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0. PREFACE

Roughly speaking the Uncertainty Principle says that “ A nonzero function

f and its Fourier transform f̂ cannot be sharply localized simultaneously”.

There are several ways of measuring localization of a function and depending

on it one can formulate different versions of uncertainty principle. A classical

theorem of Hardy [14] proved way back in 1933 states that f and f̂ both

cannot have arbitrary Gaussian decay. Here the localization of f and f̂

are measured in the sense of rapid decay at infinity. More precisely, for a

measurable function f on R if

|f(x)| ≤ Ce−ax2
, |f̂(ξ)| ≤ Ce−bξ2

for some a, b > 0, then f = 0 for ab > 1/4 and f(x) = Ce−ax2
for ab = 1/4.

Also there are various ways of measuring decay of f and f̂ . Cowling and

Price [6], Beurling [17] measured the decay in terms of integral estimates

of f and f̂ . Recently Bonami et al [5] generalized the result of Beurling

and characterized Hermite functions. The theorems of Hardy and Cowling–

Price follow from the stronger result of Bonami et al. Narayanan and Ray

observed in [23] that Hardy’s theorem can be viewed as a characterization

of the Heat kernel associated with the Laplacian on R.

Analogues of Hardy and Cowling–Price theorems for various Lie groups

have received considerable attention during the last decade. Heisenberg

group is the most well known example from realm of nilpotent Lie groups.

Uncertainty principles on Heisenberg group was first considered by Sitaram,

Sundari, Thangavelu in [30]. After that Bagchi and Ray [2] proved Cowling–

Price theorem for Heisenberg group. In the last few years Thangavelu proved

analogues of Paley–Wiener theorem and Hardy’s theorem for Heisenberg
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groups, see the monograph [34] and the references there. He formulated the

Hardy’s theorem in terms of the Heat kernel associated with the sublaplacian

on the Heisenberg group (see [32]). We call it the Heat kernel version of

Hardy’s theorem.

An analogue of Hardy’s theorem for all simply connected nilpotent Lie

groups was proved by Kaniuth and Kumar [19]. A slightly different version

of Hardy’s theorem was also proved in [1] for connected simply connected

step two nilpotent Lie groups. Cowling–Price theorem has been considered

by Ray [28] for connected simply connected step two nilpotent Lie groups.

All these authors measure the decay of the group Fourier transform f̂(λ) in

terms of the Hilbert–Schmidt norm and the results are essentially for the

central variable.

However the research in this direction is still incomplete since in most

of the results proved in the above mentioned papers the case ab = 1/4 has

been left open. Once we have the result for ab = 1/4 we can always deduce

the case ab > 1/4. Thangavelu conjectured in his book [34] that the heat

kernel version of Hardy’s theorem is true for all stratified groups.

The main purpose of this thesis is to prove the cases ab = 1/4 and get

complete analogues theorem of Hardy, Cowling–Price and Beurling for con-

nected simply connected step two groups. The conjecture of Thangavelu

will be proved for all step two stratified groups. We prove a different ver-

sion of Cowling–Price theorem for Euclidean Fourier transform and as an

application of it, formulate and prove a version of Cowling–Price theorem

for general nilpotent Lie groups.

The structure of the thesis is as follows:

In Chapter 1 we introduce nonisotropic Hesienberg group Hn
d and de-

scribe its representations. We prove vector valued Beurling’s theorem and as

an application of it we get theorem of Hardy and a version of Cowling–Price

for Hn
d . A complete analogue of Cowling–Price and Morgan’s theorem has

been obtained after proving a version of Beurling’s theorem for Hn
d . We de-

fine Fourier–Weyl transform of a measurable function on Hn
d and formulate
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a version of Beurling’s theorem. Finally we prove heat kernel versions of

Hardy and Cowling–Price theorems.

In Chapter 2 we describe the irreducible unitary representations, the

Plancherel formula and other relevant aspects of step two connected simply

connected nilpotent Lie groups. We prove the heat kernel versions of Hardy

and Cowling–Price theorems for all step two stratified groups. Also an alter-

native condition on f is obtained to formulate and prove heat kernel versions

of Hardy and Cowling–Price theorems for all connected simply connected

step two groups. Analogue of Beurling’s theorem for all step two groups is

also proved. All other results proved in Chapter 1 has been extended for

step two groups.

In Chapter 3 we obtain a new version of Cowling–Price theorem for

Euclidean Fourier transform where the decay has been measured only on

f̂ and its derivatives. We also give a comparative study of Cowling–Price

theorem and its new version. We use this new version to obtain an un-

certainty principle for operators and Cowling–Price theorem for Laguerre

expansions of polyradial functions. Finally we get an uncertainty principle

for all connected simply connected nilpotent Lie groups.

The thesis is based on [25, 26] and [24]. The paper [25] will appear in J.

Austral. Math. Soc. (series A).



1. UNCERTAINTY PRINCIPLES ON HEISENBERG GROUPS

Our aim in this chapter is to prove some uncertainty principles for non–

isotropic Heisenberg groups. Some of these results are known in the case

of isotropic Heisenberg groups but the proofs do not extend to the non–

isotropic case. We provide different proofs which work for both cases.

1.1 Heisenberg groups and their representations

Given d = (d1, d2, · · · , dn), dj > 0 the non-isotropic Heisenberg group Hn
d is

Cn × R equipped with the group law

(z, t)(w, s) = (z + w, t + s +
1
2

n∑

j=1

djIm(zjw̄j)).

For each λ ∈ R \ {0} there exists an irreducible unitary representation πλ

realized on L2(Rn) given by

πλ(z, t)φ(ξ) = eiλte
iλ(

n∑
j=1

dj(xjξj+
1
2
xjyj))

φ(ξ + y),

where φ ∈ L2(Rn) and z = x + iy. These are all the infinite dimensional

irreducible unitary representations of Hn
d up to unitary equivalence. For

f ∈ L1(Hn
d ), its group Fourier transform f̂(λ) is defined by

f̂(λ) =
∫

Hn
d

f(z, t)πλ(z, t) dz dt. (1.1.1)

We define πλ(z) = πλ(z, 0) so that πλ(z, t) = eiλtπλ(z, 0). For f ∈ L1(Cn),

we define the bounded operator Tλ(f) on L2(Rn) by

Tλ(f)φ =
∫

Cn

f(z)πλ(z)φ dz . (1.1.2)
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It is clear that ‖Tλ(f)‖ ≤ ‖f‖1 and for f ∈ L1(Cn)
⋂

L2(Cn), it can be

shown that Tλ(f) is a Hilbert-Schmidt operator and we have the Plancherel

theorem

‖Tλ(f)‖2
HS = (2π)n|λ|−n

n∏

j=1

d−1
j

∫

Cn

|f(z)|2 dz. (1.1.3)

Thus Tλ is an isometric isomorphism between L2(Cn) and S2, the Hilbert

space of all Hilbert–Schmidt operators on L2(Rn). For f ∈ L1(Hn
d ), let

fλ(z) =
∫ ∞

−∞
eiλtf(z, t) dt

be the inverse Fourier transform of f in the t–variable. Then from the

definition of f̂(λ), it follows that f̂(λ) = Tλ(fλ).

If dj = 1 for all j then Hn
d is denoted by Hn, called the Heisenberg group.

For Hn the representations corresponding to πλ will be denoted by ρλ. Thus

ρλ(z, t)φ(ξ) = eiλteiλ(x·ξ+ 1
2
x·y)φ(ξ + y), for all φ ∈ L2(Rn) and λ ∈ R \ {0}.

In this case we will denote Tλ(f) by Wλ(f) which will be called the Weyl

transform of f . For λ = 1, we define W (z) = ρ1(z).

For x ∈ R and k ∈ N the polynomial Hk(x) of degree k is defined by the

formula

Hk(x) = (−1)kex2 dk

dxk
(e−x2

). (1.1.4)

We define the Hermite function hk(x) by

hk(x) = (2kk!
√

π)−1/2Hk(x)e−
x2

2 .

For µ = (µ1, · · · , µn) ∈ Nn, the normalized Hermite function Φµ(x) on Rn

is defined by

Φµ(x) = hµ1(x1) · · ·hµn(xn). (1.1.5)

Hermite functions are eigenfunctions of the Hermite operator H = −4+|x|2
and they form an orthonormal basis for L2(Rn). For µ, ν ∈ Nn, the special

Hermite function Φµν is defined by

Φµν(z) = (2π)−
n
2 (W (z)Φµ, Φν) . (1.1.6)



1. Uncertainty Principles on Heisenberg Groups 3

These functions form an orthonormal basis for L2(Cn) and they are express-

ible in terms of Laguerre functions. For our purposes, we only require the

formula

Φµ,0(z) = (2π)−
n
2

(
1
µ!

) 1
2
(

iz̄√
2

)µ

e−
1
4
|z|2 . (1.1.7)

For a detailed account of Hermite and special Hermite functions we refer to

[36].

A basis for the Lie algebra of Hn
d is given by the left invariant vector

fields

Xj(d) =
∂

∂xj
+

1
2
djyj

∂

∂t
, Yj(d) =

∂

∂yj
− 1

2
djxj

∂

∂t
, j = 1, . . . , n.

and T . We define the sublaplacian Ld by

Ld = −
n∑

j=1

(Xj(d)2 + Yj(d)2). (1.1.8)

The sublaplacian is a subelliptic operator which generates a heat diffusion

semigroup. Let qa,d be the heat kernel corresponding to this sublaplacian

which is given by

qa,d(z, t) =
∫ ∞

−∞
eiλtqλ

a,d(z, t) dt, (1.1.9)

where

qλ
a,d(z) = Cn

n∏

j=1

(
djλ

sinh djλa

)
e−

1
4
djλ(coth djλa)|zj |2 . (1.1.10)

Then using the formula ( 1.1.10 ), it can be proved as in the case of Hn

(see [34]) that it satisfies the estimate

|qa,d(z, t)| ≤ Ce−
A
a

(|z|2+|t|), (1.1.11)

for some C,A > 0. We define

H(λd) =
n∑

j=1

(
− ∂2

∂ξ2
j

+ λ2d2
jξ

2
j

)
. (1.1.12)
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Using the explicit formula for the representations πλ we can show that

πλ(Ld) = H(λd), πλ(qa,d) = e−aH(λd). (1.1.13)

Given r = (r1, r2, · · · , rn), rj > 0, we define U(r) : L2(Rn) −→ L2(Rn) by

U(r)φ(ξ) =
n∏

j=1

r
1
4 φ(

√
r1ξ1,

√
r2ξ2 · · · ,

√
rnξn).

Then U(r) is a unitary operator on L2(Rn) and

H(λd)U(|λ|d)Φµ =




n∑

j=1

(|λ|(2µj + 1)dj)


U(|λ|d)Φµ.

If dj = 1 for all j, H(λd) reduces to the scaled Hermite operator

H(λ) = −4+ λ2|x|2.

1.2 Uncertainty Principles on Hn
d

Roughly speaking the Uncertainty Principle says that “A non zero func-

tion f and its Fourier transform f̂ cannot be localized simultaneously.” The

simplest example of this phenomenon is the Paley–Wiener theorem: the Eu-

clidean Fourier transform of a smooth compactly supported function on Rn

can be extended as an entire function on Cn and hence cannot be compactly

supported. Consider a function f such that for some a, b > 0

f(x) = O(e−a|x|2) and f̂(ξ) = O(e−b|ξ|2)

where f̂ is the Euclidean Fourier transform of f defined by

f̂(ξ) = (2π)−
n
2

∫

Rn

e−ix·ξf(x) dx.

For δ > 0, let fδ(x) = f(δx) so that fδ(x) = O(e−aδ2|x|2) and f̂δ(ξ) =

O(e−
b

δ2
|x|2). As δ increases, f has faster decay. On the other hand decay of

f̂ becomes slower. So f and f̂ both cannot have arbitrary Gaussian decay,

as was proved by Hardy [14] in 1933 for n = 1.
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Theorem 1.2.1. (Hardy) Let f be a measurable function on Rn such that

|f(x)| ≤ Ce−a|x|2 , |f̂(x)| ≤ Ce−b|x|2 .

If ab > 1/4 then f = 0 almost everywhere and f(x) = Ce−a|x|2 for ab = 1/4.

Since ab > 1/4 implies f = 0 the result of Hardy is an example of uncer-

tainty principle for the Fourier transform. The case ab = 1/4 is considered

as a characterisation of the Gaussian. The Hermite functions Φµ(x) satisfy

the conditions of Hardy’s theorem for any a = b < 1/2 and hence in the case

ab < 1/4 there are infinitely many linearly independent functions satisfying

the hypotheses of the theorem.

In 1983, Cowling and Price [6] replaced the L∞ estimates on f and f̂ by

Lp estimates and obtained a generalization of Hardy’s theorem.

Theorem 1.2.2. (Cowling–Price) For 1 ≤ p, q ≤ ∞ let fφ−1
a ∈ Lp(Rn)

and f̂φ−1
b ∈ Lq(Rn), where φa(x) = e−a|x|2. Then f = 0 whenever ab > 1/4.

Note that the case p = q = ∞ in the above theorem is Hardy’s theorem

with ab > 1/4. The above result is true even if ab = 1/4 under the added

assumption that min(p, q) < ∞. In fact we have the following results which

are stronger than theorems of Hardy and Cowling–Price.

Theorem 1.2.3. Suppose f is a measurable function on Rn such that it

satisfies the estimates

|f(x)| ≤ C(1 + |x|)me−a|x|2 and |f̂(ξ)| ≤ C(1 + |ξ|)me−b|ξ|2 .

Then for ab > 1/4, f = 0 and whenever ab = 1/4, f(x) = P (x)e−a|x|2,
where P is a polynomial with deg P ≤ m.

Theorem 1.2.4. Let N ≥ 0 and 1 ≤ p, q ≤ ∞. Assume f ∈ L2(Rn)

satisfies

∫

Rn

(
f(x)ea|x|2

(1 + |x|)N

)p

dx < ∞ and
∫

Rn

(
f̂(ξ)ea|ξ|2

(1 + |ξ|)N

)q

dξ < ∞.
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If ab > 1/4 then f = 0 and for ab = 1/4 f(x) = P (x)e−a|x|2, where P is a

polynomial with deg P < inf{N − n
p , N − n

q }.

The above results follow from the following stronger result known as

Beurling’s theorem.

Theorem 1.2.5. Let f ∈ L2(Rn) be such that for some N ≥ 0 it satisfies

the condition ∫

Rn

∫

Rn

|f(x)||f̂(y)|e|x||y|
(1 + |x|+ |y|)N

dx dy < ∞.

Then f(x) = P (x)e−α|x|2 where P is a polynomial and α > 0.

This result is an immediate corollary of the following theorem due to

Bonami et al [5].

Theorem 1.2.6. Let f ∈ L2(Rn) be such that
∫

Rn

∫

Rn

|f(x)||f̂(y)|e|〈x,y〉|

(1 + |x|+ |y|)N
dx dy < ∞

for some N ≥ 0. Then f = 0 whenever N ≤ n. If N > n, then the above

holds if and only if f can be written as

f(x) = P (x)e−
1
2
〈x,Ax〉

where A is a real, positive definite, symmetric matrix and P is a polynomial

with deg P < (N−n)
2 .

Also the inequality case of the following theorem known as Morgan’s

theorem discussed in [2] can be proved using Theorem 1.2.5.

Theorem 1.2.7. Let f : Rn → C be a measurable function such that

(i) |f(x)| ≤ Ce−a|x|p

(ii) |f̂(x)| ≤ Ce−b|x|q

where 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and (ap)1/p (bq)1/q ≥ 1. Then f = 0 almost

everywhere unless p = q = 2 and ab = 1/4, in which case f(x) = Ce−a|x|2.
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1.2.1 Vector valued uncertainty principles and their applications

In this section we formulate and prove analogues of the above theorems

for Hn
d . In order to do that we need vector valued versions of the above

theorems. We first state and prove a vector valued version of Theorem 1.2.6.

In what follows H denotes a separable Hilbert space and L2(Rn,H) stands

for all H–valued function f on Rn such that ‖f(x)‖ is square integrable on

Rn.

Theorem 1.2.8. Suppose f ∈ L2(Rn,H) be such that for some N ≥ 0 it

satisfies ∫

Rn

∫

Rn

‖f(x)‖‖f̂(y)‖e|(x,y)|

(1 + |x|+ |y|)N
dx dy < ∞.

If N ≤ n, then f = 0. If N > n, then the above holds if and only if f can

be written as

f(x) = P (x)e−
1
2
〈x,Ax〉

where A is a real, positive definite, symmetric matrix and P (x) =
∑

|α|≤m

xαψα,

ψα ∈ H and m < (N−n)
2 .

Proof. Take φ ∈ H and consider the function Fφ(x) = 〈φ, f(x)〉. Since

F̂φ(ξ) = 〈φ, f̂(ξ)〉, using Cauchy–Schwarz and the hypothesis of the theorem

we have ∫

Rn

∫

Rn

|Fφ(x)||F̂φ(ξ)|e|(x,ξ)|

(1 + |x|+ |ξ|)N
dx dξ < ∞.

Applying Theorem 1.2.6 to the function Fφ we have Fφ(x) = e−〈A(φ)x,x〉Pφ(x),

where A(φ) is a real, positive definite, symmetric matrix and Pφ(x) is a poly-

nomial of degree < (N−n)
2 . We will write Pφ(x) =

∑
|α|≤m

Cα(φ)xα. We want

to show that A(φ) = A is independent of φ. To show this we need to prove

the following:

If for each x ∈ R

φ → e−(a(φ)x2+b(φ)x)Pφ(x), (1.2.1)
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where Pφ(x) is a polynomial in x, is a bounded linear functional on H then

a(φ), b(φ) are independent of φ.

From the linearity of the above map ( 1.2.1 ) we have

e−(a(φ)x2+b(φ)x)Pφ(x) + e−(a(ψ)x2+b(ψ)x)Pψ(x)

= e−(a(φ+ψ)x2+b(φ+ψ)x)Pφ+ψ(x). (1.2.2)

Without loss of generality we assume a(φ) < a(ψ).

Case(i): If a(φ) < a(ψ) < a(φ + ψ), we have from the above equation

e((a(φ+ψ)−a(φ))x2−b(φ)x)Pφ(x) + e((a(φ+ψ)−a(ψ))x2−b(ψ)x)Pψ(x)

= e−b(φ+ψ)xPφ+ψ(x). (1.2.3)

This shows that left hand side of the above equation ( 1.2.3 ) grows faster

than the right hand side of the above equation and hence a(φ) = a(ψ) =

a(φ + ψ).

Case(ii): If a(φ + ψ) < a(φ) < a(ψ), the left hand side of ( 1.2.3 ) decays

faster than the right hand side of ( 1.2.3 ) and hence a(φ) = a(ψ) = a(φ+ψ).

Case(iii): If a(φ) < a(φ + ψ) < a(ψ), we rewrite the equation ( 1.2.2 ) as

e((a(ψ)−a(φ))x2−b(φ)x) − e((a(ψ)−a(φ+ψ))x2−b(φ+ψ)x)Pφ+ψ(x)

= −e−b(ψ)xPψ(x).

Arguing as before we conclude a(φ) = a(ψ) = a(φ + ψ).

Similar argument will show b(φ) = b(ψ) for all φ, ψ ∈ H. Let us prove

that A(φ) is independent of φ using the above result. Since A(φ) is a sym-

metric matrix,

〈A(φ)x, x〉 =
∑

1≤j,k≤n

Cjk(φ)xjxk

=
∑

j,k 6=1

Cjk(φ)xjxk + 2


∑

j 6=1

Cj1(φ)xj


x1 + C11(φ)x2

1.

We recall that for each x ∈ Rn, φ 7→ e−〈A(φ)x,x〉Pφ(x) is a bounded linear

functional on H. If we vary the variable x1 keeping other (n− 1) variables



1. Uncertainty Principles on Heisenberg Groups 9

fixed and use the above result we get

C11(φ)x2
1 +

n∑

j=1

C1j(φ)xj = C11(ψ)x2
1 +

n∑

j=1

C1j(ψ)xj

for all φ, ψ ∈ H. This is true for all (x1, · · · , xn) ∈ Rn and hence C1j(φ) =

C1j(ψ) for all φ, ψ ∈ H and for all 1 ≤ j ≤ n . Similarly if we vary the

variable xj keeping other variables fixed we will get Ckj(φ) = Ckj(ψ) for

all φ, ψ ∈ H and for all 1 ≤ k ≤ n. Finally we conclude A(φ) = A is

independent of φ. Therefore, φ 7→ Pφ(x) is also a bounded linear functional

on H for all x ∈ Rn. We write Pφ(x) =
∑

|α|≤m

Cα(φ)xα. We claim that

φ 7→ Cα(φ) is a bounded linear functional on H for each α. Let us consider

the case n = 1. In this case Pφ(x) =
m∑

k=0

Ck(φ)xk for all x ∈ R. Choose

xi ∈ R such that xi 6= xj , for all 0 ≤ i, j ≤ m. We consider a system of

linear equations given by:



1 x0 · · · xm
0

1 x1 · · · xm
1

...
...

...
...

1 xm · · · xm
m







C0(φ)

C1(φ)
...

Cm(φ)




=




Pφ(x0)

Pφ(x1)
...

Pφ(xm)




.

Since xi 6= xj for all 0 ≤ i, j ≤ m the determinant of the (m + 1)× (m + 1)

Vandermonde matrix is nonzero. Therefore, for each j, Cj(φ) is a linear com-

bination of {Pφ(x0), · · · , Pφ(xm)}. It follows that φ 7→ Cj(φ) is a bounded

linear functional on H. Now consider the case n > 1. Suppose that our

claim is true for all n′ ≤ (n− 1). For x ∈ Rn and α ∈ Nn write x = (x1, x̃),

α = (α1, α̃), where x̃ = (x2, · · · , xn) and α̃ = (α2, · · · , αn). Therefore we

can write

Pφ(x) =
m∑

α1=0


 ∑

|α̃|≤m

Cα1,α′(φ)x̃α̃


xα1

1 .

From the case n = 1, we get for each x̃ ∈ Rn−1, φ 7→ ∑
|α̃|≤m

Cα1,α′(φ)x̃α̃ is a

bounded linear functional on H for each (α1, α̃). Now using the induction

hypothesis it follows that for each α = (α1, α̃), φ 7→ Cα(φ) is a bounded



1. Uncertainty Principles on Heisenberg Groups 10

linear functional on H. Therefore, for each α there exists ψα ∈ H such that

Cα(φ) = 〈φ, ψα〉 and hence the theorem is proved.

We state below a vector valued version of Theorem 1.2.5 which is a

consequence of Theorem 1.2.8.

Theorem 1.2.9. Let f ∈ L2(Rn,H) be such that for some N ≥ 0
∫

Rn

∫

Rn

‖f(x)‖‖f(y)‖e|x||y|
(1 + |x|+ |y|)N

< ∞.

Then f(x) = e−a|x|2P (x) where P (x) =
∑

|α|≤m

xαψα, ψα ∈ H,a > 0 and

m < (N−n)
2 .

In view of Theorem 1.2.9, all the theorems 1.2.3, 1.2.4 and 1.2.7 remain

true for vector valued functions. If f ∈ L2(Hn
d ) then the function F defined

by F (t) = f(·, t) is an L2(Cn) valued measurable function of t. Using the

Plancherel formula and Theorem 1.2.8 we have the following theorem:

Theorem 1.2.10. Suppose f ∈ L2(Hn
d ) and for some N ≥ 0, it satisfies

∫

R

∫

R

‖f(·, t)‖2|λ|n/2‖f̂(λ)‖HSe
|tλ|

(1 + |λ|+ |t|)N
dt dλ < ∞.

Then f(z, t) = e−at2P (z, t) for some a > 0 and P (z, t) =

(
m∑

j=0
ψj(z)tj

)
,

where ψj ∈ L2(Cn) and m < N−1
2 .

An analogue of Cowling–Price and Theorem 1.2.7 for Hn has been proved

in [2] but the equality case has not been treated there. We prove equality

cases of theorems of Hardy and Cowling–Price. Immediate consequences of

the above theorem are the following three corollaries.

Corollary 1.2.11. Let f be a measurable function on Hn
d such that it sat-

isfies

(i) |f(z, t)| ≤ g(z)(1 + |t|)me−at2, where g ∈ L2(Cn),
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(ii) |λ|n/2‖f̂(λ)‖HS ≤ C(1 + |λ|)me−bλ2
.

Then f = 0 for ab > 1/4 and if ab = 1/4 then f(z, t) = e−at2P (z, t), where

P (z, t) =
m∑

j=0
tjψj(z), ψj ∈ L2(Cn).

Corollary 1.2.12. Suppose f ∈ L2(Hn
d ) and it satisfies the estimates

(i) |f(z, t)| ≤ g(z)e−a|t|p, where g ∈ L2(Cn),

(ii) |λ|n/2‖f̂(λ)‖HS ≤ e−b|λ|q ,

where 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and (ap)1/p (bq)1/q ≥ 1. Then f = 0

unless p = q = 2 and ab = 1/4 in which case f(z, t) = e−at2ψ(z) for some

ψ ∈ L2(Cn).

Corollary 1.2.13. Suppose f ∈ L2(Hn
d ) and for some N ≥ 0, assume that

∫

R

(
‖f(·, t)‖2e

at2

(1 + |t|)N

)p

dt < ∞ and
∫

R

(
|λ|n/2‖f̂(λ)‖HSe

bλ2

(1 + |λ|)N

)q

dλ < ∞.

If ab = 1/4 then f(z, t) = e−at2

(
m∑

j=0
ψj(z)tj

)
, where each ψj ∈ L2(Cn) and

m < min{N − n
p , N − n

q }.

We remark that Corollary 1.2.12 has been proved in [2] with an extra

condition p ≥ 2 and the equality case has not been treated. To get Cowling–

Price theorem for Hn
d , we need a modified version of Theorem 1.2.5 for n = 1.

We record it as the following theorem.

Theorem 1.2.14. Let h ∈ L2(R). Assume for some N ≥ 0 and δ > 0 it

satisfies

∫

R

∫

R

|h(t)||ĥ(λ)|e|t||λ||Q(λ)|δ
(1 + |t|+ |λ|)N

dt dλ < ∞, (1.2.4)

where Q is a polynomial of degree m. Then h(t) = P (t)e−at2, where P is a

polynomial of deg < N−1−mδ
2 .



1. Uncertainty Principles on Heisenberg Groups 12

Proof. The condition ( 1.2.4 ) of the theorem is equivalent to
∫

R

∫

R

|h(t)||ĥ(λ)|e|t||λ||Q(λ)|δ
(1 + |t|)N/2 (1 + |λ|)N/2

dt dλ < ∞. (1.2.5)

Therefore,
∫

Rn

|h(t)|e|t||λ′|
(1 + |t|)N/2

dt < ∞ (1.2.6)

for sufficiently large |λ′| > 1 for which |Q(λ)| > 1 holds for all |λ| > λ′.
Hence it is easy to see that for any 0 < λ0 < |λ′|

∫

R
|h(t)|eλ0|t| dt < ∞. (1.2.7)

This shows that h ∈ L1(R) and ĥ is analytic in the open strip |=λ| < λ0.

Using this fact together with ( 1.2.5 ) and ( 1.2.6 ), we have the integral
∫

R

∫

R

|h(t)||ĥ(λ)|e|t||λ|
(1 + |t|)N/2 (1 + |λ|)N/2

dt dλ

=
∫

R

∫

|λ|<|λ′|

|h(t)||ĥ(λ)|e|t||λ|
(1 + |t|)N/2 (1 + |λ|)N/2

dt dλ

+
∫

R

∫

|λ|≥|λ′|

|h(t)||ĥ(λ)|e|t||λ|
(1 + |t|)N/2 (1 + |λ|)N/2

dt dλ

≤ C

∫

R

|h(t)|e|t||λ′|
(1 + |t|)N/2

dt +
∫

R

∫

R

|h(t)||ĥ(λ)|e|t||λ||Q(λ)|δ
(1 + |t|)N/2 (1 + |λ|)N/2

dt dλ

< ∞

If we apply Theorem 1.2.5 for n = 1 we will get h(t) = P (t)e−at2 for some

a > 0 and P is a polynomial of deg < N−1
2 . But the hypothesis ( 1.2.4 ) will

force deg P < N−1−mδ
2 .

With this preparation we establish a version of Theorem 1.2.5 for Hn
d .

Theorem 1.2.15. Suppose f ∈ L1 ∩ L2(Hn
d ) and for some M,N ≥ 0, it

satisfies
∫

Hn
d

∫

R

|f(z, t)|‖f̂(λ)‖HSe
|t||λ|

(1 + |z|)M (1 + |t|)N/2 (1 + |λ|)N/2
|λ|n dλ dz dt < ∞.
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Then f(z, t) = e−at2(1 + |z|)M

(
m∑

j=0
ψj(z)tj

)
, where ψj ∈ L2(Cn) and m <

N−n/2−1
2 .

Proof. For each pair (φ, ψ), where φ, ψ ∈ L2(Rn) we consider the function

F(φ,ψ)(t) = (2π)−
n
2

∫

Cn

f(z, t)(1 + |z|)−M (W (z)φ, ψ) dz.

Then it follows that

F̂(φ,ψ)(λ) = (2π)−
n
2

∫

Cn

f−λ(z)(1 + |z|)−M (W (z)φ, ψ) dz (1.2.8)

≤ C

(∫

Cn

|f−λ(z)|2 dz

)1/2

= C|λ|n/2‖f̂(−λ)‖HS.

Therefore,

∫

R

∫

R

|F(φ,ψ)(t)||F̂(φ,ψ)(λ)|e|t||λ||λ|n/2

(1 + |t|)N/2 (1 + |λ|)N/2
dt dλ

≤ C

∫

Hn
d

∫

R

|f(z, t)|‖f̂(λ)‖HSe
|t||λ|

(1 + |z|)M (1 + |t|)N/2 (1 + |λ|)N/2
|λ|n dλ dz dt < ∞,

from our hypothesis. Now applying Theorem (1.2.14) to the function F(φ,ψ)

with δ = n/2 we have F(φ,ψ)(t) = P(φ,ψ)(t)e−a(φ,ψ)t2 , where P(φ,ψ) is a poly-

nomial with deg < N−n/2−1
2 . As in the proof of Theorem 1.2.8 keeping

ψ fixed, it can be shown that a(φ, ψ) = a(ψ) is independent of φ. Simi-

larly keeping φ fixed, we can show that a(φ, ψ) = a(ψ) = a is independent

of (φ, ψ). We recall that {Φα,β : α, β ∈ Nn} forms an orthonormal ba-

sis for L2(Cn). Now we take φ = Φα and ψ = Φβ. Let Fα,β = F(Φα,Φβ)

and Pα,β = P(Φα,Φβ). Since for each t ∈ R, (1 + | · |)−Mf(·, t) ∈ L2(Cn)

the sequence {Pα,β(t)} ∈ l2 for all t. We write Pα,β(t) =
m∑

j=0
aj(α, β)tj ,

m < N−n/2−1
2 . Choose ti ∈ R such that ti 6= tj , for all 0 ≤ i, j ≤ m. We
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consider a system of linear equations given by:



1 t0 · · · tm0

1 t1 · · · tm1
...

...
...

...

1 tm · · · tmm







{a0(α, β)}
{a1(α, β)}

...

{am(α, β)}




=




{Pα,β(t0)}
{Pα,β(t1)}

...

{Pα,β(tm)}




.

Since ti 6= tj for all i 6= j, the determinant of the (m + 1)× (m + 1) Vander-

monde matrix is nonzero. Therefore, {aj(α, β)} will be a linear combination

of members from {{Pα,β(tj)} : 0 ≤ j ≤ m} and hence {aj(α, β)} ∈ l2 for

each 0 ≤ j ≤ m. With this observation we can write

(1 + |z|)−Mf(z, t) =


∑

α,β

Pα,β(t)Φα,β(z)


 e−at2

=


∑

α,β




m∑

j=0

aj(α, β)tj


Φα,β(z)


 e−at2

=




m∑

j=0


∑

α,β

aj(α, β)Φα,β(z)


 tj


 e−at2

=




m∑

j=0

ψj(z)tj


 e−at2 ,

where ψj(·) =
∑
α,β

aj(α, β)Φα,β(·) ∈ L2(Cn) .

Applying the above theorem, we get a complete analogue of Cowling–

Price theorem for Hn
d and we record it in the following corollary.

Corollary 1.2.16. Suppose f ∈ L1 ∩ L2(Hn
d ) satisfies the conditions

(i)
∫
Hn

d
epa(|z|2+t2)|f(z, t)|p dz dt < ∞,

(ii)
∫
R eqbλ2‖f̂(λ)‖q

HS|λ|n dλ < ∞.

Then for ab ≥ 1/4, and min{p, q} < ∞, f = 0.
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Proof. Using Hölder’s inequality we can find N,M > 0 such that

(i)′
∫
Hn

d

|f(z,t)|eat2

(1+|z|)M (1+|t|)N dz dt < ∞,

(ii)′
∫
R

ebλ2‖f̂(λ)‖HS

(1+|λ|)N |λ|n dλ < ∞.

These two conditions together with ab ≥ 1/4 give us

∫

Hn
d

∫

R

|f(z, t)|‖f̂(λ)‖HSe
|t||λ|

(1 + |z|)M (1 + |t|)N (1 + |λ|)N
|λ|n dλ dz dt < ∞.

Therefore, using Theorem 1.2.15 we get for some m > 0,

f(z, t) = e−at2(1 + |z|)M




m∑

j=0

ψj(z)tj


 ,

where ψj ∈ L2(Cn). Since min{p, q} < ∞ the conditions (i) and (ii) will

force f to be zero almost everywhere.

Let us assume that f ∈ L1 ∩ L2(Hn
d ) is such that

∫

Cn

(∫

R
epat2 |f(z, t)|p dt

)1/p

dz < ∞.

Then using Hölder’s inequality followed by Minkowski’s integral inequality

we get N > 0, for which

∫

Hn
d

eat2 |f(z, t)|
(1 + |t|)N

dz dt

≤ C

(∫

R
epat2 |

∫

Cn

f(z, t) dz|p dt

)1/p

≤
∫

Cn

(∫

R
epat2 |f(z, t)|p dt

)1/p

dz < ∞.

This observation gives us the following corollary which is also a version of

Cowling–Price theorem.

Corollary 1.2.17. Let f ∈ L1 ∩ L2(Hn
d ) be such that
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(i)
∫
Cn

(∫
R epat2 |f(z, t)|p dt

)1/p
dz < ∞,

(ii)
∫
R

eqbλ2‖f̂(λ)‖q
HS

(1+|λ|)N |λ|ndλ < ∞.

If ab ≥ 1/4 and min{p, q} < ∞ then f = 0 almost everywhere.

The second condition of all the theorems and corollaries proved for Hn
d is

in terms of the Hilbert–Schmidt norm of f̂(λ) and these theorems are in some

sense theorems for the t–variable. This can be easily justified if we consider

functions of the form f(z, t) = g(z)h(t). We are interested in formulating

uncertainty principles in which both the variables z, t are respected.

1.2.2 Heat kernel version of uncertainty principles for Hn
d

The equality case of the Hardy’s theorem on Rn can be viewed as a char-

acterization of the heat kernel associated with the Laplacian 4. If pt(x) =

(4πt)−n/2e−
|x|2
4t , t > 0 denotes the heat kernel associated to4 we can rewrite

Hardy’s theorem as follows. (We call it the heat kernel version of Hardy’s

theorem.)

Theorem 1.2.18. Suppose f is a measurable function on Rn such that

|f(x)| ≤ Cpt(x) and |f̂(ξ)| ≤ Cp̂s(ξ).

Then for t < s, f = 0 and f(x) = Cpt(x) for t = s.

We remark that the heat kernel qa,d satisfies neither of the two conditions

in Corollary 1.2.11. In fact, if qa,d(z, t) ≤ C(z)e−αt2 for some α > 0 then

qλ
a,d extends to an entire function of λ in the complex plane. But the explicit

formula of qλ
a,d shows that it has singularity at ±iπk/adj for k ∈ N \ {0}.

Hence the estimate qa,d(z, t) ≤ C(z)e−αt2 is not possible. On the other hand
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using the relation q̂a,d(λ) = Tλ(qλ
a,d) and the formula ( 1.1.3 ) we have

|λ|n‖q̂a,d(λ)‖2
HS = (2π)n

n∏

j=1

d−1
j

∫

Cn

|qλ
a,d(z)|2 dz

= Cn




n∏

j=1

λdj

sinh aλdj




2
n∏

j=1

∫

C
e−

1
2
λ coth aλdj |zj |2 dzj

= Cn




n∏

j=1

λdj

sinh aλdj




2 


n∏

j=1

2π

λ coth aλdj




= C ′
n




n∏

j=1

λ

sinh 2aλdj




≈ C
n∏

j=1

e−2a|λ|dj

for sufficiently large |λ|. This shows that qa,d cannot satisfy the hypotheses

of Corollary 1.2.11. So it is not possible to characterize qa,d by Corollary

1.2.11. Let L be the sublaplacian on Hn with associated heat kernel qa(z, t).

Then the following theorem has been proved in [32].

Theorem 1.2.19. Suppose f is a measurable function on Hn that satisfies

(i) |f(z, t)| ≤ Cqa(z, t),

(ii) f̂(λ)∗f̂(λ) ≤ Cq̂2b(λ) for all λ 6= 0,

for some a, b > 0. Then f = 0 almost everywhere whenever a < b.

In [34], it has been conjectured that such a theorem is true for all strat-

ified nilpotent Lie groups. The proof given in [32] uses Gelfand pairs asso-

ciated to Hn and properties of the metaplectic representations. Therefore,

this proof is not suitable for generalizing to other nilpotent Lie groups. Here

we give a proof which works for all non-isotropic Heisenberg groups. In order

to do it, first we prove a version of Theorem 1.2.6 for Hn
d . This theorem will

be used to get heat kernel versions of Hardy and Cowling–Price theorems
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for Hn
d . Thangavelu has defined Fourier–Weyl transform for a function on

Hn and used it to prove Paley–Wiener theorem for Hn (see [33]). Before

stating our theorems we need the following two definitions.

Definition 1.2.20. For ξ = (ξ′, ξ′′) ∈ Rn × Rn and f ∈ L1(Hn
d ), we define

f̂(λ, ξ) = πλ(ξ′ + iξ′′, 0)f̂(λ)πλ(ξ′ + iξ′′, 0)∗

and call it the Fourier–Weyl transform of f on Hn
d .

It can be easily checked that

f̂(λ, ξ) =
∫

R2n

e
iλ

n∑
j=1

dj(xjξ′′j −yjξ′j)
fλ(x, y)πλ(x + iy, 0)dx dy,

where we have written z = x + iy and fλ(x, y) stands for fλ(z).

Definition 1.2.21. A function φ ∈ L2(Rn) is said to be an analytic vec-

tor for the representation πλ if for all ψ ∈ L2(Rn) the function (z, t) →
〈πλ(z, t)φ, ψ〉 is real analytic.

Since U(|λ|d)−1πλ(z, t)U(|λ|d) = ρ1(
√
|λ|d z, t), it is sufficient to con-

sider analytic vectors for the representation ρ1 of Hn. In the following

theorem we give a sufficient condition for a function φ ∈ L2(Rn) to be an

analytic vector for ρ1.

Theorem 1.2.22. Let φ ∈ L2(Rn) be such that |〈φ,Φα〉| ≤ Ce−b(2|α|+n)

for all α ∈ N and for some b > 0. Then φ is an analytic vector for the

representation ρ1 of Hn.

Proof. Since ρ1(z, t) = eitρ1(z, 0) it is enough to show 〈ρ1(z, 0)φ, ψ〉 is real

analytic function on R2n for any ψ ∈ L2(Rn). The following formula

〈ρ1(z, 0)φ1, ψ1〉 × 〈ρ1(z, 0)φ2, ψ2〉 = 〈ψ2, φ1〉〈ρ1(z, 0)φ2, ψ1〉
has been proved in the proposition 1.47, page–32 of [10]. Therefore, for any

ψ ∈ L2(Rn),

‖〈ρ1(z, 0)φ, ψ〉 × Φαα‖2 = |〈Φα, φ〉| ‖〈ρ1(z, 0)Φα, ψ〉‖2

= |〈φ,Φα〉| ‖ψ‖2‖Φα‖2

≤ Ce−b(2|α|+n).
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Let φk(z) = Ln−1
k (1

2 |z|2)e−
1
4
|z|2 . It follows from the identity (see [34],page

58),

φk(z) = (2π)n/2
∑

|α|=k

Φαα(z)

that

‖〈ρ1(z, 0)φ, ψ〉 × φk‖2 ≤ C
∑

|α|=k

e−b(2|α|+n)

= C
(k + n− 1)!
k!(n− 1)!

e−b(2k+n)

≤ Ce−b′(2k+n)

for some 0 < b′ < b. We conclude 〈ρ1(z, 0)φ, ψ〉 is real analytic using the

following proposition proved in [30].

Proposition 1.2.23. Suppose g ∈ L2(Cn) is such that ‖g×φk‖2 ≤ Ce−b(2k+n),

for some b > 0. Then g is real analytic.

The above theorem shows that for each λ ∈ R \ {0} and α ∈ Nn, Φα

is an analytic vector for ρ1 and hence is also an analytic vector for πλ. So

analytic vectors for πλ are dense in L2(Rn).

Theorem 1.2.24. Suppose f ∈ L1 ∩ L2(Hn
d ). Assume that for each λ ∈

R \ {0} there exists an analytic vector φλ for πλ and ψλ ∈ L2(Rn) such that
∫

R2n

∫

Hn
d

|f(x + iy, t)||〈f̂(λ, (ξ′, ξ′′))φλ, ψλ〉|

×e
|λ||

n∑
j=1

dj(xjξ′′j −yjξ′j)|
dx dy dt dξ′ dξ′′ < ∞.

Then f = 0 almost everywhere .

Proof. Let gλ(x, y) = fλ(x, y)〈πλ(x+iy, 0)φλ, ψλ〉. Then 〈f̂(λ, (ξ′, ξ′′))φλ, ψλ〉
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is the Fourier transform of gλ at |λ|(−d1ξ
′′
1 , · · · ,−dnξ′′n, d1ξ

′
1, · · · , dnξ′n). Now,

∫

R2n

∫

R2n

|gλ(x, y)| |ĝλ(ξ′, ξ′′)|e|x·ξ′+y·ξ′′| dx dy dξ′ dξ′′

≤
∫

R2n

∫

Hn
d

|f(x + iy, t)||〈f̂(λ, (ξ′, ξ′′))φλ, ψλ〉|

×e
|λ||

n∑
j=1

dj(xjξ′′j −yjξ′j)|
dx dy dt dξ′ dξ′′

< ∞

by our hypothesis. Applying Theorem 1.2.6 on R2n to the function gλ we

get gλ = 0 almost everywhere. Therefore, the support of fλ is contained in

{(x, y) : 〈πλ(x + iy)φλ, ψλ〉 = 0} which is a set of measure zero as φλ is an

analytic vector. Since fλ = 0 almost everywhere for each λ ∈ R \ {0} we

have f = 0 almost everywhere.

The following theorem is analogue of Theorem 1.2.6 for Hn
d .

Theorem 1.2.25. Suppose f ∈ L1 ∩ L2(Hn
d ). Assume that for each λ ∈

R \ {0} and for every pair (φλ, ψλ) , where φλ, ψλ ∈ L2(Rn)

∫

R2n

∫

Hn
d

|f(x + iy, t)||〈f̂(λ, (ξ′, ξ′′))φλ, ψλ〉|
(1 + |(x, y)|+ |(ξ′, ξ′′)|)N

×e
|λ||

n∑
j=1

dj(xjξ′′j −yjξ′j)|
dx dy dt dξ′ dξ′′ < ∞,

for some N ≥ 0. Then

fλ(x, y) = Pλ(x, y) exp(
1
4

n∑

j=1

|λ|dj(x2
j + y2

j ))e
−〈A(x,y),(x,y)〉,

where Pλ(x, y) is a polynomial in (x, y) but depends on λ and A is a positive

definite symmetric matrix.

Proof. Consider the function gλ(x, y) = fλ(x, y)〈πλ(x + iy)φλ, ψλ〉. From

the hypothesis of the theorem we see that
∫

R2n

∫

R2n

|gλ(x, y)| |ĝλ(ξ′, ξ′′)|e|x·ξ′+y·ξ′′|

(1 + |(x, y)|+ |(ξ′, ξ′′)|)N
dx dy dξ′ dξ′′ < ∞.
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Therefore, using Theorem 1.2.6 we get

fλ(x, y)〈πλ(x + iy, 0)φλ, ψλ〉 = P(φλ,ψλ)(x, y)e−〈A(φλ,ψλ)(x,y),(x,y)〉,

where P(φλ,ψλ) is a polynomial in (x, y). But as in the proof of Theorem 1.2.8

we can show that A(φλ, ψλ) = A is independent of the choice of (φλ, ψλ). In

particular take φλ(x) = ψλ(x) = U(λd)Φ0(x) which yields

fλ(x, y) = Pλ(x, y) exp(
1
4

n∑

j=1

(|λ|dj(x2
j + y2

j ))) e−〈A(x,y),(x,y)〉

and deg Pλ < N−2n
2 .

Assume f ∈ L1(Hn)∩L2(Hn) and f is radial that is f(σ · z, t) = f(z, t)

for all σ ∈ U(n), the unitary group. In this case f̂(λ) is diagonalizable with

respect to the orthonormal basis given by Hermite functions (see [34],page

62). So we can write

f̂(λ)φ =
∑

α∈Nn

Rα(λ)〈φ,Φλ
α〉Φλ

α,

where Φλ
α(ξ) = |λ|n/4Φα(

√
|λ|ξ). Suppose for each λ ∈ R \ {0} there exists

an operator S(λ) ∈ S2, the space of Hilbert–Schmidt operators on L2(Rn)

such that f̂(λ) = S(λ)e−b(H(λ)). Then it follows that for some C > 0

|Rα(λ)| ≤ Ce−(2|α|+n)|λ|b,

for all α ∈ Nn. This shows the exponential decay of singular numbers of

f̂(λ). It is to be noted that q̂a(λ) = e−aH(λ). The condition that for each

λ ∈ R\{0} there exists S(λ) ∈ Sq such that f̂(λ) = S(λ)q̂a(λ) is the analogue

of the condition f̂(p̂s)−1 ∈ Lq(Rn) in the case of Heisenberg group. Here Sq

denotes the set of Schatten q–class operators. Let us see the effect of such

an assumption on f̂(λ) on the Fourier–Weyl transform of f on Hn
d . Assume

for each λ ∈ R \ {0} there exists a bounded operator S(λ) on L2(Rn) such

that f̂(λ) = S(λ) (H(λd))m e−bH(λd) for some m > 0. Therefore, there exists
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C > 0 such that for all φ ∈ L2(Rn), ‖S(λ)φ‖2 ≤ C‖φ‖2. As

H(|λ|d)U(|λ|d)Φα =


|λ|

n∑

j=1

(2αj + 1)dj


U(|λ|d)Φα

for all α ∈ Nn, we have

‖f̂(λ)U(|λ|d)Φα‖2 ≤ C




n∑

j=1

(2αj + 1)|λ|dj




m

×



n∏

j=1

e−b|λ|(2αj+1)dj




for all α ∈ Nn. Therefore, for any 0 < b′ < b, there exists a constant C such

that

‖f̂(λ)U(|λ|d)Φα‖2 ≤ C




n∏

j=1

e−b′|λ|(2αj+1)dj


 (1.2.9)

for all α ∈ N.

For ξ = (ξ′, ξ′′) ∈ Rn × Rn and r = (r1, · · · , rn) ∈ Rn let us denote the

point (r1ξ
′
1, · · · rnξ′n) by rξ and (r1ξ

′
1, · · · rnξ′n, r1ξ

′′, · · · , rnξ′′n) by (rξ′, rξ′′)
and write r(ξ′ + iξ′′) for the point rξ′ + irξ′′ ∈ Cn. Using the fact that

{U(|λ|d)Φα : α ∈ Nn} forms an orthonormal basis for L2(Rn), we compute

πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0

=
∑
α

〈πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0, U(|λ|d)Φα〉U(|λ|d)Φα

=
∑
α

〈U(|λ|d)∗πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0, Φα〉U(|λ|d)Φα

=
∑
α

〈W (−
√
|λ|d(ξ′ + iξ′′))Φ0, Φα〉U(|λ|d)Φα

=
∑
α

Φ̄α,0(
√
|λ|d(ξ′ + iξ′′))U(|λ|d)Φα.

Using ( 1.2.9 ) and the above expression for πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0 we



1. Uncertainty Principles on Heisenberg Groups 23

have

|〈f̂(λ, (ξ′, ξ′′))U(|λ|d)Φ0, U(|λ|d)Φ0〉|
= |〈πλ(ξ′ + iξ′′, 0)f̂(λ)πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0, U(|λ|d)Φ0〉|
≤ ‖f̂(λ)πλ(ξ′ + iξ′′, 0)∗U(|λ|d)Φ0‖2

≤ C
∑
α

|Φα,0(
√
|λ|d(ξ′ + iξ′′)| ‖f̂(λ)U(|λ|d)Φα‖2

≤ C
∑
α

|Φα,0(
√
|λ|d(ξ′ + iξ′′)| e

−b′|λ|(
n∑

j=1
(2αj+1)dj)

.

We choose b′′ with a < b′′ < b′ < b and apply Cauchy–Schwarz inequality to

get

|〈f̂(λ, (ξ′, ξ′′))U(|λ|d)Φ0, U(|λ|d)Φ0〉|

≤ C
∑
α

|Φα,0(
√
|λ|d(ξ′ + iξ′′)|e

−(b′−b′′)|λ|(
n∑

j=1
(2αj+1)dj)

e
−b′′|λ|(

n∑
j=1

(2αj+1)dj)

≤ C


∑

α

|Φα,0(
√
|λ|d(ξ′ + iξ′′)|2e

−2b′′|λ|(
n∑

j=1
(2αj+1)dj)




1
2

≤ C




n∏

j=1

∞∑

αj=0

(
1

αj !
e−2b′′|λ|(2αj+1)dj

(
1
2
|λ|dj(ξ′

2

j + ξ′′
2

j )
)αj

e−
1
2
|λ|dj(ξ

′2
j +ξ′′

2

j )

)


1
2

≤ C

n∏

j=1


e−

1
4
|λ|dj(ξ

′2
j +ξ′′

2

j )




∞∑

αj=0

1
αj !

(
1
2
|λ|dj(ξ′j

2 + ξ′′j
2)e−4b′′|λ|dj

)αj




1
2




≤ C
n∏

j=1

e
− 1

4
|λ|dj

(
1−e−4b′′|λ|dj

)
(ξ′j

2+ξ′′j
2)

.

In the fourth step of the above calculation we have used the explicit formula

( 1.1.7 ) of Φα,0 . Thus the function 〈f̂(λ, (ξ′, ξ′′))U(|λ|d)Φ0, U(|λ|d)Φ0〉 has

a Gaussian decay.

Theorem 1.2.26. Let f be a function on Hn
d such that for some a, b > 0
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(i) (1 + |z|)−mf(qa,d)−1 ∈ Lp(Hn
d ),

(ii) f̂(λ) = S(λ) (πλ(Ld))
m q̂b,d(λ), S(λ) ∈ Sq for all λ,

where 1 ≤ p, q ≤ ∞. Then f = 0 almost everywhere whenever a < b.

Proof. Define g(z, t) = (1 + |z|)−m(qa,d(z, t))−1f(z, t). From the hypothesis

g ∈ Lp(Hn
d ). We have the estimate |qa,d(z, t)| ≤ Ce−

A
a

(|z|2+|t|), for some

A > 0. Using the condition g ∈ Lp(Hn
d ), the following integral

|fλ+iµ(z)| = |
∫ ∞

−∞
e(iλ−µ)tqa,d(z, t)g(z, t) dt|

≤ C

∫ ∞

−∞
eµte−

A
a

(|z|2+|t|)|g(z, t)| dt

is finite for |µ| < A
a . Now applying Morera’s theorem it is easy to see that

fλ can be extended as a holomorphic function in the strip |=λ| < A
a of the

complex plane.

For p = ∞,

(1 + |z|)−m|fλ(z)| ≤ ‖g(z, ·)‖∞
∫ ∞

−∞
|qa,d(z, t)| dt

≤ ‖g(z, ·)‖∞e−
1
4a
|z|2 .

For 1 ≤ p ≤ 2,

(1 + |z|)−m|fλ(z)| ≤
∫ ∞

−∞
|qa,d(z, t)||g(z, t)| dt

≤
(∫ ∞

−∞
|qa,d(z, t)|p′ dt

) 1
p′

(∫ ∞

−∞
|g(z, t)|p dt

) 1
p

.

Now applying Hausdorff-Young inequality to the first integral

(1 + |z|)−m|fλ(z)| ≤
(∫ ∞

−∞
|qλ

a,d(z)|p dλ

) 1
p

(∫ ∞

−∞
|g(z, t)|p dt

) 1
p
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≤ (4π)−n




∫ ∞

−∞

n∏

j=1

(
djλ

sinh djλa

)p

e−
p
4
(djλ coth djλa)|zj |2dλ




1
p

×
(∫ ∞

−∞
|g(z, t)|p dt

) 1
p

≤ Ce−
1
4a
|z|2

(∫ ∞

−∞
|g(z, t)|p dt

) 1
p

.

When 2 < p < ∞, 1 < p′ < 2 write 1
p′ = ν

1 + 1−ν
2 for some 0 < ν < 1.

Since ‖qa,d(z, ·)‖1 ≤ e−
1
4a
|z|2 and ‖qa,d(z, ·)‖2 ≤ e−

1
4a
|z|2 , applying Hölder’s

inequality with the pair of conjugate exponents 1
νp′ and 2

(1−ν)p′ , we get
∫ ∞

−∞
|qa,d(z, t)|p′ dt =

∫ ∞

−∞
|qa,d(z, t)|νp′ |qa(z, t)|(1−ν)p′ dt

≤ ‖qa,d(z, ·)‖νp′
1 ‖qa,d(z, ·)‖(1−ν)p′

2

which gives ‖qa,d(·, t)‖p′ ≤ e−
1
4a
|z|2 . Therefore, fλ(·)(1 + |z|)me

1
4a
|z|2 be-

longs to Lp(Cn) and hence for any a′ > a, fλ(·)e 1
4a′ |z|2 ∈ Lp(Cn) . Since

every member of Sq is a bounded operator there exits C > 0 such that

‖S(λ)φ‖2 ≤ C‖φ‖2 for all φ ∈ L2(Rn). Since πλ(Ld) = H(λd), from the

previous observation we have for any 0 < b′ < b

|〈f̂(λ, (ξ′, ξ′′))U(|λ|d)Φ0, U(|λ|d)Φ0〉|

≤ C
n∏

j=1

e
− 1

4
|λ|dj

(
1−e−4b′|λ|dj

)
(ξ′j

2+ξ′′j
2)

. (1.2.10)

Let gλ(x, y) = fλ(x, y)〈πλ(x + iy, 0)φλ, φλ〉 where φλ(x) = U(|λ|d)Φ0(x).

Note that φλ is an analytic vector. Then
∫

R2n

∫

R2n

|gλ(x, y)| |ĝλ(ξ′, ξ′′)|e|x·ξ′+y·ξ′′|dx dy dξ′ dξ′′

≤
∫

R2n

∫

R2n

|fλ(x, y)| |〈f̂(λ, (ξ′, ξ′′))φλ, φλ〉|e
|λ|

n∑
j=1

dj(|xjξ′′j |+|yjξ′j |)
dx dy dξ′ dξ′′

≤ C

∫

R2n

∫

R2n

|fλ(x, y)| e
1

4a′ (|x|2+|y|2)e−
1

4a′ |((x,y)−2a|λ|d(ξ′′,ξ′))|2 ×
n∏

j=1

e
−|λ|dj

(
1
4

(
1−e−4b′|λ|dj

)
−a′|λ|dj

)
(ξ′

2

j +ξ′′j )
dx dy dξ′ dξ′′
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Since fλe
1

4a′ (|x|2+|y|2) ∈ Lp(R2n), the above integral will be finite if a′|λ|dj <
1
4

(
1− e−4b′|λ|dj

)
. Therefore, applying Theorem 1.2.6 to the function gλ,

we conclude gλ = 0 whenever a′|λ|dj < 1
4

(
1− e−4b′|λ|dj

)
. As the function

〈πλ(x + iy)φλ, φλ〉 =
n∏

j=1
e−

1
4
|λ| dj(x

2
j+y2

j ) is non vanishing everywhere for all

λ, we can conclude fλ = 0 whenever a′|λ|dj < 1
4(1 − e−4b′|λ|dj ). Since

a < a′ < b′ < b we can choose δ > 0 such that a′ < b′e−2b′|λ|dj < b′ for all j

with 0 < |λ| < δ. Now

1− e−4b′|λ|dj = e−2b′|λ|dj (e2b′|λ|dj − e−2b′|λ|dj )

> 4b′|λ|dje
−2b′|λ|dj

> 4a′|λ|dj

for all j and λ with 0 < |λ| < δ. Since fλ can be extended as a holomor-

phic function in a strip of the complex plane we conclude fλ = 0 for all λ

whenever a < b and hence f = 0 almost everywhere.

We also have the following version of Hardy’s theorem.

Theorem 1.2.27. If

(i) |f(z, t)| ≤ C(1 + |z|)mqa,d(z, t),

(ii) f̂(λ)∗f̂(λ) ≤ C(πλ(Ld))mq̂2b,d(λ)

for some a, b > 0, then f = 0 whenever a < b.

Proof. If f̂(λ)∗f̂(λ) ≤ Ce−2bH(|λ|d) we have the estimate

‖f̂(λ)U(|λ|d)Φα‖2 ≤ C

n∏

j=1

e−b|λ|(2αj+1)dj

for all α ∈ Nn and hence 〈f̂(λ, (ξ′, ξ′′))U(|λ|d)Φ0, U(|λ|d)Φ0〉 can be esti-

mated as before. Thus the proof will be completed.



2. UNCERTAINTY PRINCIPLES FOR STEP TWO NILPOTENT

LIE GROUPS

The aim of this chapter is to prove various uncertainty principles for con-

nected simply connected step two nilpotent lie groups. We have organised

the chapter as follows: We describe the irreducible unitary representations,

Plancherel formula, relevant aspects of step two nilpotent Lie groups. Then

we extend the results proved for Heisenberg groups in earlier chapter, in the

context of connected simply connected step two nilpotent Lie groups.

2.1 Preliminaries on step two nilpotent Lie groups

Let G be a step two connected simply connected nilpotent Lie group so

that its Lie algebra g has the decomposition g = v ⊕ z, where z is the

centre of g and v is any subspace of g complementary to z. We choose an

inner product on g such that v and z are orthogonal. Fix an orthonormal

basis B = {e1, e2 · · · , em, T1, · · · , Tk} so that v = R span{e1, e2 · · · , em} and

z = R span{T1, · · · , Tk}. Since g is nilpotent the exponential map is an

analytic diffeomorphism . We can identify G with v⊕ z and write (X + T )

for exp(X+T ) and denote it by (X,T ) where X ∈ v and T ∈ z. The product

law on G is given by the Baker-Campbell-Hausdorff formula :

(X, T )(X ′, T ′) = (X + X ′, T + T ′ +
1
2
[X, X ′])

for all X,X ′ ∈ v and T, T ′ ∈ z. For any orthonormal basis {Xj : 1 ≤ j ≤ m}
of v define the sublaplacian

L = −
m∑

j=1

X2
j .
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2.1.1 Representations of step two nilpotent Lie groups

A complete account of representation theory for general connected simply

connected nilpotent Lie groups can be found in [8]. Representations of step

two connected simply connected nilpotent groups are easy to describe. Ray

[28] has described their representations and proved the Plancherel theorem

following the orbit method of Kirillov. Let g∗, z∗ be the real dual of g and z

respectively. For each ν ∈ z∗ consider the bilinear form B′
ν on v defined by

B′
ν(X, Y ) = ν([X,Y ]) for all X, Y ∈ g.

The radical r̃ν of the bilinear form B′
ν is given by

r̃ν = {X ∈ g : ν([X,Y ]) = 0 for all Y ∈ g}.

Let Bν be the restriction of B′
ν on v and

rν = {X ∈ v : ν([X,Y ]) = 0 for all Y ∈ v}.

Let Xi = ei for all 1 ≤ i ≤ m and Xm+i = Ti for all 1 ≤ i ≤ k. Then B =

{X1, · · · , Xm, Xm+1, · · · , Xm+k}. Let B∗ = {X∗
1 , · · · , X∗

m, X∗
m+1, · · · , X∗

m+k}
be the dual basis of B. We consider the matrix (Bν(i, j)) given by the bi-

linear form Bν that is (i, j) th entry of the matrix is Bν(Xi, Xj). Let Bi
ν

denotes the submatrix of (Bν(i, j)) consisting of first i rows. If rank Bi
ν is

strictly greater than rank B
(i−1)
ν then i is called a jump index for ν. Since

Bν is an alternating bilinear form ν has an even number of jump indices.

The set of jump indices is denoted by S = {j1, j2 · · · , j2n}. These indices

depend on ν as well as the order of the basis. But they are all same if we

choose ν ∈ U = {ν : rank (Bi
ν) is maximal for all i.}, a Zariski open subset

of z∗. Let T = {n1, n2, · · · , nr,m + 1, · · · ,m + k} be the complement of S

in {1, 2, · · · ,m, m + 1, · · · , m + k}. Let

V ∗
T = SpanR{X∗

m+1, · · · , X∗
m+k, X

∗
ni

: ni ∈ T}

and Ṽ ∗
T = {X∗

ni
: ni ∈ T}. The irreducible unitary representations relevant

to Plancherel measure of Ĝ are parametrized by the set Λ = Ṽ ∗
T × U .
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If there exist ν ∈ z∗ such that Bν is nondegenerate then the Lie algebra

is called an MW algebra after Moore and Wolf and the corresponding group

is called an MW group. In this case T = {m + 1, · · · ,m + k} and U =

{ν ∈ z∗ : Bν is nondegeneate}. The irreducible unitary representations

relevant to Plancherel measure of Ĝ will be parametrized by Λ = {ν ∈ z∗ :

Bν is nondegenerate.}
For

(X, T ) = exp(
m∑

j=1

xjXj +
k∑

j=1

tjXj+m), xj , tj ∈ R,

we define its norm by

|(X,T )| = (x2
1 + · · ·+ x2

m + t21 + · · ·+ t2k)
1/2.

The map

(x1, · · · , xm, t1 · · · , tk) −→
m∑

j=1

xjXj +
k∑

j=1

tjXj+m

−→ exp




m∑

j=1

xjXj +
k∑

j=1

tjXj+m




takes Lebesgue measure dx1 · · · dxmdt1 · · · dtk of Rm+k to Haar measure on

G. Any measurable function f on G will be identified with a function on

Rm+k. We identify g∗ with Rm+k with respect to the basis B∗ and introduce

the Euclidean norm relative to this basis.

Step two groups without MW condition

In this case rν 6= {0} for each ν ∈ U . Let mν be the orthogonal complement

of rν in v. Then Bν |mν is nondegenerate and hence dimmν is 2n. From the

properties of an alternating bilinear form there exists an orthonormal basis

{X1(ν), Y1(ν), · · · , Xn(ν), Yn(ν), Z1(ν), · · · , Zr(ν)}

of v and positive numbers di(ν) > 0 such that
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(i) rν = R span {Z1(ν), · · · , Zr(ν)},

(ii) ν([Xi(ν), Yj(ν)]) = δi,jdj(ν), 1 ≤ i, j ≤ n and

ν([Xi(ν), Xj(ν)]) = 0, ν([Yi(ν), Yj(ν)]) = 0 for 1 ≤ i, j ≤ n,

(iii) R span {X1(ν) · · · , Xn(ν), Z1(ν), · · · , Zr(ν), T1, · · · , Tk} = hν is a po-

larization for ν.

This means the subalgebra hν is maximal with respect to the property

ν([hν , hν ]) = 0. We call the basis

{X1(ν), · · · , Xn(ν), Y1(ν), · · · , Yn(ν), Z1(ν), · · · , Zr(ν), T1, · · · , Tk}

almost symplectic basis. Let ξν = R span{X1(ν) · · · , Xn(ν)} and ην =

R span {Y1(ν), · · · , Yn(ν)}. Then we have the decomposition g = ξν ⊕ ην ⊕
rν ⊕ z. We denote the element exp(X + Y + Z + T ) of G by (X, Y, Z, T ) for

X ∈ ξν , Y ∈ ην , Z ∈ rν , T ∈ z. Further we can write

(X, Y, Z, T ) =
n∑

j=1

xj(ν)Xj(ν) +
n∑

j=1

yj(ν)Yj(ν) +
r∑

j=1

zj(ν)Zj(ν) +
k∑

j=1

tjTj

and denote it by (x, y, z, t) suppressing the dependence of ν which will be

understood from the context. If we take λ ∈ Λ then it can be written as

λ = (µ, ν), where µ ∈ Ṽ ∗
T = R span {X∗

ni
: 1 ≤ i ≤ r} and ν ∈ U . Therefore,

λ = (µ, ν) ≡
r∑

i=1
µiX

∗
ni

+
m∑

i=1
νiT

∗
i . Let λ′ ∈ g∗ such that λ′(Xji) = 0 for

1 ≤ i ≤ 2n and the restriction of λ′ to V ∗
T is λ = (µ, ν). Let µ̃i = λ′(Zi(ν))

and consider the map

φ : Ṽ ∗
T → R span {Z1(ν)∗, · · · , Zr(ν)∗} (2.1.1)

given by φ(µ1, · · · , µr) = (µ̃1, · · · , µ̃r). Then it has been shown in [28] that

| det Jφ| = |Pf(ν)|
d1(ν)···dn(ν) , where Jφ is the Jacobian matrix of φ and Pf (ν) =√

det(Bν(ji, js)) is called the Pfaffian of ν. Now we want to study the

behavior of dj(ν) as ν → 0. We show that dj(ν) → 0 as ν → 0. It is
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to be noted that (Bsω(i, j)) = s(Bω(i, j)) for s ∈ (0,∞) and ω ∈ Sk−1.

Then it follows that Xj(sω) = Xj(ω), Yj(sω) = Yj(ω), Zj(sω) = Zj(ω) and

dj(sω) = sdj(ω) for all j. The entries of the matrix (Bν(i, j)) are continuous

functions of ν and ±idj(ν) being eigenvalues of the matrix, dj(·) are also

continuous in ν. Using the fact that dj(sω) = sdj(ω) we conclude dj(ν) → 0

as ν → 0.

We take λ = (µ, ν) ∈ Λ. Since λ|[hν , hν ] = 0 we define character σµ,ν of

Hν = exp (hν) by

σµ,ν(X, Z, T ) = eiµ̃(Z)+iν(T )

for all (X,Z, T ) ∈ Hν . For each λ = (µ, ν) ∈ Λ we construct a new Hilbert

space Hλ consisting of C valued measurable functions f on G such that for

all k ∈ Hν

f(kg) = σµ,ν(k)f(g) (2.1.2)

and

f(0, Y, 0, 0) ∈ L2(ην).

As any element of G can be written uniquely as h(0, Y, 0, 0) for some h ∈
Hν , we can identify Hλ with L2(ην) . We define an irreducible unitary

representation πµ,ν of G on Hλ by

[πµ,ν(g)f ](g′) = f(g′g) (2.1.3)

for all f ∈ Hλ and g, g′ ∈ G. Since we can write the following product

uniquely

(0, Y ′, 0, 0)(X,Y, Z, T )

= (X, 0, Z, (T + [Y ′ +
1
2
Y, X − Y ′ + Z]))(0, Y + Y ′, 0, 0, 0)

using ( 2.1.3 ) and the identification of Hλ with L2(ην) we get an irreducible

unitary representations πµ,ν of G realized on L2(ην). It is the representation

induced by σµ,ν and can be described as follows :

(πµ,ν(X,Y, Z, T )φ) (Y ′) = eiν(T+[Y ′+ 1
2
Y,X−Y ′+Z])eiµ̃(Z)φ(Y + Y ′)
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for all φ ∈ L2(ην). Using the almost symplectic basis we have the following

description :

(πµ,ν(x, y, z, t)φ) (ξ)

= exp(i
k∑

j=1

νjtj + i
r∑

j=1

µ̃jzj + i
n∑

j=1

dj(ν)(xjξj +
1
2
xjyj))φ(ξ + y)

for all φ ∈ L2(ην).

Define the Fourier transform of f ∈ L1(G) by

f̂(µ, ν) =
∫

z

∫

rν

∫

ην

∫

ξν

f(x, y, z, t)πµ,ν(x, y, z, t) dx dy dz dt

for λ = (µ, ν) ∈ Λ. We let

fν(x, y, z) =
∫

z
exp(i

k∑

j=1

νjtj)f(x, y, z, t) dt,

f µ̃,ν(x, y) =
∫

rν

∫

z
exp(i

k∑

j=1

νjtj + i
r∑

j=1

µ̃jzj)f(x, y, z, t) dt dz

for all µ̃ ∈ r∗ν , ν ∈ z∗. If f ∈ L1 ∩ L2(G) then f̂(µ, ν) is an Hilbert–Schmidt

operator. For all µ̃ ∈ r∗ν we have

(2π)−n
n∏

j=1

dj(ν)‖f̂(µ̃, ν)‖2
HS =

∫

ην

∫

ξν

|f µ̃,ν(x, y)|2 dx dy. (2.1.4)

Now applying Plancherel formula in the variable µ̃ we get

(2π)−(n+r)
n∏

j=1

dj(ν)
∫

r∗ν
‖f̂(µ̃, ν)‖2

HSdµ̃ (2.1.5)

=
∫

rν

∫

ην

∫

ξν

|fν(x, y, z)|2 dx dy dz

=
∫

v
|fν(x, y, z)|2 dx dy dz.

Polarizing this identity

(2π)−(n+r)
n∏

j=1

dj(ν)
∫

r∗ν
tr

(
f̂(µ̃, ν)ĝ(µ̃, ν)∗

)
dµ̃ (2.1.6)

=
∫

v
fν(x, y, z)gν(x, y, z) dx dy dz.
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Using the change of variables defined by the function φ in ( 2.1.1 ) we get

(2π)−(n+r)Pf(ν)
∫

Ṽ ∗T
‖f̂(µ, ν)‖2

HS dµ (2.1.7)

=
∫

v
|fν(x, y, z)|2 dx dy dz

and

(2π)−(n+r)Pf(ν)
∫

Ṽ ∗T
tr

(
f̂(µ, ν)ĝ(µ, ν)∗

)
dµ (2.1.8)

=
∫

v
fν(x, y, z)gν(x, y, z) dx dy dz.

The Plancherel formula takes the following form:
∫

Λ
‖f̂(µ, ν)‖2

HS Pf(ν)dν dµ =
∫

G
|f(x, y, z, t)|2 dx dy dz dt.

For g ∈ L2(v), define the Hilbert–Schmidt operator Wµ,ν(g) by

Wµ,ν(g) =
∫

v
g(x, y, z)πµ,ν(x, y, z, 0) dx dy dz. (2.1.9)

With this notation, for all g, h ∈ L2(v) we have

(2π)−(n+r)Pf(ν)
∫

Ṽ ∗T
tr(Wµ,ν(g)Wµ,ν(h)∗) dµ (2.1.10)

=
∫

v
g(x, y, z)h(x, y, z) dx dy dz.

If g is a Schwartz function then it has been shown in [1] that |Wµ,ν(g)| is a

trace class operator and tr(|Wµ,ν(g)|) can be estimated in terms of Schwartz

semi norms of g. In fact (1 + |µ|)ktr(|Wµ,ν(g)|) ≤ Cr(ν)l‖g‖∗ for some

l, k > 0, where r(ν) =
n∑

j=1
(dj(ν)2 + dj(ν)−2) and ‖g‖∗ is a suitable Schwartz

seminorm.
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Step two groups with MW condition

In this case the representations are parameterized by the Zariski open set

Λ = {ν ∈ z∗ : Bν is nondegenerate} and is given by:

(πν(x, y, t)φ)(ξ)

= exp(i
k∑

j=1

νjtj + i
n∑

j=1

dj(ν)(xjξj +
1
2
xjyj))φ(ξ + y) (2.1.11)

for all φ ∈ L2(ην). Since Bν is nondegenerate it is clear that Pf(ν) =∏n
j=1 dj(ν). Define the Fourier transform of f ∈ L1(G) by

f̂(ν) =
∫

z

∫

ην

∫

ξν

f(x, y, t)πν(x, y, t) dx dy dt

for all ν ∈ Λ. Also define

fν(x, y) =
∫

z
exp(i

k∑

j=1

νjtj)f(x, y, t) dx dy dt

for all ν ∈ Λ. For each ν ∈ Λ and g ∈ L1
⋂

L2(ξν ⊕ ην), define the operator

W ′
ν(g) =

∫

ην

∫

ξν

g(x, y)πν(x, y, 0) dx dy. (2.1.12)

Then W ′
ν(g) is an integral operator with kernel

Kν(ξ, y) =
∫

ξν

exp(i
1
2

n∑

j=1

dj(ν) (ξj + yj)xj)g(x, y − ξ) dx

which is in L2(ην) ⊗ L2(ην). Moreover if g ∈ L2(ξν ⊕ ην) then W ′
ν(g) is a

Hilbert-Schmidt operator and we have the Plancherel theorem

Pf (ν) ‖W ′
ν(g)‖2

HS = (2π)n

∫

ην

∫

ξν

|g(x, y)|2 dx dy.

Polarizing this identity, we obtain

Pf (ν) tr
(
W ′

ν(g)∗W ′
ν(h)

)
(2.1.13)

= (2π)n

∫

ην

∫

ξν

g(x, y)h̄(x, y) dx dy.
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If f ∈ L1 ∩ L2(G) then from the definition of f̂(ν) we have f̂(ν) = W ′
ν(f

ν)

and hence

Pf(ν)‖f̂(ν)‖2
HS = (2π)n

∫

ην

∫

ξν

|fν(x, y)|2 dx dy (2.1.14)

and

Pf(ν)
(
trf̂(ν)ĝ(ν)∗

)
(2.1.15)

= (2π)n

∫

ην

∫

ξν

fν(x, y)gν(x, y) dx dy.

2.2 Step two stratified groups

The two step Lie algebra g = v ⊕ z is called stratified if [v, v] = z and the

corresponding group is called stratified group. If the group G is stratified

then it admits a natural family of dilations so it is a homogeneous group.

Then there exists a smooth function pa(v, t) on G × (0,∞) such that f ∗
pa(v, t) solves the heat equation associated with the sublaplacian L with

initial condition f , see Folland-Stein [13]. This pa is called the heat kernel

associated with L. In this section we will prove heat kernel versions of Hardy

and Cowling-Price theorems for all step two stratified groups.

2.2.1 Uncertainty principles on step two stratified groups without MW-

condition

If we write the sublaplacian with respect to an almost symplectic basis it

takes the normal form

L = −
n∑

j=1

(
X2

j (ν) + Y 2
j (ν)

)−
r∑

j=1

Z2
j (ν). (2.2.1)

We define

H(µ̃, d(ν)) =
n∑

j=1

(
− ∂2

∂ξ2
j

+ d2
j (ν)ξ2

j

)
+ |µ̃|2. (2.2.2)
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Using the explicit form of the representations we can calculate that

πµ,ν(L) = H(µ̃, d(ν))

where d(ν) = (d1(ν), · · · , dn(ν)). Also we have

H(µ̃, d(ν))U(d(ν))Φα =


|µ̃|2 +

n∑

j=1

(2αj + 1)dj(ν)


U(d(ν))Φα

for all α ∈ Nn. Let Φν
α = U(d(ν))Φα and

Φν
α,β(x, y) = (2π)−

n
2 (

n∏

j=1

dj(ν))
1
2 (π0,ν(x, y, 0, 0)Φν

α,Φν
β). (2.2.3)

Then {Φν
α,β : α, β ∈ Nn} forms an orthonormal basis for L2(ξν ⊕ ην). For a

detailed account we refer to [28]. It can be proved as in the case of Hn
d that

p̂a(µ, ν) = e−aH(µ̃,d(ν)). (2.2.4)

The heat kernel is explicitly given by

pν
a(v) = (4π)−n(4πa)−

r
2 e
− 1

4a

r∑
j=1

〈v,Zj(ν)〉2

×
n∏

j=1

(
dj(ν)

sinh adj(ν)

)
e−

1
4
dj(ν) coth adj(ν)(〈v,Xj(ν)〉2+〈v,Yj(ν)〉2).

Writing ν = sω for s ∈ (0,∞) and ω ∈ Sk−1 we can compute lims→0 psω
a (v)

using the fact that Xj(sω) = Xj(ω), Yj(sω) = Yj(ω), Zj(sω) = Zj(ω) and

dj(sω) = sdj(ω) for all j. We get

p0
a(v) = (4π)−n(4πa)−

r
2 a−ne

− 1
4a

(
r∑

i=1
〈v,Zj(ω)〉2+

n∑
j=1

〈v,Xj(ω)〉2+
n∑

j=1
〈v,Yj(ω)〉2

)

= (4π)−n(4πa)−
r
2 a−ne

− 1
4a

(
m∑

j=1
〈v,ej〉2)

e
− 1

4a
(

k∑
j=1

〈v,Tj〉2)

= (4π)−n(4πa)−
r
2 a−ne−

1
4a
|v|2 . (2.2.5)

Writing v = (x(ν), y(ν), z(ν)) ∈ ξν ⊕ ην ⊕ rν = v,

p0
a(x(ν), y(ν), z(ν)) = (4π)−n(4πa)−

r
2 a−ne−

1
4a

(|x(ν)|2+|y(ν)|2+|z(ν)|2).

With this preparation, we have the following versions of Hardy and Cowling–

Price theorems.
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Theorem 2.2.1. Let G be a step two stratified group without MW condition.

Let f be a function on G such that

(i) |f(v, t)| ≤ C(1 + |v|)lpa(v, t),

(ii) f̂(µ, ν)∗f̂(µ, ν) ≤ C (πµ,ν(L))l p̂2b(µ, ν) for every (µ, ν) ∈ Λ,

where l ≥ 0. Then f = 0 almost everywhere whenever a < b.

Proof. Let f∗(x, y, z, t) = f̄(−x,−y,−z,−t) and consider the function

hν(z) =
∫

ξν

∫

ην

fν ∗3 f∗
ν
(x, y, z) dx dy,

where ∗3 means convolution is taken in the third variable. Since |fν(x, y, z)| ≤
C(1 + |(x, y, z)|)lp0

a(x, y, z) we have the following estimate on h :

|hν(z)| ≤ Ce−
1

8a′ |z|2

for any a < a′ < b. Also

f̂(µ, ν)∗f̂(µ, ν) ≤ C(πµ,ν(L))lp̂2b(µ, ν)

= (H(µ̃, d(ν)))l e−2bH(µ̃,d(ν))

for every µ ∈ Ṽ ∗
T and ν ∈ U from which we get

‖f̂(µ, ν)‖2
HS ≤ C e−2b|µ̃|2




n∑

j=1

(2αj + 1)dj(ν) + |µ̃|2



l
n∏

j=1

∑

αj∈N
e−2b(2αj+1)dj(ν)

≤ Cν e−2b′|µ̃|2

for any a < a′ < b′ < b. Therefore,

ĥν(µ̃) =
∫

ξν

∫

ην

|f µ̃,ν(x, y)|2 dx dy

= (2π)−n
n∏

j=1

dj(ν)−1‖f̂(µ, ν)‖2
HS

≤ Cν e−2b′|µ̃|2 .
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Now applying Hardy’s theorem on rν we conclude that hν = 0 and hence

f̂(µ, ν) = 0 for all (µ, ν) ∈ Λ, whenever a < b. Therefore, f = 0 almost

everywhere for a < b.

Theorem 2.2.2. Let G be a step two stratified group without MW condition.

Let f be a function on G such that

(i) (1 + |v|)−lfp−1
a ∈ Lp(G),

(ii) f̂(µ, ν) = S(µ, ν) (πµ,ν(L))l p̂b(µ, ν)

with S(µ, ν) ∈ Sq for every (µ, ν) ∈ Λ , where l > 0, 1 ≤ p, q ≤ ∞. Then

f = 0 almost everywhere whenever a < b.

Proof. Using the explicit formula for pν
a(v) it can be proved as in the case

of Hn
d that e

1
4a′ |v|2fν ∈ Lp(v) for any a < a′ < b. Let g(v, t) = e−α|t|2h(v),

where α > 0 and h is a smooth function with supp h ⊂ {v : |v| < δ}.
Choose a′′ such that a′ < a′′ < b. Then for all v ∈ v with |v| > δ

√
a′′√

a′′−
√

a′
and

v′ ∈ supp h we have |v−v′| ≥ |v|− |v′| > |v|−δ > |v|
√

a′
a′′ . Since gν ∈ Lp(v)

for all p we get by Hölder’s inequality a constant C > 0 such that

C ≥
∫

v
e

1
4a′ |v−v′|2 |fν(v − v′)||gν(v′)|dv′

≥ e
1

4a′′ |v|2
∫

v
|fν(v − v′)| |gν(v′)|dv′

for all v with |v| > δ
√

a′′√
a′′−

√
a′

. From the continuity of the function (f ∗ g)ν it

follows that

|(f ∗ g)ν(v)| = |
∫

v
fν(v − v′)g(v′)e

i
2
ν([v,v′]) dv′|

≤
∫

v

|fν(v − v′)||gν(v′)|dv′

≤ Ce−
1

4a′′ |v|2

for all v ∈ v. Since

H(µ̃, d(ν))U(d(ν))Φα =


|µ̃|2 +

n∑

j=1

(2αj + 1)dj(ν)


Φα
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for all α ∈ N, from the hypothesis on f̂(µ, ν) it follows that for some constant

C > 0 and a′′ < b′ < b,

‖f̂(µ, ν)U(d(ν))Φα‖2 ≤ Cνe
−b′|µ̃|2

for all α ∈ N. This shows that ‖f̂(µ, ν)‖2
HS ≤ Ce−2b′|µ̃|2 . Therefore,

‖f̂ ∗ g(µ, ν)‖HS ≤ ‖ĝ(µ, ν)‖op‖f̂(µ, ν)‖HS

≤ Ce−b′|µ̃|2 .

From the proof of the previous theorem we conclude that f ∗ g = 0 as

a < a′′ < b. Let g(v, t) = (2π)−
k
2 h(v)e−

|t|2
2 where h is a compactly supported

smooth function and
∫
v

h(v) dv = 1. Let gε(v, t) = ε−(2n+k+r)g(v
ε ,

t
ε) for

ε > 0. Then {gε}ε>0 form an approximate identity. Since f ∗ gε(v, t) = 0 for

all ε > 0 whenever a < b, it follows that f = 0 for a < b.

2.2.2 Uncertainty principles on step two stratified groups with MW

condition

In this subsection we assume G to be step two stratified group with MW

condition. If we write the sublaplacian with respect to the symplectic basis

it takes the normal form

L = −
n∑

j=1

(Xj(ν)2 + Yj(ν)2)

and

πν(L) =
n∑

j=1

(
− d2

dξ2
j

+ dj(ν)2ξ2
j

)
= H(d(ν)). (2.2.6)

If pa denotes the heat kernel associated to L then

p̂a(ν) = e−aH(d(ν)) (2.2.7)

and

pν
a(x(ν), y(ν)) (2.2.8)

= (4π)−n
n∏

j=1

(
dj(ν)

sinh adj(ν)

)
e−

1
4
dj(ν)(coth adj(ν))(xj(ν)2+yj(ν)2).
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From the work of Jerison and Sánchez-Calle [18] it is known that pa(v, t) ≤
Ce−

A
a
|(v,t)|2 for some A > 0, where | · | denotes a homogeneous norm on G.

As in the case if Hn
d we define the Fourier–Weyl transform of a function f

by

f̂(ν, (ξ′, ξ′′)) = πν(ξ′, ξ′′, 0)f̂(ν)πν(ξ′, ξ′′, 0)∗,

for (ξ′, ξ′′) ∈ ξν ⊕ ην .

Theorem 2.2.3. Let G be a step two stratified group with MW–condition

and f be a function on G such that

(i) (1 + |v|)−lfp−1
a ∈ Lp(G),

(ii) f̂(ν) = S(ν) (πν(L))l p̂b(ν), S(ν) ∈ Sq for every ν ∈ Λ,

where l ≥ 0 and 1 ≤ p, q ≤ ∞. Then f = 0 almost everywhere whenever

a < b.

Proof. Since any two homogeneous norms are equivalent, using the estimate

of pa in terms of the homogeneous norm obtained from natural dilation, it

can be shown that fν can be extended as a holomorphic function of ν in

a strip of Ck and also using the explicit expression of pν
a we can conclude

that fν(x, y)e
1

4a′ (|x|2+|y|2) ∈ Lp(ξν ⊕ ην) for any a′ > a. Let us compute

πν(ξ′, ξ′′, 0)∗U(d(ν))Φ0 using the fact that {U(d(ν))Φα : α ∈ N} forms an

orthonormal basis for L2(ην). Therefore, we have

πν(ξ′, ξ′′, 0)∗U(d(ν))Φ0(x)

=
∑
α

〈πν(ξ′, ξ′′, 0)∗U(d(ν))Φ0, U(d(ν))Φα〉U(d(ν))Φα(x)

=
∑
α

〈U(d(ν))∗πν(ξ′, ξ′′, 0)∗U(d(ν))Φ0, Φα〉U(d(ν))Φα(x)

=
∑
α

〈W (−
√

d(ν)(ξ′ + iξ′′))Φ0, Φα〉U(d(ν))Φα(x)

=
∑
α

Φ̄α,0

(√
d(ν)(ξ′ + iξ′′)

)
U(d(ν))Φα(x).
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Let φν = U(d(ν))Φ0, then 〈πν(ξ′, ξ′′, 0)φν , φν〉 =
n∏

j=1
e−

1
4
dj(ν)(ξ′j

2+ξ′′j
2). Now

|〈f̂(ν, (ξ′, ξ′′))φν , φν〉| (2.2.9)

= |〈πν(ξ′ + iξ′′, 0)f̂(ν)πν(ξ′ + iξ′′, 0)∗U(d(ν))Φ0, U(d(ν))Φ0〉|
≤ ‖f̂(ν)πν(ξ′ + iξ′′, 0)∗U(d(ν))Φ0‖2

≤ C
∑
α

|Φα,0(
√

d(ν)(ξ′ + iξ′′)| ‖f̂(ν)U(d(ν))Φα‖2.

From the hypothesis on f̂(ν), we get C > 0, such that for all α ∈ N

‖f̂(ν)U(d(ν))Φα‖2 (2.2.10)

≤ C




n∑

j=1

(2αj + 1)dj(ν)




l
n∏

j=1

e−b(2αj+1)dj(ν).

Using the above estimate for ‖f̂(ν)U(d(ν))Φα‖2 in (2.2.2) and proceeding

as in the case of Hn
d we see that for any b′ with a′ < b′ < b

|〈f̂(ν, (ξ′, ξ′′))φν , φν〉| (2.2.11)

≤ C
n∏

j=1

e
− 1

4
dj(ν)

(
1−e−4b′dj(ν)

)
(ξ′j

2+ξ′′j
2)

.

For each ν ∈ Λ we define the function gν on v = ξν ⊕ ην by

gν(x, y) = fν(x, y)〈πν(x, y, 0)φν , φν〉.

Then
∫

ξν⊕ην

∫

ξν⊕ην

|gν(x, y)| |ĝν(ξ′, ξ′′)|e|x·ξ′+y·ξ′′|dx dy dξ′ dξ′′

≤
∫

ξν⊕ην

∫

ξν⊕ην

|fν(x, y)| |〈f̂(ν, (ξ′, ξ′′))φν , φν〉|e
n∑

j=1
dj(ν)(|xjξ′′j |+|yjξ′j |)

dx dy dξ′ dξ′′

≤ C

∫

ξν⊕ην

∫

ξν⊕ην

|fν(x, y)| e
1

4a′ (|x|2+|y|2)e−
1
4a
|((x,y)−2a′d(ν)(ξ′′,ξ′))|2 ×

n∏

j=1

e
−dj(ν)

(
1
4

(
1−e−4b′dj(ν)

)
−adj(ν)

)
(ξ′

2

j +ξ′′
2

j )
dx dy dξ′ dξ′′.
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Since fνe
1

4a′ (|x|2+|y|2) ∈ Lp(v) the above integral will be finite if a′dj(ν) <
1
4

(
1− e−4b′dj(ν)

)
for all j. If we apply Theorem 1.2.6 to the function it yields

fν = 0 almost everywhere if a′dj(ν) < 1
4

(
1− e−4b′dj(ν)

)
as the function

〈πν(x, y, 0)φν , φν〉 is non vanishing. We recall that dj(ν) → 0 as ν → 0 for

all j. Since a < a′ < b′ < b, using the above fact we can choose δ > 0

such that a′dj(ν) < 1
4

(
1− e−4b′dj(ν)

)
for all j and for all |ν| < δ as in the

proof of Theorem 1.2.26. This means fν = 0 almost everywhere for |ν| < δ.

We have already observed that good estimate of the heat kernel allowed to

extend fν as a holomorphic function of ν in a strip of Ck. Finally we have

f = 0 almost everywhere since for all ν ∈ Λ, fν(x, y) = 0 almost everywhere

in (x, y).

In the above proof we have used the estimate ‖f̂(ν)U(d(ν))Φα‖2
2 ≤

C

(
n∑

j=1
(2dj(ν) + 1)

)l
n∏

j=1
e−2b(2αj+1)dj(ν) which is also true if we assume

that f̂(ν)∗f̂(ν) ≤ Cπν(L))lp̂2b(ν). Therefore, we have the following version

of Hardy’s theorem.

Theorem 2.2.4. Let G be a stratified step two group satisfying MW -

condition and f be a function on G satisfying

(i) |f(v, t)| ≤ C(1 + |v|)lpa(v, t),

(ii) f̂(ν)∗f(ν) ≤ C(πν(L))lp̂2b(ν), for some l > 0.

Then f = 0 almost everywhere whenever a < b.

2.3 Uncertainty principles on general step two groups

The main purpose of this section is to extend the results, in the context

of step two groups, proved in the previous chapter . For general step two

groups we find an alternative condition on f and prove Hardy and Cowling–

Price theorems. Also an analogue of the result of Bonami et al [5] will be

proved. Ray in [28] has proved Hardy, Cowling–Price and an analogue of
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Theorem 1.2.7 . The equality case has been left open. Another version

of Hardy’s theorem (inequality case) was proved in [1]. We treat here the

equality case.

2.3.1 Uncertainty Principles on step two groups without MW condition

For a stratified group the associated sublaplacian is a positive Rockland

operator (see [13], 4.20, page–130,). Then Theorem 4.25 of [13] asserts that

this operator generates a diffusion semigroup with kernel pa(v, t). Such

results are not available for general step two groups. We are looking for an

alternative condition on f and f̂(µ, ν) to formulate heat kernel versions of

Hardy and Cowling–Price theorems for general step two groups. Let us first

introduce Radon transform of functions on Rk. For suitable function g on

Rk the Radon transform Rg is a function on R× Sk−1, defined by

Rg(ω, r) = Rωg(r) =
∫

x·ω=r
g(x) dσ, (2.3.12)

where dσ denotes the (k − 1)–dimensional Lebesgue measure on the hyper-

plane {x : x · ω = r}. It is known that

Rωg(r) = (2π)−1

∫ ∞

−∞
e−isr

∫

Rk

eis〈ω,t〉g(t) dt ds. (2.3.13)

For stratified step two group the condition |f(v, t)| ≤ Cpa(v, t) implies

|Rωf(v, r)| ≤ CRωpa(v, r). Writing v = (x(ω), y(ω), z(ω)), using the above

notation and the formula ( 2.3.13 ) we have

Rωpa(x(ω), y(ω), z(ω), r) (2.3.14)

= Cn

∫ ∞

−∞
e−irspsω

a (x(ω), y(ω), z(ω)) ds

= Cne−
1
4a
|z(ω)|2

∫ ∞

−∞
e−irsqs

a,d(ω)(x(ω), y(ω)) ds

= Cne−
1
4a
|z(ω)|2qa,d(ω)(x(ω), y(ω), s)

So it is natural to formulate Hardy’s theorem as follows:
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Theorem 2.3.1. Let G be a step two group without MW condition. Let f

be a function on G such that for every ω ∈ Sk−1

(i) |Rωf(x(ω), y(ω), z(ω), r)| ≤ C(1 + |(x(ω), y(ω), z(ω))|)l

× e−
1
4a
|z(ω)|2qa,d(ω) (x(ω) + iy(ω), r) ,

(ii) f̂(µ, ν)∗f̂(µ, ν) ≤ C (πµ,ν(L))l e−2bπµ,ν(L) for every (µ, ν) ∈ Λ, where

l ≥ 0.

Then f = 0 almost everywhere whenever a < b.

Proof. We have the formula

f rω(x(ω), y(ω), z(ω)) =
∫ ∞

−∞
eirsRωf((x(ω), y(ω), z(ω)), s)) ds

for all r ∈ (0,∞), ω ∈ Sk−1. Then from the first hypothesis of the theorem

we have

|f rω(x(ω), y(ω), z(ω))| ≤ Ce−
1

4a′ (|x(ω)2|+|y(ω)|2+|z(ω)|2)

for any a < a′ < b. Now proceeding as in the proof of Theorem 2.2.1 we get

the desired result.

Also we have the following version of Cowling–Price theorem:

Theorem 2.3.2. Let G be a step two group without MW–condition. Let f

be a function on G. Let us define the function gω by

gω(x(ω), y(ω), z(ω), r) = Rωf(x(ω), y(ω), z(ω), r)e
1
4a
|z(ω)|2

× (
qa,d(ω)

)−1 (x(ω) + iy(ω), r) .

Suppose

(i) (1 + |(x(ω), y(ω), z(ω))|)−lgω belongs to Lp(v× R),

(ii) f̂(µ, ν) = S(µ, ν) (πµ,ν(L))l e−bπµ,ν(L),



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 45

S(µ, ν) ∈ Sq for every (µ, ν) ∈ Λ, where l > 0 and 1 ≤ p, q ≤ ∞. Then

f = 0 almost everywhere whenever a < b.

Proof. It is easy to see that for each e
1

4a′ |·|2f rω(·) ∈ Lp(v) for any a < a′, for

all r ∈ (0,∞) and ω ∈ Sk−1 as in the case of Hn
d . Now the rest of the proof

will be same as Theorem 2.2.2.

We define Fourier–Weyl transform f̂((µ, ν), ξ) of a function f on G by

f̂((µ, ν), ξ) = πµ,ν(ξ′, ξ′′, 0, 0)f̂(µ, ν)πµ,ν(ξ′, ξ′′, 0, 0)∗

for all ξ = (ξ′, ξ′′) ∈ ξν ⊕ ην . A simple calculation shows that

f̂((µ, ν), (ξ′, ξ′′))

=
∫

ην

∫

ξν

exp(i
n∑

j=1

dj(ν)(xjξ
′′
j − yjξ

′
j))f

µ̃,ν(x, y)π0,ν(x, y, 0, 0) dx dy.

We have the following theorem which is analogue of Theorem 1.2.24.

Theorem 2.3.3. Suppose f ∈ L1 ∩ L2(G). Assume that for each ν ∈ U
there exits an analytic vector φν for π0,ν and ψν ∈ L2(ην) such that

∫

ξν⊕ην⊕rν⊕z

∫

ην

∫

ξν

|f(x, y, z, t)| |〈(f̂(µ, ν), (ξ′, ξ′′))φν , ψν〉| ×

exp(|
n∑

j=1

dj(ν)(xjξ
′′
j − yjξ

′
j)|) dξ′ dξ′′ dx dy dz dt < ∞

for all µ ∈ Ṽ ∗
T . Then f = 0 almost everywhere.

Proof. We define gµ̃,ν(x, y) = f µ̃,ν(x, y)〈π0,ν(x, y, 0, 0)φν , ψν〉 for all ν ∈ U
and µ̃ ∈ r∗ν . It follows from the explicit expression of f̂((µ, ν), (ξ′, ξ′′)) that

ĝµ̃,ν(d(ν)(−η, ξ)) = (2π)n〈f̂((µ̃, ν), (ξ′, ξ′′))φν , ψν〉.

Let us consider the following integral:
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∫

ην

∫

ξν

∫

ην

∫

ξν

|gµ̃,ν(x, y)||ĝµ̃,ν(ξ′, ξ′′)|exp(|
n∑

j=1

x · ξ + y · ξ′′)| dx dy dξ′ dξ′′

≤
∫

ην

∫

ξν

∫

ξν⊕ην⊕rν⊕z
|f(x, y, z, t)||〈f̂((µ̃, ν), (ξ′, ξ′′)φν , ψν〉|

×exp(|
n∑

j=1

dj(ν)(xjξ
′′
j − yjξ

′
j)|) dx dy dz dt dξ′ dξ′′

< ∞.

If we apply Theorem 1.2.6 to the function gµ̃,ν , we get gµ̃,ν = 0 almost

everywhere in (ξ′, ξ′′). Since φν is an analytic vector, f µ̃,ν = 0 almost

everywhere. But this is true for all (µ̃, ν) ∈ r∗ν × U . Therefore, finally we

have f = 0 almost everywhere.

In the case of Hn
d we have proved Hardy’s theorem and Theorem 1.2.12

as corollaries of Theorem 1.2.10. Our plan is to prove analogue of Theo-

rem 1.2.10 in this context. Then we will deduce theorem of Hardy and an

analogue of Theorem 1.2.12 from it.

Theorem 2.3.4. For f ∈ L2(G), let g(µ, ν) =
(
Pf(ν)

∫
Ṽ ∗T
‖f̂(µ, ν)‖2

HS dµ
)1/2

.

Suppose for some N ≥ 0,
∫

z∗

∫

z

‖f(·, t)‖2g(µ, ν)e|ν||t|

(1 + |ν|+ |t|)N
dt dν < ∞.

Then f(v, t) = e−a|t|2P (v, t) for some a > 0 and P (v, t) =

(
∑

|α|≤m

tαψα(v)

)
,

where ψα ∈ L2(v) and m < N−1
2 .

Proof. Since f ∈ L2(G), the function F defined by F (t) = f(·, t) is L2(v)

measurable function. Now using the formula ( 2.1.14 ) and Theorem 1.2.9

the proof will be finished.

Immediate consequences of the above theorem are the following two

corollaries.
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Corollary 2.3.5. Let f be a measurable function on G such that it satisfies

(i) |f(v, t)| ≤ g(v)(1 + |t|)me−a|t|2, where g ∈ L2(v),

(ii) Pf(ν)1/2
(∫

V ∗T
‖f̂(µ, ν)‖2

HS dµ
)1/2

≤ e−b|ν|2.

Then f = 0 for ab > 1/4 and if ab = 1/4 then f(v, t) = P (v, t)e−a|t|2, where

P (v, t) =

(
∑
|α|≤k

ψα(v)tα
)

e−a|t|2, where ψα ∈ L2(v) and k ≤ m.

Corollary 2.3.6. Suppose f is a measurable function on G such that it

satisfies the estimates

(i) |f(v, t)| ≤ g(v)e−a|t|p, where g ∈ L2(v),

(ii) Pf(ν)1/2
(∫

Ṽ ∗T
‖f̂(µ, ν)‖2

HS dµ
)1/2

≤ Ce−b|ν|q ,

where 1 ≤ p ≤ q ≤ ∞, 1
p + 1

q = 1 and (ap)1/p (bq)1/q ≥ 1. Then f = 0

unless p = q = 2 and ab = 1/4, in which case f(v, t) = ψ(v)e−a|t|2 for some

ψ ∈ L2(v).

Cowling–Price theorem for any nilpotent Lie group has been proved in

[3]. It has been assumed that 2 ≤ p, q ≤ ∞ and ab > 1/4. Ray assumed

1 ≤ p ≤ ∞, q ≥ 2 and ab > 1/4 in his proof of Cowling–Price theorem for

step two nilpotent Lie groups which are not MW (see [28]). We prove the

same theorem with assumptions 1 ≤ p, q ≤ ∞ and ab ≥ 1/4. We make use

of the following theorem which is a modified version of Theorem 1.2.5. The

proof (see [24]) is based on the use of Theorem 1.2.14 and Radon transform.

Theorem 2.3.7. Suppose f ∈ L2(Rn). Let for some δ > 0

∫

Rn

∫

Rn

|f(x)||f̂(y)|e|x||y||Q(y)|δ
(1 + |x|+ |y|)d

dxdy < ∞, (2.3.15)

where Q is a polynomial of degree m. Then f(x) = P (x)e−a|x|2 for some

a > 0 and polynomial P with deg P < d−n−mδ
2 .
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Proof. In Theorem 1.2.14 we have seen that the Theorem is true for n = 1.

Let us assume n > 1. Since A = {y : f̂(y) = 0 and Q(y) = 0} is a set of

measure of zero there exists y′ ∈ Rn such that
∫

Rn

|f(x)|e|x||y′| dx < ∞.

This shows that f is L1(Rn) and f̂ can be extended as a holomorphic function

in a strip of Cn. In particular f̂ is real analytic on Rn. In ( 2.3.15 ) we use

polar coordinates for y, to see that there exists a subset S of Sn−1 with full

surface measure such that for every ω2 ∈ S,
∫

Rn

∫

R

|f(x)||f̂(sω2)||s|n−1|Q(sω2)|e|x||s|
(1 + |x|+ |s|)d

ds dx < ∞. (2.3.16)

In view of ( 2.3.13 ) this is the same as for every ω2 ∈ S,

∫

Rn

∫

R

|f(x)||R̂ω2f(s)||s|n−1|Q(sω2)|e|x||s|
(1 + |x|+ |s|)d

ds dx < ∞. (2.3.17)

Step 1: In this step we will show that for any ω1 ∈ Sn−1 and ω2 ∈ S,

∫

R

∫

R

Rω1 |f |(r)|R̂ω2f(s)||s|n−1|Q(sω2)|e|r||s|
(1 + |r|+ |s|)d

ds dr < ∞. (2.3.18)

We will break the above integral into the following 3 parts and show that

each part is finite. That is we will show:

(i)

∫

R

∫

|s|>L

R(|f |)(ω1, r)|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

ds dr < ∞

for L > 0 such that L2 + L > d.

(ii)

∫

|r|>M

∫

|s|≤L

R(|f |)(ω1, r)|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

ds dr < ∞

for M = 2(L + 1) and L as in (i).



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 49

(iii)

∫

|r|≤M

∫

|s|≤L

R(|f |)(ω1, r)|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

ds dr < ∞

for M, L used in (i) and (ii).

Proof of (i): It is given that L + L2 > d. We will show that for any s such

that |s| ≥ L,
e|s||x|

(1 + |x|+ |s|)d
≥ e|s||〈x,ω1〉|

(1 + |〈x, ω1〉|+ |s|)d
. (2.3.19)

Let F (z) = eαz

(1+α+z)d for α > 0 and α + α2 > d. Then F ′(z) > 0 for any

z ≥ 0. Therefore, if z1 ≥ z2 ≥ 0, then

eαz1

(1 + α + z1)d
≥ eαz2

(1 + α + z2)d
. (2.3.20)

Note that |x| ≥ |〈x, ω1〉| for all x ∈ Rn and ω1 ∈ Sn−1. Now take z1 = |x|
and z2 = |〈x, ω1〉|. Then z1 ≥ z2 ≥ 0. We take α = |s| ≥ L to get ( 2.3.19 ).

We start now from ( 2.3.17 ) and break it up as:

∫

R

∫

x·ω1=r

∫

R

|f(x)||R̂ω2f(s)|e|x||s||s|n−1|Q(sω2)|
(1 + |x|+ |s|)d

ds dσ1 dr < ∞, (2.3.21)

where dσ1 denotes the Lebesgue measure on the hyper plane {x : x ·ω1 = r}.
We use the inequality ( 2.3.19 ) to obtain:

∫

R

∫

x·ω1=r

∫

|s|>L

|f(x)||R̂ω2f(s)|e|〈x,ω1〉||s||s|n−1|Q(sω2)|
(1 + |〈x, ω1〉|+ |s|)d

ds dσ1 dr < ∞.

(2.3.22)

Now we put 〈x, ω1〉 = r in the above integral and use the definition of Radon

transform to obtain,

∫

R

∫

|s|>L

R(|f |)(ω1, r)|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

ds dr < ∞. (2.3.23)

This proves (i).
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Proof of (ii): Let

I2 =
∫

|r|>M

∫

|s|≤L

R(|f |)(ω1, r)|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

drds.

It is clear that,

I2 ≤ C

∫

|r|>M

R(|f |)(ω1, r)|eL|r|

(1 + |r|)d
dr

= C

∫

|r|>M

∫

x·ω1=r

|f(x)|eL|r|

(1 + |r|)d
dσ1 dr

= CI3,

say. We will show that I3 is finite for M = 2(L + 1).

We have already observed that f̂ is real analytic on Rn and hence f̂(y) 6=
0 for almost every y ∈ Rn. Therefore, from ( 2.3.17 ) we can get a s0 ∈ R
with |s0| > 2L such that:

∫

Rn

|f(x)|e|x||s0|

(1 + |x|+ |s0|)d
dx < ∞.

That is ∫

R

∫

x·ω1=r

|f(x)|e|x||s0|

(1 + |x|+ |s0|)d
dσ1 dr < ∞.

Notice that |s0|+ |s0|2 > d, since |s0| > 2L and L + L2 > d. Now applying

the argument of case (i) (see ( 2.3.20 )) to |s0| we get:

e|x||s0|

(1 + |x|+ |s0|)d
≥ e|〈x,ω1〉||s0|

(1 + |〈x, ω1〉|+ |s0|)d

as |〈x, ω1〉| ≤ |x|. Therefore,
∫

|r|>M

∫

x·ω1=r

|f(x)|e|r||s0|

(1 + |r|+ |s0|)d
dσ1 dr

≤
∫

|r|>M

∫

x·ω1=r

|f(x)|e|〈x,ω1〉||s0|

(1 + |〈x, ω1〉|+ |s0|)d
dσ1 dr < ∞

from the above observation. Note that M + M2 > d as M = 2(L + 1) and

L + L2 > d. Applying the argument of case (i) again (see ( 2.3.20 )) this
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time with α = |r| > M and z1 = |s0|, z2 = 2L we get,

e|s0||r|

(1 + |s0|+ |r|)d
≥ e2L|r|

(1 + 2L + |r|)d
.

Therefore, ∫

|r|>M

∫

x·ω1=r

|f(x)|e2L|r|

(1 + |r|+ 2L)d
dσ1 dr < ∞.

From this it is easy to see that
∫

|r|>M

∫

x·ω1=r

|f(x)|eL|r|

(1 + |r|)d
dσ1 dr < ∞

and hence, I3 < ∞. This completes the proof of (ii).

Proof of (iii): As the domain [−M, M ]× [−L,L] is compact and as

|R̂ω2f(s)|e|r||s||s|n−1|Q(sω2)|
(1 + |r|+ |s|)d

is continuous in this domain, the integral is bounded by C
∫ M
−M R|f |(ω1, r)dr.

Now recall that f ∈ L1(Rn). Therefore,

∫ M

−M
R|f |(ω1, r)dr ≤

∫

R
R|f |(ω1, r)dr

=
∫

R

∫

x·ω1=r
|f(x)|dσdr

=
∫

Rn

|f(x)|dx < ∞. (2.3.24)

Thus from (i), (ii) and (iii) we obtain ( 2.3.18 ). This completes step 1.

Step 2: From ( 2.3.18 ) we see that for almost every ω ∈ Sn−1,

∫

R

∫

R

Rω|f |(r)|R̂ωf(s)||s|n−1|Q(sω)|δe|r||s|
(1 + r|+ |s|)d

dr ds < ∞. (2.3.25)

Since |Rωf(r)| ≤ Rω|f |(r) we have,

∫

R

∫

R

|Rωf(r)||R̂ωf(s)||s|n−1|Q(sω)|δe|r||s|
(1 + |r|+ |s|)d

dr ds < ∞. (2.3.26)
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Using the result for n = 1 we conclude that Rωf(r) = Aω(r)e−αr2
, for some

polynomial Aω which depends on ω, deg Aω < d−mδ−n
2 and α is a positive

constant. A priori, α also should depend on ω. But we will see below that α

is actually independent of ω. It is clear that R̂ωf(s) = Pω(s)e−
1
4α

s2
, where

deg Pω is same as Aω. Consider ω1, ω2 ∈ S with ω1 6= ω2 for which Rω1 , Rω2

satisfy ( 2.3.18 ), that is

∫

R

∫

R

|Rω1f(r)||R̂ω2f(s)||s|n−1|Q(sω2)|e|r||s|
(1 + r|+ |s|)d

dr ds < ∞. (2.3.27)

From the above argument it follows that Rω1f(r) = Aω1(r)e
−α1r2

and

R̂ω2f(s) = Pω2(s)e
− 1

4α2
s2

for some positive constants α1, α2. Suppose if

possible α1 6= α2. Without loss of generality suppose α1 < α2, otherwise we

will change the role of ω1 and ω2. Substituting them back in ( 2.3.27 ) we

see that

I =
∫

R

∫

R

e
−(
√

α1|r|− 1
2
√

α2
|s|)2

e
|r||s|(1−

√
α1√
α2

)|s|n−1|Q(sω2)||Aω1(r)||Pω2(s)|
(1 + |r|+ |s|)d

drds

< ∞.

Fix ε > 0, consider the set Aε = {(r, s) : r, s ≥ 0 and |√α1r − 1√
α2

s| ≤ ε},
which is a set of infinite measure. Since

√
α1√
α2

< 1, it is easy to see that

there exists C > 0 such that the integrand of I is greater than C on the

strip Aε . Hence, I ≥ Cm(Aε) = ∞. Thus we get α1 = α2 = α and

R̂ωf(s) = Pω(s)e−
1
4α

s2
.

Step 3: We will show that Pω(s) = P (sω) is a polynomial in sω, that is

P is a polynomial in Rn. Recall that R̂ωf(s) = f̂(sω) is a holomorphic

function in a neighbourhood around 0. We can write Pω(s) = f̂(sω)e
1
4α

s2
=

f̂(sω)e
1
4α
|sω|2 = F (sω), say.

We write F (sω) =
∑k

j=0 aj(ω)sj , where k = max
ω∈Sn−1

deg Pω < d−mδ−n
2 .

Then for j = 0, 1, . . . , k

1
j!

dj

dsj
F (sω)

∣∣∣∣
s=0

= aj(ω).
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The left hand side is the restriction of a homogenous polynomial of degree

j to Sn−1. Therefore F (sω) is a polynomial of degree ≤ k in Rn. Therefore

f̂(x) = P (x)e−
1
4α
|x|2 , where deg P < d−mδ−n

2 .

First we want to prove an analogue of Theorem 1.2.15 for step two groups

and then as a corollary we deduce the Cowling–Price theorem.

Theorem 2.3.8. Suppose f ∈ L1 ∩ L2(G) and for some M, N ≥ 0, it

satisfies

∫

Λ

∫

ξν⊕ην⊕rν⊕z

|f(x, y, z, t)|‖f̂(µ, ν)‖HSe
|z||µ|+|t||ν|

(1 + |(x, y)|)M (1 + |(z, t)|)N/2(1 + |(µ, ν)|)N/2

×Pf(ν) dx dy dz dtdµ dν < ∞.

Then for each ν ∈ U

f(x, y, z, t)

= (1 + |(x, y)|)M


 ∑

|γ|+|δ|≤l

Ψγ,δ(x, y)zγtδ


 e−a(|z|2+|t|2),

where Ψγ,δ ∈ L2(ξν ⊕ ην) and l is an nonnegative integer.

Proof. For each pair (φ, ψ), where φ, ψ ∈ L2(ην) let us consider the function

F(φ,ψ) defined by

F(φ,ψ)(z, t)

=
∫

ην

∫

ξν

f(x, y, z, t)(1 + |(x, y)|)−M (π0,ν(x, y, 0, 0)φ, ψ) dx dy.

It follows that for all (µ̃, ν) ∈ r∗ν × z∗

F̂(φ,ψ)(µ̃, ν)

=
∫

ην

∫

ξν

f µ̃,ν(x, y)(1 + |(x, y)|)−M (π0,ν(x, y, 0, 0)φ, ψ) dx dy.
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Using Cauchy–Schwarz, we get

|F̂(φ,ψ)(µ̃, ν)|

≤ C

(∫

ην

∫

ξν

|f µ̃,ν(x, y)|2 dx dy

)1/2

=




n∏

j=1

dj(ν)




1/2

‖f̂(µ̃, ν)‖HS. (2.3.28)

Therefore,

∫

z∗

∫

r∗ν

∫

z

∫

rν

|F(φ,ψ)(z, t)||F̂(φ,ψ)(µ̃, ν)|e|µ̃||z|+|ν||t|
(1 + |(z, t)|)N/2(1 + |(µ̃, ν)|)N/2

×



n∏

j=1

dj(ν)




1/2

dt dz dµ̃ dν

≤
∫

z∗

∫

r∗ν

∫

ξν⊕ην⊕rν⊕z

|f(x, y, z, t)|‖f̂(µ̃, ν)‖HSe
|z||µ|+|t||ν|

(1 + |(x, y)|)M (1 + |(z, t)|)N/2(1 + |(µ, ν)|)N/2

×



n∏

j=1

dj(ν)


 dx dy dz dt dµ̃ dν

=
∫

Λ

∫

ξν⊕ην⊕rν⊕z

|f(x, y, z, t)|‖f̂(µ, ν)‖HSe
|z||µ|+|t||ν|

(1 + |(x, y)|)M (1 + |(z, t)|)N/2(1 + |(µ, ν)|)N/2

× Pf(ν) dx dy dz dt dµ dν

< ∞.

In the last step we have used the change of variables by the map φ defined

in ( 2.1.1 ). Notice that
n∏

j=1
dj(ν) is a polynomial in ν. Now using Theorem

2.3.7 we have for each pair (φ, ψ)

F(φ,ψ)(z, t) = P(φ,ψ)(z, t)e−a(φ,ψ)(|z|2+|t|2),

where a(φ, ψ) > 0 and

P(φ,ψ)(z, t) =
∑

|γ|+|δ|≤m

a(γ,δ)(φ, ψ)zγtδ
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and m is independent of (φ, ψ). As in the proof of Theorem 1.2.15 we can

show that a(φ, ψ) = a is independent of (φ, ψ). Finally taking φ = Φν
α and

ψ = Φν
β and using the fact that {Φν

α,β(x, y) : α, β ∈ Nn} (see 2.2.3 )forms an

orthonormal basis for L2(ξν ⊕ ην) we can show as in the proof of Theorem

1.2.15

f(x, y, z, t) = (1 + |(x, y)|)M


 ∑

|γ|+|δ|≤m

Ψγ,δ(x, y)zγtδ


 e−a(|z|2+|t|2),

where Ψγ,δ ∈ L2(ξν ⊕ ην).

Now we are ready to prove the following version of Cowling–Price theo-

rem.

Theorem 2.3.9. Suppose f ∈ L1 ∩ L2(G) and it satisfies the following

conditions.

(i)
∫
G epa|(v,t)|2 |f(v, t)|p dv dt < ∞,

(ii)
∫
Λ ebq|(µ,ν)|2‖f̂(µ, ν)‖q

HS Pf(ν)dµ dν < ∞.

Then for ab ≥ 1/4 and min{p, q} < ∞, f = 0 almost everywhere.

Proof. Using Hölder’s inequality we can find M, N, C > 0 such that for each

ν ∈ U

(i)′
∫
ξν⊕ην⊕rν⊕z

ea|(z,t)|2 |f(x,y,z,t)|
(1+|(x,y)|)M (1+|(z,t)|)N dx dy dz dt < C,

(ii)′
∫
Λ

eb|(µ,ν)|2‖f̂(µ,ν)‖HS

(1+|(µ,ν)|)N Pf(ν)dµ dν < ∞.

With this observation and using Theorem 2.3.8 we can conclude that f = 0

almost everywhere under the assumption ab ≥ 1/4 and min{p, q} < ∞.

As in the case of Hn
d we can get the following following analogue of

Corollary 1.2.12.
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Theorem 2.3.10. Suppose f ∈ L2(G) satisfies the estimates for each ν ∈ U

(i) |f(x, y, z, t)| ≤ g(x, y)e−a|(z,t)|p, where g ∈ L2(ξν ⊕ ην),

(ii) (
n∏

j=1
dj(ν))1/2‖f̂(µ̃, ν)‖HS ≤ Ce−b|(µ̃,γ)|q for all µ̃ ∈ r∗ν ,

where 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and (ap)1/p(bq)1/q ≥ 1. Then f = 0 almost

everywhere unless p = q = 2 and ab = 1/4 in which case f(x, y, z, t) =

ψ(x, y)e−a|(z,t)|2 for some ψ ∈ L2(ξν ⊕ ην).

Proof. For each (α, β), consider the function

Fα,β(z, t) =
∫

ην

∫

ξν

f(x, y, z, t)Φν
α,β(x, y) dx dy. (2.3.29)

Now proceeding as before and using the hypotheses we get

(i) |Fα,β(z, t)| ≤ Ce−a|(z,t)|p

(ii) |F̂α,β(µ̃, ν)| ≤ Ce−b|(µ̃,ν)|q .

Now applying Theorem 1.2.7 to the function Fα,β we get Fα,β = 0 almost

everywhere unless p = q = 2 and ab = 1/4 in which case Fα,β(z, t) =

Cα,βe−a|(z,t)|2 . Therefore, f = 0 almost everywhere for (ap)1/p(bq)1/q ≥ 1

and p 6= 2. Let us consider the case p = q = 2 and ab = 1/4. Since

f ∈ L2(G) we can express it as

f(x, y, z, t) = e−a|(z,t)|2 ∑

(α,β)

Cα,βΦν
α,β(x, y)

= e−a|(z,t)|2ψ(x, y),

where ψ ∈ L2(ξν ⊕ ην).

For all step two nilpotent Lie groups Astengo et al [1] have proved a

version of Hardy’s theorem. The equality case has been left open. Our

method will give the equality case which implies the inequality case. We

now prove the following version of Hardy’s theorem.
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Theorem 2.3.11. Let f ∈ L1(G) satisfy the following conditions:

(i)
∫
v |f(v, t)|(1 + |v|2)k′ dv ≤ Ce−a|t|2,

(ii) Pf(ν)
∫
Ṽ ∗T
‖f̂(µ, ν)‖op (1 + |µ|)−k′ dµ ≤ Cr(ν)le−b|ν|2,

where r(ν) =
n∑

j=1
(dj(ν)2 +dj(ν)−2), k′, l ∈ N. If ab > 1/4 then f = 0 almost

everywhere and for ab = 1/4, f(v, t) = f(v, 0)e−a|t|2.

Proof. Let h(v, t) = f(v, t)(1 + |v|2)−k′ and g be a Schwartz function. Con-

sider the function

F (v, t) = h(·, t) ∗ ḡ(v)

=
∫

v
h(w, t)ḡ(v − w) dw.

Taking the Fourier transform in the t variable

F ν(v) =
∫

v

fν(v)
(1 + |v|2)k′ ḡ(v − w) dv dw

= (2π)−(n+r)Pf(ν)
∫

Ṽ ∗T
tr

(
f̂(µ, ν)Wµ,ν

(
h′v

)∗)
dµ,

where h′v(w) = g(v − w)(1 + |w|2)−k′ . Note that h′v is from Schwartz class

and hence

|F ν(v)| ≤ (2π)−(n+r)|Pf(ν)|
∫

r∗ν

∣∣∣tr
(
f̂(µ, ν)Wµ,ν(h′v))

∗
)∣∣∣ dµ

≤ C |Pf(ν)|
∫

r∗ν

‖f̂(µ, ν)‖op

(1 + |µ|)k′ (1 + |µ|)k′ tr
(|Wµ,ν(h′v)|

)
dµ

≤ C(v) r(ν)k′′e−b|ν|2 ,

for some positive integer k′′ using the second hypothesis of the theorem

and estimate on (1 + |µ|)ktr (|Wµ,ν(h′v)|) as mentioned earlier . Let D =

{ω ∈ Sk−1 : dj(ω) 6= 0 for all j}. Note that we have dj(ν) > 0 for all j

whenever ν ∈ U . Also dj(sω) = sdj(ω). If γ denotes the surface measure

on Sk−1 then γ(Sk−1 \ D) = 0 as U is a set of full measure on Rk. Let
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d(ω) = max
1≤j≤n

{dj(ω), d−1
j (ω)}. for fixed ω ∈ D. Since dj(sω) = sdj(ω) for

sufficiently large |s|,
n∑

j=1
dj(sω)2 + dj(sω)−2 ≤ nd(ω)(1 + s2). Therefore,

r(sω)k′′ =




n∑

j=1

dj(sω)2 + dj(sω)−2




k′′

≤ C ′(ω)(1 + s2)k′′

for sufficiently large s. For each ω ∈ D consider the Radon transform

RωF (v, s) of the function F (v, t) in the last variable t. So we can conclude

that

|R̂ωF (v, s)| ≤ C(v)C ′(ω)(1 + s2)k′′e−bs2

for sufficiently large positive integer m . Also we have |RωF (v, s)| ≤ Ce−as2

as |F (v, t)| ≤ Ce−a|t|2 using the first hypothesis of the theorem. Now ap-

plying Hardy’s theorem to the function RωF (v, ·) we conclude that for all

ω ∈ D, F sω(v) = C(v)C ′(ω)e−bs2
whenever ab = 1/4 and F sω(v) = 0

for ab > 1/4. Since F ν is a continuous function of ν we conclude that

F ν(v) = C(v)e−b|ν|2 for ab = 1/4 and F ν(v) = 0 whenever ab > 1/4 for all

ν ∈ z∗. Finally we get F (v, t) = h(·, t) ∗ ḡ(v) = C(v)e−a|t|2 for ab = 1/4 and

F (v, t) = h(·, t) ∗ ḡ(v) = 0 for ab > 1/4. Choosing g from an approximate

identity {gm}m where each gm is of Schwartz class on v we conclude that

h(·, t)∗ḡm(v) = 0 for ab > 1/4 and h(·, t)∗ḡm(v) = Cm(v)e−a|t|2 for ab = 1/4.

But h(·, t) ∗ ḡm(v) converges to h(v, t) as m →∞. Hence Cm(v) → C(v) as

m →∞.

Therefore, f(v, t) = C(v)(1 + |(v)|2)k′e−a|t|2 = f(v, 0)e−a|t|2 for ab = 1/4

and f(v, t) = 0, whenever ab > 1/4.

2.3.2 Uncertainty principles on step two groups with MW condition

All the theorems except Theorems 2.2.4, 2.2.2 proved for step two groups

without MW condition can be formulated and proved for MW groups with
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obvious modifications. So we discuss here analogues of Theorems 2.2.4 and

2.2.2 for MW groups.

Theorem 2.3.12. Let G be a step two group with MW- condition. Let f

be a function on G such that for every ω ∈ Sk−1

(i) |Rωf(x(ω), y(ω), r)| ≤ C(1 + |(x(ω), y(ω))|)lqa,d(ω) (x(ω) + iy(ω), r),

(ii) f̂(ν)∗f̂(ν) ≤ C(πν(L))le−2bπν(L) for every ν ∈ Λ,

where l > 0. Then f = 0 whenever a < b.

Proof. We recall the formula

f rω(x(ω), y(ω)) =
∫ ∞

−∞
eirsRωf((x(ω), y(ω)), s) ds

for all r ∈ (0,∞) and ω ∈ Sk−1. Then from first hypothesis of the theorem

we show that for any b > a′ > a

|f rω(x(ω), y(ω))| ≤ Ce−
1

4a′ (|x(ω)|2+|y(ω)|2).

Also using the above formula and the given estimate on Rωf it can be shown

that for each ω ∈ Sk−1, f rω can be extended as a holomorphic function of

r ∈ C in some strip |=(r)| < A
a . Now the rest of the proof will be same as

Theorem 2.2.4.

Theorem 2.3.13. Let G be a step two group with MW condition. Let f be

a function on G. Let

gω(x(ω), y(ω), r) = Rωf(x(ω), y(ω), r)
(
qa,d(ω) (x(ω) + iy(ω), r)

)−1
.

Suppose for every ω ∈ Sk−1

(i) (1 + |(x(ω), y(ω))|)−lgω belongs to Lp(v× R), 1 ≤ p ≤ ∞ and

(ii) f̂(ν) = S(ν) (πν(L))l e−bπν(L),

where l > 0, 1 ≤ q ≤ ∞ and S(ν) ∈ Sq, for every ν ∈ Λ.Then f = 0 almost

everywhere whenever a < b.
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Proof. As before it can be shown that f rω can be extended as a holomorphic

function of r ∈ C in the strip |=(r)| < A
a for some A > 0 and e

1
4a′ |.|2f rω ∈

Lp(v) for any a < a′ < b. This is true for all ω ∈ Sk−1. The rest will follow

from the proof of Theorem 2.2.2.



3. UNCERTAINTY PRINCIPLES FOR GENERAL NILPOTENT

LIE GROUPS

In the previous chapters we have proved various kinds of uncertainty princi-

ples for Heisenberg groups and step two nilpotent Lie groups. It is natural to

ask up to what extent those results can be generalized for general nilpotent

Lie groups. Recently a version of Hardy’s theorem and Cowling–Price theo-

rem for connected simply connected nilpotent Lie groups have been proved

in [19] and [3] respectively. In the proof of heat kernel versions of Hardy

and Cowling–Price theorems for step two stratified group we have used good

estimates of the heat kernel as well as the explicit expression for the partial

Fourier transform of the heat kernel in the central variable. For a general

stratified group a good estimate of the heat kernel is available from the work

of [18]. However we do not have an explicit expression for the partial Fourier

transform of the heat kernel in the central variable. So there are technical

problems in proving such a version of uncertainty principle even in the case

of a stratified group. Due to the lack of such information in the general case

we look for alternative versions of Hardy and Cowling–Price theorems.

3.1 A new version of Cowling–Price theorem for Rn and its

application to nilpotent groups

We replace the first condition of Theorem 1.2.2 by estimates on derivatives

of f̂ and get a new version of Cowling–Price theorem. We also give a com-

parative study of these two versions.
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3.1.1 A new version of Cowling–Price

Consider the Gaussian φa(x) for which φ̂a = (4πa)−n/2φb with b = 1/4a. In

view of the Plancherel theorem we have

‖∂αφ̂a‖2
2 =

∫

Rn

|xαφa(x)|2 dx = 2n
n∏

j=1

∫ ∞

0
t2αje−2at2dt

which gives the estimate

‖∂αφ̂a‖2
2 = C

n∏

j=1

Γ
(

αj +
1
2

)
(2a)−|α| ≤ C α!(2b)|α|. (3.1.1)

If a function f satisfies |f(x)| ≤ C φa(x) then the derivatives of f̂ satisfy

the estimates

‖∂αf̂‖2
2 ≤ C α!(2a)−|α|. (3.1.2)

Replacing the pointwise estimate |f(x)| ≤ C φa(x) by the slightly weaker

estimate ( 3.1.1 ) we get the following uncertainty principle.

Theorem 3.1.1. Let f be a function on Rn such that |f̂(ξ)| ≤ C e−b|ξ|2,
and for every α ∈ Nn, ‖∂αf̂‖2

2 ≤ Cα!(2a)−|α|. Then f = 0 whenever ab > 1
4

and when ab = 1
4 , f̂(ξ) = φ(ξ)e−b|ξ|2 where φ is an entire function on Cn.

We start with the following lemma which allows us to get pointwise

estimates on ∂αf̂ when we have estimates on ‖∂αf̂‖2.

Lemma 3.1.2. Suppose we have

‖∂αf̂‖2
2 ≤ C α!(2a)−|α|

for every α ∈ Nn. Then we also have

|∂αf̂(ξ)|2 ≤ C
n∏

j=1

(αj + n)!(2a)−|α|

for every α ∈ Nn.
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Proof. In view of Sobolev embedding theorem (see [11], page 270),

|∂αf̂(ξ)|2 ≤ C
∑

|β|≤n

‖∂α+β f̂‖2
2

which gives the estimate

|∂αf̂(ξ)|2 ≤ C
∑

|β|≤n

‖∂α+β f̂‖2
2

≤ C
∑

|β|≤n

(2a)−(|α|+|β|)(α + β)!

≤ C
n∏

j=1

(αj + n)!(2a)−|α|.

In view of this lemma, we only need to prove the following version of

Theorem 3.1.1.

Theorem 3.1.3. The conclusions of Theorem 3.1.1 are valid if we replace

the estimates on ‖∂αf̂‖2 by

|∂αf̂(ξ)|2 ≤ C

n∏

j=1

(αj + n)!(2a)−|α|

for every α ∈ Nn.

Let us complete the proof of it. We first consider the case ab > 1/4. We

make use of the following lemma.

Lemma 3.1.4. Let F (ξ) be a smooth function on Rn which satisfies

|∂αF (ξ)|2 ≤ C

n∏

j=1

(αj + n)!(2a)−|α|

for all α ∈ Nn. Then F extends to Cn as an entire function which satisfies

|F (ζ)| ≤ C eb|=ζ|2 for every b > 1/4a.
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Proof. For b > 1/4a,

|F (ξ + η)| = |
∑
α

∂αF (ξ)
α!

ηα|

≤
∑
α

∣∣∣∣
∂αF (ξ)

α!

∣∣∣∣ |η||α|

=
∑
α

|∂αF (ξ)|
α!

1
2

(2b)−
|α|
2 .

(2b)
|α|
2

α!
1
2

|η||α|

≤
(∑

α

|∂αF (ξ)|2
α!

(2b)−|α|
) 1

2
(∑

α

(|η|22b
)|α|

α!

) 1
2

≤ C

(∑
α

(α + n)!
α!

(
1

4ab

)|α|) 1
2

eb|η|2

= C(n, b)eb|η|2 .

This shows that F can be extended as an entire function on Cn and it

satisfies

|F (ξ + iη)| ≤ C(n, b)eb|η|2 .

Coming to the proof of the case ab > 1/4, choose b′ such that b > b′ >

1/4a. By Lemma 3.1.4 we have

|f̂(ζ)| ≤ C eb′|=ζ|2 .

As we have |f̂(ξ)| ≤ C e−b|ξ|2 and b′ < b we appeal to the following lemma

to conclude that f̂ = 0.

Lemma 3.1.5. Let F (ζ) be an entire function on Cn which satisfies

|F (ζ)| ≤ C ea|=ζ|2 , |F (ξ)| ≤ Ce−b|ξ|2

for ζ ∈ Cn and ξ ∈ Rn. Then F = 0 whenever a < b and F (ζ) = Ce−aζ2

for a = b.

Now take up the equality case. Clearly it is enough to prove it when

n = 1. Indeed if we have the result in the one dimensional case then by
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considering the function

F (ξn) = f̂(ξ′, ξn), ξ′ = (ξ1, ξ2, · · · ξn−1)

which satisfies the estimates

|F (ξn)| ≤ C(ξ′)e−bξ2
n |∂kF (ξn)|2 ≤ C (k + n)!(2a)−k

we obtain

F (ξn) = C(ξ′, ξn)e−bξ2
n .

But now the function C(ξ′, ξn) satisfies the same estimates as f̂ on Rn−1.

By using induction we can obtain f̂(ξ) = φ(ξ)e−b|ξ|2 with φ bounded. For

the one dimensional case using Lemma 3.1.4 f̂ can be extended to C as an

entire function of order at most 2. Since f̂ cannot decay on R faster than

its order its order is 2. Since we have the estimate

|f̂(ζ)| ≤ C eb′|=ζ|2for all b′ >
1
4a

its type is 1
4a . Now we apply the following result of Pfannschmidt [27] to

the entire function f̂(ζ).

Theorem 3.1.6. Let F be an entire function of one variable ζ of order ρ

(ρ integer) and type b. Let

h(θ) = lim sup
r→∞

log |F (reiθ)|
rρ

, θ ∈ [0,∞)

be its indicator and assume that

h

(
2πj

ρ

)
≤ −b, j = 0, 1, 2, · · · , ρ− 1.

Then F (ζ) = P (ζ)e−bζρ
where P (ζ) is an entire function at most of minimal

type of order ρ.

The following remark is in order. In Theorem 3.1.3 with ab = 1/4 we

have concluded that f̂(ξ) = φ(ξ)e−b|ξ|2 . It would be nice to say something

about f itself. As φ(ζ) is an entire function we have

φ(ξ) =
∑

|α|≤N

aαξα + φN (ξ)
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where |φN (ξ)| ≤ C (1 + |ξ|)N . This shows that, in view of the inversion

formula

f(x) = (2π)−
n
2

∫

Rn

eix·ξφ(ξ)e−b|ξ|2dξ (3.1.3)

f can be written as

f(x) =


 ∑

|α|≤N

cαxα


 e−a|x|2 + fN (x)

where

f̂N (ξ) = φN (ξ)e−b|ξ|2 .

We also have (Lp, Lq) version, the case ab > 1/4 of Theorem 3.1.1.

Theorem 3.1.7. Let f̂ be a smooth function such that

||∂αf̂ ||2p ≤ Cα!(2a)−|α|, f̂eb|·|2 ∈ Lq(Rn)

where 1 ≤ p, q ≤ ∞ then f = 0 for ab > 1/4.

Proof. We reduce the conditions of the Theorem to the corresponding condi-

tions when p = q = ∞ using a trick from [2]. Let h be a smooth function with

supp ⊂ {x : |x| < δ}. Choose b′ such that b > b′ > 1
4a . Then for all x ∈ Rn

with |x| > δ
√

b√
b−
√

b′
and y ∈ sup h we have |x−y| ≥ |x|−|y| > |x|−δ > |x|

√
b′
b .

Since h ∈ Lp for all p we get by Holder’s inequality a constant C > 0 such

that

C ≥
∫

Rn

eb|x−y|2 |f̂(x− y)||h(y)|dy

≥ eb′|x|2
∫

Rn

|f̂(x− y)||h(y)|dy

≥ eb′|x|2 |f̂ ∗ h(x)|

for all |x| > δ
√

b√
b−
√

b′
. From the continuity of the function f̂ ∗h it follows that

|f̂ ∗ h(x)| ≤ Ce−b′|x|2
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for all x ∈ Rn. We also have the following estimate

|∂α(f̂ ∗ h)(x)|2 ≤ ||∂αf̂ ||2p||h||2p′
≤ Cα!(2a)−|α|

Since ab′ > 1/4 we can apply Theorem 3.1.3 to conclude f̂ ∗ h = 0. As this

is true for all h ∈ C∞
0 (Rn) we get f̂ = 0 almost everywhere.

3.1.2 Cowling–Price theorem versus its new version

To investigate the relation between Theorem 1.2.2 and Theorem 3.1.7 we

need to compute the following integral.

∫

Rn

|xαe−a|x2||pdx =
n∏

j=1

2
∫ ∞

0
rpαje−apr2

dr. (3.1.1)

It is enough to consider the case n = 1. Now

2
∫ ∞

0
e−apx2

xpk dx = (pa)−
pk+1

2

∫ ∞

0
e−xx

pk−1
2 dx

= C(ap)−
pk
2 Γ

(
pk + 1

2

)
(3.1.2)

Using the Sterling’s formula Γ(t + 1) ∼ tte−t
√

2πt

(ap)−
pk
2 Γ

(
pk + 1

2

)
= (ap)−

pk
2 Γ

(
pk − 1

2
+ 1

)

≤ C(ap)−
pk
2 e−

pk−1
2

(
pk − 1

2

) pk
2

≤ Ce−
pk
2 (2a)−

pk
2 k

pk
2

≤ C
(
(2a)−k/2kk/2e−k/2

)p

≤ C
(
(2a)−kkk+ 1

2 e−k
)p/2

≤ C
(
(2a)−kk!

)p/2
. (3.1.3)
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Therefore, from ( 3.1.1 ) and ( 3.1.2 ) we have
(∫

Rn

|xαe−a|x2||p dx

)1/p

≤ C
(
(2a)−|α|α!

)1/2
.

Now if f satisfies the conditions of Theorem 1.2.2, then using the above

estimate and Hölder’s inequality we have

|∂αf̂(ξ)|2 = |x̂αf(ξ)|2

≤ ‖xαf‖1

≤ C||fφ−1
a ||2p||xαφa||2p′

≤ Cα!(2a)−|α|.

Therefore, the hypotheses of Theorem 3.1.7 are satisfied and hence The-

orem 1.2.2 can be deduced from Theorem 3.1.7.

We show below that the case p = 2, q ∈ [1,∞] of Theorem 1.2.2 is

equivalent to the case p = 2, q ∈ [1,∞] of Theorem 3.1.7.

Suppose f satisfies the hypothesis of Theorem 3.1.7 with p = 2, q ∈
[1,∞]. Choose a′ < a but satisfying a′b > 1

4 and consider fφ−1
a′ . Expanding

the Gaussian we have

∫

Rn

|f(x)φa′(x)−1|2 dx

=
∞∑

k=0

(∫

Rn

|f(x)|2 (2a′)k

k!
|x|2k dx

)

=
∞∑

k=0


 ∑

|α|=k

1
α!

∫

Rn

|f(x)|2x2α dx


 (2a′)k.

Under the hypothesis on ‖∂αf̂‖2
2 we get
∫

Rn

|f(x)|2x2α dx

=
∫

Rn

|∂αf̂(x)|2 dx

≤ Cα!(2a)−|α|.
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Therefore,
∫

Rn

|f(x)φa′(x)−1|2 dx

≤ C
∞∑

k=0


 ∑

|α|=k

1
α!




(
a′

a

)k

≤ C
∞∑

k=0

kn−1

(
a′

a

)k

< ∞.

Hence the hypotheses of Theorem 1.2.2 (case p = 2, q ∈ [q,∞]) are

satisfied. On the other hand suppose f satisfies hypothesis of Theorem

1.2.2 with p = 2. The above calculation shows that

||∂αf̂ ||22 ≤ Cα!(2a)−|α|

for every α ∈ Nn. Thus the hypothesis of Theorem 3.1.7 (case p = 2, q ∈
[1,∞]) are satisfied.

3.1.3 An uncertainty principle for operators and Cowling–Price theorem

for nilpotent Lie groups

The group Fourier transform on a nilpotent Lie group G is operator valued.

Given an irreducible unitary representation π of G and a function f on G

the operator f̂(π) = π(f) is realized on L2(Rn) for a suitable n. In order to

formulate an analogue of Theorem 3.1.1 we need such a result for operators.

We require the notion of noncommutative derivatives.

Given a bounded linear operator T on L2(Rn), we define certain non-

commutative derivatives of T by

δjT = [Aj , T ], δ̄jT = [T, A∗j ], (3.1.1)

where [T, S] = TS−ST is the commutator and Aj = ∂
∂ξj

+ξj , A∗j = − ∂
∂ξj

+ξj

are the annihilation and creation operators. The above derivations were in-

troduced by Mauceri [21] and Thangavelu has used them on several occa-

sions, see [33, 34]. For multiindices α, β we define δαT and δ̄βT iteratively.
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Since for any Hilbert–Schmidt operator T there exists f ∈ L2(Cn) such that

T = Wλ(f) it is sufficient to consider an analogue of Theorem 3.1.1 for

Weyl transform. The following Cowling–Price theorem for Weyl transform

is a generalization of Theorem 1.6.5, page 43 of [35].

Theorem 3.1.8. Let fea|z|2 ∈ Lp(Cn) and Wλ(f) = S(λ)e−bH(λ) for some

S(λ) ∈ Sq, where 1 ≤ p, q ≤ ∞. Then f = 0 almost everywhere. whenever

a tanh bλ
λ ≥ 1

4 and min(p, q) < ∞. If p = q = ∞ then f = 0 for a tanh bλ
λ > 1/4

and f(z) = Ce−a|z|2 for a tanh bλ
λ = 1/4.

Proof. We give a sketch of the proof as it is a modification of the proof of

Theorem 2.9.4 of [34]. Let Tn denotes the subgroup of the unitary group

U(n) consisting of diagonal matrices. Then each element of Tn can be

written in the form eiθ = (eiθ1 , eiθ2 , · · · , eiθn) so that Tn can be identified

with n-torus. Let m be an n-tuple of integers. Since fea|z|2 is in Lp(Cn) it

follows that fmea|z|2 ∈ Lp(Cn) where

fm(z) =
∫

Tn

f(eiθ · z)e−im.θ dθ. (3.1.2)

Now Wλ(f) = S(λ)e−bH(λ) for some S(λ) ∈ Sq. Therefore, S(λ) is a

bounded operator and hence there exists C > 0 such that ‖Wλ(f)Φλ
α‖2 ≤

Ce−b(2|α|+n)|λ| for all α ∈ Nn. Using this estimate it has been shown in page

91 of [34] that

|〈fm, Φλ
α,α+m〉| ≤ Cn

n∏

i=1

(
(2αi + 1)ne−b(2αi+1)|λ|

)
. (3.1.3)

Let Fλf stand for the symplectic Fourier transform of a function f in Cn

defined by

Fλf(z) = (2π)−n

∫

Cn

f(z − w)ei λ
2
=(z·w̄) dw. (3.1.4)

Fλ is related to the ordinary Fourier transform by Fλf(z) = f̂(−iλ
2 z). We

also have

Fλfm(z) =
∑
α

〈fm, Φλ
α,α+mΦλ

α,α+m〉
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in the sense of distribution. Using the explicit expression of Φλ
α,α+m it can

be shown

|Fλfm(z)| ≤ Cn,m(λ)(1 + |λ||z|2)le−( 1
4
λ tanh bλ)|z|2

for some positive integer l > 0, (see [34], page 93 ). Therefore, we have

|f̂m(z)| ≤ Cn,m(λ)(1 + |z|2)le−
tanh bλ

λ
|z|2 .

So by the Cowling–Price theorem for the Euclidean Fourier transform we

conclude the following:

Case 1. If 1 ≤ p < ∞, q ≤ ∞, then for a tanh bλ
λ ≥ 1/4, fm = 0 for all m and

hence f = 0 almost everywhere.

Case 2. If p = ∞, 1 ≤ q < ∞, then for a tanh bλ
λ > 1/4, fm = 0 and for

a tanh bλ
λ = 1/4 fm(z) = Cme−a|z|2 for all m. Since fm is m–homogeneous

Cm = 0 except m = 0 and hence f(z) = f0(z) = Ce−a|z|2 which yields

Wλ(f) = Ce−bH(λ). But this is not compatible with the condition Wλ(f) =

S(λ)e−bH(λ) for some S(λ) ∈ Sq and hence f = 0 almost everywhere.

Case 3. If p = q = ∞, then fm = 0 for all m whenever a tanh bλ
λ > 1/4 and

for a tanh bλ
λ = 1/4 arguing as before f(z) = f0(z) = Ce−a|z|2 .

Let T be an Hilbert–Schmidt operator. Then there exists f ∈ L2(Cn)

such that T = W1(f). A simple calculation using the definition shows that

δjW1(f) = W1(M̄jf) and δ̄jW1(f) = W1(Mjf) where Mjf(z) = zjf(z) and

Mjf(z) = z̄jf(z). By iteration we get δαW1(f) = W1(z̄αf) and δ̄βW1(f) =

W1(zβf). With this observation we are ready to prove our operator analogue

of Theorem 3.1.1.

Theorem 3.1.9. Let T ∈ S2 satisfy the estimates

(i) T ∗T ≤ C e−2bH

(ii) ‖δαδ
β(T ∗T )‖2

HS ≤ C (α + β)!a|α|+|β| for all α, β ∈ Nn,

for some a, b > 0 . Then T = 0 whenever a < 2 tanh 2b.
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Proof. Let S = T ∗T . Since S is a Hilbert–Schmidt operator there exists

f ∈ L2(Cn) such that S = W1(f). We define the operator valued function

f̃(u, v) on R2n given by

f̃(u, v) = W (u + iv)W1(f)W (u + iv)∗. (3.1.5)

As W (z) is a projective representation of Cn it is easily seen that

f̃(u, v) =
∫

Cn

ei(x.v−y.u)f(x + iy)W (x + iy) dx dy. (3.1.6)

Taking derivatives in u, v and using the relations δαW1(f) = W1(z̄αf),

δ̄βW1(f) = W1(zβf) we get

∂α
u ∂β

v f̃(u, v) = 2−(|α|+|β|)W (u + iv)(δ + δ̄)β(δ − δ̄)αW1(f)W (u + iv)∗.

This identity shows that

‖∂α
u ∂β

v f̃(u, v)‖2
HS ≤ C (α + β)!a|α|+|β| (3.1.7)

whenever we have

‖δαδ̄βW1(f)‖2
HS ≤ C (α + β)!a|α|+|β|. (3.1.8)

Let F be the function on R2n defined by

F (u, v) = 〈f̃(u, v)Φ0, Φ0〉.

then F (u, v) satisfies the following two properties:

(i) F (u, v) extends to C2n as an entire function which satisfies the estimate

|F (ζ)| ≤ Cea1|=ζ|2 for some a1 < 1
2(1− e−4b),

(ii) F (u, v) ≤ C e−
1
2
(1−e−4b)(|u|2+|v|2).

Assuming this claim for a moment we appeal to the following lemma.

Lemma 3.1.10. Let G(ζ) be an entire function on Cn which satisfies |G(ζ)| ≤
C ea|=ζ|2, ζ ∈ Cn and |G(ξ)| ≤ C (1 + |ξ|2)me−b|ξ|2, ξ ∈ Rn. Then G = 0

whenever a < b.
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The lemma shows that F = 0 whenever a1 < 1
2(1 − e−4b). Since a <

2 tanh 2b we have coth 2b < 2
a and so we can choose b1 and b2 such that

coth 2b < 4b1 < 4b2 < 2
a . This gives b2 < 1

2a and 1 + 4b1 > 1 + coth 2b =
2

1−e−4b or 2
1+4b1

< (1 − e−4b). In our claim we can take a1 = 1
1+4b1

so that

F = 0. Since

F (u, v) = 〈W (u + iv)W1(f)W (u + iv)∗Φ0, Φ0〉
=

∫

R2n

ei(x.v−y.u)f(x, y)e−
1
4
(|x|2+|y|2) dx dy

by Fourier inversion formula f = 0 almost everywhere proving the theorem

as S = T ∗T = W1(f) = 0. It remains to prove the claim with a1 = 1
1+4b1

where b1 is chosen as above. As we have indicated earlier the estimates on

δαδ̄βS give the estimates

‖∂α
u ∂β

v f̃(u, v)‖2
HS ≤ C (α + β)!a|α|+|β| (3.1.9)

for all α, β ∈ Nn and hence

‖∂α
u ∂β

v F (u, v)‖2
2 ≤ C (α + β)!a|α|+|β| (3.1.10)

for all α, β ∈ Nn.

Since S = W1(f) using the Plancherel theorem we have the estimates
∫

R2n

|xαyβf(x, y)|2dx dy ≤ C(α + β)!a(|α|+|β|).

We claim that
∫

R2n

|f(x, y)|2e2b2(|x|2+|y|2) dx dy < ∞ (3.1.11)

for any b2 < 1
2a . To see this consider the series

∞∑

k=0

1
k!

∫

R2n

|f(x, y)|2(2b2)k(|x|2 + |y|2)k dx dy (3.1.12)

which converges as long as b2 < 1
2a .
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Now consider F (u, v) which is given by

F (u, v) =
∫

R2n

f(x, y)ei(x·v−y·u)e−
1
4
(|x|2+|y|2) dx dy.

By Hölder’s inequality

|∂α
u ∂β

v F (u, v)|2 ≤ C

∫

R2n

|xαyβ|2e−2(b2+ 1
4
)(|x|2+|y|2) dx dy (3.1.13)

which gives the estimate

|∂α
u ∂β

v F (u, v)|2 ≤ C (α + β)!
(

2
(

b2 +
1
4

))−(|α|+|β|)
. (3.1.14)

Appealing to Lemma 3.1.10 we see that F (u, v) extends to an entire function

of type a2 where a2 = 1
1+4b2

. Since a2 < a1 we get |F (ζ)| ≤ C ea1|=ζ|2

which proves the claim (i). The second claim is proved using the bound

T ∗T ≤ C e−2bH . We have

F (u, v) = (W (u + iv)T ∗TW (u + iv)∗Φ0, Φ0)

≤ C
(
W (u + iv)e−2bHW (u + iv)∗Φ0, Φ0

)
. (3.1.15)

We now expand W (u + iv)∗Φ0 = W (−u− iv)Φ0 in terms of Φµ:

W (u + iv)∗Φ0 = (2π)
n
2

∑
µ

Φ0,µ(−u− iv)Φµ. (3.1.16)

Since

e−2bHΦµ = e−2b(2|µ|+n)Φµ

we have, using Parseval’s formula for Hermite expansions,

F (u, v) ≤ C
∑

µ

e−2b(2|µ|+n)|Φ0,µ(−u− iv)|2. (3.1.17)

Now using the explicit formula ( 1.1.7 ) for Φ0,µ, we get

F (u, v) ≤ C
∑

µ

e−2b(2|µ|+n) 1
µ!

(
1
2
(|u|2 + |v|2)

)|µ|
e−

1
2
(|u|2+|v|2)

which gives

F (u, v) ≤ C e−
1
2(1−e−4b)(|u|2+|v|2) (3.1.18)

as desired.
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We now give an application of the above theorem for multiple Laguerre

expansions. Let f be a function in L2(Cn) which is invariant under the

action on Tn. Then f is called polyradial and it has expansion

f(z) =
∑

µ

(f, Φµµ)Φµµ(z).

Let d be a function on Nn. For each j = 1, 2, . . . , n we define the difference

operators 4+
j and 4−

j by

(4+
j d)(µ) = d(µ + ej)− d(µ), (4−

j d)(µ) = d(µ)− d(µ− ej),

where ej are the coordinate vectors. For multi-indices α, β ∈ Nn we define

4α
+ = (4+

1 )α1(4+
2 )α2 · · · (4+

n )αn ,4β
− = (4−

1 )β1(4−
2 )β2 · · · (4−

n )βn .

With these notations we will prove the following corollary of the above

theorem, which can be considered as Cowling–Price theorem for multiple

Laguerre expansions of polyradial functions.

Corollary 3.1.11. Let f be a polyradial function which is in L2(Cn), C(µ) =

(f, Φµµ) and d(µ) = |C(µ)|2, µ ∈ Nn. If C(µ) satisfy the following condi-

tions:

(i) |C(µ)| ≤ Ce−b(2|µ|+n)

(ii)
∑
µ

(µ+α)!
(µ−β)!

∣∣∣
(
4β
−4α

+d
)

(µ)
∣∣∣
2
≤ C(α + β)!2−(|α|+|β|)a(|α|+|β|)

where a, b > 0, then f = 0 whenever a < 2 tanh 2b.

Proof. Since f is polyradial

W1(f)φ =
∑

µ

(f, Φµµ)(φ,Φµ)Φµ.

Using the formulae

AjΦµ = (2µj + 2)
1
2 Φµ+ej , A∗jΦµ = (2µj)

1
2 Φµ−ej
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it is easy to see that
(
δαδ

β
W1(f)∗W1(f)

)
Φµ

= (−1)|α|+|β|2
|α|+|β|

2

(
(µ + α)!
(µ− β)!

) 1
2 (
4β
−4α

+d
)

(µ)Φµ+α−β.

Then using the above conditions we will get

W1(f)∗W1(f) ≤ Ce−2bH , ‖δαδ
β (W1(f)∗W1(f)) ‖2

HS ≤ C(α + β)!a|α|+|β|.

So by Theorem 3.1.9, W1(f) = 0 for a < 2 tanh 2b and hence f = 0.

As an immediate corollary of Theorem 3.1.9 we have the following the-

orem for general nilpotent Lie groups.

Theorem 3.1.12. Let G be a connected, simply connected nilpotent Lie

group and let Λ be a cross section for the generic coadjoint orbits parametris-

ing the elements of Ĝ which are relevant for the Plancherel theorem. For

each λ ∈ Λ let πλ be the associated element of Ĝ. Let f ∈ L1
⋂

L2(G) satisfy

the following conditions:

(i) πλ(f)∗πλ(f) ≤ C e−2b(λ)H

(ii) ‖δαδ̄β (πλ(f)∗πλ(f)) ‖2
HS ≤ C (α + β)!a(λ)|α|+|β|

where a(λ), b(λ) > 0. Then f = 0 whenever a(λ) < 2 tanh 2b(λ) for all

λ ∈ Λ.

For the case of of the Heisenberg group it can be easily checked using

the explicit formula for the heat kernel that |fλ(z)| ≤ C qλ
a (z) leads to the

estimates

‖δαδ̄β(f̂(λ)∗f̂(λ))‖2
HS ≤ C (α + β)!(a|λ|)|α|+|β|. (3.1.19)

Thus condition (ii) in the above theorem is a suitable alternative which

compensates for the absence of a good formula for the heat kernel. In the

case of the Heisenberg group we can replace the condition (i) by f̂(λ)∗f̂(λ) ≤
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Ce−2bH(λ). Note that e−bH(λ) = q̂b(λ) and so it is a natural candidate for

measuring the decay of f̂(λ). As H(λ) is unitarily equivalent to |λ|H the

condition (i) is natural. The same comment applies to the case of all step

two groups as the scaled Hermite operator is related to the sublaplacian even

in that case. In the case of general nilpotent groups, there is no canonical

way of measuring the decay of πλ(f). Therefore, we have used e−b(λ)H to

measure the decay of the Fourier transform since we do not have any other

choice.
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