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ABSTRACT

This thesis presents a systematic study on recognition of printed and handwritten mathe-

matical expressions. Automatic recognition of printed expressions is an essential require-

ment for efficient Optical Character Recognition (OCR) of scientific paper documents.

On the other hand, recognition of handwritten expressions has been tried for online en-

vironment. Here expressions are written using electronic data tablet/stylus providing a

convenient alternative to keyboard or mouse used for data entry into a computer.

The previous studies dealing with different aspects of expression recognition are, at

first, reviewed. Next, the scope of the present thesis, its layout and contributions are

outlined. Discussion on OCR of printed expressions starts with constructing a represen-

tative corpus of scientific documents taken from various branches of science. Methods

for groundtruthing expressions contained in the documents, statistical analysis of the

corpus, etc. are presented to facilitate research on expression recognition.

Next, issues related to recognition of expressions are elaborately discussed in a chapter

wise manner. In case of printed documents, identification of expression zones is consid-

ered for smooth upgradation of the existing OCR systems to properly handle documents

containing expressions. Such an identification task keeps the main OCR engine undis-

turbed while a specially designed module can work for recognition of expressions. Online

recognition of handwritten expressions assumes expressions are entered in isolation and

therefore, no component for identification of expression zones is needed under online

environment.

Recognition of expressions under any environment (printed or handwritten) involves

two major stages: (i) symbol recognition and (ii) interpretation of expression structure.

Techniques to realize these stages are presented for both the printed and handwritten

expressions. All processing modules are methodically tested on a large dataset to attest

the feasibility of the proposed approaches.

Errors encountered in different modules are analyzed in detail and a set of error-

correcting rules is formulated. The design of rules exploits several contextual information

to improve the overall expression recognition accuracy for both the printed and hand-

written expressions. A method for evaluating performance of an expression recognition

system has been presented. The proposed performance measure considers several non-

trivial issues related to an expression recognition task and provides a single figure of

merit to judge the efficiency of a system. The thesis has been concluded with a summary

of its achievements and a discussion on future extension of the present study.
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CHAPTER 1

INTRODUCTION

Automatic recognition of mathematical expressions (hereafter, referred as expressions) is

one of the challenging pattern recognition problems of significant practical importance.

Such a recognition task is required while converting scientific documents from printed to

electronic form or to aid reading of scientific documents for the visually impaired persons.

On the other hand, recognition of online handwritten expressions facilitates the users to

enter expressions through a data tablet and thereby provides a convenient alternative to

the input methods like typing TEX syntax for expressions or using an equation editor like

the one available with Microsoft Word.

This thesis is devoted to the development of a system for recognition of both printed

and online handwritten expressions. Recognition of expressions involves two major com-

ponents namely (i) symbol recognition and (ii) structure interpretation. Symbol recogni-

tion is difficult because a large character set (Roman letters, Arabic digits, Greek letters,

Operator symbols, etc.) with a variety of typefaces (regular, italic, bold), and a large

number of different font sizes may be used to generate the expressions. Moreover, certain

symbols (e.g. integration, summation, product, brackets, etc.) are elastic in nature and

have a wide range of possible scales.

Interpretation of structure is particularly difficult for expressions due to the subtle

use of space that often defines the relationship among symbols. For instance, unlike plain

text (which is written linearly from left to right), symbols in an expression can be written

above, below, and one inside another. Therefore, understanding of the spatial relationship

among symbols is crucial to the interpretation of structure of an expression. This means

that even if all the characters are correctly recognized, there still remains the non-trivial

problem of interpreting the two-dimensional structure of an expression. Moreover, several

symbols (e.g. horizontal line, dot, etc.) have multiple meanings depending on the context

and such ambiguous role of symbols makes the interpretation task more difficult.

As far as printed scientific documents are concerned, an additional processing is

needed for the identification and extraction of expression zones. The expressions may

appear in two modes namely, (i) embedded (also called in-line expressions) i.e. mixed

with normal text and (ii) displayed (also called isolated expressions) i.e. typed in distinct

line. Since the presence of expressions disturbs an existing Optical Character Recognition

(OCR) system (not trained for expression recognition), the identification and extraction

of expression zones, therefore, may help in efficient conversion of scientific paper docu-
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ments into electronic form. Such a framework permits an existing OCR engine to process

the normal text portion as usual whereas the extracted expressions can be processed by

a system specially designed for expression recognition.

On the other hand, handwritten expressions are more complex since each writer has

his/her own writing style and the system should be able to recognize different shapes for

the same symbol. Moreover, many writers tend to connect and abbreviate the strokes for

various symbols in different ways and significant variation in stroke number and order is

observed in handwriting. Moreover, the ambiguity in spatial relationships among symbols

is substantially increased for handwritten expressions, adding further complication to the

interpretation of expression structures.

Work on an expression recognition system needs another problem to be addressed.

The quantitative evaluation of expression recognition results is a non-trivial problem

since recognition scheme involves two major stages: symbol recognition and structural

analysis. The stages are tightly coupled and therefore, if evaluation in one stage is

done independent of the other, then it may not reflect true performance of the system.

Moreover, error in the symbol recognition stage affects the structure analysis result. This

calls for an integrated evaluation mechanism for judging the performance of a system

dealing with expression recognition.

1.1 Review of Related Works

Studies on recognition of mathematical expressions date back to late sixties of the last

century when Anderson [2] proposed a syntax-directed scheme for recognition of hand-

printed expressions. Several studies have been reported and surveyed in [8, 13, 31]. The

review presented here is categorized according to different environments (printed and

handwritten) under which the expressions are recognized.

1.1.1 Recognition of Printed Expressions

In case of printed scientific documents, expressions are typically appear in two modes,

either as distinct (or displayed) expressions or embedded into text lines. Thus, identifying

the expression zones in the input document is considered as the first step in printed

expression recognition. Next, expression symbols are recognized and finally, arrangement

of symbols is analyzed to interpret the expression’s structure.
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Identification of Expression Zones

Studies dealing identification of expression zones are few in number as the most of the

previous works assume that expressions are available in isolated form. Among the existing

techniques, method proposed by Lee and Wang [69, 70] labels text lines in a document as

either TEXT (to denote normal text) or EXP (to denote displayed expression) based on

two properties (i) isolated expressions are taller and (ii) the line spaces above and below

them are larger than those between text lines that contain no mathematical expressions.

The technique for locating embedded expressions initially recognizes characters in a text

line from left to right direction and then converts them to a stream of tokens. A token is

decided to belong to an embedded expression according to some basic expression forms

which considers presence of special mathematical symbols (e.g. horizontal line, summa-

tion, product, etc.), super-scripting, or matrix structures. Symbols that are adjacent to

the above tokens are heuristically attached to form an embedded expression.

Fateman [33] presented a three-pass algorithm that initially recognizes all connected

components in a scanned document and separates them into two bags, math and text.

The text bag contains all Roman letters, italic numbers and the math bag includes punc-

tuations, special symbols, italic letters, Roman digits, and other marks (e.g. horizontal

lines, dots), etc. Next, components in the math bag are grouped into zones according to

their proximity. Symbols that are left ungrouped and appeared to be too far from other

math symbols are moved to the text bag. Symbols in the text bag are similarly joined

up into groups according to proximity. Text words (hopefully include words like ”sin”,

etc.) that are relatively isolated from other text but within any previously identified

math zone are moved to the math bag. Segmentation result is finally reviewed by human

assistance to correct errors, if any.

The method proposed by Inoue et. al. [52] isolates expressions contained in Japanese

scientific document by assuming that the OCR recognizes Japanese characters with high

confidence whereas expression symbols are either rejected or recognized (rather misrec-

ognized) with low confidence. In another approach, Toumit et. al. [98, 99, 100] locate

embedded expressions by finding special symbols like “=”, “+”, “<”, “>”, etc. and some

specific context propagation from these symbols is done. For example, for parenthesis

and brackets, symbols between them are checked; for horizontal bars, symbols above and

below them are investigated; etc.

Later on, Kacem et. al. [57, 58] proposed a two-pass scheme which does not put

much emphasis on symbol recognition. Initially, expressions are separated from the

text lines using a primary labeling which uses fuzzy logic based model to identify some

mathematical symbols. Later on, a secondary labeling uses some heuristics to reinforce
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the results of the primary labeling and locates super/sup-scripts inside the text. An

evaluation strategy has been presented to judge the expression extraction technique and

a success rate of about 93% has been reported on a combined test set of 300 displayed

and embedded expressions. A similar technique is used in [95] to locate mathematical

expressions in printed documents.

Recently, Chowdhury et. al. [24] proposed a recognition-free approach that exploits

the usual spatial distribution of the black pixels in math zones. Experimental results

show that the method works well for segmenting displayed expression (with a success

rate of 97.69%) but gives only 68.08% accuracy for extraction of embedded expression.

In another recognition-free technique reported by Jin et. al. [55], embedded expressions

are extracted based on the detection of two-dimensional structures. However, the authors

of [24, 55] concluded that the extraction of embedded expressions is quite difficult without

doing character recognition.

Recognition of Expression Symbols

As far as printed expressions are concerned, majority of previous studies have put empha-

sis on interpretation of expression structures. In several experiments, an error-free symbol

recognition is assumed before formulating methods for symbol arrangement analysis. In

controlled research environment, it is possible to bypass the symbol-recognition step and

concentrate on structure analysis phase. However, design of a symbol-recognition module

is essential to realize a complete expression recognition system.

The approaches proposed in previous studies on recognition of printed mathematical

symbols can be broadly classified into two categories namely, (i) template matching and

(ii) feature extraction and classification. Okamoto et. al. [81, 82] followed template

matching approach where two sets of dictionaries for normal and script type symbols are

maintained. Symbols are normalized to the predefined size prior to classification. Based

on this proposed method, an accuracy of 98.96% has been reported in [84]. Also, the

authors have addressed the problem of touching characters in expressions and presented

a segmentation technique [83] which is based on projection profiles of a given binary

image and minimal points of a blurred image obtained by applying a Gaussian kernel to

the original image.

Fateman et. al. [31, 32] proposed another template matching technique where a

symbol template is represented by a vector of features. Bounding box of gray-level

character image is divided into 5 by 5-rectangular grids and percentage of gray values

in each grid is computed. The feature vector is made up of this set of gray-values along

with two more data items, the height-to-width ratio and the absolute height in pixels of
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the bounding box. During classification of symbols, the authors used a Euclidean metric

to define the distance between characters.

Lee and Lee [67, 68] proposed a feature extraction based classification scheme where

13 features are utilized to represent each symbol. Next, a coarse classification algorithm

is applied to reduce the number of candidates. For each input symbol, the character

with the highest similarity is selected as the candidate symbol. The recognition accuracy

reported in [68] is 84.80%. The method presented by Lee and Wang [69, 70] initially

divides the symbol set into three classes based on the aspect ratio of bounding box of

symbols. For recognizing a symbol within a class, the symbol image is divided into 4x4

non-uniform blocks and a 4-dimensional direction feature vector is computed from each

image block. It gives a 64-dimensional feature vector representation for each symbol. The

authors achieve an accuracy of 96.18%. Ha et. al. [47] also adopted a feature extraction

based approach, but their classification is done through neural network.

Suzuki et. al. [95] designed a recognition engine that tries to distinguish 564 sym-

bol categories. The number of classes is so large because the authors considered several

categories for a single character to tackle font and style variation. For instance, 6 cate-

gories have been considered for the character ‘B’ to take care of its regular, italic, bold,

calligraphic, etc. versions. A three-step coarse-to-fine classification strategy has been

employed for recognition of symbols. The features like aspect ratio, crossing counts,

directional, peripheral and mesh features have been used for classification of symbols.

Experiments conducted on a set of 476 scientific pages showed an accuracy of 95.18% for

recognition of expression symbols.

Interpretation of Expression Structure

Studies dealing with interpretation of expression structure are quite a few in numbers.

One of the earliest contributions in this area is by Anderson [2, 3]. His syntax-directed

technique is essentially a top-down parsing approach based on a co-ordinate grammar.

Though the partitioning strategy used there do not show satisfactory results in many

cases, this work is regarded as pioneering one. Afterwards, Chang [17] proposes an

algorithm based on operator precedence and operator dominance, but did not clearly

explain the algorithm as well as its performance in practical scenario.

Later on, several studies have been proposed to analyze arrangement of symbols in

expressions. Among them, some consider expressions in printed form whereas others

assume handwritten input. In a few cases (e.g. [113]), structure analysis in both the

printed as well as handwritten data has been attempted by a single approach. The

techniques proposed for symbol-arrangement analysis in printed expressions are outlined
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below and the approaches presented for online environment are reviewed in the next

section.

In 1989, Chou [23] presented a stochastic context-free grammar to understand two-

dimensional (2-D) structure of expressions. A 2-D probabilistic version of Cocke-Younger-

Kasami parsing algorithm [1] is proposed to find the most likely parse of the observed

image. The author demonstrated that such a stochastic framework can recognize images

of noisy equations and learn the noise probabilities. However, very little is discussed

about the construction of the training set and the experimental results. Among other

related approaches, Hull [50] computed probabilities by which two sub-expressions are

in a particular relationship. The algorithm attempts to enumerate all possibilities by

using an A-star search and prunes away the unlikely ones. Later on, Miller and Viola

[76] tried to limit the number of potentially valid interpretations by decomposing the

expressions into a sequence of compatible convex regions. A lower bound estimate on

the cost to reach the goal is also provided. However, the authors felt the need for further

improvement of the system.

Twaakyondo and Okamoto [103] presented a technique that uses notational conven-

tions in typing expressions. Structure of an expression is analyzed by projection-profile

cutting and a top-down strategy is used to analyze the horizontal and vertical relation

between sub-expressions. To analyze nested structure such as subscripts, superscripts,

etc. a bottom-up strategy is invoked that begin with the smaller sized symbols. The

authors also provided an automatic approach [84] for evaluating their method. An accu-

racy of 98.04% is reported for recognition of 4,701 elementary expression structures like

scripts, limit, fraction, etc.

The method proposed by Lee and Lee [67, 68] uses a procedure-oriented bottom-

up approach to translate a 2-D expression into a 1-D character string. Initially, smaller

symbol groups are formed around seven special mathematical symbols (i.e. Σ, Π, fraction,

etc.) which may deviate from the typographical center of an expression. Next, symbol

groups are ordered from left to right based on their center y-coordinates. Matrices

are handled separately [70]. The authors consider 105 expressions for training and 50

expressions for testing. An error rate of about 2% is reported but the approach for

computing the error rate is not presented.

Fateman et. al. [6, 32] described a recursive decent parser where an additional stage

(called linearization) is used in between lexical analysis and the conventional parsing. In

the linearization phase, adjacency relations among the tokens are detected. Several data-

dependent heuristics are used. The experiments put emphasis on parsing of integrals.

In another study [47], J. Ha et. al. outlined a system that uses a recursive X-Y decom-
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position to understand the geometric layout of an expression. A top-down approach is

followed to construct an expression tree, which is checked next for syntax errors.

Toumit et. al. [99, 100] assigned different priority levels to symbols in order to

present a tree representation of the input expression. An alternative approach based on

graph representation of an expression image is proposed by Grbavec and Blostein [45].

Nodes in the graph represent symbols or sub-expressions and edges represent relationship

between the sub-expressions. A graph-rewriting rule replaces one sub-graph by another.

Experiment on 13 expressions is reported, but details of test results are not presented.

Later on, Lavirotte and Pottier [65, 66] used context-sensitive graph grammar technique

which attempts to add context in the graph-rewriting rules so that some ambiguities are

removed as automatically as possible.

Eto and Suzuki [30] proposed a concept of virtual link network to recognize expres-

sion structures. In their approach, a network with vertices representing the symbols is

constructed first. Vertices link each other by several labeled edges and the cost repre-

senting possible relations of the pair of symbols. Next, a minimum cost spanning tree

of the network is generated to encode the entire expression. The proposed technique

was tested using 123 expressions, of which 110 are properly recognized. The same was

incorporated in [95] and experiment conducted on a larger dataset containing 12,493

expressions reported a structure recognition accuracy of 89.6%.

Garcia and Couasnon [44] proposed a generic method, DMOS (Description and MOd-

ification of Segmentation) for recognition of musical scores, tables, forms, etc. They

applied this technique to recognize the structure of mathematical formulae and some

symbols made of line segments. Using DMOS, the authors found some possibilities to

improve symbol recognition accuracy as well as to overcome segmentation problems oc-

curring in old mathematical formulae. The proposed method was tested using 60 formulae

but details of the test results were not available.

More recently, Zanibbi et. al. [113] described an algorithm consisting of multiple

passes for (i) constructing a baseline structure tree describing the 2-D arrangement of

symbols, (ii) grouping tokens comprised of multiple symbols and (iii) arranging symbols

in an operator tree which describes the order and scope of operations in the input expres-

sions. Experiment using 73 expressions of UW-III database [87] showed a recognition (at

expression level) accuracy of 38% (at most). However, the authors presented an in-depth

analysis of the performance of their proposed method for structure analysis.
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1.1.2 Recognition of Online Handwritten Expressions

In case of online expression recognition as input comes from a person writing on data

tablet, where text and expressions are generally not mixed. Therefore, identification

of expression zones does not arise in such a case. Consequently, recognition of online

expression concentrates only on symbol recognition and analysis of symbol-arrangement.

The earliest paper in this area is due to Anderson [2] who assumed an error-free

symbol recognition and presented a co-ordinate grammar for analyzing the 2-D structures

of hand printed expressions. A partitioning strategy was used for rules with two non-

terminal syntactic units on their right side and each partition might require considerable

processing. Later on, Anderson [3] proposed techniques to improve efficiency of the

system, but did not provide recognition rate or performance evaluation results.

In the system proposed by Belaid and Haton [4], handwritten symbols are segmented

into basic primitives to be fed into recognition engine. The syntactic approach proposed

by Anderson is modified and two parsers (top-down and bottom-up) are used to interpret

the expression structures. Eight expressions written by ten persons four times to create

a dataset of 320 expressions are used to achieve a symbol recognition accuracy of 93%

with 5% rejection. The system correctly recognized all structures except six cases with

two confusions and four rejections.

Studies presented by Koschinski et. al. [59] and Winkler et. al. [107, 108, 109] used

Hidden Markov Model (HMM) for recognition of handwritten symbols and incorporated

a soft-decision approach for structural analysis of expressions. Alternate solutions are

generated during the analysis process if the relation between two symbols within the

expression is ambiguous. Finally, a string representing the input expression is generated

and syntactically verified for each alternative. Strings failing this verification process are

considered invalid. The authors considered 82 symbols written 50 times by a subject

and used 40 versions for training the HMMs. Maximum writer-dependent recognition

accuracy of 96.9% has been reported.

Among other HMM based approaches, Kosmala et. al. [60, 61, 62] employed several

online and offline features which are fed to discrete NN-HMMs (NN: Neural Net). HMMs

of different number of states have been proposed to recognize the symbols. For structure

analysis, the authors used a graph grammar approach [66] that generates a tree-structure

for the input expression. However, the detailed experimental results were not presented.

Xuejun et. el. [110] proposed a recognition method that analyzes the structures of

94 commonly used expression symbols. Symbol matching is done by an improved Kohn-

Munkres algorithm. The approach has been tested with 94 symbol classes written 5

times by 20 different persons. A writer-dependent recognition rate of 90.52% has been
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reported. However, the analysis of expression structures is not presented there.

Sakamoto et. al. [93] used a 16-directional coding scheme to capture writing direc-

tions of a stroke. A stroke is further labeled as up-stroke and down-stroke depending on

the writing direction. A dynamic programming is used for segmentation of a sequence of

strokes into character units. In a related study [38], Fukuda et. al. have used 3× 5 mesh

directional element features and some additional features for recognition of symbols. For

analyzing expression structure, the authors in [93, 38] have employed the same technique

[52] that chooses one of the nine pre-defined relations for a pair of expression symbols.

Four expressions are used in the experiment. Twenty persons have written each expres-

sion twice, thus generating a set 160 expressions. A character recognition accuracy of

99.35% is reported. Here, the structure analysis module has been evaluated by finding

correct identification of relations between a pair of symbols. The technique shows an

efficiency of 98.46% while identifying such relationships.

Chan and Yeung [14] presented a syntactic approach to understand expression struc-

ture. A Definite Clause Grammar (DCG) is used as a formalism to define a set of

replacement rules for parsing the expressions. The authors improved the efficiency of the

parsing process by reducing the number of backtrackings used by a DFG. The symbols

are recognized by following a flexible structure matching approach [12]. Experiments are

done on 60 commonly used expressions taken from four domains, namely, elementary

algebra, trigonometric functions, geometry, and indefinite integrals. Performance eval-

uation of the system is presented in a different paper [15] where effectiveness of both

the symbol recognition and structural analysis stages is demonstrated by a single mea-

sure. Experimental results show that recognition speed ranges from 0.73 to 6 seconds

per expression on a modest workstation.

Toyozumi et. al. [101] proposed a system that recognizes each stroke by Freeman

chain code. Several strokes are combined into a character based on their positions and

combinations. Structural analysis is done by dividing an expression into blocks, but

details of the method and dataset used are not presented. Reported recognition rates

are 80%, 92%, and 69% for symbols, mathematical structures and matrix structures,

respectively.

Later on, Zanibbi et. al. [112, 113] described a tree transformation based method

to understand expression structures. The approach makes use of search functions that

exploit the left-to-right reading order of expression notations and operator dominance to

recursively and efficiently extract baselines in an expression. Recognition of symbols is

achieved through another system [111]. Five fairly complicated expressions written by

27 participants are used in the experiment. No details of the experimental results for
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processing online expressions are available but it is reported that the participants found

the output to be useful.

More recently, Tapia and Rojas [96] outlined a system that involves support vector

machines for recognition of handwritten symbols and the reconstruction of formulas is

based on baseline structure analysis [113]. The proposed system supports use of 43

distinct symbols for writing expressions and for recognition of symbols an accuracy of

more than 99% has been reported .

1.2 Motivation for the Present Work

The existing OCR systems show severe limitations for converting scientific papers into

corresponding electronic form. Figure 1.1 demonstrates one such example obtained from

one the popular OCR systems. This is so because current systems fail to recognize

mathematical expressions that often appear in scientific documents. On the other hand,

review of the previous studies dealing with recognition of expressions reveals that most

of the studies concentrate on different sub-problems instead of providing a complete

solution. The work embodied in this thesis is motivated to fill this gap.

The proposed study focusing on recognition of online handwritten expressions is aimed

at providing a better man-machine interface for entering mathematics while preparing

scientific documents. With the advent of pen based devices (e.g. PDAs, tablet PCs, etc.)

research on online handwriting recognition has attained a considerable attention in recent

past. Though there exists several works on recognition of handwritten text, the studies

dealing with handwritten expressions are a few in number. Therefore, systems extending

a support for online entry of mathematical expressions are still quite immature for the

commercial market. Our present effort is directed to this end so that the users preparing

scientific documents are facilitated with a convenient alternative to input methods such as

typing expressions following TEX syntax or using an equation editor like the one available

with Microsoft Word.

1.3 Contributions of the Thesis

As far the state of the art is concerned, this thesis has several contributions for devel-

opment of a system for recognition of expressions. Some of the major contributions are

briefly discussed below:

• At first, the thesis deals with the development of a corpus of expressions. This
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(a)

(b)

Figure 1.1: OCR of scientific documents: an example (a) image (b) recognition results.
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study is motivated to facilitate research on automatic recognition of expressions.

Moreover, unavailability of suitable corpora of expressions has so far prompted

the researchers to define their own dataset for testing their algorithms. As a result,

replication of experiments and comparison of performance among different methods

have become difficult tasks. The proposed corpus that is available on request will

substantially contribute to this end.

• Unlike most of the previous studies on recognition of printed expressions, the ap-

proach presented in this thesis does not assume that the expressions are available

in isolated form. In reality, expressions typically appear in documents, either as

isolated (displayed) expressions or embedded directly into text lines. Therefore,

the proposed technique for identification and extraction of expression zones in sci-

entific documents helps to successfully upgrade the existing OCR systems (not

trained for expression recognition) for converting scientific paper documents into

their electronic form.

• A general framework based on multifactorial analysis has been presented to solve

problems where the solution depends on several factors. The approach has been

applied for two different cases namely, extraction of expression zones and segmen-

tation of touching characters. The results obtained by using this approach strongly

attest its potential and it is likely that this framework will find applications in other

document analysis problems.

• A multiple classifier system proposed for recognition of expression symbols provides

promising performance. Unlike previous studies, the present classifier deals with a

large number symbol classes (274 and 198 types of symbols for printed and hand-

written expressions, respectively) appearing in variety of mathematical expressions.

Moreover, the classifiers are not only restricted to the recognition of expression sym-

bols only. Their capabilities have also been checked for other character recognition

problems like ones in [39, 40].

• The structure recognition scheme describes an easily computable technique for pars-

ing the expressions. The context-free grammar presented in this thesis is schemati-

cally simple but still able to successfully process a large variety of expressions found

in different branches of science. Moreover, the same parsing technique shows its

capability to interpret structures of printed as well as handwritten expressions with

suitable modification.
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• Recognition of online handwritten expressions supports recognition of a symbol set

of 198 different characters that a user may employ while writing the expressions.

Moreover, the proposed technique allows thirteen two-dimensional structures in-

cluding matrices, scripts, root, limit expressions, etc. without imposing any restric-

tion on the nesting of one structure into another. These facilitate entry of various

types of expressions appearing in different branches of science.

• A new performance measure has been presented to assess the system performance.

In case of printed scientific documents, a method to judge the efficiency for extrac-

tion of expression zones has been formulated. On the other hand, a performance-

index is computed to evaluate an expression recognition system. The proposed

index integrates the results of symbol recognition and structure interpretation,

maintaining a proper balance on both aspects and provides a single figure of merit

to evaluate the overall recognition performance.

1.4 Organization of the Thesis

The content of the thesis can be broadly divided into three major parts: (i) Recognition

of Printed Expressions: Four chapters (from Chapter 2 to Chapter 5) deal with recog-

nition of printed expressions; (ii) Recognition of Handwritten Expressions: Chapter 6 is

devoted for this purpose. However, some techniques presented in Chapter 4 (mainly the

techniques for combination of classifiers) and Chapter 5 (parsing technique) are reused

with suitable modification. (iii) Post-processing and Performance Evaluation: Chapter 7

presents discussions related to post-processing and performance evaluation.

A chapter-wise break up of the thesis is briefly given below:

Chapter 2. This chapter is concerned about the construction of a representative corpus

of technical and scientific documents. The proposed database contains 400 images of

documents containing embedded as well as displayed expressions. Both real and synthetic

(generated by TEX or Microsoft Word) documents are present in the dataset. A format

has been proposed to groundtruth embedded and displayed expressions appearing in

documents.

A statistical analysis of the corpus content is presented next. The occurrence fre-

quencies of expression symbols are computed. Other statistical investigations are carried

out and the usefulness of analysis results demonstrated in the related research problems

namely, (i) identification and segmentation of expression zones from the rest of the docu-

ment, (ii) recognition of expression symbols, (iii) interpretation of expression structures,
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and (iv) performance evaluation of an expression recognition system.

Chapter 3. This chapter deals with identification and extraction of expression zones

contained in scientific paper documents. As the displayed and embedded expressions

impose different level of complexities, separate techniques have been proposed for their

extraction.

Identification of displayed expressions is done using some image-level features. How-

ever, identification of an expression zone is confirmed by checking the presence of one (or

more) of the symbols that appear in the expressions with quite high frequencies. On the

other hand, the method for locating embedded expressions initially use an existing OCR

system to recognize the input document and then the expression zones are pinpointed

by exploiting the inability of ordinary OCR system to handle expressions and by using

some common typographical features noted in mathematical expressions.

Chapter 4. In this chapter, a multiple classifier system has been presented for recogni-

tion of printed expression symbols. A group of four classifiers having different capabilities

are arranged hierarchically in two levels. The classifier used at the top level employs

stroke-based technique to recognize the symbols that are simple in shape but appear

with high occurrence frequencies. Symbols not recognized at the first level are passed to

the second level that employs a combination of three classifiers where feature descriptors

like run-number or crossing count, density of black pixels and wavelet decomposition are

employed. Several combination techniques have been attempted to integrate the second

level classifiers to achieve high recognition accuracy.

The presence of connected (or touching) symbols sometimes disturbs recognition of

symbols. Therefore, an approach for segmentation of connected symbols is outlined in

this chapter. Several image level features are considered and a multifactorial analysis

[72] is implemented to find appropriate cut positions. A quantitative comparison among

the exiting recognition approaches is also presented to show the distinctiveness of the

recognition technique presented in this thesis.

Chapter 5. This chapter deals with interpretation of the geometric structure of ex-

pressions. A simple grammar-based approach has been presented to recognize complex

arrangement of expression symbols. The proposed technique is based on symbol iden-

tities and their positional information. Initially, symbols in an expression are arranged

in a number of hierarchical levels based on their size and positional information. The

results obtained from the statistical analysis presented in Chapter 2 are used to define

the symbol levels and several geometric properties of printed expressions.

Initially, the entire expression image is partitioned into some vertical and horizontal

stripes based on pixel projection. This partition is done recursively until an atomic stripe
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is obtained. Each stripe represents a token or lexical group. Next, a bottom-up approach

is followed where two or more tokens are combined together to form a sub-expression.

Finally, the sub-expressions are merged to form the final expression string. Space and

time complexity analysis for the proposed approach is also presented.

Chapter 6. This chapter aims at recognition of online handwritten mathematical ex-

pressions. The techniques for pre-processing of the raw data recorded by an electronic

tablet are presented first. Next, recognition of handwritten symbols is discussed. The

recognition technique is based on human motor model. The model tries to grab the

essence of the idea used to teach children to write characters. A multiple classifier ap-

proach consisting of both parametric and non-parametric classifiers has been adopted to

implement the proposed model. For arrangement of symbols the technique proposed in

Chapter 5 has slightly been modified to work under online environment. The modified

version considers online features to identify certain spatial relationship among symbols.

Construction of a database of handwritten expressions has been presented to test

the proposed system. One hundred and seventy five (175) expressions are taken from

different branches of science including school and college level books. Forty writers

belonging to different categories are involved in writing each of the selected expressions

twice. Altogether the database contains 5500 handwritten samples for 175 expressions.

Samples are groundtruthed following a specific format. Method for a semi-automatic

evaluation of recognition performance is also outlined in this chapter.

Chapter 7. This chapter outlines some general aspects that are common to both printed

and online environment. An error detection and correction module has been designed to

improve the overall expression recognition results. The types of error that occur during

symbol recognition and structure interpretation are studied in details and techniques

incorporating contextual information are presented to correct these errors.

Next, strategies for performance evaluation of an expression recognition system are

discussed. At first, the proposed method separately calculates accuracy for recognition

of symbols and structures. Geometric (or structural) complexity of an expression has

been defined and considered for evaluation of structure recognition accuracy. Next, a

performance-index is computed to integrate the results of symbol recognition and struc-

ture interpretation, maintaining a proper balance on both aspects. The proposed index

provides a single figure of merit to evaluate the overall recognition performance.

Chapter 8 concludes the thesis and outlines the scope of future work.



CHAPTER 2

A CORPUS FOR OCR RESEARCH ON
MATHEMATICAL EXPRESSIONS

2.1 Introduction

Automatic transcription of printed scientific and technical documents into their electronic

format largely depends on the success in recognizing the typeset mathematics. Several

studies dealing with recognition of printed mathematics have been reported in the liter-

ature. These research efforts have been surveyed in [8, 13, 31]. From these reports it is

understood that unavailability of a suitable corpus of expressions has prompted the re-

searchers to define their own data set for testing their algorithms. As a result, replication

of experiments and comparison of performance among different methods has become a

difficult task.

In this chapter, we present a corpus (or database) of mathematical expression im-

ages that would facilitate research in automatic understanding of expressions. The only

relevant database available so far is the University of Washington English/Technical

Document Database III (UW-III) [87]. However, the database is mainly constructed for

general OCR (Optical Character Recognition) research and contains 25 groundtruthed

(into TEX) document pages containing about 100 expressions. Therefore, it does not

seem to be a representative corpus for the respective research. Another drawback of this

data set is that groundtruthing of expressions into TEX only does not support an in-

depth analysis of recognition performance [15, 84, 113]. Another freely available source

of expressions is the set used by Raman for his Ph.D. work [91]. However, the expres-

sions available here are synthetic (generated by TEX) and isolated (i.e. not a part of any

document) in nature.

This chapter discusses about the contents of a corpus of printed scientific documents

collected at the Computer Vision & Pattern Recognition Unit of the Indian Statistical

Institute, Kolkata, India and describes how this database addresses various research

considerations related to recognition of printed mathematical expressions. This work is

an extension of our earlier effort presented in [43].

In printed documents, expressions appear in two modes, namely, embedded (mixed

with text and also referred to as in-line expression) and displayed (typed in a separate

16
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line). Figure 2.1 shows a typical example of such a document. The content of the

database, therefore, is arranged into a two-level hierarchy. At the top level, there are

400 scientific and technical document images containing mathematical expressions. For

each document, its embedded and displayed expressions are collected into two different

files. Correspondence between a top-level document with its lower level files storing

embedded and displayed expressions is maintained through the naming convention for

files. Expressions are groundtruthed following a specified format explained later.

Figure 2.1: A sample page containing embedded as well as displayed expressions.

However, the present study doesn’t only discuss about the content of the database and

its organization. It is also focussed on some other issues like measuring the comprehen-

siveness of the corpus, analyzing it for several research considerations and designing an

automated tool for testing and evaluating the performance of an expression recognition

system.

The rest of this chapter is organized as follows. The structure of the proposed

database, its content, sampling procedure, generation of groundtruth are outlined in

Section 2.2. Section 2.3 presents a statistical study of the database used to measure

the comprehensiveness of the proposed corpus. Also, this section contains a linguistic

analysis to assist identification of embedded expressions in scientific documents. Next,

Section 2.4 demonstrates how the proposed corpus contributes towards testing of an

expression recognition system. Section 2.5 summarizes the chapter.
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2.2 Organization of the Database

The proposed database contains 400 document images containing 2459 displayed and

3101 embedded expression fragments. Both real (297 pages) and synthetic (generated

by TEX or Microsoft Word) documents (103 pages) are present in the data set. Real

documents are collected from (i) books of various branches of science, (ii) science journals,

(iii) proceedings of technical conferences, (iv) question papers (College/University level

examination), etc.

Synthetic documents are selected from sources that are available in Microsoft Word

or TEX format. Several electronically available journals, conference proceedings, Internet

sites related to various science subjects were considered for this purpose. A few pages

were selected from the technical articles published by the members of our research unit.

Documents in the database are categorized into three groups depending on the abundance

of expressions in the documents. Group I refers to those documents where the number

of expressions per page is relatively less compared to other two categories. Similarly,

group II points to those pages where density of expressions is higher than that of group-I

pages and documents under group III show the highest density of expressions. A summary

of the collected samples is given in Table 2.1.

Several factors influence the choice of materials, some of which are described below:

• Relative frequency of expressions: The documents show variation in the number of

expressions contained in them. Sample documents are divided into three groups

based on the number of displayed expressions and percentage of sentences (per

page) containing embedded expressions (see Table 2.1).

• Nature of expressions: Documents are selected from various branches of science to

cover a wide range of expressions that may appear in the literature. The details

of the specific topics covered in the database are discussed later. Pages containing

expressions having varying geometric structures and layouts are considered to make

the data set a representative one.

• Variations in typeset: The data set contains documents published using old me-

chanical typeset as well as those printed by offset and other modern machines.

• Page layout: Documents may be printed in single or multi-column format. Apart

from text and expressions, they may contain graphs, charts, illustrations, half-tone

pictures, etc.
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Table 2.1: Coverage of the Document Database

Group Source #Samples Avg. no. of % of sentences
label (pages) displayed exps containing

per page embedded exps

Group I Real 116 2.16 7.61%
Synthetic 44 3.07 8.82%

Group II Real 101 6.24 19.23%
Synthetic 32 7.11 17.05%

Group III Real 80 11.45 40.57%
Synthetic 27 10.61 38.12%

Total 400 6.11 20.04%

• Aging effect: Many important scientific/technical materials which are not available

in electronic form are older than one hundred years. OCR conversion of these

documents into electronic form remains a big challenge. The data set contains

samples from older as well as recently published materials to reflect this aging

effect.

• Other degradations: Photocopied versions, pages from bound journals, damaged

documents, etc. are also present in the data set to represent different levels of

degradation and distortion.

2.2.1 Digitization of Samples

HP flatbed scanners (Scanjet 5470C and Scanjet ADF) are used to digitize real samples

into TIFF files. Documents are scanned in Gray scale and resolution varies from 150 dpi

to 600 dpi. Old materials and documents printed in smaller font sizes are scanned with

higher resolutions. Scanning at different dpi-values helps to study the effect of resolution

on recognition performance. On the other hand, no scanning is involved for synthetic

documents and therefore, corresponding images are free from common digitization errors.

These noise-free binary images are generated either by TEX or by Microsoft Word editor.

2.2.2 Format of the Groundtruthed Data

In the current database, each sample page (say, docxxx.tif) generates 3 files with exten-

sions .atr, .emb and .dis, respectively, as shown in Figure 2.2. The docxxx.atr file con-

tains a set of attributes defined for the page docxxx.tif. Some of the attributes are the
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page ID, publication information, page type (book/journal/question paper/etc.), etc.

Attributes like degradation type (original/photocopy), salt/pepper noise (yes/no),

blurred (yes/no), etc. refer to the page condition and describe the visual condition of a

given sample page. Many of these attributes are identical to those used in UW Document

Image Database [87].

Figure 2.2: Groundtruthing of scientific document images.

Documents in the database show variety in their page layout. Some of the documents

are in single column while others are in multi-column format. Several documents contain

graphs, charts, illustrations, half-tones, etc. Figure 2.3 shows a few documents present in

the database. However, entire page is not considered for generation of groundtruth and

only the blocks containing text and mathematical expressions are considered. Several

techniques (a summary of them can be found in [54]) have been proposed for automatic

analysis of page layout and a modified version of the technique proposed by Pavlidis

and Zhou [86] has been employed in our system to locate the blocks containing text and

expressions.

Groundtruthing of Embedded Expressions: The file, docxxx.emb describes truth

for the embedded expressions contained in the page docxxx.tif. Embedded expressions

are recorded along with the sentences containing them. A sentence is said to have one or

more embedded expressions if it would need the use of math mode had the sentence been

prepared using TEX. Approaches presented in [24, 33, 55, 58, 69, 95, 100] were studied

to develop an automatic way of identifying zones containing embedded expressions in

the documents. But it is observed that frequent manual intervention is needed to make
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Figure 2.3: A few document images present in the database.
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the results error-free. However, addition of some n-gram based linguistic properties

(explained later) did help a lot to improve the identification process.

The truthed data for a page is contained within <page> and </page> tag pairs.

The image file name is stored within tags namely, <imagefile> and </imagefile>. A

sentence containing embedded expressions is recorded within the tag pairs <sentence>

and </sentence>. In a single page, since multiple sentences can contain embedded ex-

pressions, there are multiple instances of <sentence> and </sentence> tag pairs. On

the other hand, a sentence may consist of multiple text lines and therefore, a line con-

tent is enclosed by <line> and </line> tag pair. An upper level tag structure for

groundtruthing of embedded expressions is presented below:

<page>

<imagefile> ... </imagefile>

<sentence>

<line>

Bounding box of the line is recorded.

Next, text and math portion, if any are

recorded separately.

</line>

<line>

...

</line>

.

.

.

</sentence>

<sentence>

...

</sentence>

.

.

.

</page>

Each text line of a sentence containing an expression is separately marked with a

pair of (x, y) coordinates for top-left and bottom-right corners of the minimum upright

rectangular box (called bounding box and recorded within <bbox> </bbox> tag pairs)
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enclosing that text line. The expression zones within a text line are highlighted by the

bounding box coordinates of the expression zone. The text and the expression portions

of a text line are separately truthed within <text> </text> and <math> </math> tag

pairs, respectively. Tag structure for a line is shown below:

<line>

<bbox> ... </bbox>

<text>

...

</text>

<math>

...

</math>

.

.

.

</line>

For each embedded expression, its enclosing bounding box is recorded within <bbox>

</bbox> tag pairs. Next, a <GC> </GC> tag pairs is used to indicate the Geometric

Complexity (GC) of the expression. Geometric complexity of an expression is measured by

the number of horizontal lines (on which expression symbols are arranged) found in that

expression. For example, symbols of expression shown in Figure 2.4(a) are arranged on 9

horizontal lines as shown in Figure 2.4(b). Therefore, GC becomes 9 for this expression.

The dominant baseline [113] of an expression is treated as level 0 and level number

increases above and decreases below the baseline.

Different zooming factor and resolutions may give different looks for the same expres-

sion, but we view that GC is not much affected by these changes. Therefore, this value is

recorded along with each expression to identify expression’s geometric complexity. How-

ever, it is true that the value of GC for an expression in rare occasion can vary from its

actual value and we have observed it for expressions showing unusual typography. Such

errors are attributed to non-uniformity in typography found in documents printed with

very old and non-standard technology that lacks in proper layout in typing expressions

(Section 5.4 of Chapter 5 demonstrates this problem). We experience that occurrence of

such problem is really rare in number.

Next, content of the embedded expression is presented. For this purpose, MathML1

1see W3C Math Home at http://www.w3.org/Math/
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(a)

(b)

Figure 2.4: Geometric complexity of expressions: an example.

presentation tags are used. However, for a symbol (where it is operator, identifier, or

numeral) three additional tag pairs namely, <level> </level>, <style> </style> and

<truth> </truth> are used. For example, if t is an identifier used in the expression, its

MathML representation (i.e. <mi> t </mi>) is extended as follows:

<mi>

<level> ... </level>

<style> ... </style>

<truth> ... </truth>

</mi>

The level indicates horizontal level number at which the symbol appears. For exam-

ple, symbols of the expression in Figure 2.4(a) appear in one of the nine horizontal levels

numbered with -3 to 5 including 0. The style indicates the type style (n: normal, b:

bold, i: italic, bi: bold-italic) of the symbol. The identity of the symbol is given within

the <truth> </truth> tag pairs.

Algorithm can be designed for automatic computation of GC and symbol levels.

One such algorithm [77] is explained in section 5.2 of Chapter 5. On the other hand,

detection of symbol style is done by following the algorithms outlined in [19, 21]. It is

noted that the expression symbols are often typed with a font style, which is different
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from the dominant style of the document text. In several cases, variations in font faces

are also observed, i.e. the expressions are printed in a font different from the one used

for remaining text of the document. Statistics regarding different type styles used in

expressions are presented in Table 2.2. For computing type style of an expression it is

found that the style of all expression symbols, in many cases, may not be unique and

therefore, the results presented in Table 2.2 show dominant (determined by the majority

of symbols) style in the expressions.

Table 2.2: Statistics on Type Styles

Style Expression Level Statistics
Embedded Displayed

Regular 186 ( 6%) 271 (11%)

Italics 2,078 (67%) 1,254 (51%)

Bold 558 (18%) 516 (21%)

Bold-Italics 279 ( 9%) 418 (17%)

In case of a page having multi-column layout, expressions are truthed following the

normal reading sequence determined manually. In database, 1084 (out of 5402) sentences

are found to have embedded expressions and groundtruth for each of these sentences is

available in the corpus. The CDROM attached with this thesis contains groundtruth

for five sample images. Groundtruth of embedded expressions contained in a document

image (say, sample1.tif) is available in the corresponding .emb file (e.g. sample1.emb

corresponds to sample1.tif).

Groundtruthing of Displayed Expressions: The file, docxxx.dis truths the dis-

played expressions contained in the image docxxx.tif. Automatic identification of dis-

played expressions in document images has been achieved by the algorithm proposed in

[20]. For a sample page, all displayed expressions are truthed within <page> </page>

tag pairs. Each expression is truthed under <math> </math> tags. For a multi-line

expression, two consecutive expression lines are linked together with a Thread pointer,

if they are part of the same expression. So, if the Thread pointer (which can have only

binary values) for any expression is 1 then the current expression continues to the next

line. In case of a page having multi-column layout, expressions are truthed following the

normal reading sequence (manually determined).

Within a pair of <math> </math> tags, truthing starts with <bbox> </bbox>

tags giving the bounding box coordinates for the expression. Next, geometric complexity

of the expression is recorded using the tag pairs <GC> </GC>. Expression sequence
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Table 2.3: Coverage of the Expression Dataset

Source Area Expressions Remarks

Expressions found Algebra 439 This data set shows various
in 390 technical Calculus 205 image level noise like
and scientific Differential 313 degradation due to aging,
documents equations digitization errors, etc.
collected under Integrals 351 Expressions are scanned
Part I of the Logic 186 with resolution varying
proposed database. and set theory from 75 to 600 dpi.

Statistics 176
and probability
Trigonometry 171
and geometry
Vector 254
Miscellaneous 304

AsTeR data set [91] Series 5 This data set is freely
Logarithms 4 available at http://www.
Fractions 9 cs.cornell.edu/info/people

Roots 4 /raman/aster/.
Sums 3 These TEXgenerated
Superscripts and 9 expressions are free from
Subscripts any digitization errors.
Limits 2 The resolution is 300 dpi.
Matrix 1
Trigonometry 8
Integrals 6
Miscellaneous 9

Total 2,459
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number, if any exists, is given under the <expno> </expno> tags. Content of the

expression is truthed in a similar way used for truthing the embedded expressions. Only

difference is the additional presence of <bbox> </bbox> tag pairs for each symbol of a

displayed expressions.

In the corpus, there are 2399 displayed expressions and groundtruth data for each

expression is available in 400 docxxx.dis files. In addition, 60 synthetic expressions are

selected from the data set used in AsTeR research [91]. Reasons for this choice are (i)

it contains examples from various branches of mathematics. The expressions show wide

variations in their structural complexity making the data set a representative one; (ii)

for each expression its corresponding correct TEX string is available and these strings are

used to generate the groundtruth; (iii) the data set is free and globally available through

the Internet, thus allowing comparative study. Therefore, the number of expressions

present in Part-II, in total, is 2459. Table 2.3 gives an idea of how the expressions are

divided among different topics and purposes.

The CDROM attached with this thesis contains groundtruth for five sample pages.

Groundtruth of displayed expressions contained in a document image (say, sample1.tif)

is available in the corresponding .dis file (e.g. sample1.dis corresponds to sample1.tif).

2.2.3 Implementation of the Groundtruthing Process

From the above discussion it follows that the proposed groundtruthing process consists

of several steps as outlined next. Implementations of all these steps were not fully au-

tomated and frequent manual interventions were required for realisation of many steps.

Computation of some information was done automatically, whereas others required semi-

automatic approach. Execution mode for each step is described below:

1. Scanning of samples,

Comment: manually done. Automatic document feeder (ADF) facility of scanners didn’t

help much as samples were collected from various sources and could not be given in bulk.

2. Filling up the attributes for sample pages (generation of .atr files),

Comment: manually done. Basically a template containing different attribute fields was

prepared and this template form was filled in for each sample.

3. Marking of text blocks (expressions are treated as part of text blocks),

Comment: Semi-automatic. A modified version of the approach described in [86] was

used and results were accepted after manual inspection.

4. Identification (in form of bounding box information) of embedded and displayed ex-

pressions in each page,
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Comment: Semi-automatic. Displayed expressions were located by following the ap-

proach in [20] and embedded expressions were identified by following an approach de-

signed after consulting the existing literature. In both cases, identification results were

displayed using graphical interface and manual intervention was involved to check the

results and correct (by adjusting the bounding box) them whenever required. Later on.

it is found that the approach presented in the Chapter 3 of this thesis can substantially

improve the identification results.

5. Groundtruthing of embedded expressions:

a. Marking of sentences containing embedded expressions,

Comment: Semi-automatic. Once embedded expressions are marked, sentences

containing one or more embedded expressions and ending with a full stop mark

are (in majority of cases) located automatically. However, boundary of a sentence

containing expression fragments but not ending with a full-stop mark are identified

manually.

b. For each such sentence, computation of bounding box information for text lines,

Comment: Automatic. Once sentences containing embedded expressions are marked,

constituent text line boundaries are located automatically.

c. In each text line recording of OCR results for (i) text and (ii) expression parts

Comment: OCR of text part is done automatically. A commercial OCR system was

used for this purpose. Execution details for OCR of expression parts is given later.

d. Generation of final marked-up description (.emb file)

Comment: Manual. Values for all tag pairs are ready at this stage but they are

organized manually.

6. Groundtruthing of displayed expressions:

a. OCR of expression,

Comment: Execution details for OCR of expression parts is given later.

b. Generation of final marked-up description (.dis file)

Comment: Manual. Values for all tag pairs are ready at this stage but their

integration was done manually.

Two steps namely, (i) OCR of expressions (steps 5.c.(ii) and 6.a) and (ii) generation of

marked-up description files involve different sub-tasks important in the context of overall

groundtruthing process. OCR of an expression involves following steps:

i) Computation of expression’s geometric complexity (GC field),

Comment: Semi-automatic. Approach presented in [77] was used to determine an ex-

pression’s GC which is manually inspected for final acceptance.
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ii) For each expression symbol, computation its position, level and style,

Comment: Semi-automatic. Position i.e. bounding box info is computed automatically.

The level and style are determined by following approaches described in [77] and [19],

respectively, and verified manually.

iii) Symbol recognition,

Comment: Semi-automatic. Classifier described in [20] is used for symbol recognition.

Mis-classified and rejected symbols are identified manually. The multiple-classifier ap-

proach presented in Chapter 4 of this thesis substantially improves the classification

results.

iv) Structure analysis and generation TEX string for the expression,

Comment: Semi-automatic. Approach described in [77] is used for this purpose and re-

sults are manually checked and corrected (if needed).

v) TEX to MathML conversion.

Comment: Automatic. A freely available tool2 is used to convert TEX strings in their

corresponding MathML (using presentation tags) versions.

vi) Insertion of expression number.

Comment: Manual. For a displayed expression the expression sequence number, if any

exists, is entered manually.

Similarly, generation of final marked-up description files (steps 5.d and 6.b) requires

integration of all necessary information (i.e. tag values) together. This is done by adding

non-MathML tags (for which values are computed at different steps) within and outside

the MathML description obtained after OCR of expressions. For example, tags like

<page> and </page>, <imagefile> and </imagefile> etc. are positioned outside the

MathML tags, whereas tags likes <level> and </level>, <style> and </style>, etc. are

integrated inside the MathML representation.

Four persons voluntarily contributed in the groundtruthing process, mainly for imple-

mentation of semi-automatic steps described above. Contributors (acknowledged later)

were students of Computer Science or allied fields and did not require extensive training

to understand the process. Initially, the goal of this study was clearly stated to them

and then all necessary programs along with some graphical interfaces (like image display

with associated controls like drawing of bounding box, etc., interface to check symbol

recognition results and to correct them if necessary, utility to check final TEX string for

an input expression, etc.) were supplied to the students who were explained about their

2Many such tools are available in the net. The conversion utility used in this experiment was found
at http://hutchinson.belmont.ma.us/tth/mml/ttmmozform.html



30

respective role/responsibility involved in the process.

Volunteers mainly contribute towards checking of results obtained by executing dif-

ferent program modules and then correcting the results whenever required. Results for

missed parts (e.g. an expression zone, recognition of any symbol, etc.) are added manu-

ally. Students also help in generating the final marked-up description of a page and this

step requires extensive manual intervention as for each page MathML and non-MathML

tags with values were manually arranged according to the proposed format as described

in the preceding section (i.e. section 2.2.2).

It was difficult to estimate the exact man-power that was required to generate the

groundtruthed data for 400 pages as the effort was voluntary in nature and the work was

done in a sporadic way rather than in a continuous manner. However, considering the

tools (most of them are semi-automatic) available with us, a rough estimation indicates

that if the entire work to have been done at a stretch then a time period of 6 man-

month would have been required. This estimates does not include the time required for

validation of the data as discussed next.

2.2.4 Validation of the Truthed Data

As correctness of the truthed data is very much important for any benchmark database,

we attempted to validate the generated data. Since frequent manual intervention was

involved at several steps of the groundtruthing process, further checking of the generated

data reveals many errors. A preliminary-level effort has been made to remove many of

such errors and further attempt to make the dataset error-free is in progress.

Two persons3 (apart from those involved in the groundtruthing process) did help us

for the validation of the truthed data. As the final description of an input is coded

in a marked-up language, it is difficult to check the validity of the data by looking at

.emb/.dis files. Therefore, we did design an additional utility program to generate a

global description of a page from its corresponding truthed data. For a page, there are

two upper level descriptions, one is generated for the embedded expressions (using the

associated .emb file) and another one for displayed expressions (using the .dis file).

Expressions4 contained in a page were given in the description file in their corresponding

TEX format.

3These two persons were employed in one of our departmental projects on document image analysis
and partially involved in the process of validating the truthed data.

4As groundtruthed files contain expressions in MathML format, MathML to TEX conversion is done
following a freely available utility found at http://www.orcca.on.ca/MathML/texmml/mmltotex.html.
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The description files are in .tex style. Compilation of such a description file (say,

sample1 emb desc.tex generates a corresponding .dvi (or .ps/.pdf) format which pro-

vides better convenience to check the validity of the truthed data5. This is done by

visually comparing the content and appearance of the expressions in the image (say,

sample.tif) as well as in TEX format. Moreover, such an upper level description pro-

vides ways to further check the GC value of an expression, the style, level and identity

(truth) data for expression symbols. OCR accuracy for the text portion is also checked

at this level.

Apart from these, the description files contain information for bounding box coor-

dinates of different entities (e.g. line, expression, expression symbol, etc.) and one can

check the validity of such information by looking at the coordinate values of an entity’s

bounding box and its position (by a rough estimation or if needed, by checking cursor’s

position on the image) in the corresponding image file. However, as this way of checking

bounding box information lacks in convenience, design of a more user-friendly interface

for this purpose is in progress.

First level validation task is nearly completed and errors are mostly found in some

cases of the following entries:

(i) The level information associated with the symbols of displayed expressions: errors

generated by the program used to capture level of expression symbols have not been

properly corrected in many cases.

(ii) Truthing of text parts: a commercial OCR was used to recognize text portions and

OCR made some mistakes. However, such mistakes are less serious than the other type

of errors as a pure expression recognition system has little to do with the recognition of

text parts.

(iii) Spelling of some user-defined tags: spellings of some tags were found wrong, e.g.

<bbox> in some cases appears as <box>, <truth> as <truth>,etc. Though templates

were used for such tags and therefore such errors are unexpected. But these errors oc-

curred because of casual editing during integration of non-MathML and MathML tags. It

is mentioned earlier that the final organization of tags was done manually using an text ed-

itor. However, occurrences of such errors were less in number and detected automatically

by the utility program used for generation description files (e.g. sample1 emb desc.tex).

This program gives “invalid tag” message whenever it encounters such wrongly spelt tags

5For each sample image, two TEX files are available in the CDROM attached with this thesis. For ex-
ample, sample1 emb desc.tex and sample1 dis desc.tex are associated with the image sample1.tif.
The file sample1 emb desc.tex gives an upper level description of the lines containing embedded ex-
pressions whereas the file sample1 dis desc.tex provides description of the displayed expressions.
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(i.e. not present in the pre-compiled tag list).

(iv) Placement of punctuation marks: Punctuation mark (e.g. ‘,’/‘.’/etc.) placed at the

end of an embedded expression are sometimes coded along with the expression (i.e. within

<math> </math> tags) and sometimes coded as text (i.e. within <text> </text>

tags). An attempt has been made to maintain a uniformity for this purpose.

2.3 Statistical Investigation of the Corpus

Initially, the data set is investigated to measure its comprehensiveness for expression

recognition research. Next, some additional studies are presented for identification of

embedded expressions and issues related to testing an expression recognition system.

Table 2.4: Occurrence rate of symbol categories

Symbol (#Classes) #Occurrences in Total Count
Embedded Displayed

Roman Letter (52) 9,687 20,361 30,048 (0.36)

Arabic Numeral (10) 3,544 6,882 10,426 (0.13)

Greek Symbol (41) 1,654 3,493 5,147 (0.06)

Calligraphic Letter (16) 71 309 380 (0.01)

Mathematical Operator (39) 1,541 10,907 12,448 (0.15)

Relational Operator (39) 954 4,693 5,647 (0.07)

Arrow Symbol (32) 612 2,123 2,735 (0.03)

Bracket Symbol (06) 2,127 4,314 6,441 (0.08)

Misc. Symbol (33) 945 3,511 4,456 (0.05)

Punctuation Mark (06) 2,268 2,695 4,963 (0.06)

Total (274) 23,403 59,288 82,691 (1.00)

2.3.1 Study of Comprehensiveness

Comprehensiveness of the proposed corpus is measured against some basic aspects, which

are important in any expression recognition research. The presence of different symbols,

their occurrence frequencies, appearances of different two-dimensional (2-D) structures

(e.g. super/subscript, root, fraction, etc.) are studied to understand the corpus coverage.

For each 2-D structure, an idea of Degree of Nestedness (DoN) is introduced. For

example, consider three structures (i) ex, (ii) exx

and (iii)
√

1 + 1
x
. First two superscript

structures show values for DoN equal to 1 and 2, respectively. On the other hand, the

third structure is a mixed one and its DoN equals to 2 since a fraction structure is nested
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inside the root. For a 2-D structure, its DoN value is automatically computed from the

operator tag pairs associated with that structure. For example, ex uses only one pair

of MathML presentation tags namely, <msup> </msup> giving its DoN equals to 1

whereas,
√

1 + 1
x

uses one pair of <mfrac> </mfrac> tags within <msqrt> </msqrt>

tags giving DoN equals to 2.

It is observed that for a 2-D structure DoN value doesn’t (substantially) vary with

change of parameters like font style, etc. In general, it is true that two identical expres-

sions (clearly speaking an expression structure like scripts, fraction, root, etc.) written in

two different font style will have the same DoN. This is because symbols within a struc-

ture convey their meaning based on their spatial arrangement or layout which doesn’t

change with different font faces, type style, character sizes, etc., otherwise, mathematical

meaning of a structure would have been changed.

The investigation results are outlined below.

Observation 1. Expression Symbols: Symbols occurring in expressions are quite

different from those occurring in normal text. Apart from the Roman letters, symbols

like Arabic digits, Greek symbols, Mathematical operators, function words, etc. are fre-

quently used to write expressions. Analysis shows that the symbols present in the corpus

can be partitioned into 10 categories, namely, (i) Arabic Numerals (AN), (ii) Roman

Letters (RL), (iii) Greek Symbols (GS), (iv) Calligraphic Letters (CL), (v) Mathemat-

ical Operators (MO), (vi) Relational Operators (RO), (vii) Arrow Symbols (AS), (viii)

Bracket Symbols (BS), (ix) Miscellaneous Symbols (MS) e.g. prime(‘′’), for all (‘∀’),

there exists (‘∃’), etc., (x) Punctuation Marks (PM).

Frequency at which these symbol categories occur in embedded as well as displayed

expressions are given in Table 2.4. Distinct number of symbol classes under each cate-

gory is shown within braces under the first column. Table 2.4 gives an idea about the

extra symbols an OCR has to classify for recognizing expressions. Availability of this

large number of samples helps one to design suitable classification scheme for expression

symbols. For this purpose, training and test set of symbols are marked separately in the

corpus.

Next, occurrence frequencies for symbols are computed. The list of symbol frequencies

gives an idea about the relative abundance of different symbols in expressions. Based on

these statistics, one may design a prototype library where reference symbol are arranged

according to their occurrence frequencies to speed up the symbol-recognition process.

Moreover, occurrence statistics concerning mathematical operators helps to identify a

small group of symbols that show high occurrence frequencies. Table 2.5 presents a few

of these operators and their abundance (not the occurrence frequencies) in the set of
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Table 2.5: Occurrence Rate of some Operators

No. Symbol Abundance (% of expressions Occurrence
in which the symbol appears) Frequency

1 = 94% 12.07%

2 + 8.71%
3 - (Minus) 93% 4.65%
4 / 0.35%

5 ( 60% 4.77%
6 ) 4.02%

7 Fraction Line 51% 3.42%

8 [ 35% 1.57%
9 ] 1.57%

10 { 20% 0.74%
11 } 0.61%

12 < 16% 0.56%
13 > 0.17%

displayed expressions. The high occurrence and shape simplicity of these operators may

help one to quickly identify zones containing displayed expressions.

Observation 2. Operator Structures: Symbols in expressions are arranged around

different operators and form different geometric layouts, some of which are one-dimensional

(1-D) in nature while others are two-dimensional (2-D). For example, operators like ‘+’,

‘-’, ‘=’, function words like sin, cos, log, etc. induce 1-D structures while superscripts,

subscripts, operators (like ‘
∑

’, ‘
∏

’, ‘
∫

’, etc.) with limit expressions, matrix, etc. form

the 2-D layout.

Properties of such structures along with their occurrence statistics have been studied

in the proposed corpus. Twelve elementary structures have been detected which are 2-D

in nature. They are: (i) Superscript, (ii) Subscript, (iii) Fraction, (iv) Root, (v) Overline,

(vi) Underline, (vii) Overbrace, (viii) Underbrace, (ix) Ellipses, (x) Accent, (xi) Matrix

and (xii) Stacking of symbols.

The number of such structures observed in the data set are reported in Table 2.6.

However, sometimes it is observed that structures appear in nested mode. A structure is

called nested if it contains another structure within it. With each class of structures, the

observed DoN (representing degree of nestedness) are listed in the 3rd column of Table 2.6.

Observation 3. Structural Complexity of Expressions: It is discussed earlier that

geometric (or structural) complexity, GC of an expression is defined by the number of hor-

izontal lines on which the constituent symbols are arranged. Expressions in the database

are investigated to check their complexity levels and they are grouped into different



35

Table 2.6: Occurrence of Operator Structures

Structure #Occurrences DoN Values

Superscript 4,267 1, 2, 3, 4

Subscript 3,986 1, 2, 3

Fraction 2,063 1, 2, 3, 4, 6

Root 227 1, 2, 3, 5

Overline 60 1, 2, 3

Underline 13 1, 2

Overbrace 47 1, 2, 4

Underbrace 19 1, 3

Ellipses 828 1

Accent 341 1, 2, 3

Matrix 73 1, 2, 3

Stacking 154 1, 2
of symbols

classes based on their GC value. Frequencies of these classes in the database are reported

in Table 2.7. Results show that embedded expressions are less complex in their structure

than that of displayed ones. The highest complexity observed in embedded expressions

is 5 whereas for displayed expressions the value of GC can be as high as 15.

2.3.2 Linguistic Properties of Sentences Containing Embedded

Expressions

A linguistic analysis of the sentences present in scientific documents indicates that a

word level N-gram model could be of great help to categorize a sentence in a technical

document into one of the two categories, namely, with or without expressions. This

analysis is motivated by Zipf’s law [115] which is formally defined as Pr ∼ 1/ra, where

Pr is the frequency of occurrence of the r-th ranked item and a is close to 1.

In other words, the law says that the n-th most common word in a human language

text occurs with a frequency inversely proportional to n. The implication of this law

is that there is always a set of words that are specific to a particular context. In our

approach, use of embedded expression is treated as the context and based on this, sen-

tences with and without expressions are labeled with one of the two categories, namely,

(i) Category-I (C1) in which sentences do not contain any expression and (ii) Category-II

(C2) where each sentence contains one or more expression fragments. To generate N-gram

profiles of a category the following steps are performed.

Step 1. Digits, punctuation marks, expression portions (in case of sentences containing
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Table 2.7: Geometric Complexity of Expressions

Geometric Number of Expressions
Complexity (GC) Embedded Displayed

1 695 347

2 1,498 489

3 481 628

4 374 427

5 53 109

6 – 202

7 – 93

8 – 70

9 – 31

10 – 16

11 – 23

12 – 12

13 – 7

14 – 3

15 – 2

expressions) are discarded so that sentences contain only words.

Step 2. Each sentence is scanned to generate all distinct word level N-grams (for N = 1

to 3) and their frequencies are recorded. To compute bigram and trigram frequen-

cies, each sentence is padded with sufficient blanks on both sides. Stop words are

discarded while generating the N-grams.

Step 3. Relative frequency of each N-gram (w1,N) is computed as the ratio of its associated

count (i.e. the number of its occurrences) to the total number of similar (based on

the value of N) N-grams. For example, let ci
1,N be the number of occurrences of

i-th N-gram wi
1,N and TN be the total number of distinct N-grams, then relative

frequency f i
1,N of wi

1,N is computed as

f i
1,N =

ci
1,N

∑TN
j=1 cj

1,N

for N = 1 to 3 (2.1)

Step 4. When steps 1–3 are completed, a list of all N-grams along with their frequencies is

produced.

Step 5. Sort the list in descending order of frequencies. The resulting list then represents

an N-gram frequency for a category.
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In our study, a profile for category-I (C1) is built using 2,655 sentences having nearly

35 thousand words. On the other hand, 870 sentences containing about 12 thousand

words have been used to generate the profile for category-II (C2). A number of observa-

tions are followed from an inspection of the N-gram profiles of the categories.

• Many of the stop words show high occurrence frequency in both category profiles.

However, note that a list of stop words in this application is different from the

standard stop word list used in text retrieval applications. This is so because several

words like “if,” “then,” “where,” etc. show significance in the present purpose are

important for the purposes of the present study, though in general they are treated

as stop words. Therefore, the list of stop words mentioned in step 2 above is

specially computed for the current application.

• It is observed that top 150 or so N-grams are highly representative for a particular

category. Of course, there is nothing special about rank 150 itself and it is chosen

mostly by inspection. In fact, Zipf’s law provides a very smooth distribution curve

and one could always do more elaborate statistics and choose an optimal cut-off

rank.

• The top ranking N-grams in category-I are mostly unigrams that reflect the dis-

tribution of the words in the sentences of that category whereas for category-II,

presence of frequent bigrams (e.g. such that, the following, etc.) and trigrams (e.g.

let us consider, is given by, etc.) is also observed. In both categories, there is,

of course, a long tail to the distribution of N-grams which goes well beyond 150.

These N-grams represent terms which do not show much distinguishing power as

far as classification is concerned.

A given sentence is classified by a similarity measure implemented as follows:

• Step 1. All N -grams are generated for a target sentence (S) all N -grams are

generated. Let L be the number of such N -grams.

• Step 2. Each N-gram found (wk
1,N , for k = 1 to L) in S is searched in the category

profile of C1 and C2. Let pk and qk be the relative frequency of wk
1,N in C1 and C2,

respectively. If any wk
1,N is not found in the profile of C1 (or in C2) then pk (or qk)

is set to zero.

• Step 3. S is classified as follows:

If
∑L

k=1 pk >
∑L

k=1 qk then S ∈ C1



38

Elseif
∑L

k=1 pk <
∑L

k=1 qk then S ∈ C2

Otherwise, Indeterminate (2.2)

Table 2.8: Correct Classification of Sentences using N-gram Model

Sentence Length < 10 < 10 < 10 < 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10
(#Words)

Profile Length 50 100 125 150 50 100 125 150
(#N-grams)

Sentences 217
239

225
239

232
239

234
239

398
424

407
424

416
424

419
424

without Exp.

Sentences 60
68

63
68

65
68

66
68

139
146

142
146

144
146

145
146

with Exp.

Accuracies 90.2% 93.8% 96.7% 97.7% 94.2% 96.3% 98.3% 98.9%

This approach for sentence categorization has been tested with 877 sentences (which

have not been used to generate category profile of either C1 or C2) and the classification

results are reported in Table 2.8. These results show some interesting patterns:

• The classification method performs a little better for longer sentences.

• The accuracy improves with the increased length (in terms of the number of N-

grams) of the profiles. Overall, the method yields its best performance at a profile

length of 150. At this stage, the system misclassified only 13 sentences out of 877,

producing an overall classification accuracy of 98.52%.

• The result shows that N-gram model provides important indications to label sen-

tences containing embedded expressions. This feature, therefore, could be inte-

grated with other aspects for robust identification of embedded expressions.

2.4 Issues related to System Testing

Choosing a right set of data is always an important aspect to test any system performance.

In case of expression recognition, test data must represent the variability in terms of

expression symbols, structures, geometric complexity etc. Selecting adequate number

of test samples is another important criterion. The proposed corpus provides necessary

support in this direction. Four types of queries can be made by the designers to choose

the proper test samples. Queries are of the following nature:
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• Type I: Query for Symbols– Query can be made to search for documents and in

particular, embedded and displayed expressions which contain a particular query

symbol. The word symbol refers to identifiers, constants, operators, etc. that occur

in expressions. A query made on document level is replied with a set of document

IDs that contain the query symbol. Similarly, individual expressions tagged with

document IDs are returned when query is made on expression level. A query

processor is implemented by maintaining two different forms of indexing – one at

the individual expression level and another at the document level. Symbol name

and its relative occurrence frequency are used as index keys. Relative frequency of

a symbol (S) refers to an expression level feature and is computed as,

No. of occurrences of S in an expression, E
Total no. of symbols in E (2.3)

A document level indexing is just an aggregation of the results obtained for its

constituent expressions. The resultant expressions (or documents) are ranked ac-

cording to (in descending order) the occurrence frequency of the query symbol in

them.

• Type II: Query for Function Words– Expressions (or documents) containing a par-

ticular function word (e.g. sin, cos, log, max, etc.) can also be queried. This

facility is the same as one in Type I explained above. Necessary index structures

are maintained for this purpose.

• Type III: Query for structures: The presence of structures (e.g., fraction, root,

script, sum, product, etc.) can also be queried. The query result for a particular

structure returns the number of expressions (or documents if the query is made

at the document level) , respective or document IDs containing the expressions

along with a value representing the degree of nestedness DoN for each occurrence

of the structure. Through this query facility one may be assured that the test set

contains samples for the structure one is looking for. The geometric complexity of

the structures is also reflected in the associated DoN values.

• Type IV: Query for geometric complexity: Each expression is tagged with its ge-

ometric complexity (GC), as explained before. Therefore, one may make pose a

query to find expressions (and the documents containing them) having a particular

complexity level. A support for such types of queries helps one to understand the

geometric variability of expression structures. Moreover, based on the geometric
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complexity of expressions, one may choose the right data set to test one’s expression

recognition algorithm designed for expression recognition.

2.5 Summary

In this chapter, the development of a corpus of printed scientific and technical documents

is discussed. This study is motivated to facilitate research on automatic recognition of

expressions. A large number of samples are collected from various branches of science to

make the dataset a representative one. Groundtruthing of expression images follows a

new format useful for several research considerations. Later on, Chapter 7 shows how the

proposed format helps in a semi-automatic evaluation of expression recognition results.

A statistical analysis of the corpus content is presented to show the comprehensiveness

of the proposed corpus. Several utilities are provided to assist designing and testing of

an expression recognition system.

Assuming expressions are a special kind of visual language, the corpus presented here

is expected to help in automatic deduction of language definitions and several proba-

bilistic contextual information (as in the case of natural language processing [18]). This

chapter demonstrates the usefulness of such an analysis for identification of embedded

expressions. In future, we plan for more similar studies e.g. generation of a probabilistic

approach for interpretation of expression structures. The studies presented in [23, 50, 76]

have demonstrated, though in a limited domain, the usefulness of a stochastic technique

over a deterministic one to resolve ambiguous meanings imposed by different expression

symbols. However, formulation of any such probabilistic framework (e.g. Probabilis-

tic Context-Free Grammar, PCFG) requires a large representative training data. The

present corpus, therefore, is expected to play an important role in this direction.

The issue related to the dissemination of the corpus is treated as an immediate future

activity as mentioned later in Chapter 8. Execution of first level checking is nearly

completed and a second (and final) level checking of the truthed data is being planned

to further check the validity of the truthed data. In this phase, two groups of volunteers

(may be hired as in one of our departmental projects we have some budgetary provision

for this purpose) will be employed. Two copies of the set of groundtruthed files (say, G)

will be generated and let G1 and G2 denote these two copies. One group will work on

G1, manually check the validity of turthed data contained in G1, and correct the errors.

Let G ′
1 denote the corrected version of G1. Similarly, other group will concentrate on G2

to produce G ′
2. Apart from the existing tools (developed so far), design of some more

user-friendly interface is in progress to assist this manual correction. Next, the contents



41

of G ′
1 and G ′

2 are to be compared by automatic file comparison utilities like cmp, diff,

etc. Differences will be marked and corrected to produce the final version of the truthed

data, G ′). The completion of the first level checking took about 3 man-month and based

on this experience, it is estimated that another 3 man-month will be required to complete

the final validation of the truthed data.

Special Ackowledgement: We express our sincere gratitute towards our stu-

dents R.P. Ghosh, Md. S. Chowdhury, Alok Datta, and Mangal Chakraborty for their
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6U. Garain and B.B. Chaudhuri, “A Corpus for OCR research on Mathematical Expressions,” Int’l
Journal on Document Analysis and Recognition (IJDAR), accepted (in press) and an Internet version
has been appeared in March 2005 in the IJDAR website.



CHAPTER 3

IDENTIFICATION OF MATHEMATICAL
EXPRESSIONS IN DOCUMENTS

3.1 Introduction

Mathematical expressions typically appear in documents, either as (a) displayed (iso-

lated) expressions or (b) expressions embedded into (i.e. mixed with) the text lines.

Figure 2.1 shows a typical document containing both embedded and displayed expres-

sions. Therefore, the first step in recognition of printed expressions is to identify where

expressions are located on document image. Moreover, since the presence of expressions

disturbs an existing OCR system not yet trained for expression recognition, identification

and extraction of expressions will allow an existing OCR engine to process the normal

text portion as usual, whereas the extracted expressions can be processed by an OCR

specially designed for expression recognition. Such a framework may result in an efficient

conversion process for scientific paper documents.

As far as automatic extraction is concerned, displayed and embedded expressions

impose different level of complexities. This is so because the displayed ones are typed

in separate lines and exhibit several image-level features that distinguish them from

normal text lines. On the contrary, embedded expressions are generally small expression

fragments which are difficult to isolate from the text portion with which expressions are

mixed.

Review of the existing studies reveals that most of the work assume that expressions

are available in isolated form and only a few of them deal with expression extraction.

Summary of these extraction methods have been presented under the section 1.1 of

Chapter 1.

In our approach, separate techniques are employed for identification and extraction

of displayed and embedded expressions. A framework based on multifactorial analysis

is presented, which integrates several factors to successfully pinpoint the expressions.

The module for detection of displayed expressions initially considers several image level

features to suspect text lines containing isolated expressions. Next, presence of one or

more frequently occurring mathematical symbols is checked to validate the identification

results. On the other hand, approach for finding embedded expression initially invokes an

42
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existing OCR to recognize the input document. Several features including word N-grams

are computed on sentence level to spot sentences containing expressions (this is possible

because a statistical analysis of a corpus of scientific documents reveals that the word level

N-gram profile for sentences containing embedded expressions is quite different from that

of the sentences without any expression). Expression zones are pin-pointed by exploiting

inability of OCR to handle expressions and by using some common typographical aspects

followed in typing mathematical expressions. Experimental results on a considerable size

of dataset show high efficiency of the proposed technique.

The rest of this chapter is organized as follows. Section 3.2 presents a general discus-

sion on multifactorial analysis that has been used to formulate our proposed approach

for extraction of expressions. Section 3.3 presents the techniques for locating embedded

as well as displayed expressions in a document. Experimental results are outlined in

section 3.4 which also presents a measure of efficiency for extraction of expressions and

a comparative study to show the distinctiveness of our proposed approach against the

existing ones. Section 3.5 summarizes the chapter.

3.2 Multifactorial Analysis

In 1982, Wang and Sugeno [105] first defined the concept of factor spaces and applied

it to the study of artificial intelligence [106]. In factor space theory, the word factor is

the primary term that is denoted by a noun. It has properties like state denoted by a

numeral and characteristic by an adjective. The factor weight, for instance, is a noun;

120lbs, 150lbs, etc are its state; heavy, light, etc. are its characteristics.

Li and Yen [72] have discussed four types of factors namely: (i) Measurable Factors

- factors like time, height, weight, etc. which are measurable and for which the state

space (i.e the range of values) can be represented as a discrete subset of an interval. For

example, state space for the factor weight can be represented by subset (1, 2, · · · , 300).

(ii) Nominal Factors - factors that are qualitative in nature and whose state space are

sets of terms. For instance, the state space of the factor religion is given by (Hinduism,

Christianity, ..., Islam). (iii) Degree Factors - factors for which the state spaces are usually

the interval [0, 1]. Degree of similarity, feasibility, portability, etc. are the examples under

this category. (iv) Switch Factors - factors for which only two values yes, no are possible.

Because of their boolean characteristics, we call class (iv) as boolean factors. In our

problem, we employ class (iii) factors and in this connection, a brief discussion on fuzzy

multifactorial analysis is given below.

Consider a decision-making problem where we try to find an optimal solution or
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solution-set against some objectives. At first, objects are identified based on the objec-

tives to be satisfied. Objects are related to a number of factors and the identification of

an object depends of the states of these factors. For instance, an employee in an office

has his/her own data: name Mr. X, age 30 years, sex male, and department is accounts,

etc. So, an employee is being determined by specifying the states of each factor relevant

to him/her. By specifying a number of factors Mr. X can be uniquely identified and

described by them. Hence, an object like a point in Cartesian space can be viewed as

residing in a space constructed by the factors.

However, an object may not have significance to an arbitrary factor. For example, it

is meaningless to discuss factors such as time or mass for identification of mathematical

expressions in documents. So a factor f is called relevant to an object o only if f has

significant importance to o. By specifying the factors relevant to the objects identified

under the problem specification, our goal is to uniquely determine the object(s) that

gives the optimal solution.

After the objects and the factors relevant to them are identified, we go for evaluation

of the factors against each object. Suppose n-mutually independent factors f1, f2, · · · , fn

are identified as relevant to an object o and say, m such objects o1, o2, · · · , om are located

under the problem to be solved. Let f = f1, f2, · · · , fn be the set of n-factors. Then for

each of the m objects oi; (i = 1, 2, · · · , m) we get n-different values (or states) correspond-

ing to the n-factors and in total, m-different evaluations are obtained one per object. Let

E = e1, e2, · · · , em be the set of m-evaluations for m objects and for each ei there are

n-values vi1, vi2, · · · , vin one for each of the n-different factors. We represent these values

in a matrix called evaluation matrix V ,

V =

















v11 v12 · · · v1m

v21 v22 · · · v2m

...
... · · · ...

vn1 vn2 · · · vnm

















(3.1)

where n is the number of factors, m is the number of evaluations, and each column in V

represents one evaluation.

Now from this matrix it is very difficult to choose any evaluation as the solution

because each of them consists of n-different values for n-different factors. So, we design a

function Mn that maps a n-dimensional vector f = (f1, f2, · · · , fn) into a one-dimensional

scalar. Mathematically, it is represented as: Mn(f) = Mn(f1, f2, · · · , fn). Since Mn is a

function of factors, it is called a multifactorial function.

Here we are interested in class (iii) factors for which the state space of the factor
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(fi)
n
i=1 is represented by closed unit intervals [0, 1]. We also restrict the design of Mn

so that the synthesized value should never be greater than the largest (represented by

the operator,
∨

) of the component values and should never be less than the smallest

(represented by the operator,
∧

) of the component values, i.e.

m
∧

i=1

≤ Mn(f1, f2, · · · , fn) ≤
n
∨

i=1

fi (3.2)

In the literature, function like Mn that satisfies the above condition in equation 3.2

is called Additive Standard Multifactorial (ASM) functions [73]. Next, by applying such

an ASM function Mn on V we make a multifactorial evaluation as follows:

V ′ = (v1, v2, · · · , vm) (3.3)

where vi = Mn(v1i, v2i, · · · , vni); for i = 1 to m.

As we deal with degree factors, all the vij’s are in [0, 1]. Since Mn is an ASM function,

the values of all vi’s for (i = 1, 2, · · · , m) are in [0, 1]. Next, a simple search operation is

performed to select vk which is the maximum over all vi’s, i.e. vk = max(v1, v2, · · · , vn)

to indicate that the evaluation corresponding to vk (i.e. the k-th column in matrix v)

should be adopted as the optimal solution. However, in our problem, use of vis is slightly

modified to make the approach fit to our application, as explained in the next section.

3.3 Extraction of Expression Zones

The multifactorial analysis described above is used to extract expression zones contained

in a scientific document. However, depending on the nature of the factors that are in-

volved in the analysis, the extraction techniques are different for displayed and embedded

expressions, as described below.

3.3.1 Displayed Expressions

Displayed expressions appear as isolated text lines and they exhibit some image level

features that distinguish them from a normal text line. For instance, the statistical

investigation on the corpus of 400 pages, as described in Chapter 2 reveals that the mean

value of the white spacing between two normal text lines is about 0.4 times the text height

whereas the mean value of the white spacing above and below the displayed expressions

is nearly 1.8 times the text height. By text height we mean the average height of the

text lines of a document. In general, normal text of point-size 10 and 12 are found in the
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technical documents. However, so far as text height is concerned displayed expressions

are often taller (along vertical direction) than any normal text line.

Another important characteristic of displayed expressions is attributed to the spatial

arrangement of the constituent symbols. The y-coordinates of the lower-most black pixels

of expression symbols are generally scattered over the expression zone, whereas such pixels

of the symbols of a normal text line predominantly lie on one or two straight lines. So,

if the standard deviation (σy) among the y-coordinates of the lower-most black pixels

of the expression symbols is calculated, a value much larger than the similar SD-value

calculated for a normal text line is obtained.

Based on these observations, the following four factors (fws, fds, fmh and fmo) are

defined and integrated through multifactorial analysis for the extraction of displayed

expressions. The factor, fws captures the feature related to the white space surrounding

(above and below) a text line and is measured as

fws = 1 − e
(− r

rµ
)

(3.4)

where r denotes the average of the white space (measured in number pixel rows)

above and below a text line and rµ denotes the mean of the white space between two

consecutive text lines. In case of the first line, only the line below it is considered to

measure r (similarly, for the last text line its preceding line is considered).

The second factor (fms) is designed to measure the scatteredness of the constituent

symbols in a text line and is defined as

fms = 1 − e−σy (3.5)

where σy denotes the standard deviation among the y-coordinates of the lower-most

pixels of the symbols (i.e. connected components) of a text line.

The factor, fmh measures the height (h) of a text line in terms of pixel rows and

compares it to the mean (hµ) of all h-values. The value of fmh is computed as follows:

fmh = 1 − e
(− h

hµ
)

(3.6)

The fourth factor (fmo) keeps track of the occurrence of a few mathematical operator

symbols that often appear in expressions. Only 13 operators listed in Table 2.5 are

considered for computation of fmo. If k1 denotes the number of operators identified in

a text line and pi denotes the probability of occurrence of the i-th symbol then fmo is

defined as
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fmo = 1 − e−k1

∑K

i=1
pi (3.7)

Next, these factors involve in a multifactorial analysis as follows. Next, let m1 be the

total number of text lines in any document image. For all the m1-lines the above four

factors (fws, fms, fmh, and fmo) are evaluated and a 4 × m1 one-factor evaluation matrix

is formed as follows:

Vs =

















f 1
ws f 2

ws · · · fm1

ws

f 1
ms f 2

ms · · · fm1

ms

f 1
mh f 2

mh · · · fm1

mh

f 1
mo f 2

mo · · · fm1

mo

















(3.8)

Each column in matrix Vs represents each text line in the image and consists of a

4-dimensional vector that reflects four different aspects for that line to be a displayed

expression. Next, these aspects get combined and mapped into a one-dimensional scalar

by an ASM-function Ms. The function Ms transforms the 4×m1 matrix Vs into a 1×m1

matrix V ′
s as follows:

V ′
s = (f 1

s , f 2
s , · · · , fm1

s ) (3.9)

where f i
s = Ms(f

i
ws,f

i
ms, f i

mh, f i
mo) = 1

4
(f i

ws + f i
ms + f i

mh + f i
mo); i varies from 1 to

m1.

Since the state spaces of all the four factors are theoretically bounded by the interval

[0, 1] and Ms retains the property of an ASM-function (discussed in section-3), the state

space for fs is also bounded by the interval [0, 1]. Actually, Ms is used to give each text

line a degree of membership, f i
s that reflects the possibility of i-th line to be a displayed

expression. Higher fs-value indicates larger possibility for that line to be a displayed

expression.

Looking at the f i
s values in V ′

s , the text lines representing displayed expressions are

selected against a threshold (τ1) determined empirically. The i-th text line is assumed

to be a displayed expression if f i
s > τ1. In our experiment, it is observed that τ1 = 0.75

successfully identifies the displayed expressions.

To demonstrate the proposed technique, consider the figure 3.1 which contains seven

text lines among which one is a displayed expression. The Vs of equation 3.8 and V ′
s of

equation 3.9 obtained for the document in figure 3.1 are shown below:
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Figure 3.1: Extraction of displayed expressions: an example.

Vs =

















0.821 0.714 0.562 0.291 0.692 0.851 0.981

0.682 0.611 0.607 0.532 0.679 0.0 0.944

0.538 0.569 0.541 0.598 0.539 0.505 0.886

0.147 0.272 0.210 0.0 0.0 0.0 0.941

















(3.10)

V ′
s = (0.547, 0.542, 0.480, 0.355, 0.478, 0.339, 0.938) (3.11)

It is to be noted that the value corresponding to the seventh element of V ′
s clearly

identifies the displayed expression which is the seventh text line of the document in

figure 3.1.

3.3.2 Embedded Expressions

Unlike extraction of displayed expressions, identification of embedded expressions needs

extra computational effort. This is so because embedded expressions are mixed with

the normal text and often it becomes difficult to locate the expression fragments in a

text line that predominantly contains normal text characters. In our approach, design

of an extraction technique started studying the corpus (described in Chapter 2) of 400

scanned pages of scientific documents containing 3101 embedded expressions. Two ex-

isting commercial OCR systems (that are often used commercially for converting papers

into electronic form) are invoked to recognize these pages. Recognition results for sen-

tences with and without expressions are separated for further investigation. The following

observations are important in this context.

• Sentences without expressions are recognized with almost no error.
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• Also, high recognition accuracy is obtained for normal text words in sentences with

expressions.

• Some of the expression symbols (e.g. Roman letters, digits, symbols like ‘+’, ‘-’,

‘=’, punctuation marks, etc.) are often recognized properly. However, for majority

of these symbols, the OCRs, on recognition, associate suspicion marks with them

to indicate that either these symbols in isolation (excepting characters like ‘a’, etc.)

do not form any valid word (e.g. isolated characters, characters with scripts, words

like ”sin”, ”log”, etc.) or to reveal poor OCR confidence during their recognition

(sometimes due to italic or bold characters).

• Other expression symbols (mostly Greek letters, majority of mathematical opera-

tors, special symbols, etc.) are either rejected (signaled by some special symbol) or

misrecognized with a suspicion mark.

• If word level N-grams are computed for two categories of sentences (with and with-

out expressions) then such an N-gram based category profiles markedly differ from

one another. Section 2.3 of Chapter 2 presents an elaborate discussion in this re-

gard. Let CE denotes the category of sentences containing embedded expressions.

In our approach, the above observations are captured through defining suitable factors

that involve in a multifactorial analysis. For a given document, the proposed method,

at first, invokes an existing OCR to recognize the page content in its capability. Next,

for each sentence, the word N-grams are computed and their categories are determined

against the pre-computed statistics. In fact, instead of categorizing a sentence, a proba-

bility (pi) that the i-th sentence belongs to the category CE is computed.

Within a sentence, a word is defined as a sequence of characters delimited by a space

and let wij denote the j-th word of i-th sentence. Initially, for all words, two degree factors

(fmc and fce) are evaluated to identify the words that are part of embedded expressions.

In true sense, these are not words, rather a sequence of some symbols forming expressions.

Identification of these words are further verified by evaluating three more factors (fts,

fms, and fcd). The five factors (fmc, fce, fts, fms, and fcd) are defined as described below:

The factor, fmc measures the confidence of OCR in recognition of the word, wij and

defined as

fmc = 1 − e−
coff

c (3.12)

where c denotes the confidence of the OCR for recognition of the word, wij and

coff is the offset confidence level based on which the OCR either accepts a recognition
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result or suspects it to be wrong. The value of c or coff depends on several aspects like

average character level similarity measure (if the recognition scheme is based on template

matching) obtained for the constituent characters of a word, the presence of the word

in the dictionary or lexicon used by an OCR for the post-processing purpose, etc. For

function words like ‘sin’, ‘log’, etc. high character level similarity measures are obtained

but still the OCR may suspect their recognition since they do not appear in a common

dictionary.

The second factor, fce measures the inclination of the sentence containing the word

(wij) towards belonging to the category CE and it is set to pi as discussed before.

The factor, fts records the type style of a word. Type style (i.e. regular, italic, and

bold) is checked at the character level following the approach presented in [19, 21]. To

obtain the binary image of a word, image level bounding box information (i.e. the four

corner coordinates) is made available for each word along with its recognition result.

Character level type styles determine the value of fts for a word as follows:

fts = 1 − e−k2 (3.13)

where k2 is the number of characters in the word for which italic or bold styles are

detected.

The factor, fms measures the scatteredness of the constituent symbols in a word and

is computed following the equation 3.5. Another factor, fcd measures the inter character

distance within the word. Let g denote the average of the inter-character gaps for the

word under evaluation and gµ denotes the same for a normal text word then fcd is

computed as

fcd = 1 − e
(− g

gµ
)

(3.14)

The value of gµ is computed considering a few normal text words for which the OCR

shows high confidence.

Initially, fmc and fce are evaluated for each word and next, a multifactorial function

Mid is used to map the 2-D vector into a scalar quantity (fsus) as follows:

fsus = Mid(fmc, fce) = 1/2(fmc + fce)

Basically, Mid assigns a degree of membership to each word to be mathematical i.e.

part of an embedded expression. If this degree of membership of a word is above a

threshold (τ2), then the word is deemed as mathematical.
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The identifications of such mathematical words (let m2 be the number of such words)

are further verified for their final acceptance. For this purpose, other three factors (i.e.

fts, fms, and fcd) are evaluated for each of the m2 words and a 3×m2 one-factor evaluation

matrix is formed as follows:

Vw =











f 1
ts f 2

ts · · · fm2

ts

f 1
ms f 2

ms · · · fm2

ms

f 1
cd f 2

cd · · · fm2

cd











(3.15)

Next, these factors get combined and mapped into a one-dimensional scalar by an

ASM-function Mem. The function Mem transforms the 3 × m2 matrix Vw into a 1 × m2

matrix V ′
w as follows:

V ′
w = (f 1

w, f 2
w, · · · , fm2

w ) (3.16)

where f i
w = Mem(f i

ts,f
i
ms, f i

cd) = 1
3
(f i

ts + f i
ms + f i

cd); i varies from 1 to m2.

Since the state spaces of all the five factors are theoretically bounded by the interval

[0, 1] and the function Mid and Mem retain the property of ASM-functions (discussed in

section 3.2), the state space for fw is also bounded by the interval [0, 1].

Looking at the fw value, the identification of a word representing embedded expression

is accepted against a threshold (τ3) determined empirically. A word is identified as

mathematical if fsus > τ2 and this identification is accepted if fw > τ3. The extraction

of embedded expressions is partitioned into two stages (i.e. (i) identification of words

to be mathematical and (ii) then verification of identification results) to narrow down

the space for finding the embedded expressions. A large number of normal text words

not participating in any expression are ignored by looking at their fsus values at the

first stage. In our experiment, it is observed that the choice of τ2 = 0.5 and τ3 = 0.7

successfully identify the embedded expression fragments.

To demonstrate the proposed technique for extraction of embedded expression, con-

sider an example sentence shown in figure 3.2(a). The sentence contains seventeen words,

among which four are expression fragments. The OCR output for this sentence is shown

in figure 3.2(b). Words for which the OCR shows less confidence are underlined in fig-

ure 3.2(a). The sentence shows its inclination towards the category CE mainly because of

the presence of the words Let and denote. Word-level investigation reveals that confidence

scores for recognizing ‘tA1’, ‘tA2’, ‘M1’, and ‘M2’ are less than the average confidence

for other words and thereby, high fsus values for such words identify them as part of

embedded expressions.
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Figure 3.2: Extraction of embedded expressions: an example.

Next, the Vw of equation 3.15 and V ′
w of equation 3.16 obtained for these four suspected

words are shown below:

Vw =











0.863 0.863 0.630 0.630

0.949 0.949 0.878 0.939

0.950 0.917 0.950 0.629











(3.17)

V ′
w = (0.921, 0.910, 0.819, 0.733) (3.18)

It is to be noted that in V ′
w, the values corresponding to all the four suspected words

are above the threshold (assuming τ3 = 0.7) and hence, they are finally accepted as

representing expression fragments. In our approach, if more than one word in a sentence

are labeled as mathematical then they are grouped together according to their positional

proximity to form embedded expressions.

3.4 Experimental Results

The experiment has been carried out on 400 scanned pages available in the corpus de-

scribed in Chapter 2. These pages contain 2399 displayed expressions and 1084 sentences

with 3101 expression fragments embedded in them. A sentence is said to have one or

more embedded expressions if it would need the use of math mode had the sentence

been prepared using TEX. As explained in Chatper-2 for each page (say, docxxx.tif), dis-

played and embedded expressions contained in the page are groundtruthed in separate

files called docxxx.dis and docxxx.emb, respectively. Along with other information (see

Appendix-A and B) each expression is tagged with its bounding box corner (top-left and

bottom-right) coordinates.
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Extraction of expressions is evaluated against the bounding box information available

in the groundtruthed data. One of the following four cases can occur during extraction

of expressions: Case-I. An extraction is correct i.e. the bounding box corresponding

to the extracted zone finds a match in the groundtruth. Case-II. An extraction is par-

tially correct i.e. the extracted zone shows a bounding box that partially matches the

groundtruth. Case-III. An expression is missed i.e. is not extracted at all and Case-IV.

False identification i.e. an extracted zone does not actually contain any mathematics at

all.

Though the extraction of embedded expression shows all the four cases stated above,

extraction of displayed expressions do not exhibit the problem stated under Case-II since

for a displayed expression the entire text line is extracted and that line may or may not

contain mathematics. In our approach, each line of a multi-line expression is initially

extracted as separate displayed expression and later on, positional proximity of the ex-

tracted zones connects them together. Figure 3.3 shows the extraction results along with

their types (which corresponds to one of the four cases described above) for the embedded

expressions contained in the document shown in figure 2.1.

Figure 3.3: Extraction of embedded expressions from the document shown in figure 2.1.
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3.4.1 Computation of Extraction Efficiency

To evaluate the extraction results, a score (for example, α, β, and γ for case-I, II and

III, respectively) is associated with each type of extraction. Let T1 be the total number

of expressions (embedded as well as displayed) properly extracted, T2 be the number for

which partial extraction is done, T3 be the number of expressions, which are missed (i.e.

not extracted) and T4 be the number of zones that do not contain any expression (false

identification). The extraction efficiency (E) for an input page is computed as

E =
αT1 +

∑T2

i=1 βi + γT3

αT
−
(

1 − e−δ
T4

T

)

(3.19)

where, T = T1 + T2 + T3. In our evaluation strategy, α and γ are set to 1 and 0,

respectively and βi is computed as

βi = 1 − Ce − Ca

Ca
(3.20)

where Ce is the number of components found within the i-th extracted zone and Ca is

the number of components actually present in the zone. The value of Ca is obtained from

the groundtruth where MathML presentation tags are available for each expression.

The last term in the equation 3.19 i.e.
(

1 − e−δ
T4

T

)

induces penalty due to false

identification. Here, the number of false identifications (i.e. T4) is compared to the total

number of actual zones containing expressions (i.e. T ). Note that the lower bound of the

exponential function used to impose penalty due to false identification is 0, whereas the

upper bound (always ≤ 1) is controlled by the parameter δ. In our system, δ is set to

1, however, an empirically chosen value for δ may penalize false identifications is a more

judicious manner.

If a document (Di) shows an extraction accuracy of Ei, then an average efficiency

Eav is computed in a dataset of N documents as follows:

Eav =
1

N

N
∑

i=1

Ei (3.21)

Following equation 3.19, extraction efficiency for each of the 400 pages is computed

separately. As an example, for the page portion in figure 2.1, the following extraction

results are obtained: out of thirteen expressions (two displayed and eleven embedded),

ten are properly extracted, two embedded expressions are missed and one embedded

expression is partially extracted (results for extraction of embedded expressions are in

figure 3.3). For partially extracted expression, the extracted zone contains two out of
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three actual components giving βi =
(

1 − 1
3

)

= 0.67. Therefore, the extraction efficiency

(E) for this document equals to 0.821
[

1×10+0.67+0×2
1×13

]

is obtained. The equation 3.21 com-

bines page-level efficiency scores to give an overall measure for a given set of documents.

In our experiment, a value 0.971 for Eav has been obtained for extracting expressions

contained in 400 pages. Details of extraction results are given in Table 3.1.

Table 3.1: Summary of Extraction Results

Nature of Accuracy Remarks
Extraction Embedded Displayed

Case-I (Perfect) 2904/3101 (93.65%) 2358/2399 (98.29%) Detection of Perfect, Partial
Case-II (Partial) 169/3101 (5.45%) NIL and Missed is done against
Case-III (Missed) 28/3101 (0.9%) 41/2399(1.71%) the groundtruthed data.

Case-IV (False) 62 28 In this case, some text
portions are wrongly
extracted as expressions.

Error Analysis

Analysis of extraction results shows that the errors occurring for extraction of displayed

expressions are mostly (1.71%) due to false identification (i.e. Case-IV as stated above).

The chapter or section title, table or figure caption, etc. are generally separated by large

white space giving high value of the factor, fws. Sometimes, false recognition of a few

letters as mathematical operator (e.g. ‘C’ as ‘(’, hyphen as minus, etc.) increases the value

of the factor, fmo. Identification of displayed expression is missed in rare occasions where

the expressions do not exhibit the features used for their extraction. The expressions

that consist of only a few symbols and are densely typed with a line spacing similar (or

less than) to that between successive text lines create some problem during extraction.

Figure 3.4a shows such an example where the proposed technique fails to identify the

displayed expression.

In a few cases, text lines consisting of embedded expressions are identified as displayed

expressions. Figure 3.4b demonstrates one such case. However, in these cases text line

contains more mathematics than normal text and therefore, as far as OCR of the entire

document is concerned, identification of the mathematics intensive text lines as displayed

expressions is not a severe error. This is because normal OCRs can hardly recognize such

lines and special module trained for expression recognition are anyway needed.

In case of finding embedded expressions, major extraction errors fall under Case-II

or III, as stated before. These errors occur for some of the short expression fragments
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(a)

(b)

Figure 3.4: Error in extracting displayed expressions: two examples (a) Identifications
of the displayed expressions occurring on the last two lines are missed, (b) A text line
containing embedded expression is detected as displayed expression.

containing only 2 or 3 symbols. On several occasions, it is difficult to distinguish them

from a normal text word. Figure 3.5b shows occurrence of such errors when extraction of

expressions is attempted on the document in figure 3.5a. False identifications (i.e. a text

portion is wrongly identified as embedded expression) are encountered for documents

with excessive degradation due to aging, improper digitization, etc. where large number

of broken and merged characters appear and disturb the extraction process.

The performance measure presented in equation 3.19 also considers false extraction

along with the accepted and rejected extractions. In our experiment, analysis of test

results shows that 62 and 28 zones fall under this false extraction category for extraction

of 3101 embedded and 2399 displayed expressions, respectively. These false identifications

induce a penalty of 0.016 (negative) in the overall performance measure.

3.4.2 Comparison with the Previous Studies

Though most of the previous studies dealing with expression recognition assume that

the expressions are available in isolated form, a few address the problem of finding ex-

pressions in scientific documents. Section 1.1 of Chapter 1 presents a brief survey of the



57

(a) (b)

Figure 3.5: Errors in extracting embedded expressions: (a) Input page (b) Extraction
results. Extractions of embedded expression fragments marked with rectangular boxes
in (a) are missed in (b).

approaches proposed for identification of expressions in printed documents. Any quan-

titative comparison of these methods is difficult, since each work defines its own dataset

to test the extraction technique. Here, we attempt to outline a qualitative comparison

of the studies in terms of the approach adopted, nature of the test data and accuracy.

Table 3.2 presents such a comparative study.

Looking at Table 3.2 it is noted that some of the studies do not present any experimen-

tal detail for their proposed approach. Fateman [33] describes the proposed algorithm

in details and demonstrates it with examples. Chowdhury et. al. [24] compute separate

accuracies for extraction of displayed and embedded expressions whereas Jin et. al.[55]

provide experimental results for identification of displayed expressions and demonstrate

extraction of embedded expressions only by an example. On the other hand, the paper

by Kacem [57, 58] presents extraction results with some details and also, formulates a

measure for evaluating performance of the propose technique. The work by Suzuki et.

al.[95] involves a large set of expressions for their experiment but does not provide any

accuracy measure for finding expressions in printed documents.

Compared to these previous studies our approach has attempted to present experi-

mental results on a dataset having representative samples of various scientific documents.
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Extraction of displayed and embedded expressions has been tested separately and the

errors are analyzed in details. Also, an automatic performance evaluation technique is

used that utilizes the groundtruth format described in Chapter 2. A technique for com-

puting the efficiency of extraction method is presented to measure the overall (displayed

as well as embedded) extraction accuracy.

3.5 Summary

A technique for the extraction of mathematical expressions contained in scientific docu-

ments is presented in this chapter. Separate approaches are proposed for identification

of embedded and displayed expressions. Several aspects are considered to formulate the

extraction methods. These aspects are captured in the form of factors that participate

in a multifactorial analysis which forms the core of the extraction technique.

The experiment involving a test set of considerable size shows encouraging results.

Techniques for extraction of displayed and embedded expressions are evaluated sepa-

rately. Next, an integrated performance measure is presented to verify the efficiency of

the overall extraction process. A comparative study of the previous approaches as well

as the one described in this chapter is also presented.

Integration of the proposed approach with one of the existing OCR systems and

evaluation of its performance in recognizing scientific documents will be considered in a

future work.

Special Ackowledgement: A paper1 based on the study discussed in this

Chapter was presented in the 17th International Conf. on Pattern Recognition (ICPR)

and we sincerely thank the anonymous reviewers for their valuable comments and sug-

gestions based on which we did incorporate several modifications in the work presented

in this Chapter.

1U. Garain, B.B. Chaudhuri, and A. Ray Chaudhuri, “Identification of Embedded Mathematical
Expressions in Scanned Documents,” 17th Int’l Conf. on Pattern Recognition (ICPR), pp. 384-387,
Cambridge, UK, 2004.
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Table 3.2: Comparison of the Studies on Extraction of Mathematical Expres-
sions

No. Authors Approach #Test Samples Accuracy

1. Lee and Wang Image level features are used for NA NA
[69, 70] extraction of displayed exps. OCR

results along with the knowledge
about expression layout are used
for detection of embedded exps.

2. Fateman Grouping of characters as text and NA NA
[33] math based on their recognition (Approach is

and some post-processing. demonstrated
with an exam.)

3. Toumit et. al. Level features for identification NA NA
[99, 100] of displayed expressions and

recognition of a few mathematical
operators for embedded expressions.

4. Kacem et. al. Recognition of a few mathematical 100 scientific 93%
[57, 58] operators is done. Spatial documents (overall)

arrangement of expression symbols containing
is also exploited. A fuzzy logic 300 formulas.
based approach is used to
formulate the extraction process.

5. Chowdhury et. al. Spatial distribution of connected 197 97.69%
[24] components is captured at the scientific (displayed)

image level. No character document 68.08%
recognition is attempted. images. (embedded)

6. Jin et. al. Recognition free approach is 93 pages 91.65%
[55] adopted. Extraction of expressions with 1370 (displayed)

is achieved by using image level displayed
features. Existence of 2-D exps.
structures is checked to detect Tested on
embedded expressions. 1233 exps.

7. Suzuki et. al. Two OCRs are used to recognize 476 NA
[52, 95] normal characters and mathematical documents

symbols. The approach used in [58] containing
is used to pin-point the expressions. 12,493 exps.

8. Our Approach Both image level features and 400 pages 98.29%
character recognition results containing (displayed)
are used. Limitation of existing 3101 embedded 93.65%
OCR systems has been exploited. and 2399 (embedded)
A multifactorial analysis is used displayed 95.67%
to integrate several aspects. expressions (overall)

Efficiency:
0.971,

following
the Eq. 3.21

NA: Not Available, Exps: Expressions, Exam: Example.



CHAPTER 4

RECOGNITION OF PRINTED
MATHEMATICAL SYMBOLS

4.1 Introduction

Symbol recognition in mathematical expressions is difficult because there is a large char-

acter set (Roman letters, Greek letters, operator symbols, etc.) with a variety of font

styles (regular, bold, italic) and a range of font sizes (scripts, limit expressions, etc.).

Certain symbols have an enormous range of possible scales (e.g. brackets, parentheses,

symbols like
∫

,
∑

,
∏

, ∪, etc.). Symbols also vary substantially in their shape charac-

teristics. Therefore, recognition of mathematical symbols is considered as an important

pattern recognition problem.

Review of existing studies as presented in section 1.1 of Chapter 1 shows that the

studies dealing recognition of symbols are a few in number. Most of the published papers

have put emphasis on analysis of two-dimensional structures appearing in expressions.

In several experiments, an error-free symbol recognition is assumed before formulating

any method for symbol arrangement analysis. In controlled research environment, it

is possible to bypass the symbol-recognition step and concentrate on structure analysis

phase. However, design of a symbol-recognition module is essential to realize a complete

expression recognition system. The work presented in this chapter is directed to this end.

As mentioned earlier, the symbols appearing in mathematical expressions are quite

large in number and show wide variety in shape, size and style. Symbols like dot, comma,

colon, etc. are small in size and they have little shape signature. Symbols like equal to,

plus, minus, fraction bar, vertical bar, greater than, less than, brackets, etc. are not much

complex in shape and recognition of such strokes is not very difficult. On the other hand,

symbols like Roman and Greek letters, etc. involve relatively complex stroke patterns

and recognition of these symbols needs some amount of extra effort.

Based on these observations, a multiple classifier system is adopted here for recogni-

tion of symbols. A group of four classifiers of different capabilities are arranged hierarchi-

cally in two levels. The classifier used at the top level employs stroke-based classification

technique to recognize symbols showing high occurrence frequencies. Symbols not recog-

nized at the first level are passed to the second level that employs a combination of three

60



61

classifiers. The classifiers placed at this level make use of different feature descriptors

namely, run-number or crossing counts, density of black pixels and wavelet decomposi-

tion. Different combination techniques have been attempted to integrate the second level

classifiers to achieve high recognition accuracy. The presence of connected (or touching)

symbols may disturb the recognition of symbols. Therefore, a module for segmentation

of connected symbols is designed. Several image level features are considered and a

multifactorial analysis as discussed in section 3.2 of Chapter 3 is implemented to find

appropriate cut positions.

The rest of this chapter is organized as follows. Section 4.2 presents the description

of the classifiers and different combination techniques for their fusion. Segmentation

of touching characters is discussed in section 4.3. Section 4.4 reports the experimental

results and a comparison of the related studies including the one proposed in this chapter.

Section 4.5 summarizes the chapter.

4.2 The Classifiers and their Combination

For recognition of symbols, a multiple-classifier concept is adopted by considering wide

variations in shape and size of the symbols appearing in different expressions. Some of the

symbols like dot, comma, colon, etc. are small and they have little shape characteristics.

Symbols like equal to, plus, minus, fraction bar, vertical bar, greater than, less than,

brackets, etc. are not much complex in shape and recognition of such symbols is relatively

easy. On the other hand, symbols like Roman and Greek letters involve comparatively

complex stroke patterns and recognition of these symbols needs some amount of extra

effort.

Based on these observations, a group of four classifiers of different capabilities is used

in our system. The classifiers are arranged according to the figure 4.1. Initially, classifier-

1 (C1) is invoked to recognize quite a few operator symbols that are simple in shape but

appear quite frequently in the expressions (frequencies for some of these symbols are

provided in Table 2.5). Symbols not recognized by the classifier-1 are passed on to the

next level where they are classified by each of the three classifiers in isolation and then

the results obtained from these classifiers are combined to improve the final recognition

results. The features used by individual classifiers are briefly described below.
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Figure 4.1: Arrangement of the classifiers.

4.2.1 Classifier-1

Classifier-1 looks for the presence of certain strokes to recognize symbols. These strokes

are shown in figure 4.2a. Since the strokes are simple in shape, robust detection of

these strokes is achieved with reasonable computational effort. Using the stroke features,

classifier-1 tries to recognize 83 symbols, as shown in figure 4.2b. It can be noted that

classifier-1 mostly recognize symbols which are used as operators in expressions. Some

of these operators exhibit high frequency of occurrence in expressions.

For a given symbol, at first, the recognition engine tries to detect one or more number

of these 11 strokes as listed in figure 4.2a and then geometric orientation of the identified

strokes are checked against a set of rules maintained in the system. The rules used the

classifier-1 are of two types: shape description rules and stroke merging rules. The shape

description rules are formed to provide unique definition of the symbols recognized by

the classifier. For example, the symbol ‘[’ is recognized by identifying one vertical and

two horizontal strokes and looking at their relative positions. The rules providing shape

description for the symbols take care of the variations that can be found in the definition

of several symbols. For instance, the ‘+’ and ‘-’ parts of the symbol, ‘±’ may or may

not be connected to each other depending on specific type faces. Therefore, separate

description rules are kept in the rule base to tackle such variations.
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Figure 4.2: Classifier 1: (a) Stroke features used to recognize symbols shown in (b).

On the other hand, merging rules, whenever possible combines several disconnected

strokes into a meaningful symbol. For instance, in case of ‘=’ sign, two disconnected

horizontal strokes are initially identified and then ‘=’ is recognized as the combination

of these two strokes satisfies the rule corresponding to equal to i.e. horizontal strokes of

almost equal length are placed one above the other and are separated by a vertical space

of height less than the horizontal width of the strokes.

However, rules for merging multiple strokes into symbols consider one important

aspect explained as follows. Several symbols recognized by classifier-1 contains another

valid symbol as their part. For example, ‘=’ symbols is part of other symbols like ‘≡’,

‘∼=’, ‘
.
=’, etc. Therefore, merging rules assume higher priority for merging of maximum

possible strokes into a valid symbol to avoid detection of sub-part of symbols. For

example, detection of ‘=’ is attempted after the rules corresponding to ‘≡’, ‘∼=’, and ‘
.
=’

are tried.

To recognize 83 symbols listed in figure 4.2b, classifier-1 uses 59 shape description

and 26 stroke merging rules. Out of these 83 symbols, since many appear frequently in

expressions, classifier-1 often recognizes sizeable number of symbols of any expression.

The amount of contribution and the recognition accuracy provided by classifier-1 are

discussed in detail in section 4.4.
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4.2.2 Other Classifiers

The symbols (mostly the Roman letters and digits, Greek symbols, calligraphic letters,

some mathematical operators, etc.) that are not recognized by Classifier-1 are passed to

a group of three classifiers. Each of these three classifiers computes different features on a

target symbol to recognize it. In our system, for a given symbol each classifier ranks the

symbol classes, correct obtains the highest rank. Later on, individual classifier’s results

are combined to improve the rank of the true class in the final classification. Features

used by the individual classifiers are summarized below.

• Classifier-2: This classifier uses run-number based feature vectors to classify sym-

bols. Consider a symbol (S1) enclosed by a minimum upright rectangle, called the

bounding box. Let (S1) be scanned horizontally from top to bottom and let N be

the total number of scan lines. For each scan line, the number of black to white

transitions is counted. This count is known as run-number or crossing count. Fig-

ure 4.3 shows the run numbers for some of the horizontal and vertical scans for

the symbol, β. For i-th row let RS1
[i] be the number of black runs. The sequence

{RS1
[i]; i = 1, 2, . . . , N} may be considered as a vector of N integer components.

We can call it as horizontal run count vector of S1.

Figure 4.3: Computation of horizontal and vertical run numbers.

The run count vector may be given an abbreviated notation by observing that

the run count remains unaltered over a sequence of several scan lines. Each such
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sequence may be represented as a pair like (mk, nk), where mk denotes the number

of scan lines for which the run count is a constant nk. Note that
∑

k mk = N .

To normalize the sum, we can divide the individual mk’s by N. Let wk = mk/N .

Clearly,
∑

wk = 1. Hence, the symbol S1 is represented by a normalized horizontal

run count vector defined as

VH(S1) = {wk, nk; k = 1, 2, . . . , K} where
K
∑

k=1

wk = 1 (4.1)

Similarly, a vertical run count vector VV (S1) can also be computed.

In the classification phase, feature vectors VH and VV for a target symbols are

computed and matched with the stored prototypes. Matching is done by defining

a distance measure explained below:

Let VH(S1) and VH(S2) be the normalized horizontal run-count vectors of symbols

S1 and S2, respectively. VH(S1) and VH(S2) are represented as

VH(S1) = {wk, nk; k = 1, 2, . . . , K} where
K
∑

k=1

wk = 1 (4.2)

VH(S2) = {wj, nj; j = 1, 2, . . . , J} where
J
∑

j=1

wj = 1 (4.3)

Next, define Wk(S1) =
∑k

i=1 wi(S1) and Wj(S2) =
∑j

i=1 wi(S2). Then the union

of {Wk(S1); k = 1, 2, . . . , K} and {Wj(S2); j = 1, 2, . . . , J} is sorted in increasing

sequence. Let this sequence of numbers be {Wr; r = 1, 2, . . . , R} where WR = 1.

It is clear that the run-count of symbol S1 is constant over Wr − Wr−1 for any

r = 2, . . . , R. The same is true for the run count of the symbol S2.

Now, we can re-define the run-counts of S1 and S2 as wrnr(S1) and wrnr(S2),

respectively; where r = 1, 2, . . . , R. The distance measure is now formulated as

JH(S1, S2) =
R
∑

r=1

wr nr(S1) − nr(S2) (4.4)

It may be understood that JH satisfies metric property (a formal proof can be found

in [39]) since
∑

wr = 1. In a similar way, we can scan the characters vertically

within the bounding box and find the run-count dissimilarity measure JV (S1, S2).

The overall dissimilarity measure may be defined as
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J(S1, S2) = JH(S1, S2) + JV (S1, S2) (4.5)

It can be noted that J(S1, S2) is insensitive to bold, expanded and contracted style

of symbols. Even it is reasonably stable with respect to binarization error. However,

it is observed that inclusion of feature templates for italicized version of symbols

in the prototype library improves recognition score.

• Classifier-3: Feature vector used by this classifier is computed by dividing a sym-

bols bounding box into 5 × 5 mesh or grid and then percentage of black pixels in

each grid is computed to generate a 25-dimensional vector. Three more data items:

first two representing the percentage of black pixels in the top half and the bottom

half division and the third one giving the aspect ratio (i.e. width-to-height ratio)

are added to obtain 28 dimensional feature vectors. The feature vector used by this

classifier is somewhat similar to the one used in [31, 32]. The 28-D feature vector

computed for the symbol
∑

in figure 4.4a is shown in figure 4.4b.

(a)

(b)

Figure 4.4: Computation of feature vector based on density of black pixels.

An weighted Euclidean distance between two vectors (say, p and q is defined as
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∑

i wi pi − qi , where i is the dimension index. In the present system, all wi are set

to 1 but a more judicious choice of wi will definitely produce better results.

Features used by this classifier is found invariant to font size but sensitive to style

variation. Therefore, addition of vectors for italic and bold characters improves

recognition performance. However, to improve the speed of the classifiers, charac-

ters of identical size are compared. A target vector is compared with a reference

vector only if their aspect ratios differ by at most 10% and this reduces the number

of comparisons to a large extent.

• Classifier-4: This classifier uses wavelet transform for recognition of symbols.

Use of wavelet decomposition in symbol recognition task has gained considerable

attention in recent past. Since wavelet transform characterizes different physical

structures of a character image at different resolution levels, feature extraction

based on wavelet decomposition seems to be very effective for symbol recognition

task. In our case, the two-dimensional binary image (array) of a symbol is subject

to wavelet decomposition by transforming the array on row major order first and

then on column major order. Daubechies wavelet [27] is used for this purpose. The

simplest member of this family of wavelets is the Daubechies-4 wavelet, which has

four coefficients l0, l1, l2, and l3 that form the low pass (or smoothing) filter (L).

The coefficient values used here are as follows:

l0 =
1 +

√
3

4
√

2
, l1 =

3 +
√

3

4
√

2
, l2 =

3 −
√

3

4
√

2
, l3 =

1 −
√

3

4
√

2
(4.6)

Another set of four coefficients (h0, h1, h2, and h3) form the high pass filter (H),

where h0 = l3, h1 = l2, h2 = l1, and h3 = l0.

Each symbol image is size normalized to 64 × 64 maintaining the original aspect

ratio. Decomposition is applied twice to obtain 16 × 16 LL (smooth-smooth) ap-

proximation of the original image (actually, decomposition gives 17 × 17 array for

exact reconstruction of the original image). These 17×17 binary images are stored

in the prototype library for each reference symbol. For a given symbol (T = tij),

the symbols classes (W k = {wk
ij}) are ranked according to a distance measure de-

fined as D(T, W k) =
∑

i

∑

j XOR
(

wk
ij, tij

)

. The class with the lowest D gets the

top rank.

It is observed that the wavelet based features are not so much affected in the pres-

ence of moderate noise, discontinuity, or small changes in orientation. Figure 4.5a

shows the original image of a symbol affected by noise. For this image, the wavelet
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Figure 4.5: Smooth . . . smooth components of wavelet decomposition of a noisy image
at different resolution levels (a) Original noisy image (b) 64 × 64 resolution ( c) 32 × 32
resolution (d) 16 × 16 resolution (e) 8 × 8 resolution.

based feature images at different resolution level are shown in figure 4.5(b) - (e).

Therefore, the classifier-4 exhibits its insensitivity to different types of degradation

including one due to binarization. Moreover, it is invariant to different type styles

(e.g. italics, bold, etc.) and font faces.

4.2.3 Fusion of Classifiers

Similarity among the classifiers is, at first, studied before looking for a suitable com-

bination method to integrate the three classifiers (C2, C3, and C4) that constitute the

second level of symbol classification. This is done by measuring the agreement among

the decisions taken by the classifiers. Let C = Ci i = 1, 2, . . . , K be a set of K classifiers

and P = {pt t = 1, 2, . . . , N} be a set of N symbols, each belonging to one of the m pos-

sible classes {w1, w2, . . . , wm}. For a symbol pt ∈ P , top choices (highest rank) returned

by each classifier Ci are recorded and the similarity measure is given by the index (ρ)

discussed in [9]:

ρC =

∑

i,j=1,...,K
i<j

ρ{Ci, Cj}
KC2

(4.7)

where

ρ{Ci, Cj} =
1

N

N
∑

1

Q(C1(pt), C2(pt)) (4.8)

and

Q(Ci(pt), Cj(pt)) = 1 if Ci(pt) = Cj(pt)
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= 0 if Ci(pt) 6= Cj(pt) (4.9)

It may be noted that the minimum of the similarity index is equal to 0 (when Ci

and Cj always disagree to each other) and the maximum is equal to 1 (when Ci and Cj

always provide the same response). Similarity measure reveals interdependence among

the classifiers. Moreover, such a measure is important to identify whether any classifier

is redundant in a group of classifiers.

To combine the classifiers, three approaches based on the highest rank, the Borda

count, and Logistic Regression have been tested. Some details of these methods can be

found in [49]. Here summary of the methods is given below:

• Highest Rank Method: The highest rank method works as follows. Assume

there are m classifiers in a system and they rank each class for an input pattern.

Therefore, each class receives m-ranks. The minimum (i.e. the highest) of those

m ranks is assigned to that class as its score. The classes are then sorted by these

scores to derive a combined ranking for that input. Ties are arbitrarily resolved to

obtain a strict linear ordering. As the number of classes sharing the same ranks

depends on the number of classifiers used, this method is useful when the number of

classifiers is small relative to the number of classes. Otherwise, most of the classes

are involved in ties and the final ranking becomes less relevant. The problem dealt

in this thesis suits well to this framework, since it involves only three classifiers to

rank 191 classes.

• Borda Count Method: In this method, the Borda Count [7]for each class is

computed as the sum of the number of classes ranked below it by each classifier.

The final ranking is given by arranging the classes so that their Borda counts are

in descending order. For each class the Borda count is a measure of the strength of

agreement by the classifiers that the input pattern belongs to that class. Though

the method assumes additive independence among the individual classifiers, it is

simple to implement and requires no training.

• Logistic Regression: Unlike Borda count, the Logistic Regression method [26]

takes into account the differences in the individual classifier capability. This method

works by assuming a binary variable Y (1 for the true class and 0 for other classes)

for each class for each input pattern. For a training pattern the true class is

known and therefore each class has a known value of Y . For a test pattern let

x = {x1, x2, . . . , xm} be the set of rank scores assigned to a class by m classifiers.
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Here it is assumed that xi has the largest value if the class is ranked at the top by

the classifier Ci. The regression function L(x) is computed as follows:

L(x) = log
π(x)

1 − π(x)
(4.10)

and π(x) denotes the probability P (Y = 1|x) and is given by

π(x) =
exp(α + β1x1 + β2x2 + . . . + βmxm)

1 + exp(α + β1x1 + β2x2 + . . . + βmxm)
(4.11)

where α, β = (β1, β2, . . . , βm) are constant parameters and can be estimated by the

techniques based on maximum likelihood or weighted least-squares.

For each test pattern, classes are sorted by their L(x) values and the class with the

highest L(x) is then considered as likely to be the true class.

The above combination methods assume that for a given symbol all classifiers return

a list of ranks corresponding to the classes. However, in our approach, this is not always

assumed. A classifier (Ci) returns a list of ranks only if it finds enough confidence to

recognize of a symbol. Therefore, an offset value (τi) is used by each classifier (Ci) to

judge its confidence for deciding the acceptability of a recognition result. A symbol is

rejected if two out of the three classifiers do not recognize the symbol.

4.3 Segmentation of Touching Characters

In many occasions, the adjacent characters in expressions touch each other in the scanned

image and presence of such touching characters causes recognition errors. This is because

the expression is typically segmented by connectivity analysis that considers touching

characters as a single unit, which the recognition engine cannot properly tackle.

The main reasons that cause generation of touching characters are mainly attributed

to: (i) poor printing technology, (ii) inferior paper quality (iii) photocopied documents,

(iv) digitization errors, etc. The statistical analysis conducted on the 400 pages available

in our database (discussed in Chapter 2) of mathematical documents shows that out

of 82,691 expression symbols 6,144 (7.43%) are touching in nature and generate 2,853

images of touching characters. Expressions contained in documents printed in early years

impose a serious problem due to touching characters. Lee and Wang [69, 70] analyzed

the reasons behind the error occurring in recognizing expression symbols and found that

depending on document’s quality 12%-28% errors (out of all types of recognition errors)
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are due to the presence of touching characters. Suzuki et. al. [95] also found about 2%

touching character images in their database of 11,194 expressions.

A number of character segmentation techniques have been proposed in the litera-

ture. Fujisawa et. al. [37], Elliman and Lancaster [29], Casey and Lecolinet [11] have

presented elaborate surveys on such methods. Some references contain discussion about

segmentation of touching characters as well and from these references we find two cate-

gories of approaches where: (i) the touching character segmentation and recognition go

hand-in-hand [10, 63, 102], or (ii) the recognition is attempted without segmentation (or

segmentation is implicit in nature) [92].

Figure 4.6: Some touching characters found in mathematical expressions.

However, these methods can be applied for character images printed only in one

direction; (e.g. horizontal for Roman, vertical for Japanese script). In mathematical

expressions, characters are placed in horizontal, vertical or diagonal directions. Some

examples of touching characters found in our database of mathematical expressions are

shown in figure 4.6. This calls for a new method for segmenting touching characters

appearing in expressions.

So far only a few studies have addressed the issue of segmentation and recognition of

touching characters appearing in expressions. Lee and Lee [67, 68] proposed a dynamic

programming algorithm where the segmentation is performed on a one-dimensional se-

quence of curve segments representing a connected component. The approach presented

by Okamoto et. al. [83] is based on the projection profiles of a given binary image of a

pair of touching characters and minimal points of the blurred image obtained by applying
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the Gaussian kernel to the original image. This segmentation method is restricted for

cases where only two characters touch each other.

Very recently, Nomura et. al. [79] proposed an approach for detection as well as

segmentation of touching characters in expressions. In their approach, touching char-

acters are detected by looking at the deviation of the feature values (computed on an

image of touching characters) from the standard feature values precomputed for isolated

characters. The segmentation is achieved by comparing a touching character image with

a set of images synthesized from two single character images. Here also touching of only

two characters is assumed. Since the number of ways by which two single characters

touch each other is quite large, synthesis of all possible touching character images and

comparison of a given image with all of these synthesized images is computationally not

very much attractive. Moreover, such a scheme may fail to tackle variations in size, style

and typefaces used to print expressions.

Considering the limitations of the previous approach we propose a different technique

for segmentation of touching characters. Since the number of touching characters is

limited in an expression, no separate module for detection of touching characters is

implemented in our system. Rather, any pattern rejected by the recognizer is initially

suspected as touching character and segmentation is attempted for its recognition. The

multifactorial analysis presented in section 3.2 of Chapter 3 forms the core of the proposed

segmentation algorithm. The method does not assume anything about the number of

characters that may be present in a touching character image.

4.3.1 The Features used for Segmentation

Initially, images of touching characters are investigated and the following observations

are noted:

• Observation 1: Though an image of touching characters mostly contains two char-

acters, three or more characters touching each other are not rare. In our database,

we found that among 2,853 images of 6,144 touching characters images consisting

of 2, 3, and 4 characters are 2501 (87.66%), 266 (9.32%), 86 (3.02%), respectively.

• Observation 2: Adjacent characters may touch each other in horizontal, vertical or

diagonal directions.

• Observation 3: If black runs (or crossing counts) are computed along the touching

direction, a single run is, in general, encountered at the touching position.
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• Observation 4: The thickness of black blob at the touching position is usually small

compared to the thickness of other parts.

• Observation 5: The character parts generate uncommon (quite a few in number)

stroke patterns above and below the touching points.

Based on these observations, four factors (fic, fmt, fup, and flow) are defined. Four

directions (vertical, horizontal, and two diagonals namely, +45◦ and −45◦) are considered

for evaluation of factors. In each direction, factors are evaluated for each object (e.g.

each column for vertical direction; similarly, rows are considered as objects for horizontal

direction, etc.). Next, the factors are involved in a multifactorial analysis (as explained

in section 3.2 of Chapter 3) for finding appropriate cut position in each direction. The

four factors used in segmentation are defined as follows:

• fic: inverse crossing-count = c−1, where c is the crossing-count (number of white

to black transitions) computed for an object (column, row, etc.).

The factor fic is designed to reflect the property stated in Observation 3. On the other

hand, as per our Observation 4 the vertical thickness of the black blob at the touching

point is always small compared to the thickness of the other character parts, so we design

the second factor (fmt) to take care of this as follows:

• fmt: measure of blob thickness = 1-e−
wµ
t , where t is the number of black pixels

encountered in one scan and wµ is the mean thickness of the character strokes,

computed as follows:

The run-length of black pixels along several directions is recorded at some boundary

points. The run-lengths are measured in three directions namely, horizontal, +45◦ (i.e.

upward), and −45◦ (i.e. downward) direction. Let for a point P the run-lengths in these

three directions be wh(P ), wu(P ) and wd(P ), respectively. We take the minimum of these

three values as the thickness w(P ) at point P i.e. w(P ) = min[wh(P ), wu(P ), wd(P )].

At a particular point P , we consider its thickness w(P ) provided the thickness in the

neighborhood of P along the boundary of the stroke is nearly equals to w(P ). In this

way, thickness at inconsistent points like corner and serif are avoided. The value of w(P )

is noted at several boundary points and a mean is calculated to obtain wµ.

The other two factors are designed according to the Observation 5 stated above.

To formulate them a set of touching character images are analyzed and different stroke

patterns formed at touching points are noted by using a 5×5 grid whose (3,3) element (i.e.
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(a) (b)

Figure 4.7: Different shapes formed at touching points, (a) Pui: u-patterns show shapes
above a touching point, (b) Pli: l-patterns show shapes below a touching point.

the innermost square) is considered as the touching point. Five different stroke patterns

are detected above the touching points. We call these patterns as u-pattern. Similarly,

five different patterns (l-pattern) are detected below the touching points. These patterns

are shown in figure 4.7.

Let N be the number of samples (touching points). Then the relative frequency of a

particular u-pattern (Pui) (or l-pattern) is computed as number of occurrences of Pui÷N .

Relative frequency of each u and l -patterns is given in figure 4.7.

In each scan (horizontal, vertical or along diagonals), the presence of any u-pattern

and l-pattern are recorded in two boolean variables Bu and Bl, respectively, and based on

their values a scan gets two different predefined weights, Wu and Wl for u and l -pattern,

respectively. These weights are computed as follows. If Bu is true then Wu = wu else Wu

= 1−wu and similarly, if Bl is true then Wl = wl else Wl = 1−wl. In our implementation,

wu and wl both are less than 1 but greater than 0.5.

The third factor, fup is evaluated by the following equation which combines weight

Wu and the membership functions Ãu (= relative frequency of Pui as given in figure 4.7.

• fup = Wu + [(1 − wu) × Ãu]
∧

Bu.

In the above equation, the symbol (
∧

) represents logical AND operation i.e. the term

[(1 − wu) × Ãu] is added with Wu only if Bu is TURE. Similarly, the fourth factor, flow

is evaluated by the following equation:

• flow = Wl + [(1−wl) × Ãl]
∧

Bl, where Ãl is the relative frequency of Pli, as given

in figure 4.7.
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4.3.2 Selection of Cut Positions

In a particular direction (vertical, horizontal, and two diagonal directions), let m be the

total number of scans in any image of touching characters. For all the m-scans the above

four factors (fic, fmt, fup, and flow) are evaluated and a 4 × m one-factor evaluation

matrix is formed. For example, if there are m pixel-columns in the image then the 4×m

evaluation matrix obtained for vertical scans is as follows:

Vv =

















f 1
ic f 2

ic · · · fm
ic

f 1
mt f 2

mt · · · fm
mt

f 1
up f 2

up · · · fm
up

f 1
low f 2

low · · · fm
low

















(4.12)

Each column in matrix Vv represents each scan (column wise, row wise, or along

diagonals depending on the direction in which the factors are evaluated) in the image

and consists of a 4-dimensional vector that reflects four different aspects for that column

to be a cut candidate. Next, these four aspects get combined and mapped into a one-

dimensional scalar by an ASM-function Mv. The function Mv transforms the 4 × m

matrix Vv into a 1 × m matrix V ′
v as follows:

V ′
v = (f 1

v , f 2
v , · · · , fm

v ) (4.13)

where f i
v = Mv(f

i
ic,f

i
mt, f i

up, f i
low) = 1

4
(f i

ic + f i
mt + f i

up + f i
low); i varies from 1 to m.

Since the state spaces of all four factors are theoretically bounded by the interval

[0, 1] and Mv retains the property of an ASM-function (discussed in section 3.2), the

state space for fs is also bounded by the interval [0, 1]. Actually, Mv is used to give

each column (row for horizontal direction) (i) a degree of membership, f i
v that reflects

the possibility of i-th column to be a cut candidate for separating characters. Higher

fv-value indicates larger possibility for that column to be a cut-column.

Confirmation of Cut Positions

Researchers proposed various approaches [10, 102] for the confirmation of cut positions.

In most methods, the character classifier spends a substantial amount of time in at-

tempting to recognize patterns that are not valid. In our approach, we have attempted

to reduce the computation by predicting the most favorable cut positions before charac-

ter classifier is used to confirm it. This concept is borrowed from the predictive parser

concept well-known in the field of compiler design for the programming languages [1].

The details of the method for predicting cut positions can be found in [42].
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Though the characters may touch in horizontal, vertical, or diagonal directions, a

statistical analysis reveals that vertical (i.e. column) cut positions are most common

for segmenting touching characters appearing in expressions. This type is followed by

cut positions along 45◦ direction, horizontal (i.e. one or more rows are selected as cut

positions) and the +45◦ direction, respectively.

In our approach, segmentation is also tried in the above sequence. A character im-

age (touching or not) rejected by the recognition engine is subjected to segmentation.

Initially, V ′
v is computed for the vertical direction i.e. to find appropriate cut columns.

If V ′
v does not provide any suitable cut column(s), V ′

−45 is computed next for the −45◦

direction. If V ′
−45 also fails to find appropriate cut position(s), horizontal scans (i.e. on

rows) are invoked to generate V ′
h. At last, V ′

+45 is constructed to find cut position(s)

along +45◦ direction. If none of these four attempts provides any suitable cut position,

the image is considered as non-touching and it remains as a rejected pattern.

Finding of suitable cut positions is explained here. For the vertical direction and

the same explanation holds for other directions. In V ′
v , the column having the highest

fv value is predicted as the most favorable cut column. The components formed by

this cut-column are sent to the classifier and based on its decision, the algorithm goes

forward to the next cut-column or tries with the column having the second best fv value.

The algorithm terminates when all segments generated by the selected cut columns pass

through the character classifier. A success is achieved if all segments are recognized

by the classifier. Otherwise, a failure is reported and segmentation is tried in another

direction.

To reduce computation time, for each pattern only top two fv values that belong

to the current pattern are used as two successive predicted cut-columns. Figure 4.8

illustrates the algorithm for a touching triplet found in an expression shown in Figure 4.8a.

Figure 4.8b shows the three cut-columns having top three fv values for the touching

character shown in figure 4.8a. Column i has the highest fv value, so it is predicted as

the most favorable cut-column, yielding patterns P1 and P2 in figure 4.8c. The classifier

recognizes P1 as a valid character while P2 is rejected (figure 4.8d). P2 is then segmented

by the cut-column (column j) having the highest fv value within P2 (see figure 4.8c). This

cut yields P3 and P4 both of which are rejected by the classifier (figure 4.8d). So the

algorithm chooses the next cut-column (column k having the second highest fv value

within P2) yielding patterns P5 and P6, both of which are accepted by the character

classifier (figure 4.8e). At this stage the algorithm terminates.

In the above example, the segmentation algorithm reports success during its execution

in vertical direction. However, there are cases where vertical segmentation fails and
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Figure 4.8: Confirmation of cut positions for a triplet.

(a) (b)

Figure 4.9: Segmentation along (a) diagonal and (b) horizontal direction.
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segmentation in other directions are tried subsequently. For example, figure 4.9a does

not produce acceptable segmentation results when vertical segmentation is tried. Rather,

the segments produced by the cut position along the −45◦ direction are accepted by the

character classifier. Similarly, figure 4.9b shows the accepted cut position along horizontal

direction (i.e. row wise).

4.4 Experimental Results

Experiments are carried out on the dataset described in Chapter 3. The database con-

tains 2459 displayed and 3101 embedded expressions. Total number of symbols found

in all displayed and embedded expressions is 82,691 (displayed: 59,288 and embedded:

23,403). Actual number of symbols extracted (based on connected component analy-

sis and merging of components based on positional proximity) from these expressions is

79,400 as 6,144 number of characters are touching in nature generating 2,853 character

patterns. Among these symbols, 274 distinct symbol classes have been identified among

these symbols. Table 2.4 describes the classes and their occurrence statistics.

4.4.1 Performance of Individual Classifiers

As mentioned before, classifier-1 invokes stroke-based recognition scheme to recognize

symbols belonging to 83 classes as shown in figure 4.2b. Test results show that out of

79,400 character patterns, 27,846 (almost 35%) symbols pass through classifier-1. Eval-

uation of recognition results is done using the groundtruthed data available for each

expression symbol. Such an evaluation reveals that out of 27,846 symbols classifier-1

correctly recognizes 27,373 symbols giving a recognition accuracy of about 98.3%.

The rest of the symbols (i.e. 79,400 - 27,846 = 51,554) are passed to the second level

consisting of a group of three classifiers. Since all of these three classifiers needs training

samples for generation of prototype libraries, these 51,554 symbols are divided into two

groups (i) training and (ii) test dataset. Training dataset contains 33,511 samples (nearly

65%) that are carefully chosen to represent 191 (274 - 83) symbol classes. Moreover, it is

ensured manually that training set does not contain any touching characters. Prototype

libraries used by three classifiers are generated in isolation by using the same training

set. Individual classifiers are tested on a dataset of 18,043 samples that were not present

in the process of prototype library formation. Performance of individual classifiers is

reported in Table 4.1. Here, recognition accuracy for classifiers 2, 3, and 4 considers the

top choice only.
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The patterns rejected by classifier-1 are mainly those symbols that do not belong to

the set given in figure 4.2b. The rejection rate provided by the second level classifiers

(2, 3, and 4) are also quite high (32%-33%). These rejected patterns mostly represent

touching characters which are processed next.

Table 4.1: Evaluation of Individual Classifiers

Classifiers #Test Samples #Rejection Classification Results on (T-R)
(T) (R) Correct Incorrect

Classifier-1 79,400 51,554 27,373 (98.30%) 473

Classifier-2 18,043 6,013 10,599 (88.11%) 1,431

Classifier-3 18,043 5,851 10,459 (85.79%) 1,733

Classifier-4 18,043 6,027 10,878 (90.53%) 1,138

More analysis of the recognition results provided by the second level classifiers re-

veals that the classifiers are of comparable power but behave differently for different

types of symbols. The run-number based classifier (i.e. classifier-2, C2) shows better

performance for complex shaped symbols (e.g. Roman letters, Greek symbols, etc.), but

performs poorly for symbols with less structural complexity. The grid-based classifier

(i.e. classifier-3, C3) provides a good overall recognition score but gets confused when

one symbol is the mirror image of other. On the other hand, wavelet decomposition

based classifier (i.e. classifier-4, C4) shows consistent confidence for all types of symbols.

The classifiers, C2 and C4 exhibit their insensitivity to variation in character’s style and

font. Also, classifier-4 (C4) is quite robust in the presence of moderate amount of noise.

The similarity among the classifiers (C2, C3, and C4) is estimated following the equa-

tion 4.7 and a value 0.731 is obtained for the similarity index, ρC . In the present system,

the classifiers are trained on the same data set. Therefore, the value of ρC may change if

classifiers are trained on different training sets.

4.4.2 Recognition Results after Combination of Classifiers

Finally, the classifiers are combined following three methods outlined in section 4.2.3.

Among these combination techniques, the first two (i.e. the highest rank and the Borda

count) do not need any training, whereas the logistic regression needs a training to

evaluate its parameters. The details of combination results are shown in Table 4.2. It

is to be noted that among the three methods the highest rank method and the logistic

regression give comparable performance, the latter being slightly better. On the other

hand, the Borda count method does not produce very encouraging results in the present
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system. This is so because this method does not take into account the differences in the

individual classifier capability.

Table 4.2: Recognition Results after Combination of Classifiers

Classifiers and their combination % Correct in top N choices
1 2 3 5 10

Run-number based Classification (C2) 88.11% 90.31% 93.15% 95.18% 95.65%

Grid based Classification (C3) 85.79% 88.17% 90.93% 92.16% 92.88%

Wavelet based Classification (C4) 90.53% 92.65% 94.82% 96.09% 96.87%

Combination by the Highest Rank method 93.26% 95.18% 96.71% 97.83% 98.05%

Combination by the Borda Count 92.03% 94.60% 95.79% 96.45% 97.14%

Combination by Logistic Regression 93.77% 96.73% 97.62% 98.10% 98.38%

Analysis reveals that major sources of classification errors are (i) Substitution errors:

Presence of some confusing symbols generates substitution type of recognition error.

Figure 4.10(a) shows some expression symbols having similar shapes (symbols in the same

column are of confusing nature). (ii) Excessive degradation: Symbol images affected due

to aging, digitization error, etc. are often misrecognized. Figure 4.10(b) shows a few of

such symbols appearing in test expressions. Actual symbol representing each image is

written below the image.

(a)

(b)

Figure 4.10: Classification errors (a) confusing shapes and (b) degraded characters.
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4.4.3 Recognition of Touching Characters

As mentioned earlier, characters rejected by at least two of the three classifiers (C2,

C3, and C4) are treated as touching characters. Following this, it is observed that 3,156

character patterns are labeled as rejected. Further segmentation is tried on these patterns

and it is found that 2,739 patterns (which are truly touching in nature) are recognized by

the recognition engine. Analysis shows that these 2,739 patterns generate 5,892 segments

which are properly classified by the recognition engine.

Efficiency of the segmentation method proposed for processing touching characters

can be computed from the above results. The number of touching images is 2,853. These

images consist of 6,144 characters (images containing 2, 3 and 4 characters are 2501,

266 and 86, respectively). Out of 2,853 touching images, 2,739 are recognized, giving

an accuracy of about 96% for touching character recognition. On the other hand, out

of 6,144 characters generating 2,853 touching patterns, 5,892 characters are recognized

through proper segmentation. This improves the overall recognition accuracy by almost

12% (from 86.74% to 98.73%) as explained in Table 4.3.

Table 4.3: Summary of Symbol Recognition Results

Total number of expression symbols 82,691

Number of symbols used to train the 2nd level classifiers 33,511

Number of symbols used in testing 49,180

Number of symbols properly recognized by C1 27,373

Number of symbols properly recognized by the best combination of C2, C3, & C4 15,288

Number of symbols properly recognized by C1, C2, C3, & C4 42,661

Accuracy obtained without further processing of touching characters 86.74%

Number of characters recognized after segmentation of touching characters 5,892

Total number of symbols recognized correctly 48,553

Overall recognition accuracy 98.73%
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4.4.4 Comparison with the Previous Studies

Comparing performance of the proposed method with those of the previous ones is quite

difficult since each uses their own dataset. However, a qualitative comparison is presented

in Table 4.4 that shows the distinctiveness of the study presented in this chapter.

Table 4.4: Comparison of the Studies on Recognition of Printed Mathematical
Symbols

No. Authors Approach #Symbol #Test Recognition
classes Samples Accuracy

1. Okamoto et. al. Template matching and NA* 11,565 98.96%
[84] majority voting

2. Fateman et. al. Template matching 90 NA* NA*
[31, 32]

3. Lee and Lee Feature extraction, 187 1,033 84.80%
[67, 68] nearest neighbor

4. Lee and Wang Feature extraction, 190 11,210 96.18%
[69, 70] nearest neighbor

5. Ha et. al. Feature extraction NA* NA* NA*
[47] and neural network

6. Suzuki et. al. Feature extraction, 564 152,143 95.18%
[95] three-step coarse-

to-fine classification

7. Our Method Multiple classifier 274 34,676 98.73%
system (4 classifiers)

* NA: Not Available
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4.5 Summary

This chapter presents a multiple-classifier system for recognition of symbols appearing

in printed mathematical expressions. Four classifiers are designed and arranged in a

two-level hierarchy. Touching characters are segmented by technique based on the multi-

factorial analysis of several factors contributing to identifying appropriate cut positions.

Experimental results show high efficiency of the proposed method to recognize a large set

of expression symbols. Recognition errors are analyzed to determine their sources. Chap-

ter 7 presents a set of error correcting rules that consider several contextual information

to correct some of the errors encountered here. A comparative study is also presented to

compare our approach with the previous ones.

Special Acknowledgement: A paper1 based on the study described in this

Chapter was presented in the 17th International Conf. on Pattern Recognition (ICPR)

and we sincerely thank the anonymous reviewers for their valuable comments and sug-
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1U. Garain, B.B. Chaudhuri, and R.P. Ghosh, “A Multiple Classifier System for Recognition of
Printed Mathematical Symbols,” 17th Int’l Conf. on Pattern Recognition (ICPR), pp. 380-383, Cam-
bridge, UK, 2004.



CHAPTER 5

INTERPRETATION OF EXPRESSION
STRUCTURE

5.1 Introduction

The geometric structure of an expression can be significantly more complex than that

of normal text lines. For example, plain text is written linearly from left to right, but

mathematical symbols are written above, below, and one inside another. The spatial re-

lationships among symbols are crucial to the interpretation of the expression. This means

that even if all the characters are correctly recognized, there still remains the non-trivial

problem of interpreting the two-dimensional structure of an expression. Ambiguities arise

in areas like (i) The semantic role of symbols: Several symbols (e.g. horizontal line, dot,

etc.) have multiple meaning depending on the context; (ii) Relative symbol proximity and

position: Expression symbols use spatial relationship to indicate the logical relationship

among them. For instance, structures like superscript, subscript, implied multiplication,

matrix, etc. are indicated implicitly by the geometric layout of operands.

This problem has been studied by researchers and various approaches as reviewed in

section 1.1 of Chapter 1 are documented. However, these studies reveal that additional

research is needed for automatic understanding of mathematical expressions to achieve

acceptable accuracy.

In this chapter, a simple grammar-based approach has been presented to recognize

complex two-dimensional structure of printed expressions with high accuracy. The pro-

posed technique is based on symbol identities, L-values (level1), and their positional

information. The entire expression image initially is partitioned into different vertical

and horizontal stripes based on pixel projection. This partition is done recursively until

an atomic stripe is obtained. Each stripe represents a token or lexical group. Next, two or

more tokens are combined together to form a sub-expression. Finally, the sub-expressions

are merged to form the final expression string. The approach is a bottom-up one and

merging of tokens or sub-expressions are guided by (i) the geometric properties derived

from the statistical understanding of the corpus and (ii) the productions generated by

1The term level-value has been defined in section 2.2.2 of Chapter 2.

84
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a formal context free grammar. Space and time complexity analysis for the proposed

approach is also presented. The present study differs from the others in a number of

ways given below.

• It defines an easily implementable technique for parsing expressions;

• Time and space complexity of the proposed parsing techniques are presented;

• The simple grammar used here is able to successfully process expressions found in

various branches of science;

• A new way of defining structural complexity of an expression is proposed.

• The test data set used in the present experiment contains about 5,560 expressions

taken from various branches of science. Wide structural variability of these expres-

sions makes the data set a representative one.

• An in-depth evaluation strategy is presented to judge the performance of the pro-

posed technique for structural analysis.

The rest of this chapter is organized as follows. Section 5.2 presents some structural

properties of printed expressions. Our technique along with the proposed grammar is

described in section 5.3 which also contains a complexity measure of our algorithm.

Section 5.4 presents the experimental results and analysis. Section 5.5 summarizes the

chapter.

5.2 Some Structural Properties of Expressions

We start with the corpus consisting of 2459 displayed and 3101 embedded expressions

taken from several branches of science. Chapter 2 provides details about this dataset. By

studying the expressions in corpus, we noted a number of structural properties inherent

in these expressions. Some of them, used in designing our reconstruction algorithm, are

mentioned below.

• Property 0. Bounding box of a symbol : For a symbol s, we define its bounding

box B(s) to be the smallest upright rectangle enclosing the symbol. We denote it

by a 4–tuple (xl, xr, yt, yb), where (xl,yt) and (xr,yb) represent the top-most left

corner and the bottom-most right corners of B, respectively. Figure 5.1(c) and (d)
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show the bounding boxes for symbols of expressions in (a) and (b), respectively.

We define the height(yh) and width(xw) of a symbol by

yh = yb − yt + 1

xw = xr − xl + 1 (5.1)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.1: Detection of horizontal lines and symbols’ L-values: (a) & (b) expression
images, (c) & (d) bounding boxes for expression symbols, (e) & (f) extended bounding
boxes for symbols, (g) & (h) symbol centres, (i) & (j) horizontal lines (excluding the
HEES symbols).

• Property 1. Enclosing Zone (EZ), Extended Bounding box (EB), and Center (C)

of a Symbol : Characters like Roman letters, Greek symbols, etc. exhibit three
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zones in a text line. Let Enclosing Zone (EZ) refer to all the three zones and

is represented by a pair of y-coordinates (eyt, eyb), eyt and eyb are being the y-

coordinates of the top and bottom rows of the zone, respectively. If the symbols A,

a and p occur within same Enclosing Zone EZ, usually A and a will have yb-values

very close to each other, but the yt-values will vary. Similarly, for symbols a and

p, yt-values are close but not the yb-values.

We normalize EZ by assuming that an EZ starts at yt = 0 and ends at yb = 1.

With respect to a normalized EZ, values of (yt,yb)-pair for different class of symbols

are as given in Table 5.1. Each row in this table corresponds to one class. Now using

Table 5.1, EZ of any symbol s with absolute values of (yt,yb) can be estimated by

checking the class to which s belongs to. However, there are some symbols (elastic

symbols) which are treated as exceptions for computing their EZ. This is discussed

below under Property 1a.

Once EZ(s) = (eyt, eyb) is obtained for a symbol (s), its Extended Bounding Box

(EB) is computed as EB = (xl, xr, eyt, eyb). For different classes of symbols, the

rules for estimating EB from B (bounding box) given in Table 5.2. Figure 5.1(e)

and (f) show the extended bounding boxes for symbols of expressions in (a) and

(b), respectively.

Table 5.1: Symbol Positions with respect to the Normalized Enclosing Zone

Symbol Normalized
top bottom

A− Z, 0 − 9, Γ,∆,Θ, 0.00 0.77
Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω,
b, d, h, k, l, δ, θ, ϑ, λ

g, j, p, q, y, γ, ρ, %, ς, 0.23 1.00
ϕ, χ, µ

a, c, e, i,m, n, o, r, s, 0.24 0.77
u, v, w, x, z, α, ε, ε, ι,

κ, ν, o, π,$, σ, τ, υ, ω

t 0.13 0.77

f, β, ξ, φ, ψ 0.00 1.00

The center of a symbol s is given by the y-center of its EB(s) and is computed

as the arithmetic mean of the eyt and eyb values. Let EB(xl, xr, eyt, eyb) denote

the extended bounding box for the symbol, s. Therefore, center of s, C(s) is given

by C(s) = ( eyt+eyb
2

). Figure 5.1(g) and (h) show the center positions for expression

symbols in (a) and (b), respectively.
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Table 5.2: Generation of Extended Bounding Box (EB) of Symbols

Symbol eyt eyb

A− Z, 0 − 9, Γ,∆,Θ, 0 yb+ yh ∗ 0.3077
Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω,
b, d, h, k, l, δ, θ, ϑ, λ

g, j, p, q, y, γ, ρ, %, ς, yt− yh ∗ 0.3077 0
ϕ, χ, µ

a, c, e, i,m, n, o, r, s, yt− yh ∗ 0.4444 yb+ yh ∗ 0.4444
u, v, w, x, z, α, ε, ε, ι,

κ, ν, o, π,$, σ, τ, υ, ω

t yt− yh ∗ 0.1818 yb+ yh ∗ 0.3636

f, β, ξ, φ, ψ 0 0

• Property 1a. Elastic Symbols : There are some symbols that vary in size in different

context. For example, there are horizontal lines (‘\hline’) of different size in the

following expression:
a

b
=

c

d + e
− f + g + h

i

Some other elastic symbols are
∑

,
∫

, arrow, bracket symbols, etc. For all these

symbols, eyt = yt, eyb = yb and C = (yt + yb)/2. Among these symbols, certain

symbols are horizontally elongated and denoted as HEES (horizontally elongated

elastic symbol) symbols. An elastic symbol is identified as HEES if its aspect ratio

(i.e. width
height

= xw
yh

) is more than a pre-defined threshold (α > 1)2.

• Property 2. Level (L) of a Symbol: Computation of symbol L-values initially

require determination of horizontal lines on which symbols are arranged in an ex-

pression and identification of one of the lines as the dominant baseline [113] of the

expression. This is done as outlined in Algorithm 1.

The Algorithm 1 defines level (L) values for each symbols (excluding those la-

belled as HEES). Symbols of same L-values define a horizontal line (HL) in

the expression. Let ` be the number of such lines, HL1, HL2, . . . , HL`, where

HLi is defined by its member symbols having L = i. This ` basically determines

the geometric complexity (GC) of an expression as discussed in section 2.2.2 of

Chapter 2. Center of an HL (C(HL)) is computed as an average of its mem-

bers’ center values. Figure 5.1(i) and (j) show the HLs found for expressions in

(a) and (b), respectively. Next, symbols detected as HEES are added to different

2In our experiment, α = 2.5 has been used to detect HEESs
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HLs. An HEES (sHEES) is added to HLi (i.e. L(sHEES) is assigned to i) if

C(sHEES) − C(HLi) ≤ C(sHEES) − C(HLj) ∀j.

Algorithm 1: Computation of L-values.

For all symbols (excluding those identified as HEES):

Step 1. Sort the symbols in ascending order of their centers (C-values).

Let s1, s2, . . . , sk be this sorted list of symbols.

Step 2. level = 0; i = 1;

L(si) = level; i = i + 1;

while(i ≤ k)

if (( C(si) − C(si−1) + 1) < β[si−1.yh]) /* see comment3*/

L(si) = level;

else

level = level + 1;

L(si) = level;

end if

i = i + 1;

end while

Once all symbols are arranged in different HLs, dominant baseline is selected. The

HL contains the left-most expression symbol (say, sl where sl.xl ≤ si.xl, ∀ i). L-

values of the symbols belong to this HL line is re-assigned to zero (0) and L-values

of other symbols are changed with respect to this new HL0. L-values of the symbols

belonging to the HL just above this line (i.e. the new Hl0) are assigned to 1 and

similarly, L-values of the symbols belonging to the HL just below the dominant

baseline are assigned to −1. In this way, L-values increases above and decreases

below the dominant baseline. Lines (along with symbols) with re-assigned values

have been shown in figure 2.4(b) for the expression in figure 5.1(b).

The above algorithm for determining symbols’ L-values (or in other sense, the

concept of symbols’ level itself), is not dependent on parameters like font faces,

type style, character size, etc. This is because symbols within a structure convey

their meaning based on their spatial arrangement or layout. The horizontal lines

(i.e. HLs that essentially provide information on geometric complexity (GC) of an

3The value of β is determined empirically. In our experiment, β = 0.25 has been used.
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expression) on which symbols are arranged in expressions are important part of

this layout. Therefore, if this layout were to depend on font faces, styles, etc., the

meaning of the same expression would have been changed with the variations in

these parameters. As this does not happen, the proposed method for finding HLs

(or symbols’ L-values) is quite robust against the change in certain parameters like

font faces, type style, character size, etc.

However, the method is somewhat sensitive to the problem attributed to skew.

Uniform document skew can be tackled at the pre-processing phase dealing with

binarization, page segmentation, etc. (discussion on these topics is beyond the scope

of this thesis), but if expression symbols exhibit uneven skew among themselves,

the proposed method for determining symbols’ L-value may fail to provide exact

results. In such cases, a pre-defined static value of β (the user-defined parameter

in Algorithm 1) may not assign the correct levels to all expression symbols. This

problem has been illustrated later in scetion 5.4 (refer figure 5.5) of this Chapter.

• Property 3. Reduction Ratio (RR): Consider an expression AA. The size (charac-

terized by the height) of symbol reduces from the base level to the script (superscript

or subscript) level. The ratio by which the height of a symbol (say, s) decreases

from the base level to script level will be called the reduction ratio of that symbol

s, and denoted by RR(s). In general, the reduction ratio of a symbol s is defined

as

RR(s) =
height of s as super/subscript

height of s as base
(5.2)

The RR-values of different symbols have been studied and the mean and standard

deviation were found to be 0.60222 and 0.02371, respectively. Thus, the 3σ-limit for

RR–values is given by the interval (0.53109, 0.67335) and all the observed RR-values

to lie in this interval. In other words, there is a reduction in height of a symbol by

at least 32%(approx.) and at most 47%(approx.) at the script (super/sub) level

with respect to its height at base level. This feature helps us to determine a script

relation between a pair of symbols (or symbol groups) deferring in their L-values.

• Property 4. Space between Symbols: The average space between two symbols,

occurring in the same line, side by side, was measured as percentage of the height

of their (normalized) Enclosing Zone (EZ). This measure is denoted by sp and

shows a mean and variance of 0.05392 and 0.00050, respectively. This measure is

used to identify function words (e.g. ‘sin’, ‘log’, ‘lim’, ‘max’, etc.) in expressions.
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5.3 Symbol Arrangement Analysis

Let S be the set of pre-processed symbols (i.e. each symbol is tagged with its identity,

bounding box info (B), enclosing zone (EZ), extended bounding box (EB), center (C),

level (L-value), etc.). The symbols S are sorted in ascending order of their xl values.

Next, expression structure is interpreted and coded into a TEX string as described below.

(a)

(b) (c)

Figure 5.2: Structure Analysis of an expression image: vertical and horizontal segmen-
tation.

5.3.1 Expression Reconstruction

The final TEX string for the input expression is generated according to the steps outlined

in Algorithm 2. Initially, at Step 2 (see Algorithm 2) the expression image is divided into

n vertical stripes (called vStripe) based on the white space between horizontally adjacent

symbols. Figure 5.2(a) shows the vStripes for the image in figure 5.1(a), where n = 19.

Next, symbols under each vStripe are further segmented into horizontal stripes (called

hStripe) based on the white space between vertically adjacent symbols.

This vertical and horizontal segmentation continue until each stripe contains a single

symbol (Step 1 of the algorithm) or no further segmentation is possible. For the former

case TEX equivalent of the symbol is returned (Step 1) and in the later case, further

processing is invoked. For example, the vStripe, V9 of figure 5.2(a) is partitioned into

three hStripes (see figure 5.2(b)), of which both H9,1 and H9,2 contain a single symbol.

In case of H9,3, no further segmentation is possible and Step 4.1 is invoked. Here, the

largest (based on bounding box area) symbol (i.e.
√

) is separated and procExp() is

invoked recursively on the rest of the symbols (see figure 5.2(c)). Similarly, the vStripe
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V1 (likewise V16 and V17) of figure 5.2(a) does not show any further segmentation and

at Step 4.1, the largest symbol ‘p’ is separated leaving only a single symbol i.e. ‘2’.

At this stage, the grammar, G (given in the next subsection) is applied to search the

relation between p and 2 to produce the TEX string ‘p∧{2}’. Application of the rule,

E → S∧{S} (discussed later in section 5.3.2) uses information like extended bounding

box (EB), reduction ratio (RR), and L-values of symbols.

Once each hStripe of a vStripe are converted into their equivalent TEX strings (at Step

5), vStripes are checked and processed in a pairwise left to right manner (see Step 5.1).

At this step, a symbol of Vi gets merged with another symbol of Vi+1 if their L-levels are

the same. For example, symbol in H5,1 of V5 gets connected with the symbol in H6,2 of

V6 as shown in figure 5.3(a) and (b). This merging gets propagated from left to right till

no further merging is possible. The vStripes that are involved in such a merging process

get fused to form a new vStripe, e.g., H5,1, H6,2, and H7,1 of figure 5.3(b) get connected

to one another and subsequently, V5, V6, and V7 of figure 5.3(a) get fused to form a new

vStripe as shown in figure 5.3(c). The function words like sin, cos, log, etc. are formed

at this stage.

After execution of Step 5, each vStripe is represented by one or more TEX strings

corresponding to its hStripes. For more than one TEX strings, Step 6 finds a single TEX

string for each vStripe using the grammar, G. At this stage if G fails to combine the

strings, the algorithm simply passes them to the next step. For example, two hStripes

in figure 5.3(c) are merged to generate a single string (likewise, three hStripes in figure

5.2(b)). However, the hStripes n and x in vStripe V2 of figure 5.3(a) cannot be merged

to produce a single string and they are simply passed to the next step.

At Step 7, pairwise merging of vStripes is done in a left to right manner. If each of

the vStripes in a pair (Vi, Vi+1) is represented by a single TEX string then the relation

between Vi and Vi+1 is searched using grammar G. For example, V12 and V13 of figure

5.2(a) together form ‘x6’ using the suitable productions of G. However, when a vStripe

is not represented by a single TEX string, instead of one relation, several relations are

searched to merge the pair. For instance, V2 of figure 5.3(a) is represented by two TEX

strings, namely, ‘n’ and ‘x’ and hence, when the pair (V1, V2) is considered for merging,

relation between ‘D’ and ‘n’, and between ‘D’ and ‘x’ are searched and a single TEX

string is returned using several productions.
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Algorithm 2: Expression Reconstruction.

TEX String procExp(S)

Step1: If S contains only one symbol then return(TEX equivalent for the symbol);

Step2: Segment S into n non-overlapping vStripes, say, V1, V2, ..., Vn.

Step3: For i = 1 to n Segment Vi into mi non-overlapping hStripes, say,

Hi,1, Hi,2, ..., Hi,mi
.

Step4: If n = 1 (i.e. only one vStripe) and for that stripe if mi = 1 then separate the largest

(based on bounding box area) symbol. Let TEX equivalent of this symbol be sl.

Return getRelation(sl, procExp(S - sl)), where getRelation(a,b) uses the grammar,

G and returns a single TEX string involving ‘a’ and ‘b’.

Step5: For all Hi,j
j=1,2,...,mi

i=1,2,...n , si,j = procExp(Hi,j); where si,j is the TEX string for Hi,j.

Step5.1: For i (1 to n-1), j (1 to mi) and k (1 to mi+1) if L-values of Hi,j

and Hi+1,k are equal then s′i,j = getRelation (si,j, si+1,k).

Step5.2: If s′i,j is not NULL then combine Vi+1 with Vi to form a new vStripe.

For j = i+1 to n− 1 set Vi = Vi+1;

Decrement n by 1.

Step6: For i = 1 to n call procVstripe(Vi); The procedure procVstripe(V) tries to

find whether all or some of the hStripes within V can be combined following the

grammar, G and either returns a single TEX string for V or a set of strings

corresponding to hStripes which were not merged.

Step7: For i = 1 to n-1 the vStripes Vi and Vi+1 are merged.

The process of merging is guided by the grammar, G. For any j, if Vj cannot be

merged with Vj−1 or Vj+1 then Vj is ignored and the merging proceeds with the

rest of the vStripes and returns a single TEX string.

(a) (b) (c)

Figure 5.3: Structure analysis of an expression image: merging of vertical stripes.
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5.3.2 The Grammar (G)

A grammar is formally defined as a 4-tuple:

G = (VN , VT , P, S) (5.3)

where VN is a set of non-terminals (variables), VT is a set of terminals (constants), P is the

set of productions or rewriting rules, S is the start or root symbol. It is assumed that S

belongs to the set VN and that VN and VT are disjoint sets. The alphabet V is the union

of sets VN and VT . Depending on the nature of production rules there exist different

types of grammar. Here, the grammar used in the above reconstruction algorithm is a

context-free one, which has productions of the form A → β, where A is in VN and β is

in V +. The name context-free arises from the fact that the variable A may be replaced

by a string β regardless of the context in which A appears.

In our application, symbols that occur in the expressions are considered as terminals.

These terminals are grouped into different categories. The number of symbols in each

category and name of the non-terminal (written inside braces) representing the respec-

tive category are (i) Arabic Numerals (AN): 10; (ii) Roman uppercase letters (RU): 26;

(iii) Roman lowercase letters (RL): 26; (iv) Greek Symbols (GS): 41; (v) Mathematical

Operators (MO): 25; (vi) Relational Operators (RO): 39; (vii) Arrow Symbols (AS): 32;

(viii) Miscellaneous Symbols (MS): 33 (e.g. prime(‘′’), for all (‘∀’), there exists (‘∃’),

etc.); (ix) Elastic Symbols (ES): 14 (e.g. ‘
∫

’,‘Σ’,‘\hline’, etc.); (x) Brackets (BR): 6; (xi)

Function Words (FW): 32 (e.g. ‘sin’,‘cos’, ‘arg’,‘lim’, ‘ln’,etc.).

Apart from these symbols, VT contains three more symbols namely, ‘\’, ‘∧’ and un-

derscore (‘ ’), where the last two are used to produce TEX strings corresponding to super-

and sub-scripts, respectively. In addition, twenty seven (27) TEX keywords (e.g. ‘frac’,

‘sqrt’, ‘mathcal’, ‘ldots’, ‘hat’, ‘bar’, etc.) are included in the VT for convenience of gen-

erating the TEX strings. Hence, VT , in total, contains 315 (including NULL) terminal

symbols. On the other hand, VN contains 18 non-terminals and P is a collection of 345

productions. The major productions are explained below.

Initially, the input expression, as outlined in Algorithm 2, is recursively segmented

into n vertical stripes. This is implemented by the production rule originated at the

start symbol, S. This is given in Equation 5.4, where E is a non-terminal that is used to

produce a syntactically valid TEX string for a vStripe.

S → ES|E (5.4)
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The productions originated by E are given in equation 5.5, where, AN, RU, RL, GS,

etc. are non-terminals that finally generate terminal symbols of respective categories

mentioned above.

E → S∧{S} S {S} \frac{S}{S}
\stackrel{S}{S} \sqrt{S}
\overline{S} \underline{S}
\overbrace{S} \underbrace{S}
\mathcal{RU} \ELLIP \ACCENT
\begin{array} MAT \end{array}
AN RU RL GS MO RO

AS MS ES BR FW ε (5.5)

The non-terminal ELLIP is used to generate four types of ellipses as shown in equa-

tion 5.6. Likewise, different accents are generated by the non-terminal ACCENT as given

in equation 5.7.

ELLIP → ldots cdots vdots ddots (5.6)

ACCENT → hat{S} bar{S} . . . vec{S} (5.7)

The non-terminal MAT used in equation 5.5 takes care of matrix structures. Further

expansion of MAT is given in equation 5.8. For the sake of simplicity, the grammar, G

does not retain the alignment information (e.g. left, right or center) for matrix columns.

MAT → ROW \\ MAT ROW

ROW → S & ROW S (5.8)

To illustrate how the grammar works, consider the expression shown of figure 5.4.

Initially, three vStripes are formed by vertical segmentation (see Algorithm 2) of the

image. In the grammar, each vStripe is represented by the non-terminal E that generates

a TEX string for the respective vStripe. Concatenation of these TEX strings generate

the final expression string. Equation 4.11 demonstrates how the final TEX string for the

expression in figure 5.4 is generated by the grammar. Starting with the start symbol S,
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Figure 5.4: An expression for which the generated TEX string is shown in equation 5.9.

each line of equation 5.9 shows the application of a production to expand the right-most

non-terminal.

S → E S

→ E E S

→ E E E

→ E E GS

→ E E \phi

→ E RO \phi

→ E = \phi

→ \frac{S}{S} = \phi

→ \frac{S}{E} = \phi

→ \frac{S}{AN} = \phi

→ \frac{S}{2} = \phi

→ \frac{E S}{2} = \phi

→ \frac{E E S}{2} = \phi

→ \frac{E E E}{2} = \phi

→ \frac{E E \sqrt{S}}{2} = \phi

→ \frac{E E \sqrt{E}}{2} = \phi

→ \frac{E E \sqrt{AN}}{2} = \phi

→ \frac{E E \sqrt{5}}{2} = \phi

→ \frac{E MO \sqrt{5}}{2} = \phi

→ \frac{E + \sqrt{5}}{2} = \phi
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→ \frac{AN + \sqrt{5}}{2} = \phi

→ \frac{1 + \sqrt{5}}{2} = \phi (5.9)

5.3.3 Complexity of the Proposed Method

Under Pre-processing phase, the calculation of the center C for each symbol is done in

O(1) and hence in O(n) for all n symbols. Symbols are sorted twice, once in increasing

C–values and at a later stage in increasing xl-values, involving complexity of O(n log n).

Grouping of symbols into horizontal levels is done in O(n). Similarly, horizontal sets of

symbols are found in O(n). Thus, the Pre-processing is done in O(n log n) time.

Under reconstruction, division of symbols in vStripes and then every vStripe into

hStripes is done in O(n) time since the total number of hStripes will never exceed the

total number of symbols, i.e. n. If vStripes Vi and Vi+1 which are to be merged contain

mi and mi+1 hStripes, respectively, then for every hStripe Hi+1,t in Vi+1, the hStripe

Hi,s is searched so that (Hi,s and Hi+1,t) can be merged. This searching can be done

in O(log mi) time and hence this merging takes O(mi+1 log mi) time. Therefore, the

merging of hStripes is done in O(n log n) time. Finally, the pairwise merging (Step 7 of

the Algorithm 2) of vStripes is done in O(n) time. Thus, the overall time complexity of

our proposed approach is O(n logn) and the space complexity is O(n).

Table 5.3: Structure Recognition Accuracy at Symbol Level

Number Accuracy
of Symbols Detection of Level Placement

82,691 80,723 (97.62%) 77,515 (93.74%)

5.4 Test Results and Discussion

All the 5,560 expressions (displayed: 2,459 and embedded: 3,101) present in the corpus

are used to test our proposed technique. The total number of symbols that appear in all

expressions is 82,691. Since levels (L) of symbols play important role for their placement,

the test procedure initially finds the accuracy for detection of L-value for each symbol.

Next, placement of a symbol is checked by looking at the interpretation result for its

immediate parent structure that contains the symbol. For example, placement of ‘7’ in

c2n7 is assessed by checking the recognition result of the subscript structure ‘n7’. Results

obtained for detection of the level and placement for each symbol are shown in Table 5.3.

Errors in these two operations are mainly attributed to:
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(i) Uneven skew: Some of the expressions taken from very old documents show non-

uniform skew which is difficult to correct. One such example is shown in figure 5.5.

Because of the skew, the symbols ‘n’ and ‘y’ of the last term of the summation are

assigned incorrect L values.

Figure 5.5: An expression with uneven skew.

(ii) Non-uniformity of type-setting: Documents generated with very old printing tech-

nology lack proper layout for typing expressions. Figure 5.6 shows one such example,

where the ‘
⋃

’ and ’
⋂

’ are placed on the same level but their upper (and similarly lower)

limits are typed on different levels. Such improper layout in the original expression leads

to error in the detection of level for some symbols and eventually, their placements in the

final expression become incorrect.

Figure 5.6: An expression showing unusual typography.

(iii) Ambiguous role of a symbol: Several symbols like dot, horizontal line segment, etc.

represent different meaning in different context. This leads to ambiguous parsing and

selection of a particular parse result is difficult. For example, parsing of the expression

in figure 5.7 gives different results due to incorrect placement of the underline of ‘a’,

overline of ‘b’ and the fraction lines. Use of some contextual information helps to remove

such ambiguities to some extent. However, we view that implementation of a probabilistic

version of the proposed CFG may help us a lot to resolve many of these ambiguities.

(iv) Effect of geometric complexity: The geometric complexity plays a crucial role

on the placement of symbols. Test results show that the number of errors in symbol

placement increases with higher complexity of expressions. Figures in Table 5.5 also attest
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Figure 5.7: An expression with symbols having ambiguous role.

to this observation. For example, the expression in figure 5.8 shows a high geometric

complexity and its recognition is incorrect due to wrong placement of symbols having

high L values.

(v) Effect of symbol recognition error: In a few cases, errors encountered during

recognition of symbols also generate errors during determination of symbol levels and

eventually for placement of symbols. Some of the touching characters, for which no

proper cut positions are found, cause errors in level detection.

Figure 5.8: Faa-de-bruno’s Formula: an expression with high geometric complexity.

Next, the recognition accuracy for individual structures is measured. As explained in

Chapter 2, expressions in the corpus are groundtruthed using MathML presentation tags.

Each expression is tagged with its geometric complexity GC representing the number of

horizontal lines on which expression symbols are arranged in an expression. Using the

corpus expressions, it is studied that arrangement of symbols around operators form

different geometric layouts, some of which are one-dimensional (1-D) in nature while

others are two-dimensional (2-D). For example, operators like ‘+’, ‘-’, ‘=’, function words

like ‘sin’, ‘cos’, ‘log’, etc. include 1-D structures whiles superscripts, subscripts, operators

(e.g. ‘
∑

’, ‘
∏

’, ‘
∫

’, etc.) with limit expressions, matrix, etc. form the 2-D layout. Twelve

elementary structures are detected which are two-dimensional in nature. These structures

are: (i) Superscript, (ii) Subscript, (iii) Fraction, (iv) Root, (v) Overline, (vi) Underline,

(vii) Overbrace, (viii) Underbrace, (ix) Ellipses, (x) Accent, (xi) Matrix and (xii) Stacking

of symbols.

A structure is called nested if it contains another structure within its scope. For each
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2-D structure, its Degree of Nestedness (DoN) is measured, as explained in section 2.2.

While GC gives an impression about the geometric complexity of an expression, the value

of DoN does the same for an individual structure of an expression. Results for recognition

of structures are shown in Table 5.4.

Table 5.4: Structure Level Accuracy

No. Structure #Occurrences DoN Values Correct Recognition

1. Superscript 4,267 1, 2, 3, 4 4,033 (94.52%)

2. Subscript 3,986 1, 2, 3 3,732 (93.63%)

3. Fraction 2,063 1, 2, 3, 4, 6 1,943 (94.18%)

4. Root 227 1, 2, 3, 5 207 (91.19%)

5. Overline 60 1, 2, 3 47 (78.33%)

6. Underline 13 1, 2 7 (53.85%)

7. Overbrace 47 1, 2, 4 40 (85.11%)

8. Underbrace 19 1, 3 16 (84.21%)

9. Ellipses 828 1 795 (96.01%)

10. Accent 341 1, 2, 3 321 (94.13%)

11. Matrix 73 1, 2, 3 64 (87.67%)

12. Stacking 154 1, 2 127 (82.47%)
of symbols

Summary 12,078 – 11,332 (93.82%)

Finally, the recognition accuracy at the whole expression level is assessed and results

are given in Table 5.5. Figures in this table show that the recognition accuracy at

the expression level is quite low because placement error for a single symbol makes

recognition of an expression incorrect. Therefore, a more reasonable performance measure

is presented in Chapter 7 where a performance index is computed to provide a judicious

evaluation of accuracy for interpretation of expression structures.

A number of studies (as mentioned in section 1.1 of Chapter 1) deal with structure

recognition but it seems difficult to compare the results as the test data used by the

authors (except one reported in [113]) are not publicly available. Moreover, the authors

define their own way of computing performance and in most cases, this computation is

specific to their own techniques. Unlike others, the study described in [113] presents an

in-depth analysis of their structure analysis results using expressions from University of

Washington Database [87], The best expression-level recognition accuracy reported in

[113] is 38%, whereas, in our case it is about 78% (note that the datasets used in the

experiments are different). However, since this expression-level accuracy does not reflect

the true performance of an expression recognition system, our proposed performance

index (presented in Chapter 7) could be viewed as an important evaluator.
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Table 5.5: Expression Level Accuracy

Complexity (GC) Number of Exp. Correct Recognition

1 1,042 977 (93.72%)

2 1,987 1,640 (82.54%)

3 1,109 835 (75.31%)

4 801 568 (70.91%)

5 162 93 (57.14%)

6 202 117 (57.69%)

7 93 62 (66.67%)

8 70 31 (44.44%)

9 31 8 (25.81%)

10 16 6 (37.50%)

11 23 7 (30.43%)

12 12 3 (25.00%)

13 7 1 (14.29%)

14 3 0 (00.00%)

15 2 0 (00.00%)

Summary 5,560 4,348 (78.20%)

5.5 Summary

A method for structural analysis of printed mathematical expressions is presented in

this chapter. Certain geometric properties important for symbol arrange analysis have

been outlined and method for determination geometric complexity (GC)of expressions

and eventually, level-values of expression symbols has been discussed. The method for

understanding an expression’s structure depends of these geometric properties.

The parsing approach uses a context–free grammar. Initially, an expression structure

is understood by recursively dividing it into vertical and horizontal stripes until an atomic

level is reached. Each stripe represents a token or lexical group. Finally, the context–free

grammar is used to merge the tokens one after another to form an equivalent TEX string

for the input expression. The generality of our technique is tested using a large number

of expressions taken from various branches of science. Ease of machine implementation

is another elegant feature of the proposed approach. The time and space complexity of

the parsing technique is also presented.

Experimental results are presented in details. Efficiency of the proposed approach

for determination of (GC) and symbols L-values has been tested separately as any failure

at this stage heavily affects the subsequent stages of expression reconstruction process.

Performance of the method for interpretation of 2-D structures has been tested initially at

the individual structure level and then at the level of understanding a whole expression.
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Number of cases where the proposed method fails have been illustrated and the major

reasons for generating errors in interpreting expressions’ structures have been outlined.

Special Acknowledgement: A paper [77] based on the approach described in

this Chapter was presented in the 7th Int. Conf. on Document Analysis and Recognition

(ICDAR), Edinburgh, Scotland, 2003. We sincerely thank the anonymous reviewers for

their valuable comments and suggestions based on which a few modifications were made

to the work presented in this Chapter.



CHAPTER 6

RECOGNITION OF ONLINE
HANDWRITTEN EXPRESSIONS

6.1 Introduction

There are several ways to input mathematical expressions into digital documents. One of

the popular ways is the use of mouse or keyboard where the expressions are entered either

in a linear format (e.g. TEX) or by using structured editor (e.g. equation editor available

with MS-Word). These approaches are neither convenient nor easy to use because the

users require training and practice to work on a language like TEX or any equation

editor. Moreover, editors like the one available with MS-Word employ a non-standard

storage format which makes further processing difficult. An alternative way is to write

expressions by hand and employ a smart system that automatically interprets and enters

them into the document under preparation.

The handwritten expressions can be processed under offline or online environments.

In the offline environment, expressions already written on a piece of paper is scanned (or

digitized) into image files and a OCR system is used to understand the expressions and

convert them into some suitable format (e.g. TEX, XML, etc.). The process is unattrac-

tive, because it involves a number of time-consuming steps. Moreover, recognition of

offline handwriting is more difficult than the online one since directional information,

pressure, azimuth, etc. of pen movement is not available in this case. On the other

hand, in the online environment, expressions are written on an electronic device (tablet)

connected to a computer and the temporal features like pen up and pen down positions,

the sequence of strokes and the direction of writing for each stroke are available to the

recognizer. It is likely to yield better recognition accuracy and hence more suitable for

entering expressions in computer.

This chapter is motivated towards recognition of online handwritten expressions. Like

printed expressions, recognition of handwritten ones also involves two major aspects:

(i) symbol recognition and (ii) interpretation of two-dimensional (2-D) structures. The

problems that were encountered during recognition of printed expressions are also to be

tackled under online environment. However, the handwritten data impose some addi-

tional difficulties due to variations in writing styles of different people. Each writer has

103
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his/her own writing style giving different shapes for the same character. Many symbols

are composed of more than one stroke and many writers tend to connect and abbreviate

the strokes of a character. Significant stroke number and order variation is observed with

writer variation.

On the other hand, expression symbols, as explained earlier, use spatial relationships

to indicate logical relationships among them. For example, structures like superscripts,

subscripts, implied multiplication, matrix, etc. are indicated implicitly by the geometric

layout of operands. Given a spatial relationship between two symbols, it is difficult to

determine the logical relationship between them. The ambiguity in spatial relationships

is substantially increased for handwritten expressions.

There exist several research efforts towards recognition of handwritten expressions.

Survey of the existing approaches is presented in section 1.1.2 of Chapter 1. These

surveys reveal that the studies dealing with processing of online handwritten expressions

are very few in number. Moreover, the reported techniques have mostly used a single

classifier where contextual information is rarely used. Structure analysis has been done

more or less in an offline manner and the online spatio-temporal information has not

been exploited efficiently.

The purpose of this chapter is to describe an improved system for understanding

online handwritten expressions. The present study differs from the previous ones in a

number of ways; namely, (i) it involves two different classifiers to capture wide variations

in shape and size of the large number of expression symbols, (ii) different combination

methods have been attempted to arrive at an efficient fusion of the classifiers, (iii) online

features are used along with several offline interpretations are integrated using a Context-

free Grammar to understand 2-D expression structures, (iv) the experiment is done using

a large representative dataset containing expressions of various nature, (v) an in-depth

study is presented to analyze the experimental results, (vi) in addition, the proposed

system extends support for use of numerals and several characters of an Indian Language

(IL) script (Devnagari (Hindi)) to enter expressions containing IL digits and letters.

The rest of the chapter is organized as follows. Section 6.2 describes the architecture

of the proposed system, format of the raw data provided by the hardware and some of

the data pre-processing techniques. Section 6.3 presents symbol recognition method that

tries to exploit the neuromotor characteristics of handwriting using ideas behind human

learning, especially the way by which the children learns to write under instructions from

parents or teacher. The algorithm uses multiple-classifier to achieve high recognition

accuracy. Section 6.4 presents our approach for interpretation of expression structures.

The technique at first exploits online spatio-temporal information to form smaller sym-
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bol groups, though the final expression is constructed offline. Experimental results and

related discussions are presented in section 6.5. Also, this section presents a qualitative

study to compare our proposed approach with the existing ones. Section 6.6 summarizes

the chapter.

6.2 Architecture of the Proposed System

Figure 6.1 shows the architecture of our proposed system. The input to the system is

handwritten strokes drawn on an electronic data tablet. Each stroke goes through some

pre-processing steps discussed next. The recognition method works at the stroke level.

Individual strokes are then grouped into a meaningful symbol. A stroke is combined

with the next or neighboring one by looking at some spatio-temporal information like

time-gap between these two strokes, positional proximity, etc. A symbol written with

multiple strokes is recognized by looking at the sequence of its strokes. This sequence is

checked using a rule base maintained against each symbol consisting of multiple strokes.

To tackle the stroke-order variations, there may be multiple definitions of the stroke

sequences for a single symbol. Several structural relations between a pair of symbols are

identified online. However, the existence of such relations gets confirmed under an offline

processing where the entire expression is reconstructed.

6.2.1 Data acquisition and pre-processing

The raw data recorded by the hardware goes through several pre-processing steps. The

main objective of this step is to remove variations (due to noise and uncontrolled pen

movement) that would otherwise complicate the recognition process. Several pre-processing

steps like 4-connected to 8-connected region generation, interpolation of missing points,

smoothing, etc are used. The first level of data compression is achieved as follows.

Let the digitizer output be represented in the format of (pt[l])N
l=1 ∈ R2 × {0, 1},

where pt[l] is the pen position having x-coordinate (pt[l].x) and y-coordinate (pt[i].y).

For writing expression symbols, N varies from 5 to 50 for a continuous stroke. Let,

s = pt[i]−pt[j], where pt[i] and pt[j] are two consecutive pen points. Now the i-th point,

(pt[i]) is retained with respect to j-th point, (pt[j]) if the following condition is satisfied:

(s.cx)2 + (s.cy)2 > m2 (6.1)

where s.cx = pt[i].x−pt[j].x and s.cy = pt[i].y−pt[j].y. The parameter, m is empirically

chosen. If m is set to 0, equation 6.1 removes all repeated points and for m = 1,
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Figure 6.1: Architecture of the proposed system.

equation 6.1 implements 4-to 8-connectivity conversion.

6.3 Symbol Recognition

For recognition of symbols, our algorithm tries to exploit the neuromotor characteristics

of handwriting. Consider the way in which a child learns to write. S/he is advised

to down the pen at some position, make straight/curved pen movement in a particular

direction, create loops when needed and lift the pen at some other position. Pen down

position for the next stroke is also mentioned and s/he follows such instructions until

the character is complete. Apart from pen up/down positions and the direction of pen

movement, the children are also taught the relative lengths of different parts of a stroke.

These aspects are captured and used as features.

6.3.1 Feature Extraction

To elaborate our feature extraction process we use the same notation {pt[i]N−1
i=0 } discussed

earlier. Additionally, pen up and pen down information is captured to distinguish a
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stroke. At first, we extract angle variation information as follows. Let,

r[i] = pt[i] − pt[i − 1], i = 1, 2, · · · , N − 1

φi = π + sign × cos−1(
r[i].cx

δli
) (6.2)

where

r[i].cx = pt[i].x − pt[i − 1].x

r[i].cy = pt[i].y − pt[i − 1].y

and

sign = −1, if r[i].cy < 0

= 1, otherwise.

δli =
√

(r[i].cx)2 + (r[i].cy)2

It is to be noted that φi and δli are the angle and the Euclidean distance, respectively

between one point and the next one. In reality, instead of angle variation information,

direction change information is taught to a child. That is why we convert each into a

direction code (an integer) following a 8-direction Freeman coding [36] as shown in figure

6.2. The following expression converts φi into an 8-direction code, di.

di =

((

(int)

(

8φi

π

)

+ 1

)

mod 16

)

÷ 2 (6.3)

where mod is the modulus operator and int returns integer part of a real number. Next,

we normalize δli which represents local trajectory length. This is done in a straightfor-

ward manner:

δli =
δli

∑N−1
j=1 δlj

(6.4)

6.3.2 Description of the Classifiers

Considering the wide variations of handwritten symbols in respect of their shape, size,

etc., two different classifiers are used in our system. Classifier 1 involves feature tem-

plate matching approach and employs a nearest neighbor classification scheme, whereas,

classifier 2 uses Hidden Markov Model (HMM) [90] for classification. The details of the

classifiers are described below.
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Figure 6.2: An 8-directional Freeman-Chain coding.

• Classifier 1: Feature vector used by this classifier is defined by the tuple

(di, δli), i = 1, 2, . . . , N − 1 (6.5)

Nearest neighbour classification is implemented by a distance measure as follows.

Assume the feature vectors for T (stroke to be recognized) and S (stored prototype)

are given by fT =
(

dT
k , δlTk

)K

k=1
and fS =

(

dS
j , δlSj

)J

j=1
, where

∑

k δlTk =
∑

j δlSj = 1.

For K = J(= N) T and S can be compared using

J (T, S) =
N
∑

i=1

4 −
∣

∣

∣4 −
∣

∣

∣dT
i − dS

i

∣

∣

∣

∣

∣

∣ (6.6)

Note that in 8-directional coding (see figure 6.2) the maximum difference between

two successive direction codes can be 4.

In reality, K is rarely equal to J, hence, the condition K = J = N is hardly satisfied.

So, the equation 6.6 is modified by defining two more measures given below.

∆LT
k =

k
∑

i=1

δlTi and ∆LS
j =

j
∑

i=1

δlSi (6.7)

Next, we sort the union of
(

∆LT
k

)K

k=1
and

(

∆LS
j

)J

j=1
together in an increasing

sequence. Let this sequence of numbers be (∆Lr)
R
r=1 where ∆LR = 1. Now,

it is clear that the direction codes
(

dT
k

)

of T and
(

dS
j

)

of S are constant over

∆Lr − ∆Lr−1.

We can re-define fT and fS as
(

dT
r , δlr

)

and
(

dS
r , δlr

)

, respectively and the equa-
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tion 6.6 can be re-stated as

J (T, S) =
R
∑

r=1

δlr ×
(

4 −
∣

∣

∣4 −
∣

∣

∣dT
i − dS

i

∣

∣

∣

∣

∣

∣

)

(6.8)

It may be noted that the metric property of J is retained in the equation 6.8

since
∑

δlr = 1. A formal proof can be found in [39]. For any input stroke T,

J (T, Si) is measured against all stored prototypes Si and T is classified as Si if

J (T, Si) < J (T, Sj) ∀j 6= i. However, in our implementation, classes are ranked

based on the J values and the class with lowest J gets the highest rank.

• Classifier 2: This classifier uses a left-to-right Hidden Markov Model (HMM)

for recognition of symbols. HMM is a general probabilistic structure, which is

applicable to a broad class of problems where time evolution is important. HMM

is characterized by a Markov chain (discrete time and finite states Markov process)

{St}∞t=1 and an observation process {Ot}∞t=1. Let {si}N
i=1 be the set of all states of

the Markov process while {oi}M
i=1 be the observation set.

Notationally, a HMM is denoted by λ = (π, A, B), where π is the initial probability

vector defined as π = {πi}, where πi is the probability of being in state i at the

beginning of the experiment i.e. at t = 1. A and B are two matrices called the

transition and observation matrix, respectively. Here, A = {ai,j}i,j≤N , where ai,j

denotes the probability Pr(St+1 = sj|St = si) of being in state j at time t+1 given

that the model was in state i at time t and B = {bi,l}i≤N,l≤M , where bi,l denotes

the probability Pr(Ot = ot|St = si) of observing the symbol ol at time t when the

model is in state i. A HMM (λ) is called stable when its parameters i.e. π, A, and

B do not depend on time.

In this chapter we only consider stable HMMs and estimate their parameters as

follows:

– The states of HMM: For each stroke, we consider its own HMM. Since different

writers write a particular stroke in different manners, a number of observation

sequences are required to train the model. Let there be η number of such

sequences available. Let O = O1, O2, . . . , OM be a sequence consisting of M

observation symbols. Each observation symbol (Oi) is assumed to be a vector

of dimension D.

In our implementation, (Oi) is presented in a two-dimensional vector, (φi, δli)
M
i=1

where φi and δli and are given by the equations 6.2 and 6.4, respectively. Each
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of the ηM observation vectors is mapped into one of the N clusters. Each clus-

ter is defined by giving a direction code di to φi based on the Freeman-chain

coding formulated in the equation 6.3 and by labeling each segment length δli

as short, medium or long, based on two predefined thresholds. As di can take

one of the eight values (zero to seven) and φi can have one of three descriptions

(short, medium, or long), any observation Oi will be mapped into one of the

24 (N = 8 × 3) clusters. Each cluster forms a state (1 to N).

– Training and recognition of strokes: To train the model, we follow the Seg-

mental K-means Algorithm [56]. The initial (π̂i) and transition probabilities

(âij) are calculated as follows:

For 1 ≤ i ≤ N

π̂i =
Number of occurrences of {O1 ∈ i}

Total Number of occurrences of O1 i.e. η
(6.9)

For 1 ≤ i ≤ N and 1 ≤ j ≤ N

âij = ∀t
Number of occurrences of {Ot ∈ i and Ot+1 ∈ j}

Total Number of occurrences of {Ot ∈ i} (6.10)

The mean vector and the covariance matrix for each state are defined as fol-

lows:

For 1 ≤ i ≤ N

µ̂i =
1

Ni

∑

Ot∈i

Ot and Ĉi =
1

Ni

∑

Ot∈i

(Ot − µ̂i)
T (Ot − µ̂i) (6.11)

The observation matrix is estimated by calculating the symbol probability

distributions (assumed Gaussian) of training vector for each state as follows:

For 1 ≤ i ≤ N and 1 ≤ j ≤ N

b̂i(Ot) =
1

(2π)
D
2

∣

∣

∣Ĉi

∣

∣

∣

1

2

exp
[

−1

2
(Ot − µ̂i) Ĉ−1

i (Ot − µ̂i)
T
]

(6.12)

To improve the above estimation, the optimal state sequence S∗ = (s1, s2, . . . , sM)

is found for each training sequence using λ̂i =
(

π̂i, Âi, B̂i

)

computed in the previous

step. This is done by using Viterbi Algorithm [35], which is essentially a dynamic

programming approach for maximizing the probability P (O, s1, s2, . . . , sM |λ). A

vector is reassigned a state if its original assignment is different from the corre-
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sponding estimated optimum state. If any vector is reassigned a new state, the

new assignment is used to compute new
(

π̂i, Âi, B̂i

)

following the above steps; oth-

erwise, the model formation is complete.

Once the training is over, we obtain well-estimated HMMs for every stroke (for

some strokes more than one corresponding HMMs are maintained). Let us consider

a given observation sequence which will configure one stroke. Then we calculate

the probabilities of occurrence of the observation sequence against each HMM, λi.

In actual implementation, the classes (wi) are ranked based on the P (O|λi) values

and the class with the maximum P (O|λi) gets the highest rank.

• Fusion of the Classifiers: Classifiers are combined following the approach presented

earlier in section 4.2.3. Initially, similarity of the classifiers is studied by measuring

the agreement between their decisions following the equation 4.7 of Chapter 4.

Next, classifiers are combined based on the highest rank, the Borda count, and

logistic regression. These combination methods have been briefed in section 4.2.3.

Relative merits and demerits of each combination method are studied. Details of

experimental results are presented in section 6.5.

6.4 Interpretation of Structures

The geometric structure of the input expression is analyzed and interpreted into a cor-

responding TEX string, which is finally converted into MathML format. The approach

consists of three stages, namely, (i) online interpretations, (ii) offline processing, and (iii)

compilation of TEX string. Each of these stages works as described below:

6.4.1 Online Interpretations

For each symbol several information like (i) symbol bounding box (B), (ii) symbol center

(C), etc. are noted. The y-center of B is recorded as the symbol’s center (C). Each

symbol is tagged with a level (L-value). The method for assigning symbols’ L-values

is similar to the one described in section 5.2 (refer Property 2) of Chapter 5. Only

modification involved here is that the properties like enclosing zone (EZ), extended

bounding box (EB), etc. are not computed for expression symbols.

As the performance of the method for interpretation of expression structure tightly

depends on how accurately the symbols’ L-values are computed, several restrictions are

imposed on writing style. For example, for easy detection of the dominant baseline of

the expression, writing of an expression starts with its left-most baseline symbol. In
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Algorithm 1 of Chapter 5, it was assumed that the left-most expression symbol belong to

the dominant baseline (HL0) and here, the said restriction provides further information

to detect the HL0 correctly.

Moreover, the accuracy of results (i.e. assignment of L-values) depends on the value

of an user-defined parameter, β used in the Algorithm 1 of Chapter 5. For printed

environment, selection of a right value of β is not difficult as symbols are typed following

some typographical rules. In case of handwriting environment, choice of a right value

for β becomes difficult if writer use arbitrary scaling (i.e. symbols height or width) or

place symbols at their own will while drawing the symbols. On the other hand, it is

not expected that writers will exactly follow the typographical rules followed in case

of typeset characters but at the same time, their writing style should not be far from

the idle one (i.e. printed environment). Writers involved in this experiment were made

aware of this issue. In spite of that, certain symbols get incorrect L-values because of this

problem (mainly due to casual placement of symbols). This has been further discussed

in section 6.5.3 analysing the experimental results.

Once symbols are tagged with required information as described above, subsequent

processing steps are invoked. For a pair of symbols, their bounding box information and

the L-values help to determine any spatial relationship that exists within the pair. In

fact, several structures like square root, first level scripts (superscripts and subscripts),

limit, etc. are identified online and corresponding TEX strings are generated for them.

Meaning of certain ambiguous symbols is also understood online. For example, a

dot (‘.’) symbol appear in different context like (i) as a decimal point, (ii) as an accent

marker (ȧ), (iii) a part of another symbols like ‘i’, ‘j’, ‘:’, ‘;’, or ellipses (e.g. ‘. . .’, ‘· · ·’),
etc. Therefore, meaning of a dot is interpreted by looking at its neighboring symbols (i.e.

symbols left, right and below to dot and symbol drawn just before the dot are examined).

Similarly, ambiguity in the role of a horizontal line segment (e.g. bar, fraction line, minus

sign, etc.) is also resolved during online processing.

Function words (e.g. sin, log, exp, etc.) are recognized online. Since these words

maintain linear 1-D structures, detection of such structures is achieved without much

effort. A finite automata is maintained to spot occurrence of any such function word in

an input expression.

Figure 6.3 demonstrates the steps described above. Figure 6.3(a) shows how symbols

are given their L-values based on their center C(y) values. The structures identified

online are shown in Figure 6.3(b). In the present system, writing of a root sign imposes

a restriction that root (
√

) symbol is drawn first, then symbols under root are written.

This simple assumption makes online detection of root structure easier. The expression
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in Figure 6.3(a) contains four horizontal lines whose meanings are also interpreted online.

Occurrence of the function word lim is also identified at this stage.

(a)

(b)

Figure 6.3: Online processing: (a) assignment of symbols’ L-values and (b) recognition
of several structures.

6.4.2 Offline Processing

Structures unidentified during online processing are recognized at this stage. Moreover,

the relations identified at the first stage are also checked for final acceptance. Initially,

the entire expression image is recursively segmented into several vertical and horizontal

stripes. TEX strings are generated for each of these stripes. Next, a bottom-up approach

is followed to merge two stripes to generate a new TEX string. This merging process

continues until the final expression is constructed. Both process, namely, generation of

TEX string for each stripe as well as the merging of stripes are guided by a context-free

grammar, G, described in section 5.3.2 of Chapter 5.

Figures 6.4 (a) through (e) demonstrate the major processing steps. Steps are almost

similar to the ones outlined in the Algorithm 2 of Chapter 5. At first, the expression

is divided into n (= 9) vertical stripes (called vStripe) as shown in figure 6.4(a). Next,

symbols under each vStripe are further segmented into horizontal stripes (called hStripe)

based on white space between vertically adjacent symbols. Each vStripe and hStripe

are tagged to keep track of their order of generation. For example, a tag H9,1 for a

stripe indicates that it is one of the stripes generated while the vStripe V9 is segmented

horizontally (i.e. projection of black pixels on the vertical axis).
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(a)

(b)

(c) (d) (e)

Figure 6.4: Offline processing: horizontal and vertical segmentation.

This vertical and horizontal segmentation go hand-in-hand until each stripe (called

atomic box) contains a single symbol, or no further segmentation is possible (as shown

in Figure 6.4(b)). Note that the recognizer returns a single symbol (‘=’) for V8 though

it contains two strokes. Combination of two such horizontal lines of almost equal width

and lying one above the other into ‘=’ sign is done online. Further processing is invoked

for an atomic box containing more than one symbol. For instance, the vStripe V9 of

Figure 5(a) is divided into three hStripes (see Figure 6.4(b)), of which both H9,2 and

H9,3 contain a single symbol and in case of H9,1, further processing is done as follows.

The largest symbol (i.e. the root symbol) is separated and the rest of the symbols are

subject to further segmentation. The largest symbol is determined by the bounding

box area. However, in case of H9,1, only one symbol (i.e. the symbol, π) is left and

corresponding TEX strings (i.e. \pi) is returned. Similarly, the vStripe V2 of Figure

6.4(b) does not show any further segmentation. Therefore, the largest symbol (i.e. the

symbol,
∫

) is separated leaving only a single symbol. At this stage, a suitable production

rule of G is searched to get the relation between “\int” and “0” is produced.

Once each hStripe of a vStripe is converted into their equivalent TEX, vStripes are

processed in a pairwise left to right manner. In this step, a hStripe of Vi gets merged with
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another hStripe in Vi+1 if levels (L)of both hStripes are the same. Level of a hStripe is

determined based on its center, which is given by the midpoint of its enclosing bounding

box. For example, H5,1 of V5 (Figure 6.4(c) and 6.4(d)) gets connected with H6,2 of V6.

This merging gets propagated from left to right till no further merging is possible. The

vStripes that are involved in such a merging process get fused to form a new vStripe, e.g.,

H5,1, H6,2, and H7,1 of figure 6.4(d) get connected with one another and subsequently,

V5, V6, and V7 of figure 6.4(c) get fused to form a new vStripe as shown in figure 6.4(e).

The function words like sin, cos, log, etc. are formed following this approach.

When each of the vStripes is represented by one or more TEX strings corresponding

to its constituents hStripes, a single TEX string for each vStripe is searched using G. If

such a single string is not found, it passes the strings to the next step. For example, three

hStripes in figure 6.4(b) are merged to generate a single string following production rule

corresponding to fraction stated in equation 5.5. However, the hStripes of V2 i.e. n and x

of Figure 6.4(c) cannot be merged to produce a single string and they are simply passed

to the next step.

Next, pairwise lumping of vStripes is done in a left to right manner. If each vStripe

in a pair adjacent vStripes (say, Vi and Vi+1) is represented by a single TEX string then a

relation between Vi and Vi+1 is searched using G. For instance, V5 and V6 together form

the TEX string, y∧{2} using production rule given in equation 5.5. However, when a

vStripe is represented by more than one TEX string, several production rules are used to

merge the pair. As an example, V2 of Figure 6.4(c) is represented by two TEX strings,

namely, n and x and hence, when (V1, V2) pair is considered for lumping, relation between

D and n, and between D and x are searched and a single TEX string is returned by using

two different production rules corresponding to superscript and subscript formation. It is

to be noted that processing of matrices does not require any extra effort. The algorithm

understands matrix structures using production rules given in equation 5.8.

6.4.3 Compilation of TEX strings and use of Contextual Infor-

mation

Whenever a TEX string is generated at any stage (during online or offline processing) it

is checked for its syntactic validity. Any syntactic failure calls for immediate processing

with available alternatives. For example, in Figure 6.3(a), lim has initially been recog-

nized as um which gives two possible interpretations, (i) ‘u’ and ‘m’ are two variables and

multiplication is implied or (ii) the combination um is a function word. First interpre-

tation is rejected looking at the limit expression (x → ∞) below it. In the second case,
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the generated TEX string “\um” does not pass through the validation check. Hence, the

system uses other alternatives provided by the symbol recognition module. For li of lim,

the recognition engine gives u as the best choice and li as the second best choice, which

forms a valid TEX string “lim”. If none of the alternatives generates a valid string, the

system generates a string with the best choices for its constituent symbols and leaves it

for manual correction at a later stage.

Several contextual information are used while generating a new TEX string by merging

the boxes. For instance, vStripes, V2 through V7 (see Figure 6.4(b)) are merged and a

TEX string i.e. “\int 0∧x e∧{−y∧2} dy ” is formed. Here, “dy” seems to a multiplication

of ’d’ and ’y’. However, presence of “\int” looks for its differential and converts the string

into “\int 0∧x e∧{−y∧2}\, dy ”, where dy conveys its actual meaning.

Figure 6.5: Some handwritten expressions used in the experiment.
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6.5 Experimental Results and Discussions

At first, a database of handwritten expressions is constructed to test the proposed sys-

tem. A Genius-make electronic tablet attached with 733 MHz IBM PC is used to cap-

ture data. The sampling speed is 40 points per second. One hundred and seventy five

(175) expressions are taken from different branches of science. These 175 expressions are

collected under three parts. Part-I contains samples for 100 expressions selected from

various topics covered in science (mainly Mathematics) books of school and college stan-

dard. Table 6.1 gives an idea of how the expressions are divided among different topics

and purposes. These 100 expressions are written by twenty students studying at the

high school and college level. Two versions of each expressions are recorded from each

writer. Versions of an expression are not taken from a writer in a successive manner,

rather, they are recorded on different days. The database, therefore, contains 4,000

(100× 20× 2 = 4, 000) samples for the first 100 expressions. Some samples (tagged with

identification number) from the database are shown in figure 6.5.

Part-II contains samples for 50 expressions taken from the dataset used by Raman

[91]. Reasons for considering these expressions are stated earlier in Chapter 2. The main

reason is the variability observed in symbols as well as in expression structures. Ten

writers selected from those engaged in research and teaching at the university level were

asked to write two versions for each expression. This added 1,000 (50× 10× 2 = 1, 000)

more samples to the database.

In Part-III, the database contains 25 expressions containing digits and letters of De-

vnagari (Hindi) scripts. These are selected from Hindi medium high school level science

books. In some expressions it is observed that Hindi symbols are mixed with Arabic

numerals, Roman and Greek letters. Ten native Hindi writers are asked to write each of

these 25 expressions twice resulting in a set of 500 (25 × 10 × 2 = 500) samples.

6.5.1 Groundtruthing of Expressions

In the database, an expression and its corresponding samples are separately groundtruthed.

Expressions are truthed into .exp files. Generation of truthed data follows the guidelines

discussed in Chapter 2. Each of the 175 expressions is given a unique identification key

exp-id which is also used to name the .exp files. Each such file contains a short descrip-

tion about the source of expression and some associated comments, if needed. MathML

presentation tags are used to encode the expression contents. As explained in Chapter 2

and demonstrated in Appendix-B, a few user-defined tags like (GC), (symbol-level), etc.

are used to truth the expressions. However, tags like (style), etc. are not relevant to
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Table 6.1: Coverage of the Dataset of Handwritten Expressions

Source Area #Expressions Sample Collection

Part-I: Algebra 22 Expressions are written
English medium Calculus 10 by 20 students studying
science books Differential Equations 10 at high school/college
(mainly maths) Integrals 10 level. From each writer
taught at high Logic & Set Theory 8 two different versions
schools and Statistics/Prob. Th. 10 are recorded for each
colleges. Trigonometry/Geometry 10 expression giving 4,000

Vector 10 samples.
Misc. (Physics, etc.) 10

Part-II: Series 5 Ten writers who are in
AsTeR dataset Logarithms 3 research and teaching
[91] Fractions 8 at university level

Roots 4 and asked to write each
Sums 3 of the 50 expressions
Super/subscripts 7 twice generating 1000
Limits 2 samples.
Matrix 1
Trigonometry 5
Integrals 5
Miscellaneous 7

Part-III: Elementary level 25 Ten native writers
Hindi medium Algebraic problems write each expression
science books that use several twice giving 500
taught at Hindi numerals samples.
high schools. and letters.
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the handwritten data.

Handwritten versions of the expressions are recorded in .sam files. Each handwritten

sample is tagged with three keys writer-id, exp-id and version-id. Combination of

these three attributes form a unique key to identify a sample in the database. The key

writer-id comes from a writer table containing writer details (like name, age, native

language, profession, academic qualifications, etc.). The key version-id keeps track of

different versions of the same expression written by the same writer.

Next, online data for each sample is recorded in a specific format. Let N be the number

of strokes (S1, S2, . . . , SN) used to write an expression by a writer and P be the total num-

ber of points recorded, p1, p2, . . . , pN (where P =
∑

i pi) be the number of points recorded

for N successive strokes and t1, t2, . . . , tN−1 be the respective time gaps (measured in mil-

liseconds) between strokes Si and Si+1. Using these notation the storing format for online

data is represented as < N, {pi, pi number of co-ordinate points, ti} >. The patterns

within curly braces get repeated for N times and SN being the last stroke, tN is always

set to NIL to mark the end of data sequence.

6.5.2 Recognition of Expression Symbols

The total number of distinct symbols present in the database expressions is 3176 of which

1727 come from the set of 100 expressions found in school and college level books. On the

other hand, 1072 symbols come from the AsTeR dataset [91] and 377 symbols from a set

of Hindi digits and letters. Since the same expression is written by several writers, the

total number of samples for these 3176 symbols is 98,060. Details are given in Table 6.2.

Table 6.2: Distribution of Database Samples

Source #Distinct #Writers #Versions #Total #Training #Test
Symbols Samples Samples Samples

Part-I 1,727 20 2 69,080 51,807 17,273

Part-II 1,072 10 2 21,440 17,142 4,298

Part-III 377 10 2 7,540 6,037 1,503

Total 3,176 40 – 98,060 74,986 23,074

The symbols in database can be partitioned into seven different groups (number in

braces indicates the number of distinct classes under each category): (i) Arabic Numerals

(AN: 10) (ii) Roman Letters (RL: 52), (iii) Greek Symbols (GS: 30), (iv) Mathematical

Symbols (MS: 80), (v) Punctuation Marks (PM: 6), (vi) Hindi Numerals (HN: 10), and (vii)

Hindi Letters (HL: 10). The category, MS contains the largest number of symbols including
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binary and relation operators, arrow symbols, bracket symbols and several miscellaneous

symbols like prime (‘′’), for all (‘∀’), there exists (‘∃’), etc.

Therefore, the symbols generate 198 distinct classes for which the samples in the

database are divided into two classes, namely, training and test samples. Both of the

classifiers (described in section 6.3) are trained on the same set of training samples and

are tested with the same test data. The classification results obtained from the classifiers

are outlined in Table 6.3 where for an input symbol, only the top rank (class) returned

by a classifier is considered.

Analysis of the classification results shows that the classifiers are of comparable power

but behave differently for different types of symbols. Classifier-I shows better perfor-

mance for complex shaped symbols (e.g. Roman letters, Greek symbols, Hindi Letters,

etc.) whereas Classifier-II responds better for symbols with less structural complexity

(e.g. Numerals, Math operators, punctuation marks, etc.). Next, the similarity between

the classifiers is estimated following the equation 4.7 of the Chapter 4 and a value 0.817

is obtained for the similarity index, ρC . In the present system, the classifiers are trained

on the same data set. Therefore, the value of (ρC) may change if classifiers are trained

on different training sets.

Table 6.3: Training and testing of the Classifiers

Symbol Type #Training #Test Correct Recognition on Test Set by
(#Classes) Samples Samples Classifier I Classifier II

AN (10) 8,998 2,769 2,453 (88.59%) 2,551 (92.13%)

RL (52) 19,496 6,192 5,676 (91.67%) 5,524 (89.21%)

GS (30) 5,993 1,845 1,702 (92.25%) 1,654 (89.66%)

MS (80) 28,494 8,568 7,747 (90.42%) 7,898 (92.19%)

PM (6) 1,249 692 603 (87.18%) 638 (92.24%)

HN (10) 7,469 2,107 1,868 (88.17%) 1,970 (93.49%)

HL (10) 3,287 901 840 (93.26%) 822 (91.12%)

Total (198) 74,986 23,074 20,889 (90.53%) 21,057 (91.26%)

Finally, the classifiers are combined following three methods outlined in section 4.2.3.

Among these three combination techniques, the first two (i.e. the highest rank and the

Borda count) do not need any training, whereas the logistic regression needs a training to

evaluate its parameters (α, β1, β2 in equation 4.11). The training set shown in Table 6.3

is used to compute these parameters. The details of combination results are shown in

Table 6.4.

It is to be noted that among the three methods the highest rank method and the
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logistic regression give comparable performance, the latter being slightly better. On the

other hand, the Borda count method does not produce very encouraging results in the

present system. This is so because this method does not take into account the differences

in the individual classifier capabilities.

Table 6.4: Combination of the Classifiers

Classifiers and their Combinations % Correct in Top N Choices
1 2 3 5 10

1. Classifier-I 90.53% 93.60% 96.25% 96.96% 96.98%

2. Classifier-II 91.26% 94.12% 97.03% 97.69% 97.70%

3. Combination by the Highest Rank 93.18% 96.73% 98.02% 98.92% 98.96%

4. Combination by the Borda Count 91.92% 94.87% 97.41% 98.03% 98.15%

5. Combination by Logistic Regression 93.77% 96.82% 98.09% 98.97% 99.12%

6.5.3 Recognition of structures

All 5500 handwritten samples for 175 distinct expressions present in the database are

used to test our proposed structure analysis technique. The total number of symbols

appearing in sample dataset is 98,060. Since detection of levels (L) of a symbol plays an

important role in its final placement, the test procedure initially finds the accuracy for

detection of L-value for each symbol. Next, placement of a symbol is checked by looking

at the recognition result of its immediate parent structure that contains the symbol. For

example, placement of ‘2’ in ex2

is assessed by checking the recognition result of the

superscript structure ‘x2’. Results obtained for detection of the level and placement for

each symbol are shown in Table 6.5.

Table 6.5: Structure Recognition Accuracy at Symbol Level

Number Accuracy
of Symbols Detection of Level Placement

98,060 95,531 (97.42%) 92,049 (93.87%)

Next, the recognition accuracy for individual structures is measured. Note that ex-

pression symbols generate two types of structure: the first type refers to the 2-D struc-

tures e.g. script, limit, fraction, root, matrix, etc. and the second type includes different

1-D operators including parentheses, function words like “sin”, “lim”, etc. After studying

the expressions present in the database, fourteen elementary structures have detected.
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The first twelve are 2-D in nature. They are (i) Superscript, (ii) Subscript, (iii) Fraction,

(iv) Root, (v) Overline, (vi) Underline, (vii) Overbrace, (viii) Underbrace, (ix) Ellipses,

(x) Accent, (xi) Matrix and (xii) Stacking of symbols. On the other hand, 1-D structures

are grouped into two classes, namely, Function word (e.g. ‘sin’, ‘log’, ‘lim’, ‘max’, etc.)

and other 1-D structures (e.g. ‘+’, ‘-’, parentheses, etc).

(a)

(b)

Figure 6.6: An expression: (a) printed form and (b) handwritten version.

Recognition accuracy for each type of structures is assessed separately. Accuracy is

judged by computing the number of structures (as well as operators) properly identified

from the total number of such structures present in the expressions. For example, Figure

6.6(b) shows a handwritten version of the expression in Figure 6.6(a) (printed form).

The expression contains eight structures. Among them, four are 2-D in nature, namely,

two limit symbols of the integration, as well as script structures for e and x. There are

four 1-D structures (or operators), namely, integration, two subtractions, and dx. After

structural analysis stage, the system generates a TEX string shown in Figure 6.6(b) below

the handwritten expression. The correct TEX string is shown below the printed expression

in Figure 6.6(a). It is seen that the generated string differs in three positions, namely,

(i) superscript of e, (ii) superscript of x, and (iii) placement of minus operator before 1.

Hence, 2 out of 4 2-D structures and 3 out of 4 1-D structures are recognized correctly.

The details of structure recognition results are presented in Table 6.6. A semi-automatic
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way of evaluating expression recognition results is presented next in Chapter 7.

Table 6.6: Structure Level Accuracy

Structure Types Total Correct Recognition

Scripts 13,246 12,321

Limit 2,588 2,328

Fraction 494 384

Root 248 214

Overline 156 133

Underline 34 26

Overbrace 118 91

Underbrace 52 37

Accent 1,562 1,209

Matrix 38 31

Stacking of Symbols 398 311

Ellipses 2,152 1,941

Function words 1,494 1,399

Parenthesis 1,928 1,843

Other 1-D Structures 10,168 9,936

Summary 34,676 32,204 (92.87%)

Errors encountered in structure analysis stage are mainly attributed to:

• Handwriting Style: The prime reason behind errors in symbols placement is ca-

sual handwriting style that create confusion while determining spatial relationship

between a pair of symbols. Some restrictions on writing style will definitely help

to resolve several ambiguities that arise at the structural analysis stage, but im-

position of any such restriction must be done carefully when realizing a practical

system.

At present, the system does not provide any layout structure (like three zones

for writing letters/digits or box like structures that appears in different equation

editors like one available with Microsoft Word, etc.) related help for the writers.

But an interface giving such kind of layout assistance may help the writers to enter

expression in a better way. Such an interface may eventually improve the overall

system performance.

• Ambiguous role of a symbol: Several symbols like dot, horizontal line segment, etc.

represent different meaning in different context. This leads to ambiguous parsing

and selection of a particular parse result is difficult. For example, parsing of the

expression in figure 6.7 gives different results due to incorrect placement of the
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Figure 6.7: An expression with symbols having ambiguous role.

underline of ‘a’, overline of ‘b’ and the fraction lines. Use of a probabilistic version

of the proposed CFG may help us a lot to resolve many of these ambiguities.

Figure 6.8: Faa-de-bruno’s Formula: an expression with high geometric complexity.

• Effect of geometric complexity: The geometric complexity plays a crucial role in

the placement of symbols. Test results show that the number of errors in symbol

placement increases with higher complexity of expressions. Figures in Table 6.7

also attest to this observation. For example, the expression in figure 6.8 shows a

high geometric complexity and its recognition is incorrect due to wrong placement

of symbols having high L values.

• Error in Input: Another reason for causing errors during structural analysis is input

of an incorrect expression. Figure 6.9 shows an example where the input itself is

incorrect (presence of an extra left bracket shown in the figure) and analysis of this

expression structure generates an invalid TEX string.

Finally, recognition accuracy at the whole expression level is assessed and results

are presented in Table 6.7. Figures in this table show that the recognition accuracy

at the expression level is quite low because placement error for a single symbol makes

recognition of an expression incorrect. On the other hand, figures show that errors in

placement of a few number of symbols are responsible for the majority of the expressions

parsed wrongly. Therefore, such a recognition accuracy computed at the expression level
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Figure 6.9: Input error: a left bracket pointed by an arrow is wrongly written.

does not truly evaluate the system and need for designing a better evaluation strategy is

called for. This performance evaluation has been further discussed in the next chapter.

Table 6.7: Expression Level Accuracy

# Expression # Correctly Parsed # Expressions with N
Expressions Symbol Placement Errors

1 2 3 4 ≥5

5,500 4,121 522 409 243 122 83
(74.92%) (37.85%) (29.66%) (17.62%) (8.85%) (6.02%)

Comparing our work with the existing studies is difficult, since each study defines

its own dataset for testing. However, we attempt to present a comparison among differ-

ent works based the nature of test data, accuracy reported for recognition of symbols,

structures, whole expressions, etc. Table 6.8 presents such a comparison with relevant

comments.
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Table 6.8: Comparison of the Studies on Online Handwritten Expression
Recognition

Ref. Dataset Accuracy Reported Remarks
Index #Exp #Sym #Writers Size of Symbol Struct. Exp.

(Versions) Test Data Level Level Level

[4] 8 NR 10 320 (Exp) 93% NR 314
320 –

(4)

[59] – 82 1 820 (Sym) 96.9% – – Writer
dependent

(50) accuracy is
reported.

[110] – 94 20 NR 90.52% – – Writer
dependent

(5) accuracy is
reported.

[93] Spatial relation
4 NR 20 160 (Exp) 99.35% 98.46% NR between pair

of symbols are
(2) are detected

to compute
accuracy

[15] Integrates sym
60 NR 10 600 (Exp) 99.4% 99.72% 532

600 and structure
(1) recog. scores.

[101] NR NR NR NR 80% 92% NR Matrix recog.
accuracy: 69%.

[112] Reported that
[111] 4 NR 27 108 (Exp) NR NR NR the writers are

(1) satisfied with
the output.

[96] The system is
being used by

NR 43 1 5,375 (Sym) > 99% NR NR two German
Universities.

Our 175 3,176 40 5,500 (Exp) 99.12% 92.87% Tested with a
Work (2) 23,074 (Sym) 4121

5500 large no. of exp.
taken from
different sources

(NR: Not Reported, Exp: Expressions, Sym: Symbols, Struct: Structure, recog: Recognition)
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6.5.4 Processing speed

All of our algorithms are written in C and a 733 MHz IBM PC has been used to test the

system. The expressions are grouped into three classes based on the number of symbols

in them: (i) small size, if number of symbols is less than 7, (ii) medium size, if number of

symbols is in between 7 and 15, and (iii) large size, if symbols are more than 15 in number.

The time required to process each type of expression and convert it into corresponding

TEX string is shown in Table 6.9.

Table 6.9: Processing speed of the proposed system

Expression Type Time (avg.) required for recognition

Small size 1.82 seconds

Medium size 2.87 seconds

Large size 4.58 seconds

6.6 Summary

In this chapter, a system for online recognition of mathematical expressions is presented.

The recognizer uses a multiple-classifier approach. The classifiers have been designed

to capture wide variations in shape and size of the large number of symbols that occur

in writing mathematics. Because of its high efficiency, the recognizer is applicable in

recognizing online handwritten Indian language scripts [40] as well.

The proposed technique uses both online and offline data analysis. A context free

grammar is used to parse the input expression. Contextual information has been used at

different levels to increase the system efficiency. A in-depth analysis of the test results

is presented in this chapter. Compared to the previous ones our system has been tested

with a dataset of reasonably big size and the expressions used in testing are taken from

a globally available dataset. High accuracy achieved both in symbol recognition and

structural analysis stages attest the feasibility of our proposed algorithms.

Because of this study, online entry of mathematics into electronic documents will

become more user-friendly. This will help to realize an easy preparation of scientific

and technical documents in digital domain. Also, such a study is useful in developing

electronic chalkboard [96], pen-based calculator programs [16], etc. The proposed sys-

tem supports entry of Devnagari (Hindi) online text and it eventually helps to prepare
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scientific and technical Indian language documents [41] in digital domain.
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CHAPTER 7

POST-PROCESSING AND
PERFORMANCE EVALUATION

7.1 Introduction

In this chapter, issues related to post-processing and performance evaluation of expres-

sion recognition system are discussed. Post-processing module mainly deals with error

detection and correction aspect. On the other hand, performance evaluation is done to

measure the efficiency of an expression recognition system.

Recognition of expressions is not expected to be free from errors. Therefore, error

detection and correction are important post-processing steps. A good error handling

module should locate the presence of errors and correct them properly. At the same

time, these operations are to be performed fast so that the resultant system does not

slow down.

Although error handling is an important issue, very few studies dealing with this

aspect have been reported in the literature. The method proposed by Dimitriadis et.

al. [28] provides warning messages whenever an error is detected and asks for human

assistance to correct the errors. However, the errors detected by this approach are quite

simple in nature. Later on, Lee and Wang [69, 70] proposed a set of rules for correcting

errors. The rules are formulated based on some heuristics. These rules mainly try to

correct substitution (occurred during symbol recognition phase) errors, whenever possi-

ble. More recently, Chan and Yeung [15] present a study that identifies different types of

errors occurring while online recognition of mathematical expressions is concerned. The

authors proposed an extension of the grammar [14] that is used for parsing an expression.

In their approach, the grammar is extended to include all the expected errors into its

productions (i.e. grammar rules).

In our approach, initially errors are analyzed to classify them into different groups.

Several errors are detected by checking the syntactic validity of the generated TEX string

and then an attempt is made to correct them using a set of rules that are formed by using

several contextual information and some heuristics. Section 7.2 presents the proposed

error handling module.

The quantitative evaluation of expression recognition results is a difficult task since

129
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recognition scheme involves two major stages: symbol recognition and structural anal-

ysis. The stages are tightly coupled and therefore, if evaluation in one stage is done

independent of the other, then it may not reflect true performance of the system. Er-

rors in the symbol recognition stage affect the structure analysis results. This calls for

an integrated evaluation mechanism for judging the performance of system dealing with

expression recognition.

Chan and Yeung [15] proposed an integrated performance measure consisting of two

independent measures: one for recognition of symbols and another for recognition of op-

erators. These two measures are combined with equal weights. The proposed evaluation

is based on manual effort. Later on, Okamoto et. al. [84] have presented an automatic

approach for evaluating their structure analysis method. They attempted to evaluate the

performance by checking whether each typical structure such as scripts, limits, fractions,

roots, and matrices, is recognized correctly. In their approach, expressions against which

a system is evaluated are groundtruthed into MathML format. More recently, Zanibbi

et. al. [113] presented another automatic way of evaluating the performance. In that

approach, an expression is visualized as a set of symbols appearing on different baselines.

The performance is assessed by separately counting the number of (i) correctly recognized

baselines and (ii) properly placed (w.r.t. the corresponding baseline) symbols.

As the methods proposed in [15, 84] count only the number of properly recognized

structures, an error in recognizing a simple structure gets the same weight as that of

an error in a complex nested structure. On the other hand, the technique proposed in

[113] presents more in-depth analysis of the recognition results, but does not provide a

single figure of merit for overall performance evaluation. In our study, we present a new

performance-index (γ) that uses geometric (or structural) complexity of an expression

to measure the overall performance. Section 7.3 presents the proposed technique for

performance evaluation.

7.2 Error Detection and Correction

At first, let us consider the different types of errors that may occur in recognizing expres-

sions. We categorize the errors into three groups: (i) Segmentation errors, (ii) Recognition

errors, and (iii) Structure interpretation errors. One type of error may influence the oth-

ers. For example, segmentation errors, in many cases, affect recognition of symbols or

analysis of expression structure. Similarly, recognition errors may also generate inaccu-

racies for understanding expression structure. Error types and influence of one type on

the others are discussed below:
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7.2.1 Segmentation Errors

Errors that occur during segmentation of an expression into its constituent symbols are

known as segmentation errors. Though we discuss such error in connection with recogni-

tion of printed expressions, system dealing with recognition of handwritten expressions

is also not free from this. However, in our system for handwritten expressions, two sub-

sequent symbols are separated by a time gap relatively larger than that between two

strokes of the same character. Hence, online recognition of expression, in our case, do

not encounter segmentation problem, but to realize a system that does not impose any

limitation on drawing of symbols, one has to consider proper segmentation of expression

symbols.

In general, segmentation errors observed in printed expressions are of two types: (i)

errors that do not impose any recognition problem and (ii) others, which lead to recog-

nition errors. However, both types of errors result in wrong interpretation of structures.

Figure 7.1(a) demonstrates one such example 1 where the root symbol is wrongly seg-

mented into parts namely, √ and a horizontal line segment. As far as symbol recognition

is concerned, both of these parts are correctly classified by the recognition engine but

interpretation of expression structure gets affected by this segmentation error. During

interpretation the detached horizontal line is interpreted as an overline above the nu-

merator part under square root operator and therefore, the resultant TEX string (though

syntactically a valid one) does not correspond to that of the original expression. The

expression after recognition is shown in figure 7.1(b). At present, our system cannot

correct such errors since compilation of the generated TEX string does not reveal any

syntactic problem. Matching of the input and output expressions at the image level may

be helpful to locate and correct such errors. We would like to consider this in future

extension of the present study.

The second type of segmentation error has a direct influence on the symbol recog-

nition engine. Touching and broken characters fall in this category. In our system, a

special module takes care of segmentation of touching characters, as described in sec-

tion 4.3 of chapter 4. However, failure in segmentation of a touching character results

in symbol recognition errors. Similarly, improper merging of the disconnected parts of a

broken character leads to recognition errors (either rejection or insertion type of errors).

Segmentation errors of this type are difficult to correct immediately during segmentation

phase itself. However, a few of these errors, as demonstrated in figure 7.2 are corrected

during interpretation of structures.

1This expression has been taken from [44]
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(a)

γk
v,k+1 = −

√

(v+k+1)(k−v+1)
(2k+1)(2k+2)

βk
k+1,k+1

(b)

Figure 7.1: Segmentation error: (a) Image of an input expression, (b) The output ex-
pression on recognition.

7.2.2 Recognition Errors

Recognition errors are of three types: (i) Substitution error: a symbol is misrecognized

as another symbol. (ii) Rejection error: the recognition engine cannot classify a symbol

and hence, rejected. Rejected symbols are generally signaled by a special mark. (iii)

Insertion error: One or more extra symbols appear in the recognition result. This occurs

mainly due to the segmentation error where a symbol is wrongly segmented into more

than one parts (e.g. broken characters).

Substitution errors, as demonstrated in figure 4.10 under section 4.4, occur because of

the shape similarity among several characters. Some of these errors affects the structure

analysis phase. Figure 7.2(a) demonstrates an example where the character ‘o’ in ‘cos’ is

wrongly recognized as ‘0’, then it generates a string ‘c0s’ which does not pass through the

syntactic validation check when the final TEX string is compiled. This is because TEX has

no keyword as ‘c0s’. In such cases, other alternatives provided by the recognition engine

is used to correct the errors. Similar syntactically invalid TEX strings are generated for

substitution errors like character ‘C’ is recognized as ‘(’. Section 6.4.3 has addressed this

issue.

However, many of the substitution errors like ‘P ’ as ‘p’, ‘1’ as ‘l’ (‘`’) do not affect

interpretation of structures but reduces the overall recognition efficiency of the system.

The method for correction of such errors checks the context around the erroneous charac-

ter. Occurrence of such errors are suspected by looking at the symbol confusion matrix.

Errors where a lowercase character is recognized as uppercase or vice versa (e.g. ‘P’,

‘p’; ‘X’, ‘x’; etc.) are corrected by considering the symbol image and comparing its

height (or vertical extent) with its neighboring character (if any) occurring in the same

enclosing zone, EZ (explained in Chapter 5). Tables 5.1 and 5.2 are used to resolve such
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confusions.

On the other hand, wrong occurrence of a ‘l’ (i.e. `) in say, ‘3.14’ or ‘1’ in say, ‘log’

are spotted and corrected by checking the neighboring characters. A set of rules similar

to the ones used in [69, 70] is implemented to correct many of these substitution errors.

Rejection errors, in general, do not create problems for the analysis of symbol arrange-

ment. But when a bracket symbol (e.g. ‘(’, ‘)’, ‘[’, ‘]’, etc.) is rejected, the final TEX

string shows missing bracket error on its compilation. On receiving such error message,

further attempt is made to recognize a rejected character as one of the bracket symbol.

(a)

The character ‘r’ (marked by the rectangular box) is broken into two parts
which are recognized as ‘γ’ and ‘dot’. During analysis of symbol arrangement,

the dot is ignored as its position does not convey any meaning.
(b)

The character ‘D’ (marked by the rectangular box) is broken into two parts which are
recognized as ‘I’ and ‘)’. Occurrence of an unmatched ‘)’ leads to TEX syntactic error.

(c)

Figure 7.2: Symbol Recognition error: (a) Generation of invalid TEX string, (b) and (c)
Influence of broken characters.

On the other hand, broken characters often impose insertion type errors. In a few

cases, the parsing algorithm does not find any suitable production rule to understand the

positional meaning of a symbol originated from a broken character and therefore, ignores

it. Figure 7.2(b) shows an example where the character ‘r’ is broken into two parts that

are recognized as γ and dot. In the structure analysis phase, the position of the dot is

not properly interpreted and hence, ignored. In such an occasion, the final TEX string
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does not show any syntactic error. However, there are cases when a broken character

generates syntactically invalid TEX string. Figure 7.2(c) shows such an example where

the character ‘D’ is broken into two parts, which are recognized as ‘I’ and ‘)’. Occurrence

of ‘)’ leads to unmatched parenthesis problem in the final TEX string. A prior knowledge

about the nature of the broken characters may help to remove such errors.

7.2.3 Structure Interpretation Errors

Interpretation of structures being the last stage of expression recognition, errors in ear-

lier modules affect this stage. Moreover, some errors may originate at this stage itself.

Therefore, errors encountered during analysis of symbol arrangement are of two types: (i)

errors that propagate from previous processing stages namely, segmentation errors and

recognition errors and (ii) errors originated from the limitation of the structure analysis

technique itself.

Segmentation and recognition errors that affect the interpretation of expression struc-

tures are already explained. A few cases are demonstrated in figures 7.1 and 7.2. Many

of such errors explained earlier generate syntactically invalid TEX strings and therefore,

detected by compiling the final TEX string corresponding to the input expression. Some

of these errors are corrected using prior knowledge about the confusing and broken char-

acters.

Errors that are not propagated from any earlier stage and originated during structure

analysis only have been analyzed in sections 5.4 and 6.5.3. Main reason for this behavior

is attributed to error in detection of symbol level, which leads to error in placement of

that symbol in the final expression string.

In our system, a few of the symbol placement errors are corrected by maintaining a

set of rules that suspect certain interpretations of symbol arrangement. Lee and Wang

[69, 70] pointed out a few such rules like: a numeral cannot have subscript expression,

etc. In our approach, we extended this set of rules (in total, 26 such rules are there in

our system) to tackle some more errors that occur often in recognizing expressions.

For example, consider a case where the arrangement of symbols in an expression

fragment, C2n7 is interpreted as C2n7 because the system fails to understand ‘7’ as a

subscript of ‘n’. However, such errors can be detected by maintaining a rule that would

suspect the formation of any sub-expression of the form:
〈

digitvariabledigit
〉

. Once the

formation of a sub-expression is suspected, the system re-checks its confidence to analyze

the arrangement of symbols appearing in that sub-expression. However, since there is no

rule to reject (rules only suspect) any interpretation obtained by analyzing the physical
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layout of a groups of symbols, the system retains the incorrect interpretation, if it fails

to locate errors in its second attempt.

7.2.4 Improvement in Overall Recognition Accuracy

As mentioned, our system can do little to detect and correct the segmentation errors.

However, several recognition and structure interpretation errors, as explained above, are

detected and corrective measures for these errors are also attempted. It is experimentally

observed that symbol recognition accuracy is improved by 0.21% and 0.36% for printed

and handwritten expressions, respectively. Similarly, the number of correct recognition is

increased from 4,348 to 4,376 when recognition of whole expression (printed) is concerned.

Details of the improvement achieved due to the proposed error handling routine are

outlined below in Table 7.1.

Table 7.1: Improvement due to Error Correction

Symbol Recognition Expression Recognition
Printed Handwritten Printed Handwritten

#Test Samples 49,180 23,074 5,560 5,500

#Correct Recognitions 48,555 21,636 4,348 4,121

Accuracy 98.73% 93.77% 78.20% 74.93%

#Errors 625 1,438 1,212 1,379

#Error Corrections 104 84 28 29

Improved Accuracy 98.94% 94.13% 78.71% 75.45%

7.3 Performance Evaluation

In this section, we present a new performance-index (γ) that uses geometric (or struc-

tural) complexity of an expression to measure the overall performance. As explained in

Chapter 2, the structural complexity of an expression is defined by (GC) i.e. the num-

ber of horizontal lines on which constituent symbols are arranged. Moreover, we view

that an error in recognizing a base level (more clearly, dominant baseline [113]) structure

would be more severe than the error in recognizing structures at higher levels. This is

because symbols placed in horizontal lines other than the baseline are structurally de-

pendent on the base level symbols. Therefore, error encountered in placement of a base

level symbol (say, s0) affects the placement of other symbols structurally related to s0.

In general, placement errors for base level symbols affects regeneration of an expression
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poorly than errors for other symbols. This situation will become more clear when the

following examples are considered.

a + b + c = 2 + α (7.1)

a2 + b + c = 2 + α1 (7.2)

a2 + b2 + c2n7 = 2 + α1 (7.3)

a2 + b2 + c2n7 =
2 + α1

β2
(7.4)

All the structures in equation 7.1 are in one level and hence, GC = 1. On the other

hand, the expression in equation 7.2 shows a complexity (GC = 3) because a has one level

superscript and α has one level subscript. Following this logic, GC-values of equations 7.3

and 7.4 are gradually increasing. One can visualize that error in interpreting position of

any base level symbol (for example, ‘a’ in equation 7.2 or ‘c’ in equation 7.3) adversely

affects the layout of other immediate symbols nested on it. Moreover, as use of non-base

level symbols (e.g. script or limit expressions) increase the structural complexity of an

expression, any systematic evaluation strategy is expected to consider how a system can

recognize simple expressions and then to check the system’s response as the complexity

increases. Therefore, to evaluate the efficiency of an approach that deals with recognition

of expressions, one has to take the geometric complexity of expressions into account. Four

expressions in equation 7.1 through 7.4 show a gradual increment in structural complexity

of the expressions.

7.3.1 Integrated Performance Measure

In our approach, the same method is followed for evaluating recognition of printed as

well as handwritten expressions. The recognition result for an expression (printed or

handwritten) is compared with the groundtruth corresponding to that expression. If

they do not match (matching procedure is explained later in section 7.3.2), then the

result is not correct. Errors originate from two sources, namely, (i) symbol recognition

errors and (ii) errors in structure interpretation. Symbol recognition errors is easily

computed as

No. of wrongly recognized symbols

Total no. of symbols
(7.5)

However, the computation of structure recognition errors is not trivial. This is so

because the parsing of an expression may not be fully correct, but some of its symbol
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arrangements may be interpreted properly, and the system should be given partial credit

for it. In our method, the erroneous arrangement of a symbol (s) is penalized by a factor
1

i +1
, where i is the level of the symbol, s.

It may be noted that in case of computing structure recognition error only spatial

arrangements are important. For example, no structure recognition error is reported

if Xm is recognized as Xrn. This is so because such symbol classification errors are

accounted for by computing symbol recognition accuracy. In the foregoing example,

structure recognition error is detected only if identification of superscript structure fails.

Assuming a test set (T ) contains Z number of expressions, γk is computed for all

k = 1, 2, · · ·Z and to rate the overall system performance, an average γavg is computed

as follows:

For any test expression, let St be the total number of symbols, Se be number of

symbols recognized incorrectly, Ri be the number of symbols in the ith level, and Oi be

the number of ith-level symbols for which incorrect arrangement analysis is encountered.

Now, the performance index (γ) is defined as

γ = 1 −
Se +

∑

i Oi × 1
i + 1

St +
∑

i Ri × 1
i + 1

. (7.6)

Assuming a test set (T ) contains Z expressions, γk is computed for all k = 1, 2, · · · , Z,

and to rate the overall system performance, an average γavg is computed as

γavg =
1

Z

∑

k

γi . (7.7)

7.3.2 Evaluation Results

The performance of any expression recognition system can be judged following Eq. 7.6 and

an average performance can be computed according to Eq. 7.7. For an input expression

computation of γ needs detection of symbols for which symbol recognition or placements

are wrong. This can be automatically done by comparing two Document Object Model2

(DOM) trees, one generated from the groundtruth data for the expression and another

generated from the recognition output for that expression. Let GD be the DOM tree

obtained from the groundtruthed data for an expression E and RD be the DOM tree

corresponds to the recognition result for E . A comparison between GD and RD detects

2http://www.w3schools.com/dom/ and
for further reference see http://www.w3.org/TR/MathML2/chapter8.html
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Figure 7.3: Performance evaluation: (a) Image of an expression, (b) Groundtruthed data
for the sub-expression marked in (a), and (c) Results obtained on recognition of the
sub-expression.
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Figure 7.4: DOM representation: DOM trees correspond to (a) figure 7.3(b) and (b)
figure 7.3(c).

the errors for recognition of E .

Since matching of two trees is itself a long-standing subject of research3, we at present

ddo not explore much in this area (rather we treat this issue for our specific purpose as

a future research problem). In our current approach, matching of two DOM trees is

centred on the leaf-nodes only and parsing proceeds in a left to right order. At first, the

left-most leaf node of GD is picked up and corresponding leaf node in RD is matched.

Matching considers (i) identities (symbols) of the nodes and (ii) the paths found from the

leaf-nodes to the root-nodes in two trees. A mis-match in the first case reports symbol a

recognition error, whereas mis-match in the second case indicate symbol placement error.

Leaf-nodes generating mis-matches are marked in GD as it represents the groundtruth.

Next, manual intervention is invoked to compute the γ (i.e. Eq. 7.6) for E . Manual in-

tervention is required because the above DOM-matching approach identifies the symbols

suffering from placement errors but at the same time it may mark certain other sym-

bols which truly speaking do not suffer from placement errors. Actually, this matching

method pinpoints the structures (i.e. group of symbols that impose a 2-D structure like

scripts, etc.) for which the arrangement of some constituent symbols are incorrect.

Therefore, expressions (about 79% in printed environment and 75% for handwritten

ones) that do not suffer from any error need not involve any manual input for computation

3We would like to refer to a recent article on this topic: Philip Bille, “Tree Edit Distance, Alignment
Distance and Inclusion,” available at “citeseer.ist.psu.edu/bille03tree.html”.
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of γ (i.e. Eq. 7.6) but others require manual effort for this purpose. In this sense,

our method of performance evaluation is semi-automatic in nature and finding a fully

automated way of doing this is considered as a future research problem.

Let us consider a small expression fragment to understand how evaluation is done

following the above described approach. Figure 7.3(b) shows the groundtruth for a nested

structure of the expression shown in Fig. 7.3(a). Figure 7.3(c) shows the recognition

output when a system incorrectly recognizes the sub-expression c2n7 in Fig. 7.3(a) as

c2n7, which encounters an incorrect placement of “7”. Such incorrect placements can be

automatically detected by comparing the DOM trees shown in figure 7.4 where (a) and (b)

correspond to the marked-up representations given in figure 7.3(b) and (c), respectively.

Matching of the corresponding leaf-nodes of these two trees indicate that the leaf-nodes

corresponding to ‘n’ in two trees do not match as the paths (from ‘n’ to the root node)

vary. Similarly, the leaf-nodes corresponding to ‘7’ also show mis-match. These two

nodes are marked in the DOM representing the groundtruth.

As mentioned earlier that since the matching method used here captures the group of

symbols imposing a 2-D structure, both ‘n’ and ‘7’ (which bind themselves in a subscript

structure) have been located. Next, manual effort determines which symbols that are

really to be penalized. For example, in the above case, placement of ‘n’ is not incorrect

and error originates due to placement of ‘7’ and hence, arrangement of ‘7’ is only to be

penalized. To evaluate this recognition result, γ is computed following Eq. 7.6. In this

case, St = 4, Se = 0, R0 = 1, R1 = 2, R2 = 1, O0 = 0, O1 = 1, O2 = 0. Placement for only

one symbol is incorrect at level 1. Therefore, γ = 1 − 1/2

4+
∑

1+2/2+1/3
= 0.921.

Tables 7.2 and 7.3 report evaluation results on our dataset of printed expressions and

handwritten expressions, respectively. The figures in these tables include the marginal

improvement in accuracy due to error correction. Moreover, it is to be noted that the

results presented in these two tables assume that the groundtruthed data is free from

errors. Also, this has been assumed for other experimental results presented in previous

chapters. However, as discussed in Chapter 2, since generation of the groundtruthed data

required substantial manual intervention, truthed data is not free from errors. Therefore,

the results presented may undergo slight changes once the truthed data assures an error-

free representation.

Looking at the Tables 7.2 and 7.3, it may be noted that the recognition efficiency of

our system degrades as the structural complexity of the test expressions increases. This

is due to the reason that as the geometric complexity of an expression increases detection

of the symbol levels as well as their proper placement becomes difficult.
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Table 7.2: Performance Evaluation: Recognition of Printed Expressions

Complexity #Exp. Correct Performance
(GC) Recognition (Avg. γ)

1 1,042 987 (94.72%) 0.977

2 1,987 1,648 (82.94%) 0.982

3 1,109 839 (75.65%) 0.954

4 801 571 (71.29%) 0.947

5 162 96 (59.26%) 0.903

6 202 117 (57.92%) 0.924

7 93 62 (66.67%) 0.906

8 70 31 (44.44%) 0.927

9 31 8 (25.81%) 0.891

10 16 6 (37.50%) 0.866

11 23 7 (30.43%) 0.876

12 12 3 (25.00%) 0.813

13 7 1 (14.29%) 0.780

14 3 0 (00.00%) 0.715

15 2 0 (00.00%) 0.738

Summary 5,560 4,376 (78.71%) 0.961

Table 7.3: Performance Evaluation: Recognition of Handwritten Expressions

Complexity #Exp. #Samples Correct Performance
(GC) Recog. (Avg. γ)

1 25 780 703 (90.13%) 0.973

2 36 1,200 1,004 (83.67%) 0.962

3 44 1,500 1,163 (77.53%) 0.938

4 31 1,040 719 (69.13%) 0.915

5 8 220 156 (70.91%) 0.905

6 14 400 251 (62.75%) 0.884

7 7 160 91 (56.87%) 0.902

8 5 100 39 (39.00%) 0.877

9 2 40 10 (25.00%) 0.881

10 2 40 8 (20.00%) 0.850

11 1 20 6 (30.00%) 0.883

Summary 175 5,500 4,150 (75.45%) 0.935
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7.4 Summary

This chapter deals with some general aspects that are common to both printed and online

environment. An error detection and correction approach has been designed to improve

the overall expression recognition results. Different types of errors that occur during

recognition of expressions are studied in detail.

As the method for interpretation of expression structure progresses in a bottom-

up manner, the entire expression is reconstructed by forming (and merging) of smaller

symbol groups (sub-expressions). At any stage of this process, whenever a TEX string is

generated for a smaller sub-expression, it is compiled and checked for syntactic validity.

Any syntactic failure locates error points and calls for immediate processing to attempt

error correction. In case the system fails to correct a detected error, it is left for manual

correction at a later stage.

Several errors are corrected using a set of rules that exploit different contextual infor-

mation. Symbol recognition errors originating due to shape similarity among symbols are

corrected by using a character confusion matrix. The knowledge about broken characters

is also used to correct some errors due to broken characters. Because of the proposed

error handling routine, an overall improvement in recognition efficiency is also observed.

At present, our proposed error handling routine does not consider semantic errors (e.g.

1 + 1 = 3, etc.). However, detection and correction of such errors will be helpful for

applications like electronic chalkboard, pen-based calculator, etc.

A new technique is proposed to evaluate efficiency of an expression recognition system.

In the proposed performance evaluation strategy, computation of structure recognition re-

sult concerns only with the spatial arrangement of symbols and does not count the errors

that are already accounted for computing symbol recognition accuracy. However, eval-

uation of structure recognition technique exploits geometric (or structural) complexity

of an expression that is defined by the number of horizontal lines on which the expres-

sion symbols are arranged. It is viewed that the error in recognizing a base level (i.e.

dominant baseline of an expression) structure would be more severe than the error in

recognizing structures at higher levels.

The evaluation technique presented in this chapter considers all these aspects to

formulate a performance index that integrates symbol recognition scores with structure

recognition results and produces a single figure of merit to judge the overall recognition

performance. Experimental results are outlined to demonstrate the efficiency of our

proposed system.



CHAPTER 8

CONCLUSION

The motivation behind the present thesis was to provide a realistic computational ap-

proach for recognition of printed and handwritten mathematical expressions. Recognition

of printed expressions is an essential requirement for the OCR of scientific paper doc-

uments. On the other hand, recognition of online handwritten expressions provides a

convenient tool for entering mathematics into digital documents. The goal was set at:

• Development of a representative corpus of printed and handwritten mathematical

expressions: A representative database is required to facilitate a systematic research

on automatic recognition of expressions. Moreover, unavailability of suitable cor-

pora of expressions has so far prompted the researchers to define their own dataset

for testing their algorithm. As a result, replication of experiments and comparison

of performance among different methods have become difficult tasks.

• Finding mathematical expressions contained in scientific paper documents: Such a

technique helps to successfully upgrade the existing OCR systems (not trained for

expression recognition) for converting scientific paper documents into their elec-

tronic form. Identification and extraction of expressions keeps an existing OCR

system undisturbed while processing documents containing expressions. This is

because once expression zones are located, a specially designed module can work

for recognition of the expressions.

• Robust recognition of expression symbols: As recognition of expressions involves

two stages: (i) symbol recognition and (ii) structure analysis, errors in recognizing

expression symbols affect the module designed for structure analysis and thereby,

the overall error rate in the final recognition of expressions is increased by manifold.

Therefore, design of algorithms giving high accuracy for recognizing expression

symbols (printed as well as handwritten) were planned.

• An efficient parsing technique: Method for analyzing physical layout of expression

symbols must be efficient with respect to its accuracy and computational speed

to realize practical systems. Moreover, the parsing technique must be general in

nature to understand various types of expressions appear in different branches of

science.
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• Error detection and correction: Automatic detection and correction of errors occur-

ring in different stages of recognition helps to reduce manual intervention to obtain

error free output. Even if the system fails to correct certain errors, its ability to

detect those errors is helpful at a later stage when human interaction is involved

to verify and correct the recognition results.

• Performance evaluation: Performance evaluation of a system dealing with recog-

nition of expressions is not straight-forward because mathematical expressions ba-

sically represent a visual language. Moreover, such a recognition system consists

of a number of tightly coupled modules. Therefore, an effective evaluation strat-

egy is needed to understand the capability of an expression recognition approach.

Moreover, the evaluation strategy must be general in nature to compare various

approaches on recognition of expressions.

Goals Achieved:

• An elaborate survey of the previous studies on recognition of expressions has been

presented. Since recognition of expressions involve different processing components,

qualitative comparisons of different methods have been presented under respective

chapters presenting discussion on the related topic. This review work will be very

much useful for future references.

• A corpus of 400 printed scientific documents containing about 5,560 expressions

has been development. The documents are collected from various braches of sci-

ence to make the corpus a representative one. The statistical analysis of the corpus

content will facilitate future research on OCR of printed expressions. A database of

handwritten (online) expressions is also constructed. This database contains about

5,500 samples for 175 expressions and the samples are collected from 40 writers.

This database is a good source to study several aspects like variation in symbol

shape, writing style, etc., which are important for recognition of handwritten ex-

pressions. For both printed and handwritten expressions a user-friendly marked-up

representation has been proposed to groundtruth the expressions.

• A framework based on multifactorial analysis has been proposed to integrate sev-

eral aspects contributing to a decision making problem. This framework has been

used to solve two different problems namely, extraction of expression zones from
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document images and segmentation of touching characters. Promising results ob-

tained for both the problems strongly attest the application potential of the pro-

posed framework. Using multifactorial analysis based technique, 98.29% displayed

(93.65% embedded) expressions are correctly located in test documents. On the

other hand, about 96% touching character images are properly segmented by the

proposed approach.

• A multiple-classifier approach has been proposed for recognition of expression sym-

bols. Different techniques for combination of classifiers have been discussed. In

case of printed expressions, four classifiers are combined whereas, two classifiers

are used for recognition of online handwritten symbols. The proposed approach

shows recognition accuracy of 98.73% for recognition of printed symbols (93.77%

for handwritten symbols). Accuracies are further improved when for an input sym-

bol, more than one choice (i.e. other than the best one) returned by the recognition

engine is considered.

• Method proposed for understanding the physical layout of an expression is simple

as far computational aspects are concerned. A context-free grammar has been

formulated to analyze the arrangement of expression symbols. Several geometrical

aspects are considered for this purpose. Recognition of handwritten expression

exploits the spatio-temporal information available under online environment. If

recognition of individual structures (i.e. superscript, subscript, fraction, etc.) are

considered, the proposed technique is able to understand 93.82% structures for

printed expressions (92.87% for handwritten expressions).

• Errors encountered in different modules are analyzed in details and a set of error-

correcting rules is formulated. The design of rules exploits several contextual infor-

mation to improve the overall expression recognition accuracy for both the printed

and handwritten expressions. The proposed error handling approach is able to im-

prove symbol recognition accuracy by 0.21% (from 98.73% to 98.94%) for printed

expressions and for handwritten expressions, the degree of improvement for recog-

nition of symbols is about 0.36% (from 93.77% to 94.13%). If the recognition of

the whole expression is concerned, the error correcting approach shows an improve-

ment of 0.51% (from 78.20% to 78.71%) for recognition printed expressions and

for handwritten environment, this improvement is about 0.52% (from 74.93% to

75.45%).

• Performance evaluation has been studied with special emphasis. Performance of
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each processing module has been analyzed in-depth. Methods have been proposed

to compute efficiency for extraction of expression zones, analysis of symbol ar-

rangement in expressions. Finally, a new method for evaluating performance of

an expression recognition system has been presented. The proposed performance

measure considers several non-trivial issues related to an expression recognition

task and provides a single figure of merit to judge the efficiency of a system. A

semi-automatic evaluation of the system performance has been demonstrated using

the proposed format for groundtruthing of the expressions.

Scope of Future Research:

The study presented here can be extended in several directions. Some of them are

highlighted below:

• Dissemination of the corpus: Distribution of the corpus described in Chapter 2 is

considered as one of our immediate future activities related to the present work.

Apart from us, so far no other peer research groups have used this corpus for

their research. Very recently, two other Indian groups working in the area of

OCR have taken a part of this corpus but they haven’t published any results

yet. We plan to upload the full corpus (or a part of it in case our institute1

decides to charge anything to use the corpus) in the Internet so that other in-

terested groups can easily avail the data. This will be done after we finish the

second/final level of validation check. A few samples are already available in the

net at www.isical.ac.in/∼utpal (under Resources). Researchers are being in-

vited to post their comments and suggestions in this regard. As we are yet to

start the final-level validation check, some suggestions that recommend slight but

useful modifications in the groundtruth format (or in some other aspects) may be

incorporated during the execution of the final phase.

• Integration with existing OCR systems: We would like to integrate the proposed

method for recognition of printed expression with an existing OCR system to test

the performance of the combined system in recognizing scientific paper documents.

For this purpose, we plan to approach some of the software companies who are

already in the OCR-related business. Integration of our proposed system with an

1As our institute has partially supported the generation of this corpus, final decision on whether the
dissemination of the corpus will be free-of-cost or not will be taken by the institute’s authority.
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existing OCR system needs some modifications but we understand that most of

these modifications will be required at the interface level only and won’t affect the

existing system.

• New methods and designs: Studies on analysis of error patterns occurring in expres-

sion recognition are few in number. Some attempts have been made in this thesis to

design an error handling component but it is experienced that more research is need

in this direction. Moreover, performance evaluation of an expression recognition

system has room for further investigation. Design of new performance evaluation

strategy or modification of the one presented in this thesis can be considered in

future work. Moreover, a semi-automatic evaluation (of the performance index, γ

in (7.6)) has been proposed and a fully automated evaluation strategy needs further

research.

• Pen-based computing facility: The module that recognizes online handwritten ex-

pressions, if integrated, may provide a batter man-machine interface for computer

algebra systems [75]. Other applications like pen-based calculator [16] or Math

tutoring systems for children could be explored.

• Reading aid for the blind: It would be advantageous for visually impaired people if

the recognized expressions were converted into corresponding speech form [91, 48].

Though finding an unambiguous way of converting expressions into speech is quite

difficult but if achieved, will be of immense help for the blind people to read scientific

documents.



REFERENCES

[1] A.V. Aho, R. Sethi and J.D. Ullman, “Compilers: Principles, Techniques, and
Tools,” published by Addison-Wesley Publishing Co., 1986.

[2] R.H. Anderson, “Syntax-directed Recognition of Hand-printed Two-dimensional
Mathematics,” Doctoral Dissertation, Dep. of Engineering and Applied Physics,
Harvard Univ., 1968.

[3] R.H. Anderson, “Two-dimensional Mathematical Notations,” Syntactic Pattern
Recognition Applications, (Ed. K.S. FU), Springer-Verlag, New York, pp. 147-177,
1977.

[4] A. Belaid and J. Haton, “A Syntactic Approach for Handwritten Mathematical
Formula Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 6, no. 1, pp. 105-111, 1984.

[5] E.J. Bellagarda, J.R. Bellagarda, D. Nahamoo, and N.S. Nathan, “A Probabilistic
Framework for Online Handwriting Recognition,” Proc. of the 3rd Int’l. Workshop
on Frontiers in Handwriting Recognition (IWFHR), pp. 225-234, Buffalo, USA,
1993.

[6] B.P. Berman and R.J. Fateman, “Optical Character Recognition for Typeset Math-
ematics,” ACM Proc. of Int’l. Symposium on Symbolic and Algebraic Computation
(ISSAC), pp. 348-353, Oxford, UK, 1994.

[7] D. Black, “The Theory of Committees and Elections,” Cambridge University Press,
London, 2nd Ed., 1963.

[8] D. Blostein and A. Grbavec, “Recognition of Mathematical Notation,” Handbook
of Character Recognition and Document Image Analysis, Eds. H. Bunke and P.S.P.
Wang, World Scientific Publishing Company, pp. 557-582, 1997.

[9] L. Bovino, G. Dimauro, S. Impedovo, M.G. Lucchese, R. Modugno, G. Pirlo, A.
Salzo, and L. Sarcinella, “On the combination of abstract-level classifiers,” Int’l.
J. on Document Analysis and Recognition (IJDAR), vol. 6, no. 1, pp. 42-54, 2003.

[10] R.G. Casey and G. Nagy, “Recursive segmentation and classification of composite
character patterns,” Proc. of the 6th Int’l. Conf. Pattern Recognition (ICPR), pp.
1023-1026, Munich, Germany, 1982.

[11] R.G. Casey and E. Lecolinet, “A Survey of Methods and Strategies in Character
Segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
18, no. 7, pp. 690-706, 1996.

[12] K-F. Chan and D-Y. Yeung, “Recognizing on-line handwritten alphanumeric char-
acters through flexible structural matching,” Pattern Recognition, vol. 32, no. 7,
pp. 1099-1114, 1999.

148



149

[13] K-F. Chan and D-Y. Yeung, “Mathematical Expression Recognition: A Survey,”
Int’l. J. on Document Analysis and Recognition (IJDAR), vol. 3, no. 1, pp. 3-15,
2000.

[14] K-F. Chan and D-Y. Yeung, “An Efficient Syntactic Approach to Structural Anal-
ysis of On-line Handwritten Mathematical Expressions,” Pattern Recognition, vol.
33, no. 3, pp. 375-384, 2000.

[15] K-F. Chan and D-Y. Yeung, “Error detection, error correction and performance
evaluation in on-line mathematical expression recognition,” Pattern Recognition,
vol. 34, no. 8, pp. 1671-1684, 2001.

[16] K-F. Chan and D-Y. Yeung, “PenCalc: A Novel Application of On-Line Mathemat-
ical Expression Recognition Technology,” Proc. of the 6th Int’l. Conf. on Document
Analysis and Recognition (ICDAR), pp. 774-778, Seattle, USA, 2001.

[17] S-K. Chang, “A Method for the Structural Analysis of Two-Dimensional Mathe-
matical Expressions,” Information Sciences, vol. 2, pp. 253-272, 1970.

[18] E. Charniak, “Statistical Language Learning,” MIT Press, 1993.

[19] B.B. Chaudhuri and U. Garain, “Automatic detection of italic, bold and all-capital
words in document,” Proc. of the 14th Int’l Conf. on Pattern Recognition (ICPR),
pp. 610-612, Brisbane, Australia, 1998.

[20] B.B. Chaudhuri and U. Garain, “An Approach for Recognition and Interpreta-
tion of Mathematical Expressions in Printed Document,” Pattern Analysis and
Applications (PAA), vol. 3, pp. 120-131, 2000.

[21] B.B. Chaudhuri and U. Garain, “Extraction of type style based meta-information
from imaged documents,” Int’l. J. on Document Analysis and Recognition (IJDAR),
vol. 3, no. 3, pp.138-149, March, 2001.

[22] H.L. Chen and P.Y. Yin, “A system for on-line recognition of handwritten math-
ematical expressions,” Computer Processing of Chinese and Oriental Languages,
vol. 6, no. 1, pp. 19-39, 1992.

[23] P.A. Chou, “Recognition of Equations Using a Two-Dimensional Stochastic
Context-Free Grammar,” Proc. of the SPIE, Visual Communication and Image
Processing IV, vol. 1199, pp. 852-863, 1989.

[24] S.P. Chowdhury, S. Mandal, A.K. Das and B. Chanda, “Automated Segmentation
of Math-Zones from Document Images,” Proc. of the 7th Int’l Conf. Document
Analysis and Recognition (ICDAR), pp. 755-759, Edinburgh, Scotland, 2003.

[25] S.D. Connell and A.K. Jain, “Template-based Online Character Recognition,”
Pattern Recognition, vol. 34, no. 1, pp. 1-14, 2001.



150

[26] D.R. Cox and E.J. Snell “Analysis of Binary Data,” 2nd Ed., Burlington, UK,
Chapman and Hall, 1989.

[27] I. Daubechies, “The Wavelet Transform, Time-frequency Localization and Signal
Analysis,” IEEE Trans. on Information Theory, vol. 36, no. 5, pp 961-1005, 1990.

[28] Y.A. Dimitriadis and J. L. Coronado, “Towards an ART based mathematical
editor, that uses on-line handwritten symbol recognition,” Pattern Recognition,
vol. 28, no. 6, pp 807-822, 1995.

[29] D.G. Elliman and I.T. Lancaster, “A Review of Segmentation and Contextual
Analysis Techniques for Text Recognition,” Pattern Recognition, vol. 23, no. 3/4,
pp. 337-346, 1990.

[30] Y. Eto and M. Suzuki, “Mathematical Formula Recognition Using Virtual Link
Network,” Proc. of the 6th Int’l Conf. Document Analysis and Recognition (IC-
DAR), pp. 762-767, Seattle, USA, 2001.

[31] R.J. Fateman and T. Tokuyasu, “Progress in recognizing typeset mathematics,”
Proc. of the SPIE, vol. 2660, pp. 37-50, San Jose, California, USA, 1996.

[32] R.J. Fateman, T. Tokuyasu, B.P. Berman and N. Mitchell, “Optical Character
Recognition and Parsing of Typeset Mathematics,” J. of Visual Communication
and Image Representation, vol 7, no. 1, pp. 2-15, 1996.

[33] R.J. Fateman “How to find mathematics on a scanned page,” Proc. of the SPIE,
vol.3967, pp. 98-109, San Jose, California, USA, 1999.

[34] C. Faure and Z.X. Wang, “Automatic Perception of the Structure of Handwrit-
ten Mathematical Expressions,” Computer Processing of Handwriting, Eds: R.
Plamondon and C.G. Leedham, World Scientific, Singapore, pp. 337-361, 1990.

[35] G. D. Forney Jr., “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, no.
3, pp. 263-278, March, 1973.

[36] H. Freeman, “On the digital computer classification of geometric line patterns,”
Proc. of National Electronics Conference, vol. 18, pp. 312-324, 1962.

[37] H. Fujisawa, Y. Nakano, and K. Kurino, “Segmentation Methods for Character
Recognition: From Segmentation to Document Structure Analysis,” Proceedings
of the IEEE, vol. 80, no. 7, pp. 1079-1092, 1992.

[38] R. Fukuda, F. Tamari, X. Ming, and M. Suzuki, “A Technique of Mathematical
Expression Structure Analysis for the Handwriting Input System,” Proc. of the 5th
Int’l Conf. Document Analysis and Recognition (ICDAR), Bangalore, India, pp.
131-134, 1999.



151

[39] U. Garain and B.B. Chaudhuri, “Compound character recognition by run number
based metric distance,” Proc. IS&T/SPIE’s 10th Int. Symposium on Electronic
Imaging: Science & Technology, SPIE, vol. 3305, pp. 90-97, San Jose, California,
USA, 1998.

[40] U. Garain, B.B. Chaudhuri, and T. Pal, “Online Handwritten Indian Script Recog-
nition: A Human Motor Function based Framework,” Proc. of the 16th Int’l. Conf.
on Pattern Recognition (ICPR), Quebec City, Canada, 2002.

[41] U. Garain and B.B. Chaudhuri, “Input of Handwritten Mathematical Expressions
into machine coded Indian Language Documents,” Proc. of the Indo European
Conference on Multilingual Technologies (IECMT), Eds: R. K. Arora, M. Kulkarni,
and H. Darbari, Tata McGraw-Hill Publishing Company Limited (New Delhi), pp.
3-12, Pune, India, 2002.

[42] U. Garain and B.B. Chaudhuri, “Segmentation of Touching Characters in Printed
Devnagari and Bangla Scripts using Fuzzy Multifactorial Analysis,” IEEE Trans-
actions on Systems, Man and Cybernetics, Part C, vol. 32, no 4, pp. 449-459, 2002.

[43] U. Garain and B.B. Chaudhuri, “On Development and Statistical Analysis of a
Corpus for Printed and Handwritten Mathematical Expressions,” In: The 4th IAPR
Int’l. Workshop on Graphics Recognition (GREC), pp. 429-439, Canada, 2001.

[44] P. Garcia and B. Couasnon, “Using a Generic Document Recognition Method
for Mathematical Formulae Recognition,” Proc. of Int’l Workshop on Graphics
Recognition (GREC), LNCS, vol. 2390, pp. 236-244, Eds. D. Blostein and Y.-B.
Kwon, Springer-Verlag, Berlin Heidelberg, 2002.

[45] A. Grbavec and D. Blostein, “Mathematics recognition using graph rewriting,”
Proc. of the 3rd Int’l. Conf. on Document Analysis and Recognition (ICDAR), pp.
417-421, Montreal, Canada, 1995.

[46] I. Guyon, M. Schenkel, and J. Denker, “Overview and Synthesis of On-Line Cur-
sive Handwriting Recognition Techniques”, Handbook of Character Recognition
and Document Image Analysis, Eds. H. Bunke and P.S.P. Wang, World Scientific
Publishing Company, pp. 183-225, 1997.

[47] J. Ha, R.M. Haralick and I.T. Phillips, “Understanding Mathematical Expressions
From Document Images,” Proc. of the 3rd Int’l. Conf. on Document Analysis and
Recognition (ICDAR), pp. 956-959, Montreal, Canada, 1995.

[48] B. Hayes, “Speaking of Mathematics,” American Scientists, vol. 84, no. 2, pp.
110-113, 1996.

[49] T.K. Ho, J.J. Hull, and S.N. Srihari, “Decision Combination in Multiple Classifier
Systems,” IEEE Trans. on Pattern Recognition and Machine Intelligence, vol. 16,
no. 1, pp. 66-75, 1994.



152

[50] J.F. Hull, “Recognition of Mathematics Using a Two-dimensional Trainable
Context-free Grammar,” Master’s thesis, Massachusetts Institute of Technology,
Dept. of Electrical Engineering and Computer Science, 1996.

[51] D.P. Huttenlocher, G.A. Klandermann, and W.J. Rucklidge, “Comparing Images
using the Hausdorff Distance,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 15, no. 9, pp. 850-863, 1993.

[52] K. Inoue, R. Miyazaki, and M. Suzuki, “Optical Recognition of Printed Mathemat-
ical Documents,” Proc. of Asian Technology Conference in Mathematics (ATCM),
Springer-Verlag, pp. 280-289, 1998.

[53] Institute of Electrical and Electronics Engineers (IEEE), “Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries,” New York,
1990.

[54] A. K. Jain and B. Yu, “Document Representation and its Application to Page
Decomposition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
20, no. 3, pp. 294-308, 1998.

[55] J. Jin, X. Han and Q. Wang, “Mathematical Formulas Extraction,” Proc. of the
7th Int’l Conf. Document Analysis and Recognition (ICDAR), Edinburgh, Scotland,
pp. 1138-1141, 2003.

[56] B.H. Juang and L.R. Rabiner, “The segmental k-means algorithm for estimating
the parameters of hidden Markov models,” IEEE Trans. on Accoust. Speech, Signal
Processing, vol. 38, no. 9, pp. 1639-1641, 1990.

[57] A. Kacem, A. Belaid and M. Ben Ahmed, “EXTRAFOR: automatic EXTRAction
of mathematical FORmulas,” Proc. of the 5th Int’l Conf. Document Analysis and
Recognition (ICDAR), pp. 527-530, Bangalore, India, 1999.

[58] A. Kacem, A. Belaid and M. Ben Ahmed, “Automatic extraction of printed math-
ematical formulas using fuzzy logic and propagation of context,” Int’l. J. on Doc-
ument Analysis and Recognition (IJDAR), vol. 4, no. 2, pp. 97-108, 2001.

[59] M. Koschinski, H.-J. Winkler, and M. Lang, “Segmentation and Recognition of
Symbols within handwritten Mathematical Expressions,” Proc. of IEEE Int’l.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. 2439-2442,
Detroit, USA, 1995.

[60] A. Kosmala and G. Rigoll, “Recognition of On-Line Handwritten Formulas,” Proc.
of the 6th Int’l. Workshop on Frontiers in Handwriting Recognition (IWFHR), pp.
219-228, Taejon, Korea, 1998.

[61] A. Kosmala and G. Rigoll, “On-Line Handwritten Formula Recognition using
Statistical Methods,” Proc. of the 14th Int’l. Conf. on Pattern Recognition (ICPR),
pp. 1306-1308, Brisbane, Australia, 1998.



153

[62] A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier, “On-Line Handwritten Formula
Recognition using Hidden Markov Models and Context Dependent Graph Gram-
mars,” Proc. of the 5th Int’l Conf. Document Analysis and Recognition (ICDAR),
pp. 107-110, Bangalore, India, 1999.

[63] V.A. Kovalevsky, “Character Readers and Pattern Recognition,” Spartan Books,
Washington, D.C., 1968.

[64] L. Lamport, “LATEX - A Document Preparation System- User’s Guide and Reference
Manual,” Addison-Wesley, Reading, MA, 1995.

[65] S. Lavirotte and L. Pottier, “Optical Formula Recognition,” Proc. of the 4th
Int’l. Conf. on Document Analysis and Recognition (ICDAR), pp. 357-361, Ulm,
Germany, 1997.

[66] S. Lavirotte and L. Pottier, “Mathematical formula recognition using graph gram-
mar,” Document Recognition V, the Int’l Society for Optical Engineering, vol. 3305,
pp. 44-52, 1998.

[67] H.J. Lee and M.C. Lee, “Understanding Mathematical Expressions in a Printed
Document,” Proc. the 2nd Int’l Conf. on Document Analysis and Recognition
(ICDAR), pp. 502-505, Japan, 1993.

[68] H.J. Lee and M.C. Lee, “Understanding mathematical expressions using procedure-
oriented transformation,” Pattern Recognition, vol. 27, no. 3, pp. 447-457, 1994.

[69] H.J. Lee and J.-S. Wang, “Design of a Mathematical Expression Recognition Sys-
tem,” Proc. of the 3rd Int’l Conf. on Document Analysis and Recognition (ICDAR),
pp. 1084-1087, Montreal, Canada, 1995.

[70] H.J. Lee and J.-S. Wang, “Design of a Mathematical Expression Understanding
System,” Pattern Recognition Letters, vol. 18, no. 3, pp. 289-298, 1997.

[71] S. Lehmberg, H.J. Winkler and M.Lang, “A soft-decision approach for symbol
segmentation within handwritten mathematical expressions,” Proc. of IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3434-3437, 1996.

[72] H.-X. Li, “Multifactorial Functions in Fuzzy Sets Theory,” Fuzzy Sets and Systems,
vol. 35, no. 1, pp. 69-84, 1990.

[73] H.X. Li and V.C. Yen, “Fuzzy sets and fuzzy decision-making,” CRC Press, 1995,
USA.

[74] W.A. Martin, “Computer input/output of mathematical expressions,” Proc. of
Int’l Symposium on Symbolic Algebraic Manipulation, pp. 78-89, Los Angeles, CA,
1971.

[75] R. Marzinkewitsch, “Operating Computer Algebra Systems by handprinted Input,”
Proc. of Int’l Symposium on Symbolic Algebraic Computation, pp. 411-413, Bonn,
Germany, 1991.



154

[76] E.G. Miller and P.A. Viola, “Ambiguity and Constraint in Mathematical Expres-
sion Recognition,” Proc. of the National Conf. of Artificial Intelligence, American
Association of Artificial Intelligence, pp. 784-791, Madison, Wisconsin, 1998.

[77] J. Mitra, U. Garain, B.B. Chaudhuri, H.V.K. Swamy, and T. Pal, “Automatic
Understanding of Structures in Printed Mathematical Expressions,” Proc. of the 7th
Int’l Conf. Document Analysis and Recognition (ICDAR), pp. 540-544, Edinburgh,
Scotland, 2003.

[78] S. Mori, C.Y. Suen, and K. Yamamoto, “Historical Review of OCR Research and
Development,” Proceedings of the IEEE, vol. 80, no. 7, pp. 1029-1058, 1992.

[79] A. Nomura, K. Michishita, S. Uchida, and M. Suzuki, “Detection and Segmentation
of Touching Characters in Mathematical Expressions,” Proc. of the 7th Int’l Conf.
Document Analysis and Recognition (ICDAR), pp. 126-130, Edinburgh, Scotland,
2003.

[80] S. Nouzumi, K. Inoue, R. Miyazaki, and M. Suzuki, “Optical Recognition System
of Printed Japanese Mathematical Documents,” Proc. of the 3rd IAPR Workshop
on Document Analysis Systems (DAS) pp. 197-200, Nagano, Japan, 1998.

[81] M. Okamoto and B. Miao, “Recognition of mathematical expressions by using the
layout structure of symbols,” Proc. of the 1st Int’l Conf. Document Analysis and
Recognition (ICDAR), vol. 1, pp. 242-250, Saint Malo, France, 1991.

[82] M. Okamoto and A. Miyazawa, “An Experimental Implementation of Document
Recognition System for Papers Containing Mathematical Expressions,” Structured
Document Image Analysis, (Eds. Baird, Bunke, Yamamoto), Springer Verlag, pp.
36-53, 1992.

[83] M. Okamoto, S. Sakaguchi, and T. Suzuki, “Segmentation of touching characters
in formulae,” Proc. of the 3rd IAPR Workshop on Document Analysis Systems
(DAS), pp. 283-289, Nagano, Japan, 1998.

[84] M. Okamoto, H. Imai and K. Takagi, “Performance Evaluation of a Robust Method
for Mathematical Expression Recognition,” Proc. of the 6th Int’l Conf. Document
Analysis and Recognition (ICDAR), pp. 121-128, Seattle, USA, 2001.

[85] H. Okamura, T. Kanahori, W. Cong, R. Fukuda, F. Tamari, and M. Suzuki, “Hand-
writing Interface for Computer Algebra Systems,” Proc. of the 4th Asian Technol-
ogy Conference in Mathematics (ATCM), pp. 291-300, Guangzhou, China, 1999.

[86] T. Pavlidis and J. Zhou, “Page segmentation and classification,” Computer Vision,
Graphics, and Image Processing (CVGIP), vol. 54, pp. 484-496, 1992.

[87] I. Phillips, “Methodologies for using UW Databases for OCR and Image Under-
standing Systems,” Document Recognition V, Proc. of the SPIE, vol. 3305, pp.
112-127, San Jose, CA, USA, 1998.



155

[88] I. Phillips and A. Chhabra, “Empirical Performance Evaluation of Graphics Recog-
nition Systems,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
21, no. 9, pp. 849-870, 1999.

[89] R. Plamondon and S.N. Srihari, “On-Line and Off-Line Handwriting Recogni-
tion: A Comprehensive Survey,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol, 22, no. 1, pp. 63-84, 2000.

[90] L.R. Rabiner and B.H. Juang, “An introduction to hidden Markov models,” IEEE
Trans. on Accoust. Speech, Signal Processing (ASSP), vol. 3, no. 1, pp. 4-16, June
1986.

[91] T.V. Raman, “Audio System for Technical Readings,” Doctoral Dissertation,
Cornell University, USA, 1994.

[92] J. Rocha and T. Pavlidis, “A Shape Analysis Model with Applications to a Char-
acter Recognition System,” IEEE Trans. on Pattern Recognition and Machine
Intelligence, vol. 16, no. 4, pp. 393-404, 1994.

[93] Y. Sakamoto, M. Xie, R. Fukuda, and M. Suzuki, “On-Line Recognition of Hand-
writing Mathematical Expression via Network,” Proc. of Asian Technology Con-
ference in Mathematics (ATCM), pp. 271-279, Tsukuba, Japan, 1998.

[94] S. Smithies, K. Novins, and J. Arvo, “A handwriting-based equation editor,” Proc.
of Graphics Interface, pp. 84-91, Kingston, Ontario, Canada, 1999.

[95] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori, “INFTY – An
Integrated OCR System for Mathematical Documents,” Proc. of ACM Symposium
on Document Engineering (DocEng), pp. 95-104, Grenoble, France, 2003.

[96] E. Tapia and R. Rojas, “Recognition of On-line Handwritten Mathematical For-
mulas in the E-Chalk System,” Proc. of the 7th Int’l. Conf. on Document Analysis
and Recognition (ICDAR), pp. 980-984, Edinburgh, Scotland, 2003.

[97] C.C. Tappert, C.Y. Suen, and T. Wakahara, “The State of the Art in On-Line
Handwriting Recognition,” IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, vol. 12, no. 8, pp. 179-190, 1990.

[98] J.-Y. Toumit and H. Emptoz, “A character matching method for mathematical
object detection,” Proc. of RECPAD, pp. 83-90, Lisbon, Portugal, 1998.

[99] J.-Y. Toumit and H. Emptoz, “From the segmentation to the reading of a mathe-
matical document,” Proc. of Conf. on Machine Graphics and Vision, pp. 483-504,
Borki, Poland, 1998.

[100] J.-Y. Toumit, S. Garcia-Salicetti, and H. Emptoz, “A Hierarchical and Recursive
Model of Mathematical Expressions for Automatic Reading of Mathematical Docu-
ments,” Proc. of the 5th Int’l Conf. Document Analysis and Recognition (ICDAR),
pp. 119-122, Bangalore, India, 1999.



156

[101] K. Toyozumi, T. Suzuki, K. Mori, and Y. Suenaga, “A System for Real-time
Recognition of Handwritten Mathematical Formulas,” Proc. of the 6th Int’l Conf.
Document Analysis and Recognition (ICDAR), pp. 1059-1063, Seattle, USA, 2001.

[102] S. Tsujimoto and H. Asada, “Major Components of a Complete Text Reading
System,” Proceedings of the IEEE, vol. 80, no. 7, pp. 1133-1149, 1992.

[103] H.M. Twaakyondo and M. Okamoto, “Structure Analysis and Recognition of Math-
ematical Expressions,” Proc. of the 3rd Int’l. Conf. on Document Analysis and
Recognition (ICDAR), pp. 430-437, Montreal, Canada, 1995.

[104] Z.X. Wang and C. Faure, “Structural analysis of handwritten mathematical ex-
pressions,” Proc. of the 9th Int’l. Conf. on Pattern Recognition (ICPR), pp. 32-34,
Rome, Italy, 1988.

[105] P.-Z. Wang and M. Sugeno, “The factor fields and background structure for fuzzy
subsets”, Fuzzy Mathematics, vol. 2, no. 2, pp. 45-54, 1982.

[106] P.-Z. Wang, “A factor space approach to knowledge representation”, Fuzzy Sets
and Systems, vol. 36, pp. 113-124, 1990.

[107] H.J. Winkler, H. Fahrner, and M. Lang, “A Soft-Decision Approach for Structural
Analysis of Handwritten Mathematical Expressions,” Proc. of IEEE Int’l. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. 2459-2462, Detroit,
USA, 1995.

[108] H.J. Winkler and M. Lang, “Symbol segmentation and recognition for understand-
ing handwritten mathematical expressions,” Progress in Handwriting Recognition,
Eds. A. Downton and S. Impedovo, pp. 407-412, World Scientific, Singapore, 1997.

[109] H.J. Winkler and M. Lang, “On-line symbol segmentation and recognition in
handwritten mathematical expressions,” Proc. of IEEE Int’l. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 3377-3380, Munich. Germany, 1997.

[110] Z. Xuejun, L. Xinyu, Z. Shengling, P. Baochang, and Y. Tang, “On-Line Recog-
nition of Handwritten Mathematical Symbols,” Proc. of the 4th Int’l. Conf. on
Document Analysis and Recognition (ICDAR), pp. 645-648, Ulm, Germany, 1997.

[111] R. Zanibbi, K. Novins, J. Arvo, and K. Zanibbi, “Aiding Manipulation of Handwrit-
ten Mathematical Expressions through Style-Preserving Morphs,” Proc. of Conf.
on Graphics Interface, pp. 127-134, Ottawa, Ontario, Canada, 2001.

[112] R. Zanibbi, D. Blostein and J.R. Cordy, “Baseline Structure Analysis of Handwrit-
ten Mathematics Notation,” Proc. of the 6th Int’l. Conf. on Document Analysis
and Recognition (ICDAR), pp. 768-773, Seattle, Washington, 2001.

[113] R. Zanibbi, D. Blostein and J.R. Cordy, “Recognizing Mathematical Expressions
Using Tree Transformation,” IEEE Trans. on Pattern Analysis and Machine In-
telligence, vol. 24, no. 11, pp. 1455-1467, 2002.



157

[114] X. Zhao, X. Liu, S. Zheng, B. Pan, and Y.Y. Tang, “On-line Recognition of
Handwritten Mathematical Symbols,” Proc. of the 4th Int’l. Conf. on Document
Analysis and Recognition (ICDAR), pp. 645-648, Ulm, Germany, 1997.

[115] K.G. Zipf, “Human Behavior and the Principal of Least Effort, an Introduction to
Human Ecology,” Addison-Wesley, Reading, Mass., 1949.

List of publications related to the thesis

1 B.B. Chaudhuri and U. Garain, “An approach for processing mathematical expres-
sions in printed document,” Document Analysis Systems: Theory and Practice,
LNCS 1655, Eds: Seong-Whan Lee, Y. Nakano, Springer, pp. 310-321, 1998.

2 U. Garain and B.B. Chaudhuri, “An approach for processing mathematical expres-
sions in printed document,” In IAPR workshop on Document Analysis Systems
(DAS), pp. 376-385, Nagano, Japan, 1998.

3 B.B. Chaudhuri and U. Garain, “Automatic detection of italic, bold and all-capital
words in document,” In: Proc. of the 14th Int’l. Conf. on Pattern Recognition
(ICPR), pp. 610-612, Brisbane, Australia, 1998.

4 U. Garain and B.B. Chaudhuri, “Compound character recognition by run number
based metric distance,” In: Proc. IS&T/SPIE’s 10th Int. Symposium on Electronic
Imaging : Science & Technology, SPIE vol. 3305, pp. 90-97, San Jose, California,
USA, 1998.

5 B.B. Chaudhuri and U. Garain, “An Approach for Recognition and Interpretation
of Mathematical Expressions in Printed Document,” Pattern Analysis and Appli-
cations (PAA), vol. 3, pp. 120-131, 2000.

6 U. Garain and B.B. Chaudhuri, “A Syntactic Approach for Processing Mathemat-
ical Expressions in Printed Documents,” In: Proc. of the 15th Int’l. Conf. on
Pattern Recognition (ICPR), vol. 4, pp. 523-526, Barcelona, Spain, 2000.

7 B.B. Chaudhuri and U. Garain, “Extraction of type style based meta-information
from imaged documents,” Int’l. Journal on Document Analysis and Recognition
(IJDAR), vol. 3, no. 3, pp.138-149, 2001.

8 U. Garain and B.B. Chaudhuri, “On Development and Statistical Analysis of a
Corpus for Printed and Handwritten Mathematical Expressions,” In: The 4th IAPR
Int’l. Workshop on Graphics Recognition (GREC), pp. 429-439, Canada, 2001.

9 U. Garain and B.B. Chaudhuri, “Input of Handwritten Mathematical Expressions
into machine coded Indian Language Documents,” In: The Indo European Con-
ference on Multilingual Technologies (IECMT), Eds: R. K. Arora, M. Kulkarni,
and H. Darbari, Tata McGraw-Hill Publishing Company Limited (New Delhi), pp.
3-12, Pune, India, 2002.



158

10 U. Garain and B.B. Chaudhuri, “Segmentation of Touching Characters in Printed
Devnagari and Bangla Scripts using Fuzzy Multifactorial Analysis,” IEEE Trans-
actions on Systems, Man and Cybernetics, Part C, vol. 32, no. 4, pp. 449- 459,
2002.

11 U. Garain, B.B. Chaudhuri, and T. Pal, “Online Handwritten Indian Script Recog-
nition: A Human Motor Function based Framework,” In: Proc. of the 16th Int.
Conf. on Pattern Recognition (ICPR), vol. III, pp. 164-167, Quebec City, Canada,
2002.

12 U. Garain, B.B. Chaudhuri, “On Machine Understanding of Online Handwritten
Mathematical Expressions,” In: Proc. of the 7th Int. Conf. on Document Analysis
and Recognition (ICDAR), pp. 349-353, Edinburgh, Scotland, 2003.

13 J. Mitra, U. Garain, B.B. Chaudhuri, H.V.K. Swamy, and T. Pal, “Automatic
Understanding of Structures in Printed Mathematical Expressions,” In: Proc. of
the 7th Int. Conf. on Document Analysis and Recognition (ICDAR), pp. 540-544,
Edinburgh, Scotland, 2003.

14 U. Garain and B.B. Chaudhuri, “A Novel Approach for Machine Recognition of On-
line Handwritten Mathematical Symbols and Automatic Interpretation of Math-
ematical Expressions,” In: Proc. of the 90th Indian Science Congress, Section:
Information and Communication Sciences, Part-III, pp. 39-40, Bangalore, India,
January, 2003.

15 U. Garain, B.B. Chaudhuri, and R.P. Ghosh, “A Multiple Classifier System for
Recognition of Printed Mathematical Symbols,” in the 17th Int’l Conf. on Pattern
Recognition (ICPR), pp. 380-383, Cambridge, UK, 2004.

16 U. Garain, B.B. Chaudhuri, and A. Ray Chaudhuri, “Identification of Embedded
Mathematical Expressions in Scanned Documents,” in the 17th Int’l Conf. on
Pattern Recognition (ICPR), pp. 384-387, Cambridge, UK, 2004.

17 U. Garain, B.B. Chaudhuri, “Recognition of Online Handwritten Mathematical
Expressions,” in IEEE Transactions on Systems, Man and Cybernetics, Part-B,
vol. 34, no. 6, pp. 2366-2376, 2004.

18 U. Garain and B.B. Chaudhuri, “A Corpus for OCR of Printed Mathematical
Expressions,” in Int’l. Journal of Document Analysis and Recognition (IJDAR),
(in Press), 2005.

19 U. Garain and B.B. Chaudhuri, “Segmentation of Touching Symbols for OCR of
Printed Mathematical Expressions: An Approach based on Multifactorial Anal-
ysis”, accepted in the 8th Int’l. Conf. on Document Analysis and Recognition
(ICDAR), Seoul, Korea, 2005.


