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1. Introduction and Some Results for
Let f € L (R®), p = 2, For x € R" and r = 0, the spherical meaps of f are defined hy

Mfix. r} =f fdo

Flw.rh

where $(x, r) is the (1 — 1)-dimensional sphere of tadiug ¢ centred at x and o 15 the normalized
sutface measure on S¢x, £, [t is easy (o see using a Fubini argument that, foreachx € 8°, Mfiz. r)
i delined o e (7).

Definition. Let X © LEUC{R"}. Awcl T of B" is said to be a ser of injeciiviey for sphierical means
for X feXandMf(z,r) =0 gedfryforcachx € T implics f =0 a.e

The following problem has received some allention recently:

Civer ¥ C L]'M{R"}, determine subseds 7 of B whick are sets af infectivity for spherical
wecons for X

Some of the techniques used in dealing with this guestion are quite sophisticared, see [11, [2]
cle, Tn [11 1t is shawn that if £} is a bounded region in Bk = 2, and T is the houndary of I3,
then I" 18 & sct ol injectivity Lot the spherical means for LA(E™), 1 = p == ;%1 It 1s also shown
i [1] that if 1" is a sphere, then T 18 g a sct of injectivity for any L¥(R™M, § = ;2_11 It would
therefore he worthwhule to find interesting examples of fie sets |* which are sets of injectivity for

Mack Suhjecy Clhrssifcations, primary 43407, secondary 43AED.
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all 19,1 = ¢ < oo, Using fairly elementary methods we are able to produce such sets of injectivity
not oaly for all £9s but alse a slightly wider class of fonctions and measurcs.

[l pne wanlts to ik about measures imstead of funclions, it is beter to replace 301, r) = {v €
B x —y| =riby Ble, )y ={y c B |x — 3| = r). (Qlearly for locally integrable fupctions,
the two lormulations are equivalent ) "Lo be consistent with the vocabulary of measore theory, we
switch jargon!

Last X be a subspace of complex Badon measures on B*, 5 > 1. For the definition of complex
Eadon measures see [3), p. 216, (Wote that in the discossion that s to follow, we also allow
# = 1.} We say a collection of Borel subsets C of B® is g degermining class for X il 0 € X and
@il = 0% e C neeessarily unplics g2 = O, Thus, i X is the sel of finite complex measures,
the following classes are well known to be detenmining classes for Xr: ) = (Bix.rg) tx e B mp
is a fized positive oumber |, O1 = fhe collection of all hall spaces in BE™. Scc | U and [9]. In the
langpage just iniroduced, the prohlem cun be restaied as:

Civen a suhspace X ol complex Radon measures on B7, determine subsets T of B, such that
C={Bfx,r1-x €, r =0 isadelermimng class for X

Before swlityr and proving our main resil, wo starl with 2ome definitions, notation, and an
elementary lemimna.

Definition. A comnples Badon measure w on B? 15 sald to be of af most exponential-quadearic
gromeeh if there exist positive consianls © and e such that ju[{8(0, r))y < C 3‘”1. r = 0. (Tor any
compact sel £ of B, ro restricted to & gives a finite complex measure. [co]( &) is the wotal variation
norm of g restricted to K3

Lot Xopp (O, e} denote the collection of all Radon measures satisfying the above estimate. .21
Xeap denote the space of all complex Radon measures on B of at most exponential-quadratic growth.

Clearly Xepp contains all finite measares as well as infiniee measvres of at most polynomial
growth,

Definition. A subset I of B® is called an N4 -ser if the only ceal analytic function {(delined on an
opcn set containing I vanishing on T is the zéro [unclion.

Ezamples nf MA-sets arc suhsets T whose clisure T is @ sel ol positive Lehesgue measure,
As has heen pointad out to us by Pali, cxamples of #hin NA-sets in B? are continnous curves 1
such thut ot any choice 0 of discrewe points, 17 5 s mef an anal viie one-dimensional submanifold
of B*. The proof thar such a curve T is an NA-set refies on the non-trivial fact that the zero sct
of a non-zero real vatued real analytie lunction an B can always be made into a une-dimensional
analytic submunifold by remeving a discrete set of poins. This fact, in turn, is a consequence of
much more general resulis ahoul real analytic varieties [1 1], p- 133). More generally, there are plenty
ol (1 — §)-dimenstonal non-analytic submanifolds of B™ which cannot be contained in the zero set
of a non-trivial real analvoe function,

W now state a letma which will be needed in the sequel.

Lemma I

2 ' iz
Lot Q) £ € XexplC, o) and fer () = 2720 5 & B, Then po % o (1) iy o Hon-trivid
Sunction on B" and is i fact the restriction to BY of an entire function on T Consequently
L b L) £ o mos-trivial real analveic fanction on B

Proof, Define a measure v by dviv) = ¢ ¢ "'jzﬂ‘lrL(y}. Singe pp £ Xpp(C, o), iL 18 casy 1 soc

that v is a fintke complex measure and that 1tz Fourder transform 1+ extends o an entire function on
! I Ly - 2’ o] ¢ .

™. The lemma now follaws Itom the observation that ge # g (x) = ¢ =" ¥ Hdeix ). =

We ire novw in s postlion to state and prove the main proposition.
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Proposition 1,
Ler T be an NA-subsetof B and C = [Bix.r}  z € Py r = 0). ThenC is o determining cluss
Jor X

Proof, lipe X gzp. then there exists positive numbers C and a such that o £ X, (C, ). Supposc
w(B(x, £1) = O forall ¢ = 0. Then mn easy approximarion argument shaws, since e 24531 jg g
funetion which is radial with respect to the origin al x and decreasing sufficiently tapidly at infinity,
that [ g‘zﬂ'l"‘-'"'jdp,l[y} = U, %¥x £ ", Thus, g + ¢, vanishes on T, If g2 is non-trivial then, by
Lemtna 1, [ + $, 15 a non-teivial real analytic function vanishing on T Since 7 15 an MA-set, we
have a contradiction. The proof of the proposition is now complete. O

A corallary to the proposition is:

Corellary 1.
IFT s an NA-set, then T is a set af injectivity for the sphevical means for any of the spaces
LOE™M, [ = p=oo.n = 2,

Prootf. Let f = LP7(E™,] = p = sc,n = 2. Then fﬂmtr} | fixd|edx = Cllfllprg, Hence.,
identifying the function F with the complex tadon measure F{x) dx, we have f € Xeyp, The result
now follows ltom Proposition 1. [l

Remarks.

{1) In the result of Agranovsky et al. [1] quoted earlier, il we take the bounded region £) to be
such dral the boumdary 05 is Sacdly behaved, then 80 will be g set of inpectivity for W for
all £33, In fact, if 40 is sufficiently badly behaved, any {n — 1} submanilold of /3 will be
a set of Injectivity.

{2)  One should be able 1o use the methods in this paper 10 take care of measures ¢, whose
growth at infinity is allowed to be much worse than exponential-quadratic.

{3} The classcs of functioos and measares considered in Proposingn 1 are miore general fhan
those in [2], where compactly supported functions and distributions are considered. But
wi should emphasise that the main result in |2) is a cheracterizetion of sets of injectivity
for €, (E™).

(4} Foran excellent survey of early work oa problems of mtegral geometry, siilar i spirii
the kind ol problem considered in this paper, see {12].

2, Svmmetric Spaces

We now turn our attention to symmetric spaces of the non-compact type snd of real rank 1.
Since snch spaces are analytically diffeomorphic to B, for some # = 2, the definition of NA-sets 15
equally meaningful for such spaves. We will only give & very brief sketch of our arguments.

Lt § denate such a spacc, We recall & few hasic Favts aboot 8. {For further dolails see 513 ¥
 is the connected component of the group of isometrics of §, then G is a non-compact semi-simple
Fie group and S can be identificd with G/ K Lot a suitable choice of a maximal eorpact subgroup
K of {5

Let Bix, 7} denoie the geodesic ball of radius r centered at x € 5 1e, Bl r) = {y e 5
d(x, ¥) = r}, where d is the metric un § given by the Riemannian stractare on 5. Denate by xq, the
point in § corresponding to e X under the natural identificafion § <+ G/ K. Real analytic functions
on & can be identified with teal analytic functions on G invariant ander the right action of K {and
more generally fonctions on § can be identified with functions on G invariant under the right action
of K.
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Depending on the context, 2 will denote both the Haar measure on & as well as the G-
inviriand measare of X and df will denole the normalized Haar measore on K. In what follows
below, depending on convenience, we view a right X -invariant [unction on €7 cither as a fimenon on
{7 ur a function on 5, and without any change of notation.

Fix p. 1 = p = 2 (Note thal for the monwenr we are excluding p = oc) Far f € L¥G),
there exists a scquence {gy, | of real analylic functions on & in £ (5, which ure “rapidly decreasing™
at oo such that f # ¢y, -+ f in LP and such that f # ¢, are analytic vectors for the mght regular
reprosentation of & on LF(G). (This follows Irom the work of Harish—Chandra on analylic voe-
tors [4]. See also [6].) Asgain from the work of Nelson [T} on analytic vectors 11 fallows thal £+ @y
is actually a real analytic function on &, Forther if 1 is in LP{5) (i.e.. F is right K-invariant), we
can consider qbf defmed by d;bﬁ (x} = fﬁ: fx ik xbodk dky and 1 15 easy o see that § = ijﬁi arc
alsw real analytie [unclions in LIS with £ » q.f}f —+ fin LP(3). {If & is areal analytic functton on
7, in view ol the compactness ol &, sois A% (x) = [y R{xk}dk. In this case il is easy 1o sce thal
f=* quf =(f %", using the right K-invariance of £.)

We now make the {ollowing ohservaiions: Since § 15 of rank-1, K acts transitively om {x €
5 dix, xg) = ri. Tt therefore follows thar if # 15 a K-invariant function on § {or equivalently a
K -hi-invariant luneiion on ), which decreases sotficiently rapidly at infinity, the r-translate of g,
ie., function x — gi{u~'-x}, & € (7, can be approximated by finite inear combinations of indicutor
lumetions of balls centred a1 4 - zo.

Suppose now f € L7(S) and y is a pointin S such that [, F(x)dx = {,¥r = 0. Hence,
by the approximation alluded to eatlicr, fs Fle)p(Y~Vadds = U, where y = ¥K{ie, v = ¥-xq).
In terms of convilution on the group, this implies £ = §(3) = 0, where for a lonction A on (7, i
denotes the funclion iz = Az~ 1} Since g i+ K -hidinvariant, 50 s 2, and since g s o mote of bess
arbitrary K -bi-invariant function, it [ullows, by taking § = &%, that f + §7 (¥} = 0, where the gfs
are as described carlicr. Now, suppose

j fixidx =0, ¥zeT,r=0
Riz,rl

where T is an NA-subser of 5.

Thus, lrom the discussion above we fud that the real analytic fonction f + $ vanishes on the
INa-set I, Hence, since each f = .;pf is a real analytic function an § we conclude [ = :i}:: = (). That
F =0ac now follows [rom the fact F=¢f — FinLf fur | = p = oo

Next, we take up the case p = o0 1 Let e L™(8). Deline ¢, = xi where ¥

1
LT JI; ¥
denoles the indicator [unction of fhe halk B{xqn, 1) and miB{xy, :E}j is the mensure of the ball. g,
vonsidersd as a function on G, is a X-bi-invariant £'-function, and hence § + g is u continuous
tfunclion vanishing at o¢, te., £ 3y € Cp{ 5, the Banach space of continuoys lunctions vanishing
at 2z, Let :.D,r{ be as in the preceding paragraph. Then for i € Cpi G}, (R +éh ] will be analytic vectors
for the right regolar action of & on the Banach space Cpl(fr) and hence, as before, are analytic
functions on £5. Again, as hefore, {A c_ir_f} arg also analytic functions on (.

Mow, cansider f + vy + 47 for a lixed &, g + ¢7 is 0 K-bi-invariane function in Col$) and
hence as hefore we wauld have (F * (g * qfnxj‘]f_'.;j == N, wherte ¥ is a point in § with the propetly
that | Fiedde =0, ¥r = 01, (/== gfin) =0

Hiv,rl

Suppose Ill" Birt] Ffirvde =0, ¥z 2 T, ¢ = 0, where [" s an NA-sobsct of 8. Vhen, from
ahave, [ %y +¢7 vanishes on I, The real analvticity of f v * ¢¥ forces F 4w ot = (. Henee
by atlowing B — ob and observing that F 1 + ¢:[ — [y in Cp, we have £+, = {0, [orsach
k. Since f i, — fask — oo at leastin the sense of disirbalions, we conclude f = ae.

This completes the prood of Proposition 2 below,
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Proposition 2.
Ler § be g sympigrric space of the ron-compact type and of real rank 1. and let T be an

NA-suhset af . FFism LP(S), [ = p = oo, and fﬁ.{)ﬂ Finyde = 0,¥y € I',r = 0, then
f=0uae

Remarks.

{17 For a discussion of analytic vectors, see also [6].
2] Just as in the case of BT, in Proposition 2, we could have just as well considered averages
over gaodesic spheres of radins r rather than integrals over geodesic bafls of radius ¢,

(3y By considering the heal kerne], some of the resulls 1o this paper can be extended bo arbitrary
Riczinannian manifolds [8].

Next, a hrief look at compact symmetric spaces of rank 1: Let § be ome such. Clearly, because
of compactness, instead of considering all the L, it is enough to consider L1481, One knows that
ul! pecddesics in § are closed and are of the same length, 2L say. 1t is therefore enough 1o consider
geodesic balls of radius » < L. Tsing some Perer-Weyl theoy und standard facts about compact
symmelric spaces of rank 1, we can prove the following:

FProposition 3,

Fet T be an NA-subsetof 8. IF §F € L'(.S‘} aned _j"mx_” f=0%¥ee T.0xr = L then
=104

{Since S is 4 teal analytc manifold, the definition of an NA-set poses no problem, 'We can
strengthen tive above proposilion someswhat; for instance, the above statement will be true @ we just
assume that I has the praperly that the oaly G-finite funclion that vanishes on T is the zero functon.
Here {7 is the group of isomeirics of §. In the casc when § is a sphere, see [21, p. 405, Theorem 7.1.)
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