in

Proposition 8.1.6 are satisfied in this case. Hence t0 is strongly real. We take up the

case of A with χA(X) = mA(X) below. ¤

The result follows from the following theorem.

Theorem 8.1.8. Let t0 be an element in G(k) and suppose t0 fixes exactly a

quadratic étale subalgebra L of C pointwise. Let us denote the image of t0 by A

in SU(L⊥, h) or in SL(3) as the case may be. Also assume that the characteristic

polynomial of A over L in the first case and over k in the second, is equal to the

minimal polynomial of A. Then t0 is conjugate to t−1
0 in G(k) if and only if t0 is

strongly real in G(k).

Proof. We distinguish the cases of both these subgroups below and complete the

proof in the next two sections, see Theorem 8.2.8 and Theorem 8.3.5. ¤

We record the theorem about semisimple elements separately.

Theorem 8.1.9. Let t0 be a semisimple element in G(k) and suppose t0 fixes the

quadratic étale subalgebra L of C pointwise. Let us denote the image of t0 by A in

SU(L⊥, h) or in SL(3) as the case may be. If the characteristic polynomial of A over

L in the first case and over k in the second, is reducible then t0 is strongly real in

G(k). If the characteristic polynomial is irreducible then t0 is real if and only if t0 is

strongly real.
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Proof. Let us assume first that the characteristic polynomial of A over L in

the first case and over k in the second, is irreducible. This case follows from Theo-

rem 8.1.8. Since the characteristic polynomial of A is irreducible, it equals the minimal

polynomial of A. Hence let us consider the case when characteristic polynomial is

reducible. First, let us take the case when L is a field extension. Let T be a maximal

torus in SU(L⊥, h) containing t0. By Corollary 5.1.6, there exists an étale L-algebra

ET with an involution σ and u ∈ F ∗ such that (L⊥, h) ∼= (ET , h
(u)), here F is the fixed

point subalgebra of σ in ET . Since the characteristic polynomial of A is reducible, we

see that L⊥ is a reducible representation of T . From Corollary 5.2.2 we see that ET

is not a field. We can write ET
∼= F ⊗L where F is a cubic étale k-algebra but not a

field. Let F = k×∆, for some quadratic étale k-algebra ∆. Hence ET
∼= L× (∆⊗L)

and σ is given by (α, f ⊗ β) 7→ (ᾱ, f ⊗ β̄). Writing u = (u1, u2) where u1 ∈ k, the

hermitian form h(u) is given by h(u)((l, δ), (l′, δ′)) = trL/L(lu1l
′) + tr∆⊗L/L(δu2δ

′) =

lu1l
′ + tr∆⊗L/L(δu2δ

′). Hence L × {0} is a nondegenerate subspace left invariant by

the action of t0 ∈ T 1
(ET ,σh)

∼= T 1
L × T 1

∆⊗L, which acts by left multiplication. There-

fore t0 leaves invariant a two dimensional nondegenerate k-plane in C0. The result

now follows from Corollary to Theorem 8.1.4. The proof in the case when L is split

proceeds on similar lines. ¤

8.2. SU(V, h) ⊂ G

We continue with notation introduced in the last section. We assume that L is

a quadratic field extension of k. Let t0 be an element in G(C/L) with characteristic

polynomial of the restriction to V = L⊥, equal to its minimal polynomial over L. We

write C = L
⊕

V , where V is an L-vector space with hermitian form h induced by

the norm on C. Then we have seen that G(C/L) ∼= SU(V, h) (Theorem 3.2.1).

Lemma 8.2.1. Let the notation be as fixed above. Let t0 be an element in G(C/L)

which does not have a nonzero fixed point outside L. Suppose that ∃g ∈ G(k) such

that gt0g
−1 = t−1

0 . Then g(L) = L.

Proof. Suppose that g(L) 6⊂ L. Then we claim that ∃x ∈ L ∩ C0 such that

g(x) 6∈ L. For this, let y ∈ L be such that g(y) 6∈ L. Let x = y − 1
2
tr(y)1. Then

tr(x) = 0 and if g(x) ∈ L then g(y) ∈ L, a contradiction. Hence we have x ∈ L ∩ C0

with g(x) 6∈ L. Also since t0(x) = x, we have,

t0(g(x)) = gt−1
0 (x) = g(x).

Therefore t0 fixes g(x) 6∈ L, a contradiction. Hence, g(L) = L. ¤
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We recall a construction from Proposition 3.2.5. Let a ∈ L⊥ with N(a) 6= 0.

Let D = L ⊕ La and ρ1 : D → D be defined by ρ1(x + ya) = σ(x) + σ(y)a. Write

again C = D ⊕ Db, for b ∈ D⊥ with N(b) 6= 0 and define ρ : C → C by ρ(x + yb) =

σ(x) + σ(y)b. Then ρ is an automorphism of C of order 2 which restricts to L to the

nontrivial automorphism of L. The basis

{f1 = a, f2 = b, f3 = ab}

of V = L⊥ over L is an orthogonal basis for h. We fix this basis throughout

this section. Let us denote the matrix of h with respect to this basis by H =

diag(λ1, λ2, λ3) where λi = h(fi, fi) ∈ k∗. Then SU(V, h) is isomorphic to SU(H) =

{A ∈ SL(3, L) | tAHĀ = H}.

Theorem 8.2.2. With notation fixed as above, let A be the matrix of t0 in SU(H)

with respect to the fixed basis described above. Suppose that t0 does not have a nonzero

fixed point outside L. Then t0 is conjugate to t−1
0 in G(k), if and only if Ā is conjugate

to A−1 in SU(H), where the entries of Ā are obtained by applying σ on the entries

of A.

Proof. Let g ∈ G(k) be such that gt0g
−1 = t−1

0 . In view of Lemma 8.2.1, we have

g(L) = L. We have (Proposition 3.2.5) G(C, L) ∼= G(C/L) o N where N =< ρ >

and ρ is an automorphism of C, described above. Clearly g does not belong to

G(C/L). For if so, we can conjugate t0 to t−1
0 in G(C/L) ∼= SU(H). But then the

characteristic polynomial χ(X) = X3 − āX2 + aX − 1, where a ∈ L, and ā = a.

Hence χ(X) = (X − 1)(X2 + (1 − a)X + 1) and t0 has a nonzero fixed point in L⊥,

a contradiction. We write g = g′ρ where g′ ∈ G(C/L). Let B be the matrix of g′ in

SU(H). Then, by a direct computation, it follows that,

gt0g
−1(α0.1 + α1f1 + α2f2 + α3f3)

= α0.1 + α1BĀB
−1f1 + α2BĀB

−1f2 + α3BĀB
−1f3.

Also,

t−1
0 (α0.1 + α1f1 + α2f2 + α3f3) = (α0.1 + α1A

−1f1 + α2A
−1f2 + α3A

−1f3).

Therefore, if t0 is conjugate to t−1
0 in G = Aut(C), then Ā is conjugate to A−1 in

SU(H). Conversely, let BĀB−1 = A−1 for some B ∈ SU(H). Let g′ ∈ G(C/L) be

the element corresponding to B. Then g′ρ conjugates t0 to t−1
0 . ¤
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Let V be a vector space over L of dimension n with a nondegenerate hermitian form

h. Let H denote the diagonal matrix of h with respect to some fixed orthogonal basis.

Then, for any A ∈ U(H), we have tAHĀ = H. Let A ∈ SU(H) with characteristic

polynomial χA(X) = Xn + a1X
n−1 + · · · + an−1X + (−1)n. Then (−1)nai = ān−i for

i = 1, . . . , n− 1.

Lemma 8.2.3. With notation as above, let A ∈ SU(H) with its characteristic

polynomial over L be the same as its minimal polynomial. Suppose A = A1A2 with

A1, A2 ∈ GL(n, L) and Ā1A1 = I = Ā2A2. Then, A1, A2 ∈ U(H).

Proof. Let H = diag(λ1, λ2, . . . , λn), where λ1, . . . , λn ∈ k. We have tAHĀ = H.

Then,

(HA−1
1 )A(HA−1

1 )−1 = HA−1
1 A1A2A1H

−1 = HĀ−1H−1 = tA.

Since the characteristic polynomial of A equals its minimal polynomial, by ([TaZ],

Theorem 2) HA−1
1 is symmetric, i.e., HA−1

1 = t(HA−1
1 ) = tA−1

1 H. This implies,

H = tA1HA
−1
1 = tA1HĀ1. Hence, A1 ∈ U(H). By similar analysis we see that

A2 ∈ U(H). ¤

Lemma 8.2.4. With notation as above, let A ∈ SU(H) with characteristic poly-

nomial χA(X) = Xn + a1X
n−1 + · · · + an−1X + (−1)n over L, equal to its minimal

polynomial. Then, A = B1B2 with B1, B2 ∈ GL(n, L) and B1B1 = I = B2B2.

Proof. Let Aχ denote the companion matrix of A, namely

Aχ =




0 0 . . . 0 −(−1)n

1 0 . . . 0 −an−1

...
...

...

0 0 . . . 1 −a1



.

We have,

Aχ =




(−1)n 0 . . . 0 0

an−1 0 . . . 0 −1
...

...
...

a1 −1 . . . 0 0







0 0 . . . 0 −1

0 0 . . . −1 0
...

...
...

−1 0 . . . 0 0




= A1A2,

and Ā1A1 = I = Ā2A2, using (−1)nai = ān−i for i = 1, . . . , n − 1. Since the char-

acteristic polynomial of A equals its minimal polynomial, there exists T ∈ GL(n, L)

such that A = TAχT
−1. We put B1 = TA1T̄

−1, B2 = T̄A2T
−1. Then A = B1B2,

where B̄1B1 = I = B̄2B2. ¤
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Corollary 8.2.5. Let A ∈ SU(H) with characteristic polynomial χA(X) over

L same as its minimal polynomial. Then, A = B1B2 with B1, B2 ∈ U(H) and

B1B1 = I = B2B2.

From this corollary, we get the following,

Lemma 8.2.6. Let A ∈ SU(H), with characteristic polynomial over L equal to

its minimal polynomial. Then,

(1) Ā is conjugate to A−1 in U(H), if and only if A = A1A2 with A1, A2 ∈ U(H)

and Ā1A1 = I = Ā2A2.

(2) Ā is conjugate to A−1 in SU(H), if and only if A = A1A2 with A1, A2 ∈
SU(H) and Ā1A1 = I = Ā2A2.

The following proposition is due to Neumann ([N], Lemma 5). Recall that we

have fixed a basis {f1, f2, f3} for V = L⊥ over L in Theorem 8.2.2.

Proposition 8.2.7. Let C be an octonion algebra over k and let L be a quadratic

field extension of k, which is a subalgebra of C. An element t ∈ G(C/L) is a product

of two involutions in Aut(C), if and only if, the corresponding matrix A ∈ SU(H) is

a product of two matrices A1, A2 ∈ SU(H), satisfying Ā1A1 = Ā2A2 = I.

We now have,

Theorem 8.2.8. Let t0 be an element in G(C/L) which does not have a fixed

point outside L and let A denote the image of t0 in SU(H). Suppose the characteristic

polynomial of A is equal to its minimal polynomial over L. Then t0 is conjugate to

t−1
0 , if and only if t0 is a product of two involutions in G(k).

Proof. From Theorem 8.2.2 we have, t0 is conjugate to t−1
0 , if and only if Ā is

conjugate to A−1 in SU(H). From Lemma 8.2.6 above, Ā is conjugate to A−1 in

SU(H) if and only if A = A1A2 with A1, A2 ∈ SU(H) and Ā1A1 = I = Ā2A2. Now,

from Proposition 8.2.7, it follows that t0 is a product of two involutions. ¤

In [W2] and [L] examples of elements in G(k), for G of type G2, are constructed,

which are not product of two involutions. These examples are neither semisimple

nor unipotent. However, we continue our analysis to produce examples of semisimple

elements which are not real. Let V be a vector space over L of dimension n together

with a nondegenerate hermitian form h. Let A ∈ SU(H). Let us denote the conjugacy

class of A in U(H) by C and the centralizer of A in U(H) by Z and let

LA = {det(X) | X ∈ Z}.
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Lemma 8.2.9. With notation as fixed above, for X,Y ∈ U(H), XAX−1 is con-

jugate to Y AY −1 in SU(H) if and only if det(X) ≡ det(Y )(modLA).

Proof. Suppose there exists S ∈ SU(H) such that SXAX−1S−1 = Y AY −1.

Then, Y −1SX ∈ Z and det(X) ≡ det(Y )(modLA).

Conversely, let det(XY −1) = det(B) for B ∈ Z. Put S = Y BX−1. Then

det(S) = 1, S ∈ SU(H) and Y −1SX = B ∈ Z. Then, Y −1SXA = AY −1SX gives

SXAX−1S−1 = Y AY −1. ¤

Lemma 8.2.10. Let t0 be an element in G(C/L) for L a quadratic field extension

of k and A be the corresponding element in SU(H). Suppose the characteristic poly-

nomial of A is irreducible over L. Then, t0 is conjugate to t−1
0 in G(k), if and only if

for every X ∈ U(H) such that XĀX−1 = A−1, det(X) ∈ LĀ.

Proof. We have, by Theorem 8.2.2, t0 is conjugate to t−1
0 in G(k) if and only if Ā is

conjugate to A−1 in SU(H). Let X ∈ U(H) be such that XĀX−1 = A−1. Then from

the above lemma, Ā is conjugate to A−1 in SU(H) if and only if det(X) ∈ LĀ. ¤

Corollary 8.2.11. With notation as fixed above, whenever L1/LĀ is trivial, t0 is

conjugate to t−1
0 in G(k), where L1 = {α ∈ L|αᾱ = 1}.

Proof. We have L1 = {α ∈ L | αᾱ = 1} = {det(X)|X ∈ U(H)}. Now let us

fix X0 ∈ U(H) such that X0ĀX
−1
0 = A−1. Then, for any X ∈ U(H) such that

XĀX−1 = A−1, we have X−1
0 X ∈ ZU(H)(Ā). Hence det(X) ∈ det(X0)LĀ. But since

L1/LĀ is trivial, we have det(X) ∈ LĀ. From the above lemma, it now follows that

t0 is conjugate to t−1
0 in G(k). ¤

Remark 8.2.12. From the proof above, for any X ∈ U(H) such that XĀX−1 =

A−1, we get X ∈ X0ZU(H)(Ā). Since the characteristic polynomial of A is irreducible,

that of Ā is irreducible as well. Therefore ZU(H)(Ā) ⊂ ZEndL(V )(Ā) = L[Ā] ∼= L[T ]/ <

χĀ(T ) >. In fact, ZU(H)(Ā) = {x ∈ ZEndL(V )(Ā) | xσh(x) = 1}. Hence we can write

X = X0f(Ā) for some polynomial f(T ) ∈ L[T ].

Lemma 8.2.13. Let A ∈ SU(H) and its characteristic polynomial χA(X) be

irreducible over L. Let E = L[X]/χĀ(X), a degree three field extension of L. Then

L1/LĀ ↪→ L∗/N(E∗).

Proof. Define a map φ : L1 −→ L∗/N(E∗) by x 7→ xN(E∗). We claim that

ker(φ) = {x ∈ L1 | x ∈ N(E∗)} = LĀ = {N(x) | x ∈ E∗, xσ(x) = 1}. Let x ∈ ker(φ),

i.e., x = N(y) for some y ∈ E∗ and xσ(x) = 1. Let ỹ = xy−1σ(y) ∈ E∗ then
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N(ỹ) = x, ỹσ(ỹ) = 1. Hence x ∈ LĀ. Conversely, if N(x) ∈ LĀ for some x ∈ E∗ such

that xσ(x) = 1 then N(x) ∈ ker(φ). ¤

Hence if the field k is C1 (for example, finite field) or it does not admit degree three

extensions (real closed fields, algebraically closed fields etc.), L∗/N(E∗) is trivial.

From Corollary 8.2.11, it follows that every element in G(C/L), with irreducible

characteristic polynomial, is conjugate to its inverse. In particular, combining with

Theorem 8.1.9, it follows that every semisimple element in G(k) is conjugate to its

inverse.

Proposition 8.2.14. With notation as above, let L be a quadratic field extension

of k and let S ∈ SU(H) be an element with irreducible characteristic polynomial over

L, satisfying S̄ = S−1. Let E = L[X]/χS(X), a degree three field extension of L,

and assume L1/N(E1) is nontrivial, where L1 = {x ∈ L | xσ(x) = 1}, E1 = {x ∈
E | xσ(x) = 1} and σ is the extension of the nontrivial automorphism of L to E.

Then there exists an element A ∈ SU(H) with characteristic polynomial same as the

characteristic polynomial of S, which can not be written as A = A1A2 where Āi = A−1
i

and Ai ∈ SU(H). The corresponding element t in G(C/L) is not a product of two

involutions in G = Aut(C) and hence not real in G.

Proof. Let b ∈ L1 such that b2 6∈ N(E1). Put D = diag(b, 1, 1) and A = DSD−1,

then A belongs to SU(H). Now suppose A = A1A2 with Āi = A−1
i and Ai ∈ SU(H).

Then A = A1A2 = DSD−1 = DSDD−2. Put T1 = DSD and T2 = D−2, then

T̄i = T−1
i . Since A2AA

−1
2 = Ā−1 and T2AT

−1
2 = Ā−1, we have T−1

2 A2 ∈ ZU(V,h)(A),

i.e., T−1
2 A2 = f(A) for some f(X) ∈ L[X] (see the Remark after Corollary 8.2.11).

Then b2 = det(T−1
2 ) = det(T−1

2 A2) = det(f(A)) ∈ N(E∗), a contradiction. ¤

Remark 8.2.15. If we choose S in the theorem above with characteristic polyno-

mial separable, then the element A, constructed in the proof, is a semisimple element

in an indecomposable maximal torus, contained in SU(H), which is not real.

We recall that any central division algebra of degree three is cyclic ([P], Theorem,

Section 15.6). Let L be a quadratic field extension of k. Let F be a degree three

cyclic extension of k and we denote E = F.L. Let us denote the generator of the

Galois group of F over k by τ . Let A = F ⊕ Fu ⊕ Fu2 with udu−1 = τ(d) for

all d ∈ F and u3 = a ∈ k∗. Then A, denoted by (F, τ, a), is a cyclic algebra of

degree three over k. Recall also that (F, τ, a) is a division algebra if and only if

a 6∈ NF/k(F
∗). We denote the relative Brauer group of F over k by B(F/k), i.e.,
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the group of Brauer classes of central simple algebras over k, which split over F . We

define a map φ : B(F/k) −→ B(E/L) by [(F, τ, a)] 7→ [(E, τ, a)] (which is the same as

the map [D] 7→ [D⊗L]). This map is well defined ([P], Section 15.1, Corollary c) and

is an injective map since ker(φ) = {[(F, τ, a)] ∈ B(F/k) | a ∈ k∗, a ∈ NE/L(E∗)} =

{[(F, τ, a)] ∈ B(F/k) | a ∈ NF/k(F
∗)}. We have a commutative diagram,

k∗/NF/k(F
∗)

∼=−−−→ B(F/k)y
yφ

L∗/NE/L(E∗)
∼=−−−→ B(E/L)

The vertical maps are injective in the above diagram. We have the following exact

sequence,

1 −→ (NE/L(E∗)k∗)/NE/L(E∗) −→ L∗/NE/L(E∗) −→ L1/NE/L(E1) −→ 1

where (NE/L(E∗)k∗)/NE/L(E∗) ∼= k∗/NF/k(F
∗). Hence, from the commutativity of

the above diagram, we get B(E/L)/φ(B(F/k)) ∼= L1/NE/L(E1).

This shows L1/NE/L(E1) is nontrivial, if and only if there exists a central division

algebra D over L which splits over E and it does not come from a central division

algebra over k, split by F . Over number field for such a construction we refer to [K]

(Chapter V, Proposition 1).

8.3. SL(3) ⊂ G

We continue here with proof of the Theorem 8.1.8. Let us assume now that

L ∼= k × k. We have seen in Section 3.2 that G(C/L) ∼= SL(U) ∼= SL(3). Let t0

be an element in G(C/L) and denote its image in SL(3) by A. We assume that the

characteristic polynomial of A ∈ SL(3) is equal to its minimal polynomial over k.

Lemma 8.3.1. Let the notation be fixed as above. Let t0 be an element in G(C/L)

which does not have a fixed point outside L. Suppose that ∃h ∈ G = Aut(C), such

that ht0h
−1 = t−1

0 . Then h(L) = L.

Proof. Suppose that h(L) 6⊂ L. Then we claim that ∃x ∈ L ∩ C0 such that

h(x) 6∈ L. For this, let y ∈ L be such that h(y) 6∈ L. Let x = y − 1
2
tr(y)1. Then

tr(x) = 0 and if h(x) ∈ L then h(y) ∈ L, a contradiction. Hence we have x ∈ L ∩ C0

with h(x) 6∈ L. Also since t0(x) = x, we have,

t0(h(x)) = ht−1
0 (x) = h(x).
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Therefore, t0 fixes h(x) ∈ C0 and h(x) 6∈ L, a contradiction. Hence any h ∈ Aut(C),

conjugating t0 to t−1
0 in G, leaves L invariant. ¤

From Theorem 7.1.2 it follows that if t0 is conjugate to t−1
0 in G(C/L) ∼= SL(3) then

t0 is strongly real. Hence we may assume that A is not real in SL(3).

Theorem 8.3.2. With notation fixed as above, let A be the matrix of t0 in SL(3).

Let A be not real in SL(3). Then t0 is conjugate to t−1
0 in G = Aut(C), if and only

if A is conjugate to tA in SL(3).

Proof. Let h ∈ G be such that ht0h
−1 = t−1

0 . In view of the lemma above, we have

h(L) = L. We may, without loss of generality (up to conjugacy by an automorphism),

assume that

C =

{(
α v

w β

)
| α, β ∈ k; v, w ∈ k3

}
with L =

{(
α 0

0 β

)
| α, β ∈ k

}

By Proposition 3.2.3, h belongs to G(C/L)oH. Clearly h does not belong to G(C/L)

since we have assumed A is not real in SL(3). Hence h = gρ for some g ∈ G(C/L). Let

A denote the matrix of t0 on U in SL(3) and B that of g. Then, a direct computation

gives,

ht0h
−1

(
α v

w β

)
=

(
α BtA

−1
B−1v

tB
−1
AtBw β

)
,

and

t−1
0

(
α v

w β

)
=

(
α A−1v

tAw β

)
.

Therefore,

ht0h
−1 = t−1

0 ⇔ A = BtAB−1.

Hence, t0 is conjugate to t−1
0 in G(k) if and only if A is conjugate to tA in SL(3). ¤

Lemma 8.3.3. Let A be a matrix in SL(n) with its characteristic polynomial

equal to its minimal polynomial. Then A is conjugate to tA in SL(n) if and only if A

is a product of two symmetric matrices in SL(n).

Proof. Any matrix conjugating A to tA is necessarily symmetric ([TaZ], Theorem

2). Let S be a symmetric matrix which conjugates A to tA in SL(n), i.e., SAS−1 = tA.

Let B = SA = tAS. Then B is symmetric and belongs to SL(n). Hence A = S−1B

is a product of two symmetric matrices in SL(n). Conversely, let A be a product of

two symmetric matrices from SL(n), say A = S1S2. Then S2 conjugates A to tA. ¤
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We need the following result from ([W1]), (cf. also [L]),

Proposition 8.3.4. Let C be a (split) octonion algebra over a field k of character-

istic not 2. Let L be a split two-dimensional subalgebra of C. An element η ∈ G(C/L)

is a product of two involutory automorphisms if and only if the corresponding matrix

in SL(3) can be decomposed into a product of two symmetric matrices in SL(3).

We have,

Theorem 8.3.5. Let t0 be an element in G(C/L), with notation as in this section.

Let us assume that the matrix A of t0 in SL(3) has characteristic polynomial equal

to its minimal polynomial. Then, t0 can be conjugated to t−1
0 in G = Aut(C), if and

only if t0 is a product of two involutions in G(k).

Proof. First, let t0 be real in G(C/L). Then, A is real in SL(3) and hence it is

strongly real (see Theorem 7.1.2). Thus the element t0 is strongly real in G(k). Now

we assume t0 is not real in G(C/L), i.e., A is not real in SL(3). In this case, the

element t0 can be conjugated to t−1
0 in G(k) if and only if, A can be conjugated to

tA in SL(3) (Theorem 8.3.2). This is if and only if, A is a product of two symmetric

matrices in SL(3) (Lemma 8.3.3). By Proposition 8.3.4, this is if and only if t0 is a

product of two involutions in Aut(C). ¤

We continue our analysis and produce examples of nonreal semisimple elements.

We derive a necessary and sufficient condition that a matrix A in SL(3), with ir-

reducible characteristic polynomial, be conjugate to tA in SL(3). We have, more

generally,

Theorem 8.3.6. Let A be a matrix in SL(n) with characteristic polynomial

χA(X) irreducible. Let E = k[X]/χA(X) ∼= k[A] be the field extension of k of degree

n given by χA(X). Then A is conjugate to tA in SL(n), if and only if, for every

T ∈ GL(n) with TAT−1 = tA, det(T ) is a norm from E.

Proof. Fix a T0 ∈ GL(n) such that T0AT
−1
0 = tA and define a map,

{T ∈Mn(k) | TA = tAT} −→ k[A]

T 7→ T−1
0 T

This map is an isomorphism of vector spaces. Since if T ∈ Mn(k) is such that

TA = tAT then T−1
0 T belongs to Z(A) (= k[A], as the characteristic polynomial of A

is the same as its minimal polynomial). To prove the assertion, suppose T0 ∈ SL(n)
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conjugates A to tA. But with the above bijection, T−1
0 T = p(A) for some p(A) ∈

k[A], p(X) ∈ k[X]. Hence det(p(A)) = det(T ), i.e. detT is a norm from E.

Conversely suppose there exists T ∈ GL(n) with TAT−1 = tA and det(T ) is a

norm from E. Then there exists p(X) ∈ k[X] such that det(p(A)) = det(T )−1. Thus

det(Tp(A)) = 1 and

(Tp(A))A(p(A)−1T−1) = TAT−1 = tA. ¤

In the case under discussion, A ∈ SL(3) has irreducible characteristic polynomial.

Hence, E ∼= k[A] ∼= ZM3(k)(A) is a cubic field extension of k . We combine the

previous two theorems to get,

Corollary 8.3.7. Let A be a matrix in SL(3) with irreducible characteristic poly-

nomial. With notation as above, suppose k∗/N(E∗) is trivial. Then A can be conju-

gated to tA in SL(3) and hence t0 can be conjugated to t−1
0 in Aut(C).

If k a C1 field (e.g., a finite field) or k does not admit cubic field extensions (e.g., k

real closed, algebraically closed), the above criterion is satisfied automatically. Hence

every element in G(C/L), for L = k × k, with irreducible characteristic polynomial

over k, is conjugate to its inverse in G(k). In particular, combining this with Theorem

8.1.9, we see that every semisimple element in G(k) is real.

We shall give a cohomological proof of reality for G2 (and other groups with

appropriate hypothesis) over fields k with cd(k) ≤ 1 (see the Theorem 9.3.3).

In view of these results, to produce an example of a semisimple element of G =

Aut(C) that is not conjugate to its inverse in Aut(C), we need to produce a semisimple

element which is a product of three involutions but not a product of two involutions.

We shall show that, for the split form G of G2 over k = Q or k = Qp, there are

semisimple elements in G(k) which are not conjugate to their inverses in G(k). We

shall do this in next section by exhibiting explicit elements in G2 over a finite field,

which are not real. These necessarily are not semisimple or unipotent (see the Re-

mark 8.4.8). We adapt a slight variant of an example in ([W2], [L]) for our purpose,

there the issue is bireflectionality of G2. The following lemma will be used to produce

nonreal elements in G2 in next section.

Lemma 8.3.8. Let k be a field and let S be a symmetric matrix in SL(3) whose

characteristic polynomial p(X) is irreducible over k. Let E = k[X]/ < p(X) >, the

degree three field extension of k given by p(X). Further suppose that k∗/N(E∗) is

not trivial. Then there exists a matrix in SL(3), with characteristic polynomial p(X),

which is not a product of two symmetric matrices in SL(3).
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Proof. Let b ∈ k∗ such that b2 6∈ N(E∗). Consider D = diag(b, 1, 1), a diagonal

matrix and put A = DSD−1. Then A ∈ SL(3). We claim that A is not a product of

two symmetric matrices from SL(3). Assume the contrary. Suppose A = DSD−1 =

S1S2 where S1, S2 ∈ SL(3) and symmetric. Then

A = DSD−1 = (DSD)D−2 = S1S2.

Let T1 = DSD, T2 = D−2. Then tTi = Ti, i = 1, 2 and A = T1T2 = S1S2. Therefore,

tA = T2T1 = T2AT
−1
2 = S2S1 = S2AS

−1
2 .

Since the characteristic polynomial of A is irreducible, by the proof of Theorem 8.3.6,

D2S2 = T−1
2 S2 ∈ Z(A) = k[A] ∼= E. Which implies S2 = D−2f(A) for some

polynomial f(X) ∈ k[X]. Taking determinants, we get

1 = detS2 = detD−2 det(f(A)),

i.e., b2 = det(f(A)) ∈ N(E∗), contradicting the choice of b ∈ k. Hence A can not be

written as a product of two symmetric matrices from SL(3). ¤

8.4. Examples of Nonreal Elements

In this section we produce examples of nonreal semisimple elements in groups of

type G2. In [W2] and [L], there are examples of elements which are product of three

involutions but not two. These are examples of nonreal elements. First we produce

nonreal semisimple elements which are product of three involutions but not two in

G2 over number fields and over fields Q and Qp. In the view of Theorem 8.1.7 these

elements are not real. We also produce examples of nonreal elements in G2 over finite

fields. Note that over finite fields every semisimple as well as unipotent element is

real. Hence the elements produced are of mixed kind, i.e., neither semisimple nor

unipotent.

8.4.1. Nonreal Elements in G2 over Number Fields. We use Proposition 8.2.14

to construct non-real elements in G2 over number fields and use the notation intro-

duced there.

Lemma 8.4.1. Let k be a number field and L a quadratic field extension of k. Let

F be a cyclic extension of degree 3 over k. Let us denote E = F.L. Then L1/NE/L(E1)

is nontrivial.

Proof. The proof follows by looking at a place of E over L which is unramified

of degree 3. ¤
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We proceed to construct an example of the situation required in Proposition 8.2.14.

Proposition 8.4.2. Let k be a number field. There exist octonion algebras C over

k such that not every (semisimple) element in Aut(C) is real.

Proof. We use Proposition 8.2.14 here. Let L be a quadratic field extension of

k. Let F be a degree three cyclic extension of k. Then we have E = F.L, a degree

three cyclic extension of L. We denote the extension of the nontrivial automorphism

of L over k to E over L by σ, which is the identity automorphism when restricted to

F . Sometimes we write x̄ = σ(x) for x ∈ E. Let us consider E as a vector space over

L. We consider the trace hermitian form on E defined as follows:

tr : E × E −→ L

tr(x, y) = trE/L(xȳ).

The restriction of this form to F is the trace form tr : F×F −→ k, given by tr(x, y) =

trF/k(xy). We choose an orthogonal basis of F over k, say {f1, f2, f3}, with respect

to the trace form, and extend it to a basis of E/L. Then the bilinear form tr with

respect to this basis has diagonalization < 1, 2, 2 > ([KMRT], Section 18.31). We

have disc(tr) = 4 ∈ NL/k(L
∗). Hence (E, tr) is a rank 3 hermitian space over L with

trivial discriminant and SU(E, tr) is isomorphic to SU(H) where H = diag(1, 2, 2).

We choose an element 1 6= a ∈ T 1 − L1, where T 1 = {x ∈ E | xx̄ = 1, NE/L(x) = 1}.
Let us consider the left homothety map,

la : E −→ E

la(x) = ax

Since a ∈ T 1−L1, the characteristic polynomial χ(X) of la is the minimal polynomial

of a over L, which is irreducible of degree 3 over L. Next we prove that la ∈ SU(E, tr).

This is so since,

tr(la(x), la(y)) = tr(ax, ay) = trE/L(axāȳ) = trE/L(xȳ) = tr(x, y).

Let S = (sij) denote the matrix of la with respect to the chosen basis {f1, f2, f3} of

F over k. Then the matrix of lā is S̄ = (s̄ij). Also, since aā = 1, we have SS̄ = 1.

Thus we have a matrix S in SU(H), for H =< 1, 2, 2 >, satisfying the conditions of

Proposition 8.2.14.

Now, let L = k(γ) with γ2 = c ∈ k∗. We write Q = k ⊕ F . Since (F, tr) is a

quadratic space with trivial discriminant, we can define a quaternionic multiplication
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on Q (Proposition 3.1.6), denote its norm by NQ. We double Q with γ2 = c ∈ k∗ to

get an octonion algebra C = Q⊕Q with multiplication,

(x, y)(u, v) = (xu+ cv̄y, vx+ yū)

and the norm N((x, y)) = NQ(x) − cNQ(y). We choose a basis {1, a, b, ab} of Q,

orthogonal for NQ, so that NQ has diagonalization < 1, 1, 2, 2 > with respect to this

basis. This gives a basis {(1, 0), (a, 0), (b, 0), (ab, 0), (0, 1), (0, a), (0, b), (0, ab)} of C and

the diagonalization of N with respect to this basis is < 1, 1, 2, 2,−c,−c,−2c,−2c >.

We observe that the subalgebra k⊕ k ⊂ C is isomorphic to L and L⊥ = F × F is a 3

dimensional vector space over L with hermitian form < 1, 2, 2 >. Hence SU(L⊥, h),

with respect to the basis {(a, 0), (b, 0), (ab, 0)} of L⊥, is SU(H) for H =< 1, 2, 2 >.

Hence, from the discussion in previous paragraph, we have an element of required

type in SU(L⊥, h).

By Lemma 8.4.1, L1/N(E1) is nontrivial. It follows from Proposition 8.2.7 and

Proposition 8.2.14 that not all (semisimple) elements in Aut(C), which are contained

in the subgroup SU(E, tr), are real. ¤

Corollary 8.4.3. Let k be a totally real number field. Then there exists an octo-

nion division algebra C over k such that not every element in Aut(C) is real. Hence

there exist (semisimple) elements in Aut(C), which are the product of three involutions

but not the product of two involutions.

Proof. We recall from Lemma 3.1.5 that if the k-quadratic form qb, corresponding

to the bilinear form b : E × E −→ k, defined by b(x, y) = trE/L(xȳ) + trE/L(x̄y), is

anisotropic then the octonion algebra C, as constructed in the proof of the above

proposition, is a division algebra. In case when k is a totally real number field and

L = k(i), the diagonalization of qb is < 1, 2, 2, 1, 2, 2 >, which is clearly anisotropic

over k. ¤

Remarks 8.4.4. 1. We note that the quadratic form qb as above, can be isotropic

for imaginary quadratic number fields. For example if k = Q(
√
−2), qb has diago-

nalization < 1,−1,−1,−c, c, c >, which is isotropic. Hence the octonion algebra C

in this case is split. Therefore, indecomposable tori in subgroups SU(V, h) ⊂ Aut(C)

exist in all situations, whether C is division or not. And in either case, there are

nonreal elements.

2. It seems likely that existence of nonreal elements in G(k) for k a number field

should follow from existence of such elements in G(k) for k local.
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8.4.2. Nonreal Elements in Split G2 over Q and Qp. In view of Theo-

rem 8.3.5 and its proof, the element A corresponds to an element in Aut(C) which

can not be conjugated to its inverse. If we choose the matrix S as in the statement

of the Lemma 8.3.8, to have separable characteristic polynomial, the matrix A, as

constructed in the proof, corresponds to a semisimple element in an indecomposable

torus contained in SL(3) ⊂ G = Aut(C), which is not real.

Theorem 8.4.5. Let G be a split group of type G2 over k = Q or Qp. Then there

exists a semisimple element in G2(k) which is not conjugate to its inverse.

Proof. Reality over Qp : Let k = Qp, p 6= 2. Let p(X) be an irreducible monic

polynomial of degree n, with coefficients in Qp. By a theorem of Bender ([Be1]), there

exists a symmetric matrix with p(X) as its characteristic polynomial, if and only if, for

the field extension E = Qp[X]/(p(X)), there exists α in E∗ such that (−1)
n(n−1)

2 N(α)

belongs to (Q∗
p)

2. We choose E as the (unique) unramified extension of Qp of degree 3.

Then, E is a cyclic extension of Qp. We choose β ∈ E∗, N(β) = 1 so that E = Qp(β).

Let p(X) be the minimal polynomial of β over Qp. Then, applying Bender’s result,

there is a symmetric matrix A over Qp, with characteristic polynomial p(X). Since

N(β) = 1, A belongs to SL(3,Qp). We have, Q∗
p/N(E∗) ∼= Z/3Z (see [P], Section

17.9), hence (Q∗
p)

2 6⊂ N(E). Therefore we are done by Lemma 8.3.8, combined with

Proposition 8.3.4 and Theorem 8.3.5.

This example shows that there exist semisimple elements in G = Aut(C) over

k = Qp, which are not a product of two involutions and hence must be product of three

involutions, by ([W2]). In particular, reality for G2 fails over Qp (Theorem 8.1.7).

Reality over Q : A polynomial p(X) ∈ K[X] is called K-real if every real closure of

K contains the splitting field of p(X) over K. Bender ([Be2], Theorem 1) proves that

whenever we haveK, an algebraic number field, and p(X) a monicK-polynomial with

an odd degree factor over K, then p(X) is K-real if and only if it is the characteristic

polynomial of a symmetric K-matrix.

Let p(X) = X3 − 3X − 1. Then all roots of this polynomial are real but not

rational. This polynomial is therefore irreducible over Q and by Bender’s theorem

stated above, p(X) is the characteristic polynomial of a symmetric matrix. Note that

K = Q[X]/ < p(X) > is a degree 3 cyclic extension of Q.

We recall that for a cyclic field extension K of k, the relative Brauer group

B(K/k) ∼= k∗/NK/k(K
∗) (refer [P], Section 15.1, Proposition b). It is known that if

K/k is a nontrivial extension of global fields, then B(K/k) is infinite (refer [FKS],
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Corollary 4). Therefore, for K chosen as above, Q∗/N(K∗) is not trivial. Hence

all conditions required by Lemma 8.3.8 are satisfied by the polynomial p(X) and we

get a semisimple element t0 ∈ G2(Q) which is not conjugate to its inverse, using

Lemma 8.3.8, Proposition 8.3.4 and Theorem 8.3.5. ¤

8.4.3. Nonreal Elements in G2 over Finite Fields. Let k = Fq be a finite

field. We have shown (Theorem 8.1.7) that semisimple elements and unipotent ele-

ments in G(k) are real in G(k). We now construct an element in G(k) which is not

conjugate to its inverse. Let C be the split octonion algebra over k, assume that the

characteristic of k is not 2 or 3. We use the matrix model for the split octonions,

as introduced in the Section 3.1. Let L be the split diagonal subalgebra of C. We

assume that k contains primitive third roots of unity. We have, G(C/L) ∼= SL(3).

Let ω be a primitive third root of unity in k. Let

A =




ω −1 0

0 ω 1

0 0 ω


 .

Then A ∈ SL(3) and the minimal polynomial (=characteristic polynomial) of A is

p(X) = (X − ω)3. Let b ∈ k be such that the polynomial X3 − b2 is irreducible

over k (this is possible due to characteristic assumptions). Let D = diag(b, 1, 1) and

B = DAD−1. Then B ∈ SL(3) and has the same minimal polynomial as A. Note

that B is neither semisimple, nor unipotent. Let t ∈ G(C/L) be the automorphism

of C corresponding to B. It is clear that the fixed point subalgebra of t is precisely

L.

Theorem 8.4.6. The element t ∈ G(C/L) as above, is not real.

Proof. If not, suppose for h ∈ G(k), hth−1 = t−1. Then, since t fixes precisely L

pointwise, we have h(L) = L. Therefore h ∈ G(C, L) ∼= G(C/L)oH, whereH =< ρ >

is as in Proposition 3.2.3. If h ∈ G(C/L), conjugacy of t and t−1 by h would imply

conjugacy of B and B−1 in SL(3). But this can not be, since ω is the only root of

p(X). Thus h = gρ for g ∈ G(C/L). Now, by exactly the same calculation as in the

proof of Theorem 8.3.2, conjugacy of t and t−1 in G(k) is equivalent to conjugacy of

B and tB in SL(3). Let CBC−1 = tB with C ∈ SL(3). Let

T =




0 0 1

0 −1 0

1 0 0


 .
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Then T ∈ SL(3) is symmetric and TAT−1 = tA. Hence A is a product of two

symmetric matrices in SL(3), say A = T1T2 with Ti ∈ SL(3), symmetric (see the

proof of Lemma 8.3.3). But CBC−1 = tB gives (DCD)A = tA(DCD). Therefore, by

an argument used in the proof of Theorem 8.3.6, using the fact that the characteristic

polynomial is equal to the minimal polynomial of A, we have, DCD = T2f(A) for

some polynomial f ∈ k[X]. Taking determinants, we get b2 = det(f(A)) = f(ω)3.

But this contradicts the choice of b. Hence t is not real. ¤

A similar construction can be done for the subgroup SU(V, h) ⊂ G. We continue

to assume that k is a finite field with characteristic different from 2, 3. We first note

that the (split) octonion algebra contains all quadratic extensions of k. We assume

that 2 is a square in k and that k contains no primitive cube roots of unity. Let L

be a quadratic extension of k containing a primitive cube root of unity ω. Let b ∈ L

with NL/k(b) = 1 such that the polynomial X3 − b2 is irreducible over L. Let α ∈ L

with NL/k(α) = −1. Let

A =




ω + 1
4

1
2

−1
4
α

−1
2
ω2 ω 1

2
αω2

−1
4
α −1

2
α ω − 1

4


 ,

then A ∈ SU(3) and the minimal polynomial (= characteristic polynomial) of A over

L is (X − ω)3. Let F be a cubic extension of k and E = F.L. Then E is a cyclic

extension of L and we have the trace hermitian form as defined in Proposition 8.4.2,

on E. We fix an orthogonal basis for F over k for the trace bilinear form and extend it

to a basis of E over L. Then the trace hermitian form has diagonalization < 1, 1, 1 >.

We construct C = L⊕E with respect to the hermitian space (E, tr), as in Section 3.

Then SU(L⊥, h) ∼= SU(3). Let D = diag(b, 1, 1) and B = DAD−1. Then B ∈ SU(3)

and has the same minimal polynomial as A. Note that B is neither semisimple, nor

unipotent. Let t denote the automorphism of C corresponding to B. Then the fixed

point subalgebra of t in C is precisely L. We have,

Theorem 8.4.7. The element t ∈ G(C/L) as above, is not real.

Proof. Suppose t is real in G(k). Then there is h ∈ G(k) such that hth−1 = t−1.

Since the fixed point subalgebra of t is L, we have h(L) = L. Thus, by Proposi-

tion 3.2.5, h ∈ G(C, L) ∼= G(C/L) o H, where H =< ρ > is as in Proposition 3.2.5.

If h ∈ G(C/L), then B and B−1 would be conjugate in SU(3), but that can not

be since ω is the only eigenvalue for B. Hence h = gρ for g ∈ G(C/L). Then,
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conjugacy of t and t−1 in G(k) is equivalent to conjugacy of B and B−1 in SU(3),

by the same calculation as in the proof of Th. 6.5. By Lemma 8.2.6, this is if and

only if B = B1B2 with Bi ∈ SU(3) and BiBi = 1. But then B = DAD−1 = B1B2

and hence A = (D−1B1D
−1)(DB2D) = A1A2, say. Then Ai ∈ U(3) and AiAi = 1.

Let C ∈ SU(3) be such that CBC−1 = B−1. Then CDAD−1C−1 = DA−1D−1.

This gives, (D−1CD−1)A(DC−1D) = A−1. Hence, by Lemma 8.2.6, A = T1T2 with

Ti ∈ SU(3), TiTi = 1. Therefore, by a similar argument as in the remark following

Corollary 8.2.11, we must have, T1A
−1
1 = f(A) for a polynomial f(X) ∈ L[X]. Taking

determinants, we get b−2 = f(ω)3, contradicting the choice of b. Therefore t is not

real in G(k). ¤

Remarks 8.4.8. 1. Our results in fact show that if an element in G(k), for a

group G of type G2, is conjugate to its inverse in G(k), the conjugating element can

be chosen to be an involution. The same is true for unipotents (these are always

conjugate to their inverses).

2. The obstruction : From our results, we see that semisimple elements be-

longing to decomposable tori are always product of two involutions and hence real in

G(k). For semisimple elements belonging to an indecomposable maximal torus T , the

obstruction to reality is measured by L1/N(E1), where T ⊂ SU(V, h) ∼= SU(E , h(u))

is given by T = E1 and E is a cubic field extension of L. In the other case, when

T ⊂ SL(3), the obstruction is measured by k∗/N(F∗), where F is a cubic field ex-

tension of k. In both cases, the obstruction has a Brauer group interpretation. When

T ⊂ SL(3) ⊂ G is an indecomposable maximal torus, coming from a cyclic cubic

field extension F of k, the obstruction to reality for elements in T (k), is the relative

Brauer group B(F/k). For an indecomposable torus T ⊂ SU(E , hu) ⊂ G, where E is

a cubic cyclic field extension of L, the obstruction is the quotient B(E/L)/φ(B(F/k),
where F is the subfield of E , fixed by the involution σ on E and φ is the base change

map B(F/k) −→ B(E/L).

8.5. Centralizers in Anisotropic G2

In this section, we compute conjugacy classes of centralizers in compact G2. Let

G be an anisotropic group of type G2 over a field k. Then there exists C, an octonion

division algebra over k, such that G ∼= Aut(C). By abuse of notation we write

G = Aut(C). We fix these notation for this section. First, we calculate centralizer of

an element in G. Let t ∈ G. We denote the centralizer of t in G by ZG(t) = {g ∈
G | gt = tg}. Since G is anisotropic, every element in G is semisimple and leaves a



8.5. CENTRALIZERS IN ANISOTROPIC G2 81

subalgebra of C fixed pointwise (Lemma 8.1.3). We denote the subalgebra of fixed

points of t by Ct = {x ∈ C | t(x) = x}.

Proposition 8.5.1. Let G be an anisotropic group of type G2 over k. Let C be

the octonion division algebra over k such that G = Aut(C). Let t ∈ G. Then Ct is a

composition subalgebra of C and the centralizer ZG(t) ⊂ G(C,Ct).

Proof. The subalgebra Ct ⊂ C is a composition subalgebra as C is division. Let

g ∈ ZG(t). Then,

t(g(x)) = g(x), ∀x ∈ Ct.

Hence g(x) ∈ Ct, ∀x ∈ Ct. This shows that g ∈ G(C,Ct) and ZG(t) ⊂ G(C,Ct). ¤

We note that t restricted to C0, trace zero space of C, is an element of special orthog-

onal group of an odd dimensional space ([SV], Proposition 2.2.2), hence t has a fixed

point in C0 by Cartan-Dieudonne theorem. This implies that the dimension of Ct is

≥ 2. As the dimension of a composition subalgebra can be 2, 4 or 8 the subalgebra Ct

is either a quadratic field extension of k, a quaternion subalgebra or t = I. Hence we

need to calculate centralizers of elements which are contained in a subgroup G(C/L)

where L is a quadratic field extension or G(C/Q) where Q is a quaternion subalgebra.

Let Q be a quaternion subalgebra of the octonion division algebra C, hence Q

itself is division.

Lemma 8.5.2. Let C be an octonion division algebra and G = Aut(C). Let Q

be a quaternion subalgebra of C. Let t = Rp ∈ G(C/Q) for some p ∈ SL1(Q) with

p 6∈ k. Then ZG(t) = {Rp1Ic1 ∈ G(C, Q) | p1c1 ∈ L} where L = k(p), a quadratic

field extension of k.

Proof. We have t = Rp ∈ G(C/Q) with p 6∈ k. We write C = Q ⊕ Qb for some

b ∈ Q⊥. Then t(x + yb) = x + (py)b. From Proposition 8.5.1 we get, ZG(t) ⊂
G(C, Q) = {Rp1Ic1 | p1 ∈ SL1(Q), c1 ∈ Q∗}. Let g ∈ ZG(t) and let g = Rp1Ic1 . Then

gt = tg ⇒ Rp1Ic1Rp = RpRp1Ic1 ⇒ Rp1c1pc−1
1

Ic1 = Rpp1Ic1

and we get, p1c1p = pp1c1, i.e., p1c1 ∈ ZQ(p) = L where L = k(p) is a quadratic field

extension of k. Hence ZG(t) = {Rp1Ic1 | p1c1 ∈ L, c1 ∈ Q∗, p1 ∈ SL1(Q)}. ¤

Now we consider conjugacy classes of centralizers of these elements in G.

Lemma 8.5.3. Let t, t′ ∈ G = Aut(C). Let t and t′ leave quaternion subalgebra

Q and Q′ fixed pointwise, respectively. Suppose Q and Q′ are isomorphic. Let t = Rp
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and t′ = R′
p where p ∈ SL1(Q) and p′ ∈ SL1(Q

′) and both p, p′ 6∈ k. Suppose L = k(p)

and L′ = k(p′) are isomorphic field extensions of k. Then ZG(t) is conjugate to ZG(t′)

in G.

Proof. As Q and Q′ are isomorphic, by Theorem 3.2.8 we have an automorphism

φ of C such that φ|Q is the given isomorphism of Q to Q′. By conjugating the element

t′ by φ we may assume t and t′ both belong to G(C/Q). Let L and L′ be isomorphic.

Then there exists an isomorphism ψ = Ic, conjugation by c ∈ Q, which gives the

isomorphism of L to L′. Let g ∈ ZG(Rp). From previous lemma g = Rp1Ic1 with

p1c1 ∈ L. Then,

ψgψ−1 = IcRp1Ic1Ic−1 = Rcp1c−1Icc1c−1 .

We note that cp1c
−1cc1c

−1 = cp1c1c
−1 ∈ L′. This implies ψgψ−1 ∈ ZG(t′) and hence

ZG(t) is conjugate to ZG(t′) in G. ¤

Remark 8.5.4. In similar way one can calculate centralizers of elements of

G(C, Q). Let t ∈ G(C, Q). Let t = RpIc where p ∈ SL1(Q) and c ∈ Q − k. Then

ZG(t) = {Rp1Ic1 | c1 ∈ k(c), p1c1 ∈ k(pc)}.

We note that the center of SL1(Q) is {1,−1} and the element t in Aut(C) cor-

responding to −1 is a non-trivial involution (i.e. t2 = 1). By a similar calculation

as above it is easy to see that ZG(t) = G(C, Q) for 1 6= t an involution. In fact any

non-trivial involution in Aut(C) correspond to a quaternion subalgebra in this fash-

ion. Two involutions are conjugate if and only if the corresponding fixed quaternion

subalgebras are isomorphic (see Section 3.3). From Proposition 3.2.9, two involutions

have their centralizers conjugate if and only if the corresponding fixed quaternion

subalgebras are isomorphic. We observe that the centralizers corresponding to invo-

lutions and other type of elements in Lemma 8.5.3 are not isomorphic hence they can

not be conjugate in the group G.

Let t ∈ G = Aut(C) where C is a division octonion algebra. Then t fixes a

quadratic subfield L pointwise as the dimension of Ct is ≥ 2. Moreover we can

find a, b ∈ C such that Q = L ⊕ La is a quaternion subalgebra and C = Q ⊕ Qb.

Then L⊥ is a hermitian space over L. With respect to the basis {a, b, ab} we write

the subgroup SU(L⊥, h) of G as SU(H) = {A ∈ SL(3, L) | tAHĀ = H} where

H = diag{h(a, a), h(b, b), h(ab, ab)}. We denote the matrix of t as A with respect to

this basis. We observe that t leaves a quaternion subalgebra fixed pointwise if and

only if 1 is an eigenvalue of A, i.e., X − 1 is a factor of the characteristic polynomial

χA(X). The conjugacy classes of centralizers of such elements have been already
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discussed in previous paragraph and in Lemma 8.5.3 hence we assume that X − 1 is

not a factor of χA(X). For other elements we have,

Lemma 8.5.5. With notation as above, let t ∈ G(C/L). Suppose 1 is not a root

of χA(X). Then, ZG(t) ⊂ G(C/L).

Proof. Let t ∈ G(C/L) be such that t does not fix any point in L⊥. Let g ∈ ZG(t)

then g ∈ G(C, L) ∼= SU(L⊥, h)o < ρ > where ρ is an extension of conjugation on

L (Proposition 3.2.5). We denote the matrix of t in SU(H) by A. Then, either

g ∈ SU(L⊥, h) or g = hρ for some h ∈ SU(L⊥, h). When g ∈ SU(L⊥, h) we denote

the matrix of g by C. Then g ∈ ZG(t) implies AC = CA in SU(H). When g = hρ

we denote the matrix of h by B and we denote the action of ρ on elements of L by

α 7→ ᾱ. Then,

gt(α1a+ α2b+ α3c) = hρt(α1a+ α2b+ α3c) = hρ(α1Aa+ α2Ab+ α3Ac)

= h(ᾱ1Āa+ ᾱ2Āb+ ᾱ3Āc) = ᾱ1BĀa+ ᾱ2BĀb+ ᾱ3BĀc

and

tg(α1a+ α2b+ α3c) = thρ(α1a+ α2b+ α3c) = th(ᾱ1a+ ᾱ2b+ ᾱ3c)

= t(ᾱ1Ba+ ᾱ2Bb+ ᾱ3Bc) = ᾱ1ABa+ ᾱ2ABb+ ᾱ3ABc.

As g ∈ ZG(t), above calculation implies AB = BĀ where B ∈ SU(H). Suppose ZG(t)

is not contained in G(C/L). Then there exist g = hρ ∈ G(C, L) such that gt = tg.

With calculations above if we denote the matrix of h by B in SU(H), we get AB = BĀ

in SU(H). In this case the characteristic polynomial χA(X) = X3 − aX2 + āX − 1

will have a = ā. But χA(X) = X3 − aX2 + aX − 1 = (X − 1)(X2 + (1 − a)X + 1) is

reducible and A has 1 as an eigenvalue. Which contradicts the assumption that 1 is

not a root of χA(X). Hence ZG(t) ⊂ G(C/L). ¤

Remark 8.5.6. In view of above calculations we observe that the centralizer of

t ∈ G(C/L) in G is isomorphic to {B ∈ SU(H) | AB = BA} ∪ {B ∈ SU(H) | AB =

BĀ}.

Let t ∈ G(C/L) and let A ∈ SU(H) be the corresponding matrix. Moreover we

assume that 1 is not a root of χA(X). Let K be an algebraic closure of k containing

L. As t is semisimple we have following cases:

(1) The characteristic polynomial of A has distinct roots over K.

(2) The characteristic polynomial of A has two distinct roots over K which

belong to k.
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We calculate centralizers in these cases. We observe that whenever H is a connected

subgroup of a connected algebraic group G and t ∈ H such that ZG(t) ⊂ H then t

is regular in G if and only if it is so in H. Hence t ∈ G(C/L) is regular in G(C/L)

if and only if it is regular in G (Lemma 8.5.5). This implies that any element of

G(C/L) (which does not have 1 as an eigenvalue) is either a regular element in G or

its characteristic polynomial is (X−α)(X−β)2 where α, β are in L−k. We calculate

centralizers of these elements here.

Lemma 8.5.7. Let t ∈ G = Aut(C). With notation as above let t ∈ G(C/L)

and A be the corresponding element in SU(H). Suppose 1 is not an eigenvalue of A.

Then the centralizer of t is a maximal torus in G or it is isomorphic to a subgroup{(
det(S)−1 0

0 S

)
∈ SU(H) | S ∈ U(W, h|W )

}
for some 2-dimensional nondegen-

erate L-subspace W of L⊥.

Proof. When the element t is regular the centralizer is a maximal torus in G

and hence the conjugacy of centralizers of these elements correspond to conjugacy

classes of maximal tori of G over k. Now suppose the characteristic polynomial

χA(X) has multiple roots, i.e., χA(X) = (X − α)(X − β)2 where α, β ∈ L both not

equal to 1 and the minimal polynomial is (X − α)(X − β). Then we can choose a

basis of L⊥ consisting of eigenvectors v1, v2, v3 corresponding to eigenvalues α, β, β

of t. We denote the subspace generated by v2, v3 as W . The matrix of t is diag-

onal with respect to this basis, A = diag{α, β, β}. As 1 is not a root of χA(X)

the centralizer ZG(t) ∼= ZSU(H)(A) which is isomorphic to ZGL3(L)(A) ∩ SU(H) ={(
det(S)−1 0

0 S

)
| S ∈ U(W, h|W )

}
. ¤

8.5.1. Conjugacy Classes of Centralizers in Compact G2. Let G be the

compact real group of type G2. We note that for the base field k = R there is a unique

anisotropic form of G2. As there is a unique nondegenerate anisotropic quadratic form

over R of dimension 8, there is a unique octonion division algebra (up to isomorphism)

C over R and G ∼= Aut(C). We calculate centralizers of elements and there conjugacy

classes in this case. Let C be the octonion division algebra over R and G = Aut(C).

Let t ∈ G. Let L be a quadratic field extension of R left fixed pointwise by t (which

is isomorphic to C). Then t ∈ SU(L⊥, h) ∼= SU(3) = {A ∈ GL3(C) | tAĀ = 1}. We

also note that all quadratic field extensions of R contained in C are isomorphic hence

all subgroups of type SU(L⊥, h) are conjugate (Proposition 3.2.9) in G. But every
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element of SU(3) can be diagonalized in SU(3). Hence characteristic polynomial of

A over L is either (X − α)(X − β)(X − γ) or (X − α)(X − β)2.

If A has three distinct roots and none of them is 1 then the element t is regular

in G and the centralizer is a maximal torus in G (ref. Lemma 8.5.7). In this case

centralizer is contained in the subgroup SU(3) and is a maximal torus of SU(3). As

all maximal tori of G are conjugate we have one conjugacy class of centralizers of

these elements. Now suppose t has repeated roots then with respect to some basis

A = diag{α, β, β} where neither of α, β is 1 and the centralizer (ref. Lemma 8.5.7)

ZG(t) ∼= ZSU(3)(A) ∼=
{(

det(S)−1 0

0 S

)
| S ∈ U(2)

}
.

If t leaves a quaternion subalgebra Q fixed (i.e. the characteristic polynomial of t

has 1 as a root) then A is either diag{1,−1,−1}, an involution in G, or diag{1, α, ᾱ}
for some α ∈ L of norm 1. If t is an involution the centralizer is whole of the

subgroup G(C/L) ∼= SU(3) (from remark following Lemma 8.5.5). And when t is not

an involution the centralizer ZG(t) ∼= ZSU(3)(A) ∪ {B ∈ SU(3) | AB = BĀ}.

Lemma 8.5.8. Let C be the octonion division algebra over R and G = Aut(C).

Let t ∈ G and L ⊂ C be the quadratic field extension of R left pointwise fixed by t,

i.e., t ∈ G(C/L). Suppose t is not an involution. Then, ZG(t) ⊂ G(C/L) if and only

if t does not leave any quaternion subalgebra fixed pointwise.

Proof. If t ∈ G(C/L) does not leave any quaternion subalgebra fixed pointwise

then the characteristic polynomial of t does not have 1 as a root. Hence from

Lemma 8.5.5 it follows that ZG(t) ⊂ G(C/L). Now suppose t ∈ G(C/L) leaves a

quaternion subalgebra Q fixed pointwise. By using Theorem 3.2.8 we may assume Q

contains L. As t ∈ G(C/L) ∼= SU(3) the corresponding matrix A can be diagonalized

in the subgroup SU(3). We write the matrix of t as A = diag{1, α, ᾱ} for some α ∈ L

with αᾱ = 1. We claim that there exists an element B ∈ SU(3) such that AB = BĀ.

We take B =




−1 0 0

0 0 1

0 1 0


 and check that B ∈ SU(3) and AB = BĀ. From

remark following Lemma 8.5.5 we see that ZG(t) is not contained in G(C/L). ¤

In this case the centralizer is not contained in the subgroup G(C/L) ∼= SU(3). As all

quaternion division algebras over R are isomorphic and all quadratic field extensions

contained in any of the quaternion algebras are isomorphic, we have one conjugacy

class of centralizers of non-involutions.
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Hence we have proved,

Theorem 8.5.9. Let G be the anisotropic group of type G2 over R. Then the

total number of orbit types (conjugacy classes of centralizers) are five, corresponding

to elements

I, diag{α, β, γ}, diag{α, β, β}, diag{1,−1,−1}, diag{1, α, ᾱ}

where none of α, β, γ are 1 or −1.



CHAPTER 9

Reality in Algebraic Groups

In this chapter we investigate the reality question for algebraic groups in general.

We mainly prove the theorems mentioned in Section 6.3. First we look at the structure

of strongly regular real elements in simple groups of adjoint type which have −1 in

the Weyl group and prove that it is real if and only if it is strongly real. This we

do in Section 9.1. Later in Section 9.3 we look at the structure of semisimple real

elements over fields of cd(k) ≤ 1. The results in this section are part of [ST2].

9.1. Strongly Regular Real Elements

In this section we discuss structure of a strongly regular real element. An element

t in a connected linear algebraic group G is called regular if its centralizer ZG(t) has

minimal dimension among all centralizers. An element is called strongly regular

if its centralizer in G is a maximal torus. We note that a semisimple element in a

connected reductive group is regular if and only if the connected component of its

centralizer is a maximal torus. Let G be a connected, simple algebraic group defined

over k of adjoint type such that the longest element w0 in the Weyl group W of G

with respect to a maximal torus T acts by −1 on the roots. The adjoint groups of

type A1, Bl, Cl, D2l(l > 2), E7, E8, F4, G2 are precisely the simple groups which satisfy

the above hypothesis. For the groups of the above type we mention here a theorem

of Richardson and Springer ([RS], Proposition 8.22) which plays an important role

in our investigation.

Proposition 9.1.1 (Richardson, Springer). Let G be a simple group of adjoint

type, let T ′ be a maximal torus of G and let c ∈ W (T ′) be an involution. Then there

exists an involution n ∈ N(T ′) which represents c.

Then we have,

Theorem 9.1.2. Let G be a connected simple group of adjoint type defined over k.

Suppose the longest element w0 of the Weyl group W of G with respect to a maximal

torus T acts by −1 on the roots. Let t ∈ G(k) be a strongly regular element. Then

87
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t is real in G(k) if and only if t is strongly real in G(k). Moreover, every element

of a maximal torus, which contains a strongly regular real element, is strongly real in

G(k).

Proof. Let t ∈ G(k) be a strongly regular real element and let g ∈ G(k) be such

that gtg−1 = t−1. Let T be a maximal torus in G defined over k which contains t. We

use a theorem of Richardson and Springer ([RS], Proposition 8.22; Proposition 9.1.1)

here. With the hypothesis we have assumed, this theorem implies that any involution

in W is represented by an involution n ∈ N(T ). The longest element w0 acts as −1

on the roots and is an involution. Hence there exists n ∈ N(T ), an involution, such

that nsn−1 = s−1 for all s ∈ T . Thus ntn = t−1 and g ∈ nZG(t) = nT . Let g = ns0,

for s0 ∈ T . Then g2 = ns0ns0 = s−1
0 s0 = 1. Hence g is an involution and the element

t is a product of two involutions g and gt.

Suppose now T is a maximal torus in G defined over k and T (k) contains a

strongly regular real element t. Let s ∈ T (k). Suppose g ∈ G(k) conjugates t

to t−1. Then we have proved that g2 = 1. We claim that g conjugates s to s−1.

From calculations in the paragraph above, we have g = ns0 for some s0 ∈ T . Then

gsg−1 = ns0ss
−1
0 n−1 = nsn−1 = s−1. But since g is an involution in G(k), s is a

product of two involutions. ¤

We note that in groups G satisfying the hypothesis of the theorem, there are

strongly regular elements in G(k) which are not real in G(k). We have proved that

for a group G of type G2 defined over k, a semisimple element in G(k) is real if

and only if it is a product of two involutions in G(k) (Theorem 6.2.2). Examples

of semisimple elements which are not real are also constructed in the Chapter 8.4.

Hence in a maximal torus containing such an element no strongly regular element is

real.

9.2. Cohomological Obstruction to Reality

The results in this subsection are known to the experts ([Se], Chapter III, section

2.3). However, we include some with proofs for the sake of completeness. Let G be a

connected linear algebraic group defined over a field k. We have,

Lemma 9.2.1. Let g ∈ G. Let g = gsgu be the Jordan decomposition of g in G.

Let H be the centralizer of gs in G. Then, g is real in G if and only if gs is real and

g−1
u , xgux

−1 are conjugate in H, where xgsx
−1 = g−1

s .
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Proof. Let g be real in G, i.e., there exists x ∈ G such that xgx−1 = g−1. Then

x conjugates gs and gu to g−1
s and g−1

u respectively.

Conversely let h ∈ H such that hg−1
u h−1 = xgux

−1. Then,

h−1xg(h−1x)−1 = h−1xgx−1h = h−1xgsx
−1xgux

−1h = h−1g−1
s xgux

−1h

= g−1
s h−1xgux

−1h = g−1
s g−1

u = g−1.

Hence g is real in G. ¤

It is not true that g is real if and only if gs real and gu real. We give examples of

this situation.

Example 1: Let G = GL4(k). We take s = diag(λ, λ, λ−1, λ−1) with λ2 6= 1, u =

diag

((
1 0

0 1

)
,

(
1 1

0 1

))
and g = su. Then gs = s, gu = u and the centralizer of

s in G is ZGL4(k)(s) = {diag(A,B) | A,B ∈ GL2(k)}. The elements s and u are real

but g is not real. In fact xsx−1 = s−1 where

x =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



.

The elements u−1 and xux−1 = diag

((
1 1

0 1

)
,

(
1 0

0 1

))
are not conjugate in

ZGL4(k)(s) hence g is not real by Lemma 9.2.1.

Example 2: In G2 over a finite field, all semisimple as well as unipotent elements

are real but still there are nonreal elements (see Section 8.4.3).

Next we derive a cohomological obstruction to reality over the base field k. Let G

be a connected linear algebraic group defined over k. Let t ∈ G(k) be real in G. We

put H = ZG(t), the centralizer of t in G. Let X = {x ∈ G | xtx−1 = t−1}. Then X is

an H-torsor defined over k with H-action given by h.x = xh for h ∈ H and x ∈ X.

Since t is real over k̄, we have X 6= φ. The torsor X corresponds to an element

of H1(k,H) ([Se], Chapter 1, section 5.2, Proposition 33). Let x ∈ X and γ be the

cocycle corresponding to X. Then γ is given by γ(σ) = x−1σ(x) for all σ ∈ Γ =

Gal(k̄/k). Now we look for a condition which determines when t is k-real.

Proposition 9.2.2. Let G be a connected algebraic group defined over k. Let

t ∈ G(k) be real over k̄. Then t is real in G(k) if and only γ, as above, represents a

trivial cocycle in H1(k,H) where H is the centralizer of t in G.
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Proof. Let t be real in G(k). Then there exists g′ ∈ G(k) such that g′tg′−1 = t−1.

Then g′−1g ∈ H. Write g = g′h for some h ∈ H. Then,

γ(σ) = g−1σ(g) = h−1g′−1σ(g′)σ(h) = h−1σ(h).

This implies that γ is equivalent to the trivial cocycle.

Conversely, let γ be the trivial cocycle. Then there exists h ∈ H such that

γ(σ) = h−1σ(h). That is, g−1σ(g) = h−1σ(h), then σ(gh) = gh. Hence gh ∈ G(k)

and ght(gh)−1 = ghth−1g−1 = gtg−1 = t−1. Hence the element t is real in G(k). ¤

Corollary 9.2.3. With notation as above, t is real in G(k) if and only if the

H-torsor X has a k-point or, equivalently the cocycle γ is trivial in H1(k,H).

Note that if H1(k,H) is trivial then t is real in G(k). By a theorem of Steinberg

([S1] Theorem 1.9; also see [Se], Chapter III, section 2.3) if H is a connected reduc-

tive group and cd(k) ≤ 1 or H is connected with k perfect of cd(k) ≤ 1, we have

H1(k,H) = 0. In these situations t is real.

Proposition 9.2.4. Let G be a split connected semisimple adjoint group defined

over an arbitrary field k and suppose −1 belongs to the Weyl group of G. Let T be a

k-split maximal torus in G. Then every element of T (k) is strongly real.

Proof : By Theorem 9.1.1, there exists n0 ∈ N(T )(k̄) such that n0
2 = 1 and

n0sn0
−1 = s−1 for all s ∈ T . Consider the Galois cocycle γ(σ) = n0σ(n0) for

σ ∈ Γ = Gal(k̄/k). Since T is defined over k, we have, for s ∈ T and σ ∈ Γ,

σ(n0)sσ(n0)
−1 = σ(n0σ

−1(s)n0) = σ(σ−1(s−1)) = s−1.

Hence, we must have, in the Weyl group W = N(T )/T , n0T = σ(n0)T . Therefore

γ(σ) = n0σ(n0) ∈ T . Hence γ is a 1-cocycle in H1(k, T ). But since T is k-split,

H1(k, T ) = 0. Hence there is s ∈ T such that

γ(σ) = n0σ(n0) = s−1σ(s).

This gives sn0 = σ(sn0) for all σ ∈ Γ. Hence sn0 ∈ T (k). Also

(sn0)
2 = sn0sn0 = ss−1 = 1.

Therefore g = sn0 is an involution in T (k) and for any t ∈ T (k), we have,

gtg−1 = gtg = sn0tn0s
−1 = st−1s−1 = t−1.

Thus (gt)2 = 1 and t = g.gt. Hence t is strongly real. ¤
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9.3. Reality over Fields of cd(k) ≤ 1

In this section we discuss reality for semisimple elements over fields of cd(k) ≤ 1.

We have,

Theorem 9.3.1. Let k be a field with cd(k) ≤ 1. Let G be a connected reductive

group defined over k with −1 in its Weyl group. Then every semisimple element in

G(k) is real in G(k).

Proof. Let t ∈ G(k) be semisimple. Let T be a maximal torus defined over k

with t ∈ T (k). Then the Weyl group W = N(T )/T , where N(T ) is the normalizer of

T in G. We have the exact sequence

1 → T → N(T ) → W → 1.

The corresponding Galois cohomology sequence is

1 → T (k) → N(T )(k) → W (k) → H1(k, T ) → · · · .

Since cd(k) ≤ 1, by Steinberg’s theorem ([S1], Theorem 1.9), H1(k, T ) = 0. Hence

the longest element w0 in the Weyl group, which acts by −1 on the set of roots, lifts to

an element h ∈ N(T )(k). Hence hth−1 = t−1 with h ∈ G(k) and t is real in G(k). ¤

Corollary 9.3.2. Let G and k be as in the above theorem. Then every regular

element of G is real.

Proof. Let g ∈ G be regular and g = gsgu be the Jordan decomposition of g in

G with gs semisimple and gu unipotent. Then, by the above theorem, hgsh
−1 = g−1

s

for some h ∈ G. Then hguh
−1 and g−1

u are regular unipotents in ZG(gs)
0 and hence

there is x ∈ ZG(gs) such that xhguh
−1x−1 = g−1

u . Then (xh)g(xh)−1 = g−1 and hence

g is real (see [SS], Corollary 1.9, Chapter III). ¤

Theorem 9.3.3. Let k be a field with cd(k) ≤ 1 (e.g. algebraically closed fields

and finite fields etc.). Let G be a simple adjoint group defined over k. Suppose that

the longest element w0 in the Weyl group of G with respect to a maximal torus T acts

as −1 on the roots. Then every semisimple element in G(k) is strongly real in G(k).

Proof. Let t ∈ G(k) be a semisimple element. Let T be a torus in G defined over

k which contains t, i.e., t ∈ T (k). From a theorem of Richardson and Springer ([RS],

Proposition 8.22), as −1 ∈ W , there exists n0 ∈ N(T ) with n2
0 = 1 which represents
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−1 in W . That is, we have n0sn
−1
0 = s−1 for all s ∈ T . We claim that the coset n0T

is Γ-stable. We note that for σ ∈ Γ = Gal(k̄/k),

σ(n0)sσ(n0)
−1 = σ(n0σ

−1(s)n−1
0 ) = σ(σ−1(s−1)) = s−1

for all s ∈ T and σ ∈ Γ. Hence σ(n0) ∈ N(T ) also represents −1 in W . Thus we

have σ(n0)T = n0T and so n0σ(n0) ∈ T .

We look at the cocycle defined by σ 7→ n0σ(n0). Then the image of this cocycle

lands in T . Since cd(k) ≤ 1, from a theorem of Steinberg ([S1], Theorem 1.9) we have

H1(k, T ) = 0 and hence the cocycle defined above is a trivial cocycle. That is, there

exists t0 ∈ T such that n0σ(n0) = t0σ(t−1
0 ) for all σ ∈ Γ. This implies σ(n0t0) = n0t0

for all σ ∈ Γ and hence n0t0 ∈ G(k). We check that n0t0 is an involution and

conjugates every element of T to its inverse.

(n0t0)
2 = n0t0n0t0 = t−1

0 t0 = 1

and

n0t0s(n0t0)
−1 = n0t0st

−1
0 n0 = n0sn0 = s−1.

Hence every semisimple element of G(k) is real in G(k). ¤



CHAPTER 10

Epilogue

In this chapter, we address the question of reality in the frame work of represen-

tation theory. We start with a discussion of the question for finite groups. We do

not define some of the terminology used in this chapter, however we give appropriate

references.

10.1. Reality Question and Representation Theory

First we discuss real representations of a finite group and its relation to real

elements in the group. For the theory here we refer to the book [JL] chapter 23. Let

G be a finite group. We consider representations of G over C. A character χ of G is

called real if χ(g) ∈ R, for all g ∈ G. Then we have (see [JL], Theorem 23.1),

Proposition 10.1.1. Let G be a finite group. The number of real irreducible

characters of G is equal to the number of real conjugacy classes of G.

Note that if an element g is real then all conjugates of g are real and we call the

conjugacy class of g, a real conjugacy class. A representation φ : G → GL(V ) is

realizable if it is defined over R, i.e. with respect to some basis of V the φ(G) ⊂
GLn(R). It is obvious that a character corresponding to a realizable representation

is real. This brings us to the question of determining representations which give rise

to real characters.

Proposition 10.1.2. Let G be a finite group and χ be an irreducible character

of a representation V . Then, χ is real if and only if there is a non-zero G-invariant

bilinear form on the representation space V .

A representation (φ, V ) of G is called orthogonal (symplectic) if there exists a

non-zero symmetric (skew-symmetric) bilinear form on V which is G-invariant. That

is, φ(G) ⊂ On(C) if the representation is orthogonal and φ(G) ⊂ Sp2m(C) if the

representation is symplectic. The next proposition determines which real characters

come from realizable representations.

93
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Proposition 10.1.3. An irreducible real character comes from a realizable rep-

resentation if and only if the representation V is orthogonal. And an irreducible real

character does not come from a realizable representation if and only if the represen-

tation V is symplectic.

A question of independent interest is to directly relate orthogonal and symplectic

representations to real elements in G. Results proved in this thesis suggest that

orthogonal representations should be related to strongly real elements, i.e., the one

which are a product of two involutions. It also seems likely that for a large class of

finite groups, real elements in G/Z(G) are strongly real. There does not seem to be

any known result in this direction.

The question of determining a finite group of which all elements are real has been

extensively studied. We would like to mention the work of [TiZ] where they classify

finite quasi simple groups in which all elements are real. They also give some examples

of nonreal elements. Study of real element has been used in the proof of Thompson

and Ore conjectures in the case of finite Chevalley groups. Here we quote a Theorem

from [EG] (Theorem 1).

Theorem 10.1.4. Let G be a Chevalley group. Let h1 and h2 be two regular

semisimple elements in G from a maximal split torus and let C1 and C2 be the con-

jugacy classes of h1 and h2, respectively. Then C1C2 ⊃ G/Z(G).

This theorem immediately implies the Ore conjecture for any simple group G con-

taining a regular semisimple element h in a maximal split torus, and the Thompson

conjecture, if this element is, in addition, real (see [EG]).

Now we turn our attention to representations of algebraic groups. We have seen

that for finite groups real elements are related to real representations which in turn to

orthogonal and symplectic representations. Now we would like to bring in the connec-

tion of a representation being self-dual to being orthogonal or symplectic. Steinberg

studied this question for Chevalley groups. Here we refer to Lemma 78 and Lemma

79 from [S4]. Let G be an indecomposable (i.e. corresponds to an indecomposable

root system) infinite Chevalley group, V an irreducible rational G-module and λ be

its highest weight. Then,

Lemma 10.1.5 (Steinberg). The following conditions are equivalent.

(1) There exists a nonzero invariant bilinear form on V .

(2) V and its dual V ∗ are isomorphic as representations of G.
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(3) −w0λ = λ, where w0 is the longest element in the Weyl group of G.

Moreover if there exists an invariant bilinear form on V then it is unique up to

multiplication by a scalar and is either symmetric or skew-symmetric. Next lemma

determines when the representation is orthogonal.

Lemma 10.1.6 (Steinberg). With notation as above, there exists an element h

in the center of G with h2 = 1 such that, if V possesses an invariant bilinear form,

then it is symmetric if λ(h) = 1 and skew-symmetric if λ(h) = −1.

One can summarise the results above by saying that, for a semisimple algebraic group,

there exists an involution h in the center, which acts by 1 on an irreducible self-dual

representation if and only if the representation is orthogonal. In particular, any self

dual representation of an adjoint semisimple group is orthogonal. This question has

been extensively studied in the literature. We mention here the works of Prasad

([Pr1], [Pr2]) where he studies self dual representations of finite groups of Lie type

and p-adic groups.

10.2. Programme and Further Questions

Nevertheless, in the end we would like to point out some questions to which this

thesis has contributed partially. Some of these questions are of independent interest

and answers to these questions will help in understanding algebraic groups.

1. Reality in classical groups: The determination of real elements in an

algebraic group G, defined over a field k, is far from being satisfactory. We need to

determine suitable criteria for real elements for the k-forms of classical groups which

are defined using algebras with involutions (see [KMRT], chapter III, section 12).

Let (A, σ) be a central simple k-algebra with involution. Determine real elements in

the groups Sim(A, σ), PSim(A, σ) and Iso(A, σ). More specifically, we would like to

ask whether real semisimple elements in these groups are strongly real. In this thesis

we have given a partial answer to this question. For example when A = Endk(V )

and σ is the adjoint involution σb corresponding to a nondegenerate symmetric or

skew-symmetric form b, we have answered this question for the group Iso(A, σ) (see

the theorems mentioned in Section 6.1 and Section 7.3).

2. Reality in exceptional groups: The programme for exceptional groups

needs delicate care. In this thesis, among exceptional groups we have tackled the

groups of type G2 and classify real elements as strongly real. There are known forms
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of F4 in which there are no k-rational involutions. Our results suggest that in such

forms of F4 (which are necessarily anisotropic), there are no nontrivial real elements.

3. Real elements and orthogonal representations: In view of the connection

to representation theory described in the previous section it would be of interest to

directly relate self-dual representations to real elements, at least for groups with

suitable hypothesis. Even in the case of finite groups there seem to be no satisfactory

answer. We are lead to the following question: Let G be a finite group. Is the number

of strongly real conjugacy classes of G/Z(G) equal to the number of orthogonal

characters of G/Z(G)?

4. Reality in linear algebraic groups: A lot of results, Theorem 9.1.2 and

Theorem 9.3.3, suggest stronger results should be true. For example one should be

able to generalise Theorem 9.1.2 for all semisimple elements not just for strongly

regular elements. In the analysis in Chapter 9, the result of Wonenburger about

GLn(k), which is a reductive group but not semisimple, is left out. One should

modify the hypothesis suitably for reductive groups and bring in the results about

GLn(k) into the picture. Perhaps, a suitable notion of Weyl group associated to an

element will do. We would like to mention here a few questions raised by T. A.

Springer. Let G be a connected reductive group.

(i) Do the real elements in G form a Zariski closed subset of G?

(ii) If so, what are the dimension of its components?

(iii) Do the real semisimple elements form a dense subset?

5. Obstruction to reality: We have hardly dealt with the arithmetic aspect of

reality property in this thesis, though it is very much in the scheme of things to deal

with the local-global behavior of reality of an element in these groups. We specify the

question more clearly here. Let G a group defined over a global field k. Let g ∈ G(k)

be a real element. Is it true that g is real in G(k) if and only if g is real in G(kp), ∀p
and in G(R)? One can ask another related question to compute obstruction to reality

for a particular group. We explain it here. Let G be a group defined over k. Let

g ∈ G(k). Suppose g is real in G(k̄), where k̄ is an algebraic closure of k. Calculate

the obstruction to g being real in G(k). We have calculated this for the groups of type

G2 in this thesis (see Corollary 8.2.11 and 8.3.7 and Section 9.2). For a local-global

principle for conjugacy classes in classical groups, we refer to [Fl].

6. Centralizers and their conjugacy classes: Conjugacy classes and cen-

tralizers have been studied extensively in the literature and are very important in

understanding the structure of a group. With several results about groups of type
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G2 in hand, we calculated conjugacy classes of centralizers in groups of type G2 (see

Section 8.5). It would be of interest to calculate the conjugacy classes of centralizers

in classical groups and parameterize them using Galois cohomology.

We thank you for showing interest in this thesis.





Bibliography

[A] E. Artin, “Geometric algebra”, Reprint of the 1957 original, Wiley Classics Li-

brary, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York,

1988.

[B] N. Bourbaki, “Lie Groups and Lie Algebras”, Chapters 4 − 6, Springer-Verlag,

2000.

[Be1] E. A. Bender, “Symmetric matrices, characteristic polynomials and Hilbert sym-

bols over local number fields”, Bulletin of the American Mathematical Society

79 (1973), 518-520.

[Be2] E. A. Bender, “Characteristic polynomial of symmetric matrices”, Pacific Jour-

nal of Mathematics 25 No. 3 (1968), 433-441.

[Bo] A. Borel, “Linear algebraic groups”, GTM 126, Springer-Verlag, 1991.
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