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PREFACE

One of the most important concepts of political science is power. While

power is a multi-faceted phenomenon, in this thesis we will deal with the issue of

power in a collective decision making procedure modeled as a voting game. This

thesis embodies the fruit of my intellectual perambulation in the Economic

Research Unit of the Indian Statistical Institute (ISI) during the years 2001-2004.

The plan of this thesis is as follows. In Chapter 1 we present a brief survey of the

literature on voting power indices. In this chapter we also outline the background

material and the definitions required for the analysis. In Chapter 2 we investigate

the relationship between Coleman’s preventive and initiative power indices and

also study the properties that they satisfy in details. This chapter is based on

Barua, Chakravarty and Roy (2004): “On the Coleman indices of voting

power”, European Journal of Operational Research, (forthcoming). In Chapter

3 we provide an alternative characterization of the non-normalized Banzhaf index

using a set of four independent axioms that have been drawn from different

contributions to the literature. This chapter is based on Barua, Chakravarty and

Roy (2004a): “A new characterization of the Banzhaf index of power”,

International Game Theory Review, (forthcoming). In Chapter 4 we

characterize the Banzhaf-Coleman-Dubey-Shapley index of sensitivity using a set

of independent axioms. We also derive a bound on this index for a very general

class of games. This paper is based on Barua, Chakravarty, Roy and Sarkar

(2004): “A characterization and some properties of the Banzhaf-Coleman-

Dubey-Shapley sensitivity index”, Games and Economic Behavior (2004), 49,

31-48. Chapter 5 studies the Carreras-Coleman decisiveness index. This paper is

based on Barua, Chakravarty and Roy (2004b): “A note on the Carreras-

Coleman decisiveness index”. An earlier version of this paper was presented at

the International Conference on Game Theory and its Applications, January 2003,

held at Mumbai, India. Chapter 6 is a numerical illustration of how the

methodology of power indices can be used to study the distribution of power in

real life voting bodies. For this purpose, we have used the example of the Indian
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Lok Sabha (the lower house of Indian Parliament), which is the most important

legislative body in India.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Motivation

The issue of measurement of voting power is a very important topic of

discussion in social science these days. The concept of voting power concerns any

collective decision making body (or, equivalently, a collectivity) which makes

‘yes’ or ‘no’ decisions on any issue, by the process of voting. Examples of such

bodies abound in today’s world. The United Nations Security Council, The

Council of Ministers in the European Union, the Parliament of the republic of

India, the board room of any corporate house etc., are all examples of such

decision making bodies.

The voting process of each of these bodies is governed by its own

constitution, which lays down the decision making rule for the collectivity. This

decision rule in turn aggregates individual votes to determine the decision of the

voting body as whole. Typically, when a proposal suggesting a certain course of

action is presented before such a body, its members are asked to vote either for

the bill (‘yes’) or against it (‘no’). The decision rule then transforms these

individual votes into a collective decision of the voting body. As an example,

consider a board of directors of a company consisting of five members. Let the

decision rule, as laid down by the constitution of the board be ‘simple majority’,

i.e., at least three members of the board have to vote ‘yes’ in order that the board

collectively passes the bill. So in a situation in which only two members of the

board vote ‘yes’ and the remaining three vote ‘no’, the decision rule spells out

that the bill is rejected and the course of action as suggested by the bill cannot be

taken by the board (in spite of two members wanting it).

In this framework, by individual voting power we mean an individual

voter’s ability to change the outcome of the voting procedure by changing his

stand on the bill. It is a rough measure of the extent of control that an individual

voter has over the collective action of the voting body. As the ability of a voter to
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influence the outcome of the voting process by changing his vote is determined by

the decision rule, it can be said that the decision rule determines how the formal

control over the actions of the collectivity is shared among its members. Often

there arises the need to assess decision rules for its capacity in ensuring fairness

in sharing of control over the collectivity’s action among the members (according

to some given definition of fairness, which might seem relevant in the given

context). For this purpose, the use of some kind of a measure of individual power

becomes imperative.

To understand this point better let us consider a real life example, which is

the topic of much research these days, the European Union (EU). Of all the

decision making bodies of the European Union, the Council of Ministers is by far

the most important. The direct voters in the council are themselves representatives

of the electorate of the respective EU states. Thus the electorate of the individual

EU states exercise indirect influence over the council’s decisions. If the accepted

notion of fairness is that of equitability (i.e., one person one vote), then the

indirect influence of electorate in various constituent countries ought to be equal,

irrespective of the difference in their population size. In other words, a citizen of

Germany ought, in principle, to have just as much influence over a decision of the

council as a citizen of (say) Greece1. Thus in order to evaluate whether the

decision rule of the council is equitable in this sense, we need to first quantify this

amount of influence (see Felsenthal and Machover (2000)).

There could be many other reasons why the evaluation of a decision rule is

necessary. Consider a voting body, which requires unanimity among all the

members to pass a resolution, i.e., every member has to vote for the resolution

(‘yes’) in order that the voting body passes it. Then it obvious that here, the power

of the decision making body to act is very small. In fact, even in a situation where

only one member votes ‘no’, and all the remaining members vote for the bill, the

body cannot translate the wishes of the majority of the members into actual

                                                                
1 The question of which decision making procedure is the best involves questions of fairness. The phrase
‘one person one vote’ encapsulates a core idea of procedural fairness. However, national governments are
elected by a variety of rules-some of them are far away from proportionality of seats to votes.
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collective action. Thus it might sometimes be important to evaluate the degree to

which the decision making body as a whole, is empowered as a decision maker.

Here it is obvious that what concerns us is not the individual voting power but

collective voting power. Hence the need for an index that gives us a quantification

of the extent to which the body is able to control the outcome of a division of it.

Having thus stated the need for a quantitative measure of both individual

and collective voting power, we proceed to the remaining part of the chapter. In

different subsections of section 1.2, we discuss in details the issue of individual

voting power. In section 1.2.1, we introduce some preliminary definitions and in

section 1.2.2, we formally define what we mean by an index of individual voting

power, and discuss some well-known indices. Then in section 1.2.3, some

postulates which an index of individual power are expected to satisfy  (following

Felsenthal and Machover (1995, 1998)) and the associated paradoxes are

presented. In section 1.2.4, we discuss some characterizations of the well-known

indices of power and in section 1.2.5 some alternative approaches for measuring

voting power are introduced. Section 1.2.6 deals with voting power when voters

have more than two alternatives to choose from. Section 1.3 presents some

characteristics of the voting body as a whole and finally in section 1.4 we list

some applications where these indices have been used.

1.2 Individual Voting Power

The measurement of individual voting power is not very straightforward.

Consider a voting situation where there are three voters, namely a, b and c. The

weight of their votes are (say) 8, 4, 1 respectively. Also suppose that the decision

rule specifies that at least 10 votes must be cast in favour of the resolution in order

to pass it (this is in fact a weighted voting scheme which we define formally in

definition 1.12). Now, it might seem reasonable for some to state that the power

of voter a  is greater than the power of b , because the weight of a’s vote is twice

that of b . Also one would expect c  to have positive power, since the weight

attached to his vote is positive. However, a closer look at the situation reveals that

both a  and b must vote ‘yes’ jointly, if the voting body has to pass the resolution.
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Even if both a  and c vote in favour of the resolution, the voting body will be

unable to pass it unless b  too votes for it. Similarly, if both b  and c vote ‘yes’

and a  votes ‘no’, the resolution will not be passed. However, it does not matter at

all which way c votes. Thus c  has no control over the collective action of the

body and has no power in spite of having a positive weight. Also, the presumption

that the power of voter a  is greater than the power of b  is not true. In fact both of

them enjoy equal voting power. The one thing that this example makes clear is

that a proper scientific analysis is required for arriving at any measure of

individual voting power.

Before we go in to the details of the analysis, we need to give some preliminary

definitions

1.2.1 Some Notation and Preliminary Definitions

We begin by defining a very general class of mathematical structures

(cooperative games with transferable utility), a special case of which is commonly

used to model voting situations. Let { }naaaN ,..., 21=  be a set of players. The

collection of all subsets of N is denoted by N2 . Any member of N2  is called a

coalition. For any set S, S  will denote the number of elements in S.

Definition 1.1: A game is a pair ( )VN; , where N is a finite set of n  players,

( nN = ) and R→NV 2: , where R is the real line, is the characteristic function

that assigns a real number )(SV to each NS ⊆ , with ( ) .0=φV  The game is

(i)         monotonic if ( ) ( )TVSV ≤  whenever TS ⊆ .

(ii) superadditive if ( ) )()( TVSVTSV +≥∪  whenever φ=∩TS .

(iii) constant sum if )()\()( NVSNVSV =+  for all NS ⊆ .

We will use the notation G  to denote the set of all games. Let the set of all games

on N  be denoted by NG . Obviously, GG ⊂N .
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Definition 1.2: A value is any function N
N RG →:ψ , that assigns to each game

NVNG G∈= );( , and each player Ni ∈ , a real number ( )Giψ , called the value

for i  of G  (according to ψ ). Note that NR  is the N  dimensional Euclidean

space indexed by the players of N .

( )Giψ  can also be interpreted as the payoff that the player Ni ∈  receives by

participating in the game G .

A value ψ  is said to be efficient if )()( NVG
Ni

i =∑
∈

ψ  ∀ NVNG G∈= );( .

Ordinarily, a voting situation is modeled by a monotonic game, the range of

whose characteristic function is restricted to {0,1}. We assign the value 1 to any

coalition that can pass a bill and 0 to any coalition that cannot. In this context, a

player is a voter and the set N  is called the set of voters. A coalition S  will be

called winning or losing depending on whether it can or cannot pass a

resolution. N  is sometimes called the grand coalition.

Such a game is also referred to as a simple game. Formally,

Definition 1.3: Given a set of voters N , a voting game (or equivalently, a simple

game) associated with N is a pair ( )VN; , where { }1,02: →NV satisfies the

following conditions:

(i) ( ) 0=φV ,

(ii) 1)( =NV and

(iii) if  ,TS ⊆  ,2, NTS ∈  then ( ) ( ).TVSV ≤

The above definition formalizes the idea of a decision-making committee

in which decisions are made by vote. The decision making rule for the committee

is embodied in the characteristic function V. A decision-making committee can

have any decision rule provided it satisfies very intuitively appealing conditions

laid down in the above definition. If all voters unanimously vote against the bill,

the committee should reject the bill i.e., an empty coalition should be losing

(condition (i)). If all the voters unanimously vote for the bill, the committee

should pass the bill, i.e., the grand coalition N should be a winning one (condition
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(ii)). Condition (iii) can be paraphrased as stipulating that increased support for a

bill cannot hurt a bill. So if a coalition S  can pass a bill, then any superset T  of

S  can pass it as well.

A voting game );( VNG =  is called proper if 1)()( == TVSV  implies

that S φ≠∩T . Note that a superadditive game becomes a proper game in the

context of simple games.  According to this condition two winning coalitions

cannot be disjoint. On the other hand a voting game is called improper if there

exists at least two winning coalitions which are disjoint. Some authors feel that in

the context of voting situations, improper (simple voting) games are quite out of

place because they do not correspond to any coherent rule for decision making

(Felsenthal and Machover (1995)).

For any SG∈= ) ;( VNG , we write )(GW  ( ))(GL  for the set of all

winning (losing) coalitions associated with G .  Thus, for any )0(1)(  , =⊆ SVNS

is equivalent to the condition that ( ))()( GGS LW∈ . It is obvious that any voting

game G  is fully represented by the set of its winning coalitions )(GW . The set

of all simple voting games will be denoted by SG . The set of all simple voting

games on N  will be denoted by NSG . Obviously, NSG ⊂  SG .

Next we introduce the notion of compound games, which is often used in

characterizing power indices.

Definition 1.4: Consider the games );( 111 WMG = , );( 222 WMG = ,…,

);( kkk WMG = , );( VNGV = SG∈  such that

(i) kN =

 (ii) kMMM ,....,, 21  are all disjoint.

Let Nk →},.......,1{:α  be a bijection. Then the game ( )UMG ,*= SG∈ , where

U
k

j
jMM

1

*

=

=  is said to be the compounding of V  with kWW ,.......,1  via α  (or,

alternatively the −V composition of kWWW ,....,, 21 ), if
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})1)(:)(({)( =∩= jj MSWjVSU α , *MS ⊆∀ .

The composite simple game G  defined above is used to represent a two-tier

voting process. Such a system involves decision making in two stages. In the first

stage there is simultaneous vote among the citizens of k  constituencies. The set

of voters in constituency j  ( )kj ,...,1=  is given by jM , and the decision rule jW

determines the outcome of the vote in constituency j . Thus the voting games

corresponding to the first stage of the decision making process are given by

);( jjj WMG = , ( )kj ,...,1= . The game );( VNGV =  represents the second stage

of the decision making process. In this stage, the decisions of the k bottom tier

constituencies are fed as k respective votes to the game VG . The set of players in

the game VG  is N , and the number of players in N  is equal to the number of

jM s. We can imagine the k members of N  as delegates, one from each of the

bottom-tier constituencies, instructed to vote according to the decisions made by

the respective constituencies. The delegate from constituency j  is identified with

( ) Nj ∈α .  The decision rule in the second stage is given by V, which collates the

k bottom tier decisions into a final decision. The voting game ( )UMG ,*=

models the two tier voting process described above, as a whole. Thus the players

in G  are the voters of k  constituencies put together, and the decision rule U  is a

compounding of the second stage decision rule V with the first stage decision

rules jW ( )kj ,...,1= .

Definition 1.5: Let ( ) ( )222111 ;,; VNGVNG == SG∈  be two voting (simple)

games. We define 21 GG ∨  as the game with the set of voters 21 NN ∪ , where a

coalition ⊆S 21 NN ∪  is winning if and only if ( ) 111 =∩ NSV  or

( ) 122 =∩ NSV . (Also see Holler and Packel (1983) for an allied concept of

‘mergeability of games’.)
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Definition 1.6: Given ( ) ( ) SG∈== 222111 ;,; VNGVNG , we define 21 GG ∧  as

the game with the set of voters 21 NN ∪ , where a coalition ⊆S 21 NN ∪  is

winning if and only if ( ) 111 =∩ NSV  and ( ) 122 =∩ NSV .

Thus, in order to win in 21 GG ∨  a coalition must win in either 1G  or 2G ,

whereas to win in 21 GG ∧  it has to win in both 1G  and 2G . Clearly, given that

1G  and 2G  are simple games, 21 GG ∨  and 21 GG ∧  are also simple games.

Definition 1.7: A voting game ) ;( VNG = SG∈  with the voter set N , is called

decisive if for all NS 2∈ , 1)()( =−+ SNVSV . It is obvious that a constant sum

game is called a decisive game in the context of simple games.

Definition 1.8: Let ) ;( VNG = SG∈  be a voting game.

(i) For any coalition NS 2∈ , we say that Ni ∈  is swing in S  if 1)( =SV  but

0}){( =− iSV .

(ii) For any coalition NS 2∈ , Ni ∈  is said to be swing outside S  if 0)( =SV

but 1}){( =∪ iSV .

(iii) A coalition NS 2∈ , is said to be minimal winning if 1)( =SV  but there

does not exist ST ⊂  such that 1)( =TV . The set of minimal winning

coalitions in the game G  will be denoted by )(GMW .

Thus, voter i  is swing, also called pivotal, key or critical, in the winning

coalition S  if his deletion from S  makes the resulting coalition }{iS −  losing.

Similarly, voter i  is swing outside the losing coalition S  if his addition to S

makes the resulting coalition }{iS ∪  winning.  For any voter i , the number of

winning coalitions in which he is swing is same as the number of losing coalitions

outside which he is swing (Burgin and Shapley (2001), Corollary 4.1).  For any

game ) ;( VNG =  and Ni ∈ , we write )(Gm i  to denote this common number.



9

Equivalently, )(Gm i  is the number of coalitions for which voter i  is swing in

G .  It is often said that )(Gm i  is the number of swings of voter i .

Definition 1.9: For a voting game ) ;( VNG = SG∈  with the set of voters N , a

voter Ni ∈  is called a dictator if }{i  is the sole minimal winning coalition of the

game.

A dictator in a game is unique. If a game has a dictator, then he is the only

swing voter in the game.

Definition 1.10: For a voting game ) ;( VNG = SG∈  with the set of voters N , a

voter Ni ∈  is called a blocker if i  is a member of every minimal winning

coalition of the game. Note that by definition a dictator is a blocker, but a blocker

may not necessarily be a dictator.

Definition 1.11: Given a game ) ;( VNG = G∈ , a player Ni ∈  is called

(i)       a dummy player in the game if })({)(}){( iVSViSV +=∪  }{\ iNS ⊆∀ .

(ii) a null player in the game if )(}){( SViSV =∪  }{\ iNS ⊆∀ .

The term ‘dummy’ follows from the observation that such a player has no

strategic role in the game. Whatever be the situation, he contributes precisely

})({iV , the value of the coalition consisting only of itself. If })({iV =0, then a

dummy player is called a null player. Thus a null player is one who contributes

nothing to the game. On the domain of simple games, SG , a dummy player is

either a dictator or a null player. Thus in the context of simple games, a null

player is defined as a voter who is never swing in the game.2 A voter Ni ∈  is

called a non-dummy (non-null) in );( VN  if he is not a dummy (null) player (in

) ;( VN .

                                                                
2 However, many authors refer to a player who is never swing in a simple game as a dummy
player (see for e.g., Felsenthal and Machover (1995, 1998), Owen (1978, 1995), Dubey and
Shapley (1979)).
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A very important voting game is a weighted majority game.

Definition 1.12: For a set of voters } ..., ,2 ,1{ nN = , a weighted majority game

is a quadruplet ) ; ; ;( qVNG w= , where ),...,,(
21 nwww=w  is the vector of

nonnegative weights of the n = N  voters in ,N  q  is a nonnegative real number

quota such that ∑
=

≤
n

i
iwq

1

 and for any NS 2∈ ,

                      1)( =SV    if  ∑
∈

≥
Si

i qw

                               = 0 otherwise.

That is, the 
thi  voter casts iw  votes and q  is the quota of votes needed to pass a

bill.  Note that a weighted majority game satisfies condition (i) - (iii) of definition

1.3. A weighted majority game );;;( qVNG w= will be proper if qw
n

i
i 2

1

<∑
=

. For

an improper game we have qw
n

i
i 2

1

≥∑
=

.

Another important concept that is used in our analysis is that of partitioned

sets.

Definition 1.13: Given a non-empty set X , a −t partition of X  is a collection of

coalitions ( )tXXX ,....,,
21

=X , where

            1. XXXX t ⊆,...,, 21

2. φ=∩ ji XX , tji ,...,2,1, = ; ji ≠

3.  XXXX t =∪∪∪ ...21 .

If 2=t , then X is said to be bipartitioned.
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Definition 1.14: Given ( ) SG∈= VNG ; , a yes-no bipartition B  is a map from

N  to { }1,1− . A player is assigned the value 1 if he votes ‘yes’ and –1 if he votes

‘no’. The ‘yes’ voting camp is referred to as +B , and the ‘no’ voting camp is

denoted by −B .

Definition 1.15: Given ( ) SG∈= VNG ; , a voter Ni∈  is said to agree with the

outcome of a yes-no bipartition B  in the game G , if either of the following two

conditions hold:

1. ( ) 1=iB  and )(GB W∈+ .

2. ( ) 1−=iB  and )(GB W∉+ .

The statement that i  agrees with the outcome of a bipartition means that the

decision goes i ’s way: i  votes ‘yes’ and the bill is passed or i  votes ‘no’ and the

bill is rejected.

For further discussion on these definitions see Shapley (1962), Dubey and

Shapley (1979), Owen (1978), Felsenthal and Machover (1995, 1998), Dubey,

Einy and Haimanko (2004).

After these preliminary definitions, we next define what is actually meant

by a voting power index and discuss some of the properties that any index of

voting power is expected to satisfy.

1.2.2 Some Indices of Individual Voting Power

Roughly speaking, as already mentioned before, by an index of individual

power we mean a quantification of the amount of influence that a voter has on the

outcome of the voting process.  At the very outset we must mention that most of

the well-known indices that have been suggested in the literature, measure a-priori

voting power of individual voters. What these indices intend to quantify is the

power that a voter has solely by the virtue of the decision rule itself, in a state of

a-priori ignorance about some real life factors, like the nature of the bills to be
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voted on, the voters’ actual interests, persuasive skills, mutual affinities,

disaffinities etc. (see for e.g., Felsenthal and Machover (1998, 2000), Braham and

Holler (2005)). Thus the set of information that is required in finding an index of

individual power in a simple game G  is wholly contained in the set )(GW . No

information that is exogenous to the rule itself is included while calculating such

an index. Though there have been criticisms about a-priori indices being useless

in evaluating the power distribution in real decision making bodies, nonetheless,

a-priori voting power is an important analytical tool even for studying actual

voting power (see, among others, Braham and Holler (2005), Felsenthal and

Machover (1998)). Also an important point to note before we proceed to discuss

the different indices of power is that the widely used tool to analyze voting power

is that of simple games, which is essentially binary. This is because it offers each

voter to choose from ‘yes’ or ‘no’. Though, in real life situations there are other

options besides them available to the voter, the mainstream literature has largely

neglected this.

We will discuss the case in which there are more than two alternatives

present in section 1.2.6. Otherwise, we assume throughout that the voter has the

option of voting ‘yes’ or ‘no’ only.

Definition 1.16 By a (a-priori) index of voting power of a player i , we mean a

mapping +→ RSG:iϕ , i.e., a nonnegative real valued function defined on the

set of simple (voting) games.

Felsenthal and Machover (1998) proposed the following three conditions as

the minimal set of properties which a reasonable index of individual voting power

should satisfy.

(i) Iso-invariance (INV): Let ) ;( VNG =  and SG∈′′= ) ;(' VNG  be two

isomorphic games, that is, there exists a bijection h  of N  onto 
'N  such that

for all 1)(  , =⊆ SVNS  if and only if 1))(( =′ ShV , where

}: )({)( SxxhSh ∈= .  Then )()( )( GG ihi ′= ϕϕ .
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(ii) Ignoring null voters (IGN): For any SG∈= )  ;( VNG  and for any null voter

Nd ∈ , )()( dii GG −=ϕϕ  for all i ∈ { }dN − , where dG−  is the game

obtained from G  by excluding d . Similarly, )()( dii GG += ϕϕ , where dG+  is

the game obtained from G  by including Nd ∉  as a null voter.

(iii) Vanishing just for null voter (VJN): For any 0)(  ,) ;( =∈= GVNG iϕSG  if

and only if Ni ∈  is a null voter.

By definition, a power index is always nonnegative. VJN shows that the

necessary and sufficient condition that the power index attains its lower bound,

zero, is that the concerned voter is a null voter. If a voter is a null voter, then he

has no influence over the final outcome of the voting process. In no situation can

he change the outcome by changing his vote. Since the essence of power of a

voter lies in his capability of being a pivotal voter, a voter’s power should be

minimal (zero) if he is a null voter (see also Dubey (1975), Dubey and Shapley

(1979), Taylor (1995) and Burgin and Shapley (2001)). A similar argument

applies from the reverse direction.

INV is an anonymity condition. It says that any reordering of the voters does

not change the power enjoyed by a voter. Influence of a voter over the outcome

does not depend on the irrelevant characteristics of the voter, like his name or

place of residence etc. Even if those characteristics change (e.g. he swaps his

place of residence with another voter), his influence remains unaltered.

Since a null voter can never affect the outcome of voting it is natural to expect

that if a he is excluded from a voting game, the powers of the remaining voters

remain unaltered. Likewise, inclusion of a null voter in the game will not change

the powers of the existing voters. This is essentially what IGN says.

We can also formulate a relative version of IGN.

Relative Null Voter Ignoring Principle (RNP): Let G  and dG−  be the games as

given in IGN. Then, for any { }dNji −∈, , 
)(

)(

)(

)(

G
G

G
G

j

i

dj

di

ϕ
ϕ

ϕ
ϕ

=
−

− ,

where 'jϕ s are assumed to be positive.
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RNP says that the power of voter i  relative to another voter j  remains

unaltered if a null voter is excluded from the game. Clearly, IGN implies RNP

but the converse is not true. For instance, )(Gm i  satisfies RNP but not IGN3.

However, what any index of individual power satisfying the above three

conditions gives is essentially an absolute measure of power. But if we are

interested in a relative index of power, which gives an idea of how the control

over the collective action of a voting body is shared by all the voters, we would

require normalization postulate (Felsenthal and Machover (1995)). Hence we

have an added condition,

(iv) Normalization (NOM): For any SG∈= )  ;( VNG , ( ) 1=∑
∈Ni

i Gϕ .

The justification for including NOM has been questioned by some authors.

Laruelle and Valenciano (1999, 2001) claim that NOM has no compelling

interpretation as an a-priori requirement on an index of power. They argue that in

a simple superadditive game, the requirement that the power index components

sum up to 1, cannot be considered as a simple normalization. It is in fact the

efficiency condition ( )()( NVG
Ni

i =∑
∈

ϕ ), which is taken as the required criterion.

Usually power indices are used to compare different games, and are axiomatically

grounded on assumptions involving power in different games. Thus when

different games are involved, NOM requires that the sum of power index

components is identical in all the games. This makes the condition very

demanding. An important use of voting power analysis is to study the dynamics of

changing voting structures. Such studies do not require NOM. Also we do not

require NOM while studying the relationship between voting weight and power.

Further, normalization is not needed to study the relative power of different

players or the relative power of the same player in different games.

 The conditions IGN, VJN and INV suggested by Felsenthal and

Machover (1998) are necessary but by no means sufficient for making any

                                                                
3 For relevance of INV, VJN and IGN in characterizations of different power indices, see section
1.2.4.
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measure an acceptable index of voting power. There are some other intuitively

appealing properties that any measure of individual power are expected to satisfy.

However some indices suggested in the literature do not satisfy many of them,

thus giving birth to some well-known paradoxes. These properties along with the

paradoxes are discussed in section 1.2.3. 

An important interpretation of power indices is that of a restricted notion of

semivalues on the set of simple games, SG . Following Weber’s (1988) axiomatic

description, a value ψ  is a semivalue if and only if it satisfies linearity, positivity,

dummy player property and iso-invariance4. We have already introduced iso-

invariance in the context of power indices in the discussion following definition

1.16. The other properties are formally stated below:

a. Linearity: ( ) ( ) ( )GGGG ′+=′+ ψψψ  and ( ) ( )GG λψλψ = , for all

),;( VNG =  G∈′=′ );( VNG  and 0>λ . The game ( GG ′+ ) =

( )VVN ′+; , where ( )VV ′+ ( )S = NSSVSV ⊆∀′+ )()( , and the game

);( VNG λλ = ,where )(.))(( SVSV λλ =   NS ⊆∀ .

This condition means that iψ  is a linear function in G.

b. Positivity: If G G∈  is monotonic (i.e., satisfies condition (i) of definition

1.1), then ( ) 0≥Gψ .

c. Dummy Player Property: If i  is a dummy in the game G∈= );( VNG ,

i.e., })({)(}){( iVSViSV +=∪  }{\ iNS ⊆∀  (see definition 1.11), then

)(Giψ = })({iV .

Important examples of semivalues are the Shapley value and the Banzhaf value,

which are introduced below (see Carreras, Freixas and Puente (2003), Laruelle

and Valenciano (2003) for detailed discussions on semivalues as power indices).

After having defined what we mean by an a-priori power index, we will

now introduce some well-known power indices.

The first systematic and scientific approach to the issue of measuring

power was initiated by Penrose (1946). His key idea was very simple: the more

                                                                
4 These properties have also been used in characterizing different power indices, as we shall see in
section 1.2.4.
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powerful a voter is, the more often will the outcome of the voting procedure go

the way he/she votes. But his work lay buried for a long time and was

independently rediscovered by Banzhaf (1965). This was later again rediscovered

by Rae (1969) and Coleman (1971). However, the paper that is regarded as the

seminal work on this issue, by the mainstream literature, is by Shapley and

Shubik (1954).

The Shapley-Shubik Index (1954):  This index is in fact the restriction of the

Shapley value (Shapley, 1953) to the class of simple voting games. Given a game

G∈= );( VNG , the Shapley value of a player Ni ∈  is defined as

( ) ( ) ( ) { }( ){ }iXVXVXNX
N NX

\!!1
!

1
−−−∑

⊆

.

When this is applied to the class of simple games, SG , we get the Shapley-

Shubik index of the power of voter i . Formally,

S -
( ) ( )

∑
∈

∈

−−
=

Xi
GX

i N

XNX
GS

)( !

!!1
)(

W

.

The number of orderings (of voters) in which voter i  is pivotal is called the

Shapley-Shubik score of i .

The idea behind the index is that voters line up in order to vote for a bill, with the

most enthusiastic supporter voting first. As soon as a ‘majority’ (more generally, a

minimal winning coalition) has voted for it, the bill is declared passed. Given an

ordering of voters, the swing voter for this ordering is the person whose deletion

from the coalition of voters of which he is the last member in the given order,

transforms this contracting coalition from a winning to a losing one. The Shapley-

Shubik index for voter i  is the fraction of the orderings in which i  is the swing

voter.

This index also has a nice probabilistic interpretation. Let the probability, ip , that

i  will vote in favour of a bill be chosen from the uniform distribution on [0,1]. If

each i  approves or rejects a bill with the same probability, i.e., Nipp i ∈∀=
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(assumption of homogeneity), then the probability that i ’s vote will affect the

outcome of the bill is given by the Shapley-Shubik index (Straffin (1977, 1988)).

While the Shapley value measures the contribution of a player to the grand

coalition, Akimov and Kerby (2000) introduced a coalition supporting value and a

coalition suppressing value for each player, and showed that the sum of these

values gives the Shapley value for that player. Assuming that players commit

themselves in some given order, they measured a player’s ‘passing power’ or

coalition supporting value, by counting the number of times he is swing in

winning coalitions, for all orders and coalitions. Similarly they calculated a

player’s blocking power or coalition suppressing value by counting the number of

times he is swing outside losing coalitions.

The Banzhaf Index (1965): Given a game SG∈= );( VNG , while the Shapley-

Shubik index is concerned with the order in which a winning coalition may form,

the Banzhaf index examines any winning coalition, irrespective of the order in

which it may be formed and considers any voter to have power from having a

swing in it. The index, which Banzhaf actually defined and used in his work, was

the swing number ( )Gmi . This is often referred to in the literature as the ‘raw’

Banzhaf index (Dubey and Shapley (1979)). ( )Gmi  is also called the Banzhaf

score of voter i .

However, the forms of the Banzhaf index that are commonly used in the literature

are the following:

The Absolute Banzhaf index: The Banzhaf absolute or non-normalized index of

player i  is defined as the number of winning coalitions in which i  is pivotal,

divided by the maximal value that this number can take. Formally,

 
12

)(
)(

−
=

N
i

i

Gm
GBZNN . (See Dubey and Shapley, (1979).)

This index too has a nice probabilistic interpretation due to (Straffin (1977,

1988)).
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If the probability ip  that voter i  will vote in favour of the bill is chosen from the

uniform distribution on [0,1], and if the decision of i  has nothing to do with the

decision of another voter j  (assumption of independence), then the probability

that i ’s vote will affect the outcome of the bill is given by the non-normalized

Banzhaf index. However, Leech (1990) has shown that we do not need the

assumption of uniform distribution. The only thing that we require is that the

probabilities are selected independently at random from any distribution which

has an expectation 0.5.

Banzhaf normalized index: The Banzhaf normalized index of player i  is the

ratio between his power, as measured by the non-normalized Banzhaf index, and

the sum of such indices across voters. Formally,

 

)(

)(
)(

1

Gm

Gm
GBZ

N

i
i

i
i

∑
=

= .

The concept of the Banzhaf index has also been extended to the space of all

games G , giving the formula { }( ) ( )[ ]∑
∉
⊂

−
−∪

Si
NS

N
SViSV

12

1
 for what is referred to

as the Banzhaf value for player i )( iBv (Owen (1975), Dubey and Shapley

(1979)).

The Coleman Indices (1971): The power of an individual member of a voting

body, when power is interpreted as ‘influence’ over the outcome of the voting

process, can be exercised in two ways: the member can initiate an action or can

stall an action from being taken. The difference between these two becomes

obvious if one considers the case of a ‘vetoer’ or a blocker. By the definition of a

blocker, his ‘yes’ vote is necessary but not sufficient to obtain the passage of a

bill. So while the blocker can stall the passage of a bill by individual action

(without reference to how others vote), he cannot pass a bill by individual action.

For this he needs to consider how others vote.
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To capture these two aspects of power, Coleman suggested two different

power indices for individual voters- an index to measure the power to prevent

action and an index to measure the power to initiate action.

 Coleman Index of the Power to Prevent Action

The Coleman index of the power to prevent action for voter i  is defined as the

number of winning coalitions in which i  is decisive, divided by the total number

of winning coalitions in the game. Formally, in a game G SG∈= );( VN , where

)(Gm i  is the number of winning coalitions in which i  is critical, voter i ’s

power to block action is calculated as

( ) {}( )[ ]

∑

∑

⊆

∈
⊆

−

=
NS

Si
NS

i SV

iSVSV

GP
)(

\

)(  = 
)(

)(

G
Gmi

W
.

The index can be interpreted as voter i ‘s probability to block a bill. )(GW  is the

number of  possible situations which lead to the bill being passed. Since voter i ‘s

‘yes’ vote is pivotal in im  of these situations, given that other voters do not

change their vote, i  can block the bill by changing his vote to ‘no’ only in these

situations. So the probability that voter i  can block a bill is ( ) )(GGmi W .

Laruelle and Valenciano (2002a) show that the Coleman index of the power to

prevent action gives voter i ’s probability of being decisive (or swing),

conditional to the proposal being accepted, if it is assumed that all coalitions are

equiprobable, that is, the voters make yes-no decision with probability 21  for

each and all the voters vote independently.

Coleman Index of the Power to Initiate Action

The Coleman index of the power to initiate action for voter i  is defined as the

number of losing coalitions outside which i  is critical divided by the number of

losing coalitions in the game. Formally, voter i ’s power to initiate action is

calculated as
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{ }( ) ( )[ ]
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The index can be interpreted as voter i ’s probability to initiate action. While in

the Coleman index of the power to prevent action, swings of a voter i  are

regarded as measuring his ability to destroy a winning coalition, in the Coleman

index of the power to initiate action, swings are thought of as measuring a voter’s

ability to turn an otherwise losing coalition into a wining one.

Laruelle and Valenciano (2002a) show that the Coleman index of the power to

initiate action gives voter i ’s probability of being decisive (or swing), conditional

to the proposal being rejected, if it is assumed that all coalitions are equiprobable,

that is, the voters make yes-no decision with probability 21  for each and all the

voters vote independently.

Brams and Affuso (1976) pointed out that the two indices proposed by

Coleman are proportional to the Banzhaf index and to each other. Dubey and

Shapley (1979) showed that the harmonic mean of these two indices becomes the

Banzhaf index.

However, often these two indices are clubbed with the non-normalized Banzhaf

index and are jointly referred to as the Banzhaf-Coleman index (see for e.g.,

Owen (1978)). In Chapter 2 of this thesis, we study the properties of these two

indices in details.

The Deegan Packel Index (1978): According to Deegan and Packel only

minimal winning coalitions should be considered in determining the power of a

voter. They suggested an index under the assumptions that all minimal winning

coalitions are equiprobable and that players in a victorious minimal winning

coalition will divide the prize of victory which is available to the winning camp,

equally. Thus any two voters belonging to the same minimal winning coalitions

should enjoy the same power. Given SG∈= );( VNG , the Deegan-Packel index

for a player Ni ∈  is given by,
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( ) ( ) ( )
∑

∈

=
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i
i

SG
GDP
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,

where )(GiMW is the set of all minimal winning coalitions in the game G  to

which i  belongs. For each )(GS iMW∈ , the term 
S
1

 suggests that player i

shares the spoils of victory equally with the other 1−S  players in the same

minimal winning coalition S.

The Johnston Index (1978): Johnston proposed his index in answer to Laver’s

(1978) criticism of the Banzhaf index, that it registers one point every time a voter

can destroy a coalition, regardless of how many other voters can do the same

thing. Under this new index, instead of i  gaining one point from each coalition S

in which i  is pivotal, i  now gains only 
)(

1
Spiv  th of a point, where )(Spiv  is

the number of voters who are pivotal in S . Given SG∈= );( VNG ,

let ( )∑ ∈= − GSSpivGi W:)({)( 1χ  and { } ( )}GiS W∉− . This is also referred to

as the Johnston score of i  in G .

Then the Johnston index of power of a player Ni ∈  is given by,

=)(GJN i ∑
∈Nj

j

i

G
G

)(

)(

χ
χ

.

The Holler-Packel Index (Holler (1982); Holler and Packel (1983)): The Holler-

Packel index or what is alternatively referred as the Public Good index is also

based on minimal winning coalitions, though the rationale for considering them is

different from that of the Deegan-Packel index. The public good index is based

upon the essential characteristic of a public good: non-rivalry in consumption and

non-excludability in access. If the outcome of a game is the provision of a public

good, each member of the winning coalition will receive the undivided value of

the coalition. Only minimal winning coalitions are taken into account because

when it comes to the provision of a public good, winning coalitions with excess
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players will form by sheer ‘luck’ because of the potential for free riding. Given

SG∈= );( VNG , and assuming that all minimal winning coalitions are equally

likely, the public good index for voter i  is given by

∑
∈

=

Nj
j

i
i

G

G
GPGI

)(

)(
)(

MW

MW
 .

The non-normalized or the absolute public good index for voter i  is given by

)(

)(
)(

G

G
GIPG i

i MW

MW
=′ .

Brueckner (2001) has shown that the assumption of independence in combination

with counting only minimal winning coalitions gives the non-normalized or

absolute Public Good index.

All the indices of power listed above satisfy INV, IGN and VJN. While S - S ,

BZ , DP , JN  and PGI  satisfy NOM, BZNN , P  and I  are not normalized

indices of power (Felsenthal and Machover (1998), Braham and Steffen (2002)).

Before proceeding to the next section, we must take note of a type of

distinction that is made among the indices discussed above. Coleman (1971)

pointed out that the problem of decision making in collectivities is not about

bargaining or a “battle over the division of spoils, as assumed by the Shapley

value…”. Rather, it a problem of controlling the actions of the collectivity and the

actions generally have their own consequences and distribution of spoils. This

distribution cannot be altered at will, i.e., the spoils cannot be split up among the

members of the winning coalition.

Coleman (1971) also pointed out that the notion of voting power quantified by

the Shapley-Shubik index is not the power to affect the outcome of voting body in

the usual sense, that is, whether a resolution is passed or blocked. Rather, it is the

power of the voter to appropriate a share in the fixed prize of victory, available

only to the winning camp. This is because the origin of the Shapley-Shubik index

is the Shapley value, which was adapted as an index of power by setting the total

value of a game as 1, and “determining that a coalition received the value of the

game” if the coalition was winning. This approach therefore entails that the
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problem of power in a collectivity involves a division of a fixed puse (which is

normalized at 1) among the members of the winning coalition. However,

according to Coleman, the issue of voting involved problems of controlling the

action of a collectivity rather than bargaining over spoils (also see Leech (2002d)

for further discussion along this line).

Based on Coleman’s arguments, Felsenthal and Machover (1998) introduced

the concept of I-power and P-power to distinguish between two different

motivations of voting behaviour- policy seeking and office seeking. Indices of I-

power measure individual voting power when it is interpreted as the voter’s

ability to change the outcome of the voting process by changing his stand on the

bill. Here ‘I’ stands for ‘influence’. On the other hand, from the rival office-

seeking viewpoint, the real outcome of voting is the distribution of a fixed purse

among the victors. Thus, here power is regarded as a prize. Indices of P-power

(here ‘P’ stands for ‘prize’) give a measure of individual power when power is

interpreted as a voter’s estimated share in the fixed prize. Thus, in measuring P-

power, the primary concept is a relative measure. By suitable choice of units, this

fixed purse which is to be divided among the members of the winning camp can

be taken as 1. This makes NOM an appropriate requirement of indices that

measure P-power. However, when voting is concerned with collective action,

rather than the problems of division of spoils, NOM becomes irrelevant.

Felsenthal and Machover (1998) note that from the perspective of I-power, the

meaningful concept is that of absolute power. Thus, in measuring I-power, NOM

is not a relevant requirement. However, the postulates of IGN, VJN and INV are

relevant concepts in measuring both I-power and P-power.

The indices suggested by Shapley-Shubik (1954), Deegan and Packel (1978),

Johnston (1978) measure P-power, while the Banzhaf and Coleman indices are

measures of I-power (see Felsenthal and Machover (1998)). Since the outcome of

a voting game in the story behind Holler’s Public Good index is a public good,

this index is based on the characteristics of a public good: non-rivalry in

consumption and non-excludability in access. Thus each member of the winning
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coalition receives the undivided value of the coalition and there is no concept of

sharing of spoils in the Holler index.

Thus having introduced the most well known indices in the literature, we next

turn to the discussion of the some other postulates that an index of voting power

are expected to satisfy and the paradoxes that result from some of the indices not

satisfying them.

1.2.3 Postulates and Paradoxes

Felsenthal and Machover (1998) laid down INV, IGN, VJN and NOM

(discussed in section 1.2.2) as the very “minimal adequacy postulates” that any

reasonable index of voting power must satisfy. However, apart from them,

Felsenthal and Machover (1995, 1998) have also proposed some other postulates

that ought to be imposed on indices of power. Violation of these postulates by

some of the indices has given birth to some well-known paradoxes. Those

postulates and the related paradoxes are discussed below.

Superadditivity5 and the Paradox of Size: This paradox is due to Shapley

(1973) and Brams (1975). To explain this paradox, we first need to know what we

mean by superadditivity. Let i  and j  be two separate voters belonging to a

simple game G . Suppose they now decide to form a bloc, and start operating as a

single voter ij . It is clear this results in a new game, whose assembly is obtained

from the assembly of G  by deleting both i  and j , and introducing a new voter

ij . Formally,

Definition 1.17: Given ( ) SG∈= VNG ; , suppose that the voters Nji ∈,  are

amalgamated into one voter ij . Then the post-merger voting game is the pair

( ) SG∈′′=′ VNG ; , where

{ } { }ijjiNN ∪−=′ ,  and

( ) ( )SVSV =′    if { }ijNS −′⊆ ,

                                                                
5 Note that while the condition of superadditivity as discussed in definition 1.1 applies to a game

G∈G , the superadditivity postulate as discussed in this section applies to an index of power.
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         { }( ) { }( )jiijSV ,∪−=    if Sij ∈ .

An index of power ϕ  is said to satisfy the postulate of superadditivity if

)()()( GGG jiij ϕϕϕ +≥′  .

According to Brams (1975), this postulate is suggested by the

conventional wisdom that the whole is at least as large as the sum of its parts.

Felsenthal and Machover (1995, 1998) give a stronger argument in favour of the

postulate of superadditivity. According to them, it seems natural to expect that if

two voters form a bloc, this should not result in an increase in the relative power

of any rival voter. However, power being a relative concept here, their argument

applies only if ϕ  is a normalized index of power (i.e., satisfies NOM).

Shapley (1973) showed that any normalized index of power, which

satisfies INV, will violate the superadditivity postulate. The failure of

superadditivity to hold in general is known as the paradox of size. Hence S - S ,

BZ , DP , JN  and PGI  display this paradox. Felsenthal and Machover (1995)

show that BZNN , which satisfies INV, but is not normalized, not only satisfies

superadditivity, but also the stricter postulate of additivity6, i.e.,

)()()( GBZNNGBZNNGBZNN jiij +=′ .

Before we go on to discuss the next postulate, it may be worthwhile to

note how the number of winning coalitions in which the merged identity ij is

swing in the game G′ , compares with the number of coalitions in which its

members were swing in the original game G . The following proposition gives the

number of swings of the merged voter ij  in a general voting game.

Proposition 1.1: Let ( ) SG∈= VNG ; . Then for any two voters i , j N∈ ,

)()( GmGm ji +  is a nonnegative even integer. Moreover, if the voters Nji ∈,

are merged into one voter ij , then the number of swings of the bloc voter ij

in the post-merger game ( ) SG∈′′=′ VNG ;  is 
( )

2
)()( GmGm ji +

.

                                                                
6 Both the postulates of superadditivity and additivity can be thought of as having a similar spirit
as the bloc postulate (BOP), because they all are formulated in terms of amalgamation of voters.
We discuss BOP later in this section.
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Proof: )()( GmGm ji + = { }( ) ( )[ ]
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=2 )(Gmij ′ ,

where )(Gmij ′  is the number of swings of the voter ij in the merged game G′ .

Since 0)( ≥′Gmij  is an integer, )()( GmGm ji +  is an even integer. From above

we have, )(Gmij ′ =
( )

2
)()( GmGm ji +

. This completes the proof of the

proposition. �

The next postulate deals with dominance of power.

Dominance and Monotonicity7: Consider a game SG∈= );( VNG . Then a

player Nj ∈  is said to dominate another player Ni ∈ , i.e., ijf  if and only if

{ } ( ) { } ( ) }{\ jNSGjSGiS ⊆∀∈∪⇒∈∪ WW . If ijf  but not jif , then j  is

said to strictly dominate i  ( )ij f . Thus the dominance relation ( )f is a

preordering  (i.e., it is transitive and reflexive) of players in a simple voting game.

In a weighted voting game, dominance is a total relation while in an unweighted

simple voting game, this may not be so (Felsenthal and Machover (1998)).

The Dominance Postulate (DOM): An index ϕ  is said to respect

dominance if whenever ijf , )()( GG ij ϕϕ ≥ .

                                                                

7 Note that the monotonicity postulate is distinct from monotonicity (condition (i) of definition

1.1). While the condition of monotonicity applies to game G∈G , the monotonicity postulate
(MON) applies to an index of power. Thus if a game is said to be monotonic, then it must be
understood to satisfy condition (i) of definition 1.1. But if an index of power is said to be
monotonic, then it must be understood to satisfy MON.
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This means that if j  dominates i  then any contribution that i  can make to the

victory of a coalition should not be higher than that of j . So intuitively j  must be

at least as powerful as i .

A special case of the dominance postulate is monotonicity, which

demands that in a weighted majority game, if a voter j  has at least as much

voting weight as another voter i , then j  cannot have less power than i

(Felsenthal and Machover (1995, 1998), Freixas and Gambarelli (1997)).

The Monotonicity Postulate (MON): An index ϕ  is said to be

monotonic if in a voting game );;( qNG w= , whenever ij ww ≥ ,

)()( GG ij ϕϕ ≥ .

 It is obvious that monotonicity is much weaker than dominance. While S - S ,

BZNN , BZ  and JN  respect dominance, and hence monotonicity, DP  does not

even satisfy the weaker condition of monotonicity (Deegan and Packel (1982),

Felsenthal and Machover (1995, 1998)). PGI  too violates monotonicity.

However, under certain constraints on the number of non-null players, and on the

distribution of votes, PGI  satisfies MON. Consider a weighted majority game

( )qVNG ;;; w= , where ( )Nwww ,..., 21=w such that Niwi ∈∀> 0  and 1=∑
∈Nk

kw .

Holler, Ono and Steffen (2001) show that the Public Good index satisfies MON

for all such weighted majority games with a simple majority rule ( )2
1=q  and

with ( )gN −  null players for 4≤g . Further, the Public Good index has been

shown to satisfy (partial) MON for the players j  and i , i.e., )()( GG ij ϕϕ ≥ , for

all proper weighted majority games, if ij ww >  and wwk ′=  for all other players

jik ,≠ . Note that nothing is said here about the power relationship between i  and

k , and j  and k .

Freixas and Gambarelli (1997) and Felsenthal and Machover (1998) have

taken the stand that dominance (monotonicity) is such an intuitively appealing

postulate that any index of that violates it cannot be regarded as a reasonable

yardstick of voting power. Felsenthal and Machover (1998) note that any index of
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a-priori voting power, be it I-power or P-power must respect dominance. On the

other hand Deegan and Packel (1978, 1982), Brams and Fishburn (1995), Holler

(1997, 1998), Brams and Steffen (2002) argue that such a strong position in

favour of dominance (monotonicity) as a postulate for a-priori index of power, is

unwarranted for They take the position that if the story of an index is reasonable

then one must accept that power may not be monotone. Felsenthal and Machover

(1998) have argued that ‘any reasonable measure of a priori power… must respect

dominance’. However, if we assume that characteristics like ideological affinities

can play an important role in determining the influence a voter can have on the

voting outcome, then notions like dominance are narrowly defined (see Holler and

Napel (2003), Braham and Steffen (2002), Laruelle and Valenciano (2002e)). An

example where the dominance postulate in not appropriate, is the Owen-Shapley

(1989) spatial power index, which modifies the Shapley-Shubik index, and takes

into account the ideological proximity among voters (Holler and Napel (2003)).

The same reasoning applies to the Public Good index, which is derived under the

supposition that coalitional values are public goods.

The Transfer Postulate and the Paradoxes of Redistribution and Donation:

First we will discuss the paradox of redistribution, which is due to Fischer and

Schotter (1978). This paradox concerns only weighted voting games. Let

);;(1 qNG w=  and );;(2 qNG u=  be two weighted majority games such that

∑∑
∈∈

=
Ni

i
Ni

i uw . In this configuration a voter Ni ∈  is said to be a donor if ii uw >

and a recipient if ii uw < . Intuitively, 1G  represents the initial distribution of

weights, and 2G  is obtained from 1G  by a redistribution of weights, whereby

some donor(s) donate some weight to the recipient(s). In this configuration, an

index ϕ  is said to display the redistribution paradox if there is a donor j , who in

spite of having lost some weight, actually gains power, i.e., )()( 12 GG jj ϕϕ > .

Schotter (1982) considers the Shapley-Shubik index and the Banzhaf indices in

connection with the paradox of redistribution (also see Dreyer and Schotter

(1980)). Felsenthal and Machover (1995, 1998) provide examples to show that
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any normalized index of voting power satisfying INV, will display this paradox.

They also show that BZNN , which is non-normalized, also displays this paradox.

Felsenthal and Machover (1995) propose the donation paradox as an amended

version of the paradox of redistribution. This paradox also involves only weighted

majority games, but here there is only one donor. We define the donation paradox

formally below.

The Donation Paradox: Let );;( 11 qNG w=  and );;( 22 qNG w=  be two

weighted voting games, where },...,,...,,...,{ 11112111 nji wwwww=w ,

 },...,,...,,...,{ 12222212 nji wwwww=w

 τ+= ii ww 12 , τ−= jj ww 12 , kk ww 21 = Nk ∈∀ , jik ,≠ ,

and jw10 ≤<τ  .

Under this configuration an index ϕ  is said to display the donation paradox, if

)()( 12 GG ii ϕϕ < .

Felsenthal and Machover (1995, 1998) show that while S - S  and BZNN  are

immune to the donation paradox, BZ , DP  and JN  display it.

Felsenthal and Machover (1995) also propose the transfer postulate as a

reasonable postulate that prevents a power index from displaying the donation

paradox. Formally,

The Transfer Postulate (TRP): Let 1G  and 2G  be two different simple

voting games with the same assembly N , and let Nji ∈,  ( ji ≠ ), such

that the following conditions hold:

T1. Whenever i  and j are on the same side of a yes-no bipartition B , the

outcome of B  is identical in 1G  and 2G .

T2. Whenever i  and j  are on opposite sides of a yes-no bipartition B

and i  agrees with the outcome of B  in 1G  then i also agrees with the

outcome of B  in 2G .

T3. There exists at least one yes-no bipartition B  such that i  agrees with

the outcome of B  in 2G  but not in 1G .
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Then we shall say that 2G  arises from 1G  by a transfer from j  to i .

We say that an index ϕ  satisfies TRP if whenever the above conditions

hold, )()( 12 GG ii ϕϕ ≥ . Likewise, ( ) ( )12 GG jj ϕϕ ≤ .

The meaning of the above postulate is as follows:

 Suppose that when we go from the game 1G , to another game 2G , a voter j

loses some pivotal roles and another voter i  gains some new pivotal roles, while

the coalitions that contain both i  and j  do not change their status. Here we say

that 2G  arises from 1G  by a transfer of voting right from j  to i . Then, TRP

demands that power of voter j  should not increase under a transfer of a part of

his voting right to another voter i . Likewise the power of voter i  should not

reduce under the transfer.

In the case of weighted majority games TRP means that voter j  cannot

gain power by distributing some of his voting weight to another voter i .

Similarly, voting power of i  cannot reduce when he receives some voting weight

from another voter j . Certainly, if i  is a null player and remains a null player

with the additional weight, then i 's power should not decrease. But if the

additional weight transforms i  from a null player to a non- null player or if he

was already non-null before receiving the additional weight, then too i 's power

should not reduce after the transfer. Thus, several possibilities regarding change

of statuses of power of i  and j  may arise in going from 1G  to 2G . Clearly, j

may lose some swing roles and i  may gain some new swing roles. It is also likely

that the transfer does not change their swing positions at all. Turnovec, Mercik

and Mazurkiewicz  (2005) used a concept of global monotonicity, which says that

if the weight of one voter is increasing and the weights of all other voters are

decreasing or staying the same, then the power of the voter with “growing

weight” should at least not decrease. Let { }qNG ,; 11 w=  ( )Nji ∈,  be a weighted

majority game. Suppose 2G  is obtained from 1G  when j  donates some positive

weight to i , the weights of the other players remaining the same. In this case,
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satisfaction of global monotonicity requires that )()( 12 GG ii ϕϕ ≥ . Thus clearly

global monotonicity is similar in spirit to TRP in weighted majority games.

 Felsenthal and Machover (1998) suggest TRP as a postulate that indices

of both I-power and P-power should satisfy.

It is clear that a power index that satisfies TRP cannot display the donation

paradox.

 While TRP is formulated in terms of power of either the donor or the

recipient of the voting right, we can have a relative version of TRP, which

involves powers of both j and i , the donor and the recipient of the voting right.

Relative Transfers Principle (RTP): Let 1G  and 2G  be the games as given in

TRP. Then

                                 
)(

)(

)(

)(

1

1

2

2

G

G

G

G

i

j

i

j

ϕ

ϕ

ϕ

ϕ
≤ ,

 where 'iϕ s are assumed to be positive.

Clearly, TRP implies RTP. But the converse is not true. For instance, the

normalized Banzhaf index BZ  satisfies RTP but not TRP.

The Bloc Postulate and The Bloc Paradox: In order to explain this paradox, we

need to first define the bloc postulate.

The Bloc Postulate (BOP): Suppose i  and j  are two separate voters

belonging to a simple game G , and let j  be a non-null voter. Then an

index of power ϕ  is said to satisfy the bloc postulate if )()( GG iij ϕϕ ≥′ ,

where G′  is the game defined in definition 1.17.

The bloc postulate is regarded as a compelling requirement that indices of both I-

power and P-power should satisfy.

By the bloc paradox we mean any violation of the bloc postulate. Felsenthal and

Machover justify this postulate by saying that the bloc ij can be regarded as a

result of a takeover in which i  annexes j ’s voting rights and now trades under
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the new name ij . Thus, it seems intuitively appealing that i  should gain power by

‘swallowing’ a non-dummy voter j .

Felsenthal and Machover (1995, 1998) show that while S - S  and BZNN  satisfy

the bloc postulate, BZ , DP  and JN  violate it and hence display the bloc

paradox.

They also show that if an index that satisfies INV, respects the strict version of

the bloc postulate, which requires )()( GG iij ϕϕ >′  in BOP, then it must

automatically satisfy the non-null postulate8 (Felsenthal and Machover (1995,

Theorem 5.10). The non-null postulate is formally stated below:

The Non-Null Postulate (NNP): If j  is a non-null voter in a game G SG∈ ,

then 0)( >Gjϕ .

BZ , DP  and JN  violate the bloc postulate but satisfy the non-null postulate.

Any index of power that satisfies INV and IGN, and also respects TRP will

satisfy the bloc postulate (BOP) (Felsenthal and Machover (1995), Theorem

7.10). Moreover, any index satisfying INV and TRP will also satisfy the

dominance postulate (Felsenthal and Machover (1995), Theorem 7.11). This

implies that given INV, TRP is stronger than DOM. Thus, any power index

satisfying TRP, INV and IGN is immune to the paradoxes of donation,

dominance and bloc. It has been shown that S - S  and BZNN satisfy the transfer

postulate (Felsenthal and Machover (1995, Theorem 11.2; 1998, Theorem 7.8.26).

BOP is important because it relies on merger of voters. Many authors have

used axioms which state relationship between power of a merged entity and its

individual components under amalgamation of voters. Thus, these axioms and

BOP have a similar spirit (see Lehrer (1988), Nowak (1997), Albizuri (2001),

Nowak and Radzik (2000)).

The Paradox of New Members: This paradox is due to Brams (1975), and

concerns weighted voting games with a normalized weighting system (i.e., the

                                                                
8 Felsenthal and Machover (1995) use the name ‘non-dummy postulate’ instead of ‘non-null
postulate’.
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sum of the voting weights of all the players equals 1). Given such a game, let a

new member join the assembly, while the quota and the proportion of weights

among the old voters are left unchanged. In this set up, an index ϕ  displays the

paradox of new members if at least one of the old members has greater voting

power in the new game. In other words the paradox appears when old voters share

their voting weight with a newcomer, and other things being equal, at least one

old voter actually benefits in the process. Brams (1975) discusses this paradox in

connection with the Shapley-Shubik index and the Banzhaf indices, while Brams

and Affuso (1976) consider the Coleman indices as well. Moreover, Brams and

Affuso (1976) note that adding a new voter to a weighted voting game may cause

a voter who was previously a null player, to become a non-null player. Thus, this

paradox is displayed by any index of voting power (see Felsenthal and Machover

(1998)).

The Quarrelling Paradox: Consider a game SG∈= );( VNG  and let Nji ∈, ,

ji ≠ . Let the game G
~

 be obtained from G  by removing from )(GW  all

winning coalitions in which both i  and j  are members. The idea is that i  and j

have quarreled and no longer collaborate. Hence the winning coalitions which

contained both the players now cannot form. If the measure of power (according

to ϕ ) of either i  or j  or both in the game G
~

 is greater than in G , then ϕ

exhibits the quarrelling paradox. A point to note here is that G
~

 may not be a

simple voting game. Since ϕ  is defined on SG (see definition 1.16), )
~

(Giϕ  or

)
~

(Gjϕ  need not be defined. This paradox owes its name to Brams (1975), who

showed that S - S  and BZ display this paradox. Kilgour (1974) showed that S - S

exhibits this paradox, while Deegan and Packel (1982) showed that their index,

DP , also displays this paradox.
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The Blocker’s Share and the Added Blocker Postulates: Felsenthal and

Machover (1998) present these two postulates as requirements of an index of

relative power (i.e., indices that satisfy NOM).

The Blocker’s Share Postulate (BSP): Given SG∈= );( VNG , an index of

relative power ξ  is said to satisfy the blocker’s share postulate if whenever

Ni ∈  is a blocker and )(GS W∈ , 
S

Gi

1
)( ≥ξ .

This postulate sets a lower bound to the relative power of a blocker.  Since by

definition a blocker is an indispensable member of every winning coalition,

therefore given that a winning coalition S is being formed, he will not accept a

smaller share of the fixed prize than any other member of S . So he must get at

least 
S
1

. BSP yields the sharpest result when S  is a minimal winning coalition of

the least size.

It is clear that the above argument for BSP applies to only P-power. Felsenthal

and Machover note that BSP is compelling for an index of P-power. However,

there is no reason why an index of I-power should satisfy BSP.

Felsenthal and Machover (1998, Theorem 7.9.4) show that while S - S  satisfies

the above postulate, BZ , DP  and JN  violate it.

Next, consider two simple games 1G  and 2G  where

{ }{ })(:)( 12 GSkSG WW ∈∪=  and k  is a not a voter of 1G . Thus 2G  is

obtained from 1G  by adding a blocker to the game. In the given setup, the added

blocker postulate is defined as follows:

The  Added Blocker Postulate (ABP): An index of relative power, ξ , is said

to satisfy the added blocker postulate if whenever i and j  are two non-null

voters of 1G , =
)(

)(

1

1

G
G

j

i

ξ
ξ

)(

)(

2

2

G
G

j

i

ξ
ξ

.

This postulate means that the introduction of a blocker in a game must not result

in a greater relative advantage to some of the voters than to others. Since this
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postulate has been proposed for indices of relative power, it is appropriate in the

context of P-power.

Felsenthal and Machover (1998) show that BZ  satisfies the above postulate, S -

S , DP  and JN  violate it.

In conclusion, we can say that the postulates listed above can be regarded as

relevant requirements of an index of voting power, depending on what type of

power (I-power or P-power) that particular index is intended to measure. While an

index of I-power is expected to satisfy the postulates of VJN, INV, IGN, DOM,

TRP and BOP, an index of P-power should satisfy VJN, INV, IGN, NOM,

BOP, DOM, TRP, BSP and ABP. For further discussion on postulates and

paradoxes of voting power indices, also see Laruelle and Valenciano (2002e),

Felsenthal and Machover (1998a, 2002), Felsenthal, Machover and Zwicker

(1998).

  In the next section we summarize the different studies that have been

made on the indices.

1.2.4 Characterizations and Interpretations of the Indices

In this section we discuss the different axioms that have been used to

characterize the well-known indices of voting power, and also the different

interpretations that various authors have provided to them.

Many examples can be found in the literature, which show that different

indices often result in different rankings of players (in terms of their power) (see

Saari and Sieberg (2000)). In this scenario, when power indices can lead to

conflicting conclusions, it becomes important to identify situations in which it is

best suited to apply a certain index vis a vis any other. Thus it becomes very

important to specify set of axioms that uniquely identify a particular index.

However, the axiomatic approach by itself is insufficient to settle the question of

the choice of a power index (Laruelle (1999)). Our research strategy is also the

axiomatic approach. We have tried to illustrate the importance of the axioms that

we have used, to the best possible extent. Discussing the axioms from the point of

view of trying to get more empirical content to the analysis is a quite relevant and
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important question. However, this is a separate issue and we have not gone into

that in this thesis.

Majority of the work that has been done in this area concerns the Shapley-

Shubik index and the Banzhaf index. Different authors have used different set of

axioms to characterize the indices. However, there are some common axioms that

have been used in majority of the exercises. They are VJN, INV9, efficiency (see

definition 1.2) and the dummy player property, which says that if Ni ∈  is a

dummy player in a game G∈= );( VNG , then })({)( iVGi =ψ .

Shapley (1954) had emphasized the importance of restricting the domain to

simple games only in order to achieve an axiomatic foundation for the concept of

voting power. However, many authors have characterized these indices on the set

of all games G. So, while discussing the axioms that have been used in

characterizing these indices on G, we will use the notation ψ  (which we had

reserved for values (see definition 1.2)), instead of ϕ .

Dubey (1975) provided an axiomatic characterization of the Shapley value,

whereas Dubey and Shapley (1979) used a similar set of axioms to uniquely

characterize the ‘raw’ Banzhaf index, ( )Gmi , on the set of simple games, SG. The

axioms that were employed in both the characterizations are VJN, INV, and the

transfer principle10. The fourth axiom, which distinguishes between the Shapley

value and the Banzhaf index, is that of efficiency. While the axiom of efficiency

was used in characterizing the Shapley value, the axiom of Banzhaf total power

was employed in the characterization of the raw Banzhaf index. Banzhaf total

power is in fact a modified version of the efficiency criterion, and is given by

∑∑
∈∈

=
Ni

i
Ni

i GmG )()(ϕ . The transfer principle that has been used in both the

                                                                
9 We may note here that we have discussed these postulates in section 1.2.2 in the context of
indices, which have been defined on the set of simple games SG only (definition 1.16). However,
it is possible to formulate these postulates in terms of values (definition 1.2), which are defined on
the set of all games, G.

10 Note that in spite of the similarity in their names, the transfer principle is quite distinct from the
transfer postulate, discussed in section 1.2.3.
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characterization exercises involves two games. Formally, the axiom can be stated

as follows:

The Transfer Principle : Given two games 1G );( 1VN= , 2G );( 2VN= SG∈ , an

index of power ϕ  is said to satisfy the transfer principle if

( ) +∨ 21 GGϕ ( )21 GG ∧ϕ = ( ) +1Gϕ ( )2Gϕ , where the games 21 GG ∨  and

21 GG ∧  are as defined in definitions 1.5 and 1.6.

The name of this principle is motivated by the following observation: The

game 21 GG ∧  is obtained from 1G  when all those coalitions that win only in 1G

are made losing. On the other hand, 21 GG ∨  arises from the game 2G  when these

same coalitions are made winning. Thus 21 GG ∧  and 21 GG ∨  arise from 1G  and

2G  when winning coalitions are ‘transferred’ from one game to the other (see

Weber (1988)).

Though this principle has been subsequently used by many authors in their

characterization exercises, it has also been criticized by some authors as being

somewhat obscure (see Roth (1977), Straffin (1982), Felsenthal and Machover

(1995), Laruelle and Valenciano (2001)). Dubey, Einy and Haimanko (2004)

provides an equivalent form of this axiom, which makes its meaning clearer.

Suppose there are two pairs of games, 11 ,GG ′  and 22 ,GG ′ , such that the transition

from 1G  to 1G′ , and 2G  to 2G′  entail adding the same set of winning coalitions

( −′)( 1GW =)( 1GW −′ )( 2GW )( 2GW ). Then the transfer principle is equivalent

to saying that the change in power essentially depends only on the change in the

voting game. That is, −′)( 1Gϕ =)( 1Gϕ −′ )( 2Gϕ )( 2Gϕ . (For further discussion

along this line, see Feltkamp (1995).)

Laruelle and Valenciano (2001) proposed more transparent substitutes of

the axioms used by Dubey and Shapley (1979), in order to characterize the

Shapley-Shubik and the Banzhaf non-normalized indices on the set of all proper

simple games.  To state their axioms formally, let SPG  denote the set of simple

proper games, and *
SG  be the game that is obtained from ∈= );( VNG SPG  after
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the deletion of the minimal winning coalition S ( )(GS MW∈ , NS ≠ ). The

axioms (other than INV, which they have retained for its clear meaning) that they

have employed in characterizing the indices are stated below:

The Axiom of Null Player*: Given ∈= );( VNG SPG , Ni ∈  is a null player in

G  if and only if for all ∈′=′ );( VNG SPG , )()( GG ii ′≤ ϕϕ .

This axiom essentially says that being a null player is the worst role any player

can expect to play. The above axiom replaces VJN, which was used by Dubey

and Shapley (1979). VJN says that the power of any null player in any game is

zero. However, in order to reveal that a null player has the least power, in addition

to VJN we need to state that the power of any player in any game is greater than

or equal to zero. The axiom used by Laruelle and Valenciano (2001) on the other

hand is “clear and compelling, and makes full sense by itself without requiring the

company of any other”.

 The Transfer Principle*: For any ∈′=′= );(),;( VNGVNG SPG , and all

∩∈ )(GS MW  )(G ′MW , NS ≠ ,

)()( *
Sii GG ϕϕ −  = )()( *

Sii GG ′−′ ϕϕ  for all Ni ∈  .

This principle postulates that the effect of removing a single minimal winning

coalition from the set of winning coalitions on a player’s power, is the same in

any game in which this coalition is minimal winning. Laruelle and Valenciano

have used this axiom in place of the transfer principle of Dubey and Shapley,

which they regard as being rather obscure. They have also shown that this

principle is actually equivalent to the transfer principle of Dubey and Shapley

(1979) on the domain of simple proper games. In fact, they showed that under

INV, the transfer principle can be replaced by the following axiom which is much

easier to understand:

The Axiom of Symmetric Gain-Loss: For all ∈= );( VNG SPG , all

)(GS MW∈ , NS ≠  and all Sji ∈,  (or, SNji \, ∈ ),

)()( *
Sii GG ϕϕ − = )()( *

Sjj GG ϕϕ − .
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This axiom says that the effect of eliminating a minimal winning coalition from a

game is the same for any two players belonging to it and for any two players

outside it.

The axioms that separate out the Shapley-Shubik and the Banzhaf indices are the

axioms of total gain-loss balance and the average gain-loss balance.

The total gain-loss balance says that if a minimal winning coalition S  ( NS ≠ ) is

deleted from a game, the total loss of power of players in S , is equal to the total

loss of power of players outside the deleted coalition. Formally,

The Axiom of Total Gain-Loss Balance: For all ∈= );( VNG SPG , all

)(GS MW∈ , NS ≠ ,

( )∑
∈

−
Si

Sii GG )()( *ϕϕ  = ( )∑
∈

−
SNi

Sii GG
\

* )()( ϕϕ .

This axiom, in combination with INV, axiom of null player and the axiom of

symmetric gain- loss, is used to obtain the Shapley-Shubik index up to a

symmetric affine transformation. Laruelle and Valenciano replace the axiom of

efficiency used by Dubey (1975) by the above axiom because efficiency is not a

compelling axiom, when power is interpreted as the a-priori ability to affect the

outcome of a vote.

 The total gain-loss balance is replaced by the Average Gain-Loss Balance

axiom in order to obtain the non-normalized Banzhaf index up to a symmetric

affine transformation.

The average gain-loss axiom says that if a minimal winning coalition S  ( NS ≠ )

is deleted from a game, the average loss of power of players in S , is equal to the

average loss of power of players outside the deleted coalition. Formally,

The Axiom of Average Gain-Loss Balance: For all ∈= );( VNG SPG , all

)(GS MW∈ , NS ≠ ,

( )∑
∈

−
Si

Sii GG
S

)()(
1 *ϕϕ  = ( )∑

∈

−
− SNi

Sii GG
SN \

* )()(
1

ϕϕ .

This axiom replaces the axiom of Banzhaf total power of Dubey and Shapley

(1979), because the Banzhaf total power axiom “has some unavoidable ad hoc
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flavor: The index it helps to characterize is partially within it.”(Laruelle and

Valenciano (2001))

Owen (1972, 1975) introduced the multilinear extension (MLE) of games. The

multilinear extension of a game );( VNG =  is a function of n  real variables:

( ) ( ) )(1,....,
21

SVqqqqqf
Sj

j
NS Sj

jn ∏∑∏
∉⊂ ∈

−=  .

Though f  is defined on all real variables, it is sometimes useful to consider only

values of f  on the n -dimensional unit cube (where Nn = ) [ ]n1,0 (i.e.,

10 ≤≤ kq  Nk ∈∀ ). If SG∈G and jq  is interpreted as the probability that player

j  will join a (random) coalition S , then the MLE of G  can be interpreted as the

probability that a winning coalition will form in the game. Owen (1975, 1988)

showed that integrating the gradient of the MLE along the main diagonal of the

cube gives the Shapley-Shubik index, while evaluating the gradient at the fixed

point ( )2
1.....,2

1,2
1  gives the non-normalized Banzhaf index.

Straffin (1977, 1988) used the MLE approach of Owen to frame a probability

model that yields the Shapley-Shubik and the non-normalized Banzhaf indices

under different assumptions on the degree of statistical independence among

voters.

Let 10 ≤≤ kq  be the probability that voter k  votes for the bill. Under the

assumption of independence, whereby each kq  is chosen independently from the

uniform distribution on [ ]1,0 , the probability that the voter k ’s vote will affect the

outcome of the bill is estimated by the non-normalized Banzhaf index. However,

if a number q  is chosen from the uniform distribution on [ ]1,0  and kqqk ∀= ,

then the probability that the voter k ’s vote will affect the outcome of the bill is

estimated by the Shapley-Shubik index. Brueckner (2001) has shown that the

assumption of independence, in combination with counting only minimal winning

coalitions gives the absolute Public Good index. Laruelle and Valenciano (2001a)
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also provide a synthesis of the probabilistic models. Laruelle and Valenciano,

(2002a) show that the Coleman index of the power to prevent (initiate) action

gives voter i ’s probability of being decisive or swing, conditional to the proposal

being accepted (being rejected), if it is assumed that all coalitions are

equiprobable, that is, the voters make yes-no decision with probability 21  for

each and all the voters vote independently.

Owen (1978) provided a characterization of the Banzhaf index in the space of

all constant sum games, by using a composition principle, which in combination

with the standard axioms - VJN, INV, linearity led to the Banzhaf value. What

the composition principle essentially says is that in two tier compound game (see

definition 1.4), the power of a voter i  in the compound game is equal to i ’s

power in the first tier game in which he participates, multiplied by the power of

i ’s delegate in the second tier game 11. Recalling definition 1.4, this principle can

be written as )()()( Vjjii GGG ψψψ = . Note that the composition principle holds

in a scenario in which the first tier game is decisive. However, this

characterization is not able to single out the Banzhaf value. The null value

( ( ) 0=Giψ , G∈∀ Gi, ) and the dictatorial value ( })({)( iVGi =ψ  G∈∀ Gi, ) also

satisfy the axioms. (See also Dubey, Einy and Haimanko (2004) for a more recent

characterization of the Banzhaf index using the composition principle. A

weakened version of this principle was used by Albizuri and Ruiz (2001) for

characterizing the Banzhaf semivalue.)

As we have already noted in section 1.2.1, a compound game is used to model

a two-tier decision making procedure. To decide on a bill, first each electoral

district votes on it and arrives at its own decision, according to its own rule. Then

each electoral district sends its delegate to the next tier of the decision making

process. These delegates then vote according to the decisions made by the

                                                                
11 When the population sizes (of the constituencies) are large, the voting power of a citizen in

constituency j is approximated by ))(2()(2 11
Vj

k
j Gmn −−π , where jn  is the population in

constituency j and )( Vj Gm  is the number of coalitions in the second tier game which are
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electoral districts that they represent. One thing to note here is that, in the second

tier of the compound game, each delegate is required to vote according to the

decision of the electoral district that he represents, on every issue. But in a real

life representative multiparty system, the elected legislators serve for a given

period of time, and do not poll their districts on each individual issue. Muto

(1999) proposes a modification of the Banzhaf index, which is used to evaluate

power of a voter in the above scenario.

In order to characterize their index, Deegan and Packel (1978) used the

standard axioms - VJN, INV and NOM along with a fourth axiom which says

that, given two games SG∈== );(),;( 2211 VNGVNG , power in the game

21 GG ∨  is a weighted mean of the powers of the component games, with the

number of minimal winning coalitions in each component game providing the

weights. Holler and Packel (1983) used a similar set of axioms to characterize the

Public Good index on the domain of simple games.

Myerson (1980) introduced the balanced contributions axiom, which says that

the amounts that each player would gain or lose by the other’s withdrawal from

the coalition should be equal. Formally, this axiom can be stated as follows:

The Balanced Contributions Axiom: A value ψ  is said to satisfy the balanced

contributions axiom if for any game );( VNG = G∈ ,

{ })\()( jSS ii ψψ − = { })\()( iSS jj ψψ −  { } Sji ⊆∀ ,  and ∀ NS ⊆ , φ≠S .

Both the Shapley and the Banzhaf values satisfy the balanced contributions

axiom. Myerson (1980) proved that the balanced contributions axiom and

efficiency characterize the Shapley value.

An interesting result using the balanced contributions axiom was shown by

Sanchez (1997). Given );( VNG = G∈ , and a coalition NS ⊆ , let );( SS VSG =

                                                                                                                                                                                                
converted from losing to winning by the admission of delegate j . This is the famous square root

rule of voting theory (see among others, Felsenthal and Machover (1998, chapter 3; 1999).
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denote the game that is obtained from G , by restricting the domain of V  to the

subsets of S . Suppose now that the Banzhaf value, Bv , is used to pay a coalition

S  that has already formed. That is, now the coalition no longer receives )(SV ,

instead it receives ∑
∈Si

Si GBv )( . Then the Shapley value of this new game is equal

to the Banzhaf value of the original game.

Hart and Mas-Collel (1988, 1989) provide an alternative characterization of

the Shapley value using potentials. In general, the potential of a value ψ  for a

game G∈= );( VNG , is a function RG →:Q , such that the components of the

value equals the marginals of the potential, where the marginal contribution of

player i  according to potential function is defined by { } );\();( ViNQVNQ − .

That is, { } );();\();( VNViNQVNQ iψ=−  Ni ∈∀ ,

where the game { }( )ViN ;\  is the restriction of ( )VN;  to { }iN \ .

Hart and Mas-Collel show that there exists a unique real function on games called

the potential function, with respect to which, the marginal contributions are

always efficient. Moreover, these marginal contributions are the Shapley value.

Since the Shapley value is always efficient, the potential of the Shapley value can

be obtained from the apparently weaker condition { } )];\();([ ViNQVNQ
Ni

−∑
∈

=

)(NV . But the Banzhaf value does not satisfy the efficiency criterion. Replacing

)(NV  in the above expression by ∑
∈Ni

i VNBv );( , Dragan (1996) finds the potential

of the Banzhaf value. He refers to ∑
∈Ni

i VNBv );(  as the power of the game ( )VN; .

Lehrer (1988) provided an axiomatic characterization of the Banzhaf value on

the set of all games G , using among other standard axioms like the dummy

player property and linearity, an equal treatment axiom and an amalgamation

axiom.

The equal treatment axiom is formally stated below:
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The Equal Treatment Axiom: Given a game G∈= );( VNG , let Nji ∈, ,

ji ≠ . If { }( ) { }( )jSViSV ∪=∪  for all { }jiNS ,−⊆ , then )()( GG ji ψψ = .

This axiom essentially means that if two players are substitutes in a game, then

they must enjoy the same power.

The amalgamation axiom that Lehrer used, says that if two players are

amalgamated into one (as in definition 1.17), the value of the new player is at

least as much as the sum of the values of the original players. This axiom is in fact

the superadditivity postulate, which we have already discussed at length in section

1.2.3. (Also see Malawski (2002).)

 Haller (1994) has shown that the Banzhaf value is the unique solution

concept in G , that satisfies linearity, dummy player property, INV and the proxy

agreement property, which is defined below.

The Proxy Agreement Property: Let a player Ni ∈  act as a proxy for another

player Nj ∈  in the game );( VNG = G∈ . That is, we now consider the game

);( ijij VNG = , given by

{ })()( jSVSVij ∪=  if  Si ∈

                 = { })\( jSV  otherwise.

Then ψ  is said to satisfy the proxy agreement property if for every game and

Nji ∈, , );( VNiψ + );( VNjψ = );( iji VNψ + );( ijj VNψ .

This property can be explained as follows. Suppose that in order to strengthen

their positions, players i  and j  )( ji ≠  sign a proxy agreement before entering

the game, stipulating that i  acts as proxy for j  and that j  acts as a null player.

Then instead of G , we consider the game ijG  as given above. The proxy

agreement property says that such an arrangement does not change their collective

power, i.e., the sum of the two players’ values turns out to be immune against

manipulation via proxy agreement. (Also see Malawski (2002) for a similar

discussion.)
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A modified version of the proxy agreement property, namely, the coalitional

unanimity proxy property, has been used by Brink and Laan (1998), along with

efficiency, IGN, additive game property and independence of irrelevant

permutations, to characterize the Shapley value. The additive game property says

that every player earns his own weight in a monotonic additive game. A

monotonic game );( VNG = G∈  is additive if there exists a weight vector

N
+∈ Rλ , such that NSSV

Si
i ⊆∀= ∑

∈

λ)( .  Thus this property implies that

ii G λψ =)(  Ni ∈∀ . The axiom of independence of irrelevant permutations in

brief, says that the value of players who do not change roles do not change.

Brink and Laan also provide an axiomatic characterization of the normalized

Banzhaf value. The normalized Banzhaf value is an efficient solution concept that

distributes the value )(NV  proportional to the Banzhaf values of the players.

Given a game );( VNG = G∈ , the normalized Banzhaf value for player i  is

formally defined as follows:

)(
)(

)(
GBz

GBz
NV

BZN i

Ni
i

i ∑
∈

= .

The axioms that they have used in this characterization exercise are the same as

those used in characterizing the Shapley value, except the coalitional unanimity

proxy property, which has been replaced by the proportional proxy agreement

property. This property is another modified version of the Haller’s (1994) proxy

agreement property.

Nowak (1997) used dummy player property and equal treatment together with

the axioms of 2-efficiency and marginal contributions to uniquely characterize the

Banzhaf value on the set of all games G . The axiom of marginal contributions,

which was originally introduced by Young (1985), says that if the marginal

contribution of a player, belonging to the player set of two different games is

same in both the games, then his/her power should be the same in the two games.

Formally,



46

The Marginal Contributions Axiom: Let );( VNG = , );( UNG =′ G∈  be two

different games. If for some player Ni ∈ , we have )(}){( SViSV −∪ =

)(}){( SUiSU −∪ , for all }{\ iNS ⊂ , then )()( GG ii ′=ψψ .

The 2-efficiency axiom that Nowak used is in fact the condition of additivity,

which we have mentioned in 1.2.3. (For a discussion along this line, also see

Malawski (2002).) In Chapter 3 of this thesis, we also provide an alternative

axiomatic characterization of the non-normalized Banzhaf index.

In the studies that have been discussed above, the power indices are

interpreted either as a unique measure satisfying a set of characterizing axioms

(e.g., Dubey and Shapley (1979), Laruelle and Valenciano (2001) etc.) or the

power index of a voter i  is interpreted as the probability that the player is critical

in passing a decision that is to be made according to the voting rule modeled by

that game (Straffin (1977, 1988) etc.). There is however a third interpretation due

to Roth (1977, 1988), in which the power indices are interpreted as utility

functions representing von Neumann-Morgenstern preferences over lotteries on

‘roles’ in voting procedures. Under this new interpretation, the value that an index

attaches to a player i  in a game G , can be used to compare the capability to

influence outcomes in position i  in the game G , with the capability attached to

other positions in other voting games, or even random mixtures of them. Under

the assumption of ‘veil of ignorance’, whereby one is uncertain with respect to

both the position and the game to be played, Laruelle and Valenciano (2002)

translate the axioms that they used in Laruelle and Valenciano (2001) into Roth’s

setting to characterize the preferences represented by the Banzhaf and the

Shapley-Shubik indices.

Some authors have extended some of the indices that have been discussed

above, and have suggested new indices of their own.

The Banzhaf index presupposes that the influence of a swing voter i , on a

coalition S , is independent of other swing voters in that coalition. However, in

real life it is also important whether this swing voter i  is unique for S  or not.
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Burgin and Shapley (2001) modified the non-normalized Banzhaf index taking

this into account. They introduced the Enhanced Banzhaf Power Index, which

for a voter Ni ∈  is formally defined as follows:

Given a game SG∈= );( VNG , =)(GEBPi  ∑
⊆ NS

S ic )( , where

0)( =icS  if i  is not a swing voter in S

    = k
1  if i  is a swing voter in S , and k  is total number of swing voters in

S .

They also provided an axiomatic characterization of this index.

Napel and Widgrén (2001) introduced a strengthened version of VJN, based

on a formalized notion of inferior players.

Given a game SG∈= );( VNG , a player Ni ∈  is said to be an inferior player in

the game if and only if Nj ∈∃ , ji ≠ , such that ⊆)(GiC )(GjC , where

{ :)()( GSG k
k WC ∈=  { } })(\ GkS W∉ , Nk ∈  ( )(GkW being the set of winning

coalitions containing k ).

Thus i  is an inferior player if there exists another player j  who can veto all

coalitions in which i  makes a positive contribution but who can himself form a

coalition in which he is critical without i  having an opportunity to interfere. The

strengthened version of VJN is the inferior player axiom, which says that if i  is

an inferior player in the game G , then 0)( =Giϕ .

Using the notion of inferior players, Napel and Widgrén also introduced the Strict

Power Index, which is in fact a modified version of the non-normalized Banzhaf

index. Given a game SG∈= );( VNG , the strict power index for player Ni ∈  is

given by

12

)(
)(

−
=

N
i

i

G
GSPI

η
, where

)()( GmG ii =η  , if i  is not an inferior player

           = 0 otherwise.
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They also provided an axiomatic characterization of their index on the set of

simple games, using the standard axioms in the literature (like INV etc.), except

the VJN, which they replace by the inferior player axiom.

Mercik (2000) defined a power index for a cabinet, which is nominated by

a legislature, composed of many disjoint and cohesive subgroups. The Shapley-

Shubik or the Banzhaf index approach to the evaluation of the power index in this

case yields trivial results- 1 for majority cabinets and 0 for minority cabinets.

Mercik’s index of the power of a cabinet is a function of the sizes and

cohesiveness of supporting groups, where, the cohesiveness of the subgroup is

measured by the probability that a member votes the same way as the leader of

the subgroups.

Owen (1982) defined the modified Banzhaf-Coleman index, which is a

modification of the non-normalized Banzhaf index, when a-priori unions

represented by coalition structures are considered. A coalition structure B is a

finite partition { }
N∈ppB  (where N is the set of natural numbers) of the player set

N  of a game (see definition 1.13).

Given a game G∈= );( VNG  and a coalition structure B, the modified Banzhaf

–Coleman index ( CB − ) for player qBi ∈  is given by

{ }[ ]∑ ∑
∉

⊆
∉
⊆

−− ∪−∪∪=−
T

BT

BB

q
q

q

B Si
BS

B

i SLViSLVGCB )()(2)(
2

, where TL T T∈∪= .

 Albizuri (2001) characterized this modified Banzhaf-Coleman index on

the class of simple games using appropriate versions of dummy player property

and INV, two amalgamation axioms similar to Lehrer (1988) and an additional

axiom of amalgamation stability. The axiom of amalgamation stability says that

the index of a player pBi ∈  is independent of the amalgamation of any two

players that belong to any coalition, where ≠pB qB .

Amer, Carreras and Giménez (2002) also provided an axiomatic

characterization of the modified Banzhaf value for games with coalition structure
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using among other axioms, the appropriate versions of linearity, dummy player

property and INV.

In some applications of cooperative games, players are given some a-priori

weights. The very first construction of the weighted value for an exogenously

given family of weights is due to Shapley (1953a). Axiomatic characterizations of

the weighted Shapley value have been provided by Kalai and Samet (1987) and

Nowak and Radzik (1995). Nowak and Radzik (1995) uniquely determined the

weighted Shapley value on the space of all games, using linearity, efficiency,

dummy player property and a modified version of Lehrer’s (1988) equal treatment

axiom. Radzik, Nowak and Driessen (1997) used a similar set of axioms

(excluding efficiency) as Nowak and Radzik (1995) to uniquely determine the

weighted Banzhaf value on the space of all games, for an exogenously given

system of weights. In this characterization, efficiency was replaced by the

Banzhaf value sum property, which is formally given by

[ ])(}){(
2

1
)(

}\{
1

SViSVG
Ni iNS

N
Ni

i −∪= ∑ ∑∑
∈ ⊆

−
∈

ψ , where G∈= );( VNG .

Drawing upon Radzik, Nowak and Driessen (1997), Nowak and Radzik

(2000) provided an alternative characterization of the weighted Banzhaf value on

G . They retained all the other axioms of Radzik, Nowak and Driessen (1997),

except the Banzhaf value sum property, which they replaced by IGN and a

weighted analogue of the 2-efficiency axiom (see Lehrer (1988), Nowak (1997)).

In the next sub-section we discuss some of the other approaches to measuring

individual voting power in a voting situation.

1.2.5 Other Approaches to Measuring Individual Voting Power

Often common power indices are criticized for not taking account of voter’s

preferences, are accused of being policy blind. The voting power indices in

common use treat all coalitions as equally probable or all vote sequences as being

equally probable. Voters are treated as anonymous and are treated symmetrically.

However, when voters are spread over an ideological spectrum (say from left to

right), the problem arises as to how to model this situation in a reasonably
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realistic way, as in this a case not all coalitions are possible. Perlinger (2000)

defined a class of voting games, called spectrum games, in which only connected

coalitions (i.e., there is no ideological gap between coalition members) are

allowed to form. He then proposed the Markov-Polya index as a parameterized

family of power indices. Bilal, Albuquerque and Hosli (2001) integrated the

spatial theory of voting (in which voters are assumed to be distributed along a

policy scale), with voting power analysis by developing spatial indices of voting

power based on the policy preferences of various players.

The Hoede Bakker Index, due to Hoede and Bakker (1982), takes into account

the preferences of the players, and also the social structure in which the players

may influence each other. Here each player belonging to the set of players

{ }nN ,...,2,1= , has an inclination either to say ‘yes’ (represented by ‘1’) or ‘no’

(represented by ‘0’) with respect to a certain bill. Let i  denote the inclination

vector (it is nothing but a sequence of 0 and 1). The set of all inclination vectors is

denoted by IN. The players may or may not actually vote according to their

inclination. Let b  be the actual decision vector, that is, TRib = , where TR

transforms the inclination vector to a decision vector. The decision vector too is

thus a sequence of 0 and 1. The group decision gd is a function that is defined on

decision vectors and has a value 1, if the group decision is to pass the bill (yes)

and –1 otherwise. That is,

{ }1,1)(: −→INTRgd .

TR  and gd should satisfy two axioms: firstly, changing all inclinations should

lead to the opposite group decision, and secondly a group decision ‘yes’ is not

changed into ‘no’ if the set of players with inclination ‘yes’ is enlarged.

Given TR  and gd (such that they satisfy the above mentioned axioms), the

Hoede-Bakker index of a player Nk ∈  is given by

∑
=

−
=

1:
1

)(
2

1

kii
Nk TRigdHB .

Rusinowska and Swart (2002) have shown that the Hoede-Bakker index

displays the paradoxes of redistribution, large size and new members. Also it does



51

not satisfy monotonicity, donation and the bloc postulate. Rusinowska and Swart

have also shown that in case all players are independent, the Hoede-Bakker index

reduces to the non-normalized Banzhaf index.

While all the standard power indices discussed above assign real numbers to

the players in a simple game as a quantitative measure of their influence in the

voting situation represented by the game, Taylor and Zwicker (1997) introduced

interval measures of power that assign intervals of real numbers to the players.

1.2.6 Voting Power in the Presence of More than Two Alternatives

As has been noted above, the mainstream literature on voting power has

confined itself to the simple voting game model, which does not admit abstention.

However, in real life situations, to abstain is different from voting ‘no’. For

example, take the United Nations Security Council. If a permanent member votes

‘no’, the proposal is rejected, no matter how the other members vote. This is

because, the permanent members have a veto power over the Council’s actions.

However, if a permanent member abstains from voting, the proposal may be

passed, provided the other criteria laid down by the decision making rule are

fulfilled. Thus, it is important to study the voting power of individual members

when they are required to choose one of r  ( )2≥r  alternatives.

Bolger (1993) presented a unique extension of the Shapley value to games

with r  alternatives. This value gives an a-priori evaluation for each player

relative to each alternative. In other words, given an arbitrary game ( )rVN ;; , he

finds an a-priori value j
iθ , for player i  relative to alternative j , where j

iθ  can be

thought of player i ’s share of );( jNV ( );( jNV being the worth of the grand

coalition if it chooses alternative j ). Also see Bolger (1986). Amer, Carreras and

Magaña (1998) also introduced a closely related r -game and defined the Shapley-

Shubik index for this type of games.

Felsenthal and Machover (1997, 1998) made an elaborate study of ternary

voting rules, where the voters have the choice of abstaining, apart from voting

‘yes’ and ‘no’. They extended the Banzhaf index to apply to ternary voting rules
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and suggest 
13

)(
−N

i Gm
 as the modified Banzhaf non-normalized index of voter

Ni ∈ . However the meaning of )(Gmi  is slightly different from that in simple

voting games. This is because now a player i  is critical not only if he can change

the outcome of the bill from by changing his vote from ‘yes’ to ‘abstain’, but also

from ‘abstain’ to ‘no’. They also obtained an extension of the Shapley-Shubik

index so as to apply it to ternary voting rules.

Drawing upon Bolger (1993), Ono (2000) presented a generalized Banzhaf

value for multialternative games, which she refers to as the Banzhaf-like value.

Freixas and Zwicker (2003) introduced the weighted ( )kj,  simple games,

where a voter is able to express different levels of support for a bill, ranging from

enthusiasm to total opposition. The outcome set is also enlarged from the binary

case of the bill being accepted or rejected, to k  different levels of collective

support for the bill. Standard simple games which allow voters to vote either ‘yes’

or ‘no’ are (2, 2) simple games, whereas (3, 2) simple games allow each voter the

option to abstain from voting. Freixas (2005) provides an a-priori Shapley-Shubik

index for ( )kj,  simple games. Linder (2002) also made a study of voting power

in weighted ( )kj,  games.

Till now, we have discussed issues relating to power of individual members

of a collective decision making body. The other aspect of the study of power

concerns the decision making body as a whole. Though a decision making body is

comprised of individual voters, the decision making body has a distinct existence

by itself. So in the next section we discuss some global characteristics of the

simple voting game.

1.3 Collective Power and Sensitivity

Coleman (1971) proposed a probabilistic measure of what he termed ‘the power

of a collectivity to act’. According to him, the power of a collectivity to act, as

provided by a set of decision making rules governing the collectivity, lies in the

ease with which individual members’ interests in collective action can be
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translated into actual collective action. In a game );( VNG = SG∈ , Coleman’s

measure of the power of a collectivity to act is given by,

)(GCC
N

NS

SV

2

)(∑
⊆= .

Since, in a voting game, 1)( =SV , if S  is a winning coalition, and 0 otherwise,

)(GCC
N

G

2

)(W
= .

Since )(GW  is the total number of winning coalitions and N2  is the total

number of coalitions (including the empty one) in the game G, )(GCC  is the prior

probability of a positive outcome, that is, the probability that a resolution will be

adopted by the voting body.

Laruelle and Valenciano (2002b) used a simple probabilistic model consisting

of a voting game );( VNG = , and a probability distribution over the set of ‘voting

configurations’, +→ RNp 2: , 1)(0 ≤≤ Sp  for any NS ⊆  and 1)( =∑
⊆ NS

Sp ,

where )(Sp  gives the probability that the voters in S  vote ‘for’ the resolution and

the voters outside S  vote ‘against’ the resolution, to arrive at a generalization of

Coleman’s index of the power of a collectivity to act. This generalized index is

given by

Prob {the resolution is accepted}= ∑
∈ )(:

)(
GSS

Sp
W

.

CC drops out as a special case of the above index when p  assigns the same

probability to all voting configurations. Laruelle and Valenciano (2002b) also

showed that this generalized Coleman’s power of a collectivity to act coincides

with a generalization in the context of voting situations, of Hart and Mas-Colell’s

(1988,1989) notion of potential (also see Laruelle and Valenciano (2002c)).

Carreras (2004) developed a decisiveness index for simple games. The

decisiveness index provides a measure of the agility of the collective decision

making mechanism. This index coincides with the Coleman’s index of the power

of a collectivity to act. However, Carreras provided different axiomatic
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characterizations and systematically developed the index. He also provided a

probabilistic model of voting which leads in a natural way to the definition of

decisiveness index. If the independent probability that a player Ni ∈  will vote in

favour of a bill is ∀2
1 Ni ∈ , then the probability that the voting body will

accept the bill is 
N

G

2

)(W
. This is what Carreras defined as his decisiveness index

( )δ . Carreras also established that there is a unique potential function for the

Banzhaf index on simple games, and it is given by δ2 . In fact this coincides with

the restriction of Dragan’s (1996) potential function for the Banzhaf value, which

we have already discussed in also see section 1.2.4, to the set of all simple games.

In future, we refer to CC  as the Carreras-Coleman decisiveness index. In Chapter

5 of this thesis, we also make an elaborate study of the different characterizing

properties of the Carreras-Coleman decisiveness index.

Another important global characteristic of a simple voting game is sensitivity.

Dubey and Shapley (1979) proposed the sum of the number of swings of all

players, ∑
∈Ni

i Gm )( , as a kind of democratic participation index, which gives a

measure of the decision rule’s ‘sensitivity’ to the desires of the average voter.

(Also see Holler and Li (1995), where the sum of the swingers of all minimum

winning coalitions is defined as an expression of the total power in the system.) In

other words, it is a measure of the ease with which a decision rule responds to the

fluctuations in the voters’ wishes. Based on some assumptions about the size and

the number of winning coalitions in the game, and using Hart’s (1976) results,

they found some bounds of this ‘swing total’. They showed that if

G SG∈= );( VN  is decisive, then ∑
∈Ni

i Gm )( 12 −≥ N . Felsenthal and Machover

(1998) also studied the sensitivity of decision rules in great details. Their

modified version of Dubey and Shapley’s (1979) sensitivity index is given by:

( )
12

)(

−
∈
∑

=
N

Ni
i Gm

GSS  .
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Since ( )GSS  is the sum of the non-normalized Banzhaf-Coleman index of

different voters in a game, we will refer to ( )GSS  as the Banzhaf-Coleman-

Dubey-Shapley (BCDS) index of sensitivity. Chapter 4 of this thesis also studies

the sensitivity of decision rules in details.

They also proposed a measure of relative sensitivity. Given a simple game

);( VNG = , their measure of relative sensitivity is given by:

( ) ( ) NCm

NGm
GRS

m
N

Ni
i

loglog

log)(log

−

−








=
∑
∈  , where m  is the least integer 2

N> .

This is also sometimes referred to as the ‘responsiveness index’.

Felsenthal and Machover (1998) also introduced a resistance coefficient,

which measures the opposite of complaisance in a voting rule. This index was

suggested because they found that sometimes, simple voting games with similar

sensitivity differ greatly in their propensities to pass a bill. They defined the

resistance coefficient as

12

)(2
)(

1

1

−

−
=

−

−

N

N G
GR

W
.

It is obvious that this resistance coefficient is inversely related to the Carreras-

Coleman decisiveness index, discussed above.

Now, in the next section, we turn our attention to the different applications of

the indices that we discussed above.

   1.4 Applications of the Indices

As we have already mentioned in the beginning, there are numerous voting bodies,

where decisions are take by means of vote. Examples include the United Nations

Security Council, the International Monetary Fund, the Council of Ministers in the

European Union etc. Thus there lies vast scope of applying the power indices into

practical use, to study the distribution of power in these bodies. Also, everybody

admits the usefulness of a-priori voting models in addressing constitutional issues.

There is therefore a wide literature where power indices have been applied to these

real life voting bodies. These papers include among others, Felsenthal and Machover
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(1997a, 2001), Laruelle and Valenciano (2002d), Nurmi, Meskanen and Pajala

(2000), Bouissou (2001), Laruelle and Widgrén (1998, 2000), Brueckner (2000),

Nurmi (1982, 1997) and Freixas (2004), Hosli (1993, 1995, 1996, 1998, 2000),

Johnston (1995), Sutter (2000), Widgren (1994), Wagner and Höhne (2001), Nurmi

and Meskanen (1999), Leech and Manjon (2002), Leech (2002, 2002a, 2002b,

2002c, 2002d, 2003). In Chapter 6 of this thesis, we use these indices to study the

distribution of power among the different political parties in the Indian Parliament.
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CHAPTER 2

ON THE COLEMAN INDICES OF INDIVIDUAL VOTING POWER∗∗

2.1 Introduction

The power of an individual voter of a decision making body, when power

is interpreted as ‘influence’ over the outcome of the voting process, can be

exercised in two ways: the voter can either initiate an action or can prevent an

action from being taken. To capture these two aspects of power, Coleman (1971)

suggested two different power indices for an individual voter, namely, the

Coleman index of the power to prevent action and the Coleman index of the

power to initiate action. The former index, which measures the power of voter i

to prevent action, is given by the number of coalitions in which voter i  is swing

divided by the number of winning coalitions in the game. The idea is that given

that the voting body makes a positive decision, this index determines the

conditional probability that voter i  will be able to prevent the decision by

changing side. The latter index, which measures the power of voter i  to initiate

action, is defined as the number of coalitions in which voter i  is swing divided by

the total number of losing coalitions in the game (also see section 1.2.2). In order

to illustrate the behaviour of these indices, Felsenthal and Machover (1998, p.50-

51) considered weighted majority games, where each voter has a non-negative

weight (vote) and there is a positive real number quota of votes required to pass a

resolution. By constructing examples of such games they demonstrated that if one

game is obtained from another through an increase of the quota, then while the

non-normalized Banzhaf index of a voter may reduce slightly, his loss of power to

initiate action may be very considerable. In contrast, he may gain a lot of power to

prevent action. Thus, they surmise that the two Coleman indices can give

information that one cannot get from the non-normalized Banzhaf index alone.

However, these indices have not received much explicit attention in the literature

                                                                
∗  This chapter is based on Barua, Chakravarty and Roy (2004).
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so far. In fact, for most purposes in the literature, these two indices have been

clubbed with the non-normalized Banzhaf index and are sometimes jointly

referred to as the Banzhaf-Coleman index (see for e.g., Owen (1978)). But

recently these two indices have started gaining some attention. Particularly, in a

recent paper Leech (2002a) used these indices to examine the system of Qualified

Majority Voting, used by the Council of the European Union, from the

perspective of enlargement of the Union. Leech (2002a) argued that there is a

difference between the Banzhaf and the Coleman indices “where there is a

supermajority decision rule, and they (the Coleman indices) are useful in enabling

the analysis to focus on these two different aspects of members’ voting power”

(op. cit., p.445), that is, power to initiate and prevent action. Felsenthal and

Machover (2004) also employ the Coleman indices of the power to prevent action

and the power to initiate action to evaluate the qualified majority decision rules

for the Council of Ministers of the European Union, that are included in the draft

Constitution for Europe, proposed by the European Convention.

In this chapter of the thesis we examine the two Coleman indices in the

light of different postulates discussed in sections 1.2.2 and 1.2.3. We also

establish a formal relation between these two indices.

The chapter is arranged as follows. In section 2.2 we recall the definitions

of these two power indices (we have already discussed them in section 1.2.2). We

study the relationship between these two indices for both proper and improper

voting games in section 2.3. In section 2.4 we investigate the properties of both

the Coleman indices in details. Section 2.5 concludes this chapter.

2.2 Coleman Indices of the Power to Prevent Action and Initiate Action

Though we have already discussed the Coleman indices in some details in

section 1.2.2, it will be worthwhile to recall their definitions.

Formally, given a voting game SG∈= );( VNG , Coleman index of the power to

prevent action for a voter Ni ∈  is given by,
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As already pointed out in section 1.2.2, this index gives voter i ’s probability of

being decisive (or swing), conditional to the proposal being accepted, if it is

assumed that all coalitions are equiprobable, that is, the voters make yes-no

decision with probability 21  for each and all the voters vote independently

(Laruelle and Valenciano (2002a)).

Similarly, given a voting game SG∈= );( VNG , the Coleman index of the

power to initiate action for a voter Ni ∈  is given by,
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.                        (2.2)

As previously pointed out, this index gives voter i ’s probability of being decisive

(or swing), conditional to the proposal being rejected, if it is assumed that all

coalitions are equiprobable, that is, the voters make yes-no decision with

probability 21  for each and all the voters vote independently. (Also see section

1.2.2.)

As stated in section 1.2.2, several authors have studied the relationship

between these two indices, but always with reference to the non-normalized

Banzhaf index. Given a game SG∈= );( VNG ,







+=

)(

1

)(

1

2

1

)(

1

GIGPGBZNN iii

(Dubey and Shapley (1979)).

In other words, power of a voter, as measured by the non-normalized Banzhaf

index, is the weighted average of the power to prevent action and the power to

initiate action, the weights being the proportion of winning coalitions and losing

coalitions respectively. More precisely,

12

)(
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It is obvious from the above relationship that BZNN  is equal to the Coleman

index of the power to prevent action ( )P  and the Coleman index of the power to

initiate action ( )I , if P  and I  are identical. This happens when

1
2)()(

−== NGG LW . Since in a decisive game, 12)()( −== NGG LW ,

therefore it follows that P  and I  are identical, and equal to BZNN when the

game is decisive. (This result becomes relevant for Chapter 6.).

Having thus defined both the Coleman indices, we will now present some

results that compare their relative strengths for an individual voter.

2.3 The Relationship between P  and I

We know that a voting game SG∈= );( VNG  satisfying the conditions in

definition 1.3 can either be proper or improper. The following proposition

compares iI  and iP  for proper voting games.

Proposition 2.1: If ( ) SG∈= VNG ;  is a proper game, then an individual’s

power to initiate action iI  is always less than or equal to the power to

prevent action iP .

Proof: Let a coalition )(GS W∈ . Since the game is proper, the coalition SN −

must be losing. That is, )(GSN L∈− . Since for every coalition NS ⊆ , its

complement coalition SN −  is unique, we can define a one to one map from

)(GW  into )(GL , whereby each element )(GS W∈  is associated with a unique

element )(GSN L∈− . Hence )()( GG LW ≤ .

Or, 
)(

1

)(

1

GG WL
≤ .

This implies that 
)(

)(

)(

)(

G
Gm

G
Gm ii

WL
≤ .

Hence ≤)(GI i )(GPi . �
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The demonstration of the relationship between iI  and iP  for improper

voting games relies on lemma 2.1.

Lemma 2.1: Let );;;( qVNG w=  be an improper weighted majority game.

Then there cannot exist any bipartition of the set of players N , such that

both the coalitions are losing.

Proof: We prove this result by contradiction.

Suppose a bipartition of N  exists such that both the coalitions are losing. Let

( )21 , NN  be such a bipartition. Then NNN =∪ 21  and φ=∩ 21 NN . Since 1N

and 2N  are both losing coalitions, we have the following set of inequalities:

qw
Ni

i <∑
∈ 1

and qw
Ni

i <∑
∈ 2

.

Adding both sides of the above two inequalities, we get qww
Ni

i
Ni

i 2
21

<+ ∑∑
∈∈

.

Or, qw
Ni

i 2<∑
∈

.

This contradicts the improperness of );;;( qVNG w= (see definition 1.12). Hence

the proof of lemma 2.1. �

Lemma 2.1 underlines an important distinction between proper voting games and

weighted improper games. While in proper games, there can be no bipartition of

the set of players such that both the coalitions are winning, in weighted improper

games, we can have no bipartition of the player set such that both the coalitions

are losing.

 We now use lemma 2.1 in order to prove lemma 2.2.

Lemma 2.2: Let );;;( qVNG w=  be a weighted majority game. Then G  is

improper if and only if )()( GG WL < .

Proof: Suppose G  is improper. By lemma 2.1, if a coalition )(GS L∈ , then

)(GSN W∈− . Then SNS −→  defines a one to one map from )(GL  into
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)(GW .  Hence )()( GG WL ≤ . Now, since G  is improper, NS ⊆∃ *
 such that

both 
*S  and 

*SN −  are in )(GW . Hence, 
*S  is not the image of any

coalition )(GS L∈  under this map. Hence )()( GG WL < .

Conversely, suppose that )()( GG WL < , and the game G  is a proper game.

Then, since the game is proper, we cannot obtain any bipartition of the player set

such that both the coalitions are winning. So, if a coalition )(GS W∈ , then it

must be the case that )(GSN L∈− . Thus, we can define a one to one mapping

SNS −→  from )(GW  into )(GL . Therefore, )()( GG LW ≤ . This is a

contradiction. Therefore, G  is an improper game. Hence the proof of lemma 2.2.

�

The following result drops out as an interesting corollary to lemma 2.2.

Corollary 2.1: A weighted majority game G  is proper if and only if

)()( GG LW ≤ .

We will now use lemma 2.2 in order to compare iI  and iP  for an

individual player for improper voting games.

Theorem 2.1: Let ( )VNG ;= SG∈  be an improper game.

(i) Then if G  can be represented as a weighted majority game, we have

12)( −> NGW . Consequently, a non-null voter’s power to initiate action

iI  is always greater than the power to prevent action iP .

(ii) However, if G  is not a weighted majority game, nothing definite can

be said about the relative magnitudes of iI  and iP . That is, we can find a

game for each of the following conditions:

1. )()( GPGI ii <  Ni ∈∀

2. )()( GPGI ii >  Ni ∈∀

3. )()( GPGI ii =  Ni ∈∀
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Proof:

(i) Since the number of all possible coalitions of the set of players in a voting

game );( VNG = is N2 , we have

 NGG 2)()( =+ LW .                                                                                       (2.3)

By lemma 2.2 for an improper weighted majority game, )()( GG WL < . Hence,

we can say that 12)( −> NGW . It then follows that

)(

)(

)(

)(

G
Gm

G
Gm ii

WL
> , if Ni ∈  is non-null.

Therefore, )()( GPGI ii > .

(ii) To prove this part of the theorem we will present three examples of improper

voting games that cannot be represented by a weighted voting scheme. In the first

example ii PI < , in the second ii PI >  and in the third example ii PI = .

Let G  be a voting game with { }dcbaN ,,,=  and )(GW  =

{ } { } { },,,,,,,{ cbadcba { }dba ,, , { } { } { }},,,,,,,,, dcbadcbdca . Clearly, it is an

improper voting game. Suppose it is a weighted majority game with quota q . Let

weights of a, b, c, d  be 1w , 2w , 3w , 4w  respectively. Since { }ba,  is winning and

{ }cb,  is losing in G , we must have qww ≥+ 21  and qww <+ 32 . Hence,

       13 ww < .                                                                                                       (2.4)

Again, since { }dc,  is winning and { }da,  is a losing coalition in G , we have

qww ≥+ 43  and qww <+ 41 . Hence we must have 13 ww > , which in turn

contradicts (2.4). Thus it is not possible to find a system of non-negative weights

and quota that will represent G . Hence, this game cannot be a weighted majority

game. In this game we have 9)(7)( =<= GG LW . It therefore follows that in

this game )()( GPGI ii <  Ni ∈∀ .
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Now consider a second voting game G′  with { }dcbaN ,,,=  and )(G ′W

= { } { } { } { } { },,,,,,,,,,,{ cbadcdacbba { }dba ,, , { } { } { }},,,,,,,,, dcbadcbdca . Again,

this is an improper game. Arguing as above, one can see that it is not a weighted

majority game. In this game, we have 7)(9)( =′>=′ GG LW  and hence

)()( GPGI ii ′>′  Ni ∈∀ .

Finally, consider a third voting game G ′′  with { }dcbaN ,,,=  and )(G ′′W

= { } { } { } { },,,,,,,,,{ cbadccbba { }dba ,, , { } { } { }},,,,,,,,, dcbadcbdca . Clearly this is

an improper game, and arguing as in the first example, we can show that it is not a

weighted majority game. In this game, we have 8)(8)( =′′==′′ GG LW , and

hence it follows that )()( GPGI ii ′′=′′  Ni ∈∀ .

Hence the proof of theorem 2.1. �

Remark: That the three games considered in the proof of part (ii) of theorem 2.1

are not weighted majority games can also be shown using the theorem of Taylor

and Zwicker (1992).

In the next section, we will study the properties of these two indices.

2.4 Properties of the Coleman Indices

As we have already noted in the discussion towards the end of section

1.2.2, indices of individual voting power can be broadly categorized into two

classes- indices of P-power and indices of I-power. Whether an index measures P-

power or I-power depends upon which of the two different motivations of voting

behaviour- policy seeking or office seeking, that particular index is based. Since

the discussions in sections 2.1 and 2.2 reveal that the Coleman indices of the

power to prevent action and the power to initiate action measure an individual’s

voting power, when ‘power’ is interpreted as the voter’s ability to change the

outcome of the voting process by changing his stand on the bill, they can be

regarded as indices of I-power (also see section 1.2.2). As already noted in

sections 1.2.2 and 1.2.3, Felsenthal and Machover (1998) have argued that an

index of I-power should satisfy INV, IGN, VJN, DOM, TRP and BOP. In this
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section we investigate whether the Coleman indices really qualify as indices of I-

power, by studying whether they satisfy the above named postulates. Though

some authors have questioned some of the above mentioned postulates (see

section 1.2.3), we consider these postulates because of several reasons. First, as

Holler and Napel (2003) pointed out, one possible way of choosing a power index

is to define properties which an appropriate index of power should satisfy and

these postulates have been proposed as such properties. Certainly, a power index

satisfying them is not meant to supplant an index, which may not fulfil some of

them, because a particular index may be generated using a given concept and a

specific property may not be relevant there. Thus, we assume context-dependence

of the postulates and appeal for their fulfillment in appropriate situations. Second,

the two most well known indices of power, the Shapley-Shubik and Banzhaf

indices respect these postulates. Also these postulates have been widely used in

the literature to characterize several power indices (see section 1.2.4).

We have already discussed the postulates INV, IGN, VJN, DOM, TRP

and BOP in details in sections 1.2.2 and 1.2.3.

We are now in a position to study the Coleman indices in the light of the

properties discussed in sections 1.2.2 and 1.2.3. Theorem 2.2 below discusses iP ,

defined in (2.1), in terms of the postulates laid down by Felsenthal and Machover

(1995, 1998).

Theorem 2.2:

(a) The Coleman index of the power to prevent action, iP , satisfies VJN, INV,

IGN, DOM, TRP and BOP for all voting games.

(b) The index iP  achieves its upper bound of 1 if and only if voter i  is a

blocker.

(c) If ( ) SG∈= VNG ˆ,ˆˆ  is obtained from ( ) SG∈= VNG ,  by adding Nb∉  as

a blocker in Ĝ , then for any two non-null voters Nji ∈, , we have
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Proof: (a) Let ( ) SG∈= VNG , . It is easy to see that )(GPi  satisfies both VJN

and INV.

To check verification of the IGN, note that we can write )(GW  as:

),()()( 21 GGG WWW ∪=

where }:)({)(1 SdGSG ∈∈= WW  and }:)({)(2 SdGSG ∉∈= WW ,

where Nd ∈  is a null player in the game.

Clearly, )(2 GW  coincides with )( dG−W , the collection of all winning

coalitions of the game dG− , where dG−  is the game obtained from G  by

excluding the null player d .  Since NS ⊆  is winning in G  if and only if

}{dS −  is winning in dG− , it follows that the mapping }{dSS −→  is a bijection

of )(1 GW  onto )(2 GW .  Hence

|)(|    |)(|   |)(| 21 GGG WWW +=   = |)(|2 2 GW  = |)(|2 dG−W .

Therefore, 
2

)(
)(

G
G d

W
W =− . By a similar argument ( ) ( )

2
Gm

Gm i
di =− . Hence

( ) ( )dii GPGP −= . We can establish analogously that ( ) ( )dii GPGP += . Thus iP

satisfies the IGN.

We will now demonstrate that iP  satisfies TRP. Now, as we have stated

in TRP (see section 1.2.3), let 1G  and 2G  be two different simple voting games

with the same assembly N , and let Nji ∈,  ( ji ≠ ), such that the following

conditions hold:

T1. Whenever i  and j are on the same side of a yes-no bipartition B , the

outcome of B  is identical in 1G  and 2G .

T2. Whenever i  and j  are on opposite sides of a yes-no bipartition B  and i

agrees with the outcome of B  in 1G  then i also agrees with the outcome of B  in

2G .
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T3. There exists at least one yes-no bipartition B  such that i  agrees with the

outcome of B  in 2G  but not in 1G .

Then we shall say that 2G  arises from 1G  by a transfer from j (donor) to

i (recipient).

We say that iP  satisfies TRP if whenever the above conditions hold,

)()( 12 GPGP ii ≥ . Likewise )()( 12 GPGP jj ≤ .

 To understand the conditions T1- T3, we first define certain sets.

The set of all winning coalitions in the game 1G , )( 1GW , can be partitioned into

the following subsets:

{ }SjSiGSGi ∉∈∈= ,:)()( 11 WW ,

{ }SiSjGSGj ∉∈∈= ,:)()( 11 WW ,

{ }SjiGSGji ∈∈= ,:)()( 11, WW , and

{ }SjiGSGji ∉∈= ,:)()( 11),(~ WW .

We can obtain a similar partition of the set )( 2GW  into the subsets )( 2GiW ,

)( 2GjW , )( 2, GjiW  and )( 2),(~ GjiW . An analogous partition of )( 1GL  and

)( 2GL  (the set of all losing coalitions in the games 1G  and 2G  respectively) can

be obtained.

Condition T1:

This condition means that if i  and j  vote together in favour of the bill or against

the bill, the outcome of the voting process in 1G  is same as in 2G . From this it

follows that

)( 1, GjiW = )( 2, GjiW  and )( 1),(~ GjiW = )( 2),(~ GjiW .

Condition T2:

Consider a coalition NS ⊆ . Let i S∈ . Then j SN −∈ . Then, condition T2

says that if S  is winning in 1G , it will also be winning in 2G , and if SN −  is

losing in 1G , then it will also be losing in 2G . This means ⊆)( 1GiW )( 2GiW  and

⊆)( 1GjL )( 2GjL . Hence )()( 21 GG ii WW ≤  and ≥)( 1GjW )( 2GjW .
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Condition T3:

Consider a coalition NS ⊆ . Let i S∈ . Then j SN −∈ . Condition T3 says

that there must exist at least one yes-no bipartition B  such that

(i) If S  votes ‘yes’ in B , the bill is passed in 2G  but not in 1G . That is, there

must exist at least one coalition S , i S∈ , j S∉ , such that S  is losing in 1G  but

becomes a winning coalition in 2G .

Or

(ii) If S  votes ‘no’ in B , the bill is passed in 1G  but not in 2G . That is, there

must exist at least one coalition S , i S∈ , j S∉ , such that SN −  is winning in

1G  but becomes a losing coalition in 2G .

Let { })(),(;,: 211 GSGSSjSiNSA ii WW ∈∉∉∈⊆=  and

:{
2

NSA ⊆= ;, SiSj ∉∈ )( 1GS jW∈  but )}( 2GS jW∉ .

Condition T3 can be summarized as below:

If 11 α=A  and 22 α=A , then 1
21

≥+ αα .

It is easy to note that

)()()( 221 GGG iii WWW −=∆  = 
1

α .

2121 )()()( α−=−=∆ GGG jjj WWW .

Note that =∆ )( 1GW )()()()( 1),(~1,11 GGGG jijiji WWWW ∆+∆+∆+∆ =

21 αα − .

Consider an element S  in the set 
1

A . Then )( 1GS iW∉  but )( 2GS iW∈ .

Now )( 1GS iW∉  implies that {}iS \  is also losing in 1G . Since condition T1

says that )()( 2),(~1),(~ GG jiji WW = , this means that {}iS \  is losing in 2G  as

well. But since {} {}iiS ∪)\(  is winning in 2G , it implies that i  is a critical

member of these coalitions in the game 2G  but not in 1G .
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Now consider an element S  in the set 
2

A . Then )( 1GS jW∈  but

)( 2GS jW∉ . Now )( 2GS jW∉  implies that { }jS \  is losing in 2G . By

condition T1 we know that { }jS \  must be losing in 1G  as well. But

{ } { }jjS ∪)\(  is winning in 1G . So j  is a critical member of these coalitions

in the game 1G  but not in 2G .

 Though the set )( 1, GjiW  is the same as the set )( 2, GjiW , i  might

become a critical player in some of these coalitions in the game, in which he was

previously non-critical. Let the number of these coalitions be 3α .  Formally, let

:{
3

NSA ⊆=  ;, Sji ∈ )( 1, GS jiW∈  but )(}{\ 1GiS jW∈ , and )( 2, GS jiW∈

but )}(}{\ 2GiS jW∉ .  Then 33 α=A .

Again there might be some winning coalitions containing both i and j  in

which j  is critical in the game 1G , but ceases to be critical in 2G . Let the number

of these coalitions be 
4

α . Formally, let

:{
4

NSA ⊆= ;, Sji ∈  )( 1, GS jiW∈  but )}(}{\ 1GjS iW∉ , and )( 2, GS jiW∈

but )}(}{\ 2GjS iW∈ . Then 44 α=A .

It is easy to note that there cannot exist any winning coalition S
containing both i and j  such that i  is a critical member of S  in 1G  but not in

2G . To see this, suppose that such a coalition )( 1, GS jiW∈  exists. Then

)}(}{\ 1GiS jW∉  and )(}{\ 2GiS jW∈ . This violates condition T2, which says

that if a coalition containing j  and not i  is losing in 1G , then it must be losing in

2G  as well. By a similar reasoning we can note that there cannot exist any

winning coalition S  containing both i  and j  such that j  is a non-critical

member of S  in the game 1G , but a critical member in the game 2G . Therefore,

we have the following set of equations:

im∆ = )()( 12 GmGm ii − = 1α + 3α ,

)()()( 4212 αα +−=−=∆ GmGmm jjj                                                            (2.5)
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)( 1GW∆ = =− )()( 12 GG WW 1α - 2α .

Note that 1α , 
2

α , 3α , 
4

α 0≥ . It is obvious that )( 1GW∆  could be non-negative

or non-positive. Accordingly )( 1GL∆  could be non-positive or non-negative.

Case 1: )( 1GW∆ ≤ 0.

(i) Then since, im∆ 0≥ , iP  will rise. That is, the power to prevent action of

the recipient will not fall.

(ii) From the above discussion it is clear that 0≤∆ jm . Since 1α , 2α , 3α ,

4
α 0≥ , it is obvious that ≥+

42
αα

12
αα − . That is,

)( 1Gm j W∆−≥∆− . Also )( 1GW  ≥  )( 1Gm j . Therefore, we have

       )().()( 111 GGmGm jj WW ∆−≥∆− .                                                    (2.6)

Therefore,

)()( 12 GPGP jj − = 
)(

)(

)()(

)(

1

1

11

1

G

Gm

GG

mGm jjj

WWW
−

∆+
∆+

          = ( ) )()()(

)()()(

111

111

GGG

GGmGm jj

WWW

WW

∆+
∆−∆

 0≤  (Using (2.6).)

That is, )()( 12 GPGP jj ≤ . Thus, the power to prevent action of the donor will not

rise.

Case 2: )( 1GW∆ > 0

(i) First note that since im∆ ≥ )( 1GW∆  and )()( 11 GGmi W≤ ,

           )()()( 111 GGmGm ii WW ∆≥∆ .                                                             (2.7)

 Therefore,

)()( 12 GPGP ii −  = 
)(

)(

)()(

)(

1

1

11

1

G
Gm

GG
mGm iii

WWW
−

∆+
∆+

= ( ) )()()(

)()()()()()()(

111

1111111

GGG

GGmGGmGmGGm iiii

WWW

WWWW

∆+
∆−−∆+

= ( ) )()()(

)()()(

111

111

GGG

GGmGm ii

WWW

WW

∆+
∆−∆

0≥  (Using (2.7).)
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Therefore, )()( 12 GPGP ii ≥ .

Thus, the power to prevent action of the recipient does not fall after the transfer.

(ii) For the donor j , the proof is straightforward. Since 0≤∆ jm  and

0)( 1 ≥∆ GW , the power to prevent action of the donor can never rise.

Since iP  satisfies INV and TRP, by theorem 7.11 of Felsenthal and Machover

(1995) we can conclude that it satisfies DOM. Satisfaction of BOP by iP  follows

from the fact that it satisfies TRP, INV and IGN (Felsenthal and Machover,

1995, theorem 7.10).

(b) If voter i  is a blocker in the game G , then by definition he can stall a bill by

voting ‘no’, irrespective of how others vote. This means that he is a pivotal voter

in every winning coalition in the game. Therefore, )(Gmi  = )(GW , or,

)(GPi =1. Conversely, if )(GPi =1, it means that )(Gmi  = )(GW . That is, i  is

critical in every winning coalition of the game. So i  has to be a blocker.

(c) Let us denote the set of winning coalitions in the game Ĝ  by )ˆ(GW . Now

{ }{ })(\,:2)ˆ(
ˆ GbSSbSG N WW ∈∈∈= . Therefore, )ˆ(GW = )(GW . Also it is

obvious from the definition of )ˆ(GW  that the number of coalitions in which any

player i  is critical remains unaltered in the new game. Therefore, power to

prevent action of any player remains unchanged and hence the desired result

follows.

Hence the proof of theorem. �

The fact that the Coleman index of the power to prevent action iP  satisfies

VJN, INV, IGN, DOM, TRP and BOP implies that it can be used as a measure

of the extent of influence that voter i enjoys over the outcome of the voting

process. In other words, iP  can be regarded as a valid index of I-power.

Felsenthal and Machover (1998) suggested property (c) of theorem 2.2 as a
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desirable postulate for an index of P-power (e.g., the Shapley-Shubik index) and

referred to it as the added blocker postulate (ABP) (see section 1.2.3). Although

iP  is regarded as an index of I-power, we note its satisfaction of the ABP. It also

follows from theorem 2.2 that iP  is bounded between zero and one, where the

lower and upper bounds are achieved when voter i  is a null voter and a blocker

respectively. Finally we note that since iP  satisfies TRP and IGN, it satisfies

RTP and RNP as well (see sections 1.2.2 and 1.2.3).

In the next theorem we present a similar set of results for the Coleman

index of the power to initiate action.

Theorem 2.3:

(a) The Coleman index of the power to initiate action, iI , satisfies VJN, INV,

IGN, DOM, TRP and BOP for all voting games.

(b) In a proper voting game, the index iI  achieves its upper bound of 1 if and

only if the voter is a dictator.

(c) If ( ) SG∈= VNG ˆ,ˆˆ  is obtained from ( ) SG∈= VNG ,  by adding Nb∉  as

a blocker in Ĝ , then for any two non-null voters Nji ∈, , we have

      
)ˆ(

)ˆ(

)(

)(

GI
GI

GI
GI

j

i

j

i = .

That is, iI  satisfies ABP.

The proof of this theorem relies on the following two lemmas.

Lemma 2.3: Consider the voting games 1G  and 2G , and the voters j  and i  as

described in TRP. Let )( 1GL  ( ))( 2GL  be the set of losing coalitions in 1G ( 2G ).

Then assuming that 0)()()( 121 ≤−=∆ GGG LLL , we have )( jmabs ∆  ≥

))(( 1Gabs L∆ , where =)(xabs x−  if 0<x

                                                x=   if  0≥x , x  is a scalar.
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Proof:

We have noted in the proof of theorem 2.2 that )(
42

αα +−=∆ jm . Also

)( 1GW∆ = 1α - 2α , which means that )( 1GL∆ = 
2

α -
1

α 0≤ , by hypothesis.

Suppose, contrary to what the lemma says, we have ))(( 1Gabs L∆ > )( jmabs ∆ .

Then we must have

1
α -

2
α >

42
αα + ,

or, 
41

αα −
2

2α>                                                                                              (2.8)

Let us recall the definition of the sets 
1

A  and 
4

A  which have been

considered in the proof of theorem 2.2.

{ })(),(;,: 211 GSGSSjSiNSA ii WW ∈∉∉∈⊆= , 11 α=A .

{ :
4

NSA ⊆= ;, Sji ∈ )( 1, GS jiW∈  but )(}{\ 1GjS iW∉ , and )( 2, GS jiW∈

but )}(}{\ 2GjS iW∈ , 44 α=A .

Now, consider an element 
1

AS ∈ . )( 2GS iW∈  implies that

{ } )( 2, GjS jiW∈∪  (since a super set of a winning coalition is also winning). By

condition T1 we know that { } )( 1, GjS jiW∈∪ . This combined with the fact that

)( 1GS iW∉  (since 
1

AS ∈ ) tells us that player j  is a critical member of the

coalition { }jS ∪  in the game 1G  but not in 2G . That is, { }jS ∪
4

A∈ . Thus,

for every coalition 
1

AS ∈ , we get a unique coalition { }
4

AjS ∈∪ .

Conversely, it can be checked that with every coalition 
4

AS ∈ , we can

associate a unique coalition { }
1

\ AjS ∈ . In other words, with every element in

1
A  we can associate a unique element in 

4
A  and vice versa. This implies

41 AA = .

Or,
41

αα = .                                   (2.9)

Using (2.9) and (2.8) we know that if ))(( 1Gabs L∆ > )( jmabs ∆ , then 
2

0 α> ,
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which is a contradiction, since 
2

α  is the cardinality of a set and hence cannot be

negative. So )( jmabs ∆ ≥ ))(( 1Gabs L∆ . Hence the proof. �

Lemma 2.4: Consider the voting games 1G  and 2G , and the voters j  and i  as

described in TRP. Let )( 1GL  ( ))( 2GL  be the set of losing coalitions in 1G  ( 2G ).

Then assuming that 0)()()( 121 ≥−=∆ GGG LLL , we have

)()( 12 GmGmm iii −=∆ ≥  )( 1GL∆ .

Proof:

We have noted in the proof of theorem 2.2 that im∆  = 1α + 3α . Also )( 1GW∆ =

1α - 2α , which means that )( 1GL∆ = 
2

α -
1

α . Suppose, contrary to what the

lemma says, we have )( 1GL∆ > im∆ . Then we must have

2α 1α− > 1α + 3α .

Or, 2α
3

α− >  
1

2α .                                                                                         (2.10)

(Note that by assumption 0)( 1 ≥∆ GL .)

Recall the definitions of the sets 
2

A  and 
3

A  in the proof of theorem 2.2.

Consider an element 
2

AS ∈ . It is easy to note that { } )( 1, GiS jiW∈∪  and hence

by condition T1 { } )( 2, GiS jiW∈∪ . This combined with the fact )( 1GS jW∈

and )( 2GS jW∉  (since 
2

AS ∈ ) says that i  is non-critical member of the

winning coalition {}iS ∪  in the game 1G  but becomes critical in the game 2G .

Therefore { }
3

AiS ∈∪ . Thus, for each 
2

AS ∈ , { }
3

AiS ∈∪ . Conversely it can

be checked that for each 
3

AS ∈′ , {}
2

AiS ∈−′ . Hence the correspondence

→S  {}iS ∪  is a bijection from 
2

A  onto 
3

A . In other words, with every

element in 
2

A  we can associate a unique element in 
3

A  and vice versa.

Therefore, we have

32 αα =                                                                                                              (2.11)
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Using (2.10) and (2.11) we know that if )( 1GL∆ > im∆ , then 10 α> ,

which is a contradiction, since 1α  is the cardinality of a set and hence cannot be

negative.

So im∆ ≥ )( 1GL∆ . Hence the proof. �

Now, we come to the proof of theorem 2.3.

Proof of theorem 2.3:

(a)  The proof that iI  satisfies VJN, INV, IGN is similar to the proof in theorem

2.2. We now prove that iI  satisfies TRP. We have already noted above that

)( 1GW∆  could be non-negative or non-positive, and that 0≥∆ im  and

0≤∆ jm .

Case 1: )( 1GW∆ 0≥ .

This means 0)( 1 ≤∆ GL . That is,

(i) )()( 12 GG LL ≤

∴ ≥
)(

1

2GL )(

1

1GL

or, 
)(

)(

2

1

G
mGm ii

L

∆+
≥

)(

)(

1

1

G
Gmi

L
 (since 0≥∆ im ).

Thus, iI  or the power to initiate action of the recipient does not fall after the

transfer.

(ii) To show that the power to initiate an action of the donor does not rise after the

transfer, we first note that by lemma 2.3, )( jmabs ∆ ≥ ))(( 1Gabs L∆ .  Also we

know that )()( 11 GmG j≥L . So

)().()(. 111 GGmGm jj LL ∆≤∆     (since 0≤∆ jm  and 0)( 1 ≤∆ GL )            (2.12)

)()( 12 GIGI jj − = 
)()(

)(

11

1

GG

mGm jj

LL ∆+
∆+

 - 
)(

)(

1

1

G

Gm j

L

                           = ( ) )()()(

)().()(.

111

111

GGG

GGmGm jj

LLL

LL

∆+
∆−∆

0≤ . (Using (2.12))
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Thus, the power of the donor cannot rise after the transfer.

Case 2: )( 1GW∆ 0≤ .

 This means )( 1GL∆ 0≥ .

(i) From lemma 2.4 and using the fact that )()( 11 GmG i≥L , we can say that

)().()( 111 GGmGm ii LL ∆≥∆ .                                                                         (2.13)

 Let us now evaluate the expression )()( 12 GIGI ii − .

)()( 12 GIGI ii −

=
)(

)(

2

2

G
Gmi

L
- 

)(

)(

1

1

G
Gmi

L

=
))()((

)(

11

1

GG
mGm ii

LL ∆+
∆+

- 
)(

)(

1

1

G
Gmi

L

= ( ) )()()(

)()()()()()().(

111

1111111

GGG

GGmGGmGmGGm iiii

LLL

LLLL

∆+
∆−−∆+

= ( ) )()()(

)().()(

111

111

GGG

GGmGm ii

LLL

LL

∆+
∆−∆

0≥  (Using (2.13)).

Thus power to initiate action of player i  does not decrease after i  receives some

voting right from another player.

(ii) For the donor j  the proof is straightforward because 0≤∆ jm  and

0)( 1 ≥∆ GL .

Proof of satisfaction of DOM and BOP by iI  is similar to the proof in theorem

2.2.

(b) If the game G  has a dictator i , then it becomes a proper game and

)()( GG LW =  
12 −= N
. Also by the definition of a dictator, he is critical

player in all the winning coalitions. Therefore 1)( =GI i . Conversely,

1)( =GI i  implies that )()( GGmi L= . Since )(Gmi  is also the number of
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losing coalitions outside which i  is critical, )()( GGmi L=  implies that i  is

critical outside every losing coalition in the game. Since the game is proper,

)()( GGmi W≤  )(GL≤  = )(Gmi . Therefore, )()()( GGGmi LW == . So

i  is a critical member of each winning coalition of the game. This means i ’s

‘yes’ vote is necessary to pass the bill. Following definition 1.3 we know that

φ  is a losing coalition. Since i  is critical outside every losing coalition in the

game, therefore {}i  is a winning coalition. This means i ’s ‘yes’ vote is

sufficient to pass the bill. So i  is a dictator.

(c)  The proof of this part of the theorem is similar to the proof of part (c) of

theorem 2.2. �

It is important to note that while iP  reaches its maximum in the case of an

ordinary blocker, iI  is maximum if the blocker is a dictator. In fact the difference

between these two aspects of exercise of power is emphasized by the presence of

a blocker in the game (also see the discussion on Coleman indices in section

1.2.2).

The previous two theorems show that both the Coleman index of the power to

prevent action and the power to initiate action can be used to get an idea of the

extent of influence that an individual voter enjoys over the outcome of the

decision making body. Thus they can be regarded as reasonable indices of I-

power.

2.5 Conclusion

An I-index of voting power is a measure of the extent to which a voter is

able to influence the passage or defeat of a resolution. Coleman (1971) suggested

two such indices to measure the power to prevent an action ( P ) and the power to

initiate an action ( I ). The former gives an indication of the chance a voter has to

block a bill and the latter is concerned with the voter’s probability to initiate

action. Incidentally there has not been much discussion of these indices in the

literature on voting power. One of the possible reasons why these indices have not

received separate attention could be that, these two indices have an exact
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relationship with the Banzhaf indices. As we have already noted, Dubey and

Shapley (1979) have shown that the non-normalized Banzhaf index (BZNN ) is

the harmonic mean of P  and I . (Also see Brams and Affuso (1976).) Further, by

normalizing either P  or I  to make the values of the indices for all voters add up

to 1, the equivalence of these indices with the normalized Banzhaf index (BZ )

can be established. More precisely, given a voting game );( VNG = ,

==
∑
∈Ni

i

i
i Gm

Gm
GBZ

)(

)(
)(  =

∑
∈Ni

i

i

GP
GP

)(

)(
 
∑
∈Ni

i

i

GI
GI

)(

)(
 (see Leech (2002d)). Thus P  and

I  are also regarded as different ways of arriving at BZ . Because of these

relationships with the Banzhaf indices, most authors regard P  and I  as mere

different modifications of the Banzhaf indices. Consequently they are often

clubbed with the Banzhaf index. Another possible reason why there has not been

much discussion about these indices, could be that, since “the most common

voting rule used in voting bodies is the simple majority” (Holler, Ono and Steffen

(2001)), the Coleman indices are unable to shed any additional light on the voter’s

powers in most cases. This is because the Coleman indices are indistinguishable

and effectively the same as the non-normalized Banzhaf index, when the decision

rule is ‘simple majority’ (also see chapter 6). However, as some authors have

noted, (see for e.g., Felsenthal and Machover (1998)) there are situations where

these two indices can give information that one cannot get from the non-

normalized Banzhaf index alone. These indices are particularly useful when there

are supermajority voting rules (see Leech (2002a)).  This chapter therefore

rigorously examines these indices in the light of different properties for an index

of voting power suggested by Felsenthal and Machover (1995, 1998) and

demonstrates their suitability in this context. A relationship between these two

indices is also established in the chapter.
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CHAPTER 3

AN ALTERNATIVE CHARACTERIZATION OF THE NON-

NORMALIZED BANZHAF INDEX♣♣

3.1 Introduction

Among the indices of individual power that we have discussed in section

1.2.2, the most well known indices are the Shapley-Shubik (1954) and the

Banzhaf (1965) indices.

The Banzhaf index is based on the number of coalitions in which the

concerned voter is swing. Banzhaf (1965) had actually proposed the ‘swing

numbers’ im  as an index of individual voting power. This number is also referred

to as the raw Banzhaf index (also see section 1.2.2). But this index is, for

technical reasons, quite refractory. However, these technical reasons disappear if

one rescales this index by multiplying it with an appropriate factor. The non-

normalized Banzhaf index is such a rescaling of the Banzhaf index. Dubey and

Shapley (1979) suggest that such a rescaling is in many respects more natural than

the Banzhaf index itself.

As we have already noted in sections 1.2.2 and 2.2, the non-normalized

Banzhaf index is a weighted average of the Coleman indices of the power to

prevent action and the power to initiate action. Thus, while the Coleman indices

reflect two different aspects of individual voting power- the ability of a voter to

initiate action and the ability of a voter to prevent action from taking place, their

(harmonic) mean, the non-normalized Banzhaf index, can be regarded as a

measure of the overall influence that a voter has over the decision making

process. Many authors have also advocated this variant of the raw Banzhaf index

as a measure of absolute power of a voter.

In this chapter we provide a characterization of the non-normalized Banzhaf

index on the set of simple games SG, using four axioms. We have already briefly

discussed the numerous characterizations of the non-normalized Banzhaf index in

                                                                
♣ This chapter is based on Barua, Chakravarty and Roy (2004a).
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section 1.2.4. The axioms that we have used in our characterization exercise are

taken directly from four different contributions to the area. Thus, our

characterization shows the importance of this set of existing axioms from a new

perspective. A very attractive feature of this characterization is independence of

the axioms. By independence we mean that if one of these axioms is dropped,

then there will be a power index other than the non-normalized Banzhaf index

that will satisfy the remaining three axioms, but not the dropped one. That is,

independence says that none of the axioms implies or is implied by another.

The chapter is arranged as follows. In the section 3.2 we first recall what

we mean by the non-normalized Banzhaf index. We also discuss the axioms that

have been used in the characterization exercise in this section. Section 3.3

presents the main results. That is, in this section we uniquely characterize the non-

normalized Banzhaf index using a set of independent axioms. Finally in section

3.4 we conclude this chapter.

3.2 The Banzhaf Non-normalized Index

Though we have already discussed the non-normalized Banzhaf index in

some details in section 1.2.2, it will be worthwhile to recall its definition.

Formally, given a voting game SG∈= );( VNG , the non-normalized Banzhaf

index for a voter Ni ∈  is given by,

12

)(
)(

−
=

N
i

i

Gm
GBZNN .                                                                                         (3.1)

It is actually the number of winning coalitions in which player i  is pivotal in the

game, divided by the maximal value that this number can take. For any

);( VNG = ,SG∈  for any ,Ni ∈ iBZNN achieves its minimum value, zero, if and

only if i  is a null player. It remains invariant under any permutation of the voters.

If a null player is excluded from the game, iBZNN  does not change. Similarly, it

remains unaltered if a null player is included in the game (see Felsenthal and

Machover (1998)). If in a voting game, each voter si'  probability ip  of voting

'yes' or ‘no’ on a bill is chosen independently from the uniform distribution [0,1],
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then the power of the voter i  is estimated by iBZNN  (Straffin (1977, 1988)).

However, Leech (1990) has shown that the assumption of uniform distribution is

not needed. The only thing that we require is that the probabilities are selected

independently at random from any distribution which has an expectation 0.5.

Since iBZNN  does not involve numbers of coalitions in which voters other than i

are swing, Felsenthal and Machover (1998) regarded it as an absolute index of

voter 'i s power.

Before we introduce the axioms that have been used in our characterization

exercise, we need to define a special type of game, called the unanimity game,

which we will require in our analysis.

Definition 3.1: For any NS ⊆ , the unanimity game, denoted by ( )SUN;  is the

simple game whose characteristic function is given by:

1)( =TU S  if ST ⊇

            0=  otherwise.

Thus the winning coalitions in this game are S  together with all supersets of S .

         We will now present four axioms on a power index iϕ : +→ RSG  (see

definition 1.16) that uniquely determines the BZNN .

The first axiom is taken from Dubey (1975) (see also Dubey and Shapley

(1979)). It shows that the sum of powers of voter i  in the games 21 GG ∨  and

21 GG ∧  (see definitions 1.5 and 1.6) is equal to the sum of his powers in 1G  and

2G .

Axiom A3.1 (Transfer Principle): For SG∈== );(),;( 222111 VNGVNG ,

                          )()()()( 212121 GGGGGG iiii ϕϕϕϕ +=∧+∨ .                       (3.2)

Note that we have already discussed the above principle in section 1.2.4.

The idea of the next axiom, which makes a specification about a dictator’s

power, is taken from Felsenthal and Machover (1998). A dictator, if there is one,
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should possess maximum power in the game since he can be characterized as the

only non-null voter.

Axiom A3.2 (Maximal Power Specification): For any game SG∈= );( VNG , if

i  is a dictator in the game, then

                                                                 1)( =Giϕ .                                          (3.3)

The third axiom, which is formulated in terms of substitutability between

two voters, is taken from Lehrer (1988). Two voters in a game are said to be

substitutes if the worth of an arbitrary coalition in the game becomes the same

when they join the coalition separately (Shapley (1953)). Therefore, it is

reasonable to expect that their powers are the same (also see section 1.2.4). More

precisely, we have the following axiom.

Axiom A3.3 (Equal Treatment): Let two non-null voters i and j be substitutes in

the game SG∈= );( VNG , that is, { }( ) { }( )jSViSV ∪=∪  for all { }., jiNS −⊆

Then,

                                                                     )()( GG ji ϕϕ = .                                   (3.4)

 The next axiom shows the relationship between the power of a bloc and its

constituents in a unanimity game. It is similar to the 2- efficiency axiom used by

Nowak (1997) in characterizing the Banzhaf value on the set of all games G (see

also axiom A5 of Nowak and Radzik (2000), Lehrer (1988)). The 2- efficiency

axiom says that if two voters i  and j  in any game belonging to G , decide to

merge to form a bloc ij , then the power of the merged entity in the post-merger

game (see definition 1.17) is equal to the sum of the power of its components in

the original game (also see section 1.2.4). We modify this axiom by stating it in

terms of unanimity games only.

Axiom A3.4 (Two-Voter Bloc Principle): Let ),( SUNG ′′=′ SG∈  be the

( )1−N -person game obtained from the game );( SUNG = when the voters

Sji ∈,  form a bloc ij . Then,

                                                                     )()()( GGG jiij ϕϕϕ +=′ .              (3.5)

In the next section, we present the main results of the chapter.
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3.3 The Characterization Exercise

In the following theorem we show that the above four axioms characterize

the non-normalized Banzhaf index uniquely on the set of all simple games SG.

Theorem 3.1: A power index iϕ  satisfies axioms A3.1-A3.4 if and only if iϕ  is

the index iBZNN in (3.1).

Proof:  We will first show that iBZNN  satisfies all the axioms A3.1 through

A3.4.

To show that A3.1 is satisfied by iBZNN , consider two voting games

);( 111 VNG = , );( 222 VNG =  SG∈ . Assuming φ≠− 21 NN , first let

21 NNi −∈ . Now, any subset S ′ of 12 NN −  can be appended to a swing coalition

1NS ⊆  for i  in 1G  to obtain a swing coalition SS ′∪  for i  in 21 GG ∨  unless

( ) 2NSS ∩′∪  is winning in 2G . Hence the number of swings for voter i  in

21 GG ∨  is

)(2)()( 21121
12 GGmGmGGm i

NN
ii ∧−=∨ − ,

where )( 21 GGmi ∧  is the number of swings of  i  in 21 GG ∧ . Since for

21 NNi −∈ , )( 2Gmi =0, we rewrite )( 21 GGmi ∨  as

)(2)(2)()( 212121
2112 GGmGmGmGGm i

NN
i

NN
ii ∧−+=∨ −−

The same expression for )( 21 GGmi ∨  will be obtained if 21 NNi ∩∈  or

12 NNi −∈ .

Therefore, 

  ( )
1

21

1

2

1

1

1

21
21

212121 2

)(

2

)(

2

)(

2

)(
−∪−−−∪

∧
−+=

∨
=∨

NN
i

N
i

N
i

NN
i

i

GGmGmGmGGm
GGBZNN ,            (3.6)

which in turn gives

.                        )()()()( 212121 GBZNNGBZNNGGBZNNGGBZNN iiii +=∧+∨ .

This shows that iBZNN  verifies A3.1.
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To check satisfaction of A3.2 by iBZNN , note that if i  is a dictator in the

game );( VNG = , then i  is the only non-null voter in the game, that is, )(Gmi  is

maximized, which means that 12)( −= N
i Gm  and 0)( =Gm j  for all Nj ∈ , ij ≠ .

Substituting this value of )(Gmi  in (3.1), we get 1)( =GBZNN i , which shows

that iBZNN  meets A3.2.

Next we verify fulfillment of A3.3 by iBZNN .

Let { }{ }iNS −⊆=ζ . Clearly, we can write ζ  as 21 ζζ ∪ , where

{ }{ }jiNS ,1 −⊆=ζ  and { }{ iNS −⊆=2ζ  and }Sj ∈ . We rewrite 2ζ∈S  as

{ }jS ∪′ , where { }jiNS ,−⊆′ . Then,

( ) { }( ) ( )[ ]
{ }

∑
−⊆

−∪=
iNS

i SViSVGm

     { }( ) ( )[ ]∑
∈

−∪=
ζS

SViSV

     { }( ) ( )[ ]∑
∈

−∪=
1ζS

SViSV  + { }( ) ( )[ ]∑
∈

−∪
2ζS

SViSV

     { }( ) ( )[ ]
{ }

∑
−⊆

−∪=
jiNS

SViSV
,

+ { }( ) { }( )[ ]
{ }

∑
−⊆′

∪′−∪′
jiNS

jSVjiSV
,

, .                     (3.7)

We can rewrite )(Gmi  in (3.7) as

                       ( ) { }( ) ( )[ ]
{ }

∑
−⊆

−∪=
jiNS

i SViSVGm
,

+ { }( ) { }( )[ ]
{ }

∑
−⊆

∪−∪
jiNS

jSVjiSV
,

, ,       (3.8)

which on simplification becomes ( ) { }( ) ( )[ ]
{ }

∑
−⊆

−∪=
jiNS

i SVjiSVGm
,

, , since by

hypothesis {}( ) { }( ) { }jiNSjSViSV ,, −⊆∀∪=∪ .

By a similar calculation we get ( ) { }( ) ( )[ ]
{ }

∑
−⊆

−∪=
jiNS

j SVjiSVGm
,

, .

Hence ( ) ( )GmGm ji = . Therefore, ( ) == −12
)( N

i
i

GmGBZNN
( )

12 −N
j Gm

=

)(GBZNN j , which shows that iBZNN  meets A3.3.

Finally, take );( SUNG = . Let );( SUNG ′′=′  be the ( )1−N - person

game when the voters Sji ∈,  form a bloc ij . Then
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11 2
2

2

)(
)( −′

′−′

−′ =
′

=′ N

SN

N
ij

ij

Gm
GBZNN  = 21 2

1
2

1
−−′ = SS ,

Also, 11 2

)(

2
)()()( −− +=+ N

j
N

i
ji

GmGmGBZNNGBZNN =

12
2

−

−

N

SN
+ 12

2
−

−

N

SN
= 22

1
−S , since ( )SUNG ;= . Thus, iBZNN  satisfies

A3.4.

We now show that if a power index iϕ  satisfies A3.1-A3.4, then it must be

iBZNN . First observe that any iϕ  is uniquely determined by its values on

unanimity games. This is because, for any game SG∈= );( VNG ,

kSSS GGGG ∨∨∨= ....
21

, where kSSS ,....,, 21  are minimal winning coalitions of

G  and 
lSG is the unanimity game corresponding to klS l ,...,2,1, = . Thus, by

A3.1, ( )Giϕ  is determined if ( )
1Si Gϕ , ( )

kSSSi GGG ....
32

∨∨ϕ  and

( )( )
kSSSi GGG ∨∨∧ ...

21
ϕ  are known. But, ( )

kSSS GGG ∨∨∧ ...
21

= ∨∪ 21 SSG

kSSG ∪∨
1

... and hence, by induction hypothesis both ( )
kSSSi GGG ....

32
∨∨ϕ  and

( )( )
kSSSi GGG ∨∨∧ ...

21
ϕ  are determined. So ( )Giϕ  is determined.

In view of the above discussion, we can say that it is enough to determine

);( Si UNϕ  for any unanimity game ( )SUN; . We shall prove by induction on S

that );( Si UNϕ = 12
1

−S . If  S =1, then the game has a dictator and hence by

A3.2, );( Si UNϕ =1= 12
1

−S . So assume S >1 and the result for all games

( )SUN; , where SS < . Let );( SUN ′′  be the game obtained from ( )SUN;  by

merging two voters i  and j ( ji ≠ ) in S . By A3.4, we have,

                                               );();();( SijSjSi UNUNUN ′′=+ ϕϕϕ .               (3.9)

By induction hypothesis,

                                                 );( Sij UN ′′ϕ =
12

1
−′S

=
22

1
−S

.                            (3.10)

Also by A3.3,
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                                                  );();( SjSi UNUN ϕϕ = .                                (3.11)

Hence by (3.9)-(3.11), we have

                        );(2 Si UNϕ  = 
22

1
−S

,

which gives 
12

1
);(

−
=

SSi UNϕ  .Thus, the values of iϕ  coincide with iBZNN  on

unanimity games and hence on all voting games. Hence the proof of the theorem.

�

In order to demonstrate how the power of a voter in a game can be

calculated using his powers in the minimal winning coalitions of the game, we

give the following example:

 Consider the weighted majority game G with the voter set { }4321 ,,, aaaaN = ,

where 1,2,3,4
4321

==== aaaa wwww  and 7=q (see Straffin (1994)). The

minimal winning coalitions here are { }211 ,aaS = and { }4312 ,, aaaS = . Denoting

the unanimity game for jS  by ( )
jj SS UNG ;= , =j(  1, 2),  we get

)()(
1Sii GBZNNGBZNN = + )()(

2 NiSi GBZNNGBZNN − , where ( )NN UNG ;=  is

the unanimity game related to N . Suppose now that 1ai = . Then

8

5

8

1

4

1

2

1
)(

1
=−+=GBZNN a . Similarly we can calculate the powers of other

voters.

           Finally, in theorem 3.2 below, we demonstrate the independence of the

axioms A3.1-A3.4. Independence means that the given set of axioms is minimal

in the sense that none of its proper subset will characterize the non-normalized

Banzhaf index.

Theorem 3.2: Axioms A3.1-A3.4 are independent.

Proof:

(1) Since the index given by

=)(1 Giϕ 1 if i  is a dictator,
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            = 
( )
1

2

2

)(log
−N
i Gm

otherwise,

where N > 2, is nonlinear in ( )Gmi , it fails to satisfy A3.1, but it satisfies A3.2-

A3.4.

(2) Because the index 
( )
N

i
i

Gm

2
2 =ϕ  is not appropriately normalized, it is a violator

of A3.2. Nevertheless, it verifies A3.1, A3.3 and A3.4.

(3) Consider the index 
( )

iN
i

i

Gm
αϕ +=

−13
2

,

where iα satisfies the following  conditions:

(a) iα = 0 or< 0 according as i  is a dictator or not,

(b) ji αα ≠  if ji ≠  and

(c) if two voters i  and j  form a bloc ij , then jiij ααα += .

Since si 'α  are different across voters, A3.3 is violated. However, A3.1, A3.2 and

A3.4 are satisfied by i3ϕ .                          

(4) Finally, the index given by 
( )

2

1

2
)(4 +=

N
i

i

Gm
Gϕ  does not meet A3.4 because

of the presence of 2
1  on the right-hand side. However, it fulfils A3.1-A3.3. �

3.4 Conclusion

Power of an individual voter depends on the chance he has of being

critical to the passage or defeat of a resolution. The well-known Banzhaf non-

normalized index for a voter depends on the number of coalitions in which the

voter is in the critical position of making winning (losing) coalitions losing

(winning). Several characterizations of this index have been proposed in the

literature. In this chapter we provide a new characterization of the index using

four axioms from four different contributions to the area. Independence of the

axioms is also demonstrated.
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CHAPTER 4

A CHARACTERIZATION AND SOME PROPERTIES OF THE

BANZHAF-COLEMAN-DUBEY-SHAPLEY SENSITIVITY INDEX••

4.1 Introduction

As we have already noted in section 1.3, a sensitivity index is a measure of

the extent of volatility in a decision rule (voting body). It is an indicator of the

degree of ease with which it responds to the fluctuations in the wishes of the

members of the voting body. It can as well be regarded as a democratic

participation index measuring sensitivity to the desires of the voting body

members.

Dubey and Shapley (1979) considered the sum of the numbers of swings of

different voters in a voting game as a measure of the sensitivity of a decision rule

to the desires of the average voter. Thus, this index gives the numbers of

possibilities in which different voters are in the critical position of being able to

change the voting outcome by changing their votes. Since a critical voter’s exit

from a winning coalition makes it losing, it gives an indication that even a single

voter could tip the scales. A normalized version of the Dubey-Shapley index was

considered by Felsenthal and Machover (1998) for measuring sensitivity. We refer

to this normalized formula, which is the sum of one of the Banzhaf (1965)-

Coleman (1971) indices of power (more precisely, the non-normalized Banzhaf

index) of different voters in the game, as the Banzhaf-Coleman-Dubey-Shapley

(BCDS) sensitivity index.

Dubey and Shapley (1979) investigated several properties of their index,

including determination of lower and upper bounds. A feasible and desirable

direction of research along this line is to study additional/alternative properties of

the BCDS index and characterize it uniquely. This is the objective of this chapter.

                                                
• This chapter is based on Barua, Chakravarty, Roy and Sarkar (2004).
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More precisely, we first discuss some properties and develop an axiomatic

characterization of the BCDS sensitivity index. It is shown that the set of axioms

used in the characterization theorem is minimal, that is, no proper subset of this set

can characterize the index. Equivalently, we say that axioms belonging to this

minimal set are independent. Then using Fourier transform analysis, we derive

some additional properties and bounds for the BCDS index for a class of games,

which is much more general than the class considered by Dubey and Shapley

(1979).

In the next section of the chapter, we recall the definition of the BCDS

index and discuss some of its properties. Section 4.3 derives the index

axiomatically and demonstrates independence of the properties employed in the

axiomatization exercise. In section 4.4 we discuss some additional properties of

the index, including derivation of bounds, using Fourier transform. Finally, section

4.5 concludes the chapter.

4.2 The Banzhaf-Coleman-Dubey-Shapley Sensitivity Index

As we have already noted in section 1.3, Dubey and Shapley (1979) suggested the

use of ( ) =GSD ( )∑
=

N

i
i Gm

1

 as a sensitivity index, where SG∈= );( VNG (SG being

the set of all simple games) is arbitrary. Let us denote the total number of swings

( )∑
=

N

i
i Gm

1

 in G  by ( )Gm .

Then Dubey-Shapley (1979) measure of sensitivity can be written as:

( ) =GSD ( )Gm .                                                                                                    (4.1)

This measure of sensitivity does not ignore null voters. If a null voter is added to

the game, the value of ( )GSD  is doubled. Felsenthal and Machover (1998) made

this measure independent of the effect of null voters by dividing it by 12 −N . Thus

the Felsenthal –Machover (1998) version of this index is given by

( )
12

)(
−

=
N

Gm
GSS .                                                                                                   (4.2)
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As we have already noted earlier in chapter 3, the maximum number of winning

coalitions in which a voter i  can be pivotal in a game );( VNG = SG∈  is 12 −N .

The Banzhaf non-normalized index for a voter i  is given by the number of

winning coalitions in which i  is pivotal ( )( )Gmi  divided by the maximal value that

this number can take ( 12 −N ). The summation of this index across all voters gives

us the sensitivity index ( )GSS . Given the direct involvement of swings of different

voters in the construction of the index, it shows the sensitivity of the decision rule

to the wishes of individual voters in the sense that even an individual can tip the

scales. Since ( )GSS  is the sum of the non-normalized Banzhaf indices (which is

also referred to as the Banzhaf-Coleman index in the literature (see Owen (1978)))

of different voters in a game, we refer to ( )GSS  as the Banzhaf-Coleman-Dubey-

Shapley (BCDS) index of sensitivity. It ‘reflects the ‘‘volatility’’ or degree of

suspense in the voting body’ (Dubey and Shapley (1979)). Suppose in a voting

game each voter’s probability of voting for or against a bill is selected

independently at random from a distribution with expectation 0.5. Then

12

)(
−N

i Gm becomes the probability ip  that other voters will vote such that the

bill will pass or fail according as i  votes for or against it (Straffin (1977), Leech

(1990)). The index ( )GSS  is simply ∑
=

N

i
ip

1
.

Here it would be interesting to note the relationship between the

sensitivity index and the notion of potential function introduced by Hart and

MasCollel (1988, 1989). Hart and MasCollel had used the potential approach to

provide an axiomatic characterization of the Shapley value. Dragan (1996) had

shown that there exists a unique potential function for the Banzhaf value on the

set of all games G. Using Dragan’s tools on the class of simple games SG,

Carreras (2004) proposed the potential function for the Banzhaf index on simple

games. A function Q : SG R→  is a potential function for the Banzhaf index on

simple games if
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(a) Q  is standard for one-person games, i.e., ( ) 1)( =iGQ  whenever i  is a

dictator, and 0 otherwise, and where )(iG  denotes the game G = { }( )Vi ; ;

(b) 
( )∑∑

∈
−

∈
− =−

Ni
N

i

Ni
i

Gm
GQGQ

12
)]()([  for all SG∈= );( VNG , where −)(GQ

)( iGQ −  is the marginal contribution of player i (according to the potential

function), in the game G , and iG−  = {} );\( ViN . Note that, given a game

);( VNG = , and a coalition NS ⊂ , ( )VS;  is the subgame that is obtained by

restricting V  to the subsets of S . That is, the domain of V  is restricted to

S2 .

Carreras showed that there is a unique potential function Q : SG R→  for the

Banzhaf index on simple games and it is given by

Q  ( )G = 
12

)(
−N

GW
 SG∈=∀ );( VNG .

Moreover, )()( iGQGQ −− = 
12

)(
−N

i Gm
 SG∈=∀ );( VNG  and Ni ∈∀ . That is, the

marginal of the potential of a player is equal to Banzhaf index of that player.

Thus it follows that sum of the marginals of the potential across all voters gives

the sensitivity index. That is, )()]()([ GSSGQGQ
Ni

i =−∑
∈

− .

Next we note some of the properties of the ( )GSS  index.

(a) Iso-Invariance: Let ( )VNG ;=  and ( ) SG∈′′=′ VNG ;  be two isomorphic

games. That is, there exists a bijection h  of N onto N ′ such that for all NS ⊆ ,

( ) 1=SV  if and only if ( )( ) 1=′ ShV , where ( ) ( ){ }SxxhSh ∈= : . Then

( ) ( )GSSGSS ′= .

(b) Increasingness: Let ( )VNG ;=  and ( )VNG ;= SG∈  be two games such that

N = N  and ( ) ( )GmGm ii ≥  for all Ni ∈  with >  for at least one Ni ∈ . Then

( ) ( )GSSGSS > .

(c) Ignoring Null Voters: For any ( )VNG ;= SG∈ and for any null voter Nd ∈ ,

( ) ( )dGSSGSS −= , where dG−  is the game obtained from G  by excluding d .
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Likewise, ( ) ( )dGSSGSS += , where dG+  is the game obtained from G SG∈  by

including d as a null voter.

(d) Maximality: For any ( )VNG ;= SG∈ , ( )GSS  attains its maximal value 
12 −








N

r

N
r

if and only if all coalitions with more than 
2

N
 voters win and all coalitions with

less than 
2

N
 voters lose, where 1

2
+








=

N
r , with [ ]x  being the largest integer

x≤  (Dubey and Shapley (1979)).

(e) Duality: For any SG∈= );( VNG , let ( )∗∗ = VNG ;  be the dual of G , that is,

)(* SV = ( ) ( )SNVNV −−  for all NS 2∈ . Then ( ) ( )∗= GSSGSS  (Dubey and

Shapley (1979)).

Iso-invariance is an anonymity condition, which says that a reordering of

the voters does not change the sensitivity index SS . Thus, all characteristics other

than swings of the voters, e.g., their living conditions, are irrelevant to the

measurement of sensitivity. Note that we have already discussed anonymity or

iso-invariance in the context of desirable properties that an index of individual

voting power must satisfy (see section 1.2.2). Here it is discussed as a property

that an index that measures a global characteristic of a voting game satisfies.

Increasingness requires the index SS  to be an increasing function of the

number of swings, given that the voter set remains unaltered. To understand

increasingness, let us consider the weighted majority game ( )4;2,2,1;;ˆ
0 VNG =

obtained from ( )3;2,2,1;;0 VNG =  by augmenting the quota from 3 to 4. Given

that the set of voters { }3,2,1=N  is the same in the two games, we get

( ) ( )0202 ĜmGm =  =2, ( ) ( )0303 ĜmGm =  =2 and ( ) ( ) 0ˆ2 0101 =>= GmGm . We thus

have ( ) ( )00 ĜSSGSS > .

Since a null voter is not able to influence the voting outcome, we can

argue that SS  should satisfy the ignoring null voters principle. Given that the
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non-normalized Banzhaf index (alternatively the Banzhaf-Coleman voting power

index) 
( )

12 −N
i Gm

 remains invariant under inclusion or exclusion of a null voter

(Owen (1978), Felsenthal and Machover, (1995, 1998)), SS  also satisfies this

condition.

Maximality specifies the necessary and sufficient condition for SS  to

achieve the maximum value and duality shows that the values of SS  for a voting

game and its dual are the same.

Dubey and Shapley (1979) showed that for any ( ) SG∈= VNG ; ,

      ( ) [ ]
1

2

2

log
−

−
≥

N

N
GSS

θ
θ                                                                                 (4.3)

where θ  is the minimum of the numbers of winning and losing coalitions in G .

Hart (1976) suggested a stronger but more complicated lower bound for ( )GSS .

Dubey and Shapley (1979) also noted that if G  is a decisive game, then a lower

bound of ( )GSS  is 1.

Examples of sensitivity indices other than ( )GSS  which satisfy properties

(a)–(e) are ( )( )cGSS , 0>c , 1≠c  and ( )( )GSSexp . However, because of its

probabilistic interpretation, expositional and computational ease, ( )GSS  appears

to be more attractive than such indices. Furthermore, in the next section we show

that a characterization of ( )GSS  can be developed using a set of intuitively

reasonable axioms. These therefore make ( )GSS  a desirable index of sensitivity.

4.3 The Characterization Result

Before we go on to characterize the BCDS index axiomatically, we will

introduce a special type of game that we will require in our analysis of the

sensitivity index.

Definition 4.1: A voting game ( ) SG∈= VNG ;  is called balanced if

12)()( −== NGG LW .

Clearly, a decisive game (see definition 1.7) is balanced.
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Now we will present three axioms on a general sensitivity index

+→ RSG:ρ , which is a nonnegative real valued function defined on the set of

voting games, that will uniquely isolate the BCDS index given by (4.2). The first

axiom is taken from Dubey (1975) (see also Dubey and Shapley, 1979). It shows

how the sensitivity levels in the games G G1 2∨  and G G1 2∧  (see definitions 1.5

and 1.6) are related to individual sensitivities in G1  and G2 .

Axiom A4.1 (Transfer Principle): For any );( 111 VNG = ,G2 );( 22 VN= SG∈ ,

( ) ( ) ( ) ( )212121 GGGGGG ρρρρ +=∧+∨ .                                                       (4.4)

This axiom, which is also referred to as union-intersection property in the

literature (also see the discussion on transfer principle in section 1.2.4), is quite

similar to the condition characterizing additive measures (in measure theoretic

sense), such as probabilities. If 1a  and 2a  are two events in a probability space

and ∨  and ∧  are the disjunction and conjunction operations respectively, then

( ) ( ) ( ) ( )212121 aaaaaa ρρρρ +=∧+∨ , where ρ  denotes probability.

The next axiom captures the change in sensitivity levels under a merger of

any two voters in a unanimity game (see definition 3.1). In a voting game the

power of a voter is determined by his swings only. Since the number of swings

across voters in unanimity games is a constant, an important source of difference

between the extents of sensitivity in two such games is the number of non-null

voters. One way of reflecting this difference is to assume that the ratio between

sensitivity levels in a unanimity game and a new game obtained by merging two

voters in this game is proportional to the ratio of the numbers of non-null voters in

them. The following axiom gives a formulation along this direction.

Axiom A4.2 (Proportionality Principle): Let SG∈′G  be the game obtained

from ( ) SG∈= SUNG ;  by merging two voters Sji ∈,  as given in definition

1.17. Then,

( )
( ) S

S

G
G

′
=

′ 2

1

ρ
ρ

.                                                                                                   (4.5)

The third axiom states the value of the index if the game has a dictator.



95

Axiom A4.3 (Dictatorship principle): If ( ) SG∈= VNG ; has a dictator, then

( ) 1=Gρ .

Since the BCDS index is obtained directly from the non-normalized

Banzhaf index, our axioms can be compared with some existing axiom systems

that characterize the non-normalized Banzhaf index (see section 1.2.4).

We now have

Theorem 4.1: A sensitivity index ρ  satisfies axioms A4.1-A4.3 if and only if it

is the Banzhaf-Coleman-Dubey-Shapley sensitivity index SS  given by (4.2).

Proof: We first demonstrate that SS  satisfies A4.1-A4.3. Let ( )G N V1 1 1= ; ,

( )G N V2 2 2= ;  SG∈ . Assuming that φ≠− 21 NN , take i N N∈ −1 2 . Now, any

coalition 12 NNS −⊆′  can be appended to a swing coalition S N⊆ 1  for i N∈ 1

to obtain a swing coalition S S∪ ′  for i N N∈ ∪1 2  unless ( )S S N∪ ′ ∩ 2  is

winning in G2 . Hence the number of swings of voter 21 NNi −∈  is

( ) ( ) ( )m G G m G m G Gi i
N N

i1 2 1 1 22 2 1∨ = − ∧−

                   ( ) ( ) ( )= + − ∧− −m G m G m G Gi
N N

i
N N

i1 2 1 22 22 1 1 2 ,                                       (4.6)

since ( )m Gi 2 0=  for 2Ni ∉ . The same expression for ( )m G Gi 1 2∨  will be

obtained if i N N∈ −2 1  and ∈i N N1 2∩ . Therefore,

( ) ( )∑
∪

=
−∪

∨=∨
21

21
1

1

21
21

2

NN

i
NN

i GGm
GGSS

( ) ( ) ( )
= + −

∧











−

∪ −

−

∪ − ∪ −
=

∪

∑ m G m G m G Gi
N N

N N

i
N N

N N

i

N N
i

N N
1

1

2

1

1 2

1
1

2

2

2

2 2

2 1

1 2

1 2

1 2 1 2

1 2

( ) ( ) ( )
= + −

∧







− − ∪ −

=

∪

∑
m G m G m G Gi

N

i

N

i

N N
i

N N
1

1

2

1

1 2

1
1 2 2 21 2 1 2

1 2

= ( ) ( ) ( )2121 GGSSGSSGSS ∧−+ .                                                                      (4.7)

Thus, SS  satisfies A4.1.
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To check satisfaction of A4.2 by SS , consider the unanimity game

( ) SG∈= SS UNG ; . Let ( )SS UNG ′′ ′= ;  be the game obtained from SG  by

merging any two voters Sji ∈, . Then,

( )
11 22

2
−−

−

==
SN

SN

S

SS
GSS  and ( )

12 −′′

′
=

SS

S
GSS , from which we have

( )
( ) S

S

GSS
GSS

S

S

′
=

′ 2

1
 , since 1−=′ SS .

Thus, SS  verifies axiom A4.2.

If a game ( ) SG∈= VNG ;  has a dictator i , then i  is the only swing voter in the

game, that is, im  is maximized, which means that mi
N= −2 1  and m j = 0  for all

j i≠ . Hence,

( ) ( )
1

2

2

2 1

1

1
===

−

−

− N

N

N
i Gm

GSS ,                                                                               (4.8)

which shows that SS  fulfils A4.3.

We will now demonstrate that if a sensitivity index ρ  fulfils A4.1-A4.3,

then it must be the BCDS index. Note that a sensitivity index ρ  satisfying A4.1 is

uniquely determined on unanimity games. This is because for any game SG∈G ,

∨=
1SGG

kSS GG ∨∨ ...
2

, where kSSS ,..., 21  are minimal winning coalitions of G

and 
iSG is the unanimity game corresponding to iS , ki ,...,2,1= . Thus, by A4.1,

ρ  is determined if ( )
1SGρ , ( )

kSS GG ∨∨ ...
2

ρ  and ( )( )
kSSS GGG ∨∨∧ ...

21
ρ  are

known. But ( ∨∧
21 SS GG )

kSG∨...  = 
kSSSSSS GGG ∪∪∪ ∨∨∨

13121
...  and hence by

induction hypothesis on k , both ( )
kSS GG ∨∨ ...

2
ρ  and ( )( )

kSSS GGG ∨∨∧ ...
21

ρ

are determined. So ( )Gρ  is determined.

In view of the above discussion we can say that it is enough to determine

( )SUN;ρ  for any unanimity game ( )SUN; . We will now show by induction on

S  that ( )SUN;ρ =
12 −S

S
. If  S =1, then ( )SUN;  has a dictator and hence by

A4.3, ( )SUN;ρ =1 = ( )SUNSS ; . Therefore assume S > 1 and the result for all
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games ( )SUN; , where S < S . Let ( )SUN ′′;  be the game obtained from

( )SUN; by merging two voters i  and j  in S . Then by induction hypothesis,

( )SUN ′′;ρ =
12 −′

′
S

S
= ( )SUNSS ′′, . By Axiom A4.2, ( )SUNSS ; = 

122

1
−′

′
′ S

S

S

S

= 
12 −S

S
, since 1+′= SS .

This demonstrates that ρ  coincides with SS  on any unanimity game and hence

on all games in SG . �

Theorem 4.1 above specifies a set of necessary and sufficient conditions for

identifying the BCDS index SS  uniquely.

Now, in order to illustrate how the BCDS index SS  can be calculated

from minimal winning coalitions, let us consider the weighted majority game

( )4;3,2,1;;
~ VNG =  with the voter set { }3,2,1=N . The minimal winning coalitions

in this game are { }3,11 =S  and =2S { }3,2 . Hence

( ) ( ) ( ) ( )NSS GSSGSSGSSGSS
~~~~

21
−+= , where 

iSG
~

is the unanimity game

corresponding to iS , 2,1=i  and ( )NN UNG ;
~ = . Then ( )=GSS ~

 +
−122

2

25.1
2

3

2

2
1312

=−
−−

.

We will now show that axioms A4.1-A4.3 are independent. Demonstration

of independence requires that if one of these three axioms is dropped, then there

will exist a sensitivity index that will satisfy the two remaining axioms but not the

dropped one.

Theorem 4.2: Axioms A4.1-A4.3 are independent.

Proof: Let ( )VNG ;= SG∈  be arbitrary. Then consider the sensitivity indices

given by

( )
N

N

i
i Gm

G
2

)(
1

1

∑
==ρ ,                                                                                             (4.9)
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( )
2

1

2

)(
1

2 +=
∑

=
N

N

i
i Gm

Gρ                                                                                      (4.10)

( )
13

2

)(

−
∈
∑

=
N

Di

i G
G

W

ρ ,                                                                                        (4.11)

where )(GiW  is the set of winning coalitions containing i , and D  is the set of

non-null players in the game G .

It is easy to see that 1ρ  verifies A4.1 and A4.2 but not A4.3, whereas 2ρ  verifies

A4.1 and A4.3 but not A4.2. One can also check that 3ρ  fulfils A4.2 and A4.3 but

not A4.1. �

4.4 Fourier Transform Analysis of the Banzhaf - Coleman -Dubey - Shapley

Sensitivity Index

In this section we analyze voting games using tools from Boolean function

literature. Before embarking on the details of the analysis, we discuss the

connection of games to Boolean functions and the main results that we obtain.

An n -variable Boolean function is a map { } { }1,01,0: →nf , where { }n1,0

is the n -fold Cartesian product of { }1,0 . With the conventional identification of

n - bit strings and subsets of N , we can also take the domain to be N2 , where

{ }nN ,...,2,1= . Therefore, Boolean functions can be regarded as indistinguishable

from general games ( )VN; , considered by Owen (1978), where the domain and

the range of V  are N2  and {0,1} respectively. We denote the set of all such

games by ∗SG . Thus, if ( )VNG ;= ∈ ∗SG , then V  is a Boolean function as well.

Since ⊂SG ∗SG , our analysis is also applicable to any game in SG .

Boolean functions have been studied quite extensively in other areas such

as computer science and engineering. Several analytical tools have been

developed for this purpose. The most important of these tools is the Walsh

transform, which is essentially the Fourier transform of ( ) ( )xf1− . In this section
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we use the Walsh transform to obtain bounds on the index. Since we will be

performing the analysis on a general Boolean function (or game) we first

generalize the concept ( )Gmi  in the following manner.

Definition 4.2: For any game ( )VNG ;= ∈ ∗SG , the associated complement

game is ( )VNG ;= ∈ ∗SG , where for any NS ⊆ , ( ) 1=SV  if and only if

( ) 0=SV . Further, G  is said to be balanced if the number of winning coalitions

in G  and G  are equal.

For any ( )VNG ;= ∈ ∗SG  and Ni ∈ , we write

( ) ( ) ( )GmGmGM iii += .                                                                                  (4.12)

Also we set ( ) ( )∑
=

=
n

i
i GMGM

1

. We first show that given a general game

G *SG∈ , it becomes a simple voting game (i.e. SG∈G ) if and only if

( ) ( )GmGM = . Then we go on to obtain upper and lower bounds for ( )GM  which

immediately provide upper and lower bounds for ( )Gm . The main results that we

obtain are the following.

1. If G  in *SG is a balanced n-player game, then ( )GM ≥ 12 −n .  Consequently,

for any balanced n-player game G  in SG , we have ( )Gm ≥ 12 −n . Further,

equality is attained if there is a dictator.

2. If G ∈ *SG  is an n - player game and w )(GW=  is the number of winning

coalitions, then

( )
12

2
−

−
n

n ww ≤ ( )GM ≤ n
( )

12

2
−

−
n

n ww
.

Further, both the upper and lower bounds are attained.

Consequently, for any n-player game G ∈ SG , we have

( ) ( ) nGm
ww

n

n

≤≤−
−12

2 ( )
12

2
−

−
n

n ww
.
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Remarks:

(a) From result (1) above, it follows that for a decisive voting game, a lower

bound of ( )GSS  is 1. As stated earlier, Dubey and Shapley (1979) derived 1

as the lower bound of SS  for decisive voting games. Evidently, Corollary 4.5

presents a lower bound for a more general class of games viz., balanced

voting games. Moreover, Dubey and Shapley’s (1979, p.108) claim that the

lower bound can only be derived by using Hart’s (1976) bound does not

appear to be true.

(b) It is known (Felsenthal and Machover, 1998, p.56) that for SG∈= );( VNG ,

( ) nGm ≥ . Result (2) above provides a lower bound on ( )Gm  for monotone

games. This lower bound depends on the number of winning coalitions.

Though this can be lower than n , in general it is going to be a sharper lower

bound. In fact, our lower bound 
( )

12

2
−

−
n

n ww
 is greater than n  if

22
122

1

11 nn
w n

nn ≅−−> −
−− .

To obtain these results, we first prove a relation (Lemma 4.1) between

( )GM i  and the autocorrelation function of the Boolean function associated with

G . (See equation (4.17) below for the definition of the autocorrelation function.)

Thus, autocorrelation function becomes a helpful technique in studying swings in

general voting games. Further algebraic analysis is performed using the Walsh

transform, which ultimately leads to the desired results. This in turn establishes

the role of the Walsh transform in proving results in general voting games. Since

the Walsh transform can be expressed in matrix form using the Hadamard matrix,

this motivates the use of the Hadamard matrix.

For the sake of convenience, we divide this section into two subsections.

4.4.1 Basics of Fourier Transform Analysis

In this subsection, we present the mathematical preliminaries necessary for

understanding the Fourier transform analysis of games.
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Let 2F  be the field { } ⋅⊕,,1,0 , where ⊕  and · denote modulo 2 addition

and multiplication. We thus consider the domain of a Boolean function to be the

vector space ⊕,2
nF  over 2F , where, as stated, ⊕  is the addition operator on 2F

and also on nF2 . The inner product of two vectors ( )nuuu ,...1= ,

( )nvvv ,...,1= ∈ nF2  is i

n

i
ivu∑

=1

 and will be denoted by vu, . The weight of an n -

bit vector u  is the number of ones in u  and will be denoted by ( )uwt .

The Fourier transform is the most widely used tool in the analysis of

Boolean functions. In most cases it is convenient to apply Fourier transform to

( ) ( )xf1−  instead of ( )xf . The resulting transform is called the Walsh transform of

( )xf . More precisely, the Walsh transform of ( )xf  is an integer-valued function

{ } [ ]nnn
fW 2,21,0: −→  defined by (see, for example, Ding, Xiao and Shan

(1978)).

( ) ( ) ( )∑
∈

⊕−=
nFw

wuwf
f uW

2

,1            .                                                                     (4.13)

The Walsh transform is called the spectrum of f . Note that the spectrum

measures the cross-correlations between a function and the set of linear functions.

Another way of looking at the spectrum is via Hadamard matrices. Let nH  be the

Hadamard matrix of order n2  defined recursively as (see MacWilliams and

Sloane (1977))









−

=
11

11
1H                                                                                                    (4.14)

11 −⊗= nn HHH  for 1>n ,

where ⊗  denotes the Kronecker product of two matrices. For example,









−

=
11

11
2 HH

HH
H = 



















−
−−

−

−−

11

11

11

11
11

11

11

11

.
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Considering the rows and columns of nH  to be indexed by the elements of nF2 ,

we obtain [ ]( ) ( ) vu
vunH ,

,
1−= . Using this fact, the Walsh transform can be written

as

( ) ( )[ ]12,...,0])1(,...,)1[( )12()0( −=−− − n
ffn

ff WWH
n

,                                         (4.15)

where ∈u nF2  is identified with an integer in ]12,0[ −n .

Since nH nH = nIn

2
2 , post-multiplying both sides by nH  we get the inverse of

Walsh transform.

( ) ( ) ( )( )∑
∈

−=−
nFw

wu
fn

uf wW
2

,1
2

1
1  .                                                                    (4.16)

Another commonly used tool in Boolean function analysis is the auto-

correlation function. The auto-correlation function is an integer-valued map

{ } [ ]nnn
fC 2,21,0: −→  defined by (see MacWilliams and Sloane (1977), for a

related concept called directional derivative)

( ) ( ) ( ) ( )∑
∈

⊕⊕−=
nFw

wufwf
f uC

2

1     .                                                                          (4.17)

It is clear that ( ) n
fC 20 = . The auto-correlation is not a transform in the sense that

it does not uniquely determine the function.

For the weighted majority game ( )4;3,2,1;;
~ VNG =  with minimum

winning coalitions { }3,1  and { }3,2  the corresponding Boolean function f  and

Walsh transform fW  are given in Table 4.1 below. The variable ix  in the table

represents player i .
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Table 4.1: The Walsh Transform and Autocorrelation.

3x 2x 1x f fW fC

0 0 0 0 2 8

0 0 1 0 2 4

0 1 0 0 2 4

0 1 1 0 2 4

1 0 0 0 6 -4

1 0 1 1 -2 -4

1 1 0 1 -2 -4

1 1 1 1 -2 -4

The next result is called the Wiener-Khintchine Theorem in continuous

analysis and has also been obtained for Boolean functions (see Carlet (1992);

Preneel (1993) and Zhang and Zheng (1995)).

Theorem 4.3: Let f  be an n -variable function. Then

)]12(),...,0([ −n
ff CC nH = )]12(),...,0([ 22 −n

ff WW .                                         (4.18)
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Applying the inverse transform gives ( ) ( ) n
f

n

Fu
f CuW

n

22 202
2

==∑
∈

. This is a

conservation law for the spectral values of f  and is known as Parseval’s

Theorem (see, for example, Ding, Xiao and Shan (1978)).

The next result states a useful property of Walsh Transform (see Canteaut,

Carlet, Charpin and Fontaine (2000), Proposition 5). For a vector space E , we

define ⊥E  to be the vector space which is orthogonal to E , i.e., ⊥E  =

{ }Evvuu ∈∀= ,0,: .

Theorem 4.4: Let f  and g  be n -variable functions and E  be a subspace of nF2 .

Then

( ) ( )∑∑
⊥∈∈

=
Eu

f
Ew

f uCEwW 2                                                                                   (4.19)

See (Sarkar and Maitra (2002)) for a discussion of the above results in a

more general setting.

In the next subsection, we present the main results of this chapter.

4.4.2 The Results

In this subsection, we present the results mentioned at the beginning of

section 4.4 along with complete proofs. First we generalize the notion of swing.

The notion of swing is quite general in the sense that we do not require

monotonicity  (condition (iii) in definition 1.3) for swing to be defined.

Definition 4.3: Given a game ( )VNG ;= ∈ ∗SG , and Ni ∈ , number of negative

swings of i  is defined as

( ) { } ( ) { }( ){ }1: =∪−−⊆=− iSVSViNSGmi .

For any ( )VNG ;= ∈ ∗SG , we write

( ) ( )∑
∈

−− =
Ni

i GmGm .                                                                                          (4.20)

The following proposition, whose proof is very easy, states the

relationship between ( )Gmi
−  and ( )Gmi .
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Proposition 4.1: Let ( )VNG ;= ∈ ∗SG  be arbitrary. Then for any Ni ∈ , ( )Gmi
−

= ( )Gmi .

Proposition 4.2: Let ( )VNG ;= ∈ ∗SG . Then ( )Gm =0 if and only if G  satisfies

monotonicity, that is, condition (iii) in definition 1.3.

Proof: The sufficiency part of the proof is easy to verify. We therefore establish

the necessity. If ( )Gm =0, then ( )Gmi =0 for all Ni ∈ . Let S  and T be two

coalitions in G  such that ( ) 1=SV  and TS ⊆ . Then we need to show that

( ) 1=TV . This is shown by induction on STr −= . For 0=r , we have T = S

and the result follows trivially. Assume that the result is true for 1−r . Let T ′  be

such that TTS ⊆′⊆  and T ′  = 1−r . By induction hypothesis ( ) 1=′TV . Let

Nj ∈  be such that { }jTT ∪′= . If possible, let ( ) 0=TV . Then ( ) 0=′TV  and

( ) 1=TV , which in turn implies that ( ) 0≠Gm j . This contradicts the assumption

that ( ) 0=Gmi  for all Ni ∈ . Therefore G  will fulfil monotonicity. �

Corollary 4.1: Let ( )VNG ;= ∈ ∗SG . Then ( ) ( ) ( )GmGMGM
Ni

i == ∑
∈

 if and

only if G  is monotone.

Corollary 4.2: Let ( )VNG ;= ∈ ∗SG . Then ( ) ( )GSSGSS + = ( )GSS , that is

( )GSS  = 0 if and only if G  meets monotonicity.

Remarks:

(a) Propositions 4.1 and 4.2 show that a game does not have negative swing if and

only if it is monotone.

(b) Since ( ) ( ) ( )GmGMGm −=  and ( ) 0≥Gm , ( )Gm  is maximized if and only if

G  satisfies monotonicity.

(c) It is evident that ( )GM  can be regarded as a sensitivity index on the set ∗SG .
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Given ( )VNG ;= ∈ ∗SG , we now express ( )Gmi  in terms of the

autocorrelation values of V . For Ni ∈ , let iε  be the −n vector, which has 1 in

the thi  position and 0 elsewhere.

Lemma 4.1: For any −n player game ( ) ∗∈= SGVNG ;  and Ni ∈ , we have

( )GM i  = ( )iV
n C ε

4

1
2 2 −−                                                                               (4.21)

Proof: Let ( ) { }( ) ( ){ }1: =⊕∆⊆= SViSVNSViµ , where for any two sets A  and

B , ( ) ( )ABBABA −∪−=∆ . Then it is easy to verify that

( )Gmi  + ( )Gmi = ( )Viµ
2

1
. We now compute

( ) ( ) ( ) ( )∑
∈

⊕⊕−=
n

i

Fx

xVxV
iVC

2

1
εε

             = ( ) ( ){ }ixVxVx ε⊕=: - ( ) ( ){ }ixVxVx ε⊕≠:

             = 22 −n ( ) ( ){ }ixVxVx ε⊕≠:

             = 22 −n ( )Viµ

             = 42 −n ( ( )Gm i + ( )Gmi ).

This gives us the desired result. �

Corollary 4.3: For any −n player game ( ) ∗∈= SGVNG ; , we have

 ( ) ( )∑
=

− −=
n

i
iV

n CnGM
1

2

4

1
2 ε .                                                                          (4.22)

Thus the problem reduces to computing ( )∑
=

n

i
iVC

1

ε . We use algebraic

techniques to tackle this problem. The first two steps are the following.

For two −n bit vectors u  and v  we denote vu ≤  if ii vu ≤  for each

Ni ∈ . Also by u  we denote the bitwise complement of u .

Lemma 4.2: For any −n player game ( ) ∗∈= SGVNG ; , we have
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( )∑
=

n

i
iVC

1

ε = ( )∑∑
= ≤

−+−
n

i u
Vn

n

i

uWn
1

2
12

1
2

ε

.                                                       (4.23)

Proof: For ni ≤≤1 , let iE  be the subspace of 
nF

2
 defined by

iE = { }i
n uFu ε≤∈ :2 . Then 

⊥

iE = { }i
n uFu ε≤∈ :2 = { }iε,0 . It is easy to see that

12 −= n
iE . We now apply Theorem 4.4 to get ( )∑

≤ iu
V uC

ε

 = ( )∑
≤

−
iu

Vn
uW

ε

2

12

1
.

Note that ( )∑
≤ iu

V uC
ε

 = ( ) ( )iVV CC ε+0 = n2 + ( )iVC ε . Hence summing both the

sides from 1 to n  we obtain the desired result. �

The next task is to simplify the right hand side of Equation (4.23).

Lemma 4.3: For any −n player game ( ) ∗∈= SGVNG ; , we have

( )∑∑
= ≤

n

i u
V

i

uW
1

2

ε

 = nn 22 ( ) ( )∑
∈

−
nFu

V uWuwt
2

2 .                                                      (4.24)

Proof: Let nFu 2∈  be arbitrary. The number of times ( )uWV
2  occurs in the left-

hand side of Equation (4.24) is ( )( )uwtn − . Hence the left-hand side is equal to

 ( ) ( )∑
∈

−
nFu

V uWuwtn
2

2)(  = ( )∑
∈ nFu

V uWn
2

2  ( ) ( )∑
∈

−
nFu

V uWuwt
2

2 .

Using Parseval’s Theorem, we have ( ) n

Fu
V

n

uW 22 2
2

=∑
∈

. This gives us the desired

result. �

Let  ( )VN;  be a −n player game. For ni ≤≤0 , we define

( ) ( )
( )

∑
=∈

=
iuwtFu

n
V

V
n

uW
iK

,
2

2

2
2

.

Note that using Parseval’s Theorem, we have ( ) 1
0

=∑
=

n

i
V iK . We rewrite

Lemma 4.3 in the following manner.

Lemma 4.4: ( )∑∑
= ≤

n

i u
V

i

uW
1

2

ε

 = nn 22 ( )∑
=

−
n

i
V

n iiK
0

22                                        (4.25)
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Combining Corollary 4.3, Lemma 4.2 and Lemma 4.4 we obtain the main

result.

Theorem 4.5: Let ( ) ∗∈= SGVNG ;  be an n - player game. Then

( ) 12 −= nGM ( )∑
=

n

i
V iiK

0

                                                                                    (4.26)

Recall that an n - player game ( )VN;  is balanced if the number of

winning coalitions (i.e., the weight) of V is 12 −n .

Corollary 4.4: Let ( ) ∗∈= SGVNG ;  be an n - player game. Assume further that

G  is balanced. Then ( )GM ≥ 12 −n .

Proof: If G  is balanced, then ( ) 00 =VW  and consequently ( ) 00 =VK . Thus

( ) ++ ...1VK ( ) 1=nKV  and ( )GM = 12 −n ( )∑
=

n

i
V iiK

0

≥ 12 −n . �

Corollary 4.5: Let ( ) SG∈= VNG ;  be an n -player game. Assume also that G

is balanced and monotone. Then ( ) 12 −≥ nGm . Further, equality is attained if there

is a dictator.

A class of Boolean functions called resilient functions has been

extensively studied for cryptographic applications. These were introduced by

Siegenthaler (1984) and were characterized in terms of Walsh transform (see Xiao

and Massey (1988)). An n -variable Boolean function f  is called k - resilient if

( ) 0=uW f  for all ( ) kuwt ≤≤0 . We can prove improved lower bound for games

corresponding to resilient functions. The proof is similar to that of Corollary 4.4.

Corollary 4.6: Let ( ) ∗∈= SGVNG ;  be an n - player game which is k -resilient.

Then ( )GM ≥ ( ) 121 −+ nk .
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Let X  be a random variable on { }n,...,0  such that [ ] ( )iKiXP V== . Then

( )∑
=

n

i
V iiK

0

 is the expected value of X . Bounds on this expected value provide

bounds on ( )Gm .

Theorem 4.6: Let ( ) ∗∈= SGVNG ;  be an n - player game and w  )(GW=  is

the number of winning coalitions. Then

( )
12

2
−

−
n

n ww ≤ ( )GM ( ) ( )GmGm += ≤ n
( )

12

2
−

−
n

n ww
.                                         (4.27)

Further, both the upper and lower bounds are attained.

Proof: We have

( )∑
=

n

i
V iK

1

≤ ( )∑
=

n

i
V iiK

0

≤ n ( )∑
=

n

i
V iK

1

.

Using ( )∑
=

n

i
V iK

1

=1 ( )0VK−  we obtain

1 ( )0VK− ≤ ( )∑
=

n

i
V iiK

0

≤ n (1 ( )0VK− ).                                                           (4.28)

By definition,

( ) ( ) ( )
n

n

n
V wW

K
2

2

2

2

2

22

2

0
0

−== .

Putting this value of ( )0K  in inequality (4.28) and using (4.26) we obtain the

desired result.

The lower bound is attained if any one player becomes the dictator. The upper

bound is attained if G  is the parity game, i.e., ( ) ( ) 2modxwtxV ≡  for all nFx 2∈ .

(Note that for a parity game the number of swings of any player i  in both G  and

G is 22 −n . Therefore, for such a game ( ) ( ) nGmGm == 22 −n .) �

Corollary 4.7: If ( ) ∗∈= SGVNG ;  is monotone, then

( ) ( ) nGm
ww

n

n

≤≤−
−12

2 ( )
12

2
−

−
n

n ww
.
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4.5 Conclusion

Dubey and Shapley (1979) argued that in a voting situation the sum of the

number of ways in which each voter can affect a ‘swing’ in the outcome is a

measure of the sensitivity of the situation. Following Felsenthal and Machover

(1998) we consider a normalized value of this sum and refer to it as the Banzhaf

(1965)-Coleman (1971)-Dubey-Shapley (1979) sensitivity index. This chapter

investigates some of its properties, the main topics being a characterization from a

set of independent axioms and derivation of bounds for a very general class of

games.
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CHAPTER 5

ON THE CARRERAS-COLEMAN DECISIVENESS INDEX##

5.1 Introduction

A decisiveness index of a voting body, under a given decision rule, is a

quantification of the extent to which the body is able to control the outcome of a

division of it. This index measures the propensity of the voting body to a

proposed resolution in an unambiguous way. Thus, it is a characteristic of the

voting body itself, rather than of any particular member.

In a recent paper, Carreras (2004) suggested a decisiveness index for

assessing the decision rule of a voting body. It equals the a-priori probability that

the decision-making committee under consideration will accept a proposed

resolution. As Carreras (2004) showed, it has a relationship with the non-

normalized Banzhaf index and several interesting properties. Earlier, Coleman

(1971) had suggested an index of the ‘power of a collectivity to act’, which can be

regarded as the extent of deference of the concerned voting body to the passage of

a resolution. Since it coincides with Carreras’ (2004) decisiveness index, we will

refer to this common index as the Carreras- Coleman (CC) index.

Carreras (2004) also developed characterizations of the CC index using

different axioms, some of which were used in characterizations of several

individual power indices by Dubey (1975), Dubey and Shapley (1979), Roth

(1988), Feltkamp (1995), Laruelle and Valenciano (2001) and others. One axiom

that has been used extensively for characterizing the Banzhaf index or its

weighted form is about amalgamation of voters (see, for example, Lehrer (1988),

Nowak (1997), Nowak and Radzik (2000), Albizuri (2001), Barua, Chakravarty

and Roy (2004a)). In this chapter we consider a similar amalgamation axiom for a

collective power index. It is then shown that three different sets of axioms, where

each set contains this axiom and two other axioms considered by Carreras (2004)

and others, become equivalent to one of the axiom sets of Carreras (2004) that

                                                                
#  This chapter is based on Barua, Chakravarty and Roy (2004b).
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characterizes the CC index. It thus follows that each of the three sets considered

by us characterizes the CC index. We also show that axioms considered in each of

the three sets are independent, that is, each set is minimal in the sense that none of

its proper subset can characterize the index.

The chapter is organized as follows. In section 5.2 we discuss the

Carreras-Coleman decisiveness index. We also characterize this index using three

different sets of independent axioms, each of which have been shown to be

equivalent to a set of axiom set that Carreras (2004) used in his characterization

exercise. Finally in section 5.3 we conclude.

5.2 The Carreras-Coleman Decisiveness Index

A decisiveness index is a nonnegative real valued function D  defined on

SG , the set of all simple games, that is, +→ RSG:D , where +R is the

nonnegative part of the real line. For any ∈G SG , D ( )G  is a summary statistic

of the inclination of the voting body towards the passage of the proposed act. It

determines the degree of ease with which the interests of the body members in a

division can be transformed into actual decisions. It is ‘intended to measure the

possibilities that some winning coalition forms in this game’ (Carreras (2004), p.

5).

The Carreras-Coleman (CC) decisiveness index is given by

CC ( )G = 
N

G

2

)(W
,                                                                                             (5.1)

where G= ( )VN , ∈ SG  is arbitrary. Since )(GW  is the total number of winning

coalitions and N2  is the total number of coalitions (including the empty one) in

the game G, ( )GCC  is the prior probability of a positive outcome, that is, the

probability that the voting body will adopt a resolution. It can also be interpreted

as the probability of a random coalition to be winning when each voter has a

probability 2
1  to belong.
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Carreras (2004) has established the following relationship between CC  and the

non-normalized Banzhaf index iBZNN  (see equation (3.1)).

iBZNN
2

1 ( )G = CC ( )G -CC ( { }iG− )                                                                  (5.2)

where { }iG−  is the game obtained from G by deleting voter Ni ∈ . That is, when

voter i  leaves, the resulting loss of decisiveness equals half the Banzhaf power of

i . CC  satisfies an anonymity condition in that it remains invariant under any

reordering of voters (see Carreras (2004) for additional discussion on CC ).

In order to study properties of the CC index, we will consider the

following axioms:

(A5.1) Transfer principle: Consider two games ),;( 111 VNG =  );( 222 VNG =

SG∈ . Then ( )21 GGD ∨  = ( )1GD + ( )2GD - ( )21 GGD ∧ , where the games

21 GG ∨  and 21 GG ∧  have been defined in definitions 1.5 and 1.6.

(A5.2) Ignoring null voters: Given SG∈= );( VNG , if voter Nd ∈  is null,

then ( )GD = { })( dGD − , where { }dG−  is the game obtained from G by deleting d.

(A5.3) Unanimity property: ( ) SSUND
2

1; = , where the game );( SUN is as

defined in definition 3.1.

(A5.4) Dictatorship property: If G has a dictator, then ( ) 2
1=GD .

(A5.5) Single voter property: If G is a single-person voting game, then

( ) 2
1=GD .

(A5.6) Merger property: If ( )SUN ′′, SG∈  is the game obtained from

( )SUN , SG∈  by merging any two voters Sji ∈,  (see definition 1.17), then

D ( )SUN ′′,  = 2D ( )SUN , .

(A5.1) says how total decisiveness from 1G  and 2G  can be transferred to the

games 21 GG ∨  and 21 GG ∧ . Carreras (2004) considered a weaker form of (A5.1)

with 21 NN = , which was introduced by Dubey (1975) (see also Dubey and
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Shapley (1979)) (see section 1.2.4). More precisely, the transfer principle

considered by Carreras (2004) is given by:

(A5.1*) Transfer principle: Consider );( 111 VNG = , SG∈= ),( 222 VNG , 1G ∨

2G  and 1G ∧ 2G , as in definitions 1.5 and 1.6, under the assumption that

21 NN = .

Then ( )21 GGD ∨ = ( )1GD + ( )2GD - ( )21 GGD ∧ .

 (A5.2), which was considered by Carreras (2004), means that decisiveness

remains unaffected under entry or exit of a null voter from the game (see also

Felsenthal and Machover (1998)).

(A5.3) measures decisiveness in a unanimity game (see definition 3.1). Carreras

(2004) used the form of (A5.3) when NS = . More precisely, the Carreras version

of (A5.3) is given by:

(A5.3*) Unanimity property: ( ) NNUND
2

1; = .

(A5.4) was suggested by Carreras (2004).

(A5.5) has a similar spirit as (A5.4). (A5.3)-(A5.5), which specify values of the

decisiveness index in particular cases, can be viewed as giving ‘initial conditions’

to the decisiveness index.

The final axiom, which is similar in nature to an axiom of Nowak and Radzik

(2000), is concerning the change of decisiveness in a unanimity game under

merger of two voters (see also Lehrer (1988)). To understand (A5.6) consider two

unanimity games with number of voters being 1 and k ( >> 1) respectively.

Consider the specific situation NS = . Clearly, while in the former, one

individual enjoys the capability of making the coalition wining, in the latter it is

shared by many individuals. It is therefore reasonable to expect that the former

demonstrates a higher extent of power to act than the latter .We can provide

similar explanations for other situations. In view of this we can argue that

decisiveness increases under a merger of two voters in a unanimity game and

(A5.6) gives a formulation along this line. (See also Barua, Chakravarty, Roy and

Sarkar (2004) for a similar discussion.).



115

Carreras (2004) showed that the only decisiveness index satisfying

(A5.1*), (A5.2) and (A5.3*) is the CC  index. The following theorem

demonstrates equivalence of (A5.1*), (A5.2) and  (A5.3*) with several seemingly

unrelated axioms including (A5.6).

Theorem 5.1: Let +→ RSG:D be a decisiveness index. Then the following

conditions are equivalent.

(a) D  is the Carreras-Coleman index given by  (5.1).

(b) D  satisfies (A5.1), (A5.4) and (A5.6).

(c) D  satisfies (A5.1*), (A5.4) and (A5.6).

(d) D  satisfies (A5.1), (A5.5) and (A5.6).

(e) D  satisfies (A5.1*), (A5.3*) and (A5.2).

Proof:

(a) ⇒ (b): We first show that CC  satisfies (A5.1). Let

( ) ( ) SG∈== 222111 ;,; VNGVNG . By definition ⊆S 21 NN ∪  is winning in

21 GG ∨  if and only if )( 11 GNS W∈∩  or )( 22 GNS W∈∩ , where )( iGW is

the set of all winning coalitions in iG , 2,1=i . Hence we can write )( 21 GG ∨W ,

the family of all winning coalitions in 21 GG ∨ , as

)( 21 GG ∨W = 21 WW ∪ ,                                                                                    (5.3)

where, { 12211211 ,: NNSNSSS −⊆⊆∪=W and })( 11 GS W∈ ,

{ 22211212 ,: NSNNSSS ⊆−⊆∪=W and })( 22 GS W∈ .

Clearly, )( 21 GG ∧W = 21 WW ∩ .                                                                      (5.4)

Hence, by Inclusion-Exclusion Principle,

212121 )( WWWWW ∩−+=∨ GG

            ( )2121
2112 2)(2)( GGGG NNNN ∧−+= −− WWW .                                           (5.5)

Therefore,

212121 2

)(

2

)(

2

)(

2

)( 212121

NNNNNN

GGGGGG
∪∪

∧
−+=

∨ WWWW
,
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or, ( ) ( ) ( ) ( )212121 GGCCGCCGCCGGCC ∧−+=∨ ,

which on rearrangement gives

( )21 GGCC ∨ + ( )21 GGCC ∧ = ( )1GCC + ( )2GCC .                                             (5.6)

Thus, CC  verifies (A5.1). Carreras (2004, Theorem 4.4) showed that CC  meets

(A5.4).

Next, let =G ( )SUN ,  and let ( )SUNG ′′=′ ;  be the merged game obtained

from G by merging any two voters Sji ∈, , where G′  is given by definition 1.17.

Hence ( )
SN

SN

GCC
2

1

2

2
==

−

 and ( )
12

1
−

=′
S

GCC , so that ( ) =′GCC ( )GCC2 ,

which demonstrates fulfillment of (A5.6) by CC .

(b) ⇒ (c) : Any decisiveness index satisfying (A5.1) will satisfy (A5.1*) as well.

(c) ⇒ (d): Clearly, (A5.4) implies (A5.5). To check satisfaction of (A5.1),

consider the two games ( ) ( ) SG∈== 222111 ;,; VNGVNG . Let 21 NNN ∪= .

Consider the game );( ii VNG ′=′  defined by )()( SNVSV iii ∩=′ , NS ⊆ , =i 1, 2.

Clearly, 21 GG ′∨′ = 21 GG ∨  and =′∧′
21 GG 21 GG ∧ . Therefore,

D ( 21 GG ∨ ) = D ( 21 GG ′∨′ )

         =D ( 1G′ )+D ( 2G′ )-D ( 21 GG ′∧′ ) (by (A5.1*))

         = D ( 1G′ )+D ( 2G′ )-D ( 21 GG ∧ ).

To complete the proof, we need to show that 1(GD ′ )= 1(GD ) and

2(GD ′ )= 2(GD ). We first show that (A5.3) holds. Suppose  );( SUNG =  is a

unanimity game, where kS = . Under successive application of merger )1( −k

times, from G we generate a game Ĝ  with a dictator. Then applying (A5.6)

repeatedly we get )ˆ(
2

1
)(

1
GDGD

k−
= , which by (A5.4) becomes

SkkGD
2

1

2

1

2

1
.

2

1
)(

1
=== − , which is (A5.3).
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Now, suppose 
lSSS UNUNUNG ;(.......);();(

211 ∨∨∨=′ ), where iS ’s

( ),...,2,1 li =  are minimal winning coalitions in 1G′ . Note that each 1NS i ⊆  and

hence is minimal winning in 1G . Also note that

lSSS UNUNUNG ;(.......);();( 1111 21
∨∨∨= ). If 1=l , then 11 NS ⊆  is a minimal

winning coalition in 1G  and 1G = );(
11 SUN . Therefore by (A5.3),

1(GD ′ )=
12

1
S

= 1(GD ). So assume 1>l  and the result for ll <′ . Then

)];(...);[()];(...);[();()(
121211 ll SSSSSSS UNUNDUNUNDUNDGD ∪∪ ∨∨−∨∨+=′

                                                                                                                (by (A5.1*))

= )];(...);[()];(...);[();(
12121 11111 ll SSSSSSS UNUNDUNUNDUND ∪∪ ∨∨−∨∨+

                                                                                       (By induction hypothesis)

 = )];(.......);();[( 111 21 lSSS UNUNUND ∨∨∨  (by (A5.1*))

 = 1(GD ).

Similarly, we can show that 2(GD ′ ) = 2(GD ). Thus, we have (A5.1).

(d) ⇒ (e): Clearly, (A5.1) implies (A5.1*). To obtain (A5.2), let Nd ∈  be a null

player in the game SG∈= );( VNG . Let 1G = { }dG−  (the game obtained from G

by eliminating the null player d  from the game) and let another game 2G  be such

that { }{ })(:)( 12 GSdSG WW ∈∪= .

Evidently, GGG =∨ 21  and 221 GGG =∧ .

Therefore, =)(GD )( 21 GGD ∨ = )()()( 2121 GGDGDGD ∧−+

= D ( { }dG− )+ )()( 22 GDGD − = D ( { }dG− ). Thus we have (A5.2).

We shall obtain (A5.3*) by induction on N . If N =1, then by (A5.5)

NNUND
2

1

2

1
);( == . Now, suppose N > 1 and let us assume the result for all

unanimity games );( NUN , such that NN < . Let );( NUN ′′ be obtained from

);( NUN  by merging two voters. Then by (A5.6), );(
2

1
);( NN UNDUND ′′= ,
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which by induction hypothesis becomes .
2

1

2

1
.

2

1
);(

NNNUND == ′ Hence

(A5.3*) holds.

(e)⇒ (a): This part of the proof follows from theorem 4.3 of Carreras (2004). �

Since (A5.1*), (A5.3*) and (A5.2) characterize the CC  index, theorem 5.1 says

that each of the three axiom sets, as described by (b), (c) and (d), will also

characterize the CC  index.

Remark: If a game ( )VNG ;=  is decisive, then the Carreras-Coleman

decisiveness index takes the value 2
1  and the properties discussed above become

very straightforward.

In the following theorem we show independence of  (A5.1), (A5.4) and

(A5.6). Independence says that none of these axioms implies or is implied by a

second one. Demonstration of independence will require that if one of them is

dropped, then there will exist a decisiveness index other than the CC  index that

will satisfy the remaining axioms but not the dropped one.

Theorem 5.2: Axioms (A5.1), (A5.4) and (A5.6) are independent.

Proof: Consider the decisiveness indices given by

( )
N

G
GD

2

)(
1

Wα
= ,  where,  0>α , 1≠α , is a constant,                                  (5.7)

( )
4

1

2

)(
12 +=

+N

G
GD

W
,                                                                                         (5.8)

∑
∈

=
Yi

N

i G

Y
GD

2

)(1
)(3

W
,                                                             (5.9)

where Y is the set of all non-null voters and )(GiW  is the set of all winning

coalitions containing i .

1D  is a violator of (A5.4)  but not of (A5.1) and (A5.6). On the other hand, 2D

violates (A5.6), but not the other two axioms. It is easy to show that 3D  satisfies
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(A5.4). To show that 3D  satisfies (A5.6), consider the game G = ( )SUN , . Let

( )SUNG ′′=′ ;  be the game obtained G by merging Sji ∈, . Now,

∑∑
∈∈

==
Si

N

i

Yi
N

i

S

G

Y

G
GD

2

)(

2

)(
)(3

WW
, since S is the set of non-null voters. For each

Si ∈ , SNi G −= 2)(W . Hence ∑
∈

−

=
Si

N

SN

S
GD

2

2
)(3  =∑

∈Si
SS 2

1
=

SS

S

2
= S21 .

Similarly, )(22221)( 33 GDGD SS ===′ ′
. Hence 3D  satisfies (A5.6). If 3D

satisfies (A5.1), then it coincides with CC  on all unanimity games and hence on

all voting games, as can be argued by induction on the number of minimal

winning coalitions. Hence  3D  does not meet (A5.1). �

Clearly, theorem 5.2 holds if we replace (A5.1) by (A5.1*). Hence (A5.1*),

(A5.4) and (A5.6) are independent.

Finally in the next theorem we show that the axioms (A5.1), (A5.5) and

(A5.6) are independent.

Theorem 5.3: Axioms (A5.1), (A5.5) and (A5.6) are independent.

Proof: We note that 1D  in (5.7) violates  (A5.5) and 2D  in (5.8) violates  (A5.6)

and each satisfies respective complement of the axiom that it violates from the

universal set {(A5.1), (A5.5), (A5.6)}. It is easy to check that 3D  fulfils (A5.5).

As already shown, 3D  does not satisfy (A5.1) but satisfies (A5.6). �

5.3 Conclusion

The Carreras-Coleman decisiveness index is an indicator of collective

decision making power in a voting game. This chapter shows that a set of axioms

used by Carreras (2004) for characterization of the index is equivalent to three

different sets of axioms and also establishes independence between the axioms in

each of the three sets.
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CHAPTER 6

DISTRIBUTION OF POWER IN THE INDIAN LOK SABHA

6.1 Introduction

In this chapter, we briefly examine, in terms of voting power, the results of

the elections to the Lower House of the Indian Parliament (Lok Sabha), held

between the years 1951 and 2004. More precisely, we investigate how the powers

of different major national political parties have changed over the years.

India is a republic, which has adopted a system of multiparty

parliamentary democracy after its freedom from the British rule in 1947. The

Parliament consists of the President, the Lok Sabha (House of the People) and the

Rajya Sabha (Council of States). The Lok Sabha is composed of representatives

of the people chosen by direct election on the basis of adult suffrage and hence it

is the most important legislative body in the country. The Constitution puts a limit

on the size of the Lok Sabha at 550 elected members, apart from two members

who can be nominated by the President to represent the Anglo-Indian community,

if in his opinion that community is not adequately represented in the House. At

present the country is divided into 543 parliamentary constituencies, the size and

shape of which are determined by an independent Delimitation Commission,

which aims to create constituencies that have more or less the same number of

electorate, subject to geographical considerations and boundaries of the states and

administrative areas. Each constituency returns one representative to the Lok

Sabha. The members owe their allegiance to the various registered political

parties. The party whose members occupy a simple majority of the total number

of seats in the Lok Sabha forms the government at the Centre. However, in times

when a single party fails to acquire a majority, some like minded parties may

form a post-poll alliance and can stake claim to form a government if their total

number of seats fulfils the simple majority criterion. Thus, the governing parties

may be a minority, when considered separately, in the Lok Sabha, but they can



121

govern as long as they have the support of a majority of the members of the Lok

Sabha. At present the number of members in the Lok Sabha is 543.

The passage of most bills in the Lok Sabha requires a simple majority. So

the voting process in the Lok Sabha can be viewed as a weighted majority game

(see definition 1.12), where the decision rule is ‘simple majority’ and the players

are the different political parties with the number of seats they occupy in the Lok

Sabha, as their respective weights. Using this framework, we find how the a-priori

power of major political parties has changed over the years. Here, the a-priori

power of a voter is indexed by the a-priori probability that the voter is in a

position to change the outcome of the voting process by changing his vote. The

term “a-priori” has been used to indicate that what we get by this methodology is

not the actual power but just an indication of what the actual power could be. The

reason is that in this methodology we neglect any affinities or animosity between

voters etc. Here all possible coalitions of voters are regarded as equi-probable,

whereas had we considered the prior affinities between voters, some of these

coalitions might have very low probability of being formed and others high. The

indices that we have used to measure the a-priori power of the different parties

represented in the Lok Sabha are the Coleman indices of the power to prevent

action and initiate action (Coleman (1971)), the Banzhaf normalized and non-

normalized indices (Banzhaf, (1965)) (see section 1.2.2). There has been no ad

hoc reason for avoiding the Shapley-Shubik index. The Shapley-Shubik index has

been widely used in many application works in the literature, and it could have

been calculated in this case as well. But, because throughout the thesis we have

concentrated on the Banzhaf and the Coleman indices, so for the sake of

continuity, we have avoided using the Shapley-Shubik index. The construction of

all the above indices depends upon the concept of the swing or pivotal voter (see

definition 1.8). We have also studied how the decisiveness for the Lok Sabha has

changed after each Lok Sabha election. For this we have employed the Carreras-

Coleman decisiveness index (Coleman (1971), Carreras (2004)), which is a

quantification of the extent to which the Lok Sabha is able to control the outcome
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of a division of it (see section 1.3). To calculate all the above power indices we

have used the program ‘ipgenf’ available on Dennis Leech’s web site,

http://www.warwick.ac.uk/~ecaae/#Progam_List.

The chapter is arranged as follows. In section 6.2 we present some

definitions, which we will require in our analysis (apart from those introduced in

section 1.2.1). We also briefly discuss the various power indices that we have

used, in this section. In section 6.3 we present the results of the analysis. Section

6.4 presents some theoretical results that justify some of the findings. Finally

section 6.5 concludes the chapter.

6.2 Some more definitions

In this section we will introduce some definitions that are required to carry

out our analysis.

In definition 1.12, in section 1.2.1, we introduced a special type of voting

game called the weighted majority game. In that definition the weights were

required to be non-negative. But in our present analysis, since the weights

represent the number of seats that each political party wins in the Lok Sabha, we

modify the definition of a weighted majority game to suit our context, by

imposing a restriction that all weights are strictly positive integers. We rule out

zero weights because a party that fails to win a single seat has no representation in

the Lok Sabha, has no direct influence on the decision making process and hence

is a null player. Thus we have,

Definition 6.1: For a set of voters } ..., ,2 ,1{ nN = , a weighted majority game with

integral weights is a quadruplet ) ; ; ;( qVNG w= , where ),...,,( 21 nwww=w  is the

vector of strictly positive integer weights of the n = N  voters in ,N  q  is a

strictly positive integer quota such that ∑
=

≤
n

i
iwq

1

 and for any NS 2∈ ,

                      1)( =SV    if  ∑
∈

≥
Si

i qw

                               = 0 otherwise.
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As in the earlier case, );;;( qVNG w= will be proper or improper according as

qw
n

i
i 2

1

<∑
=

 or qw
n

i
i 2

1

≥∑
=

.

Let us use the notation ω  to denote ∑
=

n

i
iw

1

.

Definition 6.2: A weighted majority game is said to be governed by the decision

rule “simple majority”, if the quota ω=q , where we define ω  as the smallest

integer strictly greater than 
2

ω
.

Note that a game, which is governed by simple majority rule, is always proper

(see the discussion following definition 1.3).

After these definitions, it would be proper to briefly discuss the indices

that we use in this analysis.

1. Banzhaf non-normalized index (BZNN) (Banzhaf, 1965): The Banzhaf non-

normalized index of player i  is defined as the number of winning coalitions in

which i  is pivotal, divided by the maximal value that this number can take.

Formally,

 
12

)(
−

=
N

i
i

Gm
BZNN . (Also see sections 1.2.2 and 3.2 for detailed discussion.)

2.  Banzhaf normalized index (BZ): The Banzhaf normalized index of player i

is defined as,

 

)(

)(

1

Gm

Gm
BZ

N

i
i

i
i

∑
=

= .

It is a derivative of the non-normalized Banzhaf index, obtained by rescaling

BZNN such that the sum of this index across the voters is 1. (Also see section

1.2.2.)
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3. Coleman index of the power to prevent action (P) (Coleman 1971): The

Coleman preventive power index for voter i  is defined as the number of winning

coalitions in which i  is pivotal, divided by the total number of winning coalitions

in the game. Formally, in a game G , voter i ’s power to prevent action is

calculated as

( ) { }( )[ ]
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∑
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∈
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i SV
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\

 = 
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W
. (Also see sections 1.2.2 and 2.2 for detailed

discussion.)

4. Coleman index of the power to initiate action (I) (Coleman, 1971): The

Coleman initiative power index for voter i  is defined as the number of losing

coalitions outside which i  is critical divided by the number of losing coalitions in

the game. Formally, voter i ’s power to initiate action is calculated as
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.  (Also see sections 1.2.2

and 2.2 for detailed discussion.)

5. Carreras-Coleman decisiveness index (CC) (Coleman (1971), Carreras

(2004)): The Carreras-Coleman decisiveness index for a voting body under a

given decision rule (specified in the game G ) is given by

CC ( )G =
N

G

2

)(W
.   (Also see sections 1.3 and 5.2 for detailed discussion.)

After having recalled the power indices that we use in our analysis, we

will now formally present our results.

6.3 The Results for the Lok Sabha elections (1989-2004)

In this section, we first briefly describe the Indian political scene, and then

formally present the result of our analysis.
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6.3.1 The Indian Political Scene

The current Indian political scenario is highly interesting and full of

action, as every other day some new party is born, some existing parties split,

while some others merge to form a new identity. The oldest national party in India

is the Indian National Congress (INC). It was established in 1885 as a pro-British

Indian organization. Later on, it became the main voice of India's freedom

struggle. After India's independence in 1947, the British passed the administration

of India to the leaders of the Indian National Congress. The first election to the

Lok Sabha was held in 1951, in which the INC expectedly won a majority of the

seats. Until 1966 the Congress was a stable party. In 1966 Indira Gandhi became

the leader of the Congress and Prime Minister of India. However, it was from this

period that the Congress started losing its stability. In 1969 the Congress split and

some Congress leaders established a new party. But still INC remained the most

significant party of India. It won a majority of the seats in the Lok Sabha in all the

elections till 1971. INC lost the 1977 elections to the Janata Party. Janata Party,

which was in fact a conglomeration of different parties, was the first political

party in India to establish a non-Congress government when it won the 1977

elections. However, this government lost its majority after 30 months and later on

it almost vanished from the political arena. Different factions of the Janata Party

broke away from it and established their own parties. Among these parties were

Jan Sangh which later on was renamed Bhartiya Janata Party (BJP), a prominent

player in the Indian political scene today. The Indian National Congress again

won majority of the seats in the 1980 and 1984 elections. But the political scene

started changing after the 1989 elections. The trend of a single party winning a

majority of the seats in the Lok Sabha came to a halt. Small regional parties

started to become important players in the national political scene, as they held

the key as to who forms the government at the Centre.

 6.3.2 The Results

In this section we want to examine numerically how the political scenario
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in India has changed over time. To simplify our analysis we assume that the

representation of the different parties in the Lok Sabha reflects the political

sentiments and priorities of the people of India. Under this presumption, in order

to demonstrate how the political loyalties of the population of India have changed

over the years, we study how the a priori power of the different political parties,

as measured by the voting power indices, has changed over the years. As we have

already noted above, in India, a new political party is born almost every day.

Therefore, the list of parties represented in the Lok Sabha changes after almost

every election.  So a study of the change in power of all the different political

parties is a near impossible task. We therefore restrict our focus on a few parties

(like the INC and the BJP) that make it to the Lok Sabha every time.

The nature of political parties in India is very diverse. While some parties

are truly ‘national’ parties, with nationwide network, and a presence in almost

every state in India (for e.g., INC), others are ‘local’ parties, whose presence is

restricted to a certain geographical area and which mostly represent the concerns

of a certain region (for e.g., TDP etc). In the years following independence

(except 1977), INC always had a majority in the Lok Sabha. Its ‘yes’ vote was

necessary as well as sufficient to pass a bill in the Lok Sabha. Thus it held a

monopoly or a ‘dictatorial’ position in Indian national politics. The values of all

the indices that we have studied, viz. the non-normalized Banzhaf index, the

normalized Banzhaf index and the Coleman indices of the power to prevent and

initiate action were identical and equal to 1. This is obvious since here the

analysis was same as in the case when there is a dictator in the game. The other

political parties were just null players. However, this changed after 1989. Small

regional parties with local concerns started gaining importance, and ‘national’

parties could not do without them. Though big ‘national’ parties still won a lot of

seats, their power in national politics (as reflected by their a priori power in the

Lok Sabha) started decreasing. The tables 6.2 to 6.7 below give the detailed

results for the years 1989 to 2004, indicating the values of the different power

indices for the parties represented in the Lok Sabha.  The values of the non-

normalized Banzhaf index ( )BZNN  and the Banzhaf normalized index ( )BZ  have
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been listed for all the years from 1989-2004. However, as we show later in section

6.4, since the number of seats in the Lok Sabha for the years 1989, 1996, 1998,

1999 and 2004 are odd numbers, the voting games for all these years turn out to

be decisive. Therefore the Coleman indices of the power to prevent ( )P  and

initiate ( )I  action become identical to each other and also equal to BZNN for

each party for these years (see section 2.2). Since, there is no distinction between

a voter’s overall power and the power to prevent and initiate action, the Coleman

indices are unable to reveal any additional information regarding the power of the

voters for these years. For this reason we have not presented the values of P  and

I  for the years 1989, 1996, 1998, 1999 and 2004. However, in the year 1991, the

number of seats in the Lok Sabha was even and consequently the voting game

corresponding to this year was not decisive. The power to prevent action was

greater than the power to initiate action, and values of BZNN differed marginally

from the values of both P  and I  for all players. Therefore, we have listed the

values of P  and I  along with BZNN  and BZ  for 1991 (table 6.3). The fact that

P  and I  coincide with BZNN for most years, or differ from it only marginally (as

in the year 1991) is quite expected because as Leech (2002d) had pointed out,

Coleman indices are effectively equal to each other and equivalent to the non-

normalized Banzhaf index when the decision rule is simple majority. However,

Leech has also pointed out that the Coleman indices reveal much more

information about the power of voters when there is a supermajority voting rule.

 Coming back to the tables, we know that the value of BZNN  for a

particular party, and for a particular election year, gives us the a-priori absolute

power that the party has in the Lok Sabha during that tenure.  We can therefore

use this figure to get an idea of the hold that the party has on the Indian political

scene during that period of time. Tracing this value for the INC from 1951 to

2004, we find that just after independence (except 1977), INC’s control over

Indian politics was more or less absolute, as BZNN =1. But in 1989, the value of

BZNN  dropped to 0.634765. It declined further to 0.392047 in 1996, 0.232289 in

1998 and 0.151826 in 1999. This shows that INC’s monopoly over Indian politics

has been slowly but steadily declining. Between 1989 and 1996, the value of
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BZNN  increased to 0.970046 in 1991. But this was just after Rajiv Gandhi’s

assassination, and possibly there was a sympathy wave in the entire country.

However, after the recently concluded 2004 elections, INC has recovered some

lost ground ( BZNN =0.536821), and has again emerged as the largest party in the

Lok Sabha. In contrast, another major player in the Indian political scene since

1989, the BJP has been increasing its influence in the country. From being a null

player before 1989, the value of BZNN for BJP stood at 0.365235 in 1989.

Leaving out 1991, we find that this value has been increasing from 0.607953 in

1996 to 0.767711 in 1998. Their hold on Indian politics was at its peak during

1999 (BZNN =0.848174). However, after the 2004 elections, its influence has

declined ( BZNN =0.463179) with the reemergence of INC. Figure 6.1 shows how

the values of BZNN have changed for INC and BJP over time.

Since BZ  is a normalized index whereby the sum of values of the index

for all voters is 1, we have used the values of BZ  for a voter as a measure of the

voter’s share in the cake. Studying the values of BZ  for INC, we get an idea of

the changing priorities of the people. Since INC had its roots in the pre-

independence era and was the main voice of India’s freedom struggle, peoples’

loyalties lay with it in the years following independence. The values of BZ  for

INC was 1 for all elections till before 1989. That means INC enjoyed the entire

cake. However, INC’s share started falling steadily from 1989. The value of BZ

for INC in 1989 stood at 0.341694. In the election just following Rajiv Gandhi’s

assassination (1991), its share of the control over the proceedings of the Lok

Sabha reached a high of 80% (BZ =0.800964). But since then there has been a

steady decline. In 1996 their share in the total power was 17% (BZ =0.172309). It

fell to 10% in 1998 ( BZ =0.103392), and 7.9% in 1999 ( BZ =0.079746).

However after the 2004 elections, its share in the total power stood at near 22%

( BZ =0.221686). BJP has been one of the main parties who have been eating into

INC’s share of the cake. Their share in the total power has been rising ever since

1989. In 1989 their share in the total power was 19.66% (BZ = 0.196606). It rose

to 26.7% ( BZ =0.267203) in 1996, 34% in 1998 (BZ =0.341709) and 44.5% in

1999 ( BZ =0.445499). However after the last elections in 2004, this share
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dropped to 19% ( BZ =0.191275). Figure 6.2 shows how the values of BZ  have

changed for INC and BJP over the time period 1989-2004. A significant thing to

note here is that small regional parties like TDP, which had near zero percent

share on the control over the outcomes of the Lok Sabha in the years preceding

1989, are making their presence felt in the national political scenario. In fact in

1999, TDP’s share in the total power stood at 5.5% (BZ =0.055735), which is a

big number, given the fact that TDP has presence in only one or two states. Thus

people are showing some preference towards local parties. INC, which has once

again emerged as the largest party in the Lok Sabha after 2004 polls, enjoys only

22% of the total power as against 100% in the years preceding 1989. Thus one

thing that is clear from the tables is that the era where one single party formed the

government is gone and a new era of ‘coalitional politics’ has come in, where

even small regional parties enjoy control over decisions that effect the entire

county’s population.
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Table 1: Names of parties and their abbreviations

Abbreviation Party Name

ABLTC Akhil Bhartiya Lok Tantrik Congress
AC Arunachal Congress
ADMK1 All India Anna Dravida Munnetra Kazhagam
AGP Asom Gana Parishad
AIFB2 All India Forward Bloc
AIIC(S) All India Indira Congress (Secular)
AIIC(T) All India Indira Congress (Tiwari)
AIMIM3 All India Majlis-E-Ittehadul Muslimeen
AIRJP All India Rashtriya Janata Party
AITC All India Trinamool Congress
ASDC4 Autonomous State Demand Committee
BBM Bharipa Bahujan Mahasangha
BJD Biju Janata Dal
BJP Bharatiya Janata Party
BNP Bharatiya Navshakti party
BSP Bahujan Samaj Party
CPI Communist Party of India
CPI(ML)(L
)

Communist Party of India (Marxist-Leninist) (Liberation)

CPM Communist Party of India(Marxist)
DMK Dravida Munnetra Kazhagam
GNLF Gorkha National Liberation Front
HLD(R) Haryana Lok Dal (Rastriya)
HMS Akhil Bhartiya Hindu Mahasabha
HVC Himachal Vikas Congress
HVP Haryana Vikas Party
ICS(SCS) Indian Congress(Socialist- Sarat Chandra Sinha)
IFDP Indian Federal Democratic Party
INC Indian National Congress
IND Independent candidates
INLD Indian National Lok Dal
IPF Indian Peoples Front
JD Janata Dal
JD(G) Janata Dal (Gujrat)
JD(S) Janata Dal  (Secular)
JD(U) Janata Dal  (United)
JKN Jammu and Kashmir National Conference
JKPDP Jammu & Kashmir Peoples Democratic Party
JMM Jharkhand Mukti Morcha
JP Janata Party
KCM Kerala Congress(M)
KCP Karnataka Congress Party
KEC Kerala Congress
KEC(M) Kerala Congress (M)
LJNSP Lok Jan Shakti Party
LS Lok Shakti
MADMK M.G.R.Anna D.M.Kazhagam
MAG Maharashtrawadi Gomantak
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M-COR Marxist (Co-ordination)
MDMK Marumalarchi Dravida Munnetra Kazhagam
MNF Mizo National Front
MPVC Madhya Pradesh Vikas Congress
MRP Manipur Peoples Party
MSCP Manipur State Congress Party
MUL Muslim League Kerala State Committee
NCP Nationalist Congress Party
NLP National Loktantrik Party
NPC Nagaland Peoples Council
NPF Nagaland Peoples Front
PMK Pattali Makkal Katchi
PWPI Peasants And Workers Party of India
RJD Rashtriya Janata Dal
RLD Rashtriya Lok Dal
RPI Republican Party of India
RPI(A) Republican Party of India(A)
RSP Revolutionary Socialist Party
SAD Shiromani Akali Dal
SAD(M) Shiromani Akali Dal (Simranjit Singh Mann)
SAP Samata Party
SDF Sikkim Democratic Front
SHS Shivsena
SJP(R) Samajwadi Janata Party(Rashtriya)
SP Samajwadi Party
SSP Sikkim Sangram Parishad
TDP Telugu Desam
TMC(M) Tamil Maanila Congress (Moopanar)
TRS Telangana Rashtra Samithi
UGDP United Goans Democratic Party
UMFA United Minorities Front, Assam
WBTC West Bengal Trinamool Congress

Source:  Election Commission of India
(http://www.eci.gov.in )
1 In the election years prior to 1998, ADMK was known as ADK.
2 In the election years prior to 2004, AIFB was known as FBL.
3 In the election years prior to 1996, AIMIM was known as MIM.
4 In the election years prior to 1996, ASDC was known as ADC.
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Table 6.2: Values of Power  Indices (1989)

Year of
election:1989
Total Number of Seats: 529 Quota: 265
Party Name No. of seats BZNN BZ

BJP 85 0.365235 0.196606
CPI 12 0.064772 0.034867
CPM 33 0.134765 0.072544
ICS(SCS) 1 0.004868 0.002621

INC 197 0.634765 0.341694
JD 143 0.365235 0.196606

ADK 11 0.056096 0.030197
BSP 3 0.014722 0.007925

FBL 3 0.014722 0.007925
GNLF 1 0.004868 0.002621

HMS 1 0.004868 0.002621
IPF 1 0.004868 0.002621

JKN 3 0.014722 0.007925
JMM 3 0.014722 0.007925

KCM 1 0.004868 0.002621
M-COR 1 0.004868 0.002621

MAG 1 0.004868 0.002621
MIM 1 0.004868 0.002621
MUL 2 0.009765 0.005257

RSP 4 0.019769 0.010642
SAD(M) 6 0.031544 0.01698

SHS 1 0.004868 0.002621
SSP 1 0.004868 0.002621

TDP 2 0.009765 0.005257
IND 12 0.004868 0.002621

CC= 0.5
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 1989, Election Commission of India.
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Table 6.3: Values of Power  Indices (1991)
Year of election:
1991
Total Number of Seats: 534 Quota: 268
Party Name No. of seats BZNN BZ P I

BJP 120 0.029954 0.024733 0.030014 0.029895
CPI 14 0.027623 0.022808 0.027678 0.027568

CPM 35 0.029954 0.024733 0.030014 0.029895
ICS(SCS) 1 0.001986 0.00164 0.00199 0.001982

INC 244 0.970046 0.800964 0.971976 0.968123
JD 59 0.029954 0.024733 0.030014 0.029895

JP 5 0.00965 0.007968 0.009669 0.009631
ADK 11 0.022955 0.018954 0.023001 0.02291

AGP 1 0.001986 0.00164 0.00199 0.001982
BSP 3 0.005912 0.004882 0.005924 0.005901

FBL 3 0.005912 0.004882 0.005924 0.005901
JMM 6 0.011208 0.009254 0.01123 0.011186
KCM 1 0.001986 0.00164 0.00199 0.001982

MRP 1 0.001986 0.00164 0.00199 0.001982
MUL 2 0.003968 0.003277 0.003976 0.00396

NPC 1 0.001986 0.00164 0.00199 0.001982
RSP 4 0.007834 0.006469 0.00785 0.007819

SHS 4 0.007834 0.006469 0.00785 0.007819
SSP 1 0.001986 0.00164 0.00199 0.001982

TDP 13 0.026445 0.021835 0.026497 0.026392
ADC 1 0.001986 0.00164 0.00199 0.001982

HVP 1 0.001986 0.00164 0.00199 0.001982
JD(G) 1 0.001986 0.00164 0.00199 0.001982

MIM 1 0.001986 0.00164 0.00199 0.001982
IND 1 0.001986 0.00164 0.00199 0.001982

CC=.998
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 1991, Election Commission of India.
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Table 6.4: Values of Power  Indices (1996)
Year of election:
1996
Total Number of Seats: 543 Quota: 272
Party Name No. of seats BZNN BZ

BJP 161 0.607953 0.267203
AIIC(T) 4 0.020125 0.008845

CPI 12 0.060728 0.026691
CPM 32 0.167061 0.073425

INC 140 0.392047 0.172309
JD 46 0.276368 0.121467

SAP 8 0.040338 0.017729
TDP 16 0.081442 0.035795

AIMIM 1 0.005028 0.00221
ASDC 1 0.005028 0.00221

AGP 5 0.025167 0.011061
JMM 1 0.005028 0.00221
MAG 1 0.005028 0.00221

UGDP 1 0.005028 0.00221
HVP 3 0.01509 0.006632

KCP 1 0.005028 0.00221
MUL 2 0.010058 0.004421

KEC(M) 1 0.005028 0.00221
MPVC 1 0.005028 0.00221

SHS 15 0.076236 0.033507
SAD 8 0.040338 0.017729

BSP 11 0.055617 0.024444
SDF 1 0.005028 0.00221

DMK 17 0.086675 0.038095
TMC(M) 20 0.102568 0.04508

SP 17 0.086675 0.038095
FBL 3 0.01509 0.006632
RSP 5 0.025167 0.011061

IND 9 0.005028 0.00221

CC=0.5
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 1996, Election Commission of India.
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Table 6.5: Values of Power  Indices (1998)
Year of election: 1998
Total Number of Seats: 543 Quota: 272
Party Name No. of seats BZNN BZ
BJP 182 0.767711 0.341709
BSP 5 0.027949 0.01244
CPI 9 0.050486 0.022471

CPM 32 0.18738 0.083403
INC 141 0.232289 0.103392
JD 6 0.033562 0.014939
SAP 12 0.067591 0.030085
AIMIM 1 0.005582 0.002484

TDP 12 0.067591 0.030085
AC 2 0.011165 0.00497

UMFA 1 0.005582 0.002484
ASDC 1 0.005582 0.002484

RJD 17 0.096774 0.043074
AIRJP 1 0.005582 0.002484

HLD(R) 4 0.022347 0.009947
HVP 1 0.005582 0.002484

JKN 3 0.016753 0.007457
LS 3 0.016753 0.007457

RSP 5 0.027949 0.01244
MUL 2 0.011165 0.00497

KEC(M) 1 0.005582 0.002484
RPI 4 0.022347 0.009947
PWPI 1 0.005582 0.002484

SHS 6 0.033562 0.014939
MSCP 1 0.005582 0.002484

SAD 8 0.044828 0.019953
AIIC(S) 1 0.005582 0.002484

SDF 1 0.005582 0.002484
MDMK 3 0.016753 0.007457

ADMK 18 0.102733 0.045727
PMK 4 0.022347 0.009947

TMC(M) 3 0.016753 0.007457
JP 1 0.005582 0.002484

DMK 6 0.033562 0.014939
SP 20 0.115022 0.051196

SJP(R) 1 0.005582 0.002484
WBTC 7 0.039187 0.017442
FBL 2 0.011165 0.00497

BJD 9 0.050486 0.022471
IND 6 0.005582 0.002484

CC=0.5
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 1998, Election Commission of India.
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Table 6.6: Values of Power  Indices (1999)
Year of election: 1999
Total Number of Seats: 543 Quota: 272
Party name No of seats BZNN BZ
BJP 182 0.848174 0.445499
BSP 14 0.051462 0.02703
CPI 4 0.014669 0.007705

CPM 33 0.119071 0.062542
INC 114 0.151826 0.079746
JD(S) 1 0.003667 0.001926
JD(U) 21 0.076909 0.040396
ABLTC 2 0.007334 0.003852

ADMK 10 0.036706 0.01928
AIMIM 1 0.003667 0.001926

AITC 8 0.029353 0.015418
BBM 1 0.003667 0.001926

BJD 10 0.036706 0.01928
CPI(ML)(L) 1 0.003667 0.001926

DMK 12 0.044069 0.023147
FBL 2 0.007334 0.003852

HVC 1 0.003667 0.001926
INLD 5 0.018338 0.009632

JKN 4 0.014669 0.007705
KEC 1 0.003667 0.001926

KEC(M) 1 0.003667 0.001926
MADMK 1 0.003667 0.001926
MDMK 4 0.014669 0.007705

MSCP 1 0.003667 0.001926
MUL 2 0.007334 0.003852

NCP 8 0.029353 0.015418
PMK 5 0.018338 0.009632

PWPI 1 0.003667 0.001926
RJD 7 0.02568 0.013488

RLD 2 0.007334 0.003852
RSP 3 0.011001 0.005778

SAD 2 0.007334 0.003852
SAD(M) 1 0.003667 0.001926

SDF 1 0.003667 0.001926
SHS 15 0.055196 0.028991

SJP(R) 1 0.003667 0.001926
SP 26 0.095237 0.050023
TDP 29 0.106112 0.055735

IND 6 0.003667 0.001926
CC =0.5
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 1999, Election Commission of India.
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Table 6.7: Values of Power Indices (2004)
Year of election: 2004
Total Number of Seats: 543 Quota: 272
Party name No of seats BZNN BZ
INC 145 0.536821 0.221686
BJP 138 0.463179 0.191275
CPM 43 0.260121 0.10742

SP 36 0.200753 0.082903
RJD 24 0.131935 0.054484

BSP 19 0.101567 0.041943
DMK 16 0.085207 0.035187
SHS 12 0.063461 0.026207

BJD 11 0.058096 0.023991
CPI 10 0.052751 0.021784

NCP 9 0.047425 0.019585
JD(U) 8 0.042116 0.017392

SAD 8 0.042116 0.017392
PMK 6 0.031538 0.013024

TDP 5 0.026266 0.010847
TRS 5 0.026266 0.010847

JMM 5 0.026266 0.010847
LJNSP 4 0.021002 0.008673

MDMK 4 0.021002 0.008673
JD(S) 3 0.015746 0.006502

RLD 3 0.015746 0.006502
AIFB 3 0.015746 0.006502
RSP 3 0.015746 0.006502

JKN 2 0.010494 0.004334
AITC 2 0.010494 0.004334

AGP 2 0.010494 0.004334
AIMIM 1 0.005246 0.002167

BNP 1 0.005246 0.002167
JKPDP 1 0.005246 0.002167

IFDP 1 0.005246 0.002167
RPI(A) 1 0.005246 0.002167

MUL 1 0.005246 0.002167
MNF 1 0.005246 0.002167

KEC 1 0.005246 0.002167
NLP 1 0.005246 0.002167

NPF 1 0.005246 0.002167
SDF 1 0.005246 0.002167
SJP(R) 1 0.005246 0.002167

IND 5 0.005246 0.002167
CC=0.5
Source: The data on seat  distribution has been collected from The Statistical Report on
General Elections, 2004, Election Commission of India.
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On X- axis, we have plotted the Lok Sabha election years from 1989 to 2004.

1 (on the x-axis) represents the year 1989.
2 (on the x-axis) represents the year 1991.
3 (on the x-axis) represents the year 1996.
4 (on the x-axis) represents the year 1998.
5(on the x-axis) represents the year 1999
6 (on the x-axis) represents the year 2004.
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6.4. Some theoretical findings

One finding of this analysis is that, the value of the decisiveness index for

the Lok Sabha has remained unchanged at 0.5 after all the parliamentary elections

except 1991. Note that the maximum value of this index under proper games is

0.5. The result is expected for the years 1951 to 1984-85 because in all these Lok

Sabha elections, one party always had the majority seats. In all the Lok Sabha

elections held between the years 1951 and 1984-85, INC (barring the 1977

elections) had a simple majority of the seats. Thus, the analysis becomes similar

to the case when there is a dictator, and the decisiveness index value is 0.5.

However, in the years 1989, 1996, 1998 and 2004 when no single party had a

majority in the Lok Sabha, the index value has remained unchanged at 0.5. This

result has a very simple explanation which is provided below.

Proposition 6.1: Let );;;( qVNG w=  be a weighted majority game as given in

definition 6.1. If the decision rule is “simple majority”, and the total number of

seats, ω , is an odd number, then, whatever be the distribution of weights among

the players, the game will always be decisive.

Proof: Let 1N  be any subset of N . Consider the bipartition ( )21 , NN  of the

player set N . We know that ∑∑
∈∈

+
21 Ni

i
Ni

i ww = ω . If 
2

1

ω
>∑

∈Ni
iw , then we must

have 
2

2

ω
<∑

∈Ni
iw . Similarly, if 

2
1

ω
<∑

∈Ni
iw , then we must have 

2
2

ω
>∑

∈Ni
iw . The

situation that both ∑
∈ 1Ni

iw  and ∑
∈ 2Ni

iw  are equal can never arise. This is because 
2

ω

is not an integer, but since iw ’s are integers for all Ni ∈ , both ∑
∈ 1Ni

iw  and ∑
∈ 2Ni

iw

are integer numbers. Thus, either qw
Ni

i =≥∑
∈

ω
2

 or qw
Ni

i =≥∑
∈

ω
1

. In other

words for the arbitrary bipartition ( )21 , NN  of N , either 1N  or 2N  has to be a

winning coalition. Thus for all NS 2∈ , 1)()( =−+ SNVSV . Hence the game is

decisive. �
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We have already noted in chapter 5 that if a voting game is decisive,

1
2)()(

−== NGG LW , and the Carreras-Coleman decisiveness index takes the

value 0.5. Therefore, since in the years 1989, 1996, 1998 and 2004, the number of

seats in the Lok Sabha was odd, the value for the decisiveness index remained

0.5, in spite of no single party getting an absolute majority in the Lok Sabha

during the years.

In the year 1991 however, the number of seats in the Lok Sabha was even

and the value of the decisiveness index was less than 0.5. This is because if ω  is

even, then the game may not be decisive. In this case it is difficult to say anything

a-priori about the value of the decisiveness index, unless one single party has an

absolute majority. But it is sometimes possible to predict a range in which the

index value will lie.

Proposition 6.2: Let );;;( qVNG w=  be a weighted majority game that is

governed by the decision rule  “simple majority”. Let ω  and the number of

players, n , both be even. Then if ω  is exactly divisible by n , then ≤−
+1

2

2
5.0

n

n
nC

CC 5.0≤ .

Proof:

At the outset, let us obtain a partition of the power set of N , according to the

cardinalities of the subsets. Thus n
N NNN ∪∪∪= ...2 10 , where iN =

{ }iSNS =⊆ : , ),....,1,0( ni = . Obviously, iN = i
nC .

Let ( )n,ωG  be the entire class of weighted majority games, governed by the

decision rule “simple majority”, and which have n  as the number of players and

ω  as the sum of weights of all the players.

Now let us begin the proof by considering a game 1G = { }qVN ,;; 1w ( )n,ωG∈ , in

which each player has an equal share of the total weights. Thus,

{ }nnn
ωωω ,....,,1 =w .  It is easy to verify that since the quota is 

2

ω
+1,
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 )()( 1GNS W∈⊆  if and only if 12 +≥ nS .                                                   (6.1)

Therefore, the total number of winning coalitions in the game 1G  is

)( 1GW = ∑
+=

n

ni
i

nC
12

.

Recalling a very well known result in algebra, ∑
=

n

i
i

nC
0

= n2 , we can easily see that

∑
+=

n

ni
i

nC
1

2

=  
2

2 21
n

n

n
C

−− . Thus the Carreras-Coleman decisiveness index in the

game 1G  is

n

G

2

)( 1W
 = 

n

n
n

n
C

2
2

2 21 −−

 = 
1
2

2
5.0

+
−

n

n
nC

.

Now consider another game 2G = { }qVN ,;; 2w ( )n,ωG∈ , which is

derived from the game 1G  by some kind of a redistribution of weights such that ω

remains unchanged.

We will compare the number of winning coalitions in this game, )( 2GW , with

)( 1GW  and show that )( 2GW ≥  )( 1GW . 

Let )( 1GW∆ ( )( 1GL∆ ) be the set of coalitions which are winning (losing) in 1G

but losing (winning) in 2G .

 Note that we can write the following:

)( 2GW = )( 1GW - )( 1GW∆ + )( 1GL∆ , where )( 1GW∆  ( )( 1GL∆ ) is the

number of coalitions which are winning(losing) in 1G  but losing(winning) in 2G .

To show that )( 2GW ≥  )( 1GW , it will be suffice to show that

)( 1GW∆ ≤ )( 1GL∆ .

We shall define a 1-1 map )()(: 11 GG LW ∆→∆Φ  as follows. Suppose

)( 1GS W∆∈ . First note that 
2

2

ω≤∑
∈Si

iw .
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 If 
2

2

ω<∑
∈Si

iw , then we define ( ) SNS −=Φ . Since qw
SNi

i =+≥∑
−∈

1
2

2

ω
,

)( 2GSN W∈− . Also since )( 1GS W∈ , by (6.1), 1
2

+≥ n
S . Hence

 
2

n
SN <− ,   which by (6.1) implies )( 1GSN L∈− . Thus, )( 1GSN L∆∈− , that

is, ( ) )( 1GS L∆∈Φ .

Next, consider the case 
2

2

ω=∑
∈Si

iw . As above, we have, 1
2

+≥ n
S .

Choose (by some fixed ordering) SS ⊂* , such that 
2

* n
S = . It is obvious that

since the weights are positive integers,
2*

2

ω<∑
∈Si

iw .

We now define ( ) *SNS −=Φ . Since 
2

* n
SN =− , )( 1

* GSN L∈− . However,

2*
2

ω<∑
∈Si

iw  implies that 
2*

2

ω>∑
−∈ SNi

iw . Since the weights are positive integers, this

in turn implies that ∑
−∈ *

2
SNi

iw q=+≥ 1
2

ω
. Therefore, )( 2

* GSN W∈− . Hence

)( 1
* GSN L∆∈− . That is, ( ) )( 1GS L∆∈Φ .

It is easy to check that Φ  is 1-1. Thus, )()(: 11 GG LW ∆→∆Φ is 1-1 and so

)( 1GW∆ ≤ )( 1GL∆ .                                                     

The upper bound of 0.5 is the maximum possible under proper games, since in a

proper game the number of winning coalitions is always less than or equal to 12 −n .

�

6.5 Conclusion

In this chapter, we have examined the results of the elections to the Lower

House of the Indian Parliament (Lok Sabha), held between the years 1951 and

2004. More precisely, we have used the methodology of power indices to evaluate

voting power and the relative influence of the parties represented in the Lok
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Sabha, over the decision making process. We have also studied the decisiveness

or the power of the Lok Sabha to act. The power indices that have been analyzed

for studying individual voting power are the Coleman index of the power to

initiate action, Coleman index of the power to prevent action, Banzhaf normalized

and the non-normalized indices. The question of which voting power index is

most suitable here is a different issue and needs to be addressed separately. This

chapter is more of a numerical illustration of how the indices are actually used in

real life.
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List of abbreviations

ABP: The Added Blocker Postulate

BOP: The Bloc Postulate

BSP: The Blocker’s Share Postulate

DOM: The Dominance Postulate

IGN : Ignoring Null Voters

INV: Iso-invariance

MON: The Monotonicity Postulate

NNP: The Non-Null Postulate

NOM: Normalization

RNP: Relative Null Voter Ignoring Principle

RTP: Relative Transfers Principle

TRP: The Transfer Postulate

VJN: Vanishing just for Null Voter
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