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Bernoulli's theorem on Lhe probsbility that in a soring of n trials (whero Ltho chanco of guctons v conge
tant from trial to trial and equals p) the number of successes m should bo within a cortain range of the
sxpectation value, can be stated as

P{Im!n—p|<e}>1—n ifn>n.fe.7) TR

whore # and 7 aro arbitrary small numbora and
mge, M= (1)) (1 +e) log(1 [n) [ ex. oy
By introducing » indepondent stochastic variabley x,, Ty, ... 2. oach of which can take vahies

1 or 0 with pmbnb:hues p or q wo can doduco from TehebyohefI's law of large numbers a theorom which is
of the same form as Bernoulli’s theorem (1 -1), oxcept that n, (e, %) i8 & function of £ and 9 different from
that given by (1.2). This theorems we shall cell Tshobychoff's anal of B 1i'
goneral form Tshobychefl's law of largo bers can be stated as

8 theorom.  In ita

Pl (5423« o2 nm Bl +Ft - .o+ 0] <o) >|_"(’"_“”’:*'---+’1!L" 1

where £, Z,, . .., £, #ro uny goneral stochastic varinbles, E(x,+ x,4 . ..+-£) the mathematical oxpectution
and \"(z,+z,+ -+2,) the variance of 2, +2;+ . ..+ .. both being supposed to uxist. If now. instead of
€1, Lz - .. Xa being gonersl atochastic variables, they are assumed to bo Ily indop )
vurinblm such that each can take on values 1 or 0 with probabilitiee p or ¢ then

(£1+234 . ..+%,) ==m(oumber of uucceasos)'

B+, 4. .. 4z [n=p " e (2:2)

V(i + 24 ..ot [R=pyjn )

It will be thus secn that by utilising (2.2), (2.1) can be reduced to

P(jm[n—p|<e}> 1—pg[nes e

Hinco p and ¢ aro both positive, and p+¢=1, tho maximum valuo of pq is renched when p=g and that value
is } . Henco {2.3) implies another inequality relation

P{lm/n—p|<e}> L—1/4ne o2
It follown that given two arbitrary small numbers ¢ and » we have

P(jmin—p|<Le}> 1—n if npn' (e, m) .2y
whero a'a(e, 1) = 1/4en. Relation (2.6f wo ahall call Tshobycheff's of li's theorem,

which lattor would be defined by (1.1) and (1.2). Now both Bernoulli's theorem and Tschobycheff’s analogue
aro approximate and fairly close but not exact inequality rolations, that is. in neither case would the
inequality rolation (1.1} or (2.5) bo necesnarily roversed if n < n. (e, ) defined by (1.2) or ngn’ (¢, 1) detined
by (2.5). Thero is, of course. s loast number n”, (¢, ¥) which ia yot unknown such that _the inequality
relation (1.1} or {2.5) holds if n2>n", (&, 7) and is roversed if n<n”.{e,7). Tho question now naturally urisea
as to whioh of n, (£, 7) or n’, (¢, ¥) is nearsr to n”.(e, n) for different values of ¢ and 7 ; both are, of rouree,
greater than n’, (¢, n). This point we have tried to settlo by numerical-cum-graphical mothods in the follow.
ing manner.

Considering tho (e, 7) plano wo aro gonerally interestod in the aquare defined by' ¢ varying from
0t 1, und ¥ varying from 0 to 1. Insido this square we aro intorested in knowing which of n. (s, %) or
7', (e, 7) in groater. We have thua to find whothor 1/e+(k+e) log (1/9)/e? or |j4em is groater.
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I n, (¢, ¥) ia greater, then Bornoulli's theorem givea & wider limit and is thus worse, and if n", (s, »
iu groator it is the other way mbout. Equating the two we have

Lie+(L4e) log (L/m)]e=)[deny PN B
or e=z{) /49 —log {1 )W} [{1-rlog (1[W)} (39

If thiy curve had cut the {z, ») plane outside tho square defined above. then within our region of interest
cither n, (¢, 7) or n’,(¢, ) would havo been throughout tho greator of tho two, that is, oither Tshebychoff's
analogue or Bommoulli's theorom would have been betler. But, as tho accompnnying tablo and gaph
would rhow, this curve {3.2) cuta across the square aml divides it into two portions in ono of which
n.(e,2)>n’(¢, 1) ond in the othor n’.{e, 7)>n, (0.9); that is, in one region Tahebychefl's analogue is cloger
wnd in the other Bernoulli's theorom is closer.
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Tante |. YVALUES OF ¢ FOR DIYFERENT VALUES OF 7
. . !, i, !

v | e ‘ v | e oy ¢ 3 B
001 | 36386 | 000 ' 0-1085 | 047 | —0-1087 | 050 | —o-141
002 | 17484 | 0-10 00568 | 018 « —0.1200 | 0.55 | —0-0897
003 10710 | 0-11 00204 | 019 | —0-1206 080 | —0-u623
004 | o785 | 012 | —o0-ol18 ‘ 020 ' —0-1317 | 0-70 00003
006 | 06016 | 0-13 | —0-0385 o0.26 ' —o0-1610 | g.80 00331
008 , 03540 | 014 ' —000R 030 | —o0-l682 | 0:90 0-1560
007 ' 02403 | 016 —0-0705 0-40 | —0:1520 ! 1%00 0-2500
008 | 01700 | 015 | ~0-084  0-45 ' —0-l30) |

It is easily secn that at the vmigin n’.(e. 7) >n.{¢, ) and hence in the immediate noighbourhood of
the origia and this is the region in which wo are niost interested, Bernonlli's theorom gives a eloser limit
than Tshebychof('s analogue,

It is woll known that the proof of Bemnoulli's theorem (oven as modifed by later msthematicians
in long and

i though e Iy il i whilo Tshebychelf's theorem and its analogue rest on

a proaf which is assimplo asivis short.  Heneo Bernoulli's theorem (1.1) and (1.2) inight have been discanded

in favour of Tahobychofi's analoguo (2.4) and {2.5) if only n’.(e,n) wero loss than n.(e. M) within the region

of inlereat in tho iminediate neighbourhinod of thy point £ =0, 7=0. but our inveatigativu shows thatl near

the origin it is just the othor way about, and heneo the anduous mathomatical procesacs involved in the proof™
of {1 1)and (1.2) ace fully justified. as against the shorter and sitnpler reasoning beohind (2.4) and (2.5).
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