Injectivity Sets for Spherical Means on \mathbb{R}^n and on Symmetric Spaces

Rama Rawat and A. Sitaram

Communicated by Eric Todd Quinto

ABSTRACT. A complex Radon measure μ on \mathbb{R}^n is said to be of at most exponential-quadratic growth if there exist positive constants C and a such that $|\mu_n(B(0,r))| \leq C e^{2r^2}$, $r \geq 0$. Let X_{exp} denote the space of all complex Radon measure on \mathbb{R}^n of at most exponential-quadratic growth. Uting elementary methods, we obtain injectivity sets for spherical means for X_{exp} . We also discuss similar results for symmetric spaces.

1. Introduction and Some Results for \mathbb{R}^n

Let $f \in L^1_{loc}(\mathbb{R}^n)$, $n \ge 2$. For $x \in \mathbb{R}^n$ and $r \ge 0$, the spherical means of f are defined by

$$Mf(x,r) = \int_{S(x,r)} f d\sigma$$

where S(x,r) is the (n-1)-dimensional sphere of radius r centred at x and σ is the normalized surface measure on S(x,r). It is easy to see using a Fubini argument that, for each $x \in \mathbb{R}^n$, Mf(x,r) is defined a.e.(r).

Definition. Let $X \subseteq L^1_{loc}(\mathbb{R}^n)$. A set Γ of \mathbb{R}^n is said to be a set of injectivity for spherical means for X if $f \in X$ and Mf(x, r) = 0 a.e.(r) for each $x \in \Gamma$ implies f = 0 a.e.

The following problem has received some attention recently:

Given $X \subseteq L^{\Gamma}_{loc}(\mathbb{R}^n)$, determine subsets Γ of \mathbb{R}^n which are sets of injectivity for spherical means for X.

Some of the techniques used in dealing with this question are quite sophisticated, see [1], [2] etc. In [1] it is shown that if D is a bounded region in \mathbb{R}^n , $n \ge 2$, and Γ is the boundary of D, then Γ is a set of injectivity for the spherical means for $L^p(\mathbb{R}^n)$, $1 \le p \le \frac{2n}{n-1}$. It is also shown in [1] that if Γ is a sphere, then Γ is not a set of injectivity for any $L^q(\mathbb{R}^n)$, $q > \frac{2n}{n-1}$. It would therefore be worthwhile to find interesting examples of thin sets Γ which are sets of injectivity for

all L^q , $1 \le q \le \infty$. Using fairly elementary methods we are able to produce such sets of injectivity not only for all L^q s but also a slightly wider class of functions and measures.

If one wants to talk about measures instead of functions, it is better to replace $S(x,r) = \{y \in \mathbb{R}^n : ||x-y|| = r\}$ by $B(x,r) = \{y \in \mathbb{R}^n : ||x-y|| \le r\}$. (Clearly for locally integrable functions, the two formulations are equivalent.) To be consistent with the vocabulary of measure theory, we switch jargon!

Let X be a subspace of complex Radon measures on \mathbb{R}^n , $n \ge 1$. For the definition of complex Radon measures see [3], p. 216. (Note that in the discussion that is to follow, we also allow n = 1.) We say a collection of Borel subsets C of \mathbb{R}^n is a determining class for X if $\mu \in X$ and $\mu(C) = 0$, $\forall C \in C$ necessarily implies $\mu = 0$. Thus, if X_F is the set of finite complex measures, the following classes are well known to be determining classes for X_F : $C_1 = \{B(x, r_0) : x \in \mathbb{R}^n, r_0 \text{ is a fixed positive number }\}$, C_2 = the collection of all half spaces in \mathbb{R}^n . See [10] and [9]. In the language just introduced, the problem can be restated as:

Given a subspace X of complex Radon measures on \mathbb{R}^n , determine subsets Γ of \mathbb{R}^n , such that $\mathcal{C} = \{B(x,r) : x \in \Gamma, r \geq 0\}$ is a determining class for X.

Before stating and proving our main result, we start with some definitions, notation, and an elementary lemma.

Definition. A complex Radon measure μ on \mathbb{R}^n is said to be of at most exponential-quadratic growth if there exist positive constants C and α such that $|\mu|(B(0,r)) \leq C e^{\alpha r^2}$, $r \geq 0$. (For any compact set K of \mathbb{R}^n , μ restricted to K gives a finite complex measure. $|\mu|(K)$ is the total variation norm of μ restricted to K.)

Let $X_{\exp}(C, \alpha)$ denote the collection of all Radon measures satisfying the above estimate. Let X_{\exp} denote the space of all complex Radon measures on \mathbb{R}^n of at most exponential-quadratic growth.

Clearly X_{\exp} contains all finite measures as well as infinite measures of at most polynomial growth.

Definition. A subset Γ of \mathbb{R}^n is called *an NA-set* if the only real analytic function (defined on an open set containing Γ) vanishing on Γ is the zero function.

Examples of NA-sets are subsets Γ whose closure $\tilde{\Gamma}$ is a set of positive Lebesgue measure. As has been pointed out to us by Pati, examples of thin NA-sets in \mathbb{R}^2 are continuous curves Γ such that for any choice D of discrete points, $\Gamma \setminus D$ is not an analytic one-dimensional submanifold of \mathbb{R}^2 . The proof that such a curve Γ is an NA-set relies on the non-trivial fact that the zero set of a non-zero real valued teal analytic function on \mathbb{R}^2 can always be made into a one-dimensional analytic submanifold by removing a discrete set of points. This fact, in turn, is a consequence of much more general results about real analytic varieties [11], p. 133). More generally, there are plenty of (n-1)-dimensional non-analytic submanifolds of \mathbb{R}^n which cannot be contained in the zero set of a non-trivial real analytic function.

We now state a lemma which will be needed in the sequel.

Lemma 1.

Let $0 \neq \mu \in X_{\exp}(\mathbb{C}, \alpha)$ and let $\phi_{\alpha}(x) = e^{-2\alpha \|x\|^2}$, $x \in \mathbb{R}^n$. Then $\mu * \phi_{\alpha}(x)$ is a non-trivial function on \mathbb{R}^n and is in fact the restriction to \mathbb{R}^n of an entire function on \mathbb{C}^n . Consequently $\mu * \phi_{\alpha}(x)$ is a non-trivial real analytic function on \mathbb{R}^n .

Proof. Define a measure ν by $d\nu(y) = e^{-2\alpha \|y\|^2} d\mu(y)$. Since $\mu \in X_{\exp}(\mathbb{C}, \alpha)$, it is easy to see that ν is a finite complex measure and that its Fourier transform $\hat{\nu}$ extends to an entire function on \mathbb{C}^n . The lemma now follows from the observation that $\mu * \phi_{\alpha}(x) = e^{-2\alpha \|x\|^2} \hat{\nu}(4\alpha ix)$.

We are now in a position to state and prove the main proposition.

Proposition 1.

Let Γ be an NA-subset of \mathbb{R}^n and $C = \{B(x,r) : x \in \Gamma, r \geq 0\}$. Then C is a determining class for X_{\exp} .

Proof. If $\mu \in X_{\exp}$, then there exists positive numbers C and α such that $\mu \in X_{\exp}(C, \alpha)$. Suppose $\mu(B(x, r)) = 0$ for all $r \ge 0$. Then an easy approximation argument shows, since $e^{-2\alpha \|x-y\|^2}$ is a function which is radial with respect to the origin at x and decreasing sufficiently rapidly at infinity, that $\int e^{-2\alpha \|x-y\|^2} d\mu(y) = 0$, $\forall x \in \Gamma$. Thus, $\mu * \phi_{\alpha}$ vanishes on Γ . If μ is non-trivial then, by Lemma 1, $\mu * \phi_{\alpha}$ is a non-trivial real analytic function vanishing on Γ . Since Γ is an NA-set, we have a contradiction. The proof of the proposition is now complete.

A corollary to the proposition is:

Corollary 1.

If Γ is an NA-set, then Γ is a set of injectivity for the spherical means for any of the spaces $L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, $n \ge 2$.

Proof. Let $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, $n \ge 2$. Then $\int_{B(0,r)} |f(x)| dx \le C \|f\|_p r^{\frac{n}{q}}$. Hence, identifying the function f with the complex radon measure f(x) dx, we have $f \in X_{\exp}$. The result now follows from Proposition 1.

Remarks.

- (1) In the result of Agranovsky et al. [1] quoted earlier, if we take the bounded region D to be such that the boundary ∂D is hadly behaved, then ∂D will be a set of injectivity for M for all L^q s. In fact, if ∂D is sufficiently hadly behaved, any (n-1) submanifold of ∂D will be a set of injectivity.
- (2) One should be able to use the methods in this paper to take care of measures μ , whose growth at infinity is allowed to be much worse than exponential-quadratic.
- (3) The classes of functions and measures considered in Proposition 1 are more general than those in [2], where compactly supported functions and distributions are considered. But we should emphasise that the main result in [2] is a *characterization* of sets of injectivity for $C_{\epsilon}(\mathbb{R}^2)$.
- (4) For an excellent survey of early work on problems of integral geometry, similar in spirit to the kind of problem considered in this paper, see [12].

2. Symmetric Spaces

We now turn our attention to symmetric spaces of the non-compact type and of real rank 1. Since such spaces are analytically diffeomorphic to \mathbb{R}^n , for some $n \ge 2$, the definition of NA-sets is equally meaningful for such spaces. We will only give a very brief sketch of our arguments.

Let S denote such a space. We recall a few basic facts about S. (For further details see [5].) If G is the connected component of the group of isometries of S, then G is a non-compact semi-simple. Lie group and S can be identified with G/K for a suitable choice of a maximal compact subgroup K of G.

Let B(x,r) denote the geodesic ball of radius r centered at $x \in S$, i.e., $B(x,r) = \{y \in S : d(x,y) \le r\}$, where d is the metric on S given by the Riemannian structure on S. Denote by x_0 , the point in S corresponding to eK under the natural identification $S \leftrightarrow G/K$. Real analytic functions on S can be identified with real analytic functions on G invariant under the right action of K (and more generally functions on S can be identified with functions on G invariant under the right action of K).

Depending on the context, dx will denote both the Haar measure on G as well as the G-invariant measure on S and dk will denote the normalized Haar measure on K. In what follows below, depending on convenience, we view a right K-invariant function on G either as a function on G or a function on S, and without any change of notation.

Fix $p, 1 \le p < \infty$. (Note that for the moment we are excluding $p = \infty$.) For $f \in L^p(G)$, there exists a sequence $\{\phi_n\}$ of real analytic functions on G in $L^1(G)$, which are "rapidly decreasing" at ∞ such that $f * \phi_n \to f$ in L^p and such that $f * \phi_n$ are analytic vectors for the right regular representation of G on $L^p(G)$. (This follows from the work of Harish-Chandra on analytic vectors [4]. See also [6].) Again from the work of Nelson [7] on analytic vectors it follows that $f * \phi_n$ is actually a real analytic function on G. Further if f is in $L^p(S)$ (i.e., f is right K-invariant), we can consider $\phi_n^\#$ defined by $\phi_n^\#(x) = \int_K \int_K \phi_n(k_1xk_2)dk_1dk_2$ and it is easy to see that $f * \phi_n^\#$ are also real analytic functions in $L^p(S)$ with $f * \phi_n^\# \to f$ in $L^p(S)$. (If h is a real analytic function on G, in view of the compactness of K, so is $h^K(x) = \int_K h(xk)dk$. In this case it is easy to see that $f * \phi_n^\# = (f * \phi_n)^K$, using the right K-invariance of f.)

We now make the following observations: Since S is of rank-1, K acts transitively on $\{x \in S : d(x, x_0) = r\}$. It therefore follows that if g is a K-invariant function on S (or equivalently a K-bi-invariant function on G), which decreases sufficiently rapidly at infinity, the u-translate of g, i.e., function $x \to g(u^{-1} \cdot x)$, $u \in G$, can be approximated by finite linear combinations of indicator functions of balls centred at $u \cdot x_0$.

Suppose now $f \in L^p(S)$ and y is a point in S such that $\int_{B(v,r)} f(x)dx = 0$, $\forall r \geq 0$. Hence, by the approximation alluded to earlier, $\int_S f(x)g(Y^{-1}x)dx = 0$, where y = YK (i.e., $y = Y \cdot x_0$). In terms of convolution on the group, this implies $f * \check{g}(y) = 0$, where for a function h on G, \check{h} denotes the function $\check{h}(z) = h(z^{-1})$. Since g is K-bi-invariant, so is \check{g} , and since g is a more or less arbitrary K-bi-invariant function, it follows, by taking $\check{g} = \phi_n^{\#}$, that $f * \phi_n^{\#}(y) = 0$, where the $\phi_n^{\#}$ s are as described earlier. Now, suppose

$$\int_{B(z,r)} f(x)dx = 0, \ \forall z \in \Gamma, r \ge 0$$

where Γ is an NA-subset of S.

Thus, from the discussion above we find that the real analytic function $f * \phi_n^\#$ vanishes on the NA-set Γ . Hence, since each $f * \phi_n^\#$ is a real analytic function on S we conclude $f * \phi_n^\# \equiv 0$. That f = 0 a.e. now follows from the fact $f * \phi_n^\# \to f$ in L^p for $1 \le p < \infty$.

Next, we take up the case $p=\infty$: Let $f\in L^\infty(S)$. Define $\psi_k=\frac{1}{m(B(\tau_0,\frac{1}{k}))}\chi_k$ where χ_k denotes the indicator function of the ball $B(x_0,\frac{1}{k})$ and $m(B(x_0,\frac{1}{k}))$ is the measure of the ball. ψ_k , considered as a function on G, is a K-bi-invariant L^1 -function, and hence $f*\psi_k$ is a continuous function vanishing at ∞ , i.e., $f*\psi_k\in C_0(S)$, the Banach space of continuous functions vanishing at ∞ . Let ϕ_n^0 be as in the preceding paragraph. Then for $h\in C_0(G)$, $\{h*\phi_n\}$ will be analytic vectors for the right regular action of G on the Banach space $C_0(G)$ and hence, as before, are analytic functions on G. Again, as before, $\{h*\phi_n^k\}$ are also analytic functions on G.

Now, consider $f * \psi_k * \phi_n^\#$ for a fixed k, $\psi_k * \phi_n^\#$ is a K-bi-invariant function in $C_0(S)$ and hence as before we would have $(f * (\psi_k * \phi_n^\#))(y) = 0$, where y is a point in S with the property that $\int\limits_{B(y,r)} f(x) dx = 0$, $\forall r \geq 0$, i.e., $((f * \psi_k) * \phi_n^\#)(y) = 0$.

Suppose $\int_{B(t,r)} f(x)dx = 0$, $\forall z \in \Gamma, r \ge 0$, where Γ is an NA-subset of S. Then, from above, $f * \psi_k * \phi_n^\#$ vanishes on Γ . The real analyticity of $f * \psi_k * \phi_n^\#$ forces $f * \psi_k * \phi_n^\# \equiv 0$. Hence by allowing $n \to \infty$ and observing that $f * \psi_k * \phi_n^\# \to f * \psi_k$ in C_0 , we have $f * \psi_k \equiv 0$, for each k. Since $f * \psi_k \to f$ as $k \to \infty$, at least in the sense of distributions, we conclude f = 0 a.e.

This completes the proof of Proposition 2 below.

Proposition 2.

Let S be a symmetric space of the non-compact type and of real rank 1, and let Γ be an NA-subset of S. If f is in $L^p(S)$, $1 \le p \le \infty$, and $\int_{B(y,r)} f(x)dx = 0, \forall y \in \Gamma, r \ge 0$, then f = 0 a.e.

Remarks.

- (1) For a discussion of analytic vectors, see also [6].
- (2) Just as in the case of \mathbb{R}^n , in Proposition 2, we could have just as well considered averages over geodesic *spheres* of radius r rather than integrals over geodesic *bulls* of radius r.
- (3) By considering the heat kernel, some of the results in this paper can be extended to arbitrary Riemannian manifolds [8].

Next, a brief look at compact symmetric spaces of rank 1: Let S be one such. Clearly, because of compactness, instead of considering all the L^p s, it is enough to consider $L^1(S)$. One knows that all geodesics in S are closed and are of the same length, 2L say. It is therefore enough to consider geodesic balls of radius $r \leq L$. Using some Peter-Weyl theory and standard facts about compact symmetric spaces of rank 1, we can prove the following:

Proposition 3.

Let Γ be an NA-subset of S. If $f \in L^1(S)$ and $\int_{R(x,r)} f = 0, \forall x \in \Gamma, 0 \le r \le L$, then f = 0 a.e.

(Since S is a real analytic manifold, the definition of an NA-set poses no problem. We can strengthen the above proposition somewhat; for instance, the above statement will be true if we just assume that Γ has the property that the only G-finite function that vanishes on Γ is the zero function. Here G is the group of isometries of S. In the case when S is a sphere, see [2], p. 405, Theorem 7.1.)

Acknowledgments

We thank G.B. Folland and V. Pati for educating us about analytic vectors. The example of the *thin* NA-set given in this paper is due to V. Pati.

References

- Agranovsky, M.L., Berenstein, C., and Kuchment, P. (1998). Approximation by spherical waves in L^P-spaces, J. Geom. Anal., 6, 365-383.
- [2] Agranovsky, M.L. and Quinto, F.T. (1996). Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139, 383–414.
- [3] Folland, G.B. (1984). Real Analysis, Wiley-Interscience, New York.
- [4] Harish-Chandra. (1953). Representations of a semisimple Lie group on a Banach space I, Trans. Am. Math. Soc., 75, 185-243
- Helgason, S. (1978). Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press.
- [6] Helgason, S. (1997) Geometric analysis on symmetric spaces Am. Math. Soc., Mathematical Surveys and Monographs.
 39
- [7] Nelson, E. (1959). Analytic vectors, Ann. Math., 70, 572-615.
- [8] Pati, V. and Sitarara, A. Some questions in integral geometry for Riemannian manifolds, prepriot.
- [9] Sitaram, A. (1984). Fourier analysis and determining sets for Radon measures on Rⁿ, Ill. J. Math., 26, 339-347.
- [10] Feller, W. (1966). An Introduction to Probability Theory and its Applications, Volume II, John Wiley & Sons, New York.

- [11] Lu, Y-C. (1976). Singularity Theory and an Introduction to Capstrophe Theory, Springer-Verlag, Berlin.
- [12] Zaleman, L. (1988). Officest integral geometry, Am. Math. Man., 87, 161-175.

Received October 29, 1998

Revision received August 31, 1999

Department of Mathematics, Indian Institute of Technology, Kanpur 208016. India c-mail: rrwat@iitk.ac.in

Stat-Math Unit, Indian Statistical Institute, R. V. College Post. Bangalore 560 059, India e-mail: sitaram@isibang.ac.in