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Blind Separation of Uniformly Distributed
Signals: A General Approach

Jayanta Basak, Senior Member, IEEE, and Shun-ichi Amari, Fellow, IEEE

Abstract— A general algorithm for blind separation of wni-
formly distributed signals is presented. First maximum likelihood
equations are obtained for dealing with this task. It is difficult to
obtain a closed form maximum likelihood solution for arbitrary
mixing matrix. The learning rules are obtained based on the geo-
metric interpretation of the maximum likelihood estimator. The
algorithm, under special constraint of orthogonal mixing matrix,
is the same as the (3]1/7%) convergent algorithm. Special noise
correction mechanisms are incorporated in the algorithm, and it
has been found that the algorithm exhibits stable performance
even in the presence of large amount of noise.

Index Terms— Blind separation, maximum likelihood, natural
gradient, neural networks.

I INTRODUCTION

LIND separation [2]-[6]. [24]. [9]-[16]. [18]. [20]-[22]
Brufurs Lo the task of separating independent signal sources
from the sensor outpuls in which the signals are mixed in
an unknown channel, a muluple-input mulople-output linear
system. This problem s relevant and important inomany ap-
plicaions mcluding specch recogniton, data communication,
signal processing, and medical scence.

Many algorithms have been proposed for dealing with
the task of blind separation. These existing algorithms can
be categorized into three major approaches: 1) independent
component analysis (ICA); 2) entropy maximization; and 3)
nonlinear pnncipal component analysis. In the first approach,
the signals are transformed in such a way that the dependency
between individoal signal components 15 mmimized. The inde-
pendent component analysis (1CA) was proposed by Comon
[12] for this purpose (see also [5] and [24]). Different al-
gorithms have been designed considering the different criteria
measures for independence between the signals including [ 10].

In the second approach, the part of the information content
of the output which is dependent on the input, as measured
by the entropy, 15 maximized [9] The outpul components
are transformed by a nonlinear transfer function, so that the
output distribution is contained within a finite hypercube. The
maximization of the entropy forces the outpul components
to be as uniformly spread over the hypercube as possible.
The entropy maximization also leads 1o a similar measure of
mdependence between the signal components.
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These two approaches can be unified from the viewpoint
of information geometry of the Kullback-Leibler divergence
measure [17]. These algonthms, their statistical efficiency and
dynamical stability are discussed i [2]-[6].

In the third approach, developed by Karhunen, Opa et al.
[15]. [16]. [13], [21], [20]. nonlinear principal component
analysis algorithm is applied for separating the source signals.
In the hinear prnncipal component analysis (PCA) algonthm
[1]. [19], the weight vectors in a connectionmist framework,
are stochastically approximated to the first eigenvector (with
highest eigenvalue) of the correlation matrix of the input data,
i.e., the principal component of the input. In the nonlinear
principal component analysis, the output vector 15 generated
by a nonlinear function of the weighted sum of the inputs
(unlike the linear PCA where only the weighted sum is
considered as the output). The nonlinear extension of the
PCA rule is able to perform the task of source separation
under a strong assumption that the signal components are
mixed by some onthogonal mixing matrix. It has also been
theoretically proved that the nonlinear PCA algorithm is able
to perform the source separation under the orthogonality
constraint.

In a completely different approach [22], assuming bounded
mnput distributions, source signals were separated based on
some geomelric properties. However, no theoretical justifi-
cation as to the rate of convergence of the algorithm was
provided m [22].

In all of the maor general purpose blind separation algo-
rithms, 1t 15 assumed (implicitly or explicitly) that the source
distributions have smooth differentiable form. However, if the
source distributions are not differentiable (e.g., uniform disti-
bution), some of the existing algorithms do not converge o
the solution. Momeover, since the Fisher information diverges
for such kind of distributions, the efficiency bound of €41/T
convergence (as provided by Crmer—Rao theorem [23]) 5 no
more applicable. In such cases, it may be possible w design
a much more efficient algorithm.

In [7] and [8], an algorithm has been presented for a specific
case of uniform distribution with orthogonal mixing matrix. [t
has been theoretically proved that the algonthm is very similar
to an ({117} convergent superefficient algorithm. However,
the algonthm in [7] 15 highly noise sensitive and applicable
only o special onthogonal mixing matrices.

In the present article, we propose a general algonthm o
separate 8 mixture of uniformly distributed sources mixed with
arbirary mixing matrix. 1t has been found that the existing
general purpose algonthms including the Kullback-Leibler
(K-L) divergence measure-based method [2]-[6] and EASI



1174

algorithm [10] fail o converge in the case of arbitrary mixing
matnx with uniformly distributed source signals. However
there exist some algorithms including [13], [22] which can
take care of uniformly distibuted signals. In the proposed
algonthm, the leaming rule 1s derived in oanalogy with the
maxmmum likelthood equations. In the hmiing condition of or-
thogonal mixing matnx and zero nose, the algorithm becomes
equivalent to the (X1,/7%% convergent algorithm proposed in
[7] and [8]. It has also been shown here that the maximuom
likehhood solution under these special constriunts becomes
exactly the same as in [7]. The algorithm also exhibits stabality
even in the presence of noise. This special property of the
proposed algorithm in dealing with large amount of noise may
also be extended in the case of the general purpose algorithms.

II. PROBLEM
Let there be n independent signal soumes s:th:i =
L.2,---,n which are mixed by an unknown mixing matrix
A o give dse to another w signal components @it =

LeBoes oy Tl

() = Asif) (1

where  x(#) s (), (), - L () and  af)
[s0080. galty, - s iti]. [] indicates the transpose of a
veclor or & matix. The task is to estimate A only from the
eiven signals (!}, In other words, a linear wransformation W
15 10 be estmated in such a way that

yith = Wit (2)

becomes a scaled permutation of a{t), Le, WA = O being
an arbitrary scaled permutation matrix.

A basic assumption in the task of blind separation is that
the source signals are considered o be independent, i.e.,

n
pley [t (3)
=1

where pis) is the joint distribution of & and g;{%) is the
marginal distribution of the individual {ith) components.
Therefore, for perfect separation, one should have piy) =
L) g (). In the independent component analysis, the emor
between the joint probability and the product of the marginal
probability distributions 15 minimized.

The error between ply) and IIE | (i) can be measured
by the K-L divergence measure (which is also referred 1o as
the relative entropy ). The K-L divergence measure between
any two distributions py iy and poiy) is defined as

b

Dipr e ] = . [ miyllog ;i:g ily. (4)

The K-L divergence Dlpiy): IIP | (4] which is the
same as the difference between the joint entropy and the sum
of the marginal entropies of the output components, provides a
measure of dependency between the output signal components.
Tnly: 1U | gl )] goes o zero when the output components
are totally independent. The K-L divergence measure has been
used in many algonthms including those developed by Amari
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et al. [2]-[6], [24]. In these algorithms, 1V pdy): 1) gila)]
15 adaptvely minmmized according o the natuml gradient
descent algorithm [2] without knowing the true probability
distributions of the outputs. The learning rle in this method
15 given as
W
g

where 7 15 a small constant, and
Ly,

;18 given as L-':_,_I;;.',.":\J = —I:“;ti,-,-’p‘:‘} where ;18 an adegquate
probability density function, hopefully to be equal to the
true source distribution. The entropy maximization crilerion
as proposed by Bell and Sejnowski [9] is also equivalent
to minimizing the K-L divergence Dp ¢ g] where g is an
independent distnbution.

In Cardoso and Laheld [10], the independence 1s achieved
by first prewhitening (decorrelating) the input signal vector o,
i.e., transforming 2 o another vector # such that {zz'} = I
This is perfformed by minimizing the K-L divergence between
two zero-mean normal distributons with covariance matnees
{22y and I, respectively. In the next stage. 2 is tansformed
o the output ¥ by an orthogonal weight matax. The leaming
ruke obtamed by combining these two stage 1s

AW = ylf — gy +wriy) — wlyy |W (6)

i d — lyly W (5)

[y fu ) chalma). - - nlma )]

where iy is a nonlinear function of ¥ and v is the leaming
rate. The learning rule has been derived based on the relative
gradient mmimization [10] which s similar o the natural
gradient minimization [2].

The present paper treats a special case where the probahility
distribution of #t) is independently identically distributed
(1i.d.) subject o the uniform distribution

L {i |2, = 1. for afl 4
pis) =4 20 (7)
0 otherwise.

Here 1t 1s assumed that the signals are bounded in [—1.1].
In general, we can consider each & to be bounded in [—&;, &;]
where the each signal has a zero-mean distribution. However,
we can validly assume that & € [—1,1] after perfect separa-
tion. This is because y = W As, and any scaling in s can be
considered as a multiplying factor of W, e, W — CA™!
where 7 is an arbitrary scaled permutation matrix. Therefore,
in order to estimate W owe can assume cach s (which 1s
actually +; alter perfect separation) 15 bounded in [—1.1].

In the case of the uniform distribution, f; does nol exist.
Therefore, it is not possible o apply the K-L divergence based
method for uniformly distributed signals with arbitrary mixing
matrx.

In [7] and [8], the special case of uniform distribution has
been dealt with by considering only orthogonal mixing matrix,
L., 1 was assumed that the input signals have already been
prewhitened. Under such assumption of orthogonal mixing
matrix and uniform  source distnbution, the learning rule
was designed o update Wosuch a way that the hyper-
cube containing the output signals gets effectively rotated.
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A measure analogous o the vanational distance between
the output distnbution and the source distribubon has been
minimized. I has been proved that the algonithm in batch mode
exhibits superefficiency of ¢ 1/1%) convergence. However,
the algorithm has been designed only for onhogonal mixing
matrices and its performance in the noisy condition was poor.

In the rest of the article, we present a new algorithm
for separating uniformly diswibuted sources for any arbitrary
mixing matax. It will be shown that the algonthm behaves
reasonably well even in the presence of large amount of noise.
It goes to the superefficiency of 71/ in the limiting
condition.

II. MaxiMUmM LIKELIHOOD SOLUTION

The marginal distibution of the uniformly distributed sig-
nals in the presence of Gaussian noise can be wrillen as

1 w41 11—
q.'l:-‘if_:' = E |:l"‘lf( E_-'EJ'\' ) + T f ( U-"_“ ) — J.:| fH}

where & is the noise amplitude, and erv[{+) is defined as

62
\: o exp (— > )cfu

The joint density 15 given as

erl ()

I

ma = H CTIR (9

im=1
For small noise amplitude, the Fisher information is mostly
concentrated near the boundary of the hypercube. Therefore,
the distnbution can be approximalely given as

: : s}
plet — K oexp (— .;-:2))

ra

(10

where « is a pammeter dependent on the noise amplitude. &
is the normalization parameter. f2(s) is given as

Dia)= ¥ (|| =12
EE LT

We get the uniform distribution by letting & — (L

MNote that, it 15 possible o caleulate the hikelihood and the
Fisher information formally by using the generalized function
or distribution in the sense of Schwarts, even in the case
of g uniform distribution which is not differentiable in the
usual sense. However, this does not help us, becawse the
Fisher information diverges to infinity. This is because the
logarithm and the square of delta functions do not belong
to the class of distributions. Moreover, one cannol denve a
leaming algorithm in terms of delta functions, because it is
numerically unstable and inefficient. Under the assumption of
uniformly distributed source signals, the mixing matrix can
be estimated from the observed mixed signals by maximum
likelihood estimate which is described as follows.

The mixed signals are given as

(11}

x = As. (12)
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Therefore,
Ml = (13)

Let there be 1" observations of ¢ i.id. over px) such that
the log-likelihood function is given as

IA)=-

1 4
T (Uwiw“h)
1 T

l_f_z HGEN uJI S

= log |det (A -

Zlﬂﬂlp s,

Therefore the maximum likelihood solution can be obtained
by letting

(14}

A

dA

and solving the simultaneous equations for the parameter
values. The set of equations are given as

=1 (15}

PR R i 5
(A TMZM (pis T =0 (16)
From (10) and (12) we get
o,
1 o ;
(A 1y A 2t =0 17
Ll 'Te 2. 94 o )

Instead of estimating A, we can estimate W such that
1y = W becomes a permutation of the original signal vector
s ldeally W = A%, Instead of finding out a solution for
(17), we can update W in such a way that (17) is satisfied
for W4+ AW, 1e.. Wy W+ AW where Wy s the true
solution. In other words, in the vicinity of the true solution,
we can find AW, the change in the weight matdx such that
for the updated W, (17) is satisfied. Therefore

Ale =Wi+ AWz =y+ Ay (18)

where

Ay — AW - AWx

15 the change in the output due to the change in the weight
matnx. Under the noiseless condition, since ¢ — () we must
have

o ox
1 3
-1-2;1’49“1 o S (19)
=1
In other words
i
1
= Z w Dlv+ dy) =0. 20)
t=1
From (11), we can wrile
V| = LDrsem (g by, A ] = 1
Diy) L2 JEEELL I e 71
L‘.i't.;'ﬂ. B {U: otherwise. )
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Let us denote (21) as
i i
iy = B
aw Y )
where B is a matrix whose ijth element is given by (21).
From (20) and (22), we wrile

'::Hli‘y | Ay‘n} =1

(22

(23)

where {3 is the sample average. In the proximity of the
true solution, we can expand &y + Ay as a Taylor seres
CRPANSION 4%

Ely + Ay) = Myl — AE(y) + higher order terms, (24)
Again from (21), we can wrile

S, if |'|'J' | =1 &

AEy].. Bt P 25

|' yll { [k, otherwise. el

Note that the directional derivative [AE gy exists for
la =1 and || < 1. The function is continuous at |y — 1
but not smooth at that point.

Since we have

Ay AW (26)
the (23) can be wntlen as
AFy = AWxr' (27)

Therefore, from (23), (24), and (27) we get (ignoring the
higher order temms)

AWizs's — —(Ely)}. (28)

After perfect separation, ¥, = Wz, where W, = &AL
As discussed in Section 11, o © [—1, 1], we have (g =7
ithe output signals after perfect separation are independent).
Therefore

% 1 | 1-s
{zz'} = AC iy AC )

=AQ '[(ACTLY. (29)
Therefore, from (28)
AW =~ (E(y)} (A0 ACTYY) |
— (Bl CATY(CA™)
= —{E(y}}W,W
= (ElyyWw AWIW AW (30)
Restoring only the first-order terms we gel
AW = —{E{yH{W'W + AW'W - W' AW (3])
Considering AW has a form of @W, we have
Q+rQe+qQ) -r (32)
wherne
P = {EiynW (33)
1.6,
p, = (sl Dsanlwy i wl=1 gy
: (}, otherwise.
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From the maximum likelihood equations, we can find that
any row of the matdx I* has nonzero entry only if the cor-
responding component of the output vector 4 has an absolute
value greater than unity (ie., |y = 1. After perfect separation
(W =CA 1), all output vectors will be contained within a
hypercube H({W ) which is given as

HiWn) = {yl|usif]] < 1,74 ¥t} (35)

In the case of maximum likelihood estimate, W changes
only when some component of 3 has a value greater than unity,
i.e.yis outside H{Wy. In other words, geometrically, we can
view the maximum likelihood estmator as a minimizer of the
error occurred due to the presence of points outside IT{W ;0.

As a special case, if we consider €F o be antisymmetric,
ie. @ = —Q which implies only a rotation of the hyperbox
spanned by the weight matrix W [ H{W 1} then

Q = —|_PL1

where |- 4 indicates the antisymmetric part of the matrix. The
hyperbox HiW ) is defined as

HW;  Aglt) [[(WA T wif)] < 1,5, vt}

(36)

(37

is the hyperbox consisting of all output vectors y. Therefore,
the updatng rule obtamed by the maximum hkelibood estma-
tor rotates the hyperbox IITW ) 1o match it with JTTW ). Note
that for antisymmetric €, the maximum likelihood solution is
exactly the same as that obtained in [7] and [8]. In [7] and
[8]. the updating rule has been derived by the natural gradient
minimization of the emor occurred due to the presence of an
outler.

Similarly if we consider € to be symmetric, ie, @ = ¢
which implies only shear and scaling of the hyperbox spanned
by W i HiW % and no rotation of the hyperbox then

Q=—[PI+2P) s (38)

where -|s denotes the symmetric part of a matdx. It is also
interesting 1o note that in the case of rotation or shear, the
maximum likelihood solution naturally becomes equivalent o
the natural gradient descent solution [2]. In the general case,
without any assumption of symmetric or antisymmetric £, it
is difficult to obtain a close form solution of the maximum
likelihood equation (32). The solution may be obtained from
the geometne analog of the maximum likelihood estimator. In
the next section we present a similar geometric formulation
which gives a closed form updating rule of the weight matrix
which is implementable in the neural-network framework.

IV, GEOMETRIC FORMULATION OF THE LEARNING RULE

Smee the onginal source signals are independently um-
fommly distibuted, ideally the output signals should also
be independent and uniformly distrbuted. Therefore, all the
output signals will be contamed onf/within a hypercube of
volume 2", In other words

[ lEY] = 1, for all i and ¢

where / is an occurrence of the % output signal and ¥
Wax = WAs. The unknown mixing matrix A cavses a linear
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transformation of the original hypercube containing the source
signals. The task is therefore to adaptively estimate the inverse
of the transformation in order to recover the onginal hypercube
AW from the transformed hyperbox (W Any linear
transformation of H{W in the n-dimensional space can be
thought of as & combination of rotation, shear, and scaling of
the hyperbox. Therefore, weights are to be updated in such a
wiy that it cavses the effect of rotation, shear, and scaling.

A. Empirical Leaming Rule

I} Rotation of the Hyperbox: Let 50(n) be the set of all
special orthogonal matrices in n-dimension such that for any
Bc SOin, BB =1. Any B £ S({n} can be expressed as
exp g ) where Z is an antisymmetric matrix with || Z]| = 1
and 7 is a constant. Therefore, if the updating of W is such that

dW = [rvp gy — NW (39
then W'W (i.c., WW') remains unchanged. Therefore, the an-
zle between any fth and jth hyperplanes of the w-dimensional
hyperbox H {W remains constant. In other words, the trans-
formation effectively rotates the hyperbox. A first-order ap-
proximation of the (39) is given as

W — ZW (44}
which s also explicitly vsed in Cardoso and Labeld [10]. A
second-omder approximation 5 given as
a2
dw = (?;z % f?z‘ e, r)q?r‘}) W (41)
2) Shear of the Hyperbox: Any  shearing  tmnsformation
can be represented as an upper riangular or lower mangular
matrix. A pure shear can be represented as a transformation
of W given as

W =W+ 5,W (42)

where S is a symmeltric matrix with zero diagonal entres. 1f
5% has nonzero diagonal entries then there will be different
scaling of W oin different directions. Since the antisymmetric
component of a symmelric matrix 15 zem, there 15 no rotation
of the matnx. Again, any linear tansformation 1§ 4 compo-
sition of rotation, shear, and scaling (including reflection).
The scaling is represented by the diagonal entries of the
transformation matrix. A more general way of representing
the shear along with the scaling s

dW  fexp (nV) — W (43)

where ¥ is a symmetric matax with | ¥ | = 1 and n is a
constant. First- and second-order approsximations of (43) are
Ziven as

dW =V W (44)
and

'r’.l2 - &
AW = (qv + 1—“) Ww. (45)

11

3) Scafing of the Hyperbox: Any scaling of the hyperbox
W} can be expressed as

dW = lexpind) — W (46)

where A = diag {A0 A AL} 5 a diagonal matdx. A
first-order approximation is simply

dW = AW (47

@
Any change W QW in the weight matrix W can be
orthogonally decomposed as

QW = [Q W + diag {@IW + ([¢], — ding {Q]}W
(48)

where [-]4 denotes the antisymmetric part, []s denotes the
symmetric part, and disg {-} is the diagonal of a matrix. The
first part indicates a rotation, the second par is a scaling,
and the third part gives a pure shear of the hyperbox spanned
by the weight matrix W, A tansformation can be performed
by first rotating the hyperbox, then scaling and shearing it
instead of directly changing all parameters ogether. It has been
shown in Section V1 that the orthogonal decomposition of the
transformations provide much better perfformance as compared
to a direct wansformation of the weight mawrix. The hyperbox
spamed by W is 1o be tansformed in such a way that the error
occurred due o the presence of outliers is minimized. Here the
word “outlier”™ means any sample vector falling outside the
hyperbox spanned by Wy ie, II{W,5 (35). In the noiscless
condition, there should be no outlier after perfect separation.
In general, outhiers are the ones which have just very big or
extreme values. In the nosy condition, in order o analyee this,
we use a mixture model where outliers belong 1o a different
distribution. However, in practice, a very large signal vector
may influence the estimator badly.

B. Error Measure

The Kullback-Leibler divergence measure 12 0 @ o] does
not exist when the two distnibutions poand g are not absolutely
continuous. One such typical sitwation arise in the case of
uniform distribution. Since the probability distribution of the
source signals are known, we can use varnational or Hellinger
distance W measure the error between output distribution
p{y: W) and the onginal source distribution piy: A™1) The
error in lerms of variational distance is given as

E =Dy W) plyp AT

[ Py Wi — ply: A7) iy, (49)

Equivalently, the error can also be expressed i terms of
the Hellinger distance as

K= /w’rﬂiﬂ; Wi plw A T dy

We express the ermor measure from the observed samples
in an analogous way o the vanatonal distance. The mixing
matrix A defines a hyperbox in the input signal space of x,
and W defines the estimated hyperbox. All the input vectors

(507
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Fig. 1. A two-dimensional view of the hypercube [2-3 plane) in the noiseless

condition. The owtlier ¢ has tao components outside the hypercube.

are contained onfwithin the hyperbox defined by A. If the
estimation of W is perfect, ie. W = A ~ then all the input
signals are contained onfwithin the estmated hyperbox. In
other words, all the output signals defined by y = WAs will
be contained m a hypercube such that

| =1 Wi, & L) (51)

At any instant #, if 2{¢) is not contained withinfon the
hyperbox defined by W1 then the coresponding output y(#)
will be outside the hypercube. Let us call such an mmstance
of signal vector as an outher. In analogy o the varational
distance, the total error can be measured in the outpul space

s
&= Z[ | — k)
.-

where §; = [Waxl;.

Since A is unknown and needs to be adaptively estimated,
# is unknown. We therefore consider that for an outlier gy, §
15 the pomt on the hyperbox closest 0 . In other words, at
every mnstant, we assumde that the estimabon 1s close o the
perfect. Thus the error in the output space is defined as

e= 3 (-1

ii|ae | L

(52)

(53)

The ermor < 1 geometrically represented in Fig. 1. The
average ermor over all instances of the output is given as

o) = I—Z 2. lwit -1

LA AR

(54)

where ' is the number of observations.
Note that, the average emor {¢) is not the same as the
vanational distance since g 15 nol necessarily the same as
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A7 'z, However, {&) provides an error measure (trining error
that 15 w0 be mimmized based on the observed samples)
analogous o the varatonal distance. With such an ermor
measure, the esumated hyperbox 1s o be mtated and sheared
only when there 1 an outher and in such a way that the outlier
just touches the closest bounding hyperplane of the hyperbox.

C. Formulation of the Learning Rule
The estimated hyperbox is o be adaptively transformed in
such a way that the error {e} is minimized. According to
the natural gradient descent algorithm [2], we can wnle the
updating rule of W in terms of the instantaneous varables as
i
W o ———W'W.
W
By definition, J=/0W is the rte of change of & with respect
w W, e,

(55)

Ao=c{W +dW)— ciWi=Tr ('”—( dW)' (56)
N - W

W can be updated in order to minimize & so that all »n*

variables in W are changed simultaneously. In other words, the

shape of the hyperbox 1s ransformed and also it s rotated. The

change i shape and rotabon depends on the local gradients.

Evaluating the partial derivative of ¢ (considering dW has
n? free parameters), we gel

e = {T, zam iy ), for | =1 57)

Y [}, oltherwise.

Mote that, the directional denvative exists for -_1;1-| =1 and
yy| = 1 for each 4. From (57), we have

e e =am i
e w = LR R L
(c’.i'W ),__J { 1,

Instead of wansforming W directly based on the local
gradients considering 72 free variables, the transformation can
be decomposed into rotation, scaling, and shear [(48)], and
each of them can be performed separately.

In the case of rotation, W can change only in the direction of
ZW [(40)] where £ is an antisymmetric matrix having only
nin — 11/2 free parameters. Therefore, the natural gradient
descent algorithm for rotating the hyperbox IITW) can be
obtained by

for | =1
otherwise.

(58)

e ” :] W

aw" |, )

dW o= [
where |- is the antisymmetric pat. Similardy restoring the
diagonal and the symmetne parts [(48)] we obtain the scaling
and pure shear of the hyperbox. Therefore the natural gradient
rules for scaling and shear can be, respectively, obtained as

; e 1
W oo —diag { mw JW (60
and
e
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From (39)—(61), we can obtain the separate mles for ro-
tation, scaling, and shear. For motation, the updating rule 1s
Ziven as

AW = ZW (62)

where
Z=ygiyl — glyy (63)

and 1z is the learning rate parameter for rotation. The nonlin-
car function glg! = [gly gl oyl ] is given as

= (P00 LG e
Similarly for scaling the updating rule 15
AW = g AW (63)
where
A= diag [olyiy) (66)

and #,, is the learning rate for scaling. The updating rule for
shear 15 given as

AW =g VW (67)

whene

V= -(5iugly) —gluy) - diag {girig’}]  (68)
and i 15 the learning rate for shear.

Considering the ensemble of outliers, we can oblain a
batch learning by minimizing {¢} with natural gradient descent
algorithm. Let us represent a set of p outliers by » = p matrix
Y such that

Y =gty ] (69)

where ¥; yg'?] is the jth component of the ith outlier. In that
case, the batch leaming rules can be obtained i the same way
as in the case of on-line leaming. For rotation, the updating
matrix £ is given as

L=YGY -GY)Y’ (70)
where [G(Y 3], yfyi‘a';:j., gl-11s given by (64). Similarly, the
updating rules for scaling and shear, i.e., the updating matrices
V and A can be obtained in the baich mode by replacing gig)
with ¥ and g with ¥,

D. Learning Rate

The leaming rate parameter (9, 9, 0 Hi- ) detemmines the
amount of transformation (rotation, scaling, and/or shear) of
the hyperbox to be performed. The hyperbox is ransformed
in such a way that the error due to the presence of the outliers
15 minimeed.

For each outlier, a comrection vector 1s defined as

e Qy

where @ — Z, A, or ¥V depending on whether it is a rotation,
scaling or a shear. The cormesponding correction veclor 18 ¢

(71}

1179

Or ¢4, OF ey, respectively. The change in the output of each
outlier due to the transformation of the hyperbox is given by

dy ne (72)

where 7 = g (the parmmeter for motation) or i, (the parameter
for scaling) or vy (the parameter for shear).

In the batch mode, we define a matrix © whose columns
represent the correction vectors comesponding 1o the outhers.
Thus

C=QY (73)

where 7 = [¢', &%, .
a8

.,€'"]. The change in ¥ is then given

Ay = 5. (74)

The hyperbox is w0 be tansformed in such a way that in
each transformation (rotation, scaling or shear), each outlier
becomes as close o the hyperbox as possible. Ideally all the
outliers should either fall on the hyperplane boundaries or
should be contained within the hyperbox after the transfor-
mation. In the case of rotation, scaling, and shear performed
separately no single operation may achieve the desired effect.
Therefore, each operation is performed in such a way that the
residual error due to the presence of the outliers is minimized.
Here the reswdual emor indicates the minimum change in the
signal components necessary such that the signal vector s
contained within the hyperbox spanned by Wa. 1e, HiW, ).
We define the desired change in the output of the outliers as
{L-norm)

AY;; = gt

_ { ¥y = Disgn (Y, if Yoy =1

75
1, otherwise. {19)

In other words, AY provides the componentwise error
occurred due o the presence of all outliers. The learning rate
parameter 15 1o be chosen in such a way that the cumulative
effect of componentwise error is reduced opimally. Therefore,

|AY  dY||7. is mimimized with respect to 7 where ||+ | 3 is
the Frobenius norm. At the minima,

%HAY—HC [Z — (T6)
Solving for 1, we get
T (AY'C)
ZE 5
Therefore,
o 1 [ AY ZY
TR
s 1k I:/_".Y’ii.'t’}
’ || A¥Y | &
1r [(AYVY
no= —”W (78)

In other words, © {?’,rz or 1y or T.'L':' 15 the resultant
normalized dot product (1.e., the angle) between the comection
viectors and the vectors representing the desed changes in the
output comesponding o all the outhers.
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E. Reduction of Free Parameters

The geometric descrniption desenbed in the previous sectons
lead o a weight updating rule analogous o that obtamed by
the maximum hkelihood estimator. I s nteresting o note
that the maximum likelihood estimator naturally provides the
natural gradient solution. However, in the maxmmum likeli-
hood solution (32), each entry in the fth row of the weight
updating matrix P is scaled by [ y;| — 13 This is because we
considered a form of Euclidian distance of an outlier from the
hypercube to obtain the density function (11). In the geometric
interpretation, however, we considered the city block distance
to measure the error. An analogous form of scaling effect in
this learning ruke 15 embedded by taking into account of the
leaming rate parameter. The learning rate parameter [v in (77)]
takes the account of the cumulative effect of [|y, — 1) of all
components of all outhers mnw a scaler vanable.

During rotation, the shape and volume of the hyperbox does
not change. The shape and volume changes during scaling and
shear. We start with some scaled identity weight matrix which
spans a hypercube. The hyperbox is then transformed in such a
way that maximum compactness of the hyperbox is preserved.
In order o make the distortion as minimuom as possible, the
hyperbox s first rotated in order o minimize the ermor doe 1o
the presence of an outlier. Afer the optimal amount of rotation,
the hyperbox 15 sheared and scaled based on the residual emror
due o the same observed samples.

The weight matrix is updated in such a way that | des (W)
remains constant in ¢ach transformation. This does not deteri-
orte the equivariance property of the algorithm. We consider
the empircal form of weight updating as W = W + nQW .
Therefore

| del (W] = dew (W | del (T + 3] (79)

In order to keep |det (W] constant, each entry in W is
scaled by a normalizmg constant such that new updating rule
1%

W = (W —nZW)/|detid + G| (80)

In the case of rotmton, if we consider (39) then |det (WY
always remains constant. I we use the first-order approxima-
tion of the rotation matrix then the nommalizing factor can be
approximated as

Al
1/| det ';I—‘JZZ:'ll"‘ =" -”_2 | Z|[7

S

(81}

considering wz o be small. Similarly in the case of scaling,
since we have only diagonal weight vpdating matrix and
TeiAl

i

/| del if + o di™™ 1= (82)
In the case of pure shear, the nomalizing constant can be

approximated as

VI3
2

L deu (T4 0¥ Y L 4af (83)
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F. Separation in the Presence of Noise

In the presence of noise, the source signals are deviated
from the true uniform distribution. As described in Section 111
the noisy distnbution can be approximated by (10) where «
depends on the noise amplitude. The approximation can be
assumed to be valid for small noise amplitude and therefore
for small ¢, For large nowse amplitude, the Fisher information
15 not only concentrated at the boundary of the hypercube
but also takes nonzero value inside the hypercube. Therefore,
the approximation by (10) is no more valid for large «
which considers nonzero Fisher information only outside the
hypercube. Under the assumption of small noise amplitude, a
maximum likelihood soluton can be wnatlen as

AW
ko L 84
oW e
which gives [from (17)]
1 b
/ 3 .' i =
wrawy - o Zaﬁ,my | Ay =0 (85)

where we consider W+ AW €A™' is the desired solution.
Therefore, in the vicinity of the desired solution, i.e., for small
| AW ||, and for small amount of noise, i.e., small £, we have
[from (22) and (27}

W' — i,_,[:jﬁl:y}} + AWizz"y| 0. (86)
T,
Considering {xx’s = ({W + AWYIW 4+ AW L [29)),

we gel

AW — —[iEly) + SWHIW + AWY (W + AW).  (87)

Restoring only the first-order terms of AW and considering

AW has a form of W, we get
Q—(P—FWW Q4+ Q) = —iP+WW)

where P is the same as in (34), 1e, P = {E{y):W'

Therefore, the maximum hkelihood solution in the nosy
case 15 exactly the same as i the nosceless condition when
e — (], The parameter ¢, dependent on the noise amplitode,
controls the weight updating matix €. It behaves like a
feedback parameter controlling the increase or decrease of the
welghtls,

In analogy o the maximum likelihood solution, the geo-
metde transformmations of the weight matrix are accordingly
modified. Since <WW' has no antisymmetric component,
the rotation is not affected due o the presence of noise.
This is physically interpretable because in the presence of
noise also the distribution of the signals remain symmetric.
Since we considered that additive noise components W the
signal components have the same amplitude, the shape of the
resultant distribution actually generates a dilated hypercube
[7]. The scaling and shear operations are accordingly modified
based on the controlling factor W W'

For scaling and shear, the modified weight updating rules
can be obtained from (65) and (67), respectively, by replacing
gy with glyly + =*WW'. Therefore for scaling we have
a leaming rule

W =W | g4

(B8}

& diag (WW!' W, (89)
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Similady, for shear the modified leaming rule can be writlen
as

W =W+ (V- S WW — ding (WW TOW. (90

The anmalogous expressions can be used for bawch mode
leaming where the matrix G(¥Y" + EWW' is 1o be used
instead of XY ¥’ The learning rate paramelers #y and
1 can be obtained from (77) by replacing A with (A —
iag (WW hand V with ¥V SWW diag (WW' 0,
respectively.

V. OVERALL ALGORITHM

The updating rules are described for on-line and baich-
mode in Section 1V, In this section, we summarize the overall
algonthm for a given batch size and the . In the batch-mode
updating, a number of samples are to be observed at a time.
Instead of observing a large set of samples at a tme, the
algonthm can be implemented in a semibach-mode whene
the weights are updated in each iteration afler observing each
sample like an on-line algorthm but the effect of batch-mode
updating 15 mmcorporated.

A shift register is used to store a previously defined number
(say ) of observed samples. Whenever a new sample appears,
it is checked whether the sample falls ouside the hyperbox
spanned by W o(ie, JITW) or not, ie., |y(#}] = 1 for any <
If the observed sample happens 1o be an outlier then it is stored
in the register and the oldest sample stored in the register 1s
taken out. The shift register is implemented as a first in first
out (FIFQ). Therefore, the register stores the last p samples
which appeared as outliers.

Al any instance therefore, the effective baich size is not
necessarily fixed at p. The effective batch size, in this context,
means the number of observed samples which at a ime, ef-
fectively cause geometric transformation of the hyperbox. The
effective batch size does not remain constant because some of
the previous outhers swored in the register may be contamed
within the hyperbox H{W} at the present instance. Therefore,
these samples do not cause any geometrdc transformation of
the hyperbos.

Let us now algorithmically desenbe the overall separation
algonthm:

Fix p, the size of the register
Fix e, the noise parameter
Define X: o % p matrix 1o store the observed

Step 1:

samples
Define Y72 n » po matrix to store the output
samples
Initialize X and ¥ 10 zermws
Define
D1 {
nomn 1 il
=
o 0 I
00 {

1151

ap ¥ pomatnx

Define o= [100---0]": a p = 1 vector

L Inigalize W — ET where & =10
15 any constant, such that such that the
absolute values of most of the output signal
components are greater than unily.

Step 20 Observe the present sample ® al instant ¢
Compute g — W

Imitialize #

If || = 1 for any 7 then
begin

X=XH za

F# makes a right shifl in the input register X
and adds « o the register */

Set transform = rotation;

f# sels rotation as the first ransformation
operation

end

else Goto Step 5.

Step 3: Compute ¥ = WX
Compute G{¥): an w % p matrix

eyl — | sEnYen i Y] =1
[GY]; = { I, nlhur:a.'i.k;u 1)
and AY': an n = p matrix;
A3 —{ ¥y — 1) sgn(¥y). if ¥yl =1 y
ks {'[l, otherwise 2)
Step 4 Case of:
transform = rotation :: Compule
Z=YGY) @YYy
Tr{ AV ZY)
-;r]lz — W
F
2 |1 Zx |2 -
W 11—z o I:I— qzz 1% (93)

Set transform = shear;
golo Step 3.
transform = shear :: Compute

1 .

V= - ¥YGY/+GYY + “WW'|
—diag | {YV 7Y + SWW')
T AY'VY)

M = :
V¥l

3
W = (J +».-;-$_.”E¢){J + 1 VIW (94)
T
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Initalies (Step Ly, Set L= 13

Observe X, Cormpotey = Wy

Ly -
an outlier !

s

L

~

Compute X (Step 23

Compite Y = WX;

Cumpute Roelaticn

: Compure ¥ = WX;
Cormpare Shear

¥
Compuere ¥ = WX
Compute Scaling

_|l_'l|J; |

e b es

W

Fig. 2. A schematic block diagram sketching the algorithm. The “step 17
and “step 2 indicate the operations performed as described in the algorithm,

Set transform = scaling;
golo Step 3.

transform = scaling :: Compule

A — diag{GIYY + EWW

Tr{ AY' AY')
TNy = —m—————
“TTAYR
TriA}
W (1 e );I + i AW (95)
=
Step5: f=1¢| 1;

Ift =T gow Step 2
else retum.

Fig. 2 shows a block diagram schematically sketching the
algonthm.

V1. EXPERIMENTAL RESULTS

The effectiveness of the proposed method is demonstrated
on the mixtures of five randomly generated source signals; i.e.,

s} = [N, Nafl), Nal(f), Nai ), Nl

where each N7} is uniformly distributed in [—1,1].
The performance index 15 measured by (as proposed in [6]
and [24])

T i

- &7
indox = Z Z IM‘CJL-.-iIC-.'-kl

=1 j=1
n

-

+)

=

where € = [£;] = WA

Dunng updating W, the hyperbox s first rotated in order o
minimize the ermor occurred due o the presence of an outhier.
After the optimal rotation, the hyperbox 15 sheared and scaled
based on the residual error due to the presence of the same
outlier. 1t is to be noted here that no significant change in
the perdormmance of the algorthm has been observed if the
sequence of the shear and scaling operations are interchanged.

Fig. 3(a) demonstrates the effectiveness of the algorithm on
five randomly generated uniformly diswibuted signals under
the noiseless condition with a batch size of p = 50, The
mixing matnx 15 randomly generaled with each entry Ay £
=100 100]. The initial W ois selected as W &I where
bois some constant. The wvalue of & should be such that
the absolule values of most of the signal components are
greater than unmity. This s necessary because the algonthm
15 insensitive o the output signal vectors which are contaimed
within a hypercube of unit dimension. In this experiment we
have chosen £ = 0.03. However, we experimented with larger
values of £ which provide equally good resulls. In order to
test the equivariance property of the algorithm, we considered
a general form of A = & M where cach entry 3;; e [ 1,1]
is a uniformly distributed number. The initial W is selected
as W = [l It has been found that the performance of the
algorithm is insensitive to individual & or b so long as & ke
is constant. Given any unknown mixing matrix, & for W = &I
can be chosen sufficiently large. This can also be performed by
observing a set of initial output samples for some . Therefore,
the algorithm s equivanant m a hmited sense with respect o
choice of £, so long as the initial absolule values of most of the
signal components are greater than unity. However, in general
sense, the algordthm is not affine equivariant.

Instead of orthogonal decomposition of the transformations,
W can be updated by direct natural gradient descent of
the geometric ermor (Section 1V), We updated W by directly
minimizing the error where in each iteration | dec (W) is kept
constant. However, it has been found that the algorthm does
not converge at all with the direet gradient mimimezation of
the emor as shown in Fig. 3(b).

This is due to the fact that the decomposition of the
transformation into rotation, shear and scaling cause minimum
amount of change in the shape of the hyperbox. Initially, we

et

n

3 LT
kg |y

i=L

(96)
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Fig. 3. The performance index is denoted by “Ind” and the number of observations by " {a) The performance of the proposed method with orthogonal
decomposition of the tmnsformations, The hyperbox is first mtated, then sheared, and finally scaled. (b)) The performance of the algorithm by direct
gradient minimization.
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Fig. 4. The performance of the algorithm with different batch sizes of {a) ¢ = 1, (h) g = L0, and {c) p = 50, The peformance index is denoted

by “Ind™ and the number of observations by “¢."

consider W as a scaled identity matrix which generates a
hypercube. The minmimum change in the shape in each ileration
preserves the maximum compactness of the hyperbox. The
direct gradient minimization, on the other hand, does not
restnet the shape of the hyperbox oward minimuom distortion.

The effect of batch siee on the pedormance of the algonthm
15 also tested. Different batch size (Section 1V) with p = 1,
Lix, and 50 are vsed on the same sequence of signal veclors.
The mixing matrix and the initial W oare considered 1o be the
same 1n all three cases. The mesults are shown m Fig. 4a)—(c),
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Fig. 5. The performance of the algorithm in the noisy environment with different valves of £, The performance index is denoted by “Ind” and the number of
ohservations by “1." The Gaussian noise with noise amplitude = (1.5 is added to the signal components, i.e, the peak signal to noise mtio (PSNR) is 1386 dB. (0)
The performance of the al gorthm with £ — 0.1, {h) The performance with £ — 1.3, {¢) The performance with « — (1.5, The batch size 3 is equal to 30 in all cases.

respectively. It has been found that the algorithm converges
in all three cases although the on-hne algonthm with p = 1 15
less siable as compared to p — 100 and p — 3. No significant
enhancement of the algorithm has been found with the increase
in the batch size beyond p = &il

The performance of the new algorithm is also demonstrated
in the presence of noise. The mput 15 generated as

zit) = As(t) + Nnit) (97)
where nlt)] is A0 Gaussian noise, and N is the noise
amplitude. The perdommance is tested with different values of
¢, with a fixed batch size of ¢ 30, A sample performance is
illustrated in Fig. 5 with a high noise amplitude of & = 0.3,
L., with a peak signal to noise mto (PSNRE) of 13.86 dB. The
values of « are chosen as (01, 0.3, and 0.5, respectively, and the
comresponding results are shown in Fig. 5(aj-(c), respectively.
The results demonstrate the fact that the incorporation of a
factor of <*WW' in the updating rule (Section IV-F) enhances
the performance of the algorthm in the presence of noise.

VI DISCUSSION AND CONCLUSIONS

An algorithm is presented for the blind separation of a
mixture of uniformly distdbuted signals. The algorithm is
found to be successful in separating the mixed signals for
arhitrary mixing matix even in the presence of large amount of
noise. The learning rule is defined based on the required geo-
metrde transformation of the hyperbox spanned by the weight
matnx. For special cases like motation, the solution obtained by
minimizing the geometric error is identical to the maximum
likelihood solution. In general conditon, it is difficult 1o obtain
a closed form maximum likelihood solution for an arbitrary

mixing matnx, however, the maximum hkelihood equation in
the noisy condition, provides a guideline for formulating the
learning rule of geomelric error minimization in the presence
of noise.

The effectiveness of the algorthm is demonstrated with
randomly generated data in the different noisy conditions and
noiseless condition. The hyperbox needs to be tansformed by
orthogonalizing the transformation operations, i.e., the hyper-
box needs to be mtated, then sheared and scaled respectively,
each tme based on the residual geometric emor dee o the
observed sample. The rotation causes a tansformation of the
hyperbox without changing its shape and volume, and it s
performed first. The sequence of shear and scaling, however,
can be interchanged without affecting the pedormance. One
of the reasons behind the much betier performance of the
orthogonalization of transformation operations is that without
orthogonalization, all =¥ parameters (weights) can change in-
dependently causing changes in shape, volume and onentation
simultaneously. On the other hand, orthogonalization nes 1o
preserve the maximum compactness of the hyperbox if we start
from scaled identity matnx as the initial W. A thorough theo-
retical explanation about why the orthogonalization performs
much better stll needs 1o be investgated.

The performance of the algorithm i the noisy condition 1s
controlled by the parameter ¢, Theoretically, if ¢ increases
the Fisher information near the boundary of the hyperbox
gets more widespread. I has been shown in [7] that when
¢ — {1 and there 15 only orthogonal mixing matnx (1.e.,
only rotation 18 necessary), the algonthm behaves hike an
€3 1/7%% convergent algorithm. Ideally, with the increase in ¢
the algonthm should be more stable in the presence of nose
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at the cost of speed and vice-versa. The experimental results
illuswrate some similar effects on the algorithm.

Finally, it is 1o be noted that the algorithm is successful in
separating the uniformly distributed sources even in the pres-
ence of noise. On the contrary, the existing general algorithms
like K-L divergence measure based algorithm [6], [24], EASI
algorthm [10] completely fail to converge in the noiseless
condition for the uniformly distributed signals.
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He served as a Computer Engineer in the
Knowledge-Based Computer Systems project of
I51, Calcutta, from 1989 to 1992, In 1992, he joined as a faculty of the
Machine Intelligence Unit of 151, Calcutta. Presently, he is an Associste
Professor in the same unit of ISL He was a Researcher in the RIKEN
Brain Science Institute, Saitama, Tapan during 1997 w0 1998, and a Visiting
Scientist in the Robotics Institute of Carnegie Mellon University, Pittshurgh,
PA, during 1991 to 1992, His research inerests include newral networks,
pattem recognition, image analysis, and fueey sets.

Dr, Basak received the gold medal from Jadavpur University in 1987, the
young scientist award in engineering sciences from Indian National Science
Academy (INSA) in 1996, and junior scientist award in Computer Science
from Indian Science Congress Association in 19494,

Shun-ichi Amari (M"71-5M"92-F 94 ) was bom in
Tokya, lapan, on January 3, 1936, He received the
hachelor' s degree in mathematical engineering from
the University of Tokyo in 1958 and the DrEng.
degree from the University of Tokyo in 1963,

He was an Associate Professor at Kyushu Uni-
versity, an Associate and then Full Professor at
the Depantment of Mathematical Engineenng and
Information Physics, University of Tokyo, and is
nivy Professor-Emeritus at the University of Tokyo.
He is the Director of the Brain-Style Information
Systems Group, RIKEN Brain Science Institute, Saitama, Japan. He has been
enguged in research in wide areas of mathematical engineerng and applied
mathematics, such as topological network theory, differential geometry of
continuum mechanics, pattern recognition, mathematical foundations of neural
networks, and information geometry.

Dir. Amari served as President of the International Neural Network Society,
Council Member of Bemoulli Society for Mathematical Statistics and Prob-
ability Theory, and Vice President of the Institute of Electrical, Infommation,
and Communication Engineers. He was founding Coeditor-in-Chief of Newral
Nerwaorks. He has been awarded the Japan Academy Award, the IEEE Neural
Metworks Pioneer Award, and the [EEE Emanuel R. Piore Award.
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