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Chapter 1

Introduction

1.1 Quality Adjusted Lifetime (QAL)

Normally, overall survival time is considered as the end point for many clinical

trials to study the effectiveness of different treatments. If the survival time passes

through different health states, which differ in their quality of life, then other

endpoints are also considered for treatment comparison, which incorporates both

quality and duration of life. It is, therefore, necessary to provide a composite

measure for comparison of different treatment choices, specially in the context of

clinical trials, after taking into account both quality and duration of life. This

issue has been first addressed by Gelber and coauthors in a series of papers (Gel-

ber and Goldhirsch 1986; Gelber et al., 1987; Gelber et al., 1989) by introducing

an endpoint called Time Without Symptoms of disease and Toxicity due to treat-

ment (TWiST) in the context of breast cancer patients (Ludwig Breast Cancer

Study Group, Trial III). Time with toxic side effects of treatment and time with

unpleasant symptoms of disease are subtracted from overall survival time to cal-

culate TWiST for each patient (Gelber et al., 1989). See also Gelber et al. (1991,

1992a, 1992b, 1995, 1996), Murray (2000) and Cole et al. (2004) for TWiST as a

1
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composite measure for comparing treatments in the context of cancer patients.

The endpoint TWiST has been generalized by Goldhirsch et al. (1989) and

Glasziou et al. (1990) to incorporate the concept of quality of life, termed as Q-

TWiST which stands for ‘Quality-Adjusted Time Without Symptoms of disease

and Toxicity due to treatment’. The concept of quality adjusted lifetime (QAL),

thus developed, has been made popular by many subsequent work and commonly

used in the context where patients may experience several intermediate health

states before ending in death. Quality of life associated with these states is mea-

sured by a utility coefficient ranging from zero to one. For each unit of time spent

in the state, the utility coefficient reflects its value against perfect health (utility

1). Death has utility zero. This leads to a utility function over time which takes

the value of the utility coefficient of the state occupied at that time. Then, QAL

is formally defined as

Q =
∫ T

0
W (u)du,

where Q denotes the QAL, T the lifetime and W (u) the utility function at time u.

The number of health states is usually assumed finite. Then, the QAL reduces to

a weighted sum of the time spent in each health state, where the weights are the

utility coefficients. For example, as shown in Figure 1.1, if a patient experience

k health states 1, . . . , k, which differ in their quality of life, before ending in

death (D) with the corresponding sojourn times T1, . . . , Tk and utility coefficients

Figure 1.1: A model with k health states.
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w1, . . . , wk, then the QAL is given by

Q =
k∑

i=1

wiTi.

In HIV/AIDS research, for example, in a cohort of HIV positive patients, ap-

pearance of AIDS symptoms can be equated with intermediate health state before

death (D). In this example, one would be interested in quality adjusted life of

HIV patients. If THIV denotes the time till AIDS symptoms appear (since time

of infection) and TAIDS denotes the time till death (since onset of AIDS symp-

toms) with utility coefficients w1 and w2, respectively, then this QAL is defined as

w1THIV +w2TAIDS. In International Breast Cancer Study Group (IBCSG) Trial V

data for cancer patients (Gelber et al. 1992a), the individuals, after going through

the chemotherapy which induces a period of toxicity, start in the state of ‘Toxicity’

(state 1); at the end of this toxicity period they enter the state of ‘No symptoms

of disease and toxicity of treatment’ (state 2), followed by ‘Relapse of the disease’

(state 3) and finally the death (absorbing state D). Here, the three periods (time

spent in the health states) corresponding to the three health states are denoted

by TOX, TWiST and REL. If w1, w2 and w3 are the utility coefficients, then

the QAL is defined as w1TOX + w2TWiST + w3REL. A similar concept can be

considered in the context of reliability. For example, in a parallel system with k

components, the failure of successive components may be equated with successive

illness states. The system fails when all the components fail. Also, while dealing

with life or service times of items, the QAL may be interpreted as the quality

adjusted service time as the items may be able to provide service, in its lifetime,

with different levels of satisfaction or utility.
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1.2 Objective and Salient Features of the Thesis

The main objective of this work is to estimate the distribution of QAL. Salient

features of the thesis are as follows.

1. Develop a new method of estimating the QAL distribution, which explicitly

uses the information on the interrelationship between the different health

states.

2. Propose parametric, nonparametric and semi-parametric methods for dif-

ferent illness-death models.

3. Investigate the performance of the proposed estimator in terms of bias and

precision through simulation experiments and compare with some existing

estimator.

4. Analysis of real data set for illustrative purpose.

1.3 Review of Earlier Work

The aim of this work is to estimate the QAL distribution with censored data.

While dealing with censored data, unfortunately, there is informative censoring

when transformed into QAL scale (Gelber et al., 1989; Glasziou et al., 1990; Lin

et al., 1997; Huang and Louis, 1999, Pradhan and Dewanji, 2009c). That is , even

if the original lifetime T and the censoring time C are independent, the quality

adjusted lifetime Q and the corresponding quality adjusted censoring time C∗ do

not remain independent. This, in the literature, is known as induced dependent

censoring. Although it might seem natural to undertake a standard survival anal-

ysis with the observed QAL values (censored and uncensored), this approach leads

to biased estimate due to this induced dependent censoring. In order to overcome

this problem, Glasziou et al. (1990) have suggested partitioned survival analysis
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for progressive state models restricted to a specific time, where an unbiased esti-

mator of restricted mean QAL has been obtained by estimating the mean sojourn

time in each health state separately using Kaplan-Meier (1958) estimate and then

considering the weighted sum of the estimated mean sojourn times in different

states. They termed this method as Q-TWiST, or Quality-Adjusted Time with-

out Symptoms or Toxicity.

Note that the Q-TWiST method is a nonparametric method that restricts the

mean survival estimate to the follow-up time of the study cohort, therefore, re-

stricting the mean QAL as well. Having realised this, and also the fact that the

estimate may be less efficient than the one based on an appropriate parametric

model, Cole et al. (1994) have suggested a parametric Q-TWiST method to esti-

mate the mean QAL. They have considered a multivariate competing risks model

defined by the different health states and fit the data by modelling parametrically

the different cause-specific hazard functions. The estimates of the model param-

eters are obtained by the maximum likelihood method, which are then used to

estimate the mean QAL by simulation. Standard error and confidence interval are

obtained using the bootstrap and delta method. In their simulation, they have

assumed independent latent failure times and identified the minimum of them at

each transition time. Other works on estimating the mean QAL are Hwang et al.,

(1996, 1999), Huang and Louis (1999), Zhao and Tsiatis (2000). These methods

can also be used for lifetime medical cost (Bang and Tsiatis, 2000; Lin, 2003;

Cook et al., 2003; Gardiner et al., 2006) and customer lifetime value (Pfeifer and

Bang, 2005).

A number of different estimators have been proposed for estimating the QAL

distribution. For example, Korn (1993) has proposed an improved estimator,

although biased, over Kaplan-Meier estimator using the concept of inverse proba-

bility weighting. He assumed that observations on the quality of life are available

only at certain discrete times. Zhao and Tsiatis (1997) have proposed a consistent
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estimator for the distribution of QAL which is a member of the class of inverse

probability of censoring weighted (IPCW) estimators (Robbins and Rotnitzky,

1992). Their estimator is preferable for point wise estimation, but the estimator

may not be monotone (Huang and Louis, 1998) for finite sample. Huang and

Louis have proposed a nonparametric estimator for the joint distribution of sur-

vival time and mark variable, where the mark variable may be quality adjusted

lifetime. Zhao and Tsiatis (1999) have considered more efficient estimator than

Zhao and Tsiatis (1997), but still lacks the requirement of monotonicity. Straw-

derman (2000) has developed a general framework from which most of the previous

estimators of QAL come out as special cases. Almanassra et al. (2005) have pro-

posed a monotonic estimator for the QAL distribution, but their method involves

constrained optimization and, therefore, is computationally very intensive.

All the above estimators for the QAL distribution transform the observed data

into QAL scale and then concentrate on adjusting for bias due to the induced de-

pendence, while analyzing the data on observed QAL. It is clear that the above

methods of estimating the QAL distributions are not applicable when observation

on some sojourn times are missing. The times of different transitions to successive

states are required to be observable in order to be able to estimate the distribu-

tion of QAL or mean QAL. This is a strong requirement while dealing with health

history, specially when the patients suffer from cancer of inner organs (e.g., liver).

Sometimes, the investigator has data collected at the time of death. Information

on intermediate event times may be available in other secondary sources, some

of which may not be accessible. For example, data on times of death from AIDS

may be available to the investigator, whereas the information on times of diag-

nosis may be scattered over different sources, all of which may not be accessible.

This loss of information results in non-observability of intermediate event times.

In such situations, the methods based on the observed QAL values cannot be

applied.
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Regression analysis of QAL data to study any covariate effect on the QAL

distribution, and also to estimate the QAL distribution for a given covariate, is

an important aspect. Cole et al. (1993) have developed a method for estimating

mean quality adjusted lifetime using Cox’s proportional hazards model for the so-

journ time in each health state. Bootstrap method has been suggested to estimate

the variance of the estimator. Fine and Gelber (2001) have considered a semi-

parametric bivariate linear regression model for some transformations of lifetime

and QAL leading to accelerated life models for their marginal distributions. The

regression coefficients are estimated based on some estimating equations which are

then used to estimate the ratio of mean lifetimes, or mean QALs, corresponding

to two different covariate values. Wang and Zhao (2007) have considered a regres-

sion model for the mean QAL and used the idea of inverse probability weighting

to construct a simple weighted estimating equation for the regression parameters

of the model. These parameter estimates are then used to estimate the mean

QAL. Tunes-da-Silva et al. (2009) have considered estimation of mean QAL un-

der semi-Markov multistate model for non-progressive processes with covariate

effect. Jackknife resampling method has been used to estimate the variance of

the estimator. See also Zhao and Wang (2008) for the regression analysis of mean

QAL with censored data. However, estimation of QAL distribution for a given

covariate has not been attempted in the literature.

1.4 Proposed Approach

In this work, a new approach for estimating the QAL distribution is proposed,

in which the QAL distribution is first theoretically derived in terms of the joint

distribution of sojourn times in the health states. When the sojourn times are

independent, this theoretical expression for the QAL distribution involves only

the marginal distributions of the different sojourn times. These sojourn time dis-
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tributions are estimated from the observed lifetime data in each health state by

standard survival analysis technique, which are then substituted in the theoreti-

cal expression for QAL distribution already derived to obtain its estimate. This

method of estimation is possible even when some of the transition times are not

observed (Kodell and Nelson, 1980; Borgan et al., 1984) as long as the sojourn

time distributions are estimable by some missing data techniques. By construc-

tion, this method gives a monotonic estimate of the QAL distribution.

The multitude of possible paths of an individual’s health history leads one to

a compartment model, which can be modelled using transition rates, depending

on past history. There is a weight or utility coefficient associated with each com-

partment or state. Given a model, the distribution of QAL, given by the weighted

sum of sojourn times in different states, can be derived using the joint distribu-

tion of all the sojourn times. This expression can be in closed form in many

situations, specially when the number of states is few. Utilizing this property,

theoretical distribution of QAL has been derived for some illness-death models,

before estimating the same by substituting the sojourn time distributions with

the corresponding estimates. In this way, one can avoid the problem of bias due

to induced dependence of censoring distribution in QAL scale, since estimation

takes place in the original lifetime scale. Unlike other approaches, this method

is easily amenable to incorporation of specific dependence structure between the

sojourn times and any covariate effect.

Estimation of QAL distribution is considered using parametric, non-parametric

and semi-parametric approaches. In parametric approach (Pradhan and Dewanji,

2009a; Pradhan et al., 2010), the theoretical distribution of QAL is derived by

assuming particular parametric models for the sojourn time distributions. Model

parameters are estimated by maximum likelihood method from the corresponding

lifetime data. The QAL distribution is then estimated by substituting the param-

eters in its theoretical expression by the corresponding estimates. Standard error
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of the estimator is obtained by the delta method. A parametric method in general

has flexibility in the sense that it works for small sample sizes and the asymptotic

properties are easier to establish using the delta method. In addition, a parametric

model can also explicitly incorporate dependence between different sojourn times.

Sometimes there may be evidence in favor of a particular parametric model with

or without dependence. In such cases, a method based on an appropriate para-

metric model is more efficient than a nonparametric method. Note that some

accounting for possible dependence between the different sojourn times is neces-

sary for estimating the QAL distribution. Existing methods based on observed

QAL data implicitly account for this dependence, but these methods cannot be

applied when some transition times are not observable. The proposed method

can handle the problem of non-observability, while accounting for dependence at

the same time. Covariate effect can be easily incorporated in estimating the QAL

distribution.

The nonparametric estimate of QAL distribution is obtained under the as-

sumption that the sojourn times are independently distributed. In that case, as

mentioned before, the theoretical expression for the QAL distribution involves

only the marginal sojourn time distributions. The estimate of QAL distribution

is obtained by substituting the sojourn time distributions by the corresponding

Kaplan-Meier estimates obtained from the corresponding lifetime data. Asymp-

totic properties are also derived. In semi-parametric approach, hazard rate in

each health state is modelled using Cox’s proportional hazards regression. The

estimate of QAL distribution for a given covariate is obtained by substituting the

estimates of regression parameters and baseline sojourn time distributions in the

expression of QAL distribution.

Note that the derivation of the theoretical distribution of QAL in general may

be quite challenging and its closed form expression may not always exist. How-

ever, once the distribution of QAL is derived in a closed or in general form, it can
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be estimated by substituting the model parameters with the corresponding esti-

mates. Therefore, the expression for the QAL distribution needs to be evaluated

only once.

1.5 Data Sets

In this work, two data sets, (1) Stanford Heart Transplant Data (Crowley and Hu,

1977) and (2) International Breast Cancer Study Group (IBCSG) Trial V Data

(Gelber et al., 1992a), are analyzed to illustrate the proposed methodology. The

two data sets are described in the following.

1.5.1 Stanford Heart Transplant Data

In Stanford Heart Transplant Program, patients have been admitted to the heart

transplant program, from September 1967 to March 1974. The observations start

from the admission of the patients with heart problem to the program. A donor

heart, matched on blood type, has been sought, and if found available, heart

transplantation has taken place. Some patients have died before a suitable heart

has been found and some patients have been lost to follow-up before heart trans-

plantation. When last seen, the state of a patient after transplantation has been

given as dead (=1) or alive (=0). There have been 103 patients altogether. Of

them, 69 patients have received heart transplantation, 30 have died before heart

transplantation and 4 have been lost to follow up before transplantation. Out

of the 69 patients with heart transplantation, 24 have been alive when last seen

and the remaining 45 have been dead. For each patient, the date of acceptance

into the the Stanford program and the date seen last are available along with the

date of transplantation, if carried out. The covariates available are (a) previous

history of any surgery, (b) age at acceptance and (c) mismatch score. Here, one
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may be interested in quality adjusted life of the heart patients and whether this

QAL depends on the covariate values.

1.5.2 IBCSG Trial V Data

In the IBCSG Trial V data set, 1229 patients have been randomized to receive

either short duration chemotherapy (one month) or long duration chemotherapy

(six or seven months). Out of the 1229 patients, 413 patients have been cho-

sen for the short duration chemotherapy and 816 patients for the long duration

chemotherapy. This randomized clinical trial compares two adjuvant chemother-

apy schedules for node-positive breast cancer. For each patient, the observation

consists of time till (1) the end of treatment toxicity (TOX), (2) relapse (disease-

free survival time) (DFS), and (3) death from any cause (overall survival) (OS),

along with censoring indicator and covariates. The three successive health states

are: (1) toxic side effect of chemotherapy, (2) no symptoms of disease and toxicity

of treatments and (3) disease relapsed. The sojourn times in these health states

are denoted by TOX (Toxicity period), TWiST (Time without symptoms of dis-

ease and toxicity of treatment) =DFS-TOX and REL (Relapsed) = OS-DFS. Five

covariates have been recorded from each patient upon enrollment in the clinical

trial. The covariates are (a) treatment group, (b) tumor size, (c) age in years,

(d) tumor grade and (e) number of nodes involved. One may be interested in

the quality adjusted lifetime of the breast cancer patients and how it differs for

different covariate values.

1.6 Summary of the Work

The summary of the whole work is presented chapterwise below.
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[Chapter 2 ]: Models and Distribution of QAL

The main aim of this chapter is to describe different illness-death models those

are considered for this study and derive the distribution of QAL. The proposed

method of estimating the QAL distribution makes explicit use of the information

on the structure of illness-death model while deriving the theoretical distribution

of QAL. Other methods based on observed QAL data use this information only

when transforming the data into QAL scale. As a result, these methods cannot

distinguish between two illness-death models giving rise to same QAL values and,

therefore, lead to less efficient estimates compared to the method which can dis-

tinguish between illness-death models. This motivates to consider the estimation

of QAL distribution separately for different illness-death models. In this work,

four illness-death models are considered, namely, (1) simple illness-death model,

(2) progressive illness-death model, (3) competing illness-death model and (4) re-

versible illness-death model.

A typical simple illness-death model has three states. Starting from healthy

state, an individual may enter an intermediate illness state before ending in death,

or move directly to death. In progressive illness-death model, individuals may

start from healthy state and then experience the different illness states 1, . . . , k,

say, one after another in that fixed order, before moving to the absorbing state

death. In a more general illness-death model , there is also the possibility of

moving directly to absorbing state from any one of the k non-penultimate states

0, 1, . . . , k−1. In the Competing illness-death model, a healthy person transits to

exactly one of the k distinct illness states 1, . . . , k, which presumably reduces the

quality of life, and then to death without entering into any other illness states.

One may also allow for a transition to death directly from the healthy state.

Reversible illness-death model is a simple illness-death model, but an individual

may recover from the illness state to transit back to the healthy state. That is,

an individual in illness state can either recover and transit back to the healthy
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state, or fail by moving to death state. Therefore, an individual may, in theory,

visit the illness state an infinite number of times before moving to death.

The QAL distribution is derived in each of the above illness-death models.

The theoretical distribution of QAL for the different models can be expressed

analytically in general integral forms involving the joint distribution of all the

sojourn times, or the individual marginal sojourn time distributions when the

different sojourn times are independent. In particular, closed form expression of

QAL distribution is obtained when the sojourn times are independent and expo-

nentially distributed. In that case, for some illness-death models, the distribution

of sum of independent and non-identical Gamma random variables with integer

shape parameters is needed. This has been derived and discussed in Section 2.8.

[Chapter 3 ]: Induced Dependent Censoring

While dealing with censored data, unfortunately, there is induced dependent

censoring when transformed into QAL scale. Due to this, as mentioned in Section

1.3, the standard survival analysis techniques can not be used with the observed

QAL values. However, the issue of induced dependent censoring in the QAL scale

still remains less-understood. Although there is some qualitative discussion, there

is no formal proof of this dependence. There is one argument by Lin (2003) which

can be described as follows. Noting that Q =
∫ T

0
W (u)du and C∗ =

∫ C

0
W (u)du,

clearly, Q and C∗ are positively correlated through the utility function W (·).
Therefore, while a healthy person has high Q value and also high C∗ value, a

person getting sick early, but with same T and C, has low Q and C∗. The

arguments presented by all other authors also speak of a positive correlations

between Q and C∗.

In this work, a formal study is carried out on induced dependence in the

context of a simple illness-death model. Suppose the sojourn times corresponding

to the two health states (namely, healthy and illness), denoted by T01 and T12,
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respectively, are independently distributed with constant hazards, λ01 and λ12,

respectively. It is assumed that the censoring variable C is also independent of

both T01 and T12 and, C has constant hazard λc. The covariance between Q and

C∗ is worked out as

cov (Q,C∗) = E (QC∗) − E(Q)E(C∗) =
w0(w0 − w1)

(λ01 + λc)2
, (1.1)

where w0 and w1 are the utility coefficients corresponding to healthy state and

illness state, respectively. It is clear from the covariance expression (1.1) that

the correlation between Q and C∗ is not always positive, as argued by many au-

thors. An approximate expression of bias of the Kaplan-Meier estimate based

on observed (censored and uncensored) QAL data is obtained. The direction of

bias of Kaplan-Meier estimate for the QAL distribution is investigated through a

simulation study. The magnitude of bias seems to be increasing with the mag-

nitude of correlation between Q and C∗. Although, it is difficult to comment on

the direction of bias, the results of simulation study seems to indicate positive

(negative) bias when w0 > (<)w1.

[Chapter 4 ]: Parametric Estimation of QAL Distribution

This chapter considers parametric estimation of QAL distribution in illness-

death models discussed in Chapter 2 based on censored data. The QAL distribu-

tion is derived under some parametric models for the different sojourn time dis-

tributions. The model parameters are estimated by maximum likelihood method

based on the survival data on each sojourn time. It may be pointed out that the

transition time to some illness states may not always be observed. The method

of parameter estimation in unobserved case is also considered. The distribution

of QAL is then estimated by replacing the parameters in the theoretical expres-

sion of the QAL distribution by their estimates. Extensive simulation studies are

carried out to investigate the bias and precision of the estimator of QAL distri-
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bution. The performance of the parametric estimator is compared with that of

the nonparametric estimator of Zhao and Tsiatis (1999). In another simulation

study, the effect of model misspecification is investigated by generating data for

each transition time from a Weibull distribution and estimating the parameters

under the assumption of an exponential distribution. The Stanford Heart trans-

plant data and the IBCSG Trial V breast cancer data are analyzed to illustrate

the methodology.

[Chapter 5 ]: Nonparametric Estimation of QAL Distribution

The existing nonparametric methods for estimating the QAL distribution

(Korn 1993, Zhao and Tsiatis 1997, 1999; Van der Laan and Hubbard 1999;

Huang and Louis 1998; Strawderman, 2000) are applicable only when one can

compute the QAL values for all the patients. If some transition times are not

observable, QAL values are not available for all the individuals and hence these

methods cannot be applied. The objective of this study is to present a simple

alternative nonparametric method to estimate the QAL distribution, when in-

formation on the interrelationship between the different health states, giving the

structure of the illness-death model, and the same between the corresponding

sojourn times are available. This allows derivation of the QAL distribution in

terms of the different sojourn time distributions. The nonparametric estimate of

QAL distribution is obtained by substituting the sojourn time distributions by the

corresponding Kaplan-Meier estimates obtained from the corresponding lifetime

data. For example, the survival function of Q for simple illness-death Model 1

(see Section 2.2) is given by

SQ(q) = 1 − F01

(
q

w0

)
+
∫ q/w0

0
F̄12

(
q − w0x

w1

)
dF01(x), (1.2)

where F̄12(·) = 1 − F12(·). If F̂01(·) and ˆ̄F 12(·) are the Kaplan-Meier estimates of
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F01(·) and F̄12(·), respectively, then a nonparametric estimate of SQ(q) is given by

ŜQ(q) = 1 − F̂01

(
q

w0

)
+
∫ q/w0

0

ˆ̄F 12

(
q − w0x

w1

)
dF̂01(x). (1.3)

By construction, the above estimate is monotonic. Note that monotonicity is not

guaranteed in the existing methods, except that of Almanassra et al. (2005). The

proposed method can deal with some missingness of transition times, as long as

the sojourn time distributions are estimable by some missing data techniques,

whereas other methods based on observed QAL can not be applied with such

missing data. Estimation in the presence of some missing data on the transition

to illness state is also discussed in the context of simple illness-death model.

Consistency and asymptotic normality of the proposed nonparametric esti-

mator are established. Nonparametric estimate for the QAL distribution in other

illness-death models have also been obtained with asymptotic properties. Asymp-

totic variance for the estimator has also been obtained for the simple models.

Expressions for the variance estimates in the case of general models are difficult

to write. One can alternatively use some resampling technique to estimate the

variance of survival estimates. Simulation studies are carried out to investigate

the performance of the proposed estimator in terms of bias and precision. The

performance of the estimator is compared with that of the ZT estimator. The two

data sets are analyzed for illustrative purpose.

The estimation method for the QAL distribution is also outlined for differ-

ent dependent scenarios. In particular, three dependent scenarios are considered,

namely, (1) semi-parametric dependence, (2) Markov dependence and (3) arbi-

trary dependence. Although estimation method is discussed, asymptotic proper-

ties are not studied in this work. Derivation of asymptotic results is a challenging

task. This will be considered in future work.
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[Chapter 6 ]: Regression Analysis of QAL Data to Study Covariate Ef-

fect

The advantage of the proposed method of estimating the QAL distribution is

that the theoretical expression for the QAL distribution helps one to incorporate

covariate effect in a simple manner. Suppose one or more of the sojourn time

distributions are possibly affected by some covariates, denoted by Z = (Z(1), . . . ,

Z(p))
′

, say, as in ordinary survival data. This dependence may be incorporated

through usual regression modelling. For example, in the case of a hazard regres-

sion model, the theoretical expression for the QAL distribution remains the same

except that the hazard rates are replaced by their regression forms in the expres-

sion. The estimates of the model parameters are obtained from the sojourn time

data (some of which may be unobserved) with covariates, which can be subse-

quently substituted in the theoretical expression to obtain the estimate of QAL

distribution for an individual with a particular covariate value. Both parametric

and semi-parametric approaches are considered to estimate QAL distribution by

incorporating covariate effect.

Consider the parametric approach in the context of simple illness-death model

1, where either or both of T01 and T12 may be affected by Z. For the sake of

illustration, let us consider the independent case of simple illness-death model 1

with constant hazard rates and suppose that only the hazard rate λ01 of T01 is

affected by Z via the proportional hazards model given by λ01(z) = λ01e
θz, for

Z = z. Then, the expression for the survival function of Q, given Z = z, is

SQ(q|z) = e
−

λ01eθzq

w0 +
λ01e

θze
−

λ12q

w0

λ01eθz − λ12
w1

w0

[
1 − e

−(λ01eθz−
λ12w0

w1
) q

w0

]
. (1.4)

Therefore, given the estimate of the parameters λ01, λ12 and θ, which can be easily

obtained from the observation on T01, T12 and Z, the QAL distribution can be
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estimated for the given value of Z = z using the expression (1.4).

Similarly, in the semi-parametric approach, either or both of T01 and T12 may

be assumed to follow distribution(s) given by Cox’s proportional hazards model.

The regression parameters can be estimated by maximizing a suitable partial likeli-

hood function whereas the baseline cumulative hazards can be estimated using the

method of Breslow (1974). Asymptotic normality of the proposed semi-parametric

estimator is established. Asymptotic variance is obtained for the simple model.

For general models, it is difficult to write the expression for the variance estimates.

Resampling technique can be used to estimate the variance. The two data sets

are analyzed for illustration.

[Chapter 7 ]: Conclusions and Future Work

Limitations of the proposed method and scopes for future works are discussed

in this chapter. An important issue for analyzing QAL data is selection of proper

utility coefficients. Some remarks are made in this regard.

1.7 Estimator of Zhao and Tsiatis (1999)

In this thesis, the performance of the proposed estimator has been compared

with a nonparametric estimate of QAL distribution by Zhao and Tsiatis (1999).

Henceforth, the estimator of Zhao and Tsiatis (1999) for the survival function

SQ(·) of QAL will be denoted by ZT. The ZT estimator and its variance expression

are given below.

As in Zhao and Tsiatis (1997), it is assumed that there are k+1 health states

denoted by S = {1, . . . , k, 0} and the health states are transient except the state 0

representing death. The ith individual’s health history is described by a discrete-

state continuous-time stochastic process {Vi(t), t ≥ 0}, where Vi(t) maps to the

state space S giving the state occupied at time t. Let Y ∗
i be the the overall
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survival time. Define T ∗
i = min(Y ∗

i , L), where L is an artificial endpoint before

termination of the trial. The quality adjusted lifetime for the ith individual is

given by

Ui =
∫ T ∗

i

0
Q{Vi(t)}dt.

Define s∗i (q) = inf
[
s :
∫ s

0
Q{Vi(t)}dt ≥ q

]
, Ti(q) = min{T ∗

i , s
∗
i (q)}, ∆i(q) = I{Ci >

Ti(q)} and Bi(q) = I(Ui > q). Let C be the censoring variable. The health status

data for a sample of n individuals, for a given q, is of the form

{Xi = min(Ti(q), Ci),∆i(q), V
H
i (Xi), i = 1, . . . , n},

where V H
i (Xi) denotes the history of the process Vi(t) up to time Xi. Then, the

ZT estimator is given by

ZT (q) = n−1
n∑

i=1

∆i(q)Bi(q)

K̂(Ti(q))
+ n−1Ĉ

n∑

i=1

∫ ∞

0

dN c
i (u)

K̂(u)

[
e
{
V H

i (u)
}
− Ĝ(e, u)

]
,

where

Ĉ =

{
n∑

i=1

∆i(q)Bi(q)

K̂(Ti(q))

[
e
{
V H

i (u)
}
− Ĝ(e, u)

]
× I(Ti(q) ≥ u)

dN c
i (u)

Y (u)K̂(u)

}

÷
{[
e
{
V H

i (u)
}
− Ĝ(e, u)

]2
Yi(u)

dN c
i (u)

Y (u)K̂(u)2

}
,

Ĝ(e, u) =

n∑

i=1

e
{
V H

i (u)
}
Yi(u)

Y (u)
,

K̂(u) is the Kaplan-Meier estimator of K(u) = P [C > u] based on the observation

{Xi, 1 − ∆i(q), i = 1, . . . , n}, N c
i (u) = I(Xi ≤ u,∆i(q) = 0), Y (u) =

∑
Yi(u) =

∑
I(Xi ≥ u) and e{V H

i (u)} is any functional of the health history V H
i (u). Here,

the accumulated QAL fi(u) =
∫ u
0 Qi{Vi(t)}dt is used as ei(·).

Asymptotic variance of
√
n{ZT (q) − SQ(q)} can be estimated by

ZT (q)(1 − ZT (q)) + n−1
∫ ∞

0

dN c(u)

{K̂(u)}2
Ĝ(B, u)(1 − Ĝ(B, u)}
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−n−1

{
n∑

i=1

∆i(x)Bi(q)

K̂(Ti(q))

[
e
{
V H

i (u)
}
− Ĝ(e, u)

]
× I(Ti(q) ≥ u)

dN c
i (u)

Y (u)K̂(u)

}2

÷
{[
e
{
V H

i (u)
}
− Ĝ(e, u)

]2
Yi(u)

dN c
i (u)

Y (u)K̂(u)2

}
,

where Ĝ(B, u) = n−1 1
ŜT (u)

n∑

i=1

∆i(q)Bi(q)I(Ti(q) ≥ u)

K̂(Ti(q))
and ŜT (u) is the Kaplan-

Meier estimator for ST (u) = P (T > u) for the overall survival time T .
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tics in Medicine (Pradhan and Dewanji, 2009a) and Calcutta Statistical

Association Bulletin (Pradhan and Dewanji, 2009b). Bias due to induced

dependent censoring in Chapter 3 is published in Statistics and Probability

Letters (Pradhan and Dewanji, 2009c). A part of Chapter 5 on nonparamet-

ric estimation of QAL distribution is published as Technical Report (Pradhan et

al., 2009a; submitted) and another part is accepted for publication in Journal

of the Korean Statistical Society (Pradhan and Dewanji, 2010). The semi-

parametric approach of estimating the QAL distribution is published as Technical

Report (Pradhan and Dewanji, 2009d) and submitted.



Chapter 2

Models and Distribution of QAL

2.1 Introduction

Quality adjusted lifetime (QAL) is being increasingly used as a composite mea-

sure combining quality and duration of life in many clinical trials, where patient’s

health history may be described by different illness-death models. In illness-death

models, patients experiences different health states, which differ in quality of life

(QOL), before death. The illness-death model arises in many medical studies and

animal experiments, examples of which have been studied for several decades with

sustained interest. Applications can be found in animal carcinogenicity studies

(Kodell and Nelson, 1980; Dewanji and Kalbfleisch, 1986; Biswas and Dewanji,

2004, among many others), medical studies involving human subjects, for example

in HIV/AIDS research (Kalbfleisch and Lawless, 1989; Datta et al., 2000), and in

industrial applications with machine faults (Dewanji and Dhar, 1993).

The objective of this chapter is to describe different illness-death models which

are considered for our study and derive the theoretical distribution of QAL. In

this work, four illness-death models are considered with the names (1) simple

illness-death model, (2) progressive illness-death model, (3) competing illness-

21



22

death model and (4) reversible illness-death model. In principle, given a model,

the QAL distribution can be derived in terms of the joint distribution of all the

sojourn times. In particular, the closed form expression of the QAL distribution is

obtained when the sojourn times are independent and exponentially distributed.

Derivation of the theoretical distribution of QAL in general may be quite chal-

lenging and its closed form expression may not always exist. However, once the

distribution of QAL is derived in a closed or in general form, it can be estimated

by substituting the sojourn time distributions with the corresponding estimates.

Therefore, the expression for the QAL distribution needs to be evaluated only

once. The sojourn time distributions can be estimated from the corresponding

life time data using the techniques of survival analysis.

This chapter is organised as follows. Different illness-death models are de-

scribed along with the derivation of QAL distribution under different scenarios in

Sections 2.2-2.5. The justification for considering different illness-death models

is discussed in Section 2.6. Some conclusions are made in Section 2.7. Finally,

in Section 2.8, some results on the distribution of sum of non-identical Gamma

random variables are derived which are required for the derivation of QAL distri-

bution.

2.2 Simple Illness-Death Model

A typical simple illness-death model has three states. Starting from the healthy

state, an individual may enter an intermediate state before ending in death, or

have transition directly to death. Two simple illness-death models are considered

in this work. In simple illness-death model 1, as shown in Figure 2.1, one starts

in a healthy state 0 from which the only possible transition is to the illness state

1, followed by transition to state 2, the absorbing state, death. The possibility of

moving directly to absorbing state 2 is described in simple illness-death model 2
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and shown in Figure 2.2. In HIV/AIDS research, for example, in a cohort of HIV

positive patients, appearance of AIDS symptoms can be equated with illness. In

this example, one would be interested in quality adjusted life of HIV patients.

Figure 2.1: Simple Illness-Death Model 1.

Figure 2.2: Simple Illness-Death Model 2.

2.2.1 QAL Distribution in Simple Illness-Death Model 1

Here, the distribution of QAL is derived in simple illness-death model 1 (See

Figure 2.1). Let T01 be the sojourn time in state 0 and T12 denote the same in

state 1 with utility coefficients w0 and w1, respectively. Usually, w0 is taken to be

1 and w1 is a suitably chosen fraction. Then, the QAL, as defined in Section 1.1,

is given by Q = w0T01 + w1T12. Suppose λ01(x) is the transition rate from state

0 to state 1 at sojourn time x. This is same as the hazard rate of T01 at time
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x. Similarly, denote the conditional hazard rate of T12 at sojourn time y, given

T01 = x, as λ12(y|x). It is also the transition rate from state 1 to state 2 at time

y, given T01 = x. When λ12(y|x) does not involve x, that is, λ12(y|x) =λ12(y),

T12 is independent of T01. Let FT12|T01(y|x) be the conditional distribution of T12

given T01. The expression for the distribution of Q is given by

F
(S1)
Q (q) = P (Q ≤ q)

=
∫ q

w0

0

[∫ q−w0x

w1

0
λ12(y|x)e−Λ12(y|x)dy

]
λ01(x)e

−Λ01(x)dx,

=
∫ q

w0

0
FT12|T01

(
q − w0x

w1

|x
)
dF01(x), (2.1)

where Λ01(x) =
∫ x
0 λ01(u)du, F01(·) is the marginal distribution function of T01

and Λ12(y|x) =
∫ y
0 λ12(u|x)du.

The dependence between T01 and T12 is described by the conditional hazard

λ12(y|x), which may be modelled, for example, by the proportional hazards as-

sumption λ12(y|x) = λ12(y)e
βx (Pradhan et al., 2010), or accelerated failure time

assumption λ12(y|x) = λ12(ye
βx)eβx. When T01 and T12 are independent, the

expression (2.1) reduces to

F
(S1)
Q (q) =

∫ q

w0

0

[∫ q−w0x

w1

0
λ12(y)e

−Λ12(y)dy

]
λ01(x)e

−Λ01(x)dx,

=
∫ q

w0

0
F12

(
q − w0x

w1

)
dF01(x), (2.2)

where F12(·) is the distribution function of T12. In particular, when T01 and T12

are independent exponential variates with λ01(x) = λ01 and λ12(y) = λ12, the

expression (2.2) reduces to

F
(S1)
Q (q) = 1 − e

−
λ01q

w0 − λ01e
−

λ12q

w1

λ01 − λ12
w0

w1

[
1 − e

−(λ01−
λ12w0

w1
) q

w0

]
. (2.3)
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2.2.2 QAL Distribution in Simple Illness-Death Model 2

Let T0 be the sojourn time of the first event, that is the time to illness, or death

without illness, whichever occurs first, and let δ be the corresponding indicator,

which takes the values 1 and 2 for illness and death without illness, respectively.

Also, let T12 denote the sojourn time in state 1 before moving to state 2. Then,

the QAL is defined by

Q =




w0T0 + w1T12 if δ = 1

w0T0 if δ = 2,

where w0 and w1 are the utility coefficients in state 0 and 1, respectively. The

expression for the distribution function of Q is then given by

F
(S2)
Q (q) = P (Q ≤ q)

= P (w0T0 + w1T12 ≤ q, δ = 1) + P (w0T0 ≤ q, δ = 2)

= PI + PII , say. (2.4)

Note that the first transition from state 0 to either state 1 or state 2 constitutes

a competing risks framework with two failure types 1 and 2. Let λ0j(·) be the

cause-specific hazard rate for the failure type j and F0j(·) be the corresponding

cumulative incidence function given by

F0j(t) = P (T0 ≤ t, δ = j) =
∫ t

0
S0(u)dΛ0j(u), for j = 1, 2,

where S0(t) = P [T0 ≥ t] = exp [− (Λ01(t) + Λ02(t))], the survival function of T0

and Λ0j(t) =
∫ t

0
λ0j(u)du, for j = 1, 2. The conditional transition rate from state

1 to state 2 at sojourn time y, given the transition from state 0 to state 1 at

sojourn time x, is denoted by λ12(y|x). Then,

PI =
∫ q

w0

0

[(∫ q−w0x

w1

0
λ12(y | x)e−Λ12(y|x)dy

)
λ01(x)e

−(Λ01(x)+Λ02(x))

]
dx
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and

PII =
∫ q

w0

0
λ02(u)e

−(Λ01(u)+Λ02(u))du =
∫ q

w0

0
dF02(u) = F02

(
q

w0

)
.

Note that, λ02(u) = 0, for all u ≥ 0, leads to model 1. In this case, PI reduces

to (2.1) and PII = 0 . In general, the dependence between T12 and the sojourn

time in healthy state 0 can be described in the same way as in the case of model 1

in the previous section. Under independence, that is when λ12(y|x) = λ12(y) and

with constant hazards, that is λ01(y) = λ01, λ12(y) = λ12 and λ02(y) = λ02, the

expressions for PI and PII simplify to

PI = λ01




1 − e
−(λ01+λ02) q

w0

λ01 + λ02

−
w1

(
e
−

λ12q

w1 − e
−(λ01+λ02) q

w0

)

(λ01 + λ02)w1 − λ12w0


 and

PII =
λ02

λ01 + λ02

(
1 − e

−(λ01+λ02) q

w0

)
,

respectively, leading to

F
(S2)
Q (q) = 1 +

(λ12w0 − λ02w1)e
−(λ01+λ02) q

w0

(λ01 + λ02)w1 − λ12w0

− λ01w1e
−

λ12q

w1

(λ01 + λ02)w1 − λ12w0

. (2.5)

2.3 Progressive Illness-Death Model

In a progressive illness-death model, individuals start from a healthy state 0 and

then experience the different illness states 1, . . . , k, say, one after another in that

fixed order, before moving to the absorbing state k + 1 representing death. In-

dividuals may be censored in any one of the (k + 1) states 0, 1, . . . , k, before

failure or death occurs. Here k is the penultimate state before death. We refer

to this as progressive illness-death model 1 and is shown in Figure 2.3. In a more

general model, referred to as progressive illness-death model 2, there is also the

possibility of moving directly to state k + 1 from any of the k non-penultimate

states 0, 1, . . . , k−1. The model is shown in Figure 2.4. These two models are the
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multi-state versions of the two simple illness-death models considered in Figure

2.1 and Figure 2.2, respectively.

Figure 2.3: Progressive Illness-Death Model 1.

Figure 2.4: Progressive Illness-Death Model 2.

Examples of progressive illness-death model are common in medical stud-

ies. For example, in Trial V of IBCSG, patients enter the study as they start

chemotherapy treatment resulting in a toxicity period. So, the individuals start

in the state of ‘Toxicity’ (state 0), at the end of which they enter the state of ‘No

symptoms of disease and toxicity of treatment’ (state 1), followed by ‘Relapse of

the disease’ (state 2) and finally the death (absorbing state 3). Also, in HIV/AIDS

studies, individuals may experience the different health states progressively as fol-

lows. Individuals start in healthy state (0) from which they acquire HIV infection

(state 1), then onset of AIDS (state 2), followed by different health states de-

pending upon the immunity level and the infection type, and finally death, the
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absorbing state.

The theoretical distribution of QAL for progressive illness-death model is ex-

pressed analytically in integral forms for general sojourn time distributions, but

derived for exponential distribution with constant hazards for simplicity, for both

model 1 and model 2. Model 1 is usually appropriate with industrial products in

the context of reliability. For example, in a parallel system with k components,

the failure of successive components may be equated with the successive illness

states. The system fails when all the components fail. Model 2 is usually appropri-

ate with human subjects in medical studies, as in HIV/AIDS example. However,

in some cases, when there are few or no direct deaths without experiencing all the

illness states, model 1 is used instead.

2.3.1 QAL Distribution in Progressive Illness-Death

Model 1

As shown in Figure 2.3, let Tj,j+1 be the sojourn time in state j before moving to

state j + 1, for j = 0, 1,. . . , k, where j = 0 means healthy state and j = k + 1

means death state. Let wj be the utility coefficient corresponding to state j, for

j = 0, 1,. . . , k. Then, the QAL is given by

Q =
k∑

j=0

wjTj,j+1.

Suppose λ01(x0) is the transition rate from state 0 to state 1 at corresponding

sojourn time x0. This is same as the hazard rate of T01 at time x0. Similarly,

denote the conditional hazard rate of Tj,j+1 at corresponding sojourn time xj,

given T01 = x0, T12 = x1,. . .,Tj−1,j = xj−1, by λj,j+1(xj|x(j−1)), where x(j−1) =

(x0, x1,. . . , xj−1), for j = 1,. . . , k. When successive sojourn times are independent,

λj,j+1(xj|x(j−1)) does not depend on x(j−1). That is, λj,j+1(xj|x(j−1))=λj,j+1(xj).



29

The expression for the distribution of QAL, denoted by Q, is given by

F
(P1)
Q (q) = P (Q ≤ q)

= P




k∑

j=0

wjTj,j+1 ≤ q




=
∫ q

w0

0

∫ q−w0x0
w1

0
. . .
∫ q−

∑k−1

j=0
wjxj

wk

0
λk,k+1(xk|x(k−1))e−Λk,k+1(xk|x(k−1))dxk

×λk−1,k(xk−1|x(k−2))e−Λk−1,k(xk−1|x(k−2))dxk−1

...

×λ01(x0)e
−Λ01(x0)dx0, (2.6)

where Λ01(x0) =
∫ x0

0
λ01(u)du and Λj,j+1(xj|x(j−1)) =

∫ xj

0
λj,j+1(u|x(j−1))du, for

j = 1, . . . , k.

The expression (2.6) is very general including different sojourn time distribu-

tions and even arbitrary dependence between them. For k = 1, a dependence

model has been considered in Pradhan et al. (2010). In general, one needs nu-

merical techniques to calculate the QAL distribution. This, however, needs to be

done only once with the parameter estimates. For simplicity, we consider the case

when successive sojourn times Tj,j+1’s are independently distributed with constant

hazards. That is, λ01(x0) = λ01 and λj,j+1(xj|x(j−1)) = λj,j+1, for j = 1, 2, . . . , k.

Note that Q =
k∑

j=0

wjTj,j+1 can then be written as
k∑

j=0

T
′

j,j+1, where T
′

j,j+1’s

are independent exponential random variables with respective hazard rates λ
′

j =

λj,j+1/wj, for j = 0, 1, . . . , k. So, Q is the convolution of non-identical independent

exponential random variables. The distribution of Q is given by (Ross, 2000)

F
(P1)
Q (q) = 1 −

k∑

j=0

e−λ
′

jq


∏

i6=j

λ
′

i

λ
′

i − λ
′

j


 , (2.7)

provided the λ
′

j’s are all distinct. The corresponding density function is given by

f
(P1)
Q (q) =

k∑

j=0

λ
′

je
−λ

′

jq


∏

i6=j

λ
′

i

λ
′

i − λ
′

j



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and the mean QAL is
k∑

j=0

1

λ
′

j

.

2.3.2 QAL Distribution in Progressive Illness-Death

Model 2

As shown in Figure 2.4, the model allows the possibility of moving directly to

absorbing state k+1 from any of the k non-penultimate states 0, 1, . . . , k−1. Let

Tj,j+1 denote the conceptual sojourn time in state j before moving to the illness

state j + 1 and Tj,k+1 denote the same before moving directly to the absorbing

state k + 1, for j = 0, 1, . . . , k − 1. Also let Tk,k+1 denote the sojourn time in the

penultimate state k before moving to the next state k+1. Then, the QAL is given

by Q =
m−1∑

j=0

wjTj,j+1 +wmTm,k+1, when transition to death state k+1 occurs from

the state m, for m = 1, . . . , k. For m=0, Q = w0T0,k+1. Note that with m fixed,

we have Tj,j+1 < Tj,k+1, for j = 0, 1, . . . ,m − 1, and Tm,m+1 > Tm,k+1 (except for

m = k).

The distribution of Q is then given by

F
(P2)
Q (q) = P (Q ≤ q) =

k∑

m=0

Pm,

where P0 = P (w0T0,k+1 ≤ q, T0,k+1 < T01),

Pm = P




m−1∑

j=0

wjTj,j+1 + wmTm,k+1 ≤ q, Tj,k+1 > Tj,j+1, j = 0, 1, . . . ,m− 1

and Tm,m+1 > Tm,k+1


, for m = 1, . . . , k − 1

and Pk = P




k−1∑

j=0

wjTj,j+1 + wkTk,k+1 ≤ q, Tj,k+1 > Tj,j+1, for j = 0, 1, . . . , k − 1


 ,

for k ≥ 1. For k = 1, the Pm’s as given in the middle are not required.

It may be noted that the transition from state j to either state j + 1 or to
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state k + 1, for j = 0, 1, . . . , k − 1, with 0 meaning the healthy state, consti-

tutes a competing risks framework with Tj,j+1 and Tj,k+1 denoting the two corre-

sponding conceptual sojourn times. Let H(j) denote the history up to the time

just prior to entering state j. Note that H(j) consists of the event {Tm,k+1 >

Tm,m+1 = xm, for m = 0, 1, . . . , j − 1}. For progressive illness-death model 1 (See

Figure 2.3), H(j) consists of only x(j−1)=(x0, x1 . . . , xj−1). Let λj,j+1(xj|H(j)) and

λj,k+1(xj|H(j)) be the cause specific hazards for the two possible transitions to

state j + 1 or k + 1, respectively, at time xj, given H(j), with H(0) being empty.

Note that, for j = k, Tj,j+1 and Tj,k+1 are the same random variable represent-

ing the actual sojourn time in state k before death with ordinary hazard rate

λk,k+1(xk|H(k)) at time xk.

The expressions for P0, Pm and Pk for general sojourn time distributions are

as follows:

P0 =
∫ q

w0

0
λ0,k+1(x)e

−(Λ01(x)+Λ0,k+1(x))dx,

Pm =
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑m−1

j=0
wjxj

wm

0
λm,k+1(xm|H(m))

× e−(Λm,k+1(xm|H(m))+Λm,m+1(xm|H(m))dxm

× λm−1,m(xm−1|H(m−1))e−(Λm−1,m(xm−1|H(m−1))+Λm−1,k+1(xm−1|H(m−1)))dxm−1

...

× λ01(x0)e
−(Λ01(x0)+Λ0,k+1(x0))dx0,

for m = 1, . . . , k − 1, and

Pk =
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑k−1

j=0
wjxj

wk

0
λk,k+1(xk|H(k))e−Λk,k+1(xk|H

(k))dxk

× λk−1,k(xk−1|H(k−1))e−(Λk−1,k(xk−1|H
(k−1))+Λk−1,k+1(xk−1|H

(k−1)))dxk−1

...

× λ01(x0)e
−(Λ01(x0)+Λ0,k+1(x0))dx0,
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where the Λij’s are integrated λij’s, as defined in the previous section, for different

(i, j)’s.

One can find the distribution of Q for different choices of the conditional haz-

ards including the models with dependence between different sojourn times. As

remarked before, the derivation may be complicated, in general, requiring numer-

ical integration technique. We, therefore, for simplicity, derive the distribution of

Q with constant hazards under independent scenario. Then, the expressions for

P0, Pm and Pk are as follows.

First,

P0 =
λ0,k+1

λ01 + λ0,k+1

[
1 − e

−

(
λ01+λ0,k+1

w0

)
q
]
.

Then, for m = 1, . . . , k − 1, and k ≥ 2,

Pm =
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑m−1

j=0
wjxj

wm

0
λm,k+1e

−(λm,k+1+λm,m+1)xmdxm

×λm−1,me
−(λm−1,m+λm−1,k+1)xm−1dxm−1

...

×λ01e
−(λ01+λ0,k+1)x0dx0

= λ(m)
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑m−1

j=0
wjxj

wm

0

m∏

j=0

fj(xj)dxj, (2.8)

where λ(m) =
λm,k+1

λm,m+1 + λm,k+1




m−1∏

j=0

λj,j+1

λj,j+1 + λj,k+1


 and fj(.) is the density of

Xj,j+1 = min(Tj,j+1, Tj,k+1) having exponential distribution with constant hazard

(λj,j+1 + λj,k+1), for j = 0, 1, . . . , k − 1. Clearly, the expression (2.8) for Pm is

equal to

λ(m)P (w0X01 + w1X12 + · · · + wm−1Xm−1,m + wmXm,m+1 ≤ q),

which can be written as

λ(m)P (X
′

01 +X
′

12 + · · · +X
′

m−1,m +X
′

m,m+1 ≤ q),
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where X
′

j,j+1’s are independent exponential random variables with respective haz-

ard rates λ
′

j,j+1 = (λj,j+1 + λj,k+1)/wj. So, by the convolution of a number of

non-identical independent exponential random variables, as in (2.7),

Pm = λ(m)


1 −

m∑

j=0

e−λ
′

j,j+1q
∏

i6=j

λ
′

i,i+1

λ
′

i,i+1 − λ
′

j,j+1


 ,

provided the λ
′

j,j+1’s are distinct for different j’s. Finally, as in the derivation of

Pm, we have

Pk = λ
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑k−1

j=0
wjxj

wk

0
λk,k+1e

−λk,k+1xkdxk

×
k−1∏

j=1

fj(xj)dxj

= λ


1 −

k∑

j=0

e−λ
′

j,j+1q
∏

i6=j

λ
′

i,i+1

λ
′

i,i+1 − λ
′

j,j+1


 ,

where λ =
k−1∏

j=0

(
λj,j+1

λj,j+1 + λj,k+1

)
and λ

′

k,k+1 =
λk,k+1

wk

.

If any two of the λ
′

j,j+1’s, for j = 0, 1, . . . , k, are equal, then the expressions

for Pm and Pk will be different involving convolution of a number of non-identical

exponential random variables and a Gamma random variable. See Result 2.8.2 of

Section 2.8 for relevant expressions.

2.3.3 Extension to More General Progressive Illness-Death

Model

One can think of more general type of illness-death models, but the analytical

derivation of QAL distribution may not be an easy task. Consider a general

illness-death model with, say, k states 1, . . . , k, in addition to the healthy state

0 and the absorbing state k + 1 representing death. Here, except state k + 1,

transition is allowed from a state to any other state. In practice, for a particular
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state i, for i = 0, 1, . . . , k, there is a set, say, S(i) of all possible health states

(possibly including death k + 1) which can be reached from state i. Assuming

the different conceptual sojourn times to be independent with constant hazards,

a general expression for the QAL distribution can be worked out as follows.

Let P be the set of all possible paths followed from state 0 to state k+1 includ-

ing possibly multiple visits to some of the states. A typical path is represented by

the vector p
∼

= (0 = p0, p1, . . . , p|p
∼
| = k + 1), where (0, p1, . . . , p|p

∼
| − 1, k + 1) is

the sequence of states followed in this path. Let Tpi,pi+1
be the conceptual sojourn

time from state pi to pi+1 with constant hazard λpi,pi+1
. Then, QAL for a typical

p
∼

is given by

Q =

|p
∼
| − 1
∑

i=0

wpi
Tpi,pi+1

.

The distribution of QAL is then given by

P [Q ≤ q] =
∑

p
∼
∈ P

Pp
∼
, (2.9)

where

Pp
∼

= P




|p
∼
| − 1
∑

i=0

wpi
Tpi,pi+1

≤ q, p
∼




= λ
(p
∼
)
P




k∑

i=0

X
(p
∼
)

i ≤ q


 ,

with λ
(p
∼
)

=

|p
∼
| − 1
∏

i=0

(λpi,pi+1
/
∑

j∈S(pi)

λpij). The random variables X
(p
∼
)

i ’s are in-

dependent with X
(p
∼
)

i following a Gamma


 λi

wi
, n

(p
∼
)

i


 distribution, where λi =

∑

j∈S(i)

λij and n
(p
∼
)

i is the number of visits to state i in the path p
∼
. The distribu-

tion function for the sum of k non-identical Gamma variates can be obtained (See
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Mathai, 1982; Ross, 2000). When the shape parameter is an integer (as is the

case here), the distribution function has a simpler form, as given in Result 2.8.2

of Section 2.8. In practice, the set P of all possible paths from 0 to k + 1 may

not be very difficult to deal with in order to evaluate the distribution in (2.9).

When P is very large, one can think of some sampling or simulation techniques

to estimate (2.9).

2.4 Competing Illness-Death Model

In a competing illness-death model, individuals start from healthy state 0 and

then experience any one of the k illness states 1, . . . , k, which presumably reduces

the quality of life, and then move to the absorbing state k+ 1 representing death

without entering into any other illness states. One may also allow for a transition

to state k + 1 directly from the healthy state 0; that is, one may die without

experiencing any of the illness states 1, . . . , k. These two models are shown in

Figures 2.5 and 2.6, and named as competing illness-death model 1 and competing

illness-death model 2, respectively.

Figure 2.5: Competing Illness-Death Model 1.

For example, an AIDS patient may experience one of many types of infections
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leading to death. Here, time starts from the onset of AIDS and the different

types of infections correspond to the illness states. In industrial studies, one can

think of different types of faults leading to break-down.

Figure 2.6: Competing Illness-Death Model 2.

2.4.1 QAL Distribution in Competing Illness-Death

Model 1

As shown in Figure 2.5, the competing risks framework is apparent for the first

transition. Let T0j be the conceptual sojourn time in healthy state 0 before moving

to the illness state j with cause-specific hazard rate λ0j(x), for j = 1, . . . , k. Let

Tj,k+1 be the sojourn time in the illness state j before moving to the absorbing

state k + 1 with λj,k+1(y|x) being the conditional hazard rate of Tj,k+1 at y given

T0j = x, for j = 1, . . . , k. Let w0 be the utility coefficient corresponding to

healthy state and wj be the utility coefficient corresponding to jth illness state,

for j = 1, . . . , k. Then, the QAL is given by

Q = w0T0j + wjTj,k+1, if T0j = min{T01, . . . , T0k}, for j = 1, . . . , k.
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The distribution of QAL is given by

F
(C1)
Q (q) = P [Q ≤ q] =

k∑

j=1

Pj, (2.10)

where

Pj = P [w0T0j + wjTj,k+1 ≤ q, T0j = min{T01, . . . , T0k}]

=
∫ q

w0

0

(∫ q−w0x

wj

0
λj,k+1(y|x)e−Λj,k+1(y|x)dy

)
λ0j(x) exp

[
−

k∑

l=1

Λ0l(x)

]
dx,

with Λj,k+1(y|x) =
∫ y

0
λj,k+1(u|x)du and Λ0j(x) =

∫ x

0
λ0j(u)du.

The dependence between T0j and Tj,k+1 is described by the conditional haz-

ard λj,k+1(y|x). One can choose proportional hazard assumption λj,k+1(y|x) =

λj,k+1(y)e
βx for dependency, as in Section 2.2.1. When T0j and Tj,k+1 are inde-

pendent (that is, λj,k+1(y|x) does not depend on x) and have constant hazards

λ0j and λj,k+1, respectively, then we have

Pj =
λ0j

λ

(
1 − e

− λ
w0

q
)
− λ0j

λ− λj,k+1w0

wj

[
e
−

λj,k+1
wj

q − e
− λ

w0
q

]
,

where λ =
k∑

j=1

λ0j. The distribution of QAL is, then, given by

F
(C1)
Q (q) =

k∑

j=1

λ0j

λ

(
1 − e

− λ
w0

q
)
−

k∑

j=1

λ0j

λ− λj,k+1w0

wj

[
e
−

λj,k+1
wj

q − e
− λ

w0
q

]

= 1 − e
− λ

w0
q −

k∑

j=1

λ0j

λ− λj,k+1w0

wj

[
e
−

λj,k+1
wj

q − e
− λ

w0
q

]
. (2.11)

The corresponding probability density function is given by

f
(C1)
Q (q) =

λ

w0

e
− λ

w0
q −

k∑

j=1

λ0j

λ− λj,k+1w0

wj

[
λ

w0

e
− λ

w0
q − λj,k+1

wj

e
−

λj,k+1
wj

q

]
.

and the mean QAL is
w0

λ
+

k∑

j=1

(
λ0j

λ

)(
wj

λj,k+1

)
.
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2.4.2 QAL Distribution in Competing Illness-Death

Model 2

Let T0,k+1 be the conceptual sojourn time in healthy state before moving directly

to the absorbing state k + 1 with hazard rate λ0,k+1(x) at time x, as shown in

Figure 2.6. Other sojourn times with corresponding hazard rates are as defined

for model 1 in the previous section. The QAL is then defined by

Q =




w0T0j + wjTj,k+1 if T0j = min{T01, . . . , T0k, T0,k+1}, for j = 1, . . . , k,

w0T0,k+1 if T0,k+1 = min{T01, . . . , T0k, T0,k+1}.

The distribution of QAL is now given by

F
(C2)
Q (q) =

k∑

j=1

Pj + Pk+1,

where Pj = P [w0T0j + wjTj,k+1 ≤ q, T0j = min{T01, . . . , T0k, T0,k+1}]

=
∫ q

w0

0

(∫ q−w0x

wj

0
λj,k+1(y|x)e−Λj,k+1(y|x)dy

)
λ0j(x)

× exp

[
−
(

k∑

l=1

Λ0l(x) + Λ0,k+1(x)

)]
dx

and Pk+1 =
∫ q

w0

0
λ0,k+1(x) exp

[
−
(

k∑

l=1

Λ0l(x) + Λ0,k+1(x)

)]
dx,

with Λj,k+1(y|x) and Λ0j(x) being the cumulative hazards as before and Λ0,k+1(x) =
∫ x
0 λ0,k+1(u)du.

One can obtain the expression for the distribution of QAL, as in model 1, for

different choices of hazard rates and dependence structure. When the different

sojourn times are independently distributed with constant hazards, the form of

QAL distribution is given by

F
(C2)
Q (q) =

k∑

j=1

λ0j

λ

(
1 − e

− λ
′

w0
q

)
−

k∑

j=1

λ0j

λ′ − λj,k+1w0

wj

[
e
−

λj,k+1
wj

q − e
− λ

′

w0
q

]

+
λ0,k+1

λ′

(
1 − e

− λ
′

w0
q

)
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=

(
1 +

λ0,k+1

λ′

)(
1 − e

− λ
′

w0
q

)
−

k∑

j=1

λ0j

λ′ − λj,k+1w0

wj

[
e
−

λj,k+1
wj

q − e
− λ

′

w0
q

]
,

where λ
′

=
k∑

j=1

λ0j + λ0,k+1.

2.5 Reversible Simple Illness-Death Model

Here we consider the simple illness-death models of Section 2.2, but an individual

may recover from the illness state to transit back to the healthy state 0. That

is, an individual in state 1 can either recover and transit back to the the healthy

state 0, or fail by moving to death state 2. Therefore, an individual may visit the

illness state 1 an infinite number of times before moving to state 2. This is named

as reversible simple illness-death model 1 and shown in Figure 2.7. As before, one

may also allow, in addition, the possibility of moving to state 2 directly from state

0 (that is, death without illness). This is named as reversible simple illness-death

model 2 and shown in Figure 2.8. In coronary heart disease (CHD) study, for

example, individuals may experience CHD repeatedly. Once CHD is experienced,

the individual may recover from it or die with the CHD. The repair model in

industrial studies is a good example.

Figure 2.7: Reversible Simple Illness-Death Model 1.
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Figure 2.8: Reversible Simple Illness-Death Model 2.

2.5.1 QAL Distribution in Reversible Simple Illness-Death

Model 1

As shown in Figure 2.7, an individual may recover from illness state 1 and transit

back to the healthy state 0. Let V be the number of times an individual transits

back from illness state 1 to healthy state 0. Note that V is a discrete random

variable taking values 0, 1, 2, . . . , with probability mass function p(v), say. Let T
(l)
01

be the sojourn time spent in healthy state 0 during the lth stay, l = 1, 2, . . . , V +1.

The competing risks structure for the transition from state 1 (to either 0 or 2) is

to be noted. Accordingly, let T
(l)
10 be the conceptual sojourn time in state 1 before

moving to state 0 and, similarly, T
(l)
12 be the same before moving to state 2, during

the lth visit to state 1, for l = 1, . . . , V + 1. Let us write X
(l)
1 = min(T

(l)
10 , T

(l)
12 ).

The QAL is then given by

Q = w0

V +1∑

l=1

T
(l)
01 + w1

V +1∑

l=1

X
(l)
1 ,

where w0 is the utility coefficient in the healthy state 0 and w1 is the same in the

illness state 1. The distribution of QAL is given by

F
(R1)
Q (q) = P

[
w0

V +1∑

l=1

T
(l)
01 + w1

V +1∑

l=1

X
(l)
1 ≤ q

]
.
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The form of F
(R1)
Q (q), for general sojourn time distributions incorporating some

dependence structure or not, would be too complicated. We, therefore, assume the

different sojourn times T
(l)
01 ’s, T

(l)
10 ’s and T

(l)
12 ’s to be independent and identically

distributed with constant hazards λ01, λ10 and λ12, respectively. Note that λ10

and λ12 may as well be interpreted as cause-specific hazard rates.

Note that, given V = v, we have X
(l)
1 = T

(l)
10 , for l = 1, . . . , v, and X

(v+1)
1 =

T
(v+1)
12 . Also, when T

(l)
10 and T

(l)
12 are independent exponential random variables,

the conditional distribution of X
(l)
1 given that X

(l)
1 = T

(l)
10 , is same as the marginal

distribution of X
(l)
1 . This is true even when the conditioning event is X

(l)
1 = T

(l)
12 .

Note also that the probability mass function p(v) of V is given by the geometric

distribution

P (V = v) = p(v) =
λ12

λ10 + λ12

(
λ10

λ10 + λ12

)v

, v = 0, 1, 2, .... (2.12)

Therefore, the distribution function of F
(R1)
Q (q) can be written as

F
(R1)
Q (q) =

∞∑

v=0

P

[
w0

v+1∑

l=1

T
(l)
01 + w1

v+1∑

l=1

X
(l)
1 ≤ q

]
p(v)

=
∞∑

v=0

P
[
T ′

01(v+1) +X ′
1(v+1) ≤ q

]
p(v), (2.13)

where T ′
01(l) and X ′

1(l) are independent Gamma random variables with shape pa-

rameter l and scale parameters λ′01 = λ01/w0 and λ′10 = (λ10 + λ12)/w1, re-

spectively. The distribution of a sum of two independent non-identical Gamma

variates with integer shape parameters is given in Result 2.8.1 in Section 2.8. In

practice, the S-Plus functions dgamma and pgamma can be used to evaluate this

convoluted distribution.

In practice, regardless of the relative value of the recovery rate λ10 as com-

pared to the death rate λ12, the values of p(v) = λ12λ
v
10(λ12+λ10)

−(v+1) decay with

increasing values of v and, after some finite value, it contributes insignificantly

and can be ignored. Therefore, using (2.12) and (2.13), the distribution F
(R1)
Q (q)

can be approximately obtained for given values of λ01, λ10 and λ12.
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2.5.2 QAL Distribution in Reversible Simple Illness-Death

Model 2

As before, let V denote the number of times an individual recovers from illness

state 1. The competing risks structure for the transition from state 0 (to either 1

or 2), and also from state 1 (to either 0 or 2), is evident from Figure 2.8. Let T
(l)
01 be

the conceptual sojourn time spent in state 0 before moving to state 1 and T
(l)
02 be

the same before moving to state 2 during the lth stay in state 0, for l = 1, ..., V +1.

Similarly, T
(l)
10 and T

(l)
12 are defined, as in the previous section, for the conceptual

sojourn times during the lth visit to state 1, for l = 1, ..., V + 1. Let us write

X
(l)
0 = min

(
T

(l)
01 , T

(l)
02

)
as the sojourn time in state 0 and X

(l)
1 = min

(
T

(l)
10 , T

(l)
12

)
as

the sojourn time in state 1, during the lth stay in the corresponding states. The

QAL is then given by

QAL =





w0

V +1∑

l=1

X
(l)
0 + w1

V +1∑

l=1

X
(l)
1 , if X

(V +1)
0 = T

(V +1)
01

w0

V +1∑

l=1

X
(l)
0 + w1

V∑

l=1

X
(l)
1 , if X

(V +1)
0 = T

(V +1)
02 .

As before, for simplicity, we assume the different sojourn times T
(l)
01 ’s, T

(l)
10 ’s, T

(l)
02 ’s

and T
(l)
12 ’s to be independent and, for different l, identically distributed with con-

stant hazards λ01, λ10, λ02 and λ12, respectively, which can be interpreted as

cause-specific hazards as well.

Note that, given V = v, we have X
(l)
0 = T

(l)
01 and X

(l)
1 = T

(l)
10 , for l = 1, . . . , v;

also, if X
(v+1)
0 = T

(v+1)
01 , then X

(v+1)
1 = T

(v+1)
12 ; if X

(v+1)
0 = T

(v+1)
02 , then X

(v+1)
1 does

not exist. Also note that the process starts in state 0 and restarts in state 0, after

a recovery by going through the event of transition from state 0 to 1 and then

from 1 to 0, with corresponding probability p = λ01λ10(λ01 + λ02)
−1(λ10 + λ12)

−1.

The complement of this event is either direct transition from state 0 to 2 or

transition from state 0 to 1 followed by transition to state 2 with probabilities

λ02(λ01 + λ02)
−1 and λ01λ12(λ01 + λ02)

−1(λ10 + λ12)
−1, respectively. Note that the
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sum of these three probabilities is 1. Therefore, the probability distribution of V

is given by

P [V = v] = p(v) = (1 − p)pv, v = 0, 1, 2, . . .

Following the same technique as that of the previous section, the distribution of

QAL is then given by

F
(R2)
Q (q) =

∞∑

v=0

{
P
[
X

′

0(v+1) +X
′

1(v+1) ≤ q
] λ01λ12

(λ01 + λ02)(λ10 + λ12)

+ P
[
X

′

0(v+1) +X
′

1(v) ≤ q
] λ0d

λ01 + λ02

}
pv, (2.14)

where, as in the previous section X
′

0(l) and X
′

1(l) are independent Gamma random

variables with shape parameter l and scale parameters λ
′

0 = (λ01 + λ02)/w0 and

λ
′

1 = (λ10+λ12)/w1, respectively. Using the distribution of sum of two independent

non-identical Gamma variates with integer shape parameters, as in the previous

section, the distribution function F
(R2)
Q (·) can be approximately evaluated for

given values of λ01, λ02, λ10 and λ12, after ignoring the insignificant terms for

large v.

2.6 Justification for Using Different Illness-Death

Models

As discussed in Introduction (See Section 1.4), the proposed method of estimat-

ing QAL distribution makes explicit use of the information on the structure of

the illness-death model while deriving the theoretical distribution of QAL. Other

methods based on observed QAL data use this information only when trans-

forming the data into QAL scale. As a result, these methods cannot distinguish

between two illness-death models giving rise to same QAL values and, therefore,

lead to less efficient estimates compared to the method which can distinguish be-

tween different illness-death model.
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In order to illustrate the above point, let us consider the following two illness-

death models, given in Figures 2.9 and 2.10. The model in Figure 2.9 is the simple

illness-death model of Section 2.2.1 in which a healthy person in state 0 becomes

ill (state 1) with constant hazard λ01 followed by transition to death (state 2)

with constant hazard λ12. Suppose the utility coefficients in states 0 and 1 are w0

and w1, respectively. For the model in Figure 2.10, a healthy person moves either

to state 1, or to state 2, with cause-specific hazard rates λ01 and λ02, respectively,

followed by transition to death (state 3) with hazard rates λ13 and λ23, respec-

tively. The weight is w0 in state 0 and w1 in state 1 or 2. This is the competing

illness-death model 1 (See Figure 2.5) with k=2.

Figure 2.9: Illness-death Model 1.

Figure 2.10: Illness-death Model 2.

Clearly, the QAL values (uncensored or censored) are the same regardless of

the model (of those in Figure 2.9 or 2.10) which the ordinary lifetime data comes

from. Therefore, the methods based on observed QAL are not able to distin-

guish between the two models. On the other hand, from Sections 2.2.1 and 2.4.1,



45

respectively, the QAL distributions for the two models can be seen to be

Fa(q) = 1 − e
−

λ01
w0

q − λ01w1

λ01w1 − λ12w0

(
e
−

λ12
w1

q − e
−

λ01
w0

q
)

and

Fb(q) = 1 − e
−

λ01+λ02
w0

q −
2∑

j=1

λ0jw1

(λ01 + λ02)w1 − λj3w0

(
e
−

λj3
w1

q − e
−

λ01+λ02
w0

q
)
.

Note that these two distributions are different unless λ13 = λ23. Therefore, a

method that uses the theoretical distribution, thereby distinguishing between the

two illness-death models, gives more efficient estimates. This has been verified

through a small simulation study. In Chapter 5 (Section 5.2.1), the proposed

nonparametric method using structure information gives more efficient estimates

than another nonparametric method (Zhao and Tsiatis, 1999) based on observed

QAL. In view of the above, it is important to develop methods for specific illness-

death models using the information on their structures.

2.7 Concluding Remarks

Different illness-death models are considered for the derivation of QAL distribu-

tion. The main feature of this work is the analytical derivation of QAL distri-

bution. The general form of the QAL distribution is obtained corresponding to

each illness-death model. In most applications, when the number of states is not

large, closed form expression for the QAL distribution is available. Otherwise,

this expression involves multiple integration which needs to be evaluated by a

suitable numerical method. However, this needs to be done only once using the

estimates of the relevant sojourn time distributions. Closed form expression for

the distribution of QAL is obtained under the assumption that the sojourn times

are independent and exponentially distributed. The distribution of sum of in-

dependent non-identical exponential variates is required for both the progressive

illness-death models. If some of the exponential distributions are identical then it
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is nothing but sum of non-identical Gamma variates with integer shape parame-

ters, the distribution of which is given in Result 2.8.2 of the next Section. One can

find closed form expression for other distributions (Mathai, 1982; Moschopulos,

1985, Hitezenko, 1998; Gupta and Kundu, 1999) also.

2.8 Sum of Independent and Non-identical

Gamma Variates

The distribution of sum of independent non-identical Gamma random variables

with integer shape parameters is required for derivation of QAL distribution in

progressive and reversible illness-death models. In this regard, we prove the fol-

lowing two results.

Result 2.8.1 Suppose Ti ∼ Gamma(λi, ni), for i = 1, 2, where Ti’s are inde-

pendently distributed and ni’s are integers and λ1 6= λ2. Then, the distribution of

T = T1 + T2 is given by

G(t) = P (T < t) = 1 −
n1−1∑

k=0

e−λ1t (λ1t)
k

k!

−

e

−λ2tλn1
1

Γ(n1)

n2−1∑

i=0

λi
2

i!

i∑

j=0

(−1)j



i

j


 ti−j Γ(n1 + j)

(λ1 − λ2)n1+j

×

1 −

n1+j−1∑

k=0

(λ1 − λ2)
ktk

k!
e−(λ1−λ2)t




 .

Proof of Result 2.8.1:

G(t) = P (T1 + T2 < t)

=
∫ t

0
F2(t− t1)f1(t1)dt1

=
∫ t

0

[
1 −

n2−1∑

i=0

λi
2(t− t1)

i

i!
e−λ2(t−t1)

]
f1(t1)dt1

= F1(t) − A, say,
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where Fi(t) is the distribution function of Ti with density fi(t) and

A = e−λ2t
n2−1∑

i=0

λi
2

i!

∫ t

0

λn1
1

Γ(n1)
e−(λ1−λ2)t1(t− t1)

itn1−1
1 dt1

=
e−λ2tλn1

1

Γ(n1)

n2−1∑

i=0

λi
2

i!

∫ t

0
e−(λ1−λ2)t1




i∑

j=0

(−1)j



i

j


 ti−jtj1


 tn1−1

1 dt1

=
e−λ2tλn1

1

Γ(n1)

n2−1∑

i=0

λi
2

i!

i∑

j=0

(−1)j



i

j


 ti−j Γ(n1 + j)

(λ1 − λ2)n1+j

×
[∫ t

0

(λ1 − λ2)
n1+j

Γ(n1 + j)
e−(λ1−λ2)t1tn1+j−1

1 dt1

]

=
e−λ2tλn1

1

Γ(n1)

n2−1∑

i=0

λi
2

i!

i∑

j=0

(−1)j



i

j


 ti−j Γ(n1 + j)

(λ1 − λ2)n1+j

×

1 −

n1+j−1∑

k=0

(λ1 − λ2)
ktk

k!
e−(λ1−λ2)t


 .

Hence, the result is proved.

Result 2.8.2 Suppose Ti ∼ Gamma(λi, ni), for i = 1, . . . , k, where Ti’s are

independently distributed and ni’s are integers. Then, the distribution of T =
k∑

i=1

Ti is given by

Fk

(
λ(k), n(k), t

)
= Fk−1

(
λ(k−1), n(k−1), t

)
−

nk−1∑

m=0

e−λktλ
m
k

m!
.Am(t),

for k ≥ 2, where

Am(t) =

∏k−1
i=1 λ

ni

i∏k−1
i=1 Γ(ni)

∑
∗

[
m!(−1)m−r

r!r1! · · · rk−1!
tr

×
∏k−1

i=1 Γ(ni + ri)∏k−1
i=1 (λi − λk)ni+ri

Fk−1

(
λ

′(k−1), n
′(k−1), t

)]
,

λ(k) = (λ1, . . . , λk), n
(k) = (n1, . . . , nk), λ

′(k−1) = (λ1−λk, . . .,λk−1−λk), n
′(k−1) =

(n1 + r1, . . . , nk−1 + rk−1) and the sum
∑

∗ is over all possible (r, r1, . . . , rk−1) such

that r + r1 + · · · + rk−1 = m.
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Proof of Result 2.8.2:

Fk

(
λ(k), n(k), t

)
= P (T ≤ t) =

∫ t

0

∫ t−t1

0
· · ·

∫ t−
∑k−1

i=1
ti

0

k∏

i=1

fi(ti)dti

= Fk−1

(
λ(k−1), n(k−1), t

)

−
∫ t

0

∫ t−t1

0
· · ·

∫ t−
∑k−2

i=1
ti

0

nk−1∑

m=0


 e

−λk

(
t−
∑k−1

i=1
ti

)

m!

× λm
k

(
t−

k−1∑

i=1

ti

)m k−1∏

i=1

fi(ti)dti




= Fk−1

(
λ(k−1), n(k−1), t

)
−

nk−1∑

m=0

e−λktλ
m
k

m!
.Am(t),

where fi(t) is the density of Ti and

Am(t) =
∫ t

0

∫ t−t1

0
· · ·

∫ t−
∑k−2

i=1
ti

0
e

λk

(∑k−1

i=1
ti

) (
t−

k−1∑

i=1

ti

)m k−1∏

i=1

fi(ti)dti

=
∫ t

0

∫ t−t1

0
· · ·

∫ t−
∑k−2

i=1
ti

0
e

λk

(∑k−1

i=1
ti

)

×
(∑

∗
m!(−1)m−r

r!r1!...rk−1!
tr
∏k−1

i=1 t
ri
i

) k−1∏

i=1

λni

i

Γ(ni)
e−λititni−1

i dti

=

∏k−1
i=1 λ

ni
i∏k−1

i=1 Γni

∑
∗

[
m!(−1)m−r

r!r1! . . . rk−1!
tr

×
∫ t

0

∫ t−t1

0
· · ·

∫ t−
∑k−2

i=1
ti

0

∏k−1
i=1 Γ(ni + ri)∏k−1

i=1 (λi − λk)ni+ri

×
k−1∏

i=1

(λi − λk)
ni+ri

Γ(ni + ri)
e−(λi−λk)titni+ri−1

i dti

]

=

∏k−1
i=1 λ

ni
i∏k−1

i=1 Γ(ni)

∑
∗

[
m!(−1)m−r

r!r1! . . . rk−1!
tr

×
∏k−1

i=1 Γ(ni + ri)∏k−1
i=1 (λi − λk)ni+ri

Fk−1

(
λ

′(k−1), n
′(k−1), t

)]
.

Hence the result is proved.



Chapter 3

Induced Dependent Censoring

3.1 Introduction

While dealing with censored data for estimation of QAL distribution, there is

informative censoring when the data is transformed into the QAL scale, as re-

ported by many authors (Gelber et al., 1989; Glasziou et al., 1990; Lin et al.,

1997; Huang and Louis, 1999, among many others). That is, even if the original

lifetime T and the censoring time C are independent, the quality adjusted life-

time Q and the corresponding quality adjusted censoring time C∗ do not remain

independent. This, in the literature, is known as induced dependent censoring.

Although it might seem natural to undertake a standard survival analysis with

the observed QAL values (censored and uncensored), this approach leads to bias

due to this induced dependent censoring. Most of the work done so far, on the

analysis of QAL data, concentrates on adjusting for this bias while estimating the

mean QAL (Huang and Louis, 1999; Zhao and Tsiatis, 2000) or QAL distribution

(Korn, 1993; Zhao and Tsiatis, 1997, 1999; Huang and Louis, 1998; Van der Laan

and Hubbard, 1999; Strawderman, 2000; Almanassra et al., 2005). Despite all

this work, the issue of induced dependent censoring in the QAL scale still remains

49
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less-understood. Although there is some qualitative discussion, there is no formal

proof of this dependence. There is one argument by Lin (2003) which can be

described as follows. Noting that Q =
∫ T

0
W (u)du and C∗ =

∫ C

0
W (u)du, clearly,

Q and C∗ are positively correlated through the utility function W (·). Therefore,

while a healthy person has high Q value and also high C∗ value, a person getting

sick early, but with same T and C, has low Q and C∗. The arguments presented

by all other authors also speak of a positive correlations between Q and C∗. In

this work, we formally study the nature of this induced dependence in the context

of a simple illness-death model and show that there can be situations when Q and

C∗ are negatively correlated. The direction of bias of the Kaplan-Meier estimate

of the QAL distribution is investigated.

The issue of induced dependent censoring is investigated in Section 3.2 in the

context of simple illness-death model. In particular, we work out the covariance

between Q and C∗. Section 3.3 studies the bias in the Nelson-Aalen and Kaplan-

Meier estimators of the QAL distribution due to this dependent censoring. Section

3.4 ends with some concluding remarks.

3.2 Induced Dependent Censoring

We consider the simple illness-death model 1 of Section 2.2 as shown in Figure

2.1 and assume that T01 and T12 are independent. The distribution function of Q

is given by

FQ(q) =
∫ q

w0

0

[∫ q−w0x

w1

0
λ12(y)e

−Λ12(y)dy

]
λ01(x)e

−Λ01(x)dx

=
∫ q/w0

0
F12

(
q − w0x

w1

)
dF01(x),
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where F01(·) are F12(·) are distribution functions of T01 and T12, respectively. The

survival function of Q is given by

SQ(q) = P [Q > q] =
∫ ∞

0
F̄12

(
q − w0x

w1

)
dF01(x), (3.1)

where F̄12(·) = 1 − F12(·) is the survival function of T12.

Note that

C∗ = w0CI(C < T01) + {w0T01 + w1(C − T01)}I(C ≥ T01). (3.2)

For the investigation, it is assumed that censoring variable C is independent of

T01 and T12. Let F̄c(·) be the survival function of C. Then, the survival function

of C∗ is given by

P [C∗ > c∗] = P [w0C > c∗, C < T01] + P [w0T01 + w1(C − T01) > c∗, C ≥ T01]

= P1 + P2, say,

where P1 =
∫ ∞

c∗

w0

[
F̄c

(
c∗

w0

)
− F̄c(t01)

]
dF01(t01) and

P2 =
∫ ∞

0
P

[
C > max

(
c∗ − (w0 − w1)t01

w1

, t01

)]
dF01(t01)

=
∫ ∞

0
F̄c

(
max

{
c∗ − (w0 − w1)t01

w1

, t01

})
dF01(t01)

=
∫ c∗

w0

0
F̄c

(
c∗ − (w0 − w1)t01

w1

)
dF01(t01) +

∫ ∞

c∗

w0

F̄c(t01)dF01(t01).

After some simplification, we have

P [C∗ > c∗] = F̄c

(
c∗

w0

)
F̄01

(
c∗

w0

)
+
∫ c∗

w0

0
F̄c

(
c∗ − (w0 − w1)t01

w1

)
dF01(t01).

(3.3)

The joint survival function of Q and C∗ is given by

P [Q > q,C∗ > c∗] = P
[
C >

c∗

w0

, w0T01 + w1T12 > q,C < T01

]

+ P

[
C >

c∗ − (w0 − w1)T01

w1

, w0T01 + w1T12 > q,C > T01

]

= P
′

1 + P
′

2, say,
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where

P
′

1 =
∫ ∞

c∗

w0

[
F̄c

(
c∗

w0

)
− F̄c(t01)

]
F̄12

(
q − w0t01

w1

)
dF01(t01) and

P
′

2 =
∫ ∞

0
F̄c

(
max

{
c∗ − (w0 − w1)t01

w1

, t01

})
F̄12

(
q − w0t01

w1

)
dF01(t01).

After simplification, we get

P [Q > q,C∗ > c∗] = F̄c

(
c∗

w0

) ∫ ∞

c∗

w0

F̄12

(
q − w0t01

w1

)
dF01(t01)

+
∫ c∗

w0

0
F̄c

(
c∗ − (w0 − w1)t01

w1

)
F̄12

(
q − w0t01

w1

)
dF01(t01).

(3.4)

Note that the above joint survival function (3.4) reduces to SQ(q) given by

(3.1), by putting c∗ = 0. Similarly, by putting q = 0, the equation (3.4) reduces

to P [C∗ > c∗], given by (3.3). Under the assumption that Ti,i+1 follows exp(λi,i+1),

for i = 0, 1, and C follows exp(λc), we have

P [C∗ > c∗] =
λc(w1 − w0)

(λ01 + λc)w1 − λcw0

e
− c∗

w0
(λ01+λc) +

λ01w1

(λ01 + λc)w1 − λcw0

e
− c∗

w1
λc .

This implies

E(C∗) =
∫ ∞

0
P [C∗ > c∗]dc∗ =

λ01w1 + λcw0

λc(λ01 + λc)
.

We also have, from the definition of Q,

E(Q) =
w0

λ01

+
w1

λ12

.

Note that, from Barlow and Proschan (1975, p. 135 ),

E(QC∗) =
∫ ∞

0

∫ ∞

0
P [Q > q,C∗ > c∗]dc∗dq

=
∫ ∞

0

[∫ q

0
P [Q > q,C∗ > c∗]dc∗ +

∫ ∞

q
P [Q > q,C∗ > c∗]dc∗

]
dq.

(3.5)
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For c∗ < q, we have P [Q > q,C∗ > c∗]

= F̄c

(
c∗

w0

) [∫ q

w0

c∗

w0

F̄12

(
q − w0t01

w1

)
dF01(t01) + F̄01

(
q

w0

)]

+
∫ c∗

w0

0
F̄c

(
c∗ − (w0 − w1)t01

w1

)
F̄12

(
q − w01t01

w1

)
dF01(t01),

which, under the exponential models as before, reduces to

λ01w1e
−

λcc∗+λ12q

w1

λ01w1 − λ12w0

[
e
−

(
λ01
w0

−
λ12
w1

)
c∗ − e

−

(
λ01
w0

−
λ12
w1

)
q
]

+e
−

(λ01q+λcc∗)

w0 +
λ01w1

[
e
−

λcc∗+λ12q

w1 − e
− c∗

w0
(λ01+λc)−

λ12
w1

(q−c∗)
]

λ01w1 − λc(w0 − w1) − λ12w0

. (3.6)

For c∗ > q, we have P [Q > q,C∗ > c∗]

= F̄c

(
c∗

w0

)
F̄01

(
c∗

w0

)
+
∫ q

w0

0
F̄c

(
c∗ − (w0 − w1)t01

w1

)
F̄12

(
q − w0t01

w1

)
dF01(t01)

+
∫ c∗

w0

q

w0

F̄c

(
c∗ − (w0 − w1)t01

w1

)
dF01(t01),

which reduces to

e
−(λ01+λc)

c∗

w0 +
λ01w1e

−
λcc∗+λ12q

w1

(λ01 + λc)w1 − (λ12 + λc)w0

[
1 − e

− q

w0

(
λ01+λc)w1−(λ12+λc)w0

w1

)]

+
λ01w1

(λ01 + λc)w1 − λcw0

[
e
− q

w0

(
λ01+λc)w1−λcw0

w1

)
e
−λc

c∗

w1 − e
− c∗

w0
(λ01+λc)

]
, (3.7)

under the exponential models. Then, using (3.5)-(3.7), we have, under the expo-

nential models,

E (QC∗) =
w0w1

λ12(λ01 + λc)
+

w2
0

λ01(λ01 + λc)
+

λ01w
2
1

λ12(λ01 + λc)(λ12 + λc)

+
w2

0

(λ01 + λc)2
+

λ01w
2
1

λc(λ01 + λc)(λ12 + λc)
+

λ01w0w1

λc(λ01 + λc)2

=
w0w1

λ12(λ01 + λc)
+

w2
0

λ01(λ01 + λc)
+

λ01w
2
1

λ12λc(λ01 + λc)

+
w2

0

(λ01 + λc)2
+

λ01w0w1

λc(λ01 + λc)2
.



54

Hence, after simplification, we have

cov[Q,C∗] = E[QC∗] − E(Q)E(C∗) =
w0(w0 − w1)

(λ01 + λc)2
. (3.8)

It is clear from the covariance expression (3.8) that the correlation between Q and

C∗ is not always positive, as argued by many authors. These arguments favoring

positive correlation between Q and C∗ implicitly assume, in the framework of the

simple illness-death model, that w0 > w1, in which case the covariance given by

(3.8) is positive. As is clear from the expression (3.2), the sojourn time T01 in

healthy state 0 is a source of dependence affecting both Q and C∗ in a complicated

way. If T01 increases, then Q increases, but C∗ increases (or decreases) if w0 > w1

(or, w0 < w1). The case of w0 = w1 trivially gives independence. Note that

this nature of dependence between Q and C∗ holds in general for any choice of

distributions for the sojourn times T01 and T12 and censoring time C. Therefore,

as is evident from (3.8), when w0 < w1, there is negative correlation between Q

and C∗. Also, note that, from (3.2) and (3.8), the sojourn time T12 in illness state

1 does not play any role in this induced dependence (See also the second panel in

Table 3.4 with w0 =0 and w1=0.8 leading to independence between Q and C∗).

3.3 Bias due to Induced Dependence

Due to the induced dependent censoring, estimates obtained by standard survival

analysis of observed QAL data are biased as discussed in Section 3.1. In this

section, the direction of bias in estimating the QAL distribution is investigated,

while using survival analysis techniques with the observed QAL values. We first

consider the Nelson-Aalen estimator of ΛQ(q) =
∫ q
0 λQ(u)du, the integrated hazard

of Q, as given by

Λ̂Q(q) =
∫ q

0

JQ(u)dNQ(u)

YQ(u)
, (3.9)
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where NQ(u) is the counting process giving the number of uncensored Q values

less than or equal to u, YQ(u) is the number at risk (that is, the number of

Q ∧ C∗-values greater than or equal to u) and JQ(u) = I(YQ(u) > 0). Note

that this estimator depends on the assumption that NQ(q) − ∫ q
0 YQ(u)λQ(u)du

is a square-integrable martingale, which is true if Q and C∗ are independent.

Note that NQ(q)− ∫ q
0 P [dNQ(u) = 1|Q ≥ u,C∗ ≥ u] is always a square-integrable

martingale and P [dNQ(u) = 1|Q ≥ u,C∗ ≥ u]=YQ(u)λQ(u)du, if Q and C∗ are

independent. Since Q and C∗ are not independent and

P [dNQ(u) = 1|Q ≥ u,C∗ ≥ u] = YQ(u)P [Q ∈ Idu|Q ≥ u,C∗ ≥ u] ,

where Idu is the infinitesimal interval [u, u + du), the expected value of Λ̂Q(q)

is given approximately by
∫ q
0 P [Q ∈ Idu|Q ≥ u,C∗ ≥ u]. Hence, the approximate

bias in Λ̂Q(q) is given by

B
(
Λ̂Q(q)

)
=
∫ q

0
{P [Q ∈ Idu|Q ≥ u,C∗ ≥ u] − λQ(u)du} . (3.10)

For the simple illness-death model 1 of Section 2.2, using (2.2) and from the

joint survival function of Q and C∗ in (3.4), we get, after some calculations,

λQ(u) =

1
w1

∫ u
w0

0 f12

(
u−w0t01

w1

)
dF01(t01)

F̄01

(
u

w0

)
+
∫ u

w0
0 F̄12

(
u−w0t01

w1

)
dF01(t01)

, (3.11)

where f12(·) is the density of T12, and

P [Q ∈ Idu|Q ≥ u,C∗ ≥ u] =

1
w1

∫ u
w0

0 F̄c

(
u−(w0−w1)t01

w1

)
f12

(
u−w0t01

w1

)
dF01(t01)du

F̄C

(
u

w0

)
F̄01

(
u

w0

)
+
∫ u

w0
0 F̄c

(
u−(w0−w1)t1

w1

)
F̄12

(
u−w0t01

w1

)
dF01(t01)

, (3.12)

respectively. Under the exponential models, (3.11) and (3.12) reduces to

λQ(u) =
λ01λ12

[
e
−

λ12u

w1 − e
−

λ01u

w0

]

λ01w1e
−

λ12u

w1 − λ12w0e
−

λ01u

w0

. (3.13)
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and

P [Q ∈ Idu|Q ≥ u,C∗ ≥ u] =
λ01λ12

[
e
−

(λ12+λc)u

w1 − e
−

(λ01+λc)u

w0

]
du

λ01w1e
−

(λ12+λc)u

w1 + [λcw1 − (λ12 + λc)w0] e
−

(λ01+λc)u

w0

,

(3.14)

respectively. Hence, using (3.13) and (3.14), the approximate bias B
(
Λ̂Q(q)

)
in

(3.10) can be calculated for the exponential models.

Instead of reporting the bias B
(
Λ̂Q(q)

)
of the Nelson-Aalen estimator, we

estimate the bias in more commonly used Kaplan-Meier estimator ŜQ(q) of SQ(q).

Noting that SQ(q) is equal to exp[−Λq(q)] and using Taylor series expansion upto

second order, the bias B
(
ŜQ(q)

)
in the Kaplan-Meier estimator ŜQ(q) is given

approximately by

B
(
ŜQ(q)

)
≈ −B

(
Λ̂Q(q)

)
SQ(q) +

[
B
(
Λ̂Q(q)

)]2

2
SQ(q). (3.15)

The value of this bias is given in Tables 3.1-3.4 for several set of parameters

(λ01, λ12, λc) and utility coefficients (w0, w1), and for different values of q. This

bias is also estimated by means of simulation (See Section 4.2.3 for details) with

sample size n=200 and based on 1000 simulated data sets. These values are also

reported in Tables 3.1-3.4 under ‘K-M bias’. From the simulation study, we see

that the estimated bias in the Kaplan-Meier estimate is close to the true bias

computed by using (3.15) except in the tail area. Although, from (3.10) and

(3.15), it is difficult to comment on the direction of bias, the results of Table 3.1-

3.4 seem to indicate positive (negative) bias when w0 > (<) w1. The magnitude

of bias seems to be increasing with the magnitude of correlation between Q and

C∗ (reported in Table 3.1-3.4), as expected. In the particular case when the

correlation is zero (Second panel of Table 3.4), there is no bias.
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Table 3.1: Bias of Kaplan-Meier Estimates

Set of parameters: (λ01, λ12, λc) = (0.02, 0.04, 0.03)

(w0, w1) = (1, 0.1) (w0, w1) = (0.1, 1)

corr(Q,C∗) = 0.356 corr(Q,C∗) = −0.053

q bias K-M bias q bias K-M bias

5 0.013 0.013 4 -0.011 -0.010

15 0.072 0.072 11 -0.043 -0.044

25 0.116 0.118 16 -0.047 -0.048

40 0.157 0.157 24 -0.039 -0.040

70 0.174 0.180 40 -0.022 -0.023

110 0.142 0.166 60 -0.010 0.011

Table 3.2: Bias of Kaplan-Meier Estimates

Set of parameters: (λ01, λ12, λc) = (0.02, 0.04, 0.03)

(w0, w1) = (1, 0.3) (w0, w1) = (0.3, 1)

corr(Q,C∗) = 0.257 corr(Q,C∗) = −0.105

q bias K-M bias q bias K-M bias

7 0.005 0.006 7 -0.006 -0.006

20 0.046 0.047 17 -0.040 -0.041

30 0.079 0.080 25 -0.063 -0.065

45 0.114 0.114 35 -0.074 -0.077

75 0.134 0.135 53 -0.059 -0.065

115 0.111 0.133 75 -0.032 -0.027
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Table 3.3: Bias of Kaplan-Meier Estimates

Set of parameters: (λ01, λ12, λc) = (0.01, 0.002, 0.003)

(w0, w1) = (0.8, 0.3) (w0, w1) = (0.3, 0.8)

corr(Q,C∗) = 0.121 corr(Q,C∗) = −0.008

q bias K-M bias q bias K-M bias

40 0.003 0.002 44 -0.002 -0.002

100 0.020 0.020 135 -0.005 -0.005

140 0.033 0.034 205 -0.004 -0.003

200 0.046 0.047 335 -0.003 -0.002

305 0.051 0.052 580 -0.002 0.003

430 0.039 0.049 900 -0.001 0.014

Table 3.4: Bias of Kaplan-Meier Estimates

Set of parameters: (λ01, λ12, λc) = (0.01, 0.002, 0.003)

(w0, w1) = (0.8, 0) (w0, w1) = (0, 0.8)

corr(Q,C∗) = 0.769 corr(Q,C∗) = 0

q bias K-M bias q bias K-M bias

4 0.029 0.029 20 0 0

20 0.126 0.127 100 0 0

35 0.191 0.194 175 0 0

60 0.260 0.269 300 0 0.002

110 0.294 0.324 550 0 0.004

170 0.249 0.304 850 0 0.011
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3.4 Concluding Remarks

The main purpose of this chapter has been to study the induced dependent cen-

soring and the resulting bias in the Kaplan-Meier estimator based on the QAL

data. We carry out this study in the context of a simple illness-death model for

the sake of illustration. In principle, this can be done with any general illness-

death model, but the derivation of results becomes more complicated. As can be

seen from the bias expression (3.15) that, although the bias can be calculated for

a given model, its estimation is difficult. Hence, the straightforward method for

bias correction cannot be used. As discussed in Section 3.1, method of adjustment

for bias exist in the literature. In this work, a simple alternative is proposed, as

discussed in the following chapters.

In addition to the bias calculation of Λ̂Q(q) in Section 3.3, one can also calcu-

late the asymptotic variance of Λ̂Q(q), from (3.9), as given by

∫ q

0

JQ(u)

YQ(u)
P [Q ∈ Idu|Q ≥ u,C∗ ≥ u] ,

using the same argument as those used for bias calculation. Therefore, not only

the expectation of Λ̂Q(q) is different from ΛQ(q), its asymptotic variance is also

different from what it would be with QAL survival data.

The problem of induced dependent censoring leads to bias not only in the

Kaplan-Meier estimate, it leads to bias in any estimate obtained by using stan-

dard survival techniques which assume independent censoring. In particular, a

parametric method to fit the observed QAL data will also give biased estimates

of the parameters. We have verified this through simulation from the exponen-

tial models and then fitting the parametric model for the QAL distribution in

(2.3), derived theoretically from the exponential models for T01 and T12. The

corresponding parameter estimates turn out to be biased.



Chapter 4

Parametric Estimation of QAL

Distribution

4.1 Introduction

In this chapter, the parametric estimation of QAL distribution is considered for

all the illness-death models discussed in Chapter 2. Though there have been num-

ber of works developing nonparametric methods for estimating QAL distribution,

the parametric approach has not received much attention (except Cole, 1994) in

spite of some advantages over nonparametric method. Cole et al. (1994) sug-

gested a parametric Q-TWiST method to estimate the mean QAL. A parametric

method in general has flexibility in the sense that it works for small sample sizes

and the asymptotic properties are easier to establish using the delta method. In

addition, a parametric model can also explicitly incorporate dependence between

different sojourn times. Sometimes there may be evidence in favor of a particular

parametric model with or without dependence. In such cases, a method based on

an appropriate parametric model is more efficient than a nonparametric method.

Note that some accounting for possible dependence between the different sojourn

60
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times is necessary for estimating the QAL distribution. Existing methods based on

observed QAL’s implicitly account for the dependence, but these methods cannot

be applied when some transition times are not observable. The proposed method

can handle the problem of non-observability, while accounting for dependence at

the same time.

The model parameters are estimated by maximum likelihood method from the

corresponding lifetime data that may be censored. In the following sections, the

observation with corresponding likelihood function is described for each illness-

death model. In particular, simple analytic expressions for the maximum likeli-

hood estimators of the model parameters are obtained when sojourn times are

independent and exponentially distributed. The QAL distribution in each case

is estimated by substituting the model parameters in the theoretical expression

derived in Chapter 2 by the corresponding estimates. Model parameters can be

estimated even when the transition times are unobserved. A simulation study

investigates bias and precision of the estimate of QAL distribution and compares

it with an existing nonparametric estimate. Application of the proposed method-

ology has been illustrated using the Stanford heart transplant data and IBCSG

Trial V data.

This chapter is organized as follows. Estimation in simple illness-death model

is discussed in Section 4.2 with a simulation study and analysis of heart trans-

plant data. Estimation in progressive illness-death model is discussed in Section

4.3 with a simulation study and analysis of IBCSG Trial V data. Estimation

in competing illness-death model and reversible illness-death model are discussed

with simulation study in Sections 4.4 and 4.5, respectively.
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4.2 Estimation in Simple Illness-Death Model

The maximum likelihood estimates of the unknown parameters are obtained for

the two simple illness-death models ( Figures 2.1 and 2.2) discussed in Section 2.2.

It may be pointed out that the transition time from healthy state to illness state

may not always be observed. The method of estimation of the parameters in both

the models and both for observed and unobserved cases are discussed. Random

censored data are considered and let C be the censoring random variable.

4.2.1 Estimation in Simple Illness-Death Model 1

First, the model parameters are estimated when T01, the time from healthy state

(0) to illness state (1), is observed. The possible observations are given below.

i) X0 = min(T01, C), δ0 = I(T01 ≤ C), observed in all cases;

ii) X1 = min(T12, C − T01) and δ1 = I(T01 + T12 ≤ C), observed when δ0 = 1.

Suppose we have n individuals with the observed data {(x0i, δ0i), i = 1, . . . , n}
and {(x1i, δ1i), i : δ0i = 1}. For convenience, let us write x1i = δ1i = −1, whenever

δ0i = 0. The likelihood function can be written as

L ∝
n∏

i=1

{
λδ0i

01 (x0i) [λ12(x1i|x0i)]
δ0iδ1i exp

[
−
∫ x0i

0
λ01(u)du

]

× exp
[
−δ0i

∫ x1i

0
λ12(u|x0i)du

]}
. (4.1)

With λ12(y|x) = λ12e
βx and λ01(x) = λ01, the likelihood function (4.1) simplifies

to

Ld ∝
n∏

i=1

{
λδ0i

01

[
λ12e

βx0i

]δ0iδ1i

exp [−λ01x0i] × exp
[
−λ12δ0ix1ie

βx0i

]}
. (4.2)

In this case, some numerical techniques, for example, Newton-Raphson method,

can be used to obtain the estimates. Under independence (β=0), the likelihood

function (4.2) reduces further to

Lind ∝ λd01
01 λ

d12
12 exp

[
−
(
λ01

n∑

i=1

x0i + λ12

n∑

i=1

δ0ix1i

)]
, (4.3)
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where d01 =
∑n

i=1 δ0i is the number of individuals who experience illness and

d12 =
∑n

i=1 δ0iδ1i is the number of individuals who die with illness. In this case,

the maximum likelihood estimates have simple analytic forms and are given by

λ̂01 = d01/
n∑

i=1

x0i and λ̂12 = d12/
n∑

i=1

δ0ix1i.

The maximum likelihood estimate of QAL distribution is obtained by replacing

the parameters in (2.2) by the above estimates and standard error is obtained by

delta method.

Next, the maximum likelihood estimate of the parameters are obtained when

T01 is unobserved. The different types of observations and the corresponding

likelihood contributions are given in Table 4.1 with δ indicating the type of ob-

servation. Here t is the censoring time when δ = 1 and 2, and t is the failure time

when δ = 3. It is assumed that this missingness (of information on T01), for δ = 2

and 3, is at random in the sense that the conditional probability of missingness,

given {T01 = t1 < C = t < T01 + T12}, and the conditional probability of missing-

ness, given {T01 = t1 < T01 + T12 = t < C} are both independent of {T01 = t1}
(Little and Rubin, 1987, p 90).

Table 4.1: Types of observation and likelihood contributions for simple illness-

death model 1 in unobserved case

Types of observation δ Likelihood contribution

C = t < T01 1 e−Λ01(t)

T01 < C = t < T01 + T12 2
∫ t

0
e−Λ12(t−x|x)λ01(x)e

−Λ01(x)dx

T01 + T12 = t < C 3
∫ t

0
λ12(t− x|x)e−Λ12(t−x|x)λ01(x)e

−Λ01(x)dx

In particular, for constant hazards, the likelihood contributions for dependent

(with λ12(y|x) = λ12e
βx) and independent cases are given in Table 4.2.
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Table 4.2: Types of observation and likelihood contributions with constant haz-

ards for simple illness-death model 1 in unobserved case

Likelihood contribution

δ Dependent Independent

1 e−λ01t e−λ01t

2

∫ t

0

e−λ12eβx(t−x)λ01e
−λ01xdx

λ01

λ12 − λ01
[e−λ01t − e−λ12t]

3

∫ t

0

λ12e
βxe−λ12eβx(t−x)λ01e

−λ01xdx
λ01λ12

λ12 − λ01
[e−λ01t − e−λ12t]

Write X ′
1 = ((T01 + T12) ∧ C)I(δ0=1) − I(δ0=0). Note that, when δ = 1, then

observation on X
′

1 is not available and its value is set as -1 in its definition. When

δ = 2 or 3, X ′
1 is observed, but X0 is not observed, but is known to be less than

X ′
1. The observation, therefore, consists of {(x0i, x

′
1i, δi), i = 1, . . . , n}. To obtain

the maximum likelihood estimate, we have to take the product over all likelihood

contributions from all the observations and then maximize it with respect to the

parameters. It is clear that the likelihood function is a complicated function of

the parameters, which needs computer intensive numerical maximization. One

can use EM algorithm (Dempster et al., 1977) to obtain the maximum likelihood

estimates, wherein the complete data version has T01 as observed. For the inde-

pendent model, the E-step needs to calculate the conditional expectation of T01

given the incomplete data corresponding to δ = 2 and δ = 3. Let D2(t) and D3(t)

be these conditional expectations corresponding to δ = 2 and δ = 3, respectively,

given the observation time C = t and T01 + T12 = t. Then, for the independent

model, D2(t) and D3(t) are given by

D2(t) = E[T01|T01 < C = t < T01 + T12] =
e−λ12t − {1 + (λ01 − λ12)t}e−λ01t

(λ12 − λ01)(e−λ01t − e−λ12t)
and
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D3(t) = E[T01|T01 + T12 = t < C] =
e−λ12t − {1 + (λ01 − λ12)t}e−λ01t

(λ12 − λ01)(e−λ01t − e−λ12t)
,

respectively.

Given the current estimates λ̂
(0)
01 and λ̂

(0)
12 , E-step calculates D2(t) for all cen-

sored times t with δ = 2 and D3(t) for all death times t with δ = 3, at these

parameter values, which are denoted by D
(0)
2 (t) and D

(0)
3 (t), respectively. The

M-step involves maximizing the complete data log likelihood function given by

−λ01

∑

i:δi=1

x0i + (n2 + n3) log λ01 + n3 log λ12 − λ12

∑

i:δi=2,3

x′1i

−(λ01 − λ12)
∑

k=2,3

∑

i:δi=k

D
(0)
k (x′1i) (4.4)

where n2 and n3 are the number of observations with δ =2 and 3, respectively.

Clearly, (4.4) has closed form solution. The information matrix in the indepen-

dent case can be obtained directly from the log likelihood function corresponding

to the incomplete data and is given by

I(λ01, λ12) =



n2 + n3

λ2
01

− a a

a
n3

λ2
12

− a




where a =
n2 + n3

(λ12 − λ01)2
−
∑

i:δi=2,

x′21ie
−(λ01+λ12)x′

1i

(e−λ01x′

1i − e−λ12x′

1i)2
−
∑

i:δi=3

x′21ie
−(λ01+λ12)x′

1i

(e−λ01x′

1i − e−λ12x′

1i)2
.

A similar EM algorithm can be developed for the estimators of the param-

eters in the dependent model. When T01 is observed for some individuals and

unobserved for rest of the individuals, the likelihood can be easily obtained by

considering individual likelihood contributions (See (4.1) and Table 4.1) and tak-

ing their product.
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4.2.2 Estimation in Simple Illness-Death Model 2

As for model 1, let us first consider the case when the time to illness is observed.

Recall that T0 is the time of first event (time to illness or death without illness

whichever is earlier). The observations consist of the following.

1. X0 = min(T0, C), δ0 = I(T0 ≤ C), observed in all cases.

2. When δ0 = 1, write

δ01 =





1 if T0 is the time to illness state

0 if T0 is the time to death without illness

3. X1 = min(T12, C − T0) and δ1 = I(T0 + T12 ≤ C), observed when δ01 = 1.

For the n individuals, the data set is given by {(x0i, δ0i), i = 1, . . . , n}, {δ01i, i :

δ0i = 1} and {(x1i, δ1i), i : δ01i = 1}. As before, let us write δ01i = x1i = δ1i = −1,

whenever δ0i = 0 and x1i = δ1i = −1, whenever δ01i = 0. The likelihood function

can be written as

L ∝
n∏

i=1

{
[λ01(x0i)]

δ0iδ01i [λ02(x0i)]
δ0i(1−δ01i) [λ12(x1i|x0i)]

δ0iδ01iδ1i

× exp
(
−
∫ x0i

0
(λ01(u) + λ02(u))du

)
× exp

(
−δ0iδ01i

∫ x1i

0
λ12(u|x0i)du

)}
.

(4.5)

With λ12(y|x) = λ12e
βx, λ1(x) = λ01 and λ02(x) = λ02, the likelihood function

(4.5) simplifies to

Ld ∝
n∏

i=1

{
λδ0iδ01i

01 λ
δ0i(1−δ01i)
02 (λ12e

βx0i)δ0iδ01iδ1i

× exp
[
−(λ01 + λ02)x0i − λ12δ0iδ01ix1ie

βx0i

]}
. (4.6)

Numerical techniques can be used to solve the likelihood equations. When T0 and

T12 are independent (β=0), the likelihood function (4.6) reduces further to

Lind ∝ λd01
01 λ

d12
12 λ

d02
02 exp

[
−(λ01 + λ02)

n∑

i=1

x0i − λ12

n∑

i=1

δ0iδ01ix1i

]
, (4.7)
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where d01 and d12 are as in (4.3) and d02 is the number of deaths without illness.

Expression (4.7) gives the maximum likelihood estimates in simple analytic forms.

Next, the parameters are estimated when T0 is unobserved. Different types

of observations and the corresponding likelihood contributions are given in Table

4.3, with δ being the indicator for type of observation. Here, t is failure time when

δ = 3 and 4, and t is censoring time when δ = 1 and 2. As before, either the

Newton-Raphson method or the EM algorithm can be used to obtain the max-

imum likelihood estimates. The estimates can be obtained when T0 is observed

for some individuals and unobserved for the rest.

Table 4.3: Types of observation and likelihood contributions for simple illness-

death model 2 in unobserved case.

Types of observation δ Likelihood contribution

C = t < T0 1 e−(Λ01(t)+Λ02(t))

T0 < C = t < T0 + T12, δ01 = 1 2

∫ t

0

e−Λ12(t−x|x)λ01(x)e−(Λ01(x)+Λ02(x))dx

T0 + T12 = t, δ01 = 1 3

∫ t

0

λ12(t − x)e−Λ12(t−x|x)λ01(x)e−(Λ01(x)+Λ02(x))dx

T0 = t < C, δ01 = 0 4 λ02(t)e
−(Λ01(t)+Λ02(t))

4.2.3 Simulation Study

In this section, the bias and precision of the estimator of QAL distribution are

investigated through a simulation study. In particular, the survival probabilities

are estimated for a number of values for Q = q and performance is compared

with that of the nonparametric estimator (ZT) of Zhao and Tsiatis (1999). The

simulation is carried out with data from both independent and dependent mod-

els. When data are generated from the dependent model, the effect of assuming

an independent model is investigated. The performance of the estimator is also
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investigated when all the transition times to the illness state are unobserved. In

another simulation study, the effect of model misspecification is investigated by

generating data for each transition time from a Weibull distribution and estimat-

ing the parameters under the assumption of an exponential distribution.

In each scenario, simulation is repeated 1000 times for sample sizes n =50 and

200. For one set of simulated data, n observations of the form {(x0i, δ0i, δ01i, x1i, δ1i),

i = 1, . . . , n} are generated from model 2, as described in Section 4.2.2. Based on

1000 such simulated data sets, 1000 estimates of the survival probability SQ(q)

are obtained using both parametric and nonparametric methods, which are then

averaged. The sample standard errors (SSE) are also obtained based on the 1000

estimated survival probabilities. The standard errors for the estimated survival

probabilities, obtained by using delta method for the parametric estimators and

the formula given in Zhao and Tsiatis (1999) for the ZT estimator, are averaged

over the 1000 simulations. These are similar to the corresponding SSE values

and, hence, not reported. The average bias (AB) and SSE are presented for each

simulation study. The results of simulation study are presented for simple illness-

death model 2 only. The results for model 1 (not presented here) are qualitatively

similar.

Simulation from Independent Model: Simulation is carried out from the

model 2 of Section 2.2 with λ01 = 0.02, λ12=0.04 and λ02=0.005. The censoring

variable C is assumed to have an exponential distribution, independent of T0 and

T12, with hazard rate λc=0.03. Simulation with many different sets of values for

the parameters (not reported here) led to similar findings. The probability of a

censored observation is given by P [C < X0]+ P [δ0 = δ01 = 1, C < X0 +X1]. For

the given parameter values, this leads to 70% censored observations. For each sim-

ulated data set, the parameters λ01, λ12 and λ02 are estimated by the maximum

likelihood method (while the parameter λc factors out), which are then substituted
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in the theoretical expression for the survival function of QAL (see (2.5) in Section

2.2.2) with w0 = 1 and w1 = 0.3, for different values of q. Let us call this as the

parametric (observed) estimate. The parameters are also estimated by assuming

that all the transition times to the illness state are unobserved and then estimated

survival probabilities are obtained; this is termed as the parametric (unobserved)

estimate. The Q values of the n observations are also computed which are used

to obtain the nonparametric estimate ZT for finite sample comparison with the

proposed parametric estimates. The results are presented in Table 4.4.

Table 4.4: Average bias (AB) and sample standard error (SSE) of the parametric

and ZT estimators for model 2 in independent case with constant hazard rates.

q SQ(q) n Parametric Parametric ZT

(observed) (unobserved)

AB SSE AB SSE AB SSE

8 0.906 50 -0.002 0.024 -0.002 0.024 -0.006 0.047

200 -0.001 0.012 -0.001 0.012 -0.002 0.024

20 0.706 50 -0.001 0.057 -0.002 0.058 -0.018 0.081

200 0.000 0.029 0.001 0.030 -0.004 0.042

35 0.492 50 0.003 0.076 0.004 0.077 -0.023 0.110

200 0.001 0.039 0.002 0.040 -0.009 0.053

55 0.299 50 0.006 0.078 0.008 0.078 -0.033 0.130

200 0.002 0.039 0.002 0.039 -0.013 0.060

70 0.206 50 0.007 0.068 0.009 0.070 -0.051 0.137

200 0.002 0.034 0.003 0.036 -0.017 0.069

90 0.125 50 0.008 0.055 0.010 0.057 -0.062 0.107

200 0.001 0.028 0.003 0.028 -0.025 0.074

As expected, the parametric (observed) estimator has the smallest bias and

standard errors, which are only marginally better than those of the parametric

(unobserved) estimator. The bias and standard errors of these two estimators are
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substantially less than those of the ZT estimator for small sample size (n=50).

As expected, the performance of all the three estimators improves with increasing

sample size. These results demonstrate the capability of the parametric method

to perform well even when the transition time to the illness state is completely

unobserved, while nonparametric estimator such as the ZT estimator cannot han-

dle such incompleteness of data.

Robustness Study: In another simulation study, data are generated from Weibull

hazards and the QAL distribution is estimated under the assumption of exponen-

tial hazards. In particular, we take λij(x) = pijλij(λijx)
pij−1, for 2 ≥ j > i = 0, 1.

As before, C is assumed to follow the exponential distribution with parameter λc

independent of T0 and T12. The two sets of parameters are considered with dif-

ferent values of the shape parameters. In both cases, the scale parameter values

are λ01 = 0.04, λ12 = 0.08, λ02 = 0.03 and λc = 0.04. The shape parameters

are taken as follows. In the first set, p01 = 1.1, p12 = 1.0 and p02 = 1.0 and,

in the second set, p01 = 1.3, p12 = 1.5 and p02 = 1.8. These two choices reflect

different extents of deviation from the exponential assumption. The censoring

percentages under the first and the second sets are 49 and 56, respectively. As

before, w0 = 1 and w1 = 0.3. The results for the observed case are reported in

Table 4.5. In this table, the entries under parametric (Weibull) and parametric

(exponential) give the estimates under the rightly assumed Weibull hazards and

wrongly assumed exponential hazards, respectively. As expected, the parametric

(exponential) estimator is biased, but the bias is less when the shape parameters

are not very different from 1 (the first set). The parametric estimator seems to be

robust against slight deviation from the assumption of exponential distribution.

This robustness makes the parametric estimator an attractive choice. The ZT es-

timator, as expected, performs well for large sample size (n=200), but not as well

for small sample size (n=50). This estimator is also more robust, as expected.
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Table 4.5: Average bias (AB) and sample standard error (SSE) of the parametric

and ZT estimators in the independent and observed case for the Weibull model

with two sets of parameters.

Parameter q SQ(q) n Parametric Parametric ZT

(Weibull) (exponential)

AB SSE AB SSE AB SSE

p01=1.1 2 0.931 50 0.001 0.039 -0.006 0.017 0.008 0.045

λ01=0.04 200 0.000 0.014 -0.004 0.008 0.002 0.028

p12=1.0 5 0.806 50 0.002 0.059 -0.014 0.039 -0.009 0.072

λ12=0.08 200 0.001 0.023 -0.009 0.018 0.002 0.035

p02=1.0 10 0.599 50 0.002 0.077 -0.014 0.061 -0.010 0.086

λ02=0.03 200 0.001 0.032 -0.010 0.029 0.001 0.039

λc=0.04 13 0.493 50 -0.001 0.081 -0.011 0.066 -0.011 0.090

200 0.000 0.034 -0.006 0.032 0.001 0.044

25 0.212 50 -0.004 0.076 0.007 0.059 -0.015 0.088

200 -0.001 0.032 0.007 0.029 -0.003 0.044

35 0.101 50 -0.003 0.062 0.013 0.043 -0.016 0.079

200 0.000 0.025 0.011 0.021 -0.004 0.040

p01=1.3 6 0.898 50 0.001 0.034 -0.084 0.029 -0.004 0.050

λ01=0.04 200 0.001 0.018 -0.075 0.017 0.000 0.028

p12=1.5 11 0.708 50 0.005 0.060 -0.065 0.045 -0.006 0.077

λ12=0.08 200 0.002 0.031 -0.064 0.029 -0.004 0.039

p02=1.8 16 0.514 50 0.002 0.071 -0.014 0.054 -0.009 0.091

λ02=0.03 200 0.000 0.036 -0.014 0.037 -0.002 0.041

λc=0.04 19 0.410 50 0.002 0.074 0.010 0.056 -0.008 0.094

200 0.000 0.036 0.008 0.035 -0.002 0.045

24 0.270 50 -0.005 0.072 0.061 0.056 -0.016 0.092

200 -0.002 0.036 0.060 0.035 -0.004 0.046

30 0.152 50 -0.007 0.061 0.091 0.053 -0.013 0.084

200 -0.002 0.031 0.099 0.032 -0.004 0.043
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Simulation from Dependent Model: Now the simulation study is carried out

with a slightly modified model where the distribution of T12 depends on the ob-

served value of T0. The dependence is modeled through the conditional hazard

rate, given T0 = x, which is taken as λ12(y|x) = λ12e
βx (See Section 2.2). Other

features of the simulation remain the same. The simulation is carried out by

choosing λ01 = 0.02, λ12= 0.04, λ02= 0.005 and λc =0.03, together with β = 0.1.

Under this set up, the censoring percentage is 61. The results for other β values

ranging from 0.005 to 0.2 are qualitatively similar.

For each simulated data set, QAL distribution is estimated in the observed

case using the likelihood (4.6) and expression (2.4) with w0 = 1 and w1 = 0.5, for

different values of q. This is termed as the parametric (dependent) estimate. In

order to investigate the effect of assuming independence between T0 and T12, es-

timated survival probabilities are also obtained by fitting the independent model,

referred to as the parametric (independent) estimate. The ZT estimate is calcu-

lated as before. The average bias (AB) and the SSE are presented in Table 4.6

for different q values.

As expected, the parametric (dependent) estimate, under the correctly as-

sumed dependent model, performs very well. The nonparametric ZT estimate

performs better than the parametric (independent) estimate, under the wrongly

assumed independent model, even for small sample size n=50, except in the tail

area, which is not surprising. With the increasing values of β, the parametric

(independent) estimate becomes worse. The standard errors of the parametric

(independent) estimates are, however, smaller than those of the ZT estimates,

which also result in smaller mean squared errors.
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Table 4.6: Average bias and sample standard error (SSE) of the parametric and

ZT estimators for model 2 in the dependent and observed case with constant

hazard rates.

q SQ(q) n Parametric Parametric ZT

(dependent) (independent)

AB SSE AB SSE AB SSE

8 0.914 50 -0.004 0.025 -0.040 0.027 -0.007 0.045

200 -0.001 0.012 -0.037 0.014 -0.001 0.022

18 0.711 50 -0.003 0.057 -0.023 0.053 -0.011 0.081

200 0.000 0.029 -0.020 0.027 -0.001 0.038

28 0.518 50 0.000 0.070 0.019 0.067 -0.016 0.093

200 0.000 0.037 0.021 0.035 -0.002 0.045

37 0.403 50 0.002 0.074 0.026 0.072 -0.013 0.101

200 0.001 0.039 0.028 0.038 -0.003 0.048

65 0.197 50 0.003 0.065 0.019 0.066 -0.032 0.129

200 0.001 0.033 0.018 0.035 0.003 0.054

90 0.105 50 0.005 0.049 0.014 0.051 -0.041 0.102

200 0.001 0.026 0.011 0.027 -0.005 0.066

4.2.4 Analysis of Heart Transplant Data

In this section, the data set of the Stanford Heart Transplant Program is analyzed

for illustration. The details about the program has been discussed in Chapter 1

(Section 1.5.1). This can be viewed as an illness-death model by equating the

event of heart transplantation with the incidence of illness. Both the simple

illness-death models (model 1 and model 2) are fitted for this data. While fitting

model 1, observations corresponding to deaths and lost to follow-up before trans-

plantation (a total of 30+4 = 34 cases) are considered as censored. For model 2,

only the cases lost to follow-up (only 4) are regarded as censored. Observations

on those alive, when last seen after transplantation (a total of 24 cases), are con-
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sidered as censored for both models 1 and 2. It is to be noted that there is a

subtle difference in the notion of QAL under the two models. While QAL under

model 2 represents the time to death with quality adjustment, that under model

1 represents the time to death from post-transplantation only, with quality ad-

justment, as direct deaths before transplantation are treated as censoring. Since

some deaths in model 2 are treated as censoring in model 1, the latter will give

higher survival for QAL (see Table 4.8).

The model 1 is fitted by letting T01 to be the sojourn time (in days) since

acceptance till the heart transplantation (waiting time) and T12 to be the survival

time after heart transplantation. The uncensored and censored observations on

T01 and T12 can be calculated easily from the date of acceptance into the Stanford

Program, date of heart transplantation (if carried out) and date of last obser-

vation or death before or after transplantation. Although the length of T01 is

observed here, we also estimate the parameters by assuming T01 to be unobserved

only to illustrate the method for the unobserved case. The model 2 is fitted by

considering the time since acceptance till death without heart transplantation.

As in the case of model 1, both the observed and unobserved cases are analyzed.

The Newton-Raphson method is used to maximize the likelihood function.

The first step in the parametric approach is to make an assessment of the pos-

sible models for the hazards in both model 1 and model 2. This involves testing

for the hazards λ01(x) and λ12(y|x) in model 1; the same is required for the cause

specific hazards λ01(x) and λ02(x), and for the hazard λ12(y|x), in model 2. In

order to make an assessment for the possible models of λ12(y|x), some graphi-

cal and correlation check are carried out based on uncensored data, for possible

dependence between T01 and T12, which gives evidence in favor of independence.

λ12(y|x) is also modeled by λ12(y|x) = λ12(y)e
βx with λ12(y) = p12λ12(λ12y)

p12−1

and β being the dependence parameter, to carry out an analytical test for β = 0.

The estimate of β is -0.00605 with standard error 0.00621 for both model 1 and
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Table 4.7: Estimated parameters and standard errors (in parentheses) for the

Stanford Heart Transplant Data.

Parameter Model 1 Model 2

Observed Unobserved Observed Unobserved

p01 0.663(0.056) 0.765(0.101) 0.663(0.056) 0.528(0.139)

λ01 0.014(0.003) 0.006(0.001) 0.014(0.003) 0.013(0.06)

p12 0.557(0.070) 0.278(0.081) 0.557(0.070) 0.475(0.108)

λ12 0.002(0.001) 0.003(0.002) 0.002(0.001) 0.002(0.001)

p02 - - 0.607(0.082) 0.550(0.085)

λ02 - - 0.004(0.001) 0.003(0.002)

model 2. This implies that β is not significant, giving evidence in favor of an

independent model against the model-specified dependence. Thereafter, assum-

ing independent model, it is found by graphical methods (Lawless, 2003) that

Weibull hazards give reasonably good fit for the observations, rather than the

commonly assumed exponential hazards, in both the models. Also it is evident

from the estimates of the shape parameters and the corresponding standard errors

in Table 4.7 that the null hypothesis of exponential hazard is rejected in favor of

the alternative hypothesis of Weibull hazard for each of the three sojourn time

variables. Hence, Weibull hazards are assumed with λij(x) = pijλij(λijx)
pij−1, for

2 ≥ j > i = 0, 1. Maximum likelihood estimates of the parameters, namely, p01,

λ01, p12, λ12, p02 and λ02, along with the standard errors (in parentheses) for both

observed and unobserved cases are given in Table 4.7. As expected, the standard

error of an estimate in an unobserved case is more than that in the corresponding

observed case except in respect of λ01 in model 1. The coefficient of variation is

always more in the unobserved case than in the observed case.

Next, the estimation of survival function for QAL distribution is consid-

ered for a heart patient starting from the time of acceptance into the Stanford
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Program. The utility coefficient w0 for the sojourn time till the transplant is

taken as 0.3 and, assuming that the heart transplantation improves the quality

of life to some extent, the coefficient w1 for the sojourn time till death since

heart transplantation is taken as 0.8. The estimated survival probabilities, using

the expressions (2.1) and (2.4) of Section 2.2 with λ01(x) = p01λ01(λ01x)
p01−1,

λ12(y|x) = p12λ12(λ12y)
p12−1 and λ02(x) = p02λ02(λ02x)

p02−1, and the estimated

parameters of Table 4.7, are presented in Table 4.8 for both models 1 and 2.

Table 4.8: Estimated survival probabilities and standard errors (in parentheses)

for the Stanford heart transplant data.

q Model 1 Model 2

Parametric Nonparametric Parametric Nonparametric

Observed Unobserved ZT Observed Unobserved ZT

10 0.961 0.933 0.989 0.779 0.769 0.815

(0.012) (0.021) (0.016) (0.034) (0.036) (0.039)

80 0.752 0.664 0.656 0.516 0.503 0.451

(0.041) (0.055) (0.056) (0.044) (0.051) (0.049)

150 0.632 0.537 0.592 0.429 0.414 0.385

(0.048) (0.066) (0.066) (0.044) (0.052) (0.050)

300 0.481 0.411 0.473 0.328 0.319 0.326

(0.053) (0.062) (0.061) (0.043) (0.049) (0.048)

400 0.417 0.369 0.451 0.285 0.281 0.309

(0.055) (0.060) (0.062) (0.043) (0.046) (0.048)

600 0.328 0.316 0.350 0.225 0.228 0.243

0.057) (0.059) (0.065) (0.043) (0.044) 0.048)

800 0.267 0.283 0.260 0.184 0.193 0.179

(0.057) (0.061) (0.069) (0.042) (0.043) (0.048)

The interesting point to note is the difference in survival estimates under model

1 and model 2 in each situation. Higher value of estimated survival probability in
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model 1 is because of the difference in the notion of QAL under the two models,

as pointed out at the beginning of this section. As for the parameter estimates in

Table 4.7, the standard errors for the survival estimates in the observed case are

smaller than those in the corresponding unobserved case. Table 4.8 also presents

the ZT estimates. As expected, the ZT estimates have somewhat larger standard

errors than the parametric estimates in the observed case. Note that the three

sets of survival estimates for a particular model are not very different from each

other, possibly because of the large sample size. The usefulness of the parametric

model for small sample size is seen in an analysis of data from a set of 50 randomly

selected patients out of 103 (results not reported here). While the parametric es-

timates remains stable, the ZT estimates seem to differ over the sample size. This

lends some support for the assumed parametric model.

4.3 Estimation in Progressive Illness-Death

Model

In this section, maximum likelihood estimation of the model parameters are ob-

tained for the progressive illness-death models (see Figures 2.3 and 2.4) discussed

in Section 2.3. The distribution of QAL is then estimated by substituting the

model parameters by their estimates. In practice, for some individuals, all the

transition times may not be observed. The model parameters can still be esti-

mated by maximum likelihood method.

4.3.1 Estimation in Progressive Illness-Death Model 1

First, consider the case when all the transition times are observed for all the

individuals. An observation terminates due to either death (in which case all the

sojourn times T01,. . .,Tk,k+1 are observed as uncensored) or censoring (in which
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case the first few sojourn times are uncensored and the next one is censored with

subsequent ones not being observed at all). Therefore, the observations on an

individual consists of the censoring indicator variable δ and the corresponding

(uncensored or censored) sojourn times. The observations are given below.

1. For j = 0, 1, . . . , k, write

δj =





0, if censoring takes place in state j

j + 1, if transition takes place from state j to state j + 1

(that is, Tj,j+1 < C −
j−1∑

l=0

Tl,l+1).

Note that for j = 0,
∑j−1

l=0 Tl,l+1 is treated to be 0.

2. Write X0 = min(T01, C).

3. For j = 1, . . . , k, if δj−1 = j, write Xj = min


Tj,j+1, C −

j−1∑

l=0

Tl,l+1


.

For j = 1, . . . , k, whenever δj−1 = 0, the state j and the subsequent states j + 1

, . . . , k are not attained. Then we write Xl = δl = −1, for l = j, j+1, . . . , k. For n

individuals, the data set is then given by {(xji, δji), j = 0, 1, . . . , k, i = 1, . . . , n},
where (xji, δji) denotes the observed value of (Xj, δj) for the ith individual. The

likelihood contribution for such observation can, therefore, be written as

L1 =





e−Λ01(x0), if δ0 = 0
j−1∏

m=0

[
λm,m+1(xm|x(m−1))e−Λm,m+1(xm|x(m−1))

]

×e−Λj,j+1(xj |x
(j−1)), for j = 1, . . . , k if δj = 0.

k∏

m=0

[
λm,m+1(xm|x(m−1))e−Λm,m+1(xm|x(m−1))

]
, if δk = k + 1

The total likelihood L is the product of contributions of the form L1, over the

individuals under study. In the independent case, the likelihood is simply the

product of likelihood contributions from individual health states and the estima-

tion becomes simple.
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When some of the transitions (that is, the corresponding sojourn times) are

not observed for an individual, the likelihood contribution can be obtained by

integrating an expression of the form L1 over the unobserved sojourn times with

ranges determined by the available observations. For example, suppose we ob-

serve δk = k+1 and all the sojourn times, except Tm0−1,m0 and Tm0,m0+1; instead,

we observe Tm0−1,m0+Tm0,m0+1=tm0 , say, so that the m0th transition time is un-

observed. Then, the corresponding likelihood contribution is given by

∫ tm0

0

k∏

m=0

[
λm,m+1(xm|x(m−1))e−Λm,m+1(xm|x(m−1))

]
dxm0−1,

where xm0 = tm0−xm0−1. The first (m0−2) terms in the product inside the integral

do not depend on xm0−1 and, hence, can be taken outside the integral. Each of the

remaining terms, however, depends on xm0−1, except in the independent model.

The likelihood contribution can be, in principle, obtained even when there are

more than one unobserved transitions, but the notation becomes increasingly

difficult. One can now directly maximize the observed likelihood using some

numerical technique or employ the EM algorithm suitably.

4.3.2 Estimation in Progressive Illness-Death Model 2

The observations, as in Section 4.3.1, for progressive illness-death model 2 are

described below.

1. For j = 0, 1, . . . , k, write

δj =





0, if censoring takes place in state j

j + 1, if transition takes place from state j to state j + 1

(that is, Tj,j+1 < Tj,k+1, C −
j−1∑

l=0

Tl,l+1)

k + 1, if transition takes place from state j to state k + 1

(that is, Tj,k+1 < Tj,j+1, C −
j−1∑

l=0

Tl,l+1).
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Note that for j = 0,
∑j−1

l=0 Tl,l+1 is treated to be 0.

2. Write X0 = min(T01, T0,k+1, C).

3. For j = 1, . . . , k−1, if δj−1 = j, writeXj = min


Tj,j+1, Tj,k+1, C −

j−1∑

l=0

Tl,l+1


,

and if δk−1 = k, Xk = min

(
Tk,k+1, C −

k−1∑

l=0

Tl,l+1

)
.

4. For j = 1, . . . , k, whenever δj−1 = 0 or k+1, the state j and the subsequent

states j + 1, . . . , k are not attained. Then, we write Xl = δl = −1 for

l = j, j + 1, . . . , k.

For n individuals, the data set is then given by {(xji, δji), j = 0, 1, . . . , k, i =

1, . . . , n}, where (xji, δji) denotes the observed value of (Xj, δj) for the ith indi-

vidual. The likelihood contribution for such observation can, therefore, be written

as

L2 =





e−(Λ01(x0)+Λ0,k+1(x0)), if δ0 = 0
j−1∏

m=0

[
λm,m+1(xm|x(m−1))e−(Λm,m+1(xm|x(m−1))+Λm,k+1(xm|x(m−1)))

]

×e−(Λj,j+1(xj |x
(j−1))+Λj,k+1(xj |x

(j−1))), for j = 1, . . . , k − 1, if δj = 0,
k−1∏

m=0

[
λm,m+1(xm|x(m−1))e−(Λm,m+1(xm|x(m−1))+Λm,k+1(xm|x(m−1)))

]

×e−Λk,k+1(xk|x
(k−1)), if δk = 0.

λ0,k+1(x0)e
−(Λ0,1(x0)+Λ0,k+1(x0)), if δ0 = k + 1,

j−1∏

m=0

[
λm,m+1(xm|x(m−1))e−(Λm,m+1(xm|x(m−1))+Λm,k+1(xm|x(m−1)))

]

×λj,k+1(xj|x(j−1))e−(Λj,j+1(xj |x
(j−1))+Λj,k+1(xj |x

(j−1))),

for j = 1, . . . , k − 1, if δj = k + 1,
k−1∏

m=0

[
λm,m+1(xm|x(m−1))e−(Λm,m+1(xm|x(m−1))+Λm,k+1(xm|x(m−1)))

]

×λk,k+1(xj|x(j−1))e−Λk,k+1(xk|x
(k−1)), if δk = k + 1.
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The total likelihood L is the product of contributions of the form L2, over

the individuals under study. In the independent case, the likelihood is simply

the product of likelihood contributions from individual health states and the es-

timation becomes simple. When some transition times are not observed, the

corresponding likelihood can, in theory, be obtained using the same technique as

that of the previous section.

4.3.3 Simulation Study

The bias and precision of the estimator of QAL distribution are investigated

through a simulation study as in simple illness-death models. The simulation

is carried out for progressive illness-death model 1 with k=2. It is assumed that

the sojourn times T01, T12 and T23 are independent and follow exponential distri-

butions with parameters λ01 = 0.03, λ12 = 0.02 and λ23 = 0.04. The censoring

variable C is assumed to follow another exponential distribution with parameter

λc = 0.0125 and independent of T01, T12 and T23. For each simulated data set,

the QAL survival probabilities are estimated using (2.7) and the nonparametric

method (ZT) of Zhao and Tsiatis (1999) with w0 = 0.5, w1 = 1 and w2 = 0.5.

This simulation is repeated 1000 times with n = 100. Based on 1000 estimates of

survival probabilities SQ(q), average bias (AB) and sample standard error (SSE)

are computed and reported in the left panel of Table 4.9. As expected, the para-

metric method gives more efficient estimates with less bias in the tail area.

In order to study robustness, the simulation model now assumes Weibull dis-

tribution for T01 with λ01(x) = α01λ01 (λ01x)
α01−1 = 2(0.03)2x (that is the shape

parameter is equal to 2 and scale parameter is equal to 0.03). Also, T12, T23 and

C follow exponential distributions with λ12 = 0.02, λ23 = 0.04 and λc = 0.0125,

as before. However, the estimation is carried out using (2.7) and the nonpara-

metric method (ZT). The results are reported in the right panel of Table 4.9. As
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expected, the nonparametric method gives more robust estimates.

Table 4.9: The average bias (AB), sample standard error (SSE) of parametric and

nonparametric (ZT estimates) estimates for a three-state progressive illness-death

model.

q Exponential Weibull

SQ(q) Parametric ZT SQ(q) Parametric ZT

AB SSE AB SSE AB SSE AB SSE

25 0.902 -0.002 0.018 -0.002 0.037 0.923 -0.021 0.017 -0.004 0.033

35 0.809 -0.003 0.031 -0.002 0.051 0.818 -0.009 0.029 -0.003 0.051

50 0.655 -0.003 0.046 -0.007 0.070 0.642 0.013 0.043 -0.007 0.066

65 0.510 -0.001 0.053 -0.012 0.081 0.487 0.025 0.051 -0.009 0.077

85 0.354 0.001 0.054 -0.021 0.087 0.330 0.028 0.053 -0.008 0.082

105 0.241 0.003 0.050 -0.027 0.089 0.222 0.024 0.050 -0.009 0.081

130 0.148 0.003 0.041 -0.024 0.083 0.135 0.018 0.042 -0.012 0.080

4.3.4 Analysis of IBCSG Trial V Data

The proposed methodology is illustrated using data from the IBCSG Trial V

(See Section 1.5.2, Chapter 1). In this data, there is no direct death from the

first two states and, therefore, the progressive illness-death model 1 is used for

the analysis. Other work using this example also consider the same illness-death

model. Using the notation of Section 2.3.1, write T01=TOX, T12=TWiST and

T23=REL, and they are measured in months. Let w0, w1 and w2 are the utility

coefficients corresponding to three health states. Then, QAL is given by

Q = w0 × T01 + w1 × T12 + w2 × T23,

The objective is to estimate the QAL distribution for the patients by parametric

method with suitably chosen distributions for the sojourn times T01, T12 and T23.
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Both short duration chemotherapy (Treatment Group 0, say) and the long

duration chemotherapy (Treatment Group 1, say) are considered for this analysis.

First, we make an assessment of the possible models for the distribution of T01,

T12 and T23. Since the number of distinct observations on T01 are rather few, the

distribution of T01 is modeled by a discrete distribution in both the groups. Let

pj = P (T01 = tj), for j = 1, . . . ,m, with
∑m

j=1 pj = 1. Here tj, j = 1, . . . ,m, de-

note the m distinct mass points. Note that m and the tj’s and pj’s vary over the

two treatment groups. The observations on T01 are 0, 1 and 3 in Group 0 and 0,

1,. . .,9 in Group 1. For T12 and T23, the possible models are assessed by graphical

methods. It is observed that exponential distribution gives reasonably good fit

for the observations on both T12 and T23 in treatment Group 0, whereas Weibull

distribution seems to fit well for both T12 and T23 in Treatment Group 1. Possi-

ble dependence between any two successive sojourn time variables is checked by

scatter plot of the corresponding uncensored observations. It is seen that there is

no indication of dependence among the successive sojourn times. So independent

model is considered in both the groups. We take exponential model for Ti,i+1 with

λi,i+1(x) = λi,i+1, for i = 1, 2, in Group 0. In Group 1, we take Weibull model for

Ti,i+1 with λi,i+1(x) = αi,i+1λi,i+1(λi,i+1x)
(αi,i+1−1), for i= 1, 2. The model parame-

ters are estimated by maximum likelihood method (See Section 4.3.1). Estimated

model parameters along with their standard errors (in parentheses) are given in

Table 4.10.

Next, estimated survival probabilities of QAL are obtained by using (2.6)

and utility coefficients w0=0.5, w1=1 and w2=0.5, as in Zhao and Tsiatis (1999).

Estimated survival probabilities for several q values along with their standard er-

rors in parentheses are reported in Table 4.11 under Method 1. The entries under

Method 2 are obtained by using (2.7), based on the assumption that the sojourn

time distribution in each health state follows exponential distribution. For the

sake of comparison with a nonparametric method, the ZT estimate is also ob-
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Table 4.10: Estimated parameters and standard errors (in parentheses) for the

IBCSG Trial V dataset.

Treatment Group 0 Treatment Group 1

p̂1= 0.287 (0.022) p̂1= 0.077 (0.009), p̂2= 0.054 (0.008)

p̂2= 0.647 (0.024) p̂3= 0.034 (0.006), p̂4=0.047 (0.008)

p̂5= 0.067 (0.009), p̂6= 0.077 (0.009)

λ̂12= 0.014 (0.001) p̂7= 0.138 (0.012), p̂8= 0.133 (0.012)

λ̂23= 0.030 (0.002) p̂9= 0.254 (0.015)

α̂12= 0.842 (0.039), λ̂12= 0.008 (0.001)

α̂23= 0.904 (0.044), λ̂23= 0.042 (0.003)

tained. The survival probabilities are also estimated by treating all the transition

times from TWiST to Relapsed as unobserved and with the same distributional

assumptions as those in Method 1. These estimates are reported under Unob-

served. There is little difference in the estimated survival probabilities between

Method 1 and Method 2 in both treatment groups. Even the estimates in the Un-

observed case are not very different from those of Method 1 and Method 2 in both

the groups. The estimates in the Unobserved case have higher standard errors, as

expected. One can also observe that the parametric estimates are similar to the

nonparametric ZT estimates (possibly because the sample size is very large) and

with lower standard errors, as expected.



85

Table 4.11: Estimated survival probabilities and standard errors (in parentheses)

for the IBCSG Trial V dataset.

q Treatment Group 0 Treatment Group 1

Method 1 Method 2 ZT Unobserved Method 1 Method 2 ZT Unobserved

5 0.992 0.992 0.998 0.991 0.996 0.997 0.994 0.991

(0.001) (0.001) (0.002) (0.001) (0.001) (0.000) 0.003 (0.006)

10 0.970 0.970 0.968 0.967 0.975 0.983 0.975 0.957

(0.003) (0.003) (0.009) (0.003) (0.003) (0.001) (0.005) (0.014)

20 0.899 0.899 0.895 0.892 0.912 0.932 0.885 0.878

(0.007) (0.007) (0.015) (0.008) (0.007) (0.004) (0.011) (0.023)

30 0.812 0.812 0.754 0.803 0.843 0.867 0.815 0.805

(0.012) (0.012) (0.021) (0.013) (0.010) (0.007) (0.014) (0.028)

40 0.723 0.723 0.661 0.715 0.777 0.800 0.765 0.742

(0.016) (0.016) (0.023) (0.017) (0.012) (0.010) (0.015) (0.029)

50 0.638 0.638 0.598 0.632 0.716 0.734 0.712 0.688

(0.019) (0.019) (0.025) (0.019) (0.013) (0.012) (0.016) (0.028)

70 0.491 0.490 0.447 0.489 0.612 0.616 0.636 0.603

(0.022) (0.022) (0.027) (0.022) (0.015) (0.015) (0.017) (0.021)

90 0.373 0.373 0.361 0.376 0.526 0.516 0.515 0.538

(0.023) (0.023) (0.040) (0.023) (0.017) (0.018) (0.022) (0.018)

100 0.325 0.325 0.291 0.330 0.489 0.472 0.485 0.511

(0.022) (0.023) (0.040) (0.023) (0.018) (0.018) (0.025) (0.019)

4.4 Estimation in Competing Illness-Death

Model

In this Section, estimation of model parameters are considered for both the com-

peting illness-death models (See Figures 2.5 and 2.6) of Section 2.4 when transi-
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tion time to illness states are observed for all the individuals. In principle, the

model parameters can be estimated even when transition time to illness states are

unobserved. The observations and likelihood functions are given below.

4.4.1 Estimation in Competing Illness-Death Model 1

The observations are described as follows.

1. X0 = min{T01, . . . , T0k, C}, δ0 =
k∑

j=1

jI(T0j = min{C, T01, . . . , T0k}).

2. If δ0 = j, then X1 = min(Tj,k+1, C − T0j) and δ1 = I(T0j + Tj,k+1 ≤ C).

Note that δ0 = j, if T0j = min{T01, . . . , T0k, C}, for j = 1, . . . , k, and δ0 = 0 if

C < min{T01, . . . , T0k}. For n individuals, we have the data set {(x0i, δ0i, x1i, δ1i),

i = 1, . . . , n}. For convenience, let us write x1i = δ1i = −1 whenever δ0i = 0. The

likelihood function can then be written as

LC1 ∝
n∏

i=1

S0(x0i)
1−δ0i

k∏

j=1

{
λ0j(x0i)S0(x0i) [λj,k+1(x1i|x0i)]

δ1i Sj,k+1(x1i|x0i)
}I(δ0i=j)

,

(4.8)

where S0(y) = exp


−

k∑

j=1

Λ0j(y)


 and Sj,k+1(y|x) = exp [−Λj,k+1(y|x)], for j =

1, . . . , k. We consider the special case when T0j and Tj,k+1 are independent expo-

nential variates with λ0j(y) = λ0j and λj,k+1(y|x) = λj,k+1, for j = 1, . . . , k. Then

the likelihood (4.8) simplifies to

LC1 ∝
n∏

i=1

exp [−λ(1 − δ0i)x0i]
k∏

j=1

{
λ0j exp [−λx0i]λ

δ1i

j,k+1 exp [−λj,k+1x1i]
}I(δ0i=j)

,

where λ =
∑k

j=1 λ0j. The maximum likelihood estimates of the parameters are

obtained as

λ̂0j =

n∑

i=1

I(δ0i=j)

n∑

i=1

(1 − δ0i)x0i +
n∑

i=1

x0i

k∑

j=1

I(δ0i=j)

=
n0j

n∑

i=1

x0i

, for j = 1, . . . , k,
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and λ̂j,k+1 =

n∑

i=1

δ1iI(δ0i=j)

n∑

i=1

I(δ0i=j)x1i

=
nj,k+1

n∑

i=1

I(δ0i=j)x1i

, for j = 1, . . . , k,

where n0j =
∑n

i=1 I(δ0i=j) is the number of transition to state j from state 0 and

nj,k+1 =
∑n

i=1 δ1iI(δ0i=j) is the same from state j to state k + 1.

4.4.2 Estimation in Competing Illness-Death Model 2

The observations are described as follows.

1. X0 = min{T01, . . . , T0k, , T0,k+1, C}, δ0 = I(min{T01, . . . , T0k, T0,k+1} ≤ C).

2. If δ0 = 1, then δ01 =
k∑

j=1

jI (T0j = min{T0,k+1, T01, . . . , T0k}).

3. If δ01 = j, then X1 = (Tj,k+1, C − T0j) and δ1 = I(T0j + Tj,k+1 ≤ C).

Note that δ0 = 0, if C < min{T01, . . . , T0k, T0,k+1} and δ0 = 1 otherwise; when

δ0 = 1, we have δ01 = 0, if death occurs directly from 0, that is T0,k+1 <

min{T01, . . . , T0k}, and δ01 = j if the transition from 0 is to state j, that is

T0j = min{T01, . . . , T0k, T0,k+1}. For n individuals, the data set is given by

{(x0i, δ0i, δ01i, x1i, δ1i), i = 1, . . . , n}. As before, whenever any of {(δ01i, x1i, δ1i), i =

1, . . . , n} does not exist, we write them as -1. The likelihood function can be writ-

ten as

LC2 ∝
n∏

i=1

S0(x0i)
1−δ0i{λ0,k+1(x0i)S0(x0i)}δ0i(1−δ01i)

×




k∏

j=1

(
λ0j(x0i)S0(x0i) [λj,k+1(x1i|x0i)]

δ1i Sj,k+1(x1i|x0i)
)I(δ01i=j)





δ0i

,(4.9)

where S0(y) = exp


−

k∑

j=1

Λ0j(y) − λ0,k+1(y)


 and Sj,k+1(y|x) = exp [−Λj,k+1(y|x)] .

Under the special case, when T0j, Tj,k+1 and T0,k+1 are independent expo-

nential variates with λ0j(y) = λ0j, λj,k+1(y|x) = λj,k+1, for j = 1, . . . , k and
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λ0,k+1(y) = λ0,k+1, the likelihood function (4.9) becomes

LC2 ∝
n∏

i=1

exp [−λ′(1 − δ0i)x0i]λ
δ0i(1−δ01i)
0,k+1 exp [−λ′δ0i(1 − δ01i)x0i]

×




k∏

j=1

(
λ0j exp (−λ′x0i) × λδ1i

j,k+1 exp [−λj,k+1x1i]
)I(δ01i=j)





δ0i

,

where λ′ =
∑k

j=1 λ0j+λ0,k+1. The maximum likelihood estimates of the parameters

are obtained as

λ̂0j =

n∑

i=1

δ0iI(δ01i=j)

n∑

i=1

x0i −
n∑

i=1

δ0iδ01ix0i +
n∑

i=1

δ0ix0i

k∑

j=1

I(δ01i=j)

=
n0j

n∑

i=1

x0i

, for j = 1, . . . , k.

λ̂j,k+1 =

n∑

i=1

δ0iδ1iI(δ01i=j)

n∑

i=1

δ0iI(δ01i=j)x1i

=
nj,k+1

n∑

i=1

I(δ01i=j)x1i

, for j = 1, . . . , k

and

λ̂0,k+1 =

n∑

i=1

δ0i(1 − δ01i)

n∑

i=1

x0i −
n∑

i=1

δ0iδ01ix0i +
n∑

i=1

δ0ix0i

k∑

j=1

I(δ01i=j)

=
n0,k+1
n∑

i=1

x0i

,

where n0j =
∑n

i=1 δ0iI(δ01i=j) and nj,k+1 =
∑n

i=1 δ0iδ1iI(δ01i=j) are, as before, the

number of transitions to state j from state 0 and the same to state k+1 from state

j, respectively, and n0,k+1 =
∑n

i=1 δ0i(1 − δ01i) is the number of direct transitions

from state 0 to state k + 1.

4.4.3 Simulation Study

In this section, the finite sample properties of the estimator of QAL distribution

are investigated through a simulation study. As before, the performance of the

estimator is compared with that of the ZT estimator. The simulation study is

carried out for competing illness-death model 1 by choosing k = 3, λ01 = 0.04,
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λ02 = 0.05, λ03 = 0.06, λ14 = 0.08, λ24 = 0.15 and λ34 = 0.10. The censoring

variable C is assumed to have an exponential distribution, independent of all the

sojourn time variables, with hazard rate λc=0.035. The simulation is repeated

1000 times for sample sizes n = 10, 30 and 100.

For each set of simulated data, n observations of the form {(x0i, δ0i, δ01i,

x1i, δ1i), i = 1, . . . , n}, as described in Section 4.4.1, are generated and the six

parameters are estimated. The survival probabilities are estimated with w0 = 1,

w1 = 0.6, w2 = 0.5, w3 = 0.4 and using (2.11). Based on 1000 such simulated

data sets, the average bias (AB) and sample standard error (SSE) of parametric

and nonparametric (ZT) estimators are presented in Table 4.12.

As expected, the estimates of bias for both parametric and nonparametric

methods are small for large sample size (n=100). For n=30, the bias is still fairly

small, except that the nonparametric methods tends to be biased in the tail, as ex-

pected. Also, for small sample size (n=10), as expected, both the parametric and

nonparametric estimates are biased and more so in the tail. The bias of the non-

parametric estimate is always higher in the tail area. As expected, the parametric

method gives more efficient estimates than the nonparametric method in all cases.

The medians of both parametric and nonparametric estimates are also calculated,

but not reported here, to study the symmetricity of the sampling distribution of

the proposed estimate. There is evidence that the sampling distribution of the

estimate may be symmetric for large sample size.

4.5 Estimation in Reversible Illness-Death Model

Estimation of parameters are considered for the two reversible illness-death models

(See Figures 2.7 and 2.8) discussed in Section 2.5. We consider only the case when

transition times to illness state are observed for all the individuals. As in Sections

2.5.1 and 2.5.2, the different transition times are assumed independent and the
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Table 4.12: The average estimate (AB) and sample standard error (SSE) in paren-

theses of parametric and nonparametric (ZT) estimators for the competing illness-

death model 1 for n= 10, 30 and 100.

q SQ(q) Parametric ZT

n=10 n=30 n=100 n=10 n=30 n=100

2 0.946 -0.018 -0.005 -0.001 0.010 -0.003 -0.001

(0.034) (0.017) (0.009) (0.075) (0.045) (0.024)

4 0.831 -0.030 -0.009 -0.003 -0.005 -0.005 0.000

(0.076) (0.044) (0.023) (0.144) (0.076) (0.042)

6 0.700 -0.025 -0.010 -0.002 -0.020 -0.006 -0.003

(0.104) (0.064) (0.035) (0.182) (0.097) (0.053)

9 0.516 -0.008 -0.003 0.000 -0.025 -0.008 -0.003

(0.126) (0.081) (0.044) (0.212) (0.110) (0.060)

12 0.368 0.015 0.006 0.002 -0.037 -0.010 -0.005

(0.134) (0.083) (0.045) (0.211) (0.118) (0.061)

15 0.258 0.033 0.011 0.003 -0.055 -0.019 -0.004

(0.129) (0.078) (0.043) (0.189) (0.115) (0.058)

22 0.108 0.056 0.018 0.004 -0.052 -0.027 -0.008

(0.114) (0.058) (0.029) (0.118) (0.086) (0.051)

sojourn times T
(l)
jk , for l = 1, . . . , are identically distributed for jk = 01, 02, 10 and

12.

4.5.1 Estimation in Reversible Illness-Death Model 1

Observation on an individual terminates either by censoring or by death. Let U

denote the number of observed recoveries from state 1 to state 0. Note that U

takes values 0, 1, . . .. Given U = u, let us write, for l = 1, . . . , u,

1. X
(l)
01 = min



T

(l)
01 , C −

l−1∑

j=1

(
T

(j)
01 + T

(j)
10

)


 = T

(l)
01 ,
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2. X
(l)
10 = min



T

(l)
10 , T

(l)
12 , C −

l∑

j=1

T
(j)
01 −

l−1∑

j=1

T
(j)
10



 = T

(l)
10 ,

3. X
(u+1)
01 = min



T

(u+1)
01 , C −

u∑

j=1

(
T

(j)
01 + T

(j)
10

)


 and

δ0 = I


T (u+1)

01 < C −
u∑

j=1

(
T

(j)
01 + T

(j)
10

)

,

4. If δ0 = 1, then we also observe,

X
(u+1)
10 = min



T

(u+1)
10 , T

(u+1)
12 , C −

u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10





= min



T

(u+1)
12 , C −

u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10





and δ1 = I


T (u+1)

12 < C −
u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10


.

For n individuals, we have the data set

{
(ui, (x

(l)
01i, x

(l)
10i, l = 1, . . . , ui), x

(ui+1)
01i , δ0i, x

(ui+1)
10i , δ1i), i = 1, . . . , n

}
.

As before, if any of these observations does not exist, we write that as -1. The

likelihood function can be written as

LR1 ∝
n∏

i=1

ui∏

l=1

{
λ01(x

(l)
01i) exp

[
−Λ01(x

(l)
01i)

]
λ10(x

(l)
10i)SR1

(
x

(l)
10i

)}
×
(
λ01(x

(ui+1)
01i )

)δ0i

× exp
[
−Λ01(x

(ui+1)
01i )

] (
λ12(x

(ui+1)
10i )

)δ0iδ1i
(
SR1(x

(ui+1)
10i )

)δ0i

, (4.10)

where SR1(x) = exp [−(Λ10(x) + Λ12(x))]. Under the special case, when T01, T10

and T12 are exponential variates with λ01(y) = λ01, λ10(y) = λ10 and λ12(y) = λ12,

the likelihood function (4.10) simplifies to

LR1 ∝
n∏

i=1

ui∏

l=1

{
λ01 exp[−λ01x

(l)
01i]λ10 exp[−(λ10 + λ12)x

(l)
10i]
}

×λδ0i
01 exp[−λ01x

(ui+1)
01i ]λδ0iδ1i

12 exp[−δ0i(λ10 + λ12)(x
(ui+1)
10i )].
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The maximum likelihood estimates of the parameters are obtained as

λ̂01 =

n∑

i=1

ui +
n∑

i=1

δ0i

n∑

i=1

ui+1∑

l=1

x
(l)
01i

, λ̂10 =

n∑

i=1

ui

n∑

i=1

vi∑

l=1

x
(l)
10i +

n∑

i=1

δ0ix
(ui+1)
10i

and

λ̂12 =

n∑

i=1

δ0iδ1i

n∑

i=1

ui∑

l=1

x
(l)
10i +

n∑

i=1

δ0ix
(ui+1)
10i

.

4.5.2 Estimation in Reversible Illness-Death Model 2

As before, given U = u, we have, for l = 1, . . . , u, the following observations.

1. X
(l)
01 = min



T

(l)
01 , T

(l)
02 , C −

l−1∑

j=1

(
T

(j)
01 + T

(j)
10

)


 = T

(l)
01 ,

2. X
(l)
10 = min



T

(l)
10 , T

(l)
12 , C −

l∑

j=1

T
(j)
01 −

l−1∑

j=1

T
(j)
10



 = T

(l)
10 ,

3. X
(u+1)
01 = min



T

(u+1)
01 , T

(u+1)
02 , C −

u∑

j=1

(
T

(j)
01 + T

(j)
10

)


 and

δ0 = I


T (u+1)

01 ∧ T (u+1)
02 < C −

u∑

j=1

(
T

(j)
01 + T

(j)
10

)

,

4. If δ0 = 1, then δ01 = I
(
T

(u+1)
01 < T

(u+1)
02

)
.

5. If δ01 = 1, then we observe,

X
(u+1)
10 = min



T

(u+1)
10 , T

(u+1)
12 , C −

u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10





= min



T

(u+1)
12 , C −

u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10





and δ1 = I


T (u+1)

12 < C −
u+1∑

j=1

T
(j)
01 −

u∑

j=1

T
(j)
10


.
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For n individuals, we have the data set

{(
ui, (x

(l)
01i, x

(l)
10i, l = 1, . . . , ui), x

(ui+1)
01i , δ0i, δ01i, x

(ui+1)
10i , δ1i

)
, i = 1, . . . , n

}
.

The likelihood function can be written as

LR2 ∝
n∏

i=1

ui∏

l=1

{
λ01(x

(l)
01i)SR0(x

(l)
01i)λ10(x

(l)
10i)SR1

(
x

(l)
10i

)}

×
(
λ01(x

(ui+1)
01i )

)δ0iδ01i
(
λ02(x

(ui+1)
01i )

)δ0i(1−δ01i)
SR0(x

(ui+1)
01i )

×
(
λ12(x

(ui+1)
10i )

)δ0iδ01iδ1i
(
SR1(x

(ui+1)
10i )

)δ0iδ01i

, (4.11)

where SR0(x) = exp [−(Λ01(x) + Λ02(x))] and SR1(x) = exp [−(Λ10(x) + Λ12(x))].

With constant hazards, that is λ01(y) = λ01, λ10(y) = λ10, λ02(y) = λ02 and

λ12(y) = λ12, the likelihood function (4.11) becomes

LR2 ∝
n∏

i=1

ui∏

l=1

{
λ01 exp[−(λ01 + λ02)x

(l)
01i]λ10 exp[−(λ10 + λ12)x

(l)
10i]
}

×λδ0iδ01i
01 λ

δ0i(1−δ01i)
02 exp[−(λ01 + λ02)x

(ui+1)
01i ]

×λδ0iδ01iδ1i
12 exp[−δ0iδ01i(λ10 + λ12)(x

(ui+1)
10i )].

The maximum likelihood estimate of the parameters are obtained as

λ̂01 =

n∑

i=1

ui +
n∑

i=1

δ0iδ01i

n∑

i=1

ui+1∑

l=1

x
(l)
01i

, λ̂10 =

n∑

i=1

ui

n∑

i=1

ui∑

l=1

x
(l)
10i +

n∑

i=1

δ0iδ01ix
(ui+1)
10i

,

λ̂02 =

n∑

i=1

δ0i(1 − δ01i)

n∑

i=1

ui+1∑

l=1

x
(l)
01i

and λ̂12 =

n∑

i=1

δ0iδ01iδ1i

n∑

i=1

ui∑

l=1

x
(l)
10i +

n∑

i=1

δ0iδ01ix
(ui+1)
10i

.

4.5.3 Simulation Study

In this section, the finite sample properties of the estimator of QAL distribu-

tion are investigated through simulation. The performance of the estimator is
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compared with that of the nonparametric estimator ZT. The simulation study

is carried out for reversible illness-death model 1 with λ01 = 0.02, λ10 = 0.03,

λ12 = 0.04 and λc = 0.01. As before, simulation is repeated 1000 times for sample

sizes n = 10, 30 and 100. For each set of simulated data set, n observations, as

described in Section 4.5.1, are generated and the three parameters λ01, λ10 and

λ12 are estimated. The survival probabilities are estimated with w0 = 1, w1 = 0.5

and using (2.13). Based on 1000 such simulated data sets, average bias (AB) and

SSE (in parentheses) are reported in Table 4.13.

As expected, the estimates of bias for both parametric and nonparametric

methods are small for large sample size (n=100). For n=30, the bias is still fairly

small, except that the nonparametric methods tends to be biased in the tail, as ex-

pected. Also, for small sample size (n=10), as expected, both the parametric and

nonparametric estimates are biased and more so in the tail. The bias of the non-

parametric estimate is always higher in the tail area. As expected, the parametric

method gives more efficient estimates than the nonparametric method in all cases.

The medians of both parametric and nonparametric estimates are also calculated,

but not reported here, to study the symmetricity of the sampling distribution of

the proposed estimate. There is evidence that the sampling distribution of the

estimate may be symmetric for large sample size.
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Table 4.13: The average bias(AB) and sample standard error (SSE) in parentheses

of parametric and nonparametric (ZT) estimators for the Reversible illness-death

model 1 for n=10, 30 and 100.

q SQ(q) Parametric ZT

n=10 n=30 n=100 n=10 n=30 n=100

10 0.950 -0.006 -0.002 0.000 0.008 -0.002 -0.002

(0.030) (0.016) (0.008) (0.072) (0.043) (0.020)

25 0.822 -0.013 -0.006 -0.002 -0.016 -0.012 -0.008

(0.085) (0.048) (0.020) (0.141) (0.076) (0.042)

40 0.702 -0.014 -0.009 -0.003 -0.037 -0.017 -0.014

(0.123) (0.071) (0.037) (0.175) (0.094) (0.054)

60 0.566 -0.009 -0.008 -0.002 -0.051 -0.029 -0.011

(0.152) (0.089) (0.047) (0.208) (0.111) (0.061)

90 0.411 0.002 -0.005 -0.002 -0.070 -0.042 -0.031

(0.169) (0.098) (0.053) (0.231) (0.123) (0.066)

130 0.267 0.019 0.001 0.000 -0.102 -0.052 -0.039

(0.167) (0.093) (0.051) (0.182) (0.133) (0.070)

200 0.126 0.035 0.008 0.002 -0.086 -0.063 -0.042

(0.144) (0.071) (0.039) (0.161) (0.106) (0.069)



Chapter 5

Nonparametric Estimation of

QAL Distribution

5.1 Introduction

This chapter considers the nonparametric estimation of quality adjusted lifetime

distribution in illness-death models. There have been a number of work develop-

ing nonparametric methods for estimating the distribution of QAL (Korn 1993,

Zhao and Tsiatis 1997, 1999; Van der Laan and Hubbard 1999; Huang and Louis

1998). These methods are applicable only when one can compute the QAL values

for all the patients. If some transition times are not observable, QAL values are

not available for all the individuals and hence these methods cannot be applied. It

may also be noted that some of the above estimators are not monotonic. For ex-

ample, the estimator proposed by Zhao and Tsiatis (1997, 1999) is not monotonic.

The objective of this work is to present a simple alternative nonparametric method

to estimate the QAL distribution (See Pradhan et al., 2009), when information

on the interrelationship between the different health states, giving the structure

of the illness-death model, and the same between the corresponding sojourn times

96
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are available. The method is first described for the two simple illness-death mod-

els with independent sojourn times and, then, generalized to progressive models.

In principle, given a model, the QAL distribution is first derived in terms of the

joint distribution of all the sojourn times. The sojourn time distributions are then

substituted by their estimates obtained by survival analysis techniques. When the

different sojourn times are independent, the theoretical expression for the QAL

distribution involves only the individual marginal sojourn time distribution, which

can be substituted by the corresponding Kaplan-Meier estimates. See Pradhan et

al. (2010) and Pradhan and Dewanji (2009a,b) for parametric estimation using

this approach.

In addition to being simple in nature, this method has several advantages.

First the structure of the illness-death model involving different health states and

the relationship between the different sojourn times are explicitly used in the

derivation of QAL distribution, making the estimate more efficient when such

information is available (See Sections 2.6 and 5.2.1). As a result, this estimate

is naturally less robust against misspecification of such information. Second, by

construction, this method gives a monotonic estimate of the QAL distribution,

whereas this monotonicity is not guaranteed in the existing methods, except Al-

manassra et al. (2005); however, their method involves constrained optimization

and, therefore, is computationally very intensive. Third, this method can deal

with the issue of some missing transition times, as long as the sojourn time dis-

tributions are estimable by some missing data techniques, whereas other methods

based on observed QAL cannot be applied with such missing data.

This chapter is organised as follows. Estimation of QAL distribution for the

case of independent sojourn times in simple illness-death model 1 is discussed in

Section 5.2. The asymptotic properties are also derived. A simulation is carried

out to investigate the performance of the proposed estimator. Estimation of QAL

distribution when transition time to illness state is missing for some individuals
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is also considered. A data set of the Stanford Heart Transplant Program is an-

alyzed for illustration. Extension to progressive illness-death model 1 with an

example of IBCSG Trial V data is discussed. Estimation of QAL distribution in

simple illness-death model 2 along with asymptotic properties, simulation study

and analysis of heart transplant data is considered in Section 5.3. As an extension

of simple illness-death model 2, estimation in competing illness-death model 2 and

progressive illness-death model 2 is also discussed. Estimation in reversible simple

illness-death model 2 is considered in Section 5.4. In this chapter, the different

sojourn times have been mostly assumed to be independent. In Section 5.5, we

discuss estimation for some models with dependence. The Appendix in Section

5.6 gives proofs of the theorems and details of some of the results/methods stated

in this chapter.

5.2 Estimation in Simple Illness-death Model 1

In this section, the simple illness-death model 1 of Figure 2.1 in Section 2.2 is

considered for nonparametric estimation of QAL distribution. It is assumed that

T01 and T12 are independent. Let F01(·) and F12(·) be the distribution functions

of T01 and T12, respectively. The survival function of QAL is then given by (See

Section 2.2.1)

SQ(q) = 1 − F01

(
q

w0

)
+
∫ q/w0

0
F̄12

(
q − w0x

w1

)
dF01(x). (5.1)

where F̄12(·) = 1−F12(·). The distribution functions F01(·) and F12(·) are assumed

to be arbitrary but non-degenerate. Consider (X0, δ0, X1, δ1) and the observed

data set for n individuals {(x0i, δ0i, x1i, δ1i), i = 1, . . . , n} as in Section 4.2.1. Since

T01 and T12 are independent, T12 is also independent of C−T01 so that the problem

of induced dependent censoring does not arise when we estimate F̄12 (See Lin et

al., 1999). Let F̂01(·) and ˆ̄F 12(·) be the Kaplan-Meier estimates of F01(·) and
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F̄12(·), based on observations {(x0i, δ0i), i = 1, . . . , n} and {(x1i, δ1i), i : δ0i = 1},
respectively. Then, using (5.1), a nonparametric estimate of SQ(q) is given by

ŜQ(q) = 1 − F̂01

(
q

w0

)
+
∫ q/w0

0

ˆ̄F 12

(
q − w0x

w1

)
dF̂01(x). (5.2)

Let H0 be the distribution function of X0 and H1 be the conditional distribution

function of X1, given C > T01 (or, δ0 = 1). Write τi = H−1
i (1), for i = 0, 1,

and τ = w0τ0 ∧ w1τ1. Then, we have the following theorems on the asymptotic

properties of the proposed estimator.

Theorem 5.2.1 ŜQ(q), as defined in (5.2), is uniformly consistent for SQ(q) in

[0, τ). That is, sup
0≤q<τ

|ŜQ(q) − SQ(q)| a.s.→ 0, as n→ ∞.

Theorem 5.2.2
√
n
[
ŜQ(q) − SQ(q)

]
converges weakly to a mean zero Gaussian

process in [0, θ], where θ < τ is a constant, with a variance given by (5.27) which

is estimated by (5.28).

The proofs of Theorems 5.2.1 and 5.2.2 are given in Section 5.6.1. Although

the proofs are given for the interval [0, τ), one can show by considering different

cases that this interval can be extended to one which is specified by the range of

estimability of SQ(·) and can be as large as 0 to w0τ0 + w1τ1.

5.2.1 Simulation Study

In this section, the finite sample properties of the proposed nonparametric esti-

mate of QAL distribution are investigated by simulation. In particular, the bias

and precision of the proposed nonparametric (NP) estimator, given by (5.2), are

studied for a number of QAL values. The performance of the proposed estima-

tor is compared with that of the nonparametric estimator ZT. In this simulation

study, it is assumed that the sojourn times T01 and T12 are independent and follow

exponential distributions with parameters λ01 = 0.02 and λ12 = 0.04, respectively.
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The censoring variable C is assumed to be independent of T01 and T12 and follow

exponential distribution with parameter λc=0.03. The proposed NP estimate and

the ZT estimate are computed with w0 = 1 and w1 = 0.3 for each set of simulated

data of the form {(x0i, δ0i, x1i, δ1i), i = 1, . . . , n}. The simulation is repeated 1000

times for sample size n=50 and 200. Based on 1000 estimates of SQ(q), the av-

erage bias and sample standard error (SSE) are computed. The standard errors

for the estimated survival probabilities, obtained by using (5.28) for the proposed

nonparametric estimators and the formula given in Zhao and Tsiatis (1999) for

the ZT estimator, are averaged over the 1000 simulations. These are similar to the

corresponding SSE values and, hence, not reported. The results on the average

bias with corresponding SSE in parentheses are presented in Table 5.1.

Table 5.1: Average bias and sample standard error (in parentheses) of the pro-

posed NP and ZT estimators for the simple illness-death model 1 for sample size

n=50 and 200.

q SQ(q) n NP ZT

10 0.916 50 -0.003 (0.034) -0.008 (0.048)

200 -0.001 (0.018) -0.002 (0.023)

20 0.776 50 -0.001 (0.057) -0.014 (0.079)

200 0.000 (0.032) -0.003 (0.038)

35 0.592 50 -0.009 (0.091) -0.018 (0.110)

200 0.003 (0.043) -0.011 (0.055)

50 0.433 50 -0.015 (0.115) -0.033 (0.143)

200 0.008 (0.053) -0.013 (0.064)

70 0.290 50 -0.034 (0.145) -0.040 (0.177)

200 0.013 (0.064) -0.018 (0.078)

90 0.194 50 0.058 (0.158) -0.046 (0.183)

200 0.015 (0.082) -0.030 (0.104)
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As expected, both bias and standard error decrease with sample size. The

proposed nonparametric estimator NP seems to perform better than the ZT esti-

mator in terms of both bias and precision. However, as expected, for large sample

size, the ZT estimator seems to work equally well compared to the proposed NP

estimator. It is to be noted that, with increasing sample size, the possibility of

missingness also increases, in which case the ZT estimator cannot even be ap-

plied, whereas the proposed method can still be used. The quantiles of the 1000

standardized NP estimates are compared with those of the standard normal dis-

tribution. Although the convergence seems to be slow, specially in the tail area,

the comparison result is found to be satisfactory.

5.2.2 Estimation in Unobserved Case:

Let us now suppose that the time of transition to illness state (1) from healthy

state (0) (see Figure 2.1) is missing or unobserved for some patients. Then, the

different types of observations (denoted by δ) are as given in Table 5.2, with

δ = 1, 2 and 3 representing the observed case and δ = 4 and 5 representing the

unobserved case. Here t denotes the time of observation. It is assumed that this

missingness (of information on T01), for δ = 4 and 5, is at random (See Section

4.2.1). The likelihood contributions for the different types of observations, under

this missing-at-random assumption, are given in Table 5.2, where f01(·) and f12(·)
are the densities of T01 and T12, respectively.

Write X ′
1 = ((T01 + T12) ∧ C)I(δ0=1) − I(δ0=0). Note that, when δ = 1, then

observation on X
′

1 is not available and its value is set as -1 in its definition. When

δ = 2 or 3, both X0 and X ′
1 are observed. For δ = 4 or 5, X ′

1 is observed, but

X0 is not observed, but is known to be less than X ′
1. The observation, therefore,

consists of {(x0i, x
′
1i, δi), i = 1, . . . , n}. It is clear, from the likelihood contributions

in Table 5.2, that the nonparametric maximum likelihood estimate of F01 will have
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Table 5.2: Types of observations and likelihood contribution in unobserved case.

Type (δ) Observation Likelihood Contribution

1 T01 > C = t F̄01(t+)

2 T01 = t1, T01 + T12 > C = t f01(t1)F̄12(t − t1)

3 T01 = t1, T01 + T12 = t < C f01(t1)f12(t − t1)

4 T01 < C = t < T01 + T12

∫ t

0

f01(t1)F̄12(t − t1)dt1

5 T01 + T12 = t < C

∫ t

0

f01(t1)f12(t − t1)dt1

mass at the distinct values of x0i’s with δi = 2 or 3. Let these distinct values be

denoted by t0(1) < . . . < t0(k1). Note that, if min
i:δi=4,5

{x′1i} ≤ t0(1), there has to be

another mass point t0(0), say, which is less than or equal to min
i:δi=4,5

{x′

1i}. Let the

discrete hazards of F01 at these distinct mass points be denoted by the vector

λ0
∼

= {λ0j, j = 0, 1, . . . , k1}. It is also clear that the nonparametric maximum

likelihood estimate of F12 will have mass at the distinct points from the set

{x′1i − x0i, i : δi = 3} ∪ {x′1i − t0(j), j = 0, 1, . . . , k1, i : δi = 5 and x′1i > t0(j)}.

Let these distinct values be denoted by t1(1) < . . . < t1(k2) and the discrete hazards

of F12 at these points be denoted by the vector λ1
∼

= {λ1j, j = 1, . . . , k2}.
For those i with δi = 5 and j with x′1i > t0(j), let j(i) be such that t1(j(i)) = x′1i−

t0(j). Also, based on the observation with δi = 1, 2 and 3, and, for j = 1, . . . , k1,

let d0j be the number of uncensored observations on T01 at time t0(j) and n0j the

number at risk strictly prior to time t0(j); that is, the number of individuals with

T01 ≥ t0(j). Similarly, based on those i with δi = 1, 2 and 3, let d1j be the number

of uncensored observations on T12 at time t1(j) and n1j the number of individuals

with T12 ≥ t1(j), for j = 1, . . . , k2. Then, the likelihood L, as a function of λ0
∼

and

λ1
∼
, can be written as product of three likelihood terms L1, L2 and L3, which are

contributions from those i with δi = 1, 2 and 3, those with δi = 4 and those with
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δi = 5, respectively. It can be easily checked that

L1(λ0
∼
, λ1
∼

) =
k1∏

j=1

[
λ

d0j

0j (1 − λ0j)
n0j−d0j

] k2∏

j=1

[
λd1j

1j (1 − λ1j)
n1j−d1j

]
,

L2(λ0
∼
, λ1
∼

) =
∏

i:δi=4




∑

l:t0(l)<x′

1i

λ0l


∏

j<l

(1 − λ0j)







∏

j:t1(j)≤x′

1i
−t0(l)

(1 − λ1j)





 and

L3(λ0
∼
, λ1
∼

) =
∏

i:δi=5




∑

l:t0(l)<x′

1i

λ0l


∏

j<l

(1 − λ0j)


λ1l(i)


 ∏

j<l(i)

(1 − λ1j)





 .

This likelihood L(λ0
∼
, λ1
∼

) can be maximized with respect to λ0
∼

and λ1
∼

to obtain

their maximum likelihood estimates. This requires numerical method. The EM

algorithm is used here (Dempster et al., 1977) with the complete data version

having information on T01 (that is, x0i), whenever δi = 4 and 5. The steps of

EM algorithm are described in Section 5.6.3. Nevertheless, with the estimates

of λ̂0
∼

and λ̂1
∼

of λ0
∼

and λ1
∼

, respectively, the nonparametric maximum likelihood

estimate of survival function S01 corresponding to F01 is given by

Ŝ01(t) =
∏

j:t0(j)<t

(
1 − λ̂0j

)
,

and that of S12 corresponding to F12 is given by

Ŝ12(t) =
∏

j:t1(j)<t

(
1 − λ̂1j

)
.

Variance estimates of Ŝ01(t), Ŝ12(t), and then of ŜQ(q), can be obtained from those

of λ̂0
∼

and λ̂1
∼

, using delta method. This may be numerically challenging because

of the large dimension of (λ̂0
∼

, λ̂1
∼

). Alternatively, one can use a bootstrap method

to estimate the variance of ŜQ(q), as has been done in the next section.

5.2.3 Analysis of Heart Transplant Data

The data set of Stanford Heart Transplant Program (Section 1.5.1 and also Sec-

tion 4.2.4) is analyzed to illustrate the proposed nonparametric estimate. The
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estimated survival probabilities using the expression (5.2), with w0 = 0.3 and

w1 = 0.8, and standard errors of the estimates using expression (5.28) are pre-

sented in Table 5.3 under NP. Although the length of T01 is observed here, the sur-

vival probabilities are estimated by assuming T01 to be unobserved for randomly

selected 10% (≈ 7) of 69 patients, who have received heart transplantation, using

the method of Section 5.2.2. The estimates are presented under Unobserved in

Table 5.3. The standard errors of the estimates are obtained by using bootstrap

method with 200 bootstrap samples, each of size 103 drawn with replacement

from the incomplete data. The ZT estimate is also computed for the sake of com-

parison. The two estimates NP and ZT are similar, except at the tail area, with

the ZT estimate having marginally higher standard error than that of NP. The

estimates in unobserved case are also similar to the estimates in observed case

(NP), except at the tail area, with higher standard error, as expected.

Table 5.3: Estimated QAL survival probabilities for the heart transplant data

with standard errors in parentheses.

q NP ZT Unobserved

10 0.978(0.012) 0.989(0.016) 0.979(0.011)

20 0.938(0.023) 0.928(0.033) 0.931(0.026)

40 0.865(0.036) 0.865(0.040) 0.813(0.054)

50 0.794(0.042) 0.788(0.049) 0.745(0.064)

80 0.657(0.054) 0.656(0.056) 0.582(0.094)

150 0.578(0.059) 0.592(0.066) 0.520(0.104)

300 0.498(0.061) 0.473(0.061) 0.486(0.105)

400 0.479(0.062) 0.451(0.062) 0.479(0.108)

600 0.420(0.064) 0.350(0.065) 0.460(0.111)

800 0.351(0.067) 0.260(0.065) 0.442(0.120)
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5.2.4 Extension to Progressive Illness-Death Model 1

This section consider progressive illness-death model 1 (See Figure 2.3) of Sec-

tion 2.3 as an extension to multistate illness-death model for the estimation of

QAL distribution. The extension is straightforward. Let Tj,j+1 be the sojourn

time in state j having distribution function Fj,j+1(·), assumed arbitrary but non-

degenerate, for j = 0, 1,. . . ,k. Let wj be the utility coefficient corresponding to

state j, for j = 0, 1,. . . ,k. Then, the QAL is given by Q =
k∑

j=0

wjTj,j+1. The

distribution of Q, under the assumption that the sojourn times are independently

distributed, is given by (See Section 2.3.1)

F
(k)
Q (q) =

∫ q

w0

0

∫ q−w0t1
w1

0
· · ·

∫ q−
∑k−1

j=0
wjtj

wk

0
Fk,k+1

(
q −∑k−1

j=0 wjtj

wk

)
k−1∏

j=0

dFj,j+1(tj).

(5.3)

As in Section 4.3.1, consider (Xj, δj), for j = 0, 1, . . . , k and the data set for

n individuals given by {(xji, δji), j = 0, 1, . . . , k, i = 1, . . . , n}. Let F̂j,j+1(·) be

the Kaplan-Meier estimate of the distribution function Fj,j+1(·) based on the data

corresponding to the jth health state, for j = 0, 1, . . . , k. Since Tj,j+1’s are inde-

pendent, the problem of induced dependent censoring does not arise here. Note

that F̂j,j+1(·) is based on nj observations, where nj is the number of observations

for which T01 + · · ·+ Tj−1,j < C, for j = 1, . . . , k, and F̂01(·) is based on all the n

observations. Then, using (5.3), a natural estimate of F
(k)
Q (q) is given by

F̂
(k)
Q (q) =

∫ q

w0

0

∫ q−w0t1
w1

0
· · ·

∫ q−
∑k−1

j=0
wjtj

wk

0
F̂k,k+1

(
q −∑k−1

j=0 wjtj

wk

)
k−1∏

j=0

dF̂j,j+1(tj).

(5.4)

Theorem 5.2.3
√
n
[
F̂

(k)
Q (q) − F

(k)
Q (q)

]
converges weakly to a mean zero Gaus-

sian process in [0, θ], where θ < τ is a constant with τ = min{wjτj, j = 0, 1, . . . , k}.
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As before, τ can be as large as
∑k

j=0wjτj depending on the range of estimability

of F
(k)
Q (·). The proof of Theorem 5.2.3 is briefly sketched in Section 5.6.2. It may

be noted that the asymptotic variance of F̂
(k)
Q (q) cannot be obtained in closed

form in general, but can be derived with few states. The variance expression for

k = 1 is given in (5.27). The variance expression for k=2 is given in (5.30) for

the analysis of the IBCSG Trial V data. In general, one can use some resampling

method like bootstrap.

Analysis of IBCSG Trial V Data: The proposed method for estimating QAL

distribution in progressive illness-death model is illustrated using data from both

groups of the IBCSG Trial V (See Section 1.5.2 and also Section 4.3.4). The QAL

distribution for the patients is estimated by the proposed nonparametric (NP)

method using (5.4). The ZT estimate is also computed for comparison purpose.

The estimated survival probabilities with w0 = 0.5, w1 = 1 and w2 = 0.5, as

considered by Zhao and Tsiatis (1999) and Pradhan and Dewanji (2009a), for

different values of q are presented in Table 5.4 with standard errors (in parenthe-

ses) obtained by using (5.31). Note that both the estimates give similar results

possibly because of the large sample size.

5.3 Estimation in Simple Illness-Death Model 2

In this section, the nonparametric estimate of QAL distribution is obtained for

the simple illness-death model 2 (See Figure 2.2) of Section 2.2. It is assumed

that T0 and T12 are independent. The survival function of Q is then given by

SQ(q) = 1 − F02

(
q

w0

)
−
∫ q

w0

0
F12

(
q − w0x

w1

)
dF01(x)

= 1 − F02

(
q

w0

)
− F01

(
q

w0

)
+
∫ q

w0

0
S12

(
q − w0x

w1

)
dF01(x)

= S0

(
q

w0

)
+ P12

(
q

w0

)
, say, (5.5)
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Table 5.4: Estimated QAL survival probabilities for the IBCSG Trial V data with

standard errors in parentheses.

Group 0 Group 1

q NP ZT NP ZT

5 0.996(0.002) 0.998(0.002) 0.997(0.001) 0.994(0.003)

10 0.978(0.005) 0.960(0.009) 0.979(0.003) 0.975(0.005)

20 0.893(0.015) 0.895(0.015) 0.910(0.009) 0.885(0.011)

30 0.781(0.022) 0.754(0.021) 0.837(0.013) 0.815(0.014)

40 0.675(0.026) 0.661(0.023) 0.771(0.015) 0.765(0.015)

50 0.591(0.027) 0.598(0.025) 0.702(0.016) 0.712(0.016)

70 0.495(0.027) 0.447(0.027) 0.594(0.018) 0.636(0.017)

90 0.426(0.028) 0.361(0.040) 0.519(0.019) 0.515(0.022)

100 0.399(0.029) 0.291(0.040) 0.495(0.020) 0.485(0.025)

where

S0(u) = P [T0 ≥ u] = 1 − F01(u) − F02(u) = exp [− (Λ01(u) + Λ02(u))] ,

S12(u) = P [T12 ≥ u] = 1 − F12(u) and

P12

(
q

w0

)
=
∫ q

w0

0
S12

(
q − w0x

w1

)
dF01(x) =

∫ q

w0

0
S12

(
q − w0x

w1

)
S0(x)dΛ01(x).

Consider (X0, δ0, δ01, X1, δ1) and the data set for n individuals given by

{(x0i, δ0i, δ01i, x1i, δ1i), i=1, . . . , n}, as in Section 4.2.2. First, the Kaplan-Meier

estimate of S0(u) is obtained based on the observations {(x0i, δ0i), i = 1, . . . , n}
and denote it by Ŝ0(u). Next, the estimation of S12(u) is considered. Since T0

and T12 are independent, T12 is also independent of C − T0 so that the problem

of induced dependent censoring does not arise when S12(u) is estimated (See Lin

et al., 1999) based on observations {(x1i, δ1i), i : δ01i = 1}. Let Ŝ12(u) denote

the Kaplan-Meier estimate of S12(u). Note that the assumption of independence

between T0 and T12 leads to the semi-Markov model (See Voelkel and Crowley,
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1984, and Shu et al., 2007). It may be noted that the semi-Markov model does

not fit readily into the multiplicative intensity framework (Andersen et al., 1993)

because of its renewal nature. This difficulty is tackled by introducing time-shifted

multivariate counting process over a fixed interval, say [0, τ ], given by

N(x) = {Nhji(x), hj = 01, 02, 12; i = 1, . . . , n, x ∈ [0, τ ]} ,

where Nhji(x) counts the number of h → j transitions for individual i with

corresponding transition time less than or equal to x, for hj =01, 02, 12 and

τ = sup {u :
∫ u
0 λhj(x)dx <∞, hj = 01, 02, 12}. Note that such formulated count-

ing process Nhji(x) have the intensity processes αhji(x) in the form of a multi-

plicative intensity model given by

αhji(x) = Yhi(x)λhj(x),

where Yhi(x) is the indicator for individual i being at risk in the state h just before

time x−, for h = 0, 1. Under independent censoring, Nhji(x) can be uniquely

decomposed as

Nhji(x) =
∫ x

0
Yhi(u)λhj(u)du+Mhji(x),

where Mhji(x)’s are orthogonal local square integrable martingales with pre-

dictable variation process given by 〈Mhji(x)〉 =
∫ x
0 Yhi(u)λhj(u)du. WritingNhj(x) =

∑n
i=1Nhji(x) and Yh(x) =

∑n
i=1 Yhi(x), the Nelson-Aalen estimator for Λhj(t) is

given by

Λ̂hj(t) =
∫ t

0

Jh(u)

Yh(u)
dNhj(u), for hj = 01, 02 and 12,

where Jh(u) = I(Yh(u) > 0), for h = 0, 1. Then, using (5.5), a nonparametric

estimate of SQ(q) is given by

ŜQ(q) = Ŝ0

(
q

w0

)
+ P̂12

(
q

w0

)

= Ŝ0

(
q

w0

)
+
∫ q

w0

0
Ŝ12

(
q − w0x

w1

)
Ŝ0(x)dΛ̂01(x). (5.6)
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Note that the two Kaplan-Meier estimators Ŝ0(u) and Ŝ12(u) are approximately

equal to the estimates of the corresponding survival functions derived from the

Nelson-Aalen estimators, given by exp
[
−Λ̂01(u) − Λ̂02(u)

]
and exp

[
−Λ̂12(u)

]
, re-

spectively. For the derivation of asymptotic results in the Appendix (Section

5.6.4), the latter estimators of S0(u) and S12(u) are considered.

5.3.1 Asymptotic Results

Let τ0 = H−1
0 (1), where H0 is the distribution function of X0. Also, let τ1 =

H−1
1 (1), where H1 is the conditional distribution function of X1 = T12 ∧ (C −T0),

given C > T0 and δ01 = 1. Note that the counting processes N01(x) and N02(x)

are actually defined on [0, τ0] and the counting process N12(x) is actually defined

on [0, τ1], where τ0 and τ1 are greater than or equal to τ . Let τw = w0τ0 ∧ w1τ1.

Then, we have the following theorems with the proofs given in Section 5.6.4.

Theorem 5.3.1 The process
√
n
[
Ŝ0(·) − S0(·)

]
converges weakly on [0, θ], for

θ < τ , to a zero-mean Gaussian process whose variance at q/w0 can be estimated

uniformly consistently by

ψ̂(0)
(
q

w0

,
q

w0

)
= nŜ2

0

(
q

w0

) ∫ q

w0

0
J0(u)

dN01(u) + dN02(u)

Y 2
0 (u)

. (5.7)

Theorem 5.3.2 The process
√
n
[
P̂12(·) − P12(·)

]
converges weakly on [0, θ], for

θ < τ , to a zero-mean Gaussian process whose variance at q/w0 can be estimated

uniformly consistently by ψ̂(12)
(

q
w0
, q

w0

)

= n
∫ q

w0

0

{
Ŝ0(u)Ŝ12

(
q − w0u

w1

)
−
∫ q

w0

u
Ŝ0(x)Ŝ12

(
q − w0x

w1

)
dΛ̂01(x)

}2

×J0(u)
dΛ̂01(u)

Y0(u)
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+n
∫ q

w0

0

{∫ q

w0

u
Ŝ0(x)Ŝ12

(
q − w0x

w1

)
dΛ̂01(x)

}2

J0(u)
dΛ̂02(u)

Y0(u)

+n
∫ q

w1

0

{∫ q−w1u

w0

0
Ŝ0(x)Ŝ12

(
q − w0x

w1

)
dΛ̂01(x)

}2

J1(u)
dΛ̂12(u)

Y1(u)
(5.8)

Theorem 5.3.3
√
n
[
ŜQ(q) − SQ(q)

]
converges weakly to a mean zero Gaussian

process in [0, θw], where θw < τw is a constant, with the estimated variance given

by

v̂ar
{
ŜQ(q)

}
= v̂ar

{
Ŝ0

(
q

w0

)}
+ v̂ar

{
P̂12

(
q

w0

)}
+ 2ĉov

{
Ŝ0

(
q

w0

)
, P̂12

(
q

w0

)}
,

(5.9)

where v̂ar
{
Ŝ0

(
q

w0

)}
= ψ̂(0)

(
q

w0
, q

w0

)
/n, v̂ar

{
P̂12(q)

}
= ψ̂(12)

(
q

w0
, q

w0

)
/n

and ĉov
{
Ŝ0

(
q

w0

)
, P̂12

(
q

w0

)}

= −Ŝ0

(
q

w0

) ∫ q

w0

0

{
Ŝ0(u)Ŝ12

(
q − w0u

w1

)
−
∫ q

w0

u
Ŝ0(x)Ŝ12

(
q − w0x

w1

)
dΛ̂01(x)

}

×J0(u)
dΛ̂01(u)

Y0(u)

+Ŝ0

(
q

w0

) ∫ q

w0

0

{∫ q

w0

u
Ŝ0(x)Ŝ12

(
q − w0x

w1

)
dΛ̂01(x)

}
J0(u)

dΛ̂02(u)

Y0(u)
. (5.10)

5.3.2 Simulation Study

The performance of the proposed nonparametric estimate (NP) of QAL distribu-

tion is investigated in terms of bias and precision through a simulation study. As

before, the performance of the estimator is compared with that of the nonparamet-

ric estimator ZT. The simulation is carried out with λ01(x) = 0.02, λ12(x)=0.04

and λ02(x)=0.005 for sample size n=50 and 200, and repeated 1000 times. The

censoring variable C is assumed to have an exponential distribution, indepen-

dent of T0 and T12, with hazard rate λc=0.03. For each set of simulated data set

{(x0i, δ0i, δ01i, x1i, δ1i), i = 1, . . . , n}, the survival probability SQ(q) is estimated
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using both (5.6) and ZT estimator along with the corresponding variance esti-

mates with w0 = 1 and w1 = 0.3. The average bias, average standard error and

sample standard error (SSE) are obtained based on 1000 estimates of SQ(q) for

several values of q. The average standard error and the SSE give similar values.

Therefore, the results on only average bias and SSE are reported in Table 5.5.

Table 5.5: The average bias and standard error SSE (in parenteses) of NP and

ZT estimates for the simple illness-death model 2.

q SQ(q) n NP ZT

8 0.906 50 0.000 (0.040) -0.006 (0.047)

200 0.000 (0.019) -0.002 (0.024)

20 0.706 50 0.001 (0.076) -0.018 (0.081)

200 -0.001(0.037) -0.004 (0.042)

35 0.492 50 0.013 (0.099) -0.023 (0.110)

200 0.003 (0.047) -0.009 (0.053)

55 0.299 50 0.024 (0.121) -0.033 (0.130)

200 0.012(0.058) -0.013 (0.060)

70 0.206 50 0.032 (0.134) -0.051 (0.137)

200 0.013 (0.063) -0.017 (0.069)

90 0.125 50 0.059 (0.120) -0.062 (0.107)

200 0.015(0.071) -0.025 (0.074)

As expected, both bias and standard error decrease with sample size. The pro-

posed estimate (NP) seems to perform better than the ZT estimate, with respect

to both bias and precision, specially for small sample size (n=50), except in the

tail area. The quantiles of the 1000 standardized NP estimates are compared with

those of the standard normal distribution. Although the convergence seems to be

slow, specially in the tail area, the comparison result is found to be satisfactory

(results not reported here).
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5.3.3 Data Analysis

The proposed nonparametric estimate is illustrated using the Stanford Heart

Transplant data (See Section 1.5.1 and also Section 4.2.4). The NP estimates for

the survival probabilities using the expression (5.6), with w0 = 0.3 and w1 = 0.8,

and standard errors of the estimates using expression (5.9) are presented in Ta-

ble 5.6. The ZT estimate is also computed for the sake of comparison. The two

estimates NP and ZT are similar, except in the tail area, with the ZT estimate

having marginally higher standard error than that of the NP estimate.

Table 5.6: Estimated QAL survival probabilities for the heart transplant data

with standard errors (in parentheses).

q Estimate

NP ZT

5 0.855 (0.034) 0.854 (0.035)

20 0.712 (0.043) 0.704 (0.046)

30 0.661 (0.045) 0.654 (0.047)

50 0.556 (0.047) 0.553 (0.050)

80 0.448 (0.048) 0.451 (0.049)

150 0.386 (0.048) 0.385 (0.050)

400 0.314 (0.047) 0.309 (0.048)

600 0.268 (0.046) 0.243 (0.048)

800 0.216 (0.046) 0.179 (0.048)

5.3.4 Extension to Competing Illness-Death Model 2

In this section, the competing illness-death model 2 (See Figure 2.6) of Section

2.4 is considered for the estimation of QAL distribution as an extension to simple

illness-death model 2. Note that the simple illness-death model 2 is a special
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case of competing illness-death model 2 with k=1. The nonparametric estimate

of QAL distribution is obtained under the assumption that the different sojourn

times are independently distributed. The survival function of QAL is given by

SC
Q(q) = S0

(
q

w0

)
+ PID

(
q

w0

)
, (5.11)

where

S0

(
q

w0

)
= P

(
T0 ≥

q

w0

)
= exp

[
−
(

k∑

l=1

Λ0l

(
q

w0

)
+ Λ0,k+1

(
q

w0

))]
,

PID

(
q

w0

)
=

k∑

j=1

Pj,with Pj =
∫ q

w0

0
Sj,k+1

(
q − w0x

wj

)
S0(x)dΛ0j(x),

for j = 1, . . . , k, and the Λ’s denoting the corresponding cumulative hazards.

As in Section 4.4.2, consider (X0, δ0, δ01, X1, δ1) and the data set for n

individuals {(x0i, δ0i, δ01i, x1i, δ1i), i = 1, . . . , n}. Let Ŝ0(u) be the Kaplan-Meier

estimate of S0(u) based on observations {(x0i, δ0i), i = 1, . . . , n} and Ŝj,k+1(u)

be the Kaplan-Meier estimate of Sj,k+1(u) based on observations {(x1i, δ1i), i =

1, . . . , n and δ01i = j}. Also, the Nelson-Aalen estimator for Λ0j(t) is

Λ̂0j(t) =
∫ t

0

J0(u)

Y0(u)
dN0j(u), for j = 1, . . . , k + 1,

where N0j(t) =
n∑

i=1

I{X0i ≤ t, δ01i = j}, for j = 1, . . . , k, N0,k+1(t) =
n∑

i=1

I{X0i ≤

t, δ01i = 0} , Y0(t) =
n∑

i=1

I{X0i ≥ t} and J0(t) = I(Y0(t) > 0). Then, a nonpara-

metric estimate of SC
Q(q) is obtained by putting the estimates of S0(·), Sj,k+1(·)

and Λ0j(·) in (5.11) and is given by

ŜC
Q(q) = Ŝ0

(
q

w0

)
+

k∑

j=1

P̂j,

where P̂j =
∫ q

w0
0 Ŝj,k+1

(
q−w0x

wj

)
Ŝ0(x)dΛ̂0j(x), for j = 1, . . . , k.

Following the same techniques as those used for the simple illness-death model

2 in the Appendix (Section 5.6.4), one can establish asymptotic normality for Ŝ0(·)
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and each of the P̂j’s. Hence, one can prove that
√
n
[
ŜC

Q(q) − SC
Q(q)

]
converges

weakly to a mean zero Gaussian process with a variance that can be estimated.

5.3.5 Extension to Progressive Illness-Death Model 2

In this section, the progressive illness-death model 2 (See Figure 2.4) is considered

for the estimation of QAL distribution as another extension to simple illness-death

model 2. The estimate of QAL distribution is obtained under the assumption that

the different sojourn time distributions are independent. The distribution of Q is

then given by

F
(k)
Q (q) = P (Q ≤ q) =

k∑

m=0

Pm, (5.12)

where the superscript (k) represents the k intermediate states and the expressions

for P0, Pm and Pk are as in Section 2.3.2. Let us write Sj(u) = exp[−Λj,j+1(u)-

Λj,k+1(u)] as the overall survival function for the sojourn time in state j, for

j = 0, 1, . . . , k − 1. As in Section 4.3.2, consider (Xj, δj), for j = 0, 1 . . . , k, and

the data set for n individuals given by {(xji, δji), j = 0, 1, . . . , k, i = 1, . . . , n}.
Define ηj = I(δj = j + 1 or k + 1), for j = 0, 1, . . . , k. For j = 0, 1, . . . , k − 1, let

Ŝj(u) be the Kaplan-Meier estimate of Sj(u) based on observations {(xji, ηji), i =

1, . . . , n, and δji 6= −1}, where ηji denotes the observed value of ηj for the ith

individual. Also, let F̂k,k+1(u) be the Kaplan-Meier estimate of Fk,k+1(u) based

on observations {(xki, ηki), i = 1, . . . , n, and δki 6= −1}. For j = 0, 1, . . . , k − 1,

the Nelson-Aalen estimators for Λj,j+1(t) and Λj,k+1(t) are given by

Λ̂j,j+1(t) =
∫ t

0

Jj(u)

Yj(u)
dNj,j+1(u) and Λ̂j,k+1(t) =

∫ t

0

Jj(u)

Yj(u)
dNj,k+1(u),

respectively, whereNj,j+1(t) =
∑n

i=1 I(Xji ≤ t, δji = j+1), Nj,k+1(t) =
∑n

i=1 I(Xji ≤
t, δji = k+1), Yj(t) =

∑n
i=1 I(Xji ≥ t) and Jj(t) = I(Yj(t) > 0). A nonparametric

estimate of the QAL distribution F
(k)
Q (q) is then obtained by substituting Sj(·)’s,
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Λj,j+1(·)’s, Λj,k+1(·)’s and Fk,k+1(·) in (5.12) by the corresponding estimates.

Note that F
(k)
Q (q) can be written as

F
(k)
Q (q) =

∫ q

w0

0
S0(x)dΛ0,k+1(x) +

∫ q

w0

0
F

(k−1)
Q∗ (q − w0x0)S0(x)dΛ01(x),

where Q∗ is defined in the same way as Q in Section 2.3.2, but starting from state

1 instead of state 0. The corresponding survival function given by

S(k)(q) = S0

(
q

w0

)
+
∫ q

w0

0
S

(k−1)
Q∗ (q − w0x)dF01(x),

having the similar form as in (5.5) with S
(k−1)
Q∗ (·) in place of S12(·). Hence, fol-

lowing the proofs of Theorems 5.3.1-5.3.3 and using method of induction, one can

prove weak convergence of
√
n
[
Ŝ

(k)
Q (q) − S

(k)
Q (q)

]
to a mean zero Gaussian process

with a variance that can be estimated, where Ŝ
(k)
Q (q) denotes the nonparametric

estimate of S
(k)
Q (q) as described above. The asymptotic variance of Ŝ

(k)
Q (q) in

general is difficult to obtain in closed form. One can use resampling technique to

obtain variance estimate of Ŝ
(k)
Q (q).

5.4 Estimation in Reversible Illness-death Model

In this section, the reversible illness-death model (See Figures 2.7 and 2.8) is con-

sidered for the estimation of QAL distribution. The different sojourn times for

model 1 and model 2 are described in Sections 4.5.1 and 4.5.2, respectively, along

with the forms of corresponding data on n individuals. For simplicity, the differ-

ent sojourn times are assumed to be independent. Also, the sojourn times (and

the conceptual times for model 2) in the same state are assumed to be identically

distributed. Formally, in model 1, the T
(l)
jk ’s for l = 1, 2, . . . , are assumed to in-

dependent and identically distributed with unknown and arbitrary distributions,

for jk = 01, 10 and 12; the T
(l)
jk ’s for different jk’s are also independent. The

conceptual sojourn times T
(l)
10 and T

(l)
12 form a competing risks framework with
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unknown and arbitrary cumulative cause specific hazards Λ10(·) and Λ12(·), re-

spectively. The likelihood function can be written, using (4.10), in terms of Λ10(·),
Λ12(·) and SR0(·), which can be factored into two terms involving SR0(·) and the

two cumulative hazards Λ10(·) and Λ12(·), respectively. While the Kaplan-Meier

estimate of SR0(·) can be easily obtained based on the corresponding sojourn time

observations in state 0, the Nelson-Aalen estimates of Λ10(·) and Λ12(·) can be

obtained from the sojourn times observations in state 1. Similarly, in model 2,

the T
(l)
01 and T

(l)
12 , defining another competing risks framework, are assumed to be

independent and identically distributed, for l = 1, 2, . . . , with common cumulative

cause specific hazards Λ01(·) and Λ02(·), respectively. The likelihood function can

be written, using (4.11), in terms of the arbitrary cumulative hazards Λ01(·) and

Λ02(·). The Nelson-Aalen estimates for Λ01(·) and Λ02(·) can now be obtained,

which can be used to estimate SR0(·) and SR1(·).
The theoretical expression for QAL distribution is, however, complicated in-

volving multiple integration. Hence, it would be difficult to estimate it by substi-

tuting the different sojourn time distributions in its expression by the correspond-

ing estimates. One can instead estimate the QAL distribution via simulation using

the estimated sojourn time distributions. The standard errors can be computed

by some resampling method.

5.5 Estimation in Dependent Models

In the previous sections of this chapter, estimation is considered under the assump-

tion that the successive sojourn times are independently distributed. This section

considers three dependent scenarios and, for each of them, outlines a method of

estimation for the QAL distribution in the simple illness-death model (See Sec-

tion 2.2.1) of Figure 2.1. For other models, similar methods may be followed. The
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distribution of Q for this model is given by the survival function

SQ(q) = 1 − ∫ q

w0
0

[
∫ q−w0x

w1
0 λ12(y | x)e−Λ12(y|x)dy

]
λ01(x)e

−Λ01(x)dx, (5.13)

where λ01(x) the hazard rate of T01 at time x and λ12(y|x) is the conditional haz-

ard rate of T12 at corresponding sojourn time y, given T01 = x. The dependence

between T01 and T12 is described by the conditional hazard λ12(y|x). Three de-

pendent structures are considered here to describe the dependence between T01

and T12: (1) the conditional hazard λ12(y|x) is modelled by the proportional haz-

ards assumption λ12(y|x) = λ120(y)e
βx, (2) dependence between T01 and T12 is

described by Markov assumption for the hazard rates of T01 and T01 + T12, and

(3) arbitrary dependence between T01 and T12. As in Section 4.2.1, the observed

data set for n individuals is of the form {(x0i, δ0i, x1i, δ1i), i = 1, . . . , n}.
In this section, we give only some outline of the estimation procedure without

studying the properties, etc., in detail. These are to be taken as some extension

of the main work of this thesis to be carried out in future.

5.5.1 Semi-parametric Dependence

The dependence between T01 and T12 is modelled by the semi-parametric pro-

portional hazards assumption λ12(y|x) = λ120(y)e
βx, where λ120(y) denotes the

baseline hazard rate for T12 and β is the dependence parameter. The survival

function (5.13) of Q is then given by

SQ(q) = 1 −
∫ q

w0

0

[
1 − F̄12

(
q − w0x

w1

|x
)]
dF01(x)

= 1 − F01

(
q

w0

)
+
∫ q

w0

0

{
F̄120

(
q − w0x

w1

)}eβx

dF01(x), (5.14)

where F̄12

(
q − w0x

w1

|x
)

=
{
F̄120

(
q − w0x

w1

)}eβx

is the conditional survival func-

tion for T12, given T01 = x, with F̄120(·) denoting the corresponding baseline

survival function, given by exp [−Λ120(·)] with Λ120(y) =
∫ y
0 λ120(u)du, and F01(·)
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denotes the distribution function of T01.

Let F̂01(·) denote the Kaplan-Meier estimate of F01(·) based on the observa-

tions (x0i, δ0i; i = 1, . . . , n). Then, β is estimated by maximizing the partial

likelihood based on the observations (x1i, δ1i, x0i, δ0i; i = 1, . . . , n), where x0i val-

ues are treated as covariate values, as given by

L(β) =
n∏

i=1

(
exp(βx0i)∑n

l=1 Yl(x1i) exp(βx0l)

)δ0iδ1i

,

where Yi(x) is the indicator for individual i being at risk in the illness state just

before time x; that is, Yi(x) = 1 if, the sojourn time for the ith individual in the

illness state is greater than or equal to x, and 0 otherwise. Then, estimate of

Λ120(t) is given by (Breslow, 1974)

Λ̂120(t, β̂) =
∫ t

0

J(x)
∑n

l=1 Yl(x) exp(β̂x0l)
dN12(x),

where N12(x) is the counting process corresponding to the observations on T12,

Y (x) =
∑n

i=1 Yi(x) and J(x) = I(Y (x) > 0). The conditional survival function of

T12, for given T01 = x, is then estimated by

ˆ̄F 12(t|x) =

(∏

u<t

{
1 − dΛ̂120(u, β̂)

})eβ̂x

. (5.15)

Then, a nonparametric estimate of SQ(q) is given by

ŜQ(q) = 1 − F̂01

(
q

w0

)
+
∫ q

w0

0

ˆ̄F 12

(
q − w0x

w1

|x
)
dF̂01(x). (5.16)

5.5.2 Markov Dependence

Here, the dependence between T01 and T12 is described through a Markov model

in which different transition rates depend on the time since the beginning instead

of the time spent in the current state. That is, λ12(y|x) = λ12(y + x). Then,

survival function (5.13) of Q can be written as

SQ(q) = 1 −
∫ q

w0

0
P
(
T12 ≤

q − w0x

w1

|T01 = x
)
dF01(x)
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= 1 −
∫ q

w0

0

(
1 − exp

[
−
∫ q−w0x

w1

0
λ12(x+ u)du

])
dF01(x)

= 1 −
∫ q

w0

0

(
1 − exp

[
−Λ12

(
q − w0x+ w1x

w1

)
+ Λ12(x)

])
dF01(x),

(5.17)

where Λ12(t) =
∫ t
0 λ12(u). The estimate of Λ12(t) can be obtained (Andersen et

al., 1993, p 238) as

Λ̂12(t) =
∫ t

0

J∗(u)

Y ∗(u)
dN∗

12(u),

where N∗
12(t) is the process counting the number of transition from state 1 to

state 2 over the calender time t (that is, N∗
12(t)=number of i with δ1i=1 and

x0i + x1i ≤ t), Y ∗(t) =
n∑

i=1

Y ∗
i (t) with Y ∗

i (t) = 1 whenever the ith individual

is at risk of a transition from state 1 at calender time t, and 0 otherwise, and

J∗(t) = I(Y ∗(t) > 0).

Then, a nonparametric estimate of the survival function SQ(q) is obtained as

ŜQ(q) = 1 −
∫ q

w0

0

(
1 − exp

[
−Λ̂12

(
q − w0x+ w1x

w1

)
+ Λ̂12(x)

])
dF̂01(x),

(5.18)

where F̂01(·) denotes the Kaplan-Meier estimate of F01, as in Section 5.5.1.

5.5.3 Arbitrary Dependence

The survival function of Q can be written as

SQ(q) = 1 −
∫ q

w0

0
P
(
T12 ≤

q − w0x

w1

|T01 = x
)
dF01(x)

= 1 −
∫ q

w0

0

[
F
(
x+ dx,

q − w0x

w1

)
− F

(
x,
q − w0x

w1

)]
, (5.19)

where F (x, y) = P [T01 ≤ x, T12 ≤ y] is the joint distribution function of T01

and T12. Now F (x, y) can be written as F (x, y) = H(x, 0) − H(x, y), where

H(x, y) = P (T01 ≤ x, T12 > y). An estimate of SQ(q) can now be obtained by
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estimating H(x, y). Let G be the survival function of the censoring variable C and

Ĝ be the corresponding Kaplan-Meier estimator based on the data {(x0i, 1− δ0i),

i = 1, . . . , n} or {(x0i + x1i, 1 − δ1i), i = 1, . . . , n }. An estimate of H(x, y) is

given by (Lin et al., 1999)

Ĥ(x, y) = n−1
n∑

i=1

I(x0i ≤ x, x1i > y)

Ĝ(x0i + y)
.

The corresponding estimate of F (x, y) is given by

F̂ (x, y) = Ĥ(x, 0) − Ĥ(x, y). (5.20)

Hence, an estimate of SQ(q) is obtained by substituting (5.20) in (5.19) and is

given by

ŜQ(q) = 1 −
∑

i:x0i≤
q

w0

[
F̂
(
x0i+,

q − w0x0i

w1

)
− F̂

(
x0i,

q − w0x0i

w1

)]
. (5.21)

The joint distribution of T01 and T12 can also be estimated by the method of

Wang and Wells (1998). Let F̄ (x, y) = P [T01 > x, T12 > y] be the joint survival

function of T01 and T12. Then F̄ (x, y) can be written as

F̄ (x, y) = P [T12 > y|T01 > x]P [T01 > x] =
∏

v≤y

{1 − ΛT12|T01>x(dv)}F̄01(x),

where ΛT12|T01>x(y) is the conditional cumulative hazard of T12, given T01 > x.

Let Ĝ(·) be the Kaplan-Meier estimate of of G(·) based on the data {(x0i + x1i,

1 − δ0iδ1i), i = 1, . . . , n}. An estimator of ΛT12|T01>x(dv) is given by (Wang and

Wells, 1998)

Λ̂T12|T01>x(dv) =

∑n
i=1 I(x0i > x, δ0i = 1, x1i = v, δ1i = 1)/Ĝ(x0i + v)
∑n

i=1 I(x0i > x, δ0i = 1, x1i ≥ v)/Ĝ(x0i + v)
,

Then, F̄ (x, y) is estimated by

ˆ̄F (x, y) =
∏

v≤y

{1 − Λ̂T12|T01>x(dv)} ˆ̄F 01(x), (5.22)
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where F̂01(·) denotes the Kaplan-Meier estimate of F01, as in Section 5.5.1. Hence,

a nonparametric estimate of SQ(q) is given by

ŜQ(q) = 1 −
∑

i:x0i≤
q

w0

[{
ˆ̄F
(
x0i+,

q − w0x0i

w1

)
− ˆ̄F

(
x0i,

q − w0x0i

w1

)}

−
{

ˆ̄F 01(x0i+) − ˆ̄F 01(x0i)
}]
. (5.23)

5.5.4 Analysis of Heart Transplant Data

The proposed nonparametric methods for estimating the QAL distribution in dif-

ferent dependent models are illustrated using the Stanford Heart Transplant data

(See Section 1.5.1 and also Section 4.2.4). The estimates for the survival probabil-

ities under the three dependent models are obtained using the expressions (5.16),

(5.18), (5.21) and (5.23), with w0 = 0.3 and w1 = 0.8, and presented in Table

5.7. The estimates under semi-parametric dependence and Markov dependence

are labeled as SD and MD, respectively. The estimates under arbitrary depen-

dence obtained by using the methods of Lin et al. (1999) and Wang and Wells

(1998) are labeled as LSY and WW, respectively. The nonparametric estimate

(NP) under independent model and ZT estimate are also presented for the sake

of comparison. Note that the estimates of Lin et al. (1999) and Wang and Wells

(1998) for the joint distribution of T01 and T12 may lack the monotonicity prop-

erty for finite samples. This may lead to non-monotonicity in the corresponding

estimate of SQ(·). For our data set, this non-monotonicity has been observed for

the estimate WW, using the method of Wang and Wells (See Table 5.7).
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Table 5.7: Estimated QAL survival probabilities for the heart transplant data in

dependent models.

q SD MD AD NP ZT

LSY WW

10 0.960 0.992 0.925 0.996 0.978 0.989

20 0.904 0.968 0.795 0.945 0.938 0.928

40 0.826 0.878 0.710 0.877 0.865 0.865

50 0.750 0.830 0.629 0.748 0.794 0.788

80 0.627 0.761 0.539 0.599 0.657 0.656

150 0.559 0.682 0.437 0.467 0.578 0.592

300 0.488 0.583 0.422 0.537 0.498 0.473

400 0.472 0.559 0.413 0.520 0.479 0.451

600 0.418 0.483 0.366 0.457 0.420 0.350

800 0.355 0.385 0.302 0.479 0.351 0.260

5.6 Appendix

5.6.1 Proofs of the Theorems for Simple Illness-Death

Model 1

Note that, from Shorack and Wellner (1986, p 304-308), the following results hold.

Result 5.6.1 As n → ∞, sup
u∈[0,τ0)

|F̂01(u) − F01(u)| a.s.→ 0 and sup
u∈[0,τ1)

| ˆ̄F 12(u) −

F̄12(u)| a.s.→ 0.

Result 5.6.2 As n → ∞, Z1n(u)=
√
n
[
F̂01(u) − F01(u)

]
converges to a mean

zero Gaussian process ZF01(u), say, in [0, θ0] for θ0 < τ0, with covariance given by

cov[ZF01(s), ZF01(t)] = F̄01(s)F̄01(t)
∫ s∧t

0

dF01u(x)

[1 −H0(x)]
2 ,

where F01u(x) = P (X0 ≤ x, δ0 = 1). This implies sup
0≤u≤θ1

|Z1n(u) − ZF01(u)| → 0

with probability 1, as n→ ∞.
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Result 5.6.3 As n → ∞, Z2n(u)=
√
n1

[
ˆ̄F 12(u) − F̄12(u)

]
converges to a mean

zero Gaussian process ZF̄12
(u), say, in [0, θ1] for θ1 < τ1, with covariance function

given by

cov[ZF̄12
(s), ZF̄12

(t)] = F̄12(s)F̄12(t)
∫ s∧t

0

dF12u(x)

[1 −H1(x)]
2 ,

where n1 = #{i : δ0i = 1} and F12u(x) = P [X1 < x, δ1 = 1|δ0 = 1]. Note that,

since n1/n
a.s.→ P [δ0 = 1] = P [T01 < C] > 0, then n1 → ∞ as n → ∞. This

implies, as n→ ∞, sup
0≤u≤θ1

|Z2n(u) − ZF̄12
(u)| → 0 with probability 1.

Proof of Theorem 5.2.1:

ŜQ(q) − SQ(q) = F01

(
q

w0

)
− F̂01

(
q

w0

)
+ A1n(q) + A2n(q), say,

where

A1n(q) =
∫ q

w0

0

[
ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)]
dF̂01(x), and

A2n(q) =
∫ q

w0

0
F̄12

(
q − w0x

w1

)
d
(
F̂01(x) − F01(x)

)
.

Integration by parts gives

A2n(q) = F̂01

(
q

w0

)
−F01

(
q

w0

)
−
∫ q

w1

0

[
F̂01

(
q − w1x

w0

)
− F01

(
q − w1x

w0

)]
dF12(x)

so that

ŜQ(q) − SQ(q) =
∫ q

w0

0

[
ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)]
dF̂01(x)

−
∫ q

w1

0

[
F̂01

(
q − w1x

w0

)
− F01

(
q − w1x

w0

)]
dF12(x). (5.24)

Then, for 0 ≤ q < τ ,

|ŜQ(q) − SQ(q)| ≤
∫ q

w0

0

∣∣∣∣ ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)∣∣∣∣ dF̂01(x)
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+
∫ q

w1

0

∣∣∣∣F̂01

(
q − w1x

w0

)
− F01

(
q − w1x

w0

)∣∣∣∣ dF12(x)

≤ sup
0≤x≤ q

w0

∣∣∣∣ ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)∣∣∣∣

+ sup
0≤x≤ q

w1

∣∣∣∣F̂01

(
q − w1x

w0

)
− F01

(
q − w1x

w0

)∣∣∣∣ .

= sup
0≤y≤ q

w1

∣∣∣ ˆ̄F 12(y) − F̄12(y)
∣∣∣+ sup

0≤y≤ q

w0

∣∣∣F̂01(y) − F01(y)
∣∣∣ .

Therefore,

sup
0≤q≤τ

|ŜQ(q) − SQ(q)| ≤ sup
0≤y< τ

w1

∣∣∣ ˆ̄F 12(y) − F̄12(y)
∣∣∣+ sup

0≤y< τ
w0

∣∣∣F̂01(y) − F01(y)
∣∣∣ .

Then, the proof of Theorem 5.2.1 follows using Result 5.6.1.

Now in order to investigate the validity of this result over an extended interval,

consider the following different cases.

1. τ0 = τ1 = ∞. This implies w0τ0 ∧ w1τ1 = w0τ0 + w1τ1.

2. τ0 = ∞, τ1 < ∞ ⇒ Support of C is (0,∞) and support of T12 is (0, τ1].

Then, for t > τ1 F̄12(t) = 0 and ˆ̄F 12(t) = op(1). If q
w1

> τ1, or q > w1τ1 =

w0τ0 ∧ w1τ1, then also sup
0≤y≤ q

w1

∣∣∣ ˆ̄F 12(y) − F̄12(y)
∣∣∣ = op(1) so that the upper

limit of the interval can be w0τ0 + w1τ1.

3. τ0 <∞, τ1 = ∞ ⇒ only support of T01 is finite. By similar argument as in

case 2, the upper limit can be w0τ0 + w1τ1.

4. τ0 < ∞, τ1 < ∞ ⇒ Support of T01, T12 and C are finite. If τ0 and τ1

corresponds to support of T01 and T12, respectively, then also, by the same

argument, as in cases 2 and 3, the upper limit can be w0τ0 + w1τ1. When

C corresponds to τ0, then F01(·) is not estimable beyond τ0, and there is

problem with estimability of SQ(q) beyond w0τ0 ∧ w1τ1.
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Proof of Theorem 5.2.2: Using (5.24), it is easy to write

√
n
[
ŜQ(q) − SQ(q)

]
= C1n(q) + C2n(q) − C3n(q), (5.25)

where

C1n(q) =

√
n

n1

∫ q

w0

0

√
n1

[
ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)]
d
(
F̂01(x) − F01(x)

)
,

C2n(q) =

√
n

n1

∫ q

w0

0

√
n1

[
ˆ̄F 12

(
q − w0x

w1

)
− F̄12

(
q − w0x

w1

)]
dF01(x), and

C3n(q) =
∫ q

w1

0

√
n
[
F̂01

(
q − w1x

w0

)
− F01

(
q − w1x

w0

)]
dF12(x).

Note that for 0 ≤ q ≤ θ,

|C1n(q)| ≤
√
n

n1

{|D1n(q)| + |D2n(q)|} , (5.26)

where D1n(q) =
∫ q

w0

0

[
Z2n

(
q − w0x

w1

)
− ZF̄12

(
q − w0x

w1

)]
d
(
F̂01(x) − F01(x)

)

and D2n(q) =
∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
d
(
F̂01(x) − F01(x)

)
.

Now, using the result in Apostol (1989, p. 177),

|D1n(q)| ≤ 2 sup
0≤x≤ q

w0

∣∣∣∣Z2n

(
q − w0x

w1

)
− ZF̄12

(
q − w0x

w1

)∣∣∣∣

= 2 sup
0≤y≤ q

w1

|Z2n(y) − ZF̄12
(y)| ,

so that sup
0≤q≤θ

|D1n(q)| ≤ 2 sup
0≤y≤ θ

w1

|Z2n(y) − ZF̄12
(y)|. Then, using Result 5.6.3,

sup
0≤q≤θ

|D1n(q)| → 0 with probability 1, as n → ∞. Next, for any given ǫ > 0 and

M > 0, P

[
sup

0≤q≤θ
|D2n(q)| > ǫ

]

= P

[
sup

0≤q≤θ

∣∣∣∣∣

∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
d
(
F̂01(x) − F01(x)

)∣∣∣∣∣ > ǫ,

sup
0≤y≤ θ

w1

|ZF̄12
(y)| ≤M



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+ P

[
sup

0≤q≤θ

∣∣∣∣∣

∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
d
(
F̂01(x) − F01(x)

)∣∣∣∣∣ > ǫ,

sup
0≤y≤ θ

w1

|ZF̄12
(y)| > M




≤ P

[
sup

0≤q≤θ
|
∫ q

w0

0
d(F̂01(x) − F01(x))| > ǫ/M

]
+ P


 sup

0≤y≤ θ
w1

|ZF̄12
(y)| > M


 .

Now, given any δ > 0, M can be chosen large enough to satisfy

P


 sup

0≤y≤ θ
w1

|ZF̄12
(y)| > M


 < δ/2.

Also, using Result 5.6.1,

P

[
sup

0≤q≤θ
|
∫ q

w0

0
d(F̂01(x) − F01(x))| > ǫ/M

]

= P

[
sup

0≤q≤θ
|F̂01

(
q

w0

)
− F01

(
q

w0

)
| > ǫ/M

]

= P


 sup

0≤y≤ θ
w0

|F̂01(y) − F01(y)| > ǫ/M




can be made < δ/2. Hence, P

[
sup

0≤q≤θ
|D2n(q)| > ǫ

]
→ 0 as n → ∞. Hence, from

(5.26), C1n(q) converges to 0 in probability as n→ ∞. Let p1=(P [T01 < C])−1/2,

which is consistently estimated by (n1/n)−1/2. Then, by Results 5.6.2 and 5.6.3,

for 0 ≤ q ≤ θ, C2n(q) and C3n(q) converges to p1

∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
dF01(x)

and
∫ q

w1

0
ZF01

(
q − w1x

w0

)
dF12(x), respectively, which themselves are mean zero

Gaussian processes (Parzen, 1962, p 90).

It now follows, from (5.25), that
√
n
[
ŜQ(q) − SQ(q)

]
converges to a mean zero

Gaussian process ZQ(q) given by

ZQ(q) = p1

∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
dF01(x) −

∫ q

w1

0
ZF01

(
q − w1x

w0

)
dF12(x).
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Derivation of Variance of ZQ(q):

Following Parzen (1962, p 79), cov[ZQ(q), ZQ(q′)]

= p2
1cov



∫ q

w0

0
ZF̄12

(
q − w0x

w1

)
dF01(x),

∫ q′

w0

0
ZF̄12

(
q′ − w0x

w1

)
dF01(x)




+cov



∫ q

w1

0
ZF01

(
q − w1x

w0

)
dF12(x),

∫ q′

w1

0
ZF01

(
q′ − w1x

w0

)
dF12(x)




= p2
1

∫ q

w0

0
dF01(r1)

∫ q′

w0

0
cov

[
ZF̄12

(
q − w0r1
w1

)
, ZF̄12

(
q′ − w0u1

w1

)]
dF01(u1)

+
∫ q

w1

0
dF12(r2)

∫ q′

w1

0
cov

[
ZF01

(
q − w1r2
w0

)
, ZF01

(
q′ − w1u2

w0

)]
dF12(u2).

Now, cov

[
ZF̄12

(
q − w0r1
w1

)
, ZF̄12

(
q′ − w0u1

w1

)]

= F̄12

(
q − w0r1
w1

)
F̄12

(
q′ − w0u1

w1

)∫ α1

0

dF12u(x)

(1 −H1(x))2

and cov

[
ZF01

(
q − w1r2
w0

)
, ZF01

(
q′ − w1u2

w0

)]

= F̄01

(
q − w1r2
w2

)
F̄01

(
q′ − w1u2

w0

)∫ α2

0

dF01u(x)

(1 −H0(x))2
,

where α1 =min

(
q − w0r1
w1

,
q′ − w0u1

w1

)
and α2 =min

(
q − w1r2
w0

,
q′ − w1u2

w0

)
.

Therefore, using Parzen (1962, p. 80),

var(ZQ(q)) = 2p2
1

∫ q

w0

0
dF01(r1)

[∫ r1

0
F̄12

(
q − w0r1
w1

)
F̄12

(
q − w0u1

w1

)

×
∫ q1

0

dF12u(x)

(1 −H1(x))2
dF01(u1)

]

+2
∫ q

w1

0
dF12(r2)

[∫ r2

0
F̄01

(
q − w1r2
w0

)
F̄01

(
q − w1u2

w0

)

×
∫ q2

0

dF01u(x)

(1 −H0(x))2
dF12(u2)

]
, (5.27)
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where 0 ≤ u1 ≤ r1 ≤
q

w0

, q1 =
q − r1w0

w1

and 0 ≤ u2 ≤ r2 ≤
q

w1

, q2 =
q − r2w1

w0

.

The variance of ŜQ(q) can be consistently estimated by

v̂ar(ŜQ(q)) =
2

n1

∫ q

w0

0
dF̂01(r1)

[∫ r1

0

ˆ̄F 12

(
q − w0r1
w1

)
ˆ̄F 12

(
q − w0u1

w1

)

×
∫ q1

0

dF̂12u(x)

(1 − Ĥ1(x))2
dF̂01(u1)

]

+
2

n
.
∫ q

w1

0
dF̂12(r1)

[∫ r1

0

ˆ̄F 01

(
q − w1r1
w0

)
ˆ̄F 01

(
q − w1u2

w0

)

×
∫ q2

0

dF̂01u(x)

(1 − Ĥ0(x))2
dF̂12(u2)

]
, (5.28)

where 0 ≤ u1 ≤ r1 ≤ q

w0

, q1 =
q − r1w0

w1

and 0 ≤ u2 ≤ r2 ≤ q

w1

, q2 =
q − r2w1

w0

;

also, F̂01u(·), F̂12u(·), Ĥ0(·) and Ĥ1(·) are empirical estimates of F01u(·), F12u(·),
H0(·) and H1(·), respectively, as given by F̂01u(·) =n−1∑n

i=1 I(x0i ≤ x, δ0i = 1),

F̂12u(·)=n−1
1

∑n
i:δ0i=1 I(x1i ≤ x, δ1i = 1), Ĥ0(·) = n−1∑n

i=1 I(x0i ≤ x) and Ĥ1(·)
=n−1

1

∑
i:δ0i=1 I(x1i ≤ x).

5.6.2 Proof of the Theorem for Progressive Illness-Death

Model 1

Proof of Theorem 5.2.3: Note that, for j = 1, . . . , k, nj/n
a.s→P [T01 + · · · +

Tj−1,j < C]> 0. So, nj → ∞ as n→ ∞. Write pj = [P (T01+· · ·+Tj−1,j < C)]−1/2,

which is consistently estimated by (nj/n)−1/2, for j = 1, . . . , k. As in Result

5.6.3,
√
nj

[
F̂j,j+1(u) − Fj,j+1(u)

]
converges to a mean zero Gaussian process, say

ZFj,j+1
(u), in [0, θj] for θj < τj, where τj = H−1

j (1) with Hj being the conditional

distribution function of Tj,j+1, given C > T01 + · · · + Tj−1,j, for j = 1, . . . , k. The

theorem is proved by the method of induction as follows. Suppose that the theo-

rem holds for k = m, i.e.
√
n
[
F̂

(m)
Q (q) − F

(m)
Q (q)

]
converges to mean-zero gaussian

process, Zm(q), say. Now it is proved that the theorem is true for k = m + 1.
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Note that

√
n
[
F̂

(m+1)
Q (q) − F

(m+1)
Q (q)

]

=
√
n
∫ q

w0

0

∫ q−w0t1
w1

0
· · ·

∫ q−
∑m

j=0
wjtj

wm+1

0
F̂m+1,m+2

(
q −∑m

j=0wjtj

wm+1

)
m∏

j=0

dF̂j,j+1(tj)

−
√
n
∫ q

w1

0

∫ q−w1t1
w2

0
· · ·

∫ q−
∑m

j=0
wjtj

wm+1

0
Fm+1,m+2

(
q −∑m

j=0wjtj

wm+1

)
m∏

j=0

dFj,j+1(tj).

(5.29)

Define Q∗ = w1T12 + · · · + wm+1Tm+1,m+2 and let F
(m)
Q∗ (·) be the distribution

function of Q∗. Then

F
(m)
Q∗ (q − w0t1) = P (Q∗ ≤ q − w0t1)

=
∫ q−w0t1

w1

0
· · ·

∫ q−
∑m

j=0
wjtj

wm+1

0
Fm+1,m+2

(
q −∑m

j=0wjtj

wm+1

)

×
m∏

j=1

dFj,j+1(tj)

and (5.29) can be written as
√
n
[
F̂

(m+1)
Q (q) − F

(m+1)
Q (q)

]
=

√
n

[∫ q

w0

0
F̂

(m)
Q∗ (q − w0t1)dF̂01(t1) −

∫ q

w0

0
F

(m)
Q∗ (q − w0t1)dF01(t1)

]

= B∗
1n(q) +B∗

2n(q) +B∗
3n(q), say,

where

B∗
1n(q) =

∫ q

w0

0

√
n
[
F̂

(m)
Q∗ (q − w0t1) − F

(m)
Q∗ (q − w0t1)

]
d
(
F̂01(t1) − F01(t1)

)
,

B∗
2n(q) =

∫ q

w0

0

√
n
[
F̂

(m)
Q∗ (q − w0t1) − F

(m)
Q∗ (q − w0t1)

]
dF01(t1) and

B∗
3n(q) =

∫ q

w0

0

√
nF

(m)
Q∗ (q − w0t1)d

(
F̂01(t1) − F01(t1)

)
.

Integration by parts, as before, leads to

B∗
3n(q) =

∫ q

0

√
n
[
F̂01

(
q − u

w0

)
− F01

(
q − u

w0

)]
dF

(m)
Q∗ (u).
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This implies, using Result 5.6.2, that B∗
3n(q)

w→ ∫ q
0 ZF01

(
q−u
w0

)
dF

(m)
Q∗ (u), a mean

zero Gaussian process. By our assumption,
√
n
[
F̂

(m)
Q∗ (·) − F

(m)
Q∗ (·)

]
converges to

a mean-zero Gaussian process, Z
(m)
Q∗ (·), say. As in the proof of Theorem 5.2.2,

B∗
1n(q)

P→ 0. Using the result for k = m, B∗
2n(q)

w→ ∫ q

w0
0 Z

(m)
Q∗ (q − w0t1)dF01(t1)

another mean zero Gaussian process. Therefore,
√
n
[
F̂

(m+1)
Q (q) − F

(m+1)
Q (q)

]
con-

verges to the mean-zero Gaussian process, Z
(m+1)
Q (q), say,

where Z
(m+1)
Q (q) =

∫ q

w1

0
ZQ∗(q − w0t1)dF01(t1) +

∫ q

0
ZF01

(
q − u

w0

)
dF

(m)
Q∗ (u).

Hence, the theorem is true for any k.

Variance expression for three state Model: Here the variance expression is

derived for three state model, that is, for k = 2.

Z
(3)
Q (q) = p2

∫ q

w0

0

{∫ q−w0t1
w1

0
ZF23

(
q − w0t1 − w1t2

w2

)
dF12(t2)

}
dF01(t1)

+p1

∫ q

w0

0

{∫ q−w0t1
w2

0
ZF12

(
q − w0t1 − w2t2

w1

)
dF23(t2)

}
dF01(t1)

+
∫ q

0
ZF01

(
q − u

w0

)
dF

(2)
Q∗ (u)

Let Z∗
F3

(s) =
∫ s

w1

0
ZF23

(
s− w1t2
w2

)
dF12(t2)

and Z∗
F12

(s) =
∫ s

w2

0
ZF12

(
s− w2t2
w1

)
dF23(t2).

It is clear that Z∗
F3

(s) and Z∗
F2

(s) are mean zero Gaussian processes. Now

Z
(3)
Q (q) = p2

∫ q

w0

0
Z∗

F23
(q − w0t1)dF01(t1) + p1

∫ q

w0

0
Z∗

F12
(q − w0t1)dF01(t1)

+
∫ q

0
ZF01

(
q − u

w0

)
dF

(2)
Q∗ (u).
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cov
[
Z

(3)
Q (s), Z

(3)
Q (t)

]

= p2
2

∫ s
w0

0
dF01(r)

∫ t
w0

0
cov

[
Z∗

F23
(s− w0r), Z

∗
F23

(t− w0u)
]
dF01(u)

+p2
1

∫ s
w0

0
dF01(r)

∫ t
w0

0
cov

[
Z∗

F12
(s− w0r), Z

∗
F12

(t− w0u)
]
dF01(u)

+
∫ s

0
dF

(2)
Q∗ (r)

∫ t

0
cov

[
ZF01

(
s− r

w0

)
, ZF01

(
t− u

w0

)]
dF

(2)
Q∗ (u).

Now cov
[
Z∗

F23
(s− w0r), Z

∗
F23

(t− w0u)
]

= cov

[∫ s−w0r

w1

0
ZF23

(
s− w0r − w1t2

w2

)
dF12(t2),

∫ t−w0u

w1

0
ZF23

(
t− w0u− w1t2

w2

)
dF12(t2)

]

=
∫ s−w0r

w1

0
dF12(y)

{∫ t−w0u

w1

0
F̄23

(
s− w0r − w1y

w2

)
F̄23

(
t− w0u− w1z

w2

)

×
∫ min

(
s−w0r−w1y

w2
,
t−w0u−w1z

w2

)

0

dF23u(x)

(1 −H2(x))2



 dF12(z)

and cov
[
Z∗

F12
(s− w0r), Z

∗
F12

(t− w0u)
]

=
∫ s−w0r

w2

0
dF23(y)

{∫ t−w0u

w1

0
F̄12

(
s− w0r − w2y

w1

)
F̄12

(
t− w0u− w2z

w1

)

×
∫ min

(
s−w0r−w1y

w2
,
t−w0u−w1z

w2

)

0

dF12u(x)

(1 −H1(x))2



 dF23(z).

Hence, cov
[
Z

(3)
Q (s), Z

(3)
Q (t)

]

= p2
2

∫ s
w0

0
dF01(r)

∫ t
w0

0

[∫ s−w0r

w1

0
dF12(y)

∫ t−w0u

w1

0
F̄23(h1)F̄23(h2)

×
∫ min(h1,h2)

0

dF23u(x)

(1 −H2(x))2
dF12(z)

]
dF01(u)

+p2
1

∫ s
w0

0
dF01(r)

∫ t
w0

0

[∫ s−w0r

w2

0
dF23(y)

∫ t−w0u

w2

0
F̄12(h3)F̄12(h4)

×
∫ min(h3,h4)

0

dF12u(x)

(1 −H1(x))2
dF23(z)

]
dF01(u)
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+
∫ s

0
dF

(2)
Q∗ (r)

[∫ t

0
F̄01

(
s− r

w0

)
F̄01

(
t− u

w0

)

×
(∫ s−r

w0
∧ t−u

w0

0

dF01u(x)

(1 −H0(x))2

)
dF

(2)
Q∗ (u)

]
, (5.30)

where h1 = (s−w0r−w1y)/w2, h2 = (t−w0u−w1z)/w2, h3 = (s−w0r−w2y)/w1

and h4 = (t− w0u− w2z)/w1.

The variance of F̂
(2)
Q (q) can be consistently estimated by

n

n2

∫ q

w0

0
dF̂01(r)

∫ q

w0

0

[∫ q−w0r

w1

0
dF̂12(y)

∫ q−w0u

w1

0

ˆ̄F 23(h1)
ˆ̄F 23(h2)

×
∫ min(h1,h2)

0

dF̂23u(x)

(1 − Ĥ2(x))2
dF̂12(z)

]
dF̂01(u)

+
n

n1

∫ q

w0

0
dF̂01(r)

∫ q

w0

0

[∫ q−w0r

w2

0
dF̂23(y)

∫ q−w0u

w2

0

ˆ̄F 12(h3)
ˆ̄F 12(h4)

×
∫ min(h3,h4)

0

dF̂12u(x)

(1 − Ĥ1(x))2
dF̂23(z)

]
dF̂01(u)

+
∫ q

0
dF̂

(2)
Q∗ (r)

[∫ q

0

ˆ̄F 01

(
q − r

w0

)
ˆ̄F 01

(
q − u

w0

)

×
(∫ q−r

w0
∧ q−u

w0

0

dF̂01u(x)

(1 − Ĥ0(x))2

)
dF̂

(2)
Q∗ (u)

]
, (5.31)

where F̂01u(·), F̂12u(·), Ĥ0(·) and Ĥ1(·) are empirical estimates of F01u(·), F12u(·),
H0(·) and H1(·), respectively, as defined in the context of two-state model; F̂23u(·)
and Ĥ2(·) are empirical estimates of F23u(·) and H2(·), respectively, similarly

defined corresponding to the sojourn time in health state 3; F̂
(2)
Q∗ (·) is the non-

parametric estimate of F
(2)
Q∗ (·), the distribution function of Q∗ = w1T12 +w2T23 as

obtained by using the method of Section 5.2 and is given by

F̂
(2)
Q∗ (r) =

∫ r
w1

0
F̂23

(
r − w1x

w2

)
dF̂12(x).
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5.6.3 EM Algorithm in the Unobserved Case

The steps of the EM algorithm for estimating QAL distribution in unobserved

case (Section 5.2.2) is discussed below. Note that the complete data likelihood is

Lc(λ0
∼
, λ1
∼

) =
k1∏

j=1

[
λ

d0j

0j (1 − λ0j)
n0j−d0j

] k2∏

j=1

[
λd1j

1j (1 − λ1j)
n1j−d1j

]

×
∏

i:δi=4

∏

l:t0(l)<x′

1i


λ0l


∏

j<l

(1 − λ0j)







∏

j:t1(j)≤x′

1i
−t0(l)

(1 − λ1j)







I4li

×
∏

i:δi=5

∏

l:t0(l)<x′

1i


λ0l


∏

j<l

(1 − λ0j)


λ1l(i)


 ∏

j<l(i)

(1 − λ1j)






I5li

,

where I4li = 1 if x0i = t0(l) and 0 otherwise, for i with δi = 4, and I5li = 1 if

x0i = t0(l) and 0 otherwise, for i with δi = 5. After some rearrangements of terms,

we have

Lc(λ0
∼
, λ1
∼

) =




k1∏

j=0

λ
d∗0j

0j (1 − λ0j)
n∗

0j−d∗0j






k2∏

j=0

λ
d∗1j

1j (1 − λ1j)
n∗

1j−d∗1j


 ,

where d∗0j = d0j +
∑

i:δi=4,x′

1i
>t0(j)

I4ji +
∑

i:δi=5,x′

1i
>t0(j)

I5ji,

n∗
0j = n0j +

∑

l≥j




∑

i:δi=4,x′

1i
≥t0(j)

I4li +
∑

i:δi=5,x′

1i
>t0(j)

I5li


,

d∗1j = d1j +
∑

i:δi=5,x′

1i
>t1(j)

I5j(i)i, and

n∗
1j = n1j +

∑

i:δi=4

∑

l:x′

1i
−t0(l)≥t1(j)

I4li +
∑

i:δi=5

∑

l:x′

1i
−t0(l)>t1(j)

I5li.

Here, for those i with δi = 5 and j with x′1i > t1(j), j
(i) is such that t1(j) =

x′1i − t0(j(i)).

In the application of EM algorithm, we consider, in the E-step,

E

[
logLc

(
λ0
∼
, λ1
∼

)
|Observed data , λ0

∼
=

0

λ0
∼
, λ1
∼

=
0

λ1
∼

]
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the conditional expectation of logarithm of complete data likelihood, given ob-

served data and an initial estimate {λ0
∼

=
0

λ0
∼
, λ1
∼

=
0

λ1
∼
}. This reduces to finding

I0
4li = E

[
I4li|δi = 4, x′1i, λ0

∼
=

0

λ0
∼
, λ1
∼

=
0

λ1
∼

]

=

λ0
0l


∏

j<l

(1 − λ0
0j)







∏

j:t1(j)≤x′

1i
−t0(l)

(1 − λ0
1j)




∑

l
′
:t

0(l
′
)
<x′

1i

λ0
0l

′


∏

j<l
′

(1 − λ0
0j)







∏

j:t1(j)≤x′

1i
−t

0(l
′
)

(1 − λ0
1j)




and

I0
5li = E

[
I5li|δi = 5, x′1i, λ0

∼
=

0

λ0
∼
, λ1
∼

=
0

λ1
∼

]

=

λ0
0l


∏

j<l

(1 − λ0
0j)




λ0

1l(i)

∏

j<l(i)

(1 − λ0
1j)




∑

l′ :t
0(l

′
)
<x′

1i

λ0
0l

′


∏

j<l′

(1 − λ0
0j)




λ0

1l(i)

∏

j<l(i)

(1 − λ0
1j)



.

When d∗ij and n∗
ij, for i = 0, 1, are computed with I4li and I5li replaced by I0

4li

and I0
5li, respectively, suppose they are denoted by d∗0ij and n∗0

ij , respectively. The

M-step is now simple giving improved estimates of λ0j and λ1j as λ1
0j =

d∗00j

n∗0
0j

and

λ1
1j =

d∗01j

n∗0
1j

, respectively.

5.6.4 Proofs of the Theorems for Simple Illness-Death

Model 2

Define Λ∗
hj(t) =

∫ t

0
Jh(u)λhj(u)du and Mhj =

∑n
i=1Mhji, for hj = 01, 02, 12. Then,

using Theorem IV.1.1 and IV.1.2 of Andersen et al. (1993, p 190-191) and under

the conditions therein, the following results hold.
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Result 5.6.4

(i) sup
u∈[0,τ)

|Λ̂hj(u) − Λhj(u)| P→ 0.

(ii)
√
n
{
Λ̂hj(t) − Λhj(t)

}
=

√
n
{
Λ̂hj(t) − Λ∗

hj(t)
}

+ op(1)

=
√
n
∫ t

0

Jh(u)dMhj(u)

Yh(u)
+ op(1) for t ∈ [0, τ).

(iii) The process
√
n[Λ̂hj(·) − Λhj(·)] converges weakly on [0, θ], with θ < τ,

to a zero-mean Gaussian process with finite variance function.

Note that the above results (i)-(iii) hold when τ is replaced by τ0, for hj = 01, 02,

and τ1, for hj = 12.

Result 5.6.5 Using Result 5.6.4, the following results (See Shu et al., 2007)

hold.

(i)
√
n[Ŝ0(u) − S0(u)] = −S0(u)

[√
n{Λ̂01(u) − Λ01(u)} +

√
n{Λ̂02(u) − Λ02(u)}

]

+op(1), u ∈ [0, τ0)

√
n[Ŝ12(u) − S12(u)] = −S12(u)

√
n{Λ̂12(u) − Λ12(u)} + op(1), u ∈ [0, τ1).

(ii) sup
u∈[0,τ0)

|Ŝ0(u) − S0(u)| P→ 0.

sup
u∈[0,τ1)

|Ŝ12(u) − S12(u)| P→ 0.

Proof of Theorem 5.3.1: Using Results 5.6.4 and 5.6.5,

√
n
[
Ŝ0

(
q

w0

)
− S0

(
q

w0

)]
= n−1/2

n∑

i=1

{
W

(0)
1i (q) +W

(0)
2i (q)

}
+ op(1),(5.32)

where W
(0)
1i (q) = −nS0

(
q

w0

) ∫ q

w0

0

J0(u)dM01i(u)

Y0(u)

and W
(0)
2i (q) = −nS0

(
q

w0

) ∫ q

w0

0

J0(u)dM02i(u)

Y0(u)
.
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Note that, for each q, the right hand side of (5.32) is essentially a sum of

n independent and identically distributed zero-mean random variables. Using

the arguments of Shu et al. (2007), it can be concluded that
√
n
[
Ŝ0(·) − S0(·)

]

converges weakly to a zero-mean Gaussian process with covariance function at
(

q
w0
, q′

w0

)
given by

ψ(0)

(
q

w0

,
q′

w0

)
=

1

n

n∑

i=1

cov
{
W

(0)
1i (q) +W

(0)
2i (q),W

(0)
1i (q′) +W

(0)
2i (q′)

}

= nS0

(
q

w0

)
S0

(
q′

w0

)
E





∫ q

w0
∧ q′

w0

0

J0(u)dΛ01(u)

Y0(u)





+nS0

(
q

w0

)
S0

(
q′

w0

)
E





∫ q

w0
∧ q′

w0

0

J0(u)dΛ02(u)

Y0(u)



 ,

which, for q = q′, can be consistently estimated by (5.7) in Section 5.3.

Proof of Theorem 5.3.2: Following the similar decomposition technique as

that used in Voelkel and Crowley (1984) and Shu et al. (2007), it can be shown

that

√
n
[
P̂12

(
q

w0

)
− P12

(
q

w0

)]
= n−1/2

n∑

i=1

{
W

(12)
1i (q) +W

(12)
2i (q)

+W
(12)
3i (q)

}
+ op(1), (5.33)

where

W
(12)
1i (q) = n

∫ q

w0

0

{
S0(u)S12

(
q − w0u

w1

)
−
∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×J0(u)dM01i(u)

Y0(u)
,

W
(12)
2i (q) = −n

∫ q

w0

0

{∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}
J0(u)dM02i(u)

Y0(u)

and

W
(12)
3i (q) = −n

∫ q

w1

0

{∫ q−w1u

w0

0
S0(x)S12

(
q − w0x

w1

)
dΛ12(x)

}
J1(u)dM12i(u)

Y1(u)
.
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Note that, for each q, the right hand side of (5.33) is essentially a sum of n

independent and identically distributed zero-mean random variables. Using the

arguments of Shu et al. (2007), it follows that
√
n
[
P̂12(·) − P12(·)

]
converges

weakly to a zero-mean Gaussian process with covariance function at
(

q
w0
, q′

w0

)

given by ψ(12)
(

q
w0
, q′

w0

)

=
1

n

n∑

i=1

cov
{
W

(12)
1i (q) +W

(12)
2i (q) +W

(12)
3i (q),

W
(12)
1i (q′) +W

(12)
2i (q′) +W

(12)
3i (q′)

}

= E



∫ q

w0
∧ q′

w0

0

{
S0(u)S12

(
q − w0u

w1

)
−
∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×


S0(u)S12

(
q′ − w0u

w1

)
−
∫ q′

w0

u
S0(x)S12

(
q′ − w0x

w1

)
dΛ01(x)





×nJ0(u)
dΛ01(u)

Y0(u)

]

+E



∫ q

w0
∧ q′

w0

0

{∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×




∫ q′

w0

u
S0(x)S12

(
q′ − w0x

w1

)
dΛ01(x)



nJ0(u)

dΛ02(u)

Y0(u)




+E



∫ q

w1
∧ q′

w1

0

{∫ q−w1u

w0

0
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×




∫ q′−w1u

w0

0
S0(x)S12

(
q′ − w0x

w1

)
dΛ01(x)



nJ1(u)

dΛ12(u)

Y1(u)


 ,

which, for q = q′, can be consistently estimated by (5.8) in Section 5.3.

Proof of Theorem 5.3.3: Note that

√
n
[
ŜQ (q) − SQ (q)

]
=

√
n
[
Ŝ0

(
q

w0

)
− S0

(
q

w0

)]

+
√
n
[
P̂12

(
q

w0

)
− P12

(
q

w0

)]
.
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Hence, by some rearrangement of terms following the techniques used in the proofs

of Theorems 5.3.1 and 5.3.2,
√
n
[
ŜQ (q) − SQ (q)

]
can be written as a sum of n

independent and identically distributed zero mean random variables. The weak

convergence result follows by using the same arguments. The covariance term in

Theorem 5.3.3 is given by

cov
[√
n
{
Ŝ0

(
q

w0

)
− S0

(
q

w0

)}
,
√
n
{
P̂12

(
q

w0

)
− P12

(
q

w0

)}]

=
1

n

n∑

i=1

cov
{
W

(0)
1i (q) +W

(0)
2i (q),W

(12)
1i (q) +W

(12)
2i (q) +W

(12)
3 (q)

}

= −nS0

(
q

w0

)
E

[∫ q

w0

0

{
S0(u)S12

(
q − w0u

w1

)

−
∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×J0(u)
dΛ01(u)

Y0(u)

]

+nS0

(
q

w0

)
E

[∫ q

w0

0

{∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}
J0(u)

dΛ02(u)

Y0(u)

]
,

which can be consistently estimated by n times the expression (5.10) in Section

5.3.



Chapter 6

Regression Analysis of QAL Data

to Study Covariate Effect

6.1 Introduction

This chapter considers estimation of QAL distribution with covariate effect assum-

ing some suitable regression model. Regression analysis of QAL data has received

less attention than the problem of estimating the QAL distribution. Cole et al.

(1993) have considered a Cox-type parametric regression model to estimate mean

QAL using bootstrap method to obtain the variance estimate. Fine and Gel-

ber (2001) have considered a semi-parametric bivariate linear regression model to

estimate the ratio of mean lifetimes, or mean QALs, corresponding to two dif-

ferent covariate values. Wang and Zhao (2007) have considered the problem of

estimating the mean QAL in the presence of covariates. They have considered

a regression model for the mean QAL and used the idea of inverse probability

weighting to construct a simple weighted estimating equation for the regression

parameters of the model. These parameter estimates are then used to estimate

the mean QAL. See also Tunes-da-Silva et al. (2009) for a regression analysis to

139
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estimate mean QAL for semi-Markov multistate non-progressive processes.

In the proposed method of estimating the QAL distribution either by para-

metric or nonparametric method in Chapters 4 and 5, respectively, the theoretical

expression for the QAL distribution is first derived and then the sojourn time

distributions are substituted by their estimates obtained by standard survival

analysis techniques. This helps one to estimate the covariate effect, in addition

to the sojourn time distributions, in a simple manner. Suppose one or more of

the sojourn time distributions are possibly affected by some covariates, denoted

by Z= (Z(1), . . ., Z(p))(say), as in ordinary survival data. This dependence may

be incorporated through usual regression modeling. For example, in the case of

a hazard regression model, the theoretical expression for the QAL distribution

remains the same except that the hazard rates are replaced by their regression

forms in the expression. The estimates of the model parameters are obtained from

the sojourn time data (some of which may be unobserved) with covariates, which

can be similarly substituted in the theoretical expression to obtain the estimate

of QAL distribution for an individual with a particular covariate value. In this

work, both parametric and semi-parametric approaches are considered to estimate

the QAL distribution with covariate effect. In addition to estimating the QAL

distributions, an additional objective is to assess the covariate effects.

This chapter is organised as follows. The distribution of QAL with covariate

effect is considered in Section 6.2. Parametric and semi-parametric methods of

estimating QAL distribution are discussed in Sections 6.3 and 6.4, respectively.

Some conclusions are made in Section 6.5. The Appendix in Section 6.6 gives

proofs of the theorems stated in this chapter.
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6.2 Distribution of QAL with Covariate Effect

In this section, the expression of the QAL distribution is derived for a given co-

variate value. The progressive illness-death model 2 (See Figure 2.4) is considered

to study the covariate effect on QAL data, since the models in Figures 2.1, 2.2

and 2.3 are special cases of this model. The QAL distribution is estimated under

the assumption that the different sojourn times are independently distributed. As

mentioned in Section 2.3.2, the transition from state h to either state h + 1 or

to state k + 1, for h = 0, 1, . . . , k − 1, constitutes a competing risks framework

with Th,h+1 and Th,k+1 (see Figure 2.4) denoting the two corresponding conceptual

sojourn times. Let λh,h+1(xh;Z) and λh,k+1(xh;Z) be the cause specific hazards

for the two possible transitions to state h+1 or k+1, respectively, at time xh, for

an individual with covariate vector Z. Note that, for h = k, Th,h+1 and Th,k+1 are

the same random variable representing the actual sojourn time in state k before

death with ordinary hazard rate λk,k+1(xk;Z) at time xk.

In general, let λhj(·; ·) be the rate of the h→ j transition. It is assumed that

the transition rates depend only on the sojourn time in the current state and

this leads to a semi-Markov model in which successive sojourn times are indepen-

dent. The dependence of the transition rates on the covariates are specified via

proportional hazards regression model, as given by

λhj(t;Zi) = λhj0(t) exp
(
βTZhji

)
, (6.1)

where λhj0(t) is the baseline rate for the h → j transition, β is the vector of

regression coefficients, Zhji is the vector of state-specific covariates for individual

i obtained from the basic covariates Zi (see Andersen et. al. 1993, p. 478) and

hj =





(h, h+ 1), (h, k + 1) for h = 0, 1, . . . , k − 1

(h, h+ 1) for h = k.
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For example, in the context of simple illness-death model 2 (see Figure 2.2) for

heart transplant data (Section 4.2.4), let Zi = (Z
(1)
i , Z

(2)
i , Z

(3)
i )T , where Z

(1)
i =

an indicator for previous history of surgery, Z
(2)
i = age at acceptance into the

program and Z
(3)
i = mismatch score. Note that the mismatch score is avail-

able after heart transplantation. Hence, it affects T12 only. The state-specific

covariate vector Zhji is formed to be a 7-variate vector by including the extra

components equal to zero, where hj= 01, 02, and 12. The state-specific covari-

ate vectors are Z01i = (Z
(1)
i , Z

(2)
i , 0, 0, 0, 0, 0), Z02i = (0, 0, Z

(1)
i , Z

(2)
i , 0, 0, 0) and

Z12i = (0, 0, 0, 0, Z
(1)
i , Z

(2)
i , Z

(3)
i ). In parametric approach, the baseline hazard

λhj0(t) has a particular parametric form. For example, with constant hazard

rates, that is for λhj0(t)= λhj, the state-specific hazard rate becomes λhj(t;Z)=

λhj exp
(
βTZhj

)
. In semi-parametric approach, the baseline hazard λhj0(t) is

taken as arbitrary, that is Cox’s (1972) proportional hazard regression model is

considered.

The distribution function ofQ in progressive illness-death model 2 for the given

covariate Z0, and state-specific covariate Zhj0, is given by (see Section 2.3.2)

F
(k)
Q (q;Z0) = P (Q ≤ q) =

k∑

m=0

Pm, (6.2)

where the expressions for P0, Pm and Pk are as follows.

P0 =
∫ q

w0

0
λ0,k+1(x;Z0)e

−(Λ01(x;Z0)+Λ0,k+1(x;Z0))dx =
∫ q

w0

0
S0(x;Z0)dΛ0,k+1(x;Z0),

Pm =
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑m−1

i=0
wixi

wm

0
Sm(xm;Z0)dΛm,k+1(xm;Z0)

×Sm−1(xm−1;Z0)dΛm−1,m(xm−1;Z0)

...

×S0(x0;Z0)dΛ01(x0;Z0),
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for m = 1, . . . , k − 1, and

Pk =
∫ q

w0

0

∫ q−w0x0
w1

0
· · ·

∫ q−
∑k−2

i=0
wixi

wk−1

0
Fk,k+1

(
q −∑k−1

i=0 wixi

wk

;Z0

)

×Sk−1(xk−1;Z0)dΛk−1,k(xk−1;Z0)

...

×S0(x0;Z0)dΛ01(x0;Z0),

where Sh(x;Z0) = exp [−Λh,h+1(x;Z0) − Λh,k+1(x;Z0)], for h = 0, 1, . . . , k − 1,

Λi,j(x) =
∫ x

0
λi,j(u)du and Fk,k+1(·) is the distribution function of Tk,k+1.

6.3 Parametric Estimation of QAL Distribution

with Covariate Effect

In this section, the parametric estimation of QAL distribution with covariate ef-

fect is considered. The theoretical expression for the QAL distribution remains

the same except that the hazard rates are replaced by their regression forms in the

expression. Following the notation in Section 4.3.2, the data set for n individuals

is given by {(xhi, δhi, Zi), h = 0, 1, . . . , k, i = 1, . . . , n}. The model parameters

are estimated by maximum likelihood method based on sojourn time data (some

of which may be unobserved). The likelihood function can be easily written us-

ing the likelihood function of Section 4.3.2, where state-specific hazard rates are

raplecd by those in (6.1) for some specific parametric form of baseline hazard.

The estimate of QAL distribution for a given covariate value is obtained by sub-

stituting the parameters by their estimates. The standard error of the estimate

is obtained by delta method. The proposed method of parametric estimation of

QAL distribution is illustrated by two examples.

Example 1: The data set of Stanford Heart Transplant Program (See Sec-

tion 1.5.1) is used to illustrate the proposed methodology. In this example, the
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survival function for QAL distribution is estimated for the heart patients by incor-

porating covariate effect. The set-up of simple illness-death model 2 is considered

and, for the sake of illustration, only the effect of mismatch score (Z, say) is

considered. Mismatch scores are available for 65 patients out of the 69, who went

through heart transplantation. The covariate analysis is based on the data of

65 patients. The effect of mismatch score is considered on post transplant sur-

vival time, that is, on T12 only. The hazard rate for T12 given Z = z is taken as

λ12(y|x, z) = p12λ12(λ12y)
p12−1eθz. The model parameters are estimated by max-

imum likelihood method. The parameters are estimated in both observed and

unobserved cases (See Section 4.2.4).

For the observed case, the estimate of parameters in λ01(·) and λ02(·) do not

change, since these are not affected by Z. These estimates are available in Table

4.7 of Section 4.2.4. Based on observations on T12 only, the maximum likelihood

estimates are p̂12=0.5746, λ̂12=0.0005 and θ̂=0.6148 with standard errors 0.0754,

0.0003 and 0.2920, respectively. So, the dependence on Z given by the parameter

θ, is significant. One can now estimate survival probabilities for QAL using the

above estimates for a particular value of Z. The standard error can be calculated

by the delta method. For example, given z = 0.46, the survival probability S(q)

at q = 40 is estimated as 0.6551 with standard error 0.0428.

For the unobserved case, the estimated value of the parameter θ is 0.6310 with

standard error 0.2930 (indicating significance of θ). Further, for z = 0.46, the

estimated survival probability at q = 40 is 0.6494 with standard error 0.0455.

Example 2: The data set of IBCSG Trial V (See Section 1.5.2) is used to

illustrate the proposed method for progressive illness-death model. In this ex-

ample, the survival function of QAL for the cancer patients of IBCSG Trial V

(See Section 4.3.4) with covariate effect is estimated. For illustration, only two

covariates, namely, age (Z1, say) and tumor size (Z2, say), are considered. Fur-

ther, it is assumed that Z1 and Z2 have effect on TWiST, that is on T12, only, for
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the sake of illustration. The hazard rate for T12 given (Z1, Z2)=(z1, z2) is mod-

eled as λ12(y|x) = λ12 exp(θ1z1 + θ2z2) in Treatment Group 0, and λ12(y|x) =

α12λ12(λ12y)
α12−1 exp(θ1z1 + θ2z2) in Treatment Group 1. In Group 0, the maxi-

mum likelihood estimates of the parameters are λ̂12 = 0.0233, θ̂1 = −0.0199 and

θ̂2 = 0.0138 with standard errors 0.0082, 0.0066 and 0.0035, respectively, while

the same in Treatment Group 1 are α̂12 = 0.8491, λ̂12 = 0.0056, θ̂1 = −0.0022

and θ̂2 = 0.0119 with standard errors 0.0388, 0.0007, 0.0028 and 0.0029, respec-

tively. Therefore, in Treatment Group 0, both age and tumor size have significant

effect on the hazard rate of TWiST; age has decreasing effect while tumor size

has increasing effect. In Treatment Group 1, however, age does not seem to have

significant effect, whereas tumor size has significant increasing effect on the haz-

ard rate of TWiST. The QAL survival probabilities can be easily estimated using

the above estimates and for particular values of Z1 and Z2. For example, given

Z1 = 49 and Z2 = 50, the estimated survival probability at q = 20, is 0.8754

with standard error 0.0236 in Treatment Group 0 and 0.8949 with standard error

0.0094 in Treatment Group 1.

6.4 Semi-Parametric estimation of QAL Distri-

bution

The semi-parametric method of estimating the QAL distribution is considered

first for the simple illness-death model 2 (Figure 2.2) and then it is extended to

progressive illness-death model 2. It is assumed that the transition rates depend

on the sojourn time in the current state (a semi-Markov model) in which T0 and

T12 are independent. The dependence of the transition rates on the covariates are

specified via Cox’s (1972) proportional hazards regression model as given by (6.1).

The survival function for the given covariate Z0, and state-specific covariate Zhj0,
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is given by (See Section 2.2.2)

SQ(q;Z0) = S0

(
q

w0

;Z0

)
+ P12

(
q

w0

;Z0

)
, say (6.3)

where S0(
q

w0

;Z0) = exp

[
−
∫ q/w0

0
{λ01(u;Z0) + λ02(u;Z0)} du

]

and P12

(
q

w0

;Z0

)
=

∫ q/w0

0
S12

(
q − w0x

w1

;Z0

)
S0(x;Z0)dΛ01(x;Z0),

where Λhj(x) =
∫ x
0 λhj(u;Z0)du, for hj=01 and 02, and S12(·,Z0) is the survival

function of T12 for given Z0.

It may be noted that the semi-Markov model does not fit readily into the

multiplicative intensity framework because of its renewal nature (See Voelkel and

Crowley, 1984, and Shu et al. 2007). This can be dealt with by introducing

time-shifted multivariate counting process over a fixed interval, say [0, τ ], given

by

N(x) = {Nhji(x), hj = 01, 02, 12; i = 1, . . . , n, x ∈ [0, τ ]} ,

where Nhji(x) counts the number of h → j transitions for individual i whose

transition time from state h to state j is less than or equal to x, for hj =01, 02

and 12. Note that such formulated counting process Nhji(x) have the intensity

processes αhji(x;Zi) in the form of a multiplicative intensity model given by

αhji(x;Zi) = Yhi(x)λhj(x;Zi),

with

λhj(x;Zi) = λhj0(x) exp
(
βTZhji

)
, (6.4)

where Yhi(x) is the indicator for individual i being at risk just before sojourn time

x in the state h, for h = 0, 1 . That is, Yhi(x) = 1 if the sojourn time of the

ith individual in state h is larger than or equal to x, and 0 otherwise. Under

independent censoring, Nhji(x) can be uniquely decomposed as

Nhji(x) =
∫ x

0
Yhi(u) exp

(
βTZhji

)
λhj0(u)du+Mhji(x),
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where Mhji(x) are orthogonal local square integrable martingales with predictable

variation process given by 〈Mhji(x)〉 =
∫ x
0 Yhi(u) exp

(
βTZhji

)
λhj0(u)du. For con-

venience, we use the following notation (Shu et al., 2007):

S
(m)
hj (β, x) =

n∑

i=1

Yhi(x)Z
⊗m
hji exp(βTZhji), m = 0, 1, 2,

and Ehj(β, x) =
S

(1)
hj (β, x)

S
(0)
hj (β, x)

, for hj = 01, 02, 12,

where for a column vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT .

6.4.1 Estimation and Asymptotic Theory

This section considers estimation of β, the cumulative baseline hazards and the

QAL survival function for a given covariate value along with their asymptotic

properties. As in Section 4.2.2, the data set for n individuals is of the form

{(x0i, δ0i, δ01i, x1i, δ1i,Z01i,Z02i,Z12i); i = 1, . . . , n}. Then, the Breslow (1974)

estimator for Λhj0(t) =
∫ t
0 λhj0(u) is given by

Λ̂hj0(t, β̂) =
∫ t

0

Jh(x)

S
(0)
hj (β̂, x)

dNhj(x), for hj = 01, 02, 12,

where Jh(x) = I(Yh(x) > 0), for h = 0, 1 and β̂ is obtained by maximizing the

partial likelihood (See Andersen, 1993, p 481-482)

L(β) =
∏

hj

∏

i


exp(βTZhji)

S
(0)
hj (β, xhi)




ηhji

,

or by maximizing

lnL(β) =
∑

hj

n∑

i=1

ηhji

[
βTZhji − log

(
n∑

l=1

Yhl(xhi) exp(βTZhjl)

)]
,

where η01i = I(δ01i = 1), η02i = I(δ01i = 0) and η12i = I(δ1i = 1).
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The score vector and information matrix are given by

U(β) =
∑

hj

n∑

i=1

ηhji [Zhji − Ehj(β, xhi)] , and

I(β) =
∑

hj

∫ ∞

0




S

(2)
hj (β, x)

S
(0)
hj (β, x)

− Ehj(β, x)
⊗2



 dNhj(x),

The cumulative hazards Λhj(t,Z0) =
∫ t
0 λhj(u,Z0)du are estimated as Λ̂hj(t,Z0)

= Λ̂hj0(t, β̂) exp(β̂TZhj0), for hj = 01, 02 and 12. Also, the survival functions for

given Z0, S0 (t;Z0) and S12(t;Z0) for T0 and T12, respectively, are estimated by

Ŝ0 (t;Z0) =
∏

u<t

{
1 − dΛ̂01(u;Z0) − dΛ̂02(u;Z0)

}
, and (6.5)

Ŝ12(t;Z0) =
∏

u<t

{
1 − dΛ̂12(u;Z0)

}
. (6.6)

Then, using (6.3), an estimate of SQ(q;Z0) is given by

ŜQ(q;Z0) = Ŝ0

(
q

w0

;Z0

)
+ P̂12

(
q

w0

;Z0

)

= Ŝ0

(
q

w0

;Z0

)
+
∫ q

w0

0
Ŝ12

(
q − w0x

w1

;Z0

)
Ŝ0(x;Z0)dΛ̂01(x;Z0).

(6.7)

Note that the two product-limit estimators Ŝ0(u;Z0) and Ŝ12(u;Z0) are approx-

imately equal to the corresponding ones derived from the Breslow estimators,

given by exp
[
−Λ̂01(u;Z0) − Λ̂02(u;Z0)

]
and exp

[
−Λ̂12(u;Z0)

]
, respectively. For

the derivation of asymptotic results in the Appendix (Section 6.6), the latter esti-

mators of S0(u;Z0) and S12(u;Z0) are considered for some algebraic convenience.

Let θ ∈ [0, τ). Following Shu et al. (2007) and under the regularity conditions

1-3 therein, we have the following Theorems on the asymptotic properties. The

proof follows similar arguments as those in Shu et al. and are briefly sketched in

the Appendix (Section 6.6).

Theorem 6.4.1 The random vector
√
n(β̂−β) converges weakly to a multivariate

normal with mean zero and a covariance matrix Ω−1 which can be consistently

estimated by nI(β̂)−1.
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Theorem 6.4.2 The process
√
n
[
Ŝ0(·,Z0) − S0(·,Z0)

]
converges weakly on [0, θ]

to a zero-mean Gaussian process whose variance at q/w0 can be estimated uni-

formly consistently by

ψ̂(0)
(
q

w0

;Z0

)
= Q̂(0)

(
q

w0

, β̂
)T

nI(β̂)−1Q̂(0)
(
q

w0

, β̂
)

+ n
{
Ŝ0

(
q

w0

;Z0

)}2

{exp(β̂TZ010)}2
∫ q

w0

0

dΛ̂010(u, β̂)

S
(0)
01 (β̂, u)

+ n
{
Ŝ0

(
q

w0

;Z0

)}2

{exp(β̂TZ020)}2
∫ q

w0

0

dΛ̂020(u, β̂)

S
(0)
02 (β̂, u)

, (6.8)

where

Q̂(0)
(
q

w0

, β̂
)

= −Ŝ0

(
q

w0

;Z0

) [∫ q

w0

0
{Z010 − E01(β̂, u)} exp(β̂TZ010)dΛ̂010(u, β̂)

+
∫ q

w0

0
{Z020 − E02(β̂, u)} exp(β̂TZ020)dΛ̂020(u, β̂)

]
.

Theorem 6.4.3 The process
√
n
[
P̂12(·,Z0) − P12(·,Z0)

]
converges weakly on [0, θ]

to a zero-mean Gaussian process whose variance at q/w0 can be estimated uni-

formly consistently by ψ̂(12)
(

q
w0

;Z0

)

= Q̂(12)
(
q

w0

, β̂
)T

nI(β̂)−1Q̂(12)
(
q

w0

, β̂
)

+n
∫ q

w0

0

[
Ŝ0(u;Z0)Ŝ12

(
q − w0u

w1

;Z0

)
−
∫ q

w0

u

{
Ŝ0(x;Z0)Ŝ12

(
q − w0x

w1

;Z0

)

× exp(β̂TZ010)dΛ̂010(x, β̂)
} ]2

× {exp(β̂TZ010)}2dΛ̂010(u, β̂)

S
(0)
01 (β̂, u)

+n
∫ q

w0

0

{∫ q

w0

u
Ŝ0(x;Z0)Ŝ12

(
q − w0x

w1

;Z0

)
exp(β̂TZ010)dΛ̂010(x, β̂)

}2

×{exp(β̂TZ020)}2dΛ̂020(u, β̂)

S
(0)
02 (β̂, u)

+n
∫ q

w1

0

{∫ q−w1u

w0

0
Ŝ0(x;Z0)Ŝ12

(
q − w0x

w1

;Z0

)
exp(β̂TZ010)dΛ̂010(x, β̂)

}2

×{exp(β̂TZ120)}2dΛ̂120(u, β̂)

S
(0)
12 (β̂, u)

, (6.9)
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where

Q̂(12)
(
q

w0

, β̂
)

=
∫ q

w0

0
Ŝ0(u;Z0)Ŝ12

(
q − w0u

w1

;Z0

) [
{Z010 − E01(β̂, u)}

−
∫ u

0
{Z010 − E01(β̂, x)} exp(β̂TZ010)dΛ̂010(x, β̂)

−
∫ u

0
{Z020 − E02(β̂, x)} exp(β̂TZ020)dΛ̂020(x, β̂)

−
∫ q−w0u

w1

0

{
Z120 − E12(β̂, x)

}
exp(β̂TZ120)dΛ̂120(x, β̂)

]

× exp(β̂TZ010)dΛ̂010(u, β̂).

Theorem 6.4.4
√
n
[
ŜQ(q;Z0) − SQ(q;Z0)

]
converges weakly to a mean zero Gaus-

sian process in [0, θw], where θw < τ/w0 is a constant, with a variance at q which

can be estimated uniformly consistently by ψ̂(q,Z0)

= ψ̂(0)
(
q

w0

;Z0

)
+ ψ̂(12)

(
q

w0

;Z0

)
+ 2ĉov

{√
nŜ0

(
q

w0

;Z0

)
,
√
nP̂12

(
q

w0

;Z0

)}
,

(6.10)

where ĉov
{√

nŜ0

(
q

w0
;Z0

)
,
√
nP̂12

(
q

w0
;Z0

)}

= Q̂(0)
(
q

w0

, β̂
)T

nI(β̂)−1Q̂(12)
(
q

w0

, β̂
)

−nŜ0

(
q

w0

;Z0

)
{exp(β̂TZ010)}2

∫ q

w0

0

{
Ŝ0(u;Z0)Ŝ12

(
q − w0u

w1

|Z0

)

−
∫ q

w0

u
Ŝ0(x;Z0)Ŝ12

(
q − w0x

w1

;Z0

)
exp(β̂TZ010)dΛ̂010(x, β̂)

}
dΛ̂010(u, β̂)

S
(0)
01 (β̂, u)

+nŜ0

(
q

w0

;Z0

)
{exp(β̂TZ020)}2

∫ q

w0

0

{∫ q

w0

u
Ŝ0(x;Z0)Ŝ12

(
q − w0x

w1

;Z0

)

× exp(β̂TZ010)dΛ̂010(x, β̂)
}
dΛ̂020(u, β̂)

S
(0)
02 (β̂, u)

. (6.11)

Example 1: The Stanford Heart Transplant data (Section 1.5.1) is used to

illustrate the proposed estimate of QAL distribution with covariate effect. Here

T0 is the time, since acceptance into the program, of heart transplantation or
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death before transplantation, whichever is earlier, and T12 is the time till death

since heart transplantation. The covariates we consider are indicator for previous

history of surgery (Z(1)), age at acceptance (Z(2)) and mismatch score (Z(3)). The

mismatch score is available after heart transplantation. So Z(3) will have effect on

T12 only. Let β = (β011, β012, β021, β022, β121, β122, β123)
′

be the vector of regression

coefficients. The estimates of the regression coefficients along with standard errors

and p-values are presented in Table 6.1. From Table 6.1, it is clear that only age

at acceptance (Z(2)) has significant effect on the hazards of 01 and 12 transitions.

Table 6.1: Estimates of the regression coefficients for the heart transplant data

Transition Parameters Estimate Standard error p-value

01 β011 0.1333 0.3224 0.680

β012 0.0313 0.0142 0.028

02 β021 -0.4784 0.6137 0.440

β022 0.0149 0.0183 0.410

12 β121 -0.7620 0.4858 0.120

β122 0.0520 0.0225 0.021

β123 0.5163 0.2957 0.081

One can easily estimate the survival probabilities for QAL using (6.7) and the

estimates given in Table 6.1 for a particular value of Z. The standard error is

calculated by using (6.10). As in Section 4.2.4, we take w0 = 0.3 and w1 = 0.8.

With Z(1) = 0, Z(2) = 45 and Z(3) = 1.5, for example, the survival probability

SQ(q) at q = 10 is estimated as 0.7819 with standard error 0.0333.
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6.4.2 Extension to Progressive Illness-Death Model 2

In this section, the estimation of QAL distribution with covariate effect for the

progressive illness-death model 2, as described in Figure 2.4, is considered. Con-

sidered the data {(xhi, δhi,Zi); h = 0, 1 . . . , k, i = 1, . . . , n}, as in Section 4.3.2.

Define ηhj = I(δh = j) if j = h + 1 or k + 1, for h = 0, 1, . . . , k − 1 and

ηk,k+1 = I(δk = k + 1). Also, ηhji denotes the value of ηhj for the ith indi-

vidual. The estimate of the regression parameters β is obtained by maximizing

the partial likelihood (Andersen, 1993, p 481-482)

L(β) =
∏

hj

∏

i


exp(βTZhji)

S
(0)
hj (β, xhi)




ηhji

.

Then, the Breslow (1974) estimator for Λhj0(t) =
∫ t
0 λhj0(u) is given by

Λ̂hj0(t, β̂) =
∫ t

0

Jh(x)

S
(0)
hj (β̂, x)

dNhj(x),

where Nhj(t) =
∑n

i=1 I(Xhi ≤ t, δhi = j), for j = h + 1 or k + 1, Yh(t) =
∑n

i=1 I(Xhi ≥ t) and Jh(t) = I(Yh(t) > 0), for h = 0, 1, . . . , k. Then, Sh(t;Z0) and

Fk,k+1(t;Z0) are estimated by

Ŝh(t;Z0) =
∏

u<t

{
1 − dΛ̂h,h+1(u;Z0) − dΛ̂h,k+1(x;Z0)

}
, (6.12)

for h = 0, 1, . . . , k − 1, and

F̂k,k+1(t;Z0) = 1 −
∏

u≤t

{
1 − dΛ̂k,k+1(u;Z0)

}
, (6.13)

respectively. Then, using (6.2), an estimate of F
(k)
Q (q;Z0) is obtained by substitut-

ing Sh(·)’s, Λh,h+1(·)’s, Λh,k+1(·)’s and Fk,k+1(·) by the corresponding estimates.

Note that F
(k)
Q (q;Z0) can be written as

F
(k)
Q (q;Z0) =

∫ q

w0

0
S0(x;Z0)dΛ0,k+1(x;Z0)

+
∫ q

w0

0
F

(k−1)
Q∗ (q − w0x0;Z0)S0(x)dΛ01(x;Z0),
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where Q∗ is defined in the same way as Q in Section 2.3.2, but starting from state

1 instead of state 0 (See also Section 5.3.5). The corresponding survival function,

given by

S
(k)
Q (q;Z0) = S0

(
q

w0

;Z0

)
+
∫ q

w0

0
S

(k−1)
Q∗ (q − w0x;Z0)S0(x;Z0)dΛ01(x;Z0),

has the similar form as in (6.3) with S
(k−1)
Q∗ (·) in place of S12(·). Hence, following

the proofs of Theorems 6.4.2-6.4.4 and using method of induction, one can prove

weak convergence of
√
n
[
Ŝ

(k)
Q (q;Z0) − S

(k)
Q (q;Z0)

]
to a mean zero Gaussian pro-

cess with a variance that can be estimated, where Ŝ
(k)
Q (q;Z0) denotes the estimate

of S
(k)
Q (q;Z0) as described above.

Example 2: The proposed method is illustrated using data from IBCSG Trial

V (See Section 1.5.2). Note that there is no direct death from health states 0 and

1; therefore, the appropriate model for IBCSG data is a special case (See Figure

2.3) of the progressive illness-death model 2, in which there is no direct death

from the states 0 and 1. Also as illustrated in Section 4.3.4, there is evidence of

independence between the three different sojourn times.

Five covariates recorded from each patient upon enrollment in the clinical trial

are considered for illustration as given below.

Z(1)=treatment group (0: short duration and 1: long duration).

Z(2)= age in years at the time enrollment.

Z(3)= menopausal status (0: pre- and 1: post-).

Z(4) = tumor size, and

Z(5)= nodal group (0: 1 to 3 nodes and 1: 4 or more nodes).

The state-specific covariate vectors are

Z01= (Z(1), Z(2), Z(3), Z(4), Z(5), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
′

.

Z12= (0, 0, 0, 0, 0, Z(1), Z(2), Z(3), Z(4), Z(5), 0, 0, 0, 0, 0)
′

.

Z23= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Z(1), Z(2), Z(3), Z(4), Z(5))
′

.
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The state-specific hazard rate is denoted by

λhj(t;Z) = λhj0(t) exp
(
βTZhj

)
, for hj = 01, 12, 23,

where β = (β011, β012, β013, β014, β015, β121, β122, β123, β124, β125, β231, β232,

β233, β234 , β235)
′

is the vector of regression coefficients. Then, from (6.2), the

distribution function of Q for given covariate Z0 is given by (See also Section

2.3.1)

FQ(q;Z0)) =
∫ q

w0

0

∫ q−w0x0
w1

0
F23

(
q − w0x0 − w1x1

w2

;Z0

)
S1(x1;Z0)dΛ12(x1;Z0)

×S0(x0;Z0)dΛ01(x0;Z0), (6.14)

where S0(t;Z0) = exp {−Λ01(t;Z0)}, S1(t;Z0) = exp {−Λ12(t;Z0)} and F23(·;Z0)

is the distribution function of T23.

Out of 1229 patients, all the covariate values are available for 1215 patients. So

this analysis is based on 1215 patients. The estimates of the regression coefficients

along with standard errors and p-values are presented in Table 6.2. From the p-

values in Table 6.2, it is clear that duration of chemotherapy (Z(1)) has significant

decreasing effect on the hazards of TOX and TWiST and, increasing effect on the

hazard of REL. Age (Z(2)), menopausal status (Z(3)) and tumor size (Z(4)) have

significant effect only on the hazard of TWiST. Nodal group (Z(5)) has significant

effect on both TWiST and REL.

Next, we estimate survival probabilities for QAL using (6.14) and the estimates

in Table 6.2 for a given value of Z0. Since the algebraic expression for the standard

error of this estimate is very complicated and difficult to obtain, it is computed by

using a bootstrap method with 500 bootstrap samples, each of size 1215 drawn

with replacement. The utility coefficients are taken as w0 = 0.5, w1 = 1 and

w2 = 0.5. The survival probability for Z0=(1, 50, 0, 35, 1)
′

at q = 10 is estimated

as 0.9836 with standard error 0.0030.
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Table 6.2: Estimates of the regression coefficients for the IBCSG data

Transition Parameters Estimate Standard error p-value

01 β011 -2.7599 0.1043 0.000

β012 -0.0039 0.0049 0.440

β013 0.0371 0.0937 0.690

β014 -0.0009 0.0018 0.620

β015 0.0739 0.0601 0.220

12 β121 -0.4776 0.0797 0.000

β122 -0.0281 0.0069 0.000

β123 0.4281 0.1297 0.001

β124 0.0066 0.0022 0.003

β125 0.8523 0.0810 0.000

23 β231 0.3071 0.0929 0.001

β232 -0.0005 0.0079 0.950

β233 -0.1725 0.1535 0.260

β234 0.0040 0.0026 0.130

β235 0.2099 0.0942 0.026

6.5 Concluding Remarks

In this work, regression analysis of QAL data has been proposed in progress illness-

death model 2, which can be extended to some general models. For example, one

can extend this method to the competing illness-death models of Section 2.4 in

similar manner.

One can, in principle, use a Markov model in which the different baseline tran-

sition rates depend on the time since the beginning instead of the time spent in

the current state. This represents a complicated structure of dependence between
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the different sojourn times. This, however, readily fits into the multiplicative in-

tensity framework. Therefore, the results of Andersen et al. (1993, p 481-482) are

readily applicable for the estimation of the regression parameters, the baseline cu-

mulative hazards, and, eventually, the QAL distribution. The asymptotic results

also follow from those of Andersen et al. (1993, Section VII.2) following similar

techniques. In a particular dependence structure, a transition rate may depend

on the previous sojourn times(s), say, through a proportional hazards type mod-

elling. The estimation through partial likelihood can be carried out in a similar

manner.

6.6 Appendix

Let us assume the regularity conditions 1-3 of Shu et al. (2007). Theorem 6.4.1

is Lemma (ii) of their work.

Proof of Theorem 6.4.2: Using Lemmas 1 and 2 of Shu et al. (2007), ,

√
n
[
Ŝ0

(
q

w0
,Z0

)
− S0

(
q

w0
,Z0

)]

= n−1/2
n∑

i=1

{
W

(0)
1i (q) +W

(0)
2i (q) +W

(0)
3i (q)

}
+ op(1), (6.15)

where

W
(0)
1i (q) = Q(0)

(
q

w0

, β
)T

Ω−1
∑

hj

∫ ∞

0
{Zhji − Ehji(β, u)}dMhji(u),

Q(0)
(
q

w0

, β
)

= −S0

(
q

w0

;Z0

) [∫ q

w0

0
{Z010 − e01(β, u)}dΛ01(u;Z0)

+
∫ q

w0

0
{Z020 − e02(β, u)}dΛ02(u;Z0)

]
,

W
(0)
2i (q) = −nS0

(
q

w0

;Z0

)
exp

(
βTZ010

) ∫ q

w0

0

J0(u)dM01i(u)

S
(0)
01 (β, u)

,
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W
(0)
3i (q) = −nS0

(
q

w0

;Z0

)
exp

(
βTZ020

) ∫ q

w0

0

J0(u)dM02i(u)

S
(0)
02 (β, u)

.

Note that, for each q, the right hand side of (6.15) is essentially a sum of n indepen-

dent and identically distributed zero-mean random variables. Using the arguments

of Shu et al. (2007), we conclude that
√
n
[
Ŝ0(·;Z0) − S0(·;Z0)

]
converges weakly

to a zero-mean Gaussian process with covariance function at
(

q
w0
, q′

w0

)
given by

ψ(0)
(

q
w0
, q′

w0

)

=
1

n

n∑

i=1

cov
{
W

(0)
1i (q) +W

(0)
2i (q) +W

(0)
3i (q),W

(0)
1i (q′) +W

(0)
2i (q′) +W

(0)
3i (q′)

}

= Q(0)
(
q

w0

, β
)T

Ω−1 1

n
E


∑

hj

∫ ∞

0




S

(2)
hj (β, u)

S
(0)
hj (β, u)

− Ehj(β, u)
⊗2





× S
(0)
hj (β, u)dΛhj0(u)

]
Ω−1Q(0)

(
q′

w0

, β

)

+nS0

(
q

w0

;Z0

)
S0

(
q′

w0

;Z0

)
{exp

(
βTZ010

)
}2E





∫ q

w0
∧ q′

w0

0

J0(u)dΛ02(u)

Y0(u)





+nS0

(
q

w0

;Z0

)
S0

(
q′

w0

;Z0

)
{exp

(
βTZ020

)
}2E





∫ q

w0
∧ q′

w0

0

J0(u)dΛ02(u)

Y0(u)





which, for q = q′, can be uniformly consistently estimated by (6.8) in Section 6.4.1.

Proof of Theorem 6.4.3: Following the similar decomposition technique as

that used in Voelkel and Crowley (1984) and Shu et al. (2007), we have

√
n
[
P̂12

(
q

w0
;Z0

)
− P12

(
q

w0
;Z0

)]

= n−1/2
n∑

i=1

{
W

(12)
1i (q) +W

(12)
2i (q) +W

(12)
3i (q) +W

(12)
4i (q)

}
+ op(1), (6.16)

where

W
(12)
1i = Q(12)

(
q

w0

, β
)T

Ω−1
∑

hj

∫ ∞

0
{Zhji − Ehji(β, u)}dMhji(u),
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W
(12)
2i (q) = n

∫ q

w0

0

{
S0(u;Z0)S12

(
q − w0u

w1

;Z0

)

−
∫ q

w0

u
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x)

}
,

× exp(βTZ010)
J0(u)dM01i(u)

S
(0)
01 (β, u)

,

W
(12)
3i (q) = −n

∫ q

w0

0

{∫ q

w0

u
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x)

}

× exp(βTZ020)
J0(u)dM02i(u)

S
(0)
02 (β, u)

,

W
(12)
4i (q) = −n

∫ q

w1

0

{∫ q−w1u

w0

0
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ12(x)

}

× exp(βTZ120)
J1(u)dM12i(u)

S
(0)
12 (β, u)

,

Q(12)
(
q

w0

, β
)

=
∫ q

w0

0
S0 (u;Z0)S12

(
q − w0u

w1

;Z0

) [
{Z010 − e01(β, u)}

−
∫ u

0
{Z010 − e01(β, x)}dΛ01(x;Z0)

−
∫ u

0
{Z020 − e02(β, x)}dΛ02(x;Z0)

−
∫ u

0
{Z120 − e12(β, x)}dΛ12(x;Z0)

]
dΛ01(u;Z0).

Note that, for each q, the right hand side of (6.16) is essentially a sum of n

independent and identically distributed zero-mean random variables. Using the

arguments of Shu et al. (2007), we conclude that
√
n
[
P̂12(·) − P12(·)

]
converges

weakly to a zero-mean Gaussian process with covariance function at
(

q
w0
, q′

w0

)
given

by

ψ(12)
(

q
w0
, q′

w0

)

=
1

n

n∑

i=1

cov
{
W

(12)
1i (q) +W

(12)
2i (q) +W

(12)
3i (q) +W

(12)
4i (q),

W
(12)
1i (q′) +W

(12)
2i (q′) +W

(12)
3 (q′) +W

(12)
4i (q′)

}

= Q(12)
(
q

w0

, β
)T

Ω−1 1

n
E


∑

hj

∫ ∞

0




S

(2)
hj (β, u)

S
(0)
hj (β, u)

− Ehj(β, u)
⊗2




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× S
(0)
hj (β, u)dΛhj0(u)

]
Ω−1Q(12)

(
q′

w0

, β

)

+nE



∫ q

w0
∧ q′

w0

0

{
S0(u;Z0)S12

(
q − w0u

w1

;Z0

)

−
∫ q

w0

u
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x;Z0)

}

×
{
S0(u;Z0)S12

(
q′ − w0u

w1

;Z0

)

−
∫ q′

w0

u
S0(x;Z0)S12

(
q′ − w0x

w1

;Z0

)
dΛ01(x;Z0)





×{exp(βTZ010)}2J0(u)
dΛ01(u)

S
(0)
01 (β, u)

]

+nE



∫ q

w0
∧ q′

w0

0

{∫ q

w0

u
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x;Z0)

}

×




∫ q′

w0

u
S0(x;Z0)S12

(
q′ − w0x

w1

;Z0

)
dΛ01(x;Z0)





×{exp(βTZ020)}2J0(u)
dΛ02(u)

S
(0)
02 (β, u)

]

+nE



∫ q

w1
∧ q′

w1

0

{∫ q−w1u

w0

0
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x;Z0)

}

×




∫ q′−w1u

w0

0
S0(x;Z0)S12

(
q′ − w0x

w1

;Z0

)
dΛ01(x)





×{exp(βTZ120)}2J1(u)
dΛ12(u)

S
(0)
12 (β, u)

]

which, for q = q′, can be uniformly consistently estimated by (6.9) in Section 6.4.1.

Proof of Theorem 6.4.4: Note that

√
n
[
ŜQ (q;Z0) − SQ (q;Z0)

]
=

√
n
[
Ŝ0

(
q

w0

;Z0

)
− S0

(
q

w0

;Z0

)]

+
√
n
[
P̂12

(
q

w0

;Z0

)
− P12

(
q

w0

;Z0

)]
.

Hence, by some rearrangement of terms and following the techniques used in the



160

proofs of Theorems 6.4.2 and 6.4.3,
√
n
[
ŜQ (q;Z0) − SQ (q;Z0)

]
can be written as

a sum of n independent and identically distributed zero mean random variables.

The weak convergence result follows by using similar arguments. The covariance

term in Theorem 6.4.4 is given by

cov
[√
n
{
Ŝ0

(
q

w0
;Z0

)
− S0

(
q

w0
;Z0

)}
,
√
n
{
P̂12

(
q

w0
;Z0

)
− P12

(
q

w0
;Z0

)}]

=
1

n

n∑

i=1

cov
{
W

(0)
1i (q) +W

(0)
2i (q) +W

(0)
3i (q),

W
(12)
1i (q) +W

(12)
2i (q) +W

(12)
3i (q) +W

(12)
4i (q)

}
+ op(1)

= Q(0)
(
q

w0

, β
)T

Ω−1 1

n
E


∑

hj

∫ ∞

0




S

(2)
hj (β, u)

S
(0)
hj (β, u)

− Ehj(β, u)
⊗2





× S
(0)
hj (β, u)dΛhj0(u)

]
Ω−1Q(12)

(
q′

w0

, β

)

−nS0

(
q

w0

;Z0

){
exp(βTZ010)

}2
E

[∫ q

w0

0

{
S0(u;Z0)S12

(
q − w0u

w1

;Z0

)

−
∫ q

w0

u
S0(x;Z0)S12

(
q − w0x

w1

;Z0

)
dΛ01(x)

}
J0(u)

dΛ01(u)

S
(0)
01 (β, u)

]

+nS0

(
q

w0

)
{exp(βTZ020)}2E

[∫ q

w0

0

{∫ q

w0

u
S0(x)S12

(
q − w0x

w1

)
dΛ01(x)

}

×J0(u)
dΛ02(u)

S
(0)
02 (β, u)

]
+ op(1),

which can be uniformly consistently estimated by (6.11) in Section 6.4.1.



Chapter 7

Conclusions and Future Work

In this work, a new method is proposed to estimate the QAL distribution. The

advantages of the proposed method over the existing methods are discussed in

Introduction. Estimation of QAL distribution is considered using parametric,

nonparametric and semi-parametric methods in the context of different illness-

death models. In the proposed approach, one needs to derive the theoretical

distribution of QAL in terms of the joint distribution of the sojourn times in the

health states. This required joint modelling of the sojourn times in all states.

This joint modelling may not be simple unless additional assumptions are made

(e.g., independence).

Although there are several advantages of the proposed method over the exist-

ing methods, the proposed method has some limitations. It may be noted that

the proposed method explicitly use the information on the interrelationship be-

tween the different health states and the same between the corresponding sojourn

times. Hence the proposed method may be less robust to departures from model

misspecification (See Section 4.2.3). The estimation, in general, becomes difficult

as the number of health states increases.

In parametric approach, estimation of QAL distribution is considered when

161
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sojourn times are both independent and dependent. Under the assumption of

independence, nonparametric estimation is carried out using nonparametric es-

timates of the marginal distributions of the sojourn times (Satten and Datta,

2002). Estimation of the joint distribution of all the sojourn times, in general,

is a difficult/impossible task. The nonparametric estimation of QAL distribution

under some specific dependent models with the simple illness-death model 1 is

considered (See Section 5.5), but the asymptotic properties are not studied. The

semi-parametric estimation is also considered under independence (semi-Markov

model). One can use Markov model to represent the dependence structure be-

tween the different sojourn times. The study of asymptotic properties is a chal-

lenging task for the dependent models both in nonparametric and semi-parametric

methods. We keep these tasks for future work. Though parametric estimation is

considered for the reversible model, nonparametric and semi-parametric methods

are not considered in this work. These tasks will also be considered in future

work. Bayes estimation of QAL distribution has not received much attention in

literature. Bayes estimation will be a major area for work in future.

The choice of the utility coefficients (wi’s) remains a difficult issue in the study

of QAL. In the context of estimating lifetime medical cost, the coefficients are es-

sentially the different cost components, but this choice is largely subjective while

studying QAL. One usually has to depend on the different opinions of the health

experts. The utility coefficients may be formally elicited by means of some health

questionnaire. It may be more realistic to let the coefficients also be affected by

certain covariates, that is wi = wi(z). This can also be easily dealt with using the

proposed method. One needs to replace wi by wi(z) in the theoretical expression

for the QAL distribution. There is also suggestions that wi’s may be time depen-

dent (Cook et al., 2003). For some simple functions (for example, linear), such

time dependent wi’s may be, at least in theory, dealt with through the proposed

method.
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