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ON THE DISTRIBUTION OF SQUARENESS 
By RATAN DASGUPTA 

Indian Statistical Institute 

SUMMARY. Squareness of a job with circular face is defined to be the amount of projec 

tion of the face on the axis of the job. In ideal situation the plane of the face is perpendicular 

to the axis and the squareness equals zero. Under simple assumptions it is shown that the distri 

bution of squareness is of the form K\X-\-/i\ where K > 0, 
? oo < /? < oo and X is a normal 

deviate. Some data sets are analysed by the model. 

1. Introduction 

In many industrial jobs, metal made cap or covers are required to fit 

face to face to another cap or plane sheet of metal so as to enclose instrumental 

components inside it. 

The cap or cover usually posses an axis passing through the centre of the 

face and the outer circular face of the cover is required to be perpendicular 

with the axis. If the plane of the face is not so with the axis of the cover to 

a great extent, then the fitting of the cap will be improper which will affect 

the function of the job. 

As for example in the case of back cover of a table fan, the rotar of the 

fan is placed along the axis of the back cover. Now, if the squareness, a 

measure of deviation of the face of the cover from ideal perpendicular position, 

is high then this will hamper the smooth running of the rotar inside it, affect 

ing the function of the fan. 

The squareness is defied to be the amount of projection of the outer 

plane of the face on the axis of the job. This measure is non-negative ; zero 

being attained when the outer face is exactly perpendicular to the axis. 

Let r be the radius of the outer circular faoe which is tilted at an angle 6 

with the perpendicular position of the axis. The measure of sequareness is 

then 12r Sin 6 \, -n/2 < d < n\2. 

2. Description of the operation and model 

The back cover of a table fan consist of a thick outer circular ring which 

is connected to another small hollow base where the bush has to be placed. 
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The rotar of the fan is adjusted along the axis of the cover and an end of the 

rotar moves inside the bush. 

The processing of the cover is done as follows. The outer ring of the 

face is given an approximate radius r = 
rn by the metal cutting operation 

described in Dasgupta, Ghosh and Rao (1981). Next, to process the outer 

plane of the face, the cover is gripped along its axis, possibly with an inclina 

tion 6 with the axis of rotation, by a jaw chuck in a lathe machine. The 

cover is then rotated by the machine and the metal is removed from the face 

to giv3 it a smooth shape and the angle of inclination 6 = dt varies over m 

rotations. We study the limiting behavior of the squareness as ft-? oo, 

m?? oo. 

There are several factors which affects squareness. For processing the 

face in a lathe machine, in order that there is no squareness operator intends 

to fix the cover along the axis of rotation, before processing starts. The 

target is to make 0 = 0, but for error in setting 6 is in a neighbourhood of 

zero. Like any other error component one may assume 6 to be normally 

distributed with zero mean. The variance will of course depend on the effi 

ciency of the operator in setting the job. A systematic factor responsible 
for squareness is the machine defect while setting the job. If the jaw chuck 

by which the cover is gripped for processing is itself tilted at an angle 60 with 

the perpendicular position of the axis then one may take 6~~N(dQ, .). In 

perfect machine, for an operator without any bias in setting 60 
? 0. For 

an experienced operator the variance of the distribution of 6 will be small 

and we shall assume K1/2(d?60) 
~ N(0, 1) where K is large compared to 6 

and d0 in radians. 

Usually outer face of the cover is also thick and before processing the 

face, the outer ring is given an approximate radius r by a different process 

of metal cutting. Assume for the moment that r is not a random variable 

but a constant. Also let 60 
= 0. Since the magnitude of 6 is small one may 

write sin 6 = d(l+o(l)). Hence 2r|sin0| 
~ 

2r|0|(l+o(l)) 
~ 

2rK^2\X\ 
~ 

Kx \X | for some Kx > 0, where X is a normal deviate. Next for 60 ^ 0, 

sin 6 ~ sin 60+(d?d0) cos 0Q. 

Therefore 

12r sin 0 \ 
~ 

X"1/212rK^ sin d0+2rK^2 (0-0o) cos 60 \ 
~ 

K? | X+fi | for some Kr > 0 and ?oo </i<co. 

Hence the distribution of squareness is of the form X-JX+^I where ji 
= 0 

if $0 
= 0. 
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Now consider the case where r is random. It follows from the catting 
model considered in Dasgupta et al. (1981, 186-187) that the cut upto w-th 

stage Tn is of the form 

Tn 
= 

^-i+K-^n-i)^, ?7! 
= 

erf, 0 < cn < 1, n > 1, e+ = max (e, 0). 

et is the random shift of the center at i-th stage towards the cutting tool while 

shaping the outer ring, C\ is the fraction of the cut to the shift of the center 

at i-th rotation. C{ depends on hardness of the cutting tool and the job. e.g. 

d = 1 if the tool is too hard and job is made of relatively soft material. One 

may assume that max ei has a limiting distribution after suitable standardisa 

tion i.e., (max e<?an)?bn 
~ an extreme value distribution. It is also assumed 

(H = l?o( | aj1 bi | ) ; c% t 1 and lim f(ik)/f(i) < oo V ? where f(i) = | at or11 i ?> oo 

is nondecreasing in i. The assumed conditions imply that Tn 
= max e<+ 

?p(bn) > ̂en r = 
rn 

= 
d?Tn where d is some specified value, e<'s are i,i.d 

random variable and bn J, 0 as n-> oo e.g. bn 
= n~x if e*'s are i.i.d uniform 

on(0, 1). Hence rn 
= 

d?Tn 
= 

d?(an+bnz(l+op(l))) where 2 is a ran 

dom variable with extreme value distribution. If the r.v's ef's are bounded 

above, one may take an 
= a andrw 

= 
d?a?6,^(1+0^(1))= d*?bnz(l+op(l)) 

where d* = d?a. Therefore, since bn J, 0 

\2rnamd\ 
= 

\2(d*-bnz(l+op(l)))sind\ 
= 

12d* sin d(l+op(bn)) I ? Kx j X+111. 

So, a distribution of the type K^X+ju,] is a good approximation to the dis 

tribution of squareness. 

Next assume that the number of revolutions to which the face of the 

cover is exposed for processing be m. It is natural to assume that the incli 

nation di at the i-th revolution is a random quantity with a systematic part 6 

present in it. We shall assume 6% 
= 

#+?/* where t^'s are i.i.d r.v's centred 

at origin. The calculations and arguments in the above paragraph hold for 

the i-th revolution with 6 replaced by 0%. It is also clear that in this represen 

tation, the squareness over m revolutions is max 12rn sin ?< |. From Al 
i=l... m 

of Dasgupta et al. (1981) with c > 0 it follows that for large m the squareness 
is approximatele equal to | 2rn Sin (6+S) | where 8 = sup {a : p(r? > a) > 0}, 
letting 6 > 0 and (0+S) < t?/2. 

The earlier calculations remain valid with 6 replaced by (9+S) and the 

form of the distribution of squareness remains the same. 



32 ratan dasgupta 

The contribution to ?jl come from two different components in this repre 

sentation. A part is from 6Q, the mean of 6, which may be attributed to the 

bias of operator/machine in setting the job. The other part comes from the 

fluctuation of the angle of inclination over m rotations. This part may be 

attributed to the machine efficiency. It may not be possible to separate 
these two components except when one of these is zero. 

3. Fitting the model and analysis of data 

If |/?| is quite large then virtually speaking K1\X-\-/i\ 
= 

K^X+l/i]) 

~*N(.,.). For moderate values of \/i\, the distribution K^X+fil folds 

the part of the normal distribution on the negative side of the axis to its abso 

lute value on the positive side. 

Estimate of ?i may be obtained by trimming the observations equidistant 
from the model value and then taking the mean of the trimmed observations. 

The variance of the distribution may be obtained by distributing, the half 

of the frequencies of the classes which are far of the model value in positive 

side, to the negative side. Hence reconstructing the original normal distri 

bution one may proceed to estimate a2. 

We analyse two sets of data. The following are the squareness of back 

covers of 80 table fans. 

squareness 1 1.5 2 2.5 3 3.5 4 4.5 5 6 6.6 7 8 

(in 10-3 inch) 

frequency 1 3 3 5 10 3 21 3 16 11 112 

Grouped data in class intervals are shown below : 

class interval frequency 

(0?1.5] 4 

(1.5?2.5] 8 

(2.5?3.5] 13 

(3.5?4.5] 24 

(4.5?5.5] 16 

(5.5?6.5] 
. 12 

> 6.5 3 

The model class is (3.5-4.5]. From row data we observe that only two 

observations corresponding to the squareness 8 fall outside the equidistant 
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range of both sides of model class. Therefore we may carry out usual normal 

fit to the data since the distribution is not perturbed by the absolute sign. 

class interval 
mid 
point frequency 

expected 
frequency 

(0-1.5] 

(1.5?2.5] 

(2.5?3.5] 

(3.5?4.5] 

(4.5?5.5] 

(5.5?6.5] 

> 6.5 

.75 

2 

3 

4 

5 

6 

7 

4 

8 

13 

24 

16 

12 

3 

3.27 

8.10 

16.36 

21.00 

17.55 

9.43 

4.29 

total 80 80 

?i = 4.088, <r = 1.49, calculated %% = 2.5, x05,4 
= 9.49 

Calculated X2 is insignificant at 5%level and the fit is satisfactory. 95% confi 

dence interval for squareness is (/??1.96er) 
= 

(1.17, 7.01). Only two observation 

fall outside the upper limit and the process seems to be under control. 

However ?i = 4.09 and there is a possibility of reducing this value (the 

ideal being zero) by improvement of the setting of the machine. 

The second set of data relates to the squareness of the back cover of 

48 table fans after pressing the bush inside it. Following are the row 

of squareness in 10"3 inch. 

squareness 1.5 2 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 16 20 

frequency 212231644145323221 

Grouped data in class intervals are as follows : 

class interval frequency mid point 

(0-3] 

(3-4] 

(4-7] 

(7-10] 

(10?13] 

>13 

5 

5 

15 

10 

8 

5 

1.5 

3.5 

5.5 

8.5 

11.5 

total 48 

A 1-5 
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It appears from the above table that the mean fi estimated from the trimmed 

observations excluding the last class is quite large and the distributon is not 

much perturbed by the absolute sign. Therefore usual normal fit is carried 

out. ?i = 7.33, or = 4.029 

class interval expected frequency 

(-oo, 0] 1.65 

(0?3] 5.13 

(3?4] 3.03 

(4?7] 12.62 

(7?10] 13.39 

(10?13] 8.35 

> 13 3.83 

Since we consider only the absolute value of the variable the frequency of 

the class (?oo, 0] should be added to the last class. So the expected frequen 
cies of the distribution of squareness are as follows. 

observed expected 
class interval frequency frequency 

(0?3] 5 5.13 

(3?4] 5 3.03 

(4?7] 15 12.62 

(7?10] 10 13.39 

(10?13] 8 8.35 

> 13 5 5.48 

Total 48 48 

Calculated x2 
= 2.65, ^205|3= 7.815, %2 is insignificant and the fit is satisfactory. 

95% confidence interval for squareness is (/??1.96cr) 
= 

(0, 15.23). From row 

data we see that 3 observations fall outside the upper limit, caution should 

be taken for those points. 

Like data set I, here also mean value may be reduced by proper setting 
of the machine. 

Next we compare this model with another competitor |/?+F<r| where 

Y ~ 
| e-W, ?oo < y < oo. The m.l.e. ?i and a are median and mean deviation 

when absolute sign is ignored, which seems to be appropriate if ?i is large. 
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The fit for two sets of data are shown in the following tables. The fit 

seems to be worse as compared to corresponding normal fit. 

Data set I 

Fit for \/i+Y<r\, 7~J e-w 

observed expected 
class interval frequency frequency 

(0-1.5] 4 3.046 

(1.5?2.5] 8 5.715 

(2.5?3.5] 13 13.480 

(3.5?4.5] 24 27.609 

(4.5?5.5] 16 16.697 

(5.5?6.5] 12 7.079 

> 6.5 3 6.374 

total 80 80 

?i = 4.125, or = 1.1656, x2 
= 6.94, corresponding x2 for normal fit = 2.5. 

Data set II 

observed expected 
class interval frequency frequency 

(0?3] 5 4.49 

(3?4] 5 2.69 

(4?7) 15 15.32 

(7?10] 10 13.62 

(10?13] 8 5.40 

> 13 5 6.48 

total 48 48 

?i 
= 6.8, cr = 3.24, x2 

= 4.60, corresponding x2 f?r normal fit = 2.65. 

Discussion. The empirical data conform quite satisfactorily with the 

theoretical model of the distribution of squareness as k\X+/i\ where k > 0, 

?oo < /? < oo, X ~ 
N(0, 1). 

In the first data set two observations fall outside the upper confidence 

limit and the process seems to be under control, 
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In the second data set three observations corresponding to squareness 
16 and 20 fall outside the upper limit. As the magnitude of squareness is 

too high, caution should be taken for these observations. 

In both data sets I and II there is a possibility of reducing the value of 

[i, 4.09 for 1st set, 7.33 for 2nd set, towards the ideal value zero by improve 
ment of the setting of the machine. 

Both the data sets fit well to the folded normal distribution relative to 

folded exponential distribution suggesting that the data can distinguish 
between two distributions and the folded normal model is satisfactory. 

Reference 

Dasgupta, R., Ghosh, J. K. and Rao, N. T. V. (1981). A cutting model and distribution of 

ovality and related topics. Proc. of the I.S.I. Golden Jubilee Conference on Statistics, 182-204. 

Statistics and Mathematics Division 

Indian Statistical Institute 

203, B. T. Road 

Calcutta 700 035 

India. 


	Article Contents
	p. [29]
	p. 30
	p. 31
	p. 32
	p. 33
	p. 34
	p. 35
	p. 36

	Issue Table of Contents
	Sankhy: The Indian Journal of Statistics, Series A, Vol. 55, No. 1, Dedicated to the Memory of Prasanta Chandra Mahalanobis on the Occasion of His Birth Centenary (Feb., 1993), pp. 1-8, 1-170
	Volume Information
	Front Matter
	Central Limit Theorem for a Double Array of Harris Chains [pp. 1-11]
	Cesáro Uniform Integrability and [pp. 12-28]
	On the Distribution of Squareness [pp. 29-36]
	Asymptotic Null Distributions of Tests for Change in Level in Correlated Data [pp. 37-48]
	Solution of an Optimization Problem Arising in Maximum Likelihood Estimation of Ordered Distributions [pp. 49-65]
	On the Hajek Projection for Truncated and Censored Data [pp. 66-79]
	Statistical Tests for the Inverse Gaussian Distribution Based on Rao Distance [pp. 80-103]
	On Tests for Independence in the Presence of Competing Risks [pp. 104-119]
	Some Asymptotic Results for the Induced Percentile Selection Differential [pp. 120-129]
	Linear Models in a General Parametric Form [pp. 130-149]
	Notes
	Moment Bounds for Some Stochastic Processes [pp. 150-152]
	A Characterization of the [pp. 153-158]
	On the Bahadur Efficiency of a t-Test [pp. 159-163]
	Characterizations of Power Series and Factorial Series Distributions [pp. 164-168]

	Corrigendum: Uniformly Strongly Consistent Prior-Distribution and Empirical Bayes Estimators with Asymptotic Optimality and Rates in a Non-Exponential Family [p. 169-169]
	Back Matter





