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Chapter 1

Introduction

The facility location problem is a resource allocation problem that mainly deals with

adequate placement of various types of facilities to serve a distributed set of demands

satisfying the nature of interactions between the demands and facilities and optimizing

the cost of placing/maintaining the facilities and the quality of services.

The facility location problem is well-studied in the Operations Research literature and

recently has received a lot of attention in the Computer Science community. For a

company, the facility location problem provides more strategic decisions than just giving

importance to locate the lowest cost space for storing its products. While identifying the

location of the company’s distribution centers (facilities) for maintaining the necessary

service levels to the customers, it must consider several things, for example, the freight

costs, the cost of a new/leased structures, several other logistics costs, and also the

inherent risk and viability involved in the choice of those locations. Several variations

of facility location problem can be formulated depending on the nature of the objective

function and the constraints on the facilities. As examples, we may cite the problems

on cost reduction, demand capture, equitable service supply, fast response time etc.

For locating emergency facilities, such as hospitals, fire-fighting stations etc., covering a

region using minimum radius circles is a natural mapping of the corresponding facility



location problem where the objective is to minimize the radius of the circles indicating

the worst-case response time.

In the classical facility location problem, it is generally assumed that the communication

path between a facility and a customer should not be obstructed by any obstacle. But,

this is not always a realistic assumption with respect to the practical instances. So,

depending upon the application, we model the problem assuming both the customers

and the facilities as points in a polygonal region P and we measure the distance between

a customer ci and a point-facility xj by their geodesic distance, i.e., the shortest path

between ci and xj in P avoiding the obstacles. Finding the geodesic shortest path is an

essential tool for solving several variations of the facility location problem. The com-

plication of identifying the geodesic shortest paths increases when we consider different

constraints that should be obeyed by the resulting path, or the region under study goes

in higher dimension.

This thesis is a study on designing efficient algorithms for some application specific

geometric facility location and constrained path planning problems. In the next two

sections, we briefly overview the existing literature on the facility location problem and

the geodesic path planning problem in two and higher dimensions. The scope of the

thesis appears in the next section.

1.1 Facility Location

A typical facility location problem deals with locating facilities as a subset of a given set

of objects on a given environment to cover the clients located on the same environment,

say a bounded/unbounded plane, a terrain or some network, with an aim to optimize

certain objective function. Formally, the problem is defined as follows: given a weighted

set D of demand locations with weight distribution w, a set F of feasible facility locations

with nonnegative cost distribution f , and a distance function d that measures cost

between a pair of locations; the objective is to find a set F ′ ⊆ F , so as to optimize
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certain objective function F .

The environment that we generally consider is either continuous/discrete geometric

space with Manhattan (L1) or Euclidean (L2) distance metric, or some graph network

domain with usual graph theoretic distance metric. Locations for the facility or demand

are typically of type points, lines, paths, cycles etc. or vertices of a graph, depending

upon the type of environment. The objective function to be optimized is formulated

considering the nature of the problem. The classical facility location problems are known

as k-center and k-median problems, where k is a positive integer. The 1-center problem

was originally posed in the year 1857 by Sylvester [147], and the 1-median problem was

first introduced in Weber’s book [155] in the year 1909, and is referred to as Weber’s

problem in the literature. The 1-median problem in geometric domain is to identify the

ideal location of a single facility in the plane that minimizes average time needed to

reach any arbitrary demand location from the facility avoiding the obstacles present in

that plane. If instead of one facility, the problem is to locate k (≥ 1) facilities, then it is

known as k-median problem. In the k-center problem, the objective is to find a set F ′

of k supply points (facilities) so that the maximum distance between a demand point

and its nearest supply point (in F ′) is minimized. Besides the k-median and k-center

problems, several other application-specific facility location problems are considered

in the literature depending on the nature of the objective functions. For example, in

obnoxious facility location problem [24, 29, 102], the objective is to identify the locations

F ′ of k undesirable facilities that maximizes the distance between a demand point in D

and its nearest site in F ′. The objective in the fault tolerant facility location problem

[146] is to place a given number (say k) of facilities such that the total cost for accessing

r facilities from any client is minimized. Multiple facilities provide a safeguard against

failure. Glozman et al. [76] studied the problem of covering a set of points by a given

number of shapes of some specific kind.

Hershberger [90, 91] presented algorithms for partitioning a given set D of n points into

two subsets in order to minimize the sum and the maximum length of their diameters

respectively. A useful extension of the facility location problem is the capacitated
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facility location problem, where we need to consider an additional constraint on the

size of each cluster, where a cluster is the subset of demand points served by the same

facility. If n and k denote the number of demand points and the number of clusters

(facilities) respectively, then the size of each cluster may be at most a constant c, where

c ≥ dn/ke. Most of these facility location problems are NP-Hard if k (the number of

facilities) is considered as a part of the input [114]. For a fixed value of k, many of these

problems can be solved in polynomial time, but some of them still remain intractable[3].

The facility location problem is a long-standing research problem. New variations are

coming up from many practical applications. So, the exhaustive review of this literature

is really a difficult task. A survey on location theory considering various environments

and application-specific constraints are described in the book of Drezner [58]. A very

good overview on location theory in the perspective of mathematical programming is

available in the book by Mirchandani and Francis [120]. Some important recent results

are available in the literature [3, 78]. In the next subsection, we present a brief review

on efficient algorithms for facility location problems involving computational geometric

technique.

1.1.1 Geometric facility location

The oldest problems on facility location, i.e., 1-center and 1-median problems, are geo-

metric in nature. Till date, several new variations of geometric facility location problem

are coming up in the literature depending on the necessity of newly evolved applica-

tions. Many of these problems are solved using the standard geometric tools, for exam-

ple, Voronoi diagram, convex hull, visibility among the others [27]. In fact, the facility

location is an important area of research in the field of computational geometry. In this

thesis, the attention is centered on the variations of the problem that are particularly

important in the transportation management and wireless communication. These vari-

ations of the problem consider the standard norm of considering facilities as points on

the Euclidean plane, obstacles in the form of convex polygons and distance measures
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in L2 metric. In our case, the constraints are on the location of the facilities, which is

a line, or a line segment, or the boundary (or a specific edge) of the obstacle polygon,

etc.

1.1.2 Geometric k-median and k-center problems

The geometric k-median problems and the k-center problems of various types have

received considerable attention in the computational geometry community in the recent

years in the context of facility location. The 1-median problem in L∞ metric can be

solved in O(n) time, where n = |D| [22]. Several variations of this problem are NP-Hard

in IRd for d ≥ 2 and k ≥ 2 [118]. Bajaj [20] has quoted that, under L2 metric the basic

Weber problem cannot be solved using radicals. But, several geometric techniques exist

for computing the near-optimal solutions for the geometric k-median problem in both

discrete and continuous domain [58, 89, 156]. A few references are also available on the

k-median problem where the demand points form a continuous region [65]. The specific

applications are in mobile communication where the facilities are the base stations and

the demand points are the mobile users.

Several recent results for computing the approximate solutions of the k-median problem

in the plane have been proposed in [18, 39, 40, 113]. Among these, the algorithms given

in [39, 40] produce a solution which is a constant multiple of the optimum solution.

Some popular local heuristics search techniques for hard combinatorial optimization

problems also work nicely for this problem [14, 112, 104].

In the k-center problem, the goal is to find k center points (facilities) in order to minimize

the maximum distance between a demand point and its nearest facility. In the basic k-

center problem, the set of demand points D is discrete in IRd, the set of facility locations

F is the entire IRd plane, and the distance function is the Euclidean L2 or L∞ metric.

This is known to be NP-complete if d ≥ 2 [114]. For small values of k, parametric search

technique is a useful tool for solving this problem efficiently. In its decision version, a

radius r is given, and the problem is to determine whether D can be covered by the
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union of k balls of radius r. In the discrete k-center problem, F is required to be a

subset of demand points D. Hwang et al. [96] proposed an nO(
√

k) time algorithm for the

k-center problem in IR2. A contemporary paper by the same set of authors [95] proposed

another algorithm for the discrete version of this problem with the same running time.

Therefore it makes sense to search for efficient approximation algorithms and heuristics

for the general version [93, 128] and for the basic k-center problem in two or higher

dimensions considering k as small and fixed constant [28, 38, 64, 76, 91, 98, 101, 140].

The first algorithmic result on the Euclidean 1-center problem appeared in [63], and

an O(n2) time algorithm was proposed in that paper. Later, Shamos and Hoey [139],

Preparata [129] and Shamos [138] improved the time complexity of the problem to

O(n log n). But, Bhattacharya et al. [33] pointed out that the diameter of the point set

computed by the algorithms in [138] and [139] are incorrect, but in spite of that, [138]

correctly reports the minimum enclosing circle.

Lee [110] proposed the furthest point Voronoi diagram, and using that data structure,

the 1-center problem can be solved in O(n log n) time. Finally Megiddo [116] found an

optimal O(n) time algorithm for solving this problem using prune-and-search technique.

The dynamic version (i.e., where insertion and deletion of points are allowed), can

be found in [2, 21]. Many other variations of the 1-center problem are available in

[56, 57, 59, 117].

While much has been done on such unconstrained versions of the classical 1-center

problem, little has been done in the constrained case. Megiddo in [116] studied the

situation where the center of the smallest enclosing circle lies on a given straight line. In

[94], Hurtado, Sacristan and Toussaint provided an O(n+m) time algorithm for finding

minimum enclosing circle with its center constrained to satisfy m linear inequalities.

This takes help of linear programming in IR2.

Bose et al. [35] considered the generalized version of the problem where the center of

the smallest enclosing circle of P is constrained to lie inside a given simple polygon

of size m. Their proposed algorithm runs in O((n + m) log(n + m) + k) time, where
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k is the number of intersections of the boundary of the polygon with the furthest

point Voronoi diagram of P . In the worst case, k may be O(n2). This result was

later improved to O((n + m) log m + m log n) in [36]. In a further generalization of

this problem, where r (≥ 1) simple polygons with a total of m vertices are given,

locating the center of the smallest enclosing circle of P with its center inside one of

those polygons was discussed by Bose and Wang [36]. The time complexity of this

version is O((m + n) log n + (n
√

r + m) log m + m
√

r + r
3
2 log r).

In the 2-center problem for the point set P , the objective is to cover P by two closed

disks whose radii are as small as possible. Sharir [140] presented a near-linear algorithm

for this problem which runs in O(n log9 n) time. Currently the best known algorithm

for this problem was proposed by Chan [38]. It suggests two algorithms for this prob-

lem. The first one is a deterministic algorithm, and it runs in O(n log2 n(log log n)2)

time; the second one is a randomized algorithm that runs in O(n log2 n) time with high

probability. A variation of this problem is the discrete two-center problem, where the

objective is to find two closed disks whose union covers the point set P and whose

centers are a pair of points in P . This problem was solved in O(n4/3 log5 n) time by

Agarwal et al. [4]. Recently, Kim et al. [103] proposed much efficient algorithms for

both of the standard and discrete versions of the 2-center problem where the demand

points are vertices of a convex polygon. Their algorithms run in O(n log3 n log log n)

and O(n log2 n) time respectively. An improved result on the upper bound of the con-

tinuous/discrete weighted k-center problem on a tree has appeared very recently [23].

It proposes a linear time algorithm for the weighted 2-center problem.

1.1.3 Guard placement problem

Guard placement is another important area of research in geometric location theory.

In general a point p on a given polygon guards the polygon P if every point u ∈ P is

visible from point p. There are several definitions of visibility in the polygon guarding

problem. The most common one is that a point p is visible from q if the line segment
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[p, q] does not pass through any obstacle. Sometimes a single guard may not be able to

see the entire polygon. In Art Gallery theorem, Chvatal [48] established the fact that

bn/3c guards are always sufficient and occasionally necessary to guard the interior of a

simple polygon with n vertices. Since then a tremendous amount of research effort was

rendered on Art Gallery problem [125, 135, 142]. Linear time algorithms for computing

the visibility polygon under standard notion of visibility was studied in [60]. A detailed

survey on the problem of placing guards to watch the interior and exterior region of

several types of polygons is available in [135]. It also considers the same problem under

many different notions of visibility.

We will consider the notion of L-visibility, which is defined by Gewali et al. [72] as

follows: consider a guard (robot) that can sense any movement or sound in its territory

and can reach the source of the problem in short time. The territory of a robot at

location p is a region R such that for each point u ∈ R there exists a path from p to u

avoiding the obstacles whose distance is bounded by a constant L, where the constant L

denotes the power of the robot. Here, each point in the region R is said to be L-visible

from p. Similar concepts of L-visibility were also used in [16, 124].

Given a point p on the boundary of a polygon P , and a constant L, the external L-

visibility problem deals with the area computation outside the boundary of the polygon

which is L-visible to the guard located at p. Here the obstacle is the polygon P itself.

The optimization version of the external L-visibility problem is to identify the location

p of the guard on boundary of P with an objective to maximize the area of the region

outside the polygon P which is L-visible to p. Gewali et al. [72], proposed a linear time

algorithm for the external L-visibility problem where P is a convex polygon, and L is

less than or equal to half the perimeter of P . As mentioned by the authors of [72], the

open question was to design a polynomial time algorithm for the external L-visibility

problem where L is greater than half of the perimeter of P .

8



1.2 Path Planning

Shortest path problem is one of the fundamental problems in all major application areas

of computer science like facility location, operation research, robot motion planning

to name a few. There are varieties of different shortest path problems depending on

the applications in networks, transportation, guarding, visibility related problems, to

name a few. Some of which have been solved and many of which have not even been

considered. Computing a shortest path between two nodes s and t in a graph is a natural

mapping of many real life problems particularly in the transportation and network

domain where connection pattern among stations (nodes) in the network is already

established.

Computing an optimal path in geometric domain satisfying different constraints is a

fundamental problem in computational geometry, where the mapping of these types

of problems into the standard graph theoretic problem is nontrivial. In many cases,

these are solved by applying different intelligent techniques rather than mapping them

into graph theory. Here, the objective is to design efficient algorithms to avoid explicit

construction of the entire underlying graph whose size may become very large depending

on the specific applications. Shortest paths between two points on the plane or on the

surfaces of a polyhedra is one of the fundamental problems that have wide applications in

several facility location problems, for example, traffic control, search and rescue, pipeline

placement for fluid distribution, city planning etc. Depending upon the applications, it

may be required to find the minimum cost path on the polyhedral surfaces satisfying

some constraints imposed by the problem specification.

In graph theory, two major variations of the shortest path problem exist − (i) single pair

shortest path, and (ii) all pair shortest path. Given a edge-weighted graph G = (V, E),

the objective in the first variation is to find the minimum cost path of each node in V

from a specific node s, called source. This yields the shortest path tree rooted at s.

The cost of a path is the sum of the weights of all the edges along that path. In the

unweighted case (where unit weight is attached to each member in E), this problem can
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be solved in O(|E|) time using Breadth First search [51]. If the weight attached to each

edge is a real positive number, then this problem can be solved by the classical Dijkstra’s

algorithm [54], and it needs O(|E| log |V |) time. The time complexity of this problem

can be improved to O(|E| + |V | log |V |) using the Fibonacci heaps of Fredman and

Tarjan [67]. Further improvements on the time complexity is possible if the edge weights

are nonnegative integers [68, 69, 87, 150, 151, 152]. For undirected graphs with integer

edge weights, improved algorithms were proposed by Thorup [150, 151] which bypasses

the sorting step, and runs in O(|E|) time. Dijkstra’s algorithm does not work if the

edge weights are allowed to be both positive and negative. The traditional algorithm,

due to Bellman and Ford [51], runs in O(|E||V |) time. Better results are available in

[70, 71, 77] where the edge weights are both positive and negative integers.

In the second variation of the shortest path problem, the objective is to report the

shortest path between each pair of vertices (u, v) ∈ V . The standard Floyd-Warshall’s

algorithm for this problem runs in O(|V |3) time. If the graph is sparse enough (i.e.

|E| << O(|V |2)), then one may use Johnson’s algorithm, which runs in O(|E||V |) time

[99]. There exist many interesting variations of the shortest path problem in graphs.

For a detailed survey, see [160].

Due to the high running time for computing the all-pair shortest paths in a graph,

tremendous efforts were given on computing the approximate shortest paths between

each pair of vertices in G. A path is said to be a multiplicative k-approximate shortest

path if π(u, v) ≤ k×πopt(u, v), where π(u, v) and πopt(u, v) are respectively the length of

the approximate and the exact shortest paths between the two vertices u and v. If the

length of each approximate path π(u, v) is such that πopt(u, v) ≤ π(u, v) ≤ πopt(u, v)+k

then π(u, v) is said to be the additive k-approximation of πopt(u, v). In [55], Dor et

al. showed that for any finite k, the multiplicative k-approximations of the all pair

shortest paths can not be computed in time less than that of multiplying two Boolean

matrices (of size O(|V |×|V |)). Zwick [158], proposed an algorithm for computing (1+ε)-

approximate paths. For further details on this topic, see [15, 50, 160]. Aingworth et

al. [8] showed that the additive approximation results for this problem can be obtained
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without using matrix multiplication. Several improved algorithms were proposed in

[55, 62]. Many open problems still remain regarding the possible tradeoffs between

the preprocessing time, space requirement, query answering time and the multiplicative

approximation constant of the distance oracle.

1.2.1 Geometric shortest path

In the geometric version of the shortest path problem, we have polyhedral obstacles

in IRd plane (d ≥ 1). The objective is to find a path between a pair of points p and

q avoiding the obstacles, which is of minimum length with respect to some specified

metric. The general version of the shortest path problem in IRd was shown to be NP-

hard by Canny and Reif [37] for d ≥ 3. An extensive research has been done on solving

geometric shortest path problems on two and three dimensions. In IR2, the most basic

version of the geometric shortest path problem is to find shortest path between two

points s and t inside a simple polygon without holes. This can be solved in linear time

[41, 111] assuming that the triangulation of a simple polygon can be done in linear time

[43]. Given a simple polygon P and a point s inside it, Guibas et al. [85] constructed

a shortest path tree data structure in O(n) time and space such that for any arbitrary

query point q ∈ P , the length of the shortest path from s to q can be reported in

O(log n) time. This idea was further improved by Guibas and Hershberger in [84]; here

the shortest path can also be reported in O(log n+k) time, where k is the number of the

vertices on the output path. The dynamic version of this problem allows the polygon P

to change by adding and/or deleting edges and vertices. If deletion or addition is made

in such a way that it does not create a hole inside the polygon then a linear space data

structure was proposed by Goodrich et al. [82], which can report (i) the length of the

shortest path between any two query points s, t ∈ P in O(log2 n) time, (ii) the shortest

path itself in O(log2 n + k) time, and (iii) the updating of P can also be handled in

O(log2 n) time. This is an improvement of a contemporary result on the same problem

given by Chiang et al. [47]. Several parallel algorithms on this problem were developed

in [61, 80, 81, 92]. A detailed review on this topic is available in [135].
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While discussing on the shortest path inside a polygon, we need to introduce the concept

of visibility graph. Two points p and q inside a polygon (with/without holes) are said

to be visible if the line segment joining them does not intersect the boundary of the

polygon (as well as the boundary of the holes). The visibility graph (also called the

vertex visibility graph) of a polygon with/without holes is an undirected graph whose

nodes are the vertices of the polygon; an edge between a pair of nodes indicates that

the corresponding vertices are mutually visible. The shortest path between a pair of

points p and q inside a simple polygon with holes has direct relation with the visibility

graph. The problem can be solved in O(|V | log |V | + |E|) time using the algorithm

proposed by Ghosh and Mount [75]. For details, see the paper by Fredman and Tarjan

[67] on shortest paths in visibility graph. The visibility graph may also find a variety

of applications in robot vision and path planning.

Guibas et al. [85] and Toussaint et al. [153] first established a relationship between the

weak visibility of a polygon and the Euclidean shortest paths. A polygon is said to be

weakly visible from an edge e of the polygon P if for each point z inside P , there exists

a point w ∈ e such that w and z are mutually visible [73]. The shortest path tree is

extensively used as a tool for computing different types of visibility polygons inside a

given simple polygon [30, 31, 32, 53, 97].

In IR3, the shortest path between a pair of points may not always pass along the surface

of the polyhedral obstacles. As already mentioned, this problem is NP-complete. But,

there exists many practical problems which need shortest path passing along the surface

of the polyhedron. Such type of shortest paths are refereed to as geodesic shortest paths.

1.2.2 Shortest path through polyhedral surface

The shortest path problem between two points s and t on the surface of an unweighted

polyhedron is studied extensively in the literature. Sharir and Schorr [141] presented

an O(n3logn) time algorithm for finding the geodesic shortest path between two points

on the surface of a convex polyhedron with n vertices. Mitchell et al. [121] studied

12



the generalized version of this problem where the restriction of convexity is removed.

The time complexity of the proposed algorithm is O(n2logn). After a long time Chen

and Han [46] improved the time complexity to O(n2), and then Kapoor [100] reduced it

to O(nlog2n). Recently, Schreiber and Sharir [136] proposed an interesting and imple-

mentable optimal algorithm for computing the shortest path map from a fixed source

s on the surface of a convex polytope P in three dimensions; the running time of this

algorithm is O(n log n) and it requires O(n log n) space. Two approximation algorithms

for this problem were proposed by Varadarajan and Agarwal [154]; they can produce

paths of length 7(1 + ε) × opt and 15(1 + ε) × opt respectively; opt is the length of

the optimal path between s and t, and ε is an user specified degree of precision. The

running times are respectively O(n5/3 log(5n/3)) and O(n8/5 log(8n/5)). For convex

polyhedron, an approximation algorithm was proposed by Agarwal et al. [1], which

produces (1 + ε)× opt solution, and runs in O(n/
√

ε) time.

In the weighted version of the problem, each face f is assigned a weight w(f) ∈ [0,∞).

The weight of a face indicates the cost of traversing unit length through that face. Given

two points s and t on the surface of the polyhedron, the objective is to find a path Π

from s to t of minimum cost. Formally, the cost of a path is defined as follows:

Let Π be the concatenation of a set of line segments {σ1, σ2, . . . σk}, such that each σi

may be any one of the following two types: (A) it lies completely on a single face

f , or (B) it lies on an edge shared by a pair of faces f ′ and f ′′. The cost of the

path Π, denoted by cost(Π), is equal to
∑k

i=1 wi | σi |, where | σ | is used to denote

the length of a line segment σ, and wi = w(f) or min(w(f ′), w(f ′′)) depending on

whether σi is of type A or type B respectively.

The first work on approximating the minimum cost path of the weighted polyhedral

surface appeared in a seminal paper by Mitchell and Papadimitrou [122]. It uses con-

tinuous Dijkstra method [121] and exploits the fact that the minimum cost path follows

Snell’s law of refraction. The algorithm locates a path whose weighted length is guar-

anteed to be within a factor of (1 + ε) of the length of an optimal path, where ε(> 0) is

an user-defined constant. The time complexity of the algorithm is O(n8 × log(nNW
ε

)),
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where N is the largest integer coordinate among the vertices and W is the maximum

weight among the faces of the polyhedron. An implementable method for solving the

minimum cost path problem was given by Mata and Mitchell [115]; this formulates the

problem as a graph search problem and assures a solution of length (1 + ε)× opt. The

running time of the algorithm is O(n3N2W
εw

), where W is defined earlier and w is the

smallest weight among all faces of the polyhedron.

Lanthier in his Ph.D. thesis [107] proposed several algorithms on this problem. The

fastest algorithm runs in O(n log n) time and produces a solution with worst case length

2
sin(θ)

×opt, where opt denotes the length of the optimum path. Lanthier et al. [109] also

proposed an approximation algorithm for the minimum cost path problem, which adds

equally spaced Steiner points on the edges of the polyhedron, and approximates the cost

of the optimum path to opt′ = opt + LW , where W is as defined earlier, and L is the

longest edge of the polyhedron. The running time of the algorithm is O(n5). In the same

paper, another algorithm was presented using graph spanners; it runs in O(n3 log n)

time to report an approximation of the optimum path whose cost is no more than

β(opt + LW ), where β > 1. The best known implementable algorithm for this problem

is due to Aleksandrov et al. [10], and it claims to produce a path of cost (1 + ε)× opt

among a pair of query points in a weighted polyhedron. Several further improvements

were also proposed by Aleksandrov et al. in a sequence of papers [11, 12, 13]. These

are based on the method of introducing Steiner points on the edges of the triangulated

polyhedron. The latest version [13] runs in O(C(P ) n√
ε
log n

ε
log 1

ε
), where C(P ) captures

the geometric parameters and the weights of the faces of the given weighted polyhedron.

The geometric parameters include the longest edge of the triangulated polyhedron and

the smallest angle among all the triangles. In that paper the authors raised a very

important question about the existence of a method which does not depend on the

geometric parameters of the polyhedron. Recently, Reif and Sun [133] observed that

the dependency of C(P ) on the weights of the faces can be removed. It needs to be

mentioned that the time complexity of computing shortest paths on the unweighted

polyhedral surfaces does not depend on the geometric parameters [1, 45, 46, 154].
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In the special case, where an edge sequence E = {e1, e2, . . . , ek} of the triangulated

polyhedron is specified along with the source (s) and target (t), and the objective is to

find an weighted shortest path from s to t through the interior points of e1, e2, . . . , ek (in

that order), then also the running time of the algorithm for computing an optimal (or

approximate) weighted shortest path depends on the geometric parameters. The main

reason, as observed by Mitchell and Papadimitriou in [122], is that the local optimality

criteria along an edge is given by Snell’s law of refraction. Thus, if the number of edges

in the edge sequence is k, then the required objective function is the sum of square roots

of k quadratic expressions with k unknowns along with several other constraints. While

solving, the elimination process of the variables leads to a very high degree algebraic

equation whose coefficients depend on the geometric parameters.

1.2.3 Shortest path on the surface of a terrain

The problem of studying different variations of the facility location problem on terrain

is an important area of research in GIS [17]. Berg and Kreveld [26] studied several

variations of the path finding problem on the surface of a polyhedral terrain. A terrain

T is a two dimensional surface in the three dimensional space with a special property:

the vertical line at any point on the XY -plane intersects the surface of the terrain at

most once. In other words, it is the graph of a function f : A ⊂ R2 → R, where A is a

region on the XY -plane and f(p) indicates the height of the surface of T at the point

p ∈ A. Thus, a terrain can be viewed as a polyhedral surface specified by a set of faces,

edges and vertices, where the vertices are the end points of the edges, each edge is the

intersection of two faces, each face is a plane in 3D, and the projections of all the faces

on the XY -plane are mutually non-intersecting at their interior. Given a polyhedral

terrain T with n vertices, the proposed algorithm efficiently answers the query for the

existence of a path between a pair of points s and t on the surface of T , such that for

each point p = (x(p), y(p), z(p)) on the path z(p) ≤ ξ for some given altitude (height)

ξ. It also determines the minimum total ascent/descent among the path(s) between s

and t, where the total ascent of a non-monotone path is defined in [26].
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Recently an interesting variation of the shortest path problem in the context of a terrain

was proposed by Mitchell and Sharir [123], where the objective is to compute the L1-

shortest path between a given pair of points, such that the path is restricted to lie on or

above the given polyhedral terrain T . The proposed algorithm runs in O(n3logn) time,

where n is the number of faces of T . The same paper also studies another variation

of the shortest path problem on a terrain like structure, where a set of n vertical walls

parallel to the x-axis are given. Each wall is positioned on the xy-plane. The i-th wall,

is positioned at y = ai, and its top boundary (denoted by ei) is a line of the form

z = bix + ci, where ai, bi and ci are given constants, a1 < a2 < . . . < an. The objective

is to report the L2-shortest path between a given pair of query points s and t, where

s < a1 and t > an. The problem is referred to as the L2-shortest path over walls. Note

that, the shortest path is always monotone with respect to the y-axis, and it bends on

the edges ei, i = 1, 2, . . . , n. It is also proved that, the shortest path from s to t is the

concatenation of two sub-paths, one of them is monotone ascending and the second one

is monotone descending with respect to z-coordinate. The standard method for solving

this problem involves a preprocessing phase which splits each edge ei into segments,

and then defines the shortest path map [135]. The optimal L2-shortest path from s to

t can be obtained by following an appropriate path in that map. It is proved that the

size of the shortest path map is O(n2) in the worst case, but finding a polynomial time

algorithm for constructing the map is left as an open problem [123].

There are several other variations of path finding problem on the surfaces of polyhedral

terrain. Rowe and Ross [134] addressed the problem of finding minimum-energy routes

for a mobile agent across some hilly terrain. The specific problem they have considered

is to find the optimal path of a mobile agent under anisotropic friction and gravity

effect. Lanthier et al. [108] proposed an (1+ ε)-approximation algorithm for computing

the shortest path in anisotropic scenario. Recently, Gray and Evans [83] introduced

the concept of uncertain terrain, and proved that finding shortest path in an uncertain

terrain is NP-complete.
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1.3 Scope of the Thesis

This thesis is a study on some important variations of the facility location problem. We

first concentrate on a constrained version of minimum enclosing circle problem which

has potential applications to the placement of base stations for wireless communication

avoiding the forbidden zones. If a feasible route (a line or a line segment) is given

online, the same problem of placing a single base station on it, is also studied. Next, we

consider the problem of placing guard under L-visibility (see Subsection 1.1.3). These

three problems are elaborated in Subsections 1.3.1, 1.3.2 and 1.3.3.

We then switch to two important variations of the shortest path problem on the surface

of a polyhedron in IR3 and on the surface of a terrain. These are useful tools for the

facility location problems, and are described in Subsections 1.3.4 and 1.3.5.

1.3.1 Constrained minimum enclosing circle problem

Here a convex polygonal region P is given. The objective is to cover P by a circle of

minimum radius whose center is placed on the boundary of P . To be more precise, our

task is to identify the point on the boundary of P where the center of the desired circle

needs to be placed. Our proposed algorithm produces the optimum solution in O(n)

time, where n is the number of vertices of P .

Instead of covering P with one such constrained circle (with its center on the boundary

of P ), covering P with k circles (k ≥ 2) with their centers on the boundary of P is a

trivial generalization of the problem. We will consider only a special case with k = 2,

and an edge e of P is specified for placing the center of two covering circles. The

objective is to minimize the maximum radius among these two circles. Our proposed

algorithm for this problem also runs in O(n) time when the edge e of P is given a priori.
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1.3.2 Constrained minimum enclosing circle problem: a query

version

We will also address a query answering version of the constrained minimum enclosing

circle problem for the polygon P . Here a polygon P is given and the query problem is

to report the smallest enclosing circle of P whose center lies on a line `, supplied at the

query time. We will preprocess P in O(n log n) time and O(n) space, and given any

arbitrary query line segment `, the center and radius of the smallest enclosing circle can

be reported in O(log2n) time. We will use this result for solving the following problem

posed by Bose and Wang [36]:

Given a set P of n points, and a set of r simple polygons with a total of m vertices,

compute the smallest enclosing circle of P whose center lies inside one of these r

polygons.

An algorithm for this problem was also proposed in [36]; it runs in O((m + n) log n +

(n
√

r+m) log m+m
√

r+r
3
2 log r) time. We show that, it can be solved in a much simpler

way using our method, and the time complexity improves to O(n log n + mlog2n).

1.3.3 Guard placement under L-visibility

Given a set of polygonal obstacles, two points a and b are said to be L-visible if the

length of the shortest path from a to b avoiding the obstacles is no more than L. For a

given convex polygon P , Gewali et al. [72], addressed the problem of placing a single

guard on the boundary of P such that it can see maximum area outside the polygon

P under L-visibility. Their proposed linear time algorithm works when L is less than

or equal to half the perimeter of P . They also posed an open question of designing an

efficient algorithm when L is greater than half the perimeter of P . In this thesis, we

will address that open problem and present a linear time algorithm.
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1.3.4 Approximate shortest path in weighted polyhedra

In this problem, a triangulated polyhedron in IR3 is given. Its each face is attached with

a positive weight. The objective is to compute the minimum cost path between a pair

of points s and t on the surface of the polyhedron, where the path is constrained to lie

on the surface of the polyhedron. The cost of a path is defined in subsection 1.2.2.

For any given ε > 0, the best known algorithm that produces (1 + ε)-approximation re-

sult for this problem, appeared in [13]. It is based on the method of introducing Steiner

points on the edges of the triangulated polyhedron, and it runs in O(C(P ) n√
ε
log n

ε
log 1

ε
)

time, where C(P ) captures the weights of the faces, and two geometric parameters of the

given weighted polyhedron. These are (i) the length of the longest edge L of the trian-

gulated polyhedron and (ii) the smallest angle θ among all the triangles. The existence

of a method which does not depend on the geometric parameters of the polyhedron is

mentioned as an important issue [13].

We have tried to remove type (ii) geometric parameter of C(P ) from the time complexity

of the algorithm, but it plays role in the approximation factor. The time complexity of

our algorithm is O(n(log2 L
ε
) + n(log L

ε
) log n). In general, the approximation factor of

our algorithm is (1 + 1
sinθ

) + εnW , where W is the maximum weight among the faces of

the triangulated polyhedron P .

1.3.5 Monotone descent path problem on a polyhedral terrain

Next we will consider the shortest monotone descent path problem in a polyhedral

terrain. Here a polyhedral terrain T and a point s is given. The point s is considered

to be the source of water in the terrain like hilly area. The objective is to identify

the region on the surface of the terrain, where the water can flow from s. Thus, our

problem is to find the region (R) on the terrain such that for every point p ∈ R there

exist monotone descent path (as defined below) from s to p.

A path will be said to be a monotone descent if for every pair of points p = (x(p), y(p), z(p))

and q = (x(q), y(q), z(q)) on the path with p is closer to s than q, then z(p) ≥ z(q).
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In this thesis, we will develop an algorithm to identify the descent flow region of s (called

DFR(s)) in T . It needs O(nlogn) time and stores DFR(s) in a data structure of size

O(n), where n is the number of faces in the triangulated terrain. Given an arbitrary

point t, it can report whether a monotone descent path exists from s to t along the

surface of T by searching the DFR(s) in O(logn) time.

It needs to be mentioned that, if a query point t ∈ T lies in the descent flow region of

s, then reporting the shortest monotone descent path from s to t seems to be difficult

for an arbitrary terrain T [26]. We study some restricted classes of terrain for which

the shortest monotone path problem can be solved in polynomial time.

In particular, we have shown that for a convex terrain, the shortest monotone descent

path from s to a query point t can be reported in polynomial time. We preprocess the

given terrain T to create a data structure in O(n2 log n) time and O(n2) space. This

data structure stores the region in DFR(s) which can be reached from s through a

sequence of convex faces. Now, if a query point t lies in such a region, our algorithm

can output the shortest monotone descent path from s to t in O(k + logn) time, where

k is the number of faces through which the path passes.

We could identify another class of terrain where the shortest monotone descent path

among a pair of points s and t can be found in polynomial time, but the convexity

among each pair of faces in DFR(s) is not required.

Here, along with the source (s) and destination (t), a sequence of faces F = {f0, f1, . . . , fm}
is given, where s ∈ f0, t ∈ fm. The objective is to find the shortest descent flow path

through F , provided it exists. This problem also seems to be difficult in its general form.

But we could design an efficient solution in this setup where the edges separating the

consecutive faces in F are parallel to each other. The time complexity of the proposed

algorithm is O(m).
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Chapter 2

Constrained Minimum Enclosing

Circle Problem

In this chapter, we present a constrained version of the classical 1-center problem that

has applications particularly in wireless communication and disaster management sys-

tems. In wireless communication system, base stations are positioned appropriately in

the desired region. Each base station is assigned a range r to transmit messages to

other radio stations or mobile radio sets inside a circular range of radius r centered at

its placement location. In general, the power required by a base station is proportional

to the square of its range and so the placement and efficient range assignment of the

base stations is an important area of research.

Sometimes fixing the location of the base station becomes difficult if the region is a

huge water body, or a dense forest or some other prohibited zone. However, we need

to provide mobile communication service inside that region. In order to minimize the

power requirement (or effectively the range) of the base stations, we have to place the

base stations in some appropriate locations on the boundary of that region. For the sake

of simplicity, we consider that the given region is convex. Here the objective is to locate

the position of base station(s) with some additional constraints such that every point



inside that polygon is covered by these base station(s). In other words, every point

inside that polygon is within the range of at least one base station and the maximum

among the ranges of these base stations is minimized. We will consider the following

two problems in the context of placing base stations on the boundary of a polygonal

region.

Problem P1: Locate a point α on the boundary of the polygon P such that the

maximum among the distances from α to all the points inside the polygon P is

minimized.

Problem P2: Identify two points γ and δ on a given edge e of the polygon P and a

real number r such that every point x inside the polygon P is covered by at least

one of the circles centered at γ or δ of radius r and the value of r is minimum for

such choices of γ and δ.

In Section 2.1, we address the problem P1 and propose a linear time algorithm for this

problem. In Section 2.2, a linear time algorithm for the problem P2 is proposed.

2.1 Problem P1

Euclidean 1-center problem is a well known problem which has a long history. Here

the problem is to find the smallest circle that encloses a given set of n points. In the

standard 1-center problem, there is no restriction on placement of the center of that

circle. Some interesting results were provided by Megiddo [116] and Hurtado et al. [94]

on constrained version of the problem. Megiddo [116] studied the case where the center

of the smallest enclosing circle must lie on a given straight line. Hurtado et al. [94]

used linear programming to provide an O(n + m) time algorithm for finding minimum

enclosing circle with its center satisfying m linear constraints.

We will address problem P1 with a different type of constraint. Instead of placing the

center inside a given convex region, we consider the center on the boundary of the given
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convex polygon, and the objective is to cover the entire region inside the polygon. A

similar problem was first addressed by Bose and Toussaint [35], where the center of the

minimum enclosing circle lies on the boundary of a convex polygon of size n and the

objective is to cover a set of m points which may not lie on or inside the polygon. An

O((n+m) log(n+m)) time algorithm for that problem was also presented in that paper.

Here we derive some interesting geometric characterizations and propose an O(n) time

algorithm for problem P1 that avoids the use of linear programming techniques.

Let the vertices of the convex polygon P be {v0, v1, . . . , vn−1} in anticlockwise order.

We will use ei to denote the edge (vi, vi+1) of P . If C denotes the minimum radius circle

enclosing P whose center α is on the boundary of P , then C must satisfy the following

simple but interesting observations.

Observation 2.1 The circle C must pass through at least one vertex of the polygon P .

Observation 2.2 Let e be the edge of the polygon P that contains the point α. If the

circle C passes through exactly one vertex v of polygon P , then the line vα is perpendic-

ular to the edge e at point α.

Let us consider the furthest point Voronoi diagram V(P ) of the vertices {v0, v1, . . . , vn−1}
of the polygon P . It partitions the plane into regions, R(v0),R(v1),R(v2), . . . ,R(vn−1),

such that for any point p ∈ R(vj), d(p, vj) ≥ d(p, vi) for all vi ∈ P , where d(., .) denotes

the Euclidean distance between a pair of points. From Observation 2.1, we can conclude

that if vi is on boundary of C then vi is farthest vertex from α and hence α must be in

R(vi). The circle C may pass through more than one vertex of the polygon P , and in

that case we have the following observation.

Observation 2.3 If the circle C passes through two vertices of polygon P , then α must

be at the intersection point of an edge of V(P ) with an edge of the polygon P . Moreover,

if C is passing through more than two vertices of polygon P , then α coincides with a

vertex of V(P ).
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From the above observations, we can conclude the following lemma.

Lemma 2.1 If the center α of the circle C lies on an edge e of the polygon P , then α

must coincide with either the perpendicular projection of some vertex of P on the edge

e, or with the intersection point of an edge of V(P ) and the edge e of P .

Proof : Lemma follows from Observations 2.2 and 2.3. 2

We consider each edge e of P , and locate the vertices of P whose projection on e lies

inside the edge segment e. We use B to denote the set of these points on e which are

obtained by these projections. Note that, if a point β ∈ B is the projection of a vertex

v on an edge of P and β ∈ R(v), then the smallest enclosing circle of P with center at

β passes through v. So, we consider only those members in B that lie in the farthest

point Voronoi region of the corresponding vertex of P . Each element β ∈ B is attached

with a vertex v such that β ∈ R(v).

In order to compute the smallest enclosing circle with center on the boundary of P and

which passes through two vertices of P , we need to compute the set of points A that

are generated due to the intersection of the edges of V(P ) with the edges of the polygon

P . Each element u ∈ A is attached with a pair of vertices (v, v′) of P such that u is the

point of intersection of the boundary of P and the Voronoi edge that corresponds to the

bisector of the line segment [v, v′], and v′ appears after v along the boundary of P in

anticlockwise order. The members in set A partition the boundary of polygon into a set

of polygonal chains. Each of these chains must lie inside a single Voronoi region, and it

is formed by a sequence of polygonal edges bounded by a pair of consecutive members

of set A. Let us denote the set of these polygonal chains as D(P ).

The computation of the sets A and B using the farthest point Voronoi diagram needs

O(n log n) time. Although the farthest point Voronoi diagram for the vertices of a

convex polygon can be computed in linear time [5], computation of all the intersection

points of the Voronoi edges with polygonal boundary of polygon P needs O(n log n)

time (as stated by Bose and Toussaint [35]).
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We present a simple O(n) time algorithm for finding the set A and B. This avoids

the computation of the farthest point Voronoi diagram. But, we need to study the

properties of the farthest point Voronoi diagram of the vertices of a convex polygon,

which will help in the formulation of our algorithm.

Lemma 2.2 [34] Each cell of V(P ) is an unbounded convex region.

Lemma 2.3 Let e be an edge of the polygon P . The perpendicular bisector of e must

define one of the edges of the boundary of a Voronoi cell of V(P ). Furthermore, this

boundary is a half-line.

l

l’
z

u

v

w

z’

Figure 2.1: Illustrating the proof of Lemma 2.3

Proof : Let l be the perpendicular bisector of an edge e = (u, v) of P . The line l

intersects e at a point w. If we move along the line l from w on the direction towards

the interior of the polygon then we can locate a point z on line l such that the circle

centered at z with radius equal to d(z, u) encloses all other vertices of P . Hence, the

portion of l from z towards the other side of w is a half line, and it defines Voronoi edge

separating R(u) and R(v) (see Figure 2.1). 2

Lemma 2.4 If the perpendicular bisectors of a pair of adjacent edges ei = (vi−1, vi)

and ei+1 = (vi, vi+1) of a convex polygon P intersect outside P , then P ∩R(vi) = ∅.
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Figure 2.2: Illustrating the proof of Lemma 2.4

Proof : Let l1 and l2 be the perpendicular bisectors of ei and ei+1 respectively and

they intersect at a point q outside P . The Voronoi cells R(vi−1) and R(vi) are in the

two different half planes defined by the line l1. Similarly, the Voronoi cells R(vi) and

R(vi+1) are in the two different half planes defined by the line l2. The Voronoi cell

R(vi) is in the common region of the aforesaid two half planes as shown in Figure 2.2,

which is outside the polygon P . 2

From the above lemma, we can conclude that the intersection of a Voronoi cell with

boundary of P is a simple contiguous chain and hence the cardinality of the set A is

less than or equal to the number of vertices in P . Let u0, u1, . . . , uk−1 be the points

in set A and they are in anticlockwise order on the boundary of the polygon P . As

mentioned earlier, the members in A define the set of polygonal chains D(P ). Let

D(P ) = {ψ0, ψ1, . . . , ψk−1}, where the chain ψi is bounded by the points ui and ui+1.

Let ψi ∈ R(v′i), where v′i ∈ {v0, v1, . . . , vn−1}. The farthest neighbor of all the vertices in

ψi (if exists) is v′i. We will use f(v) to denote the farthest neighbor of vertex v, v ∈ P .

If v ∈ ψi, then f(v) = v′i. We would also introduce a new function index(), where

index(v′i) = j whenever v′i = vj. The following lemma demonstrates the arrangement

of Voronoi cells along the boundary of the polygon.

Lemma 2.5 If index(v′r) = min{index(v′0), index(v′1), . . . , index(v′k−1)}, then index(v′r) <

index(v′r+1) < . . . < index(v′k−1) < index(v′0) < . . . < index(v′r−1).

Proof : Two adjacent polygonal chains ψr and ψr+1 meet at point ur+1, which is on

the perpendicular bisector (say l) of the line segment joining the vertices v′r, v
′
r+1 ∈ P .
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The vertex v′r (resp. v′r+1) and the polygonal chain ψr (resp. ψr+1) lie in different

sides of the line l as shown in Figure 2.3. So, a circle C centered at ur+1 with radius

d(ur+1, v
′
r) passes through v′r and v′r+1, and contains the polygon P . As the vertex v′r+1

is on anticlockwise direction of v′r, and the index of v′r is the least among all the indices

of v′i (0 ≤ i < k), we have index(v′r) < index(v′r+1).

Next, we prove the remaining part of the result. Note that, any circle with center

on the boundary of P and containing P does not intersect the circular arc ̂v′rv
′
r+1

of C (see Figure 2.3). If index(v′r+1) − index(v′r) > 1, then for any integer β ∈
[index(v′r), index(v′r+1)], there does not exist a point on boundary of polygon P from

which vβ is farthest among all vertices of polygon P . Therefore, index(v′j) > index(v′r+1)

for all j = 0, 1, . . . , r − 1, r + 2, . . . , k − 1. Hence, the lemma follows. 2

v0

v
1

v
n l

ur+1

ψr+1
ψr

vr’

vr+1’

Figure 2.3: Illustrating the proof of Lemma 2.5

2.1.1 Algorithm

We first compute two arrays A and B. One of the elements from A or B will be the

center of the maximum enclosing circle of P .
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Algorithm Computation-of-Array-A

Input: Polygon P with n vertices.

Output: The array A generated in anticlockwise order.

Procedure: We traverse the vertices of P in anticlockwise order. If for two consecutive

vertices vi and vi+1, f(vi) 6= f(vi+1), then we compute the uis’ (the members in

A) that lie on edge ei = (vi, vi+1) as follows:

Let vγ = f(vi) and vδ = f(vi+1).

(* For every pair of vertices vj and vj′ with γ ≤ j < j′ ≤ δ, their perpendic-

ular bisector intersects ei *)

Set j = γ and j′ = j + 1.

Repeat the following steps until j′ = δ

Step 1: Draw the perpendicular bisector of vj and vj′ , and compute its intersection

point u .

Step 2: If u appears to the right (towards anticlockwise direction) of the last element

of array A, then add u in the array A with the pair of vertices (vj, vj′).

Set j = j′ and j′ = j′ + 1.

Step 3: If u appears to the left (towards clockwise direction) of the last element of

array A, then (* the region R(vj) does not intersect the boundary of P *)

delete the last element of u′ ∈ A.

If the pair of vertices attached to u′ is (vθ, vθ′), then set j = θ′

(* j will never go beyond γ, because R(vγ) intersects ei *).

Algorithm Computation-of-Array-B

Input: The polygon P and the array A.

Output: The array B generated in anticlockwise order.
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Procedure: Traverse the array A to extract the chains {ψi, i = 1, 2, . . . , k}. Each ψi

is attached with the corresponding v′i.

For each i = 1, 2, . . . , k do

For each edge/edge-segment e ∈ ψi do

Draw the perpendicular projection of v′i on e. Let it be w.

If w lies inside e, then add it in B with the vertex v′i.

Lemma 2.6 The elements of set A and B can be located in O(n) time.

Proof : We use the monotone matrix searching technique to compute the farthest

neighbor f(vi) for every vertex vi of the convex polygon P in O(n) time [7]. Note

that, the vertices f(v0), f(v1), . . . , f(vn−1) are in anticlockwise order, and the chains

ψ0, ψ1, . . . , ψk−1 are also in anticlockwise order. There may exist some Voronoi cell

R(v) that does not contain any vertex of P . If in addition, P ∩ R(v) 6= ∅, then the

chain in the cell R(v) is a segment of an edge of P , and that segment is bounded

by two consecutive members in A. As, vγ = f(vi) and vδ = f(vi+1) (as defined in

Computation-array-A), we have P ∩ R(vj) is either empty or a segment of edge ei for

each j = γ + 1, . . . , δ − 1 (see Lemma 2.4). We identify these members of A (on ei) by

observing the boundary of the Voronoi cell corresponding to vertices vγ, vγ+1, . . . , vδ−1

in that order. Step 3 indicates the case where P ∩ R(vj) is empty and therefore the

newly enumerated u appears to the left of the last element of array A. We execute

Steps 1-3 for each of the n vertices of P , and each iteration produces an u in A. In

addition, for the deletion of each element in A (in Step 3) we execute Steps 1-3 once. If

the final length of A is k, n− k elements of A will be deleted. Thus, the result follows.

2

Now, we are in a position to present the algorithm for identifying the optimum location

of the center of the minimum enclosing circle of P on boundary of the P .

Algorithm Problem P1(P )

Input: Polygon P with n vertices.

Output: The point α on boundary of P .
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Step 1: Compute the set A = {u0, u1, . . .} using algorithm Computation-of-Array-A.

Assign dmin = ∞.

For each ui ∈ A do

(* Let v′i be the one of the farthest neighbors of ui, and is attached to ui *)

If d(ui, v
′
i) < dmin, then assign α = ui and dmin = d(ui, v

′
i).

Step 2: Compute the set B = {w0, w1, . . .} using algorithm Computation-of-Array-B.

For each wi ∈ B do

(* Let vj be the vertex attached to wi *)

If d(wi, vj) < dmin, then set dmin = d(wi, vj), and set α = wi.

We now have the following theorem stating the time complexity of our proposed algo-

rithm for problem P1.

Theorem 2.1 Algorithm Problem P1(P) computes the location α in O(n) time.

2.2 Problem P2

The obvious extension of Problem P1 is placing two base stations for covering P where

only one edge of P is available for placing the base stations. Without loss of generality,

we may assume that the given edge e lies on the x-axis, it joins the vertices v0 and v1,

and x(v0) < x(v1). We use the term constrained circle to denote a circle whose center

lies on e.

The problem of computing a single constrained circle C of minimum radius which covers

P , can be computed in O(n) time by considering the ψis’ which share the edge e. The

procedure is very much similar to that of Problem P1. Our objective to compute two

constrained equal circles for covering the entire region P with minimum radius. We

propose an O(n) time algorithm for this problem.
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Figure 2.4: Illustrating the proof of Observation 2.4

Let C1 and C2 be two constrained equal circles of minimum radius that cover P . Let

α and β be the centers of C1 and C2 respectively, and x(α) < x(β). Now, we have the

following simple observations.

Observation 2.4 If v is the vertex of P such that d(v, v0) = Max{d(vi, v0) | x(vi) ≤
x(v0)}, and v′ is the vertex such that d(v′, v1) = Max{d(vi, v1) | x(vi) ≥ x(v1)}, then

the radius of each circle C1 and C2 is greater than or equal to max(d(v, v0), d(v′, v1)) (see

Figure 2.4).

Observation 2.5 If a vertex v is inside C1 but not inside C2 and a vertex v′ is inside

C2 but not inside C1, then x(v) < x(v′).

Note that, the radius of C (the constrained circle of minimum radius enclosing P ) is

greater than or equal to the maximum among the radii of C1 and C2. If C passes through

only one vertex of P , then its radius is exactly equal to the maximum radius among
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the circles C1 and C2. This situation can be handled in linear time as mentioned for the

problem P1. From now onwards, we assume that the circles C1 and C2 are smaller than

the circle C.

Let vk = maxi{vi 6∈ C1} and vk′ = mini{vi 6∈ C2}. The vertices {v0, vn−1, vn−2, . . . , vk+1}
are all in C1 and the vertices {v1, v2, . . . , vk′−1} are all in C2. From Observation 2.5, we

can conclude that x(vk′) < x(vk). We first compute two constrained circles which cover

the vertices {v0, vn−1, vn−2, . . . , vk+1} and {v1, v2, . . . , vk′−1} respectively. These help in

computing C1 and C2.

2.2.1 Algorithm

We will use P1(s) to denote the polygon with vertices {v0, vn−1, vn−2, . . . , vs}, where

s may assume values 0, n − 1, n − 2, . . . , 1. Similarly, P2(s) denotes the polygon with

vertices {v1, v2, . . . , vs}, where s may assume values 1, 2, . . . , n− 2, n− 1, 0.

Lemma 2.7 Let C∗ and C∗∗ be two minimum radius constrained circles enclosing the

vertices of P2(s) and P2(s
′) respectively.

1. If s′ > s then the radius of C∗ is less than or equal to the radius of C∗∗.

2. If s′ > s then the x-coordinate of the center of C∗ is greater than or equal to the

x-coordinate of the center of C∗∗.

3. Suppose both the circles pass through exactly two vertices of the polygon P and

s′ > s. If C∗ passes through the vertices va and vb with a < b, and C∗∗ passes

through the vertices vz and vw with z < w, then z ≤ a < b ≤ w.

Proof : Suppose the radius of the circle C∗ is r and it is centered at a point p on edge e.

Since C∗ encloses up to the vertex vs, and p is on the left of v1, then x(vs) ≤ x(p), and

also x(vi) < x(p) for all i = s+1, s+2, . . . , s′. Since C∗∗ encloses the points in P2(s) and

also the points vs+1, vs+2, . . . , vs′ , we have r less than or equal to the radius of C∗∗. If r
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is strictly less than the radius of C∗∗, then at least one point vi (∈ {vs+1, vs+2, . . . , vs′})
is outside C∗ and maxs′

i=s+1 d(p, vi) is greater than or equal to the radius of C∗∗. Hence

the lemma follows. 2

Lemma 2.7 says that, if the minimum radius constrained circle C ′ covers the vertices of

P1(s), and s ≥ k + 1, then its center is either at α or at the left side of α, where α is

the center of C1. Similarly, for any s′ ≤ k′− 1, if the minimum radius constrained circle

C ′′ encloses the vertices of P2(s
′), then its center is either at β or at the right side of β,

where β is the center of C2.

Again from Lemma 2.1, we can conclude that the center of circle C ′′ is either on edge

e with x-coordinate x(vi), 1 ≤ i ≤ s′ or it is at the intersection point of e with an

edge of the farthest point Voronoi diagram of the vertices {v1, v2, . . . , vs′} of P2(s
′).

Let A2(s
′) = {u0, u1, u2, . . . , um} be the set of intersection points of the furthest point

Voronoi diagram of P2(s
′) with the edge e. With each element of A2(s

′), the corre-

sponding pair of vertices is attached as in problem P1. The center of the desired circle

C ′′ to cover the vertices of P2(s
′) is either the perpendicular projection of vs′ on e or

one of the members in A2(s
′) for which the radius is minimum. Similarly A1(s) is also

computed for the polygon P1(s). Therefore we are interested about the intersection

points of e with the edges of two farthest point Voronoi diagrams with the vertices of

P1(s) and P2(s
′) respectively.

Initially while preprocessing the point set, we do not have any prior information of k

and k′ that determines C1 and C2. Initially, we start with P1(n− 1) = {v0, vn−1}. Given

A1(l) for the polygon P1(l), we incrementally compute A1(l−1) for the polygon P1(l−1)

by adding the next vertex vl−1. The same procedure is followed for computing A2(l)

for all l = 2, 3, . . . , n − 1, 0. The following lemma describes an important relationship

between A2(l) and A2(l + 1), computed for P2(l) and P2(l + 1) respectively.

Lemma 2.8 Let A2(l) = {u0, u1, u2, . . . , um}, and x(u0) ≤ x(u1) ≤ x(u2) ≤ . . . ≤
x(um). After introducing the next vertex vl+1, A2(l + 1) = {u′0, u′1, u′2, . . . , u′t}, and

x(u′0) ≤ x(u′1) ≤ x(u′2) ≤ . . . ≤ x(u′t). Then,
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(i) m + 1 ≥ t,

(ii) u0 = u′0, u1 = u′1, . . . , ut−1 = u′t−1.

Furthermore, if ut−1 is generated by the perpendicular bisector of the line segment

[vi, vi+j] (i, j > 0), then the point u′t is generated due to intersection of edge e and

the perpendicular bisector of line segment [vi+j, vl+1].

Proof : Follows from the property of the farthest point Voronoi diagram and from

Lemmata 2.4 and 2.5. 2

The same incremental result for A1(l) is as follows:

Lemma 2.9 Let A1(l) = {u0, u1, u2, . . . , um′}, and x(u0) ≥ x(u1) ≥ x(u2) ≥ . . . ≥
x(um′). After introducing the next vertex vl−1, A1(l − 1) = {u′0, u′1, u′2, . . . , u′t′}, and

x(u′0) ≥ x(u′1) ≥ x(u′2) ≥ . . . ≥ x(u′t′). Then,

(i) m′ + 1 ≥ t′,

(ii) u0 = u′0, u1 = u′1, . . . , ut′−1 = u′t′−1.

Furthermore, if ut′−1 is generated by the perpendicular bisector of the line segment

[vi, vi−j] (i, j > 0), then the point u′t′ is generated due to intersection of edge e and

the perpendicular bisector of line segment [vi−j, vl−1].

Lemma 2.10 The total time complexity for computing {A1(l), l = n− 1, n− 2, . . . , 1}
is O(n) time. Another pass of same time complexity computes {A2(l), l = 2, 3, . . . ,

n− 1, 0}.

Proof : Follows from Lemma 2.8, and similar arguments of the proof of Lemma 2.6. 2

We now describe an iterative method for computing two minimum radii constrained cir-

cles C ′ and C ′′ for covering all the vertices of P . Initially, we take P1(s) = {v0, vn−1, vn−2,

. . . , vs}, where x(vi) ≤ x(v0) for all i = n−1, n−2, . . . , s, and P2(s
′) = {v1, v2, . . . , vs′},

where x(vi) ≥ x(v1) for all i = 2, 3, . . . , s′. Let Ĉ ′ and Ĉ ′′ are the minimum radii con-

strained circles for covering P1(s) and P2(s
′) respectively. Note that, the center of Ĉ ′
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and Ĉ ′′ are v0 and v1 respectively. Let the radii of Ĉ ′ and Ĉ ′′ are r′ and r′′ respectively.

At each iteration we do the following:

If r′ ≥ r′′ and Ĉ ′ and Ĉ ′′ do not cover all the vertices of P , then we execute the

following steps to update Ĉ ′′ such that it covers all the vertices of P2(s
′ + 1) =

{v1, v2, . . . , vs′ , vs′+1}. Note that, the center of C ′′ lies in the region R(vs′+1) ∩ e.

The center may be (i) the perpendicular projection of vs′+1 on e, or (ii) a member

of A2(s
′ + 1) which is computed as follows:

Prior to considering the vertex vs′+1, let the circle Ĉ ′′ passes through the vertex

vs∗ , for some s∗ ≤ s′. If it passes through more than one vertex, then vs∗

is the rightmost one among them in the sequence {v1, v2, . . . , vs′}. We also

have A2(s
∗) = {u0, u1, . . . , um}, where ui is the intersection point of e and

the perpendicular bisector of [vsi , vsi−1 ] where si−1 < si. We compute the

point of intersection (say u) of e and perpendicular bisector of (vs′+1, vsi−j)

for j = 0, 1, . . . until we have x(u) > x(um). Here, u is the desired center of

circle Ĉ ′′ as mentioned in Case (ii). We get A2(s
′ + 1) by removing all the

members of A2(s
′) whose x coordinate is less than x(u), and finally add u in

A2(s
′ + 1).

We set r′′ = d(u, vs′+1), where u is the center of Ĉ ′′. Finally, if the updated Ĉ ′′
covers some more vertices, namely vs′+2, vs′+3, . . . , vs′+j, then set s∗ = s′ + 1, and

s′ = s′ + j. In this case, we need not have to compute A2(s
′ + 2),A2(s

′ + 3), . . . ,

A2(s
′ + j).

If r′ < r′′ and Ĉ ′ and Ĉ ′′ do not cover all the vertices of P , then we use A1(s) to

compute A1(s − 1), and follow the similar method as described above to update

Ĉ ′ such that it covers all the vertices of P1(s − 1) = {v0, vn−1, vn−2, . . . , vs, vs−1}.
After updating Ĉ ′, we compute its radius r′.

While considering the last uncovered vertex, a typical situation may arise. Let Ĉ ′ and

Ĉ ′′ be obtained after q iterative steps which cover all the vertices of P excepting only
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one vertex, say v, and their radii are r′ and r′′ respectively. Without loss of generality,

assume that r′ ≤ r′′. In the q + 1-th iteration, we include v in both Ĉ ′ and Ĉ ′′. Let

the corresponding radii are r∗ and r∗∗ respectively. If r∗ ≥ r∗∗, then C ′ is Ĉ ′ without

including v, and C ′′ is Ĉ ′′ after including v. On the other hand, if r∗ < r∗∗, then v is

included in Ĉ ′. We also need to execute one more iteration as follows: let the Ĉ ′′ is

observed to pass through vs∗ in the q-th iteration and r∗ < r∗∗. We include vs∗ in Ĉ ′,
and observe its updated radius r∗. If r∗ < r′′, then C ′ is set to the updated Ĉ ′ in the

q + 2-th iteration (after including vs∗). Otherwise, C ′ is set to the Ĉ ′ obtained in the

q + 1-th iteration. After fixing C ′, the remaining points will be covered by C ′′.

Theorem 2.2 Optimum size circles C ′ and C ′′ with centers on edge e that cover all the

vertices of polygon P can be located in O(n) time.

Proof : Result follows from above discussion and from Lemmata 2.7, 2.8 and 2.10. 2

But there is no guarantee that the two circles C ′ and C ′′ will cover the entire polygonal

region.

Observation 2.6 If C ′ and C ′′ together do not cover the polygon P completely, then

there exists exactly one edge e′, (e′ 6= e), which is not fully covered by C ′ and C ′′ (see

Figure 2.5(a)).

If the situation stated in Observation 2.6 does not occur, then C1 = C ′ and C2 = C ′′.
Otherwise, the uncovered edge e′ can be detected while computing C ′ and C ′′. We now

compute the optimum constrained circles C1 and C2.

Note that, C1 and C2 are of same size, and they must intersect at some point, say π, on

edge e′. Let the equation of the line containing e′ be y = m ·x+ c. Let vs∗ be the vertex

of P on the boundary of circle C ′, and having the least x-coordinate value, whereas vs∗∗

be the vertex of P on the boundary of circle C ′′, and having the maximum x-coordinate

value among all such vertices. From Lemma 2.7, we can conclude that C1 passes through
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Figure 2.5: Illustrating the proof of Observation 2.6

either vertex vs∗ or some other vertex to the left side of vs∗ . Similarly, C2 passes through

either vertex vs∗∗ or some other vertex to the right side of vs∗∗ . Our objective is to locate

the point π and hence the centers α and β. The following observation guides us to detect

these points.

Observation 2.7 The point π is the intersection of the perpendicular bisector of the

line segment [α, β] with the edge e′.

Assume that, the coordinate of π is (xπ, yπ) and the coordinate of α is (xα, 0). From

Observation 2.7, we can say that the coordinate of β is (2xπ−xα, 0) (see Figure 2.5(b)).

Initially, let us assume that C1 and C2 pass through vs∗ and vs∗∗ respectively, whose

coordinates are known. As both the circles pass through π, and have centers at α and

β respectively, we can obtain a degree four polynomial equation involving xπ from the

following constraints: (i) d(vs∗ , α) = d(α, π), (ii) d(vs∗∗ , β) = d(β, π), (iii) yα = m·xα+c,

and (iv) xβ = 2xπ − xα (see Figure 2.5(b)). If α 6∈ R(vs∗) then C1 passes through a

vertex to the left of vs∗ . Without loss of generality, we choose vs∗−1, and repeat the

same procedure. Similarly, if β 6∈ R(vs∗∗), we apply the same procedure assuming that

C ′′ passes through the vertex vs∗∗+1.
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Theorem 2.3 The minimum radii constrained circles C1 and C2 covering the region P

can be computed in O(n) time.

2.3 Conclusion

In real life, finding the location for placing mobile base station avoiding the forbidden

region is an important problem in facility location. Suppose P be a polygonal region

which is forbidden in order to place a base station in the context of mobile communi-

cation. Here, we consider the problem of placing one base station at any point on the

boundary of P and assign a range such that every point in the region is covered by

that base station and the range assigned to that base station for covering the region

is minimum among all such possible choices of base stations. Here we consider the

forbidden region P as convex and a base station can be placed on the boundary of the

region. We present optimum linear time algorithm for that problem. We also consider

the placement problem for a pair of base stations on a specified side of the boundary

such that the range assigned to those base stations in order to cover the region is min-

imum among all such possible choices of a pair of base stations on that side. We also

present a linear time algorithm to solve this problem.
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Chapter 3

Constrained Minimum Enclosing

Circle Problem: a Query Version

In this chapter, we will study the query version of the problem mentioned in Chapter 2.

Here, the point set P is given, and the query problem is to report the smallest enclosing

circle of P whose center lies on a line segment L, supplied at the query time. During

the preprocessing phase, we compute the convex hull of P , and then preprocess the

convex polygon in O(n log n) time and using O(n) space. The time complexity of our

query algorithm is O(log2n). We will use this method for solving the following problem

considered by Bose and Wang in [36] - r simple polygons with a total of m vertices

are given along with the point set P ; the objective is to compute the smallest enclosing

circle of P whose center lies in one of the r polygons. This problem can be solved in

O(n log n + mlog2n) time using our method in a much simpler way than [36]. It is an

improved algorithm in the sense that the time complexity of its existing algorithm was

O((m + n) log n + (n
√

r + m) log m + n
√

r + r
3
2 log r) [36].

To the best of our knowledge, this is the first attempt on studying the query version of

the smallest enclosing circle problem, where the center of the circle is constrained to lie

on a query object.



3.1 Basic Results

It can be easily observed that the smallest circle enclosing the vertices of the convex

hull of a point set P will also enclose all the points in P . So, from now onwards, we

assume that the points in P = {p1, p2, . . . , pn} are the vertices of a convex polygon

in anticlockwise order. We first describe the role of farthest point Voronoi diagram in

computing the smallest enclosing circle of P , and then use it to solve our online query

problem. We reintroduce the notations for avoiding confusion with the notations used

in Chapter 2.

Let V(P ) denote the farthest point Voronoi diagram of P . It partitions the plane into

n unbounded convex regions, namely R(p1),R(p2), . . . ,R(pn), such that for any point

p ∈ R(pj), d(p, pj) > d(p, pk) for all k = 1, 2, . . . , n, and k 6= j. As mentioned in the

earlier chapter, d(., .) denotes the Euclidean distance between a pair of points. V(P )

can be computed in O(nlogn) time and O(n) space [131]. Given a query point q, this

data structure can report the region R(pi) containing q in O(logn) time.

Result 3.1 [110] In the unconstrained situation, the smallest enclosing circle always

passes through at least two points of P .

Result 3.1 says that, the center c of the unconstrained smallest enclosing circle of P

always lies on an edge e of V(P ). In [110], an algorithm is proposed for computing c;

this runs in O(nlogn) time. We will use this information in designing the constrained

smallest enclosing circle of P whose center c′ lies on a given query line segment L. We

first develop the algorithm for the case where the query object L is a line. Next, we

show that a minor modification of that algorithm works when L is a line segment.

In our discussion, we will use C and C ′ to denote the unconstrained and constrained

smallest enclosing circle respectively; c and c′ denote the center of C and C ′ respectively

(see Figure 3.1(a)). If ρ and ρ′ denote the radius of C and C ′ respectively, then ρ ≤ ρ′.

As opposed to the fact that C must pass through at least two points of P (see Result
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3.1), C ′ may pass through only one point in P . From Observation 2.2 and 2.3, we list

distinct cases to be considered for computing c′.

For a convex polygon P ,

(a) if C ′ passes through only a single point p ∈ P then p is the farthest point from

the query line L, and the perpendicular projection of p on the line L (denoted by

p′) lies inside R(p), and vice-versa. Here, p′ = c′ is the center of the circle C ′.

(b) if C ′ passes through exactly two points p1, p2 ∈ P then its center c′ is the intersec-

tion point of L with an edge e of V(P ), where e is on the perpendicular bisector

of p1 and p2.

(c) if C ′ passes through more than two points of P , then c′ must be a vertex of V(P ),

which lies on the line L.

In order to test whether C ′ passes through a single point in P , we perform the following

steps:

1. Identify the point p ∈ P which is farthest from L.

2. Compute the perpendicular projection of p on the line L. Let this point be ĉ.

3. Identify the point q ∈ P whose Voronoi region R(q) contains the point ĉ.

4. If q = p then C ′ passes through p, and hence c′ = ĉ.

The query time in step 1 is O(log n) [52]. Step 2 can be done in constant time. For

step 3, the point location can be performed in O(log n) time using an O(n) size data

structure for V(P ), which can be constructed in O(n log n) time [131]. Thus, we have

the following lemma.

Lemma 3.1 If C ′ passes through only a single point P , then its center c′ can be com-

puted in O(log n) time using a preprocessed data structure of size O(n), which can be

constructed in O(n log n) time.
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If the test in Step 4 fails, then C ′ passes through two or more vertices of P . Here, the

center c′ of the circle C ′ will be an intersection point of L and an edge of V(P ). In the

degenerate case, this point may be a vertex of V(P ), indicating that C ′ passes through

more than two points of P .

Let L intersect the edges e1, e2, . . . , em of V(P ) in order, and a1, a2, . . . , am denote the

corresponding intersection points. The above discussions say that c′ will coincide with

a member in the set A = {a1, a2, . . . , am}. We will use ρ(ai) to denote the radius of the

smallest enclosing circle of P with center at ai.

Lemma 3.2 The sequence {ρ(a1), ρ(a2), . . . , ρ(am)} is unimodal.

Proof : Let ρ(ak) = minm
i=1 ρ(ai). We show that if k < j ≤ m− 1 then ρ(ak) < ρ(aj) <

ρ(aj+1). Similarly, it can be shown that if 1 ≤ j′ < k, then ρ(ak) < ρ(aj′) < ρ(aj′−1)

(see Figure 3.1(a)).

Let us draw a line ` perpendicular to L at the point ak on the Voronoi edge ek. If ek

corresponds to the pair of points p, p′ ∈ P , then p and p′ lie on different sides of `, and

d(p, ak) = d(p′, ak). Let p (resp. p′) be to the right (resp. left) of `. Now, for any point

α in the interval [ak, ak+1] (on the line L), α ∈ R(p′) and d(α, p′) > d(ak, p
′). Thus, we

have ρ(ak+1) > ρ(ak).

Next we prove that ρ(ak+1) < ρ(ak+2). Let ek+1 be the Voronoi edge corresponding to

p′ and p′′. Choose a point γ ∈ [ak+1, ak+2] on the line L. Using the same argument, it

can be shown that ρ(ak+1) = d(p′, ak+1) = d(p′′, ak+1) < d(p′′, γ). Thus, ρ(γ) > ρ(ak+1)

since the circle enclosing P with center at γ has to enclose p′′. Proceeding similarly, the

result follows. 2

It is already mentioned that each cell of V(P ) is an unbounded convex region and the

center c of the unconstrained smallest enclosing circle C lies on an edge of V(P ). Thus,

V(P ) may be viewed as a directed tree T with c as root node, and all the Voronoi

vertices are the internal nodes of T (see Figure 3.1(b)). The leaf nodes are hypothetical

in the sense that these are at the open end-points of the half-line edges. In order to
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Figure 3.1: (a) Proof of Lemma 3.2, and (b) Proof of Lemma 3.3

clearly define the leaf-nodes of T , we consider an axes-parallel square which contains

all the vertices of V(P ), and observe its intersections with all the unbounded edges of

V(P ). Let these be E = {η1, η2, . . . , ηn} in anticlockwise order along the boundary of

the square, which will serve the role of leaf nodes in T . For a point v on an edge of T ,

we will use π(v) to denote the directed path from c to v following the edges in T . We

will also use depth(v) to denote the number of vertices of T on the path π(v).

Lemma 3.3 If Tu denotes the subtree rooted at an internal node u ∈ T , then ρ(v) >

ρ(u) for each vertex v ∈ Tu, u 6= v.

Proof : Let u′ be a successor of u in T . We need to prove ρ(u) < ρ(u′). Consider

the directed edge e = (u → u′). The regions adjacent to e are R(p) and R(p′), where

p, p′ ∈ P . Thus, the edge e is the perpendicular bisector of the line segment [p, p′]. At

any point α ∈ e, ρ(α) = d(α, p) = d(α, p′). Moreover, for a pair of points α, β ∈ e, if

δ(α, u) < δ(β, u), then ρ(α) < ρ(β) because of the fact that both the triangles ∆pp′α

and ∆pp′β are isosceles, having the same base, and the other vertex is moving away
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from the base along the perpendicular bisector of the base. Thus, ∆pp′α is inside ∆pp′β

(see Figure 3.1(b)). Thus, ρ(u′) > ρ(u). Applying the same technique recursively, the

lemma follows. 2

Lemma 3.3 says that as we go far from c along a path in T , the ρ value of the nodes

along that path increases monotonically. Thus, if a Voronoi region R contains c as its

vertex, then ρ(c) is minimum among the ρ values of all other vertices in R. On the

contrary, if R does not have c as one of its vertices, and ρ(w) = minv∈R ρ(v), then for

every vertex v ∈ R, the path from c to v in T passes through node w. In addition, the

following result is an implication of Lemma 3.3.

Corollary 3.3.1. If L intersects a path π(ηi) more than once, then the intersection

point having minimum depth is the candidate for being c′.

3.2 Constrained Smallest Enclosing Circle Problem

with Center on Query Line

In our actual problem, the vertices of a convex polygon P are given in anticlockwise

order. We propose two methods for this problem. The first one is simple but it takes

O(nlogn) space. It gives a clear idea about our method. In the next one, we adopt a

complicated pointer structure to reduce the space complexity to O(n). For both the

methods, the preprocessing time complexity is O(nlogn), and the query time complexity

is O(log2n).

Suppose the farthest point Voronoi diagram V(P ) of the polygon P is already computed,

and is stored in the form of a directed tree T with root at c. Each node v is attached

with its ρ(v) value, which can be easily computed by observing the cell of V(P ) in which

v belongs. In addition, each node is attached with a parent pointer which points to its

predecessor in T . The set E of leaf nodes in T are also stored in an array, and each

element in E points to its corresponding element in T .
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3.2.1 Method-1

Preprocessing

In this method, we attach a few pointers with each node in T by performing a depth first

search on the tree T in the preprocessing phase. Let v be a node with depth(v) = m.

We attach a secondary structure Bv with node v which is an array of size dlog me. These

contain the address of the nodes at depth dm
2
e, d3m

4
e, d7m

8
e, . . . respectively along the

path π(v) in the mentioned order (see Figure 3.2). The computation of these pointers

are described below.

c=root

level(vk)=k(say)

level(vj)=k/2

level(vl)=3k/4

level(vp)=k’(say)

level(vr)=k’/2

level(vm)=3k’/4

vp

vm

vr

vl

vj

vk

Figure 3.2: Intuitive idea of the secondary structures

We implement the stack required for the depth first search using an array. During

the depth first search when the path follows a forward edge, we push it in the

stack. While backtracking from a node v, we create the secondary structure Bv

containing the pointers as mentioned above.

Lemma 3.4 The Preprocessing phase can be completed in O(nlogn) time and using

O(nlogn) space.

45



Proof : The farthest point Voronoi diagram V(P ) can be computed in O(nlogn) time

[131]. The computation of c needs O(n) time [116]. Assigning the direction of the

edges in T needs another O(n) time. Finally, the depth first search needs O(n) time

for setting the pointers. While processing a node v during the backtrack, the creation

of the array Bv of pointers needs O(logn) time in the worst case because depth(v) ≤ n.

The space complexity also follows from the same argument. 2

Query answering

Given a query line L, we identify two paths π(ηk), π(ηk′), where ηk, ηk′ ∈ E are such that

the leaf nodes of all the paths Π1 = {π(ηk+1), π(ηk+2), . . . , π(ηk′−1)} lie in the opposite

side of c with respect to L, and those for Π2 = {π(ηk′), π(ηk′+1), . . . π(ηk−1), π(ηk)} lie

in the same side of c with respect to L. Note that, all the paths in Π1 are intersected

by the line L. The paths π(ηk) and π(ηk′) can be identified in O(log n) time using the

array E.

Lemma 3.5 The center c′ of the circle C ′ must be an intersection point of L with one

of the paths in Π1.

c

v

η
j L

Figure 3.3: Illustration of Lemma 3.5
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Proof : It is already mentioned in Observation 3.1 (b) & (c) that the point c′ lies on a

path in the set Π1 ∪ Π2. We need to prove that if c′ is observed on a path in Π2, then

it must also lie on some path in Π1.

Consider an ηj such that the path π(ηj) ∈ Π2 and c′ lies on π(ηj). By the definition

of Π2, the points c and ηj are in the same side of L. Since L intersects the path π(ηj),

there exists a vertex (say v ∈ T ) which lies in the opposite side of ηj. Now, consider

the path π(v), where c and v lie in different sides of L (see Figure 3.3). This path has

also been intersected by L. Since the Voronoi regions are convex, there exists at least

one path other than π(ηj) which also passes through v. Consider one such path π(ηi)

(6= π(ηj)). If it is in Π1, then the proof is complete. Otherwise, an edge (v′, v′′) of π(ηi)

(∈ Π2) will be intersected by L, and v′ lies in the same side of v with respect to L.

Proceeding with the same argument, we can reach to the leaf node of a path in Π1.

Thus the lemma follows. 2

Lemma 3.6 If the line L intersects a path π(ηj) multiple times, and the center c′ lies

on π(ηj), then c′ will be the intersection point which is closest to c along the path π(ηj).

Proof : Follows from Corollary 3.3.1. 2

Searching for an intersection of L with a path

The following lemma says that the links attached to the nodes in a path (say π(ηj))

helps us in searching for an intersection point of that path with the line L.

Lemma 3.7 The worst case time complexity of searching for an intersection point of

L with the path π(ηj) is O(log n) in the worst case.

Proof : Let depth(ηj) = m. We refer to the nodes on the path π(ηj) as v1(= c), v2,

. . . , vm(= ηj). We first consider the first link in Bvm . This points to the vdm
2
e-th node on

that path. If c and vdm
2
e are in the same side of L, then L has at least one intersection

in the sub-path from vdm
2
e and vm; otherwise it has intersected π(vdm

2
e). In the former
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case, we need to observe the next link in Bvm ; in the latter case, we need to consider

vdm
2
e and observe the first link in Bvdm

2 e
. Proceeding this way, we can easily identify

an edge on the path π(ηj) of T which has been intersected by L. This needs O(log m)

time. 2

Searching for c′ along L

Let A = {a1, a2, . . . , aµ} be a sequence of intersection points of L with the paths in Π1,

where aj lies on path π(ηj). Let c′ = ai. As the sequence of ρ values of the members

of A is unimodal (see Lemma 3.2), both the sub-sequences {ρ(ai), ρ(ai−1), . . . ρ(a1)}
and {ρ(ai), ρ(ai+1), . . . ρ(aµ)} are monotonically increasing. So, we can identify c′ by

performing a binary search among the members in A. After observing aj (by searching

π(ηj)), we can decide whether c′ = aj or have to move towards left (resp. right) from

aj along L by computing ρ(q) and ρ(q′) for a pair of points q and q′ at a distance

ε from aj on the line L, where ε is a very small positive constant which is less than

min(d(aj, aj−1), d(aj, aj+1)). Thus we have obtained one intersection point of L with

the path π(ηj). This may or may not be the point c′. This case happens if L intersects

π(ηj) more than once, c′ ∈ π(ηj), but our search identified some other intersection point.

The following lemma says that c′ will also lie on some other path, say π(ηk). Finally,

we will show that our algorithm will also explore the path π(ηk), and will identify c′.

Lemma 3.8 If L intersects the path π(ηj) more than once, say at the points q1 and

q2, and depth(q1) < depth(q2), then (i) there is another intersection point q (may be q1

itself) which lies on some other path, say π(ηk) ∈ Π1, on which q2 does not lie, and (ii)

ρ(q) ≤ ρ(q1) < ρ(q2) (equality holds if q = q1).

Proof : Similar to the proof of Lemma 3.5. 2

As the paths in Π1 are non-crossing, the portion of the path of π(ηk) from q to ηk lies

in one side of the path π(ηj). Hence this portion of π(ηk) does not intersect with L

(excluding the point q). This leads to the fact that the leaf nodes (members in E)

corresponding to the paths in Π1 are in the same order as the order of the intersection
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points of L with the corresponding paths.

We perform binary search among the members in E. For each choice ηj, we compute

the intersection point aj on π(ηj), and then check whether aj = c′ or we move towards

left (resp. right) on L by computing ρ values of two points on L in the ε neighborhood

of aj. Thus, we have the following theorem stating the complexity results of Method-1.

Theorem 3.1 Method-1 correctly computes c′ with O(n log n) preprocessing time and

space complexities; the worst case query time complexity is O(log2n).

Proof : The correctness of our proposed algorithm follows from Lemma 3.8. The

preprocessing time and space complexity results follow from Lemma 3.4. The query

time complexity follows from Lemma 3.7 and the fact that we may need to choose

O(log n) elements among the members of Π1 for searching the intersection point on the

corresponding path. 2

3.2.2 Method-2

In this method, we describe a different method of creating the secondary structure for

each node in T . This will reduce the space complexity of the problem to O(n) keeping

the preprocessing and query time complexities unchanged.

Revised secondary structure

Instead of keeping O(log n) pointers as the secondary structure of each node in T , we

store only two link fields, namely ptr 1 and ptr 2 with each node in T . The ptr1 pointer

attached to a node v ∈ π(ηj) indicates that while searching for an intersection of L with

the path π(ηj), if node v is reached, then such an intersection point must be observed

in the path segment between the nodes v and v.ptr1. The ptr2 pointer of node v points

to the middlemost node in the path segment between v and v.ptr1. In order to set
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these two pointers of the nodes in T , we have to create a temporary data structure as

mentioned below.

Let the maximum depth of a leaf node in T be m∗. We first create a temporary array

A of size 2α, where 2α−1 < m∗ ≤ 2α. Each entry of the array A consists of two fields,

which are also named as ptr 1 and ptr 2 respectively. This array will be used to set the

ptr 1 and ptr 2 pointers of each node in T .
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Figure 3.4: Secondary structures of the nodes in T

Consider a path of length 2α whose nodes are c = v1, v2, v3, . . . , v2α = η. As mentioned

earlier, the search in a path of T starts from its leaf node, L may intersect any edge on

that path, and we will perform binary search on this path to identify its intersection

with L. In order to perform the binary search, we set the pointers ptr1 and ptr2 as

follows.

We will denote the portion of the path between a pair of nodes having node-indices a

and b by the interval [a, b]. Thus, initially we have the interval [20, 2α]. In order to set

the ptr1 and ptr2 pointers of each node on this path, we use a stack. Each element of

this stack is a tuple of the form (I, i), where I is an interval of node-indices, and i is

an integer (0 ≤ i ≤ log n). Initially, we push the tuple ([20, 2α], 0) onto the stack. Each

time we pop an element ([a, b], i) from stack, and set ptr 1 and ptr 2 of A[b − i] to a

and a+b
2

respectively. The motivation is as follows: (i) we are searching in the interval
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[a, b], (ii) the pointers of i − 1 nodes starting from b are already set, and now we will

set the pointers of A[b− i], and (iii) the split of the interval will be at node a+b
2

.

Observe that, if a + 1 = b− i, then ptr 2 of A[b− i] is set to b− i itself (see Figure 3.4),

and no more split of this interval is needed. If a + 1 6= b− i, the interval I = [a, b] gets

split into two sub-intervals of node indices, namely I1 = [a, a+b
2

] and I2 = [a+b
2

, b]. We

push both the tuples (I1, 0) and (I2, i + 1) in the stack. The process continues until the

stack becomes empty. The creation of the array A is clearly illustrated in Figure 3.4.

Here ptr1 and ptr2 pointers of that node are represented using dashed and solid edges

respectively.

After the creation of the array A, we will set ptr1 and ptr2 of each node v by performing

a depth first search as in Method-1. While popping a node v from the i-th position of

the stack, we will set v.ptr1 and v.ptr2 by A[i].ptr1 and A[i].ptr2 respectively.

Lemma 3.9 If a path π(η) from c to a leaf node η in T is of length 2β (β ≤ α), then

the aforesaid link setting can report an intersection point of L with π(η) in O(β) time.

Proof : We will use only ptr 2 to prove this lemma. The role of pointer ptr 1 will be

clear in the next subsection.

Let depth(η) = 2α. As in Method-1, α pointers are available to η, which are stored in

the ptr2 fields of α nodes from η towards the root. So, here we can use these pointers

moving upwards from η. In addition, while visiting these nodes, it has checked whether

L has intersected the edges attached to these α nodes. The pointers which were present

in the secondary structures of these α− 1 nodes in Method-1, are not necessary in this

method.

Suppose, after processing β (≤ α) nodes starting from η, we could identify a node having

depth 2α−1 +2α−2 + . . .+2α−β such that L has intersected an edge in the sub-path from

v(2α−1+2α−2+...+2α−β−1) to v(2α−1+2α−2+...+2α−β). The search interval is further pruned using

the α−β pointers attached to v(2α−1+2α−2+...+2α−β). The process continues until the edge
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of π(η) is identified which has been intersected by L. The result follows from the fact

that, the total number of link traversals in this process is at most α.

Next, consider the case where depth(η) = 2β, β < α. Here, observe that the similar

link structure is maintained among the nodes in v1, v2, . . . , v2β (see Figure 3.4). Thus,

the result follows. 2

Searching in a path

Consider a path π(η), where η is a leaf node and depth(η) = m, where 2β−1 < m ≤ 2β,

and β ≤ α. Without loss of generality, assume that the nodes are named as v1(=

c), v2, . . . , vm(= η), where m = 2β−1 +2β−2 + . . .+2β−j +m′, and m′ < 2β−j−1. Suppose

the query line L intersects the edge (v`, v`+1) ∈ π(η). Here, we need to consider two cases

depending on whether (1) L intersects the path π(η) between v0 and v2β−1+2β−2+...+2β−j ,

or (2) L intersects the path π(η) below v2β−1+2β−2+...+2β−j .

Case 1: We use the following notations to describe our search algorithm. Let θ =

2β−1 + 2β−2 + . . . + 2β−k and θ′ = θ − 2β−k = 2β−1 + 2β−2 + . . . + 2β−k−1.

Our search starts from vm, and it consists of two major tasks: (i) identify θ

such that v` lies in the interval of node-indices [vθ, vθ′ ], and (ii) search for the

intersection in the interval of node indices [vθ, vθ′ ].

The task (i) is performed using ptr 1. Task (ii) is done using a binary search

using ptr 2. Let us now observe Figure 3.4 to understand the search technique.

Consider a typical instance where the path length is m = 29, and assume that L

has intersected the edge (v`, v`+1), where ` = 2. Thus, here θ = 16 and θ′ = 1.

The query involves the following link traversals (i) v29 → v28 → v24 → v16 using

pointer ptr 1, and then (ii) apply binary search (as mentioned in Lemma 3.9) in

the interval [v16, v1] using ptr 2 to reach the node v3. The intersection point of L

with the edge (v1, v2) will then be identified.

Case 2: If L intersects an edges below v2β−1+2β−2+...+2β−j , then it can also be detected

in O(log n) time by expressing m′ as that of m.
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Thus, we have the following theorem stating the complexity results of the problem.

Theorem 3.2 The preprocessing time and space complexities of Method-2 are O(nlogn)

and O(n) respectively, and the worst case query time complexity is O(log2n).

Proof : In addition to the preprocessing steps of Method-1, we had to create the array

A containing the node indices on a path. This step needs O(2α) time, if the length of

the longest path m∗ lies in 2α−1 < m∗ ≤ 2α. As m∗ ≤ n, the creation of array A needs

O(n) time in worst case. The secondary structure of each node of T consists of only

ptr1 and ptr2, and during the depth first search, these can be set using the array A in

O(1) time. Thus both the preprocessing time and space complexity results follow.

In the worst case query time complexity analysis, we will study the search time on a

path only. The location of c′ among the possible paths remain same as in Method-1.

The searching in a path in this method consists of two parts: (i) the number hops

needed to reach from vm to vθ, and (ii) the time needed for the binary search to reach

from vθ to v` using ptr 2. Both the steps need O(α) hops which may be O(log n) in

worst case. Since, we may need to inspect O(log n) paths in the worst case (see Lemma

3.7), the result follows. 2

3.3 Constrained Smallest Enclosing Circle Problem

with Center on Query Line Segment

We now consider that the query object L is a line segment. Let L̂ be the line containing

the line segment L. We apply Method-2 to identify the center ĉ ∈ L̂ of the constrained

smallest enclosing circle. If ĉ is observed to be inside L, then report c′ = ĉ. Otherwise,

by Lemma 3.2, the center c′ of the desired constrained smallest enclosing circle is one

of the endpoints of L which is closest to ĉ (with respect to the Euclidean distance).

Finally, the radius of the desired smallest enclosing circle is d(p, c′), where p ∈ P is the

point whose corresponding Voronoi cell contains c′.
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3.4 Constrained Smallest Enclosing Circle Problem

with Center in a given Set of Polygons

Here the query objects are r simple polygons with a total of m edges. We first compute

the farthest point Voronoi diagram V(P ), to identify the center c of the unconstrained

smallest enclosing circle. If it is inside one of these polygons, we report the answer.

Otherwise, the center will be on the boundary of one of these polygons. For each edge

(line segment), we compute the center of the constrained smallest enclosing circle with

center on that edge, and report the radius of the smallest one. Thus, the overall time

complexity becomes O(nlogn + mlog2n), where |P | = n. In [35], it is mentioned that

there may exist more than one such circle attaining the smallest radius. Our algorithm

can report all these circles with the same time complexity.

3.5 Conclusion

In this chapter, we have considered the query version of the minimum enclosing circle

problem. Here the query object is a line or a line segment, and the center of the desired

minimum enclosing circle of the point set lies on that line/segment. The preprocessing

and the query time complexities are O(n log n) and O(log2 n) respectively. To the best

of our knowledge this is the first attempt on handling the query version of minimum

enclosing circle problem. Finally we have shown that our algorithm can be used for

solving the generalized version of the constrained minimum enclosing circle problem,

where the center lies inside one of the r simple polygons with a total of m vertices.

Our technique also improves the time complexity of this constrained problem over its

existing result [36], where this problem was initially posed.
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Chapter 4

Guard Placement under L-visibility

In this chapter we consider a different guard placement problem. The guard can be

viewed as a robot, which can sense any movement or sound in its territory and can be

able to reach the source of the problem in short time. We address the location problem

of the guard on the boundary of the given convex polygonal region P for guarding the

exterior of the polygon under L-visibility. The term L-visibility is defined by Gewali et

al. [72] as follows:

Given a plane with polygonal obstacles, two points a and b are said to be L-visible if

the length of the shortest path from a to b avoiding the obstacles is less than or

equal to L.

The external L-visibility problem for a convex polygon P was first addressed in [72].

Here L is a constant, and the visibility power of the guard is L under the notion of

L-visibility. The guard is assumed to be placed on the boundary of P , and the territory

of a guard located at a point p is the region outside P , such that each point u in that

region is L-visible from p. In other words, there is a path from p to u avoiding the

interior of P whose length is less than or equal to L. The objective of our problem is

to locate the position p on the boundary of P that maximizes the area of the territorial



region of p outside P . Gewali et al. [72] proposed an algorithm for locating the position

of the guard on the boundary of the convex polygon P that maximizes the territory of

the guard, where L is less than or equal to half the perimeter of P . The running time

of the algorithm is O(n), where n is the number of vertices of P . According to Gewali

et al. [72], developing a polynomial time algorithm for the external L-visibility problem

with L greater than half of the perimeter of convex polygon P is an open problem.

In this thesis, we address this open problem and present a linear time algorithm for the

external L-visibility problem for any value of L.

4.1 Computation of the Territory of a Guard

Let P be a convex polygon, whose vertices v0, v1, . . . , vn−1 are in clockwise order; an edge

connecting the vertices vi and vi+1 is named as ei. The length of an edge ei = (vi, vi+1)

is denoted by li. The angle between ei−1 and the extended line of ei (as shown in Figure

4.1) is referred to as the sector angle at vi, and will be denoted by θi. In addition, we

will use the following notations throughout this chapter:

pq A straight line containing the points p and q.

[p, q] A line segment joining points p and q.

−→pq A half-line that originates from the point p and passes through the point q.

p̃q A circular arc from point p to point q in clockwise direction.

d(p, q) The Euclidean distance between the pair of points (p, q) without considering the

obstacle P .

δc(p, q) The shortest distance from p to q in clockwise direction avoiding polygon P .

δa(p, q) The shortest distance from p to q in anticlockwise direction avoiding polygon P .
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We will now consider the problem of placing a guard at a point p on the boundary

of P , where the visibility power of the guard is L, and L is greater than half of the

perimeter of P . Throughout this chapter, we will assume that L is supplied as the input

parameter.

θi

θi

θi+1

θ i+1

θi+2

e i+2

e i+1

e i

li+2

l i+1

l i

v1 v0

vi+3

vi+2
vi+1

v i

Figure 4.1: Vertices, edges and sector angles of a convex polygon

Definition 4.1 The apex point of a guard positioned at a point p (on the boundary of

P ) is a point a on the territory of p such that the length of the shortest paths from p

to a avoiding obstacle P in both clockwise and anticlockwise directions are distinct and

the length of both these paths are equal to L.

Note that, for a given placement of the guard on the boundary of P and for the given

length L (≥ half of the perimeter of P ), the apex point a is unique. Both the paths

from p to a pass through at least one vertex of P . The vertex of P , which is nearest

to a along the path from p to a in clockwise (resp. anticlockwise) direction, is called

the supporting vertex of a in clockwise (resp. anticlockwise) direction. Let vc and va be

two supporting vertices for the apex point a in clockwise and anticlockwise directions
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respectively. We will use θc and θa to denote the sector angle at the supporting vertices

vc and va respectively. Let αc be the angle formed by the line segment [vc, a] and the

edge ec = (vc, vc+1) (see Figure 4.2). Similarly, αa is the angle formed by the line

segment [va, a] with the edge ea−1 = (va−1, va). These two angles αc and αa are termed

as clockwise supporting angle and anticlockwise supporting angle of the apex point a

respectively. The observations below help to design an algorithm for finding the apex

point of the guard positioned at a point p under L-visibility, for a fixed length L.

Throughout this chapter, we will assume that L is an input parameter.

p

a

vc

va

ec

ea-1
αc

αa

Figure 4.2: Territory of a guard located at p

Observation 4.1 If vc and va are the supporting vertices of an apex point a in clockwise

and anticlockwise directions respectively, then αc ≤ θc and αa ≤ θa.

Proof : If θc < αc, then there always exists a point u on the edge ec−1 which lies on

the L-visibility path from p to a, and a is straight line reachable from u (see Figure

4.3). Thus, the length of the line segment [u, a] must be less than the length of the path

from u to a via the vertex vc. Thus we have a contradiction, since vc is the clockwise

supporting vertex. Similarly, the other part of the lemma can be proved. 2
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Figure 4.3: Illustrating the proof of Observation 4.1

Observation 4.2 If the apex point a is given, then the location of the guard on the

boundary of P that generates the apex point a, can be identified uniquely.

Proof : Consider the vertices of the polygon P and the apex point a, and compute the

convex hull of these points. Locate the point p on the convex hull such that the length

of path from p to a in both clockwise and anticlockwise directions along the convex hull

are same. Such a point p on the boundary of P must exist and it is unique. 2

Observation 4.3 (a) If vc is the supporting vertex of an apex point a in clockwise

direction and αc = θc, then a can be identified uniquely.

(b) If va is the supporting vertex of an apex point a in anticlockwise direction and

αa = θa, then a can be identified uniquely.

Proof : We will prove Part (a) of this observation. The proof of Part (b) is similar.

Let l be the half-line obtained by extending the edge ec−1 = (vc−1, vc) from vc onwards.

Let it hit the lines containing the edges ec, ec+1, . . . , ek at the points πc, πc+1, . . . , πk

respectively, and it does not hit the lines containing edges ek+1, ek+2, . . . ec−2. We

assume πk+1 = ∞, and it corresponds to the edge ek+1. Note that, the distances

d(vc, πc), d(vc, πc+1), . . . are in increasing order.
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Since αc = θc, the apex point a must lie on l, and vc is its clockwise supporting vertex.

Its anticlockwise supporting vertex is computed as follows: Choose πc, πc+1, . . . , πk in

order. For each πi, compute the convex hull of the vertices of P and the point πi. If

the half-perimeter of this convex polygon is greater than L, then a lies in [πi−1, πi], and

this implies that the anticlockwise supporting vertex of a is vi. Otherwise, we repeat

the same computation with πi+1.

Let χ denote the length of the path from vc to vi along the boundary of P without

passing through vi−1. The sum of distances of a from vc and vi is 2L − χ, which is

known since both L and P are given. Now, let us consider an ellipse with foci at vc

and vi such that the sum of distances from its foci to any point on the boundary of the

ellipse is equal 2L−χ. The intersection point of l with the ellipse is the position of the

apex point a. 2

Lemma 4.1 The apex point for the guard positioned at a point p on the boundary of P

can be located in O(n) time.

Proof : Given p, we can compute a point q on the boundary of P such that δc(p, q) =

δa(p, q) ≤ L. If δc(p, q) = δa(p, q) = L, then q is the apex point. Otherwise, we proceed

as follows:

Step 1: Assume that q appear on edge ei = (vi, vi+1).

Set µ = i and ν = i + 1.

Step 2: Let −−−−→vµ−1vµ and −−−−→vν+1vν intersect at q′. Here three cases may arise:

Case 1 - L > δc(p, q
′) > δa(p, q

′): Here set ν = ν + 1, and go to Step 2.

Case 2 - L > δa(p, q
′) > δc(p, q

′): Here set µ = µ− 1, and go to Step 2.

Case 3 - L < max(δa(p, q
′), δc(p, q

′)): Here the clockwise and anticlockwise sup-

porting vertices are determined, and these are vµ and vν respectively.

Now, compute the apex point as described in the proof of Observation 4.3. 2
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Definition 4.2 If a guard is located at a point p on the boundary of P that generates

an apex point with θc = αc or θa = αa, then the point p is called Steiner point. Here θc

and θa are the sector angles of the clockwise and anticlockwise supporting vertices vc

and va respectively, and αc and αa are the pair of supporting angles.

Lemma 4.2 The number of possible Steiner points is at most 2n.

Proof : As L is given, for a given supporting vertex vc in clockwise direction, we can

uniquely determine the apex point a and the corresponding supporting vertex va in

anticlockwise direction using the method described Observation 4.3(a). This defines a

Steiner point (possible location of a guard) uniquely. Considering all the vertices as

supporting vertices in clockwise direction, we can generate n Steiner points. Similarly,

considering each vertex as the supporting vertex in anticlockwise direction, we can

generate n Steiner points (see Observation 4.3(b)). 2

Lemma 4.3 All the Steiner points can be identified in O(n) time.

Proof : Let vc = v1, i.e., v1 is the supporting vertex in clockwise direction; the sector

angle θ1 (at v1) is equal to the supporting angle αc in clockwise direction. As mentioned

in Observation 4.3, we can identify the apex point and the location of guard in O(n)

time. This also reports the supporting vertex vα in anticlockwise direction. We set

two pointers pt1 and pt2 to point v1 and vα respectively. After computing vα, we move

pointer pt1 to vertex v2 for computing the next Steiner point whose supporting vertex

is v2, and the sector angle θ2 is equal to the corresponding supporting angle. For this

Steiner point, the supporting vertex in the anticlockwise direction must be vα or some

vertex in clockwise direction from vα. That vertex can be identified by moving the

pointer pt2 along the vertices of P incrementally in clockwise direction. Note that, each

move of the pointer pt2 takes constant time. The process of moving pt1 continues until

pt1 reaches vn. During this process, pointer pt2 moves from vα to vα+1, . . . , vn, v1, . . . vα.

Hence the lemma follows. 2
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We now describe the method of computing the area of the territory of a guard positioned

at a point p on the boundary of P . Next, we will show that, in order to identify the

optimal position of the guard, we need to consider only the Steiner points.

Let p be the position of the guard on an edge of P . If p coincides with a vertex vj, then

we assume that p lies on the edge ej = (vj, vj+1). We will use di to denote the shortest

distance of a vertex vi from p along the boundary of P . Consider the vertices on the

path from p to vc in clockwise direction. At each vertex vi, extend the edge (vi−1, vi)

by a dotted line beyond vi until it hits the boundary of the territory of p. Similarly,

traverse the vertices that appear along the path from p to va in anticlockwise direction.

At each vertex vi on this path, extend the edge (vi+1, vi) by a dotted line beyond vi

until it hits the boundary of the territory of p. Finally, vc and va are joined with the

apex point a by a dotted line. See Figure 4.2 for the demonstration. Observe that,

two dotted line segments of length (L− di) are attached with each vertex vi considered

above. If Ri(p) denote the portion of the territory of p bounded by two dotted lines at

a vertex vi, then

• for all the vertices vi on the path from p to vc−1, area(Ri(p)) = (L− di)
2 × θi

2
,

• for all the vertices vi on the path from p to va+1, area(Ri(p)) = (L− di)
2 × θi

2

• for the vertex vc, area(Rc(p)) = (L− dc)
2 × θc−αc

2
.

• for the vertex va, area(Ra(p)) = (L− da)
2 × θa−αa

2
.

We now split the territory into five zones. Let the dotted line −−−→vc−1vc meet the boundary

of the territory at s and the dotted line −−−−→va+1va meet the boundary of the territory at s′

(see Figure 4.4).

Zone-I: Region bounded by arc s̃a and line segments [s, vc] and [a, vc]. The area of

this region is denoted by A1(p).

Zone-II: Region bounded by arc ãs′ and line segments [s′, va] and [a, va]. The area of

this region is denoted by A2(p).
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Figure 4.4: Type I-III zones for guard located at p

Zone-III: Region in the triangle 4avavc outside polygon P . The area of this region is

denoted by A3(p).

Zone-IV: ∪vi∈URi(p), where U is the set of vertices that appear on the boundary of

P from vc−1 to va+1 in anticlockwise direction. The area of this region is denoted

by A4(p).

Zone-V: The half-circle of radius L, centered at point p and to the other side of the

polygon P with respect to the edge containing p. The area of this region is denoted

by A5(p).

Thus the area of the entire territory of the point p can be written as A(p) = A1(p) +

A2(p) + A3(p) + A4(p) + A5(p) = A123(p) + A4(p) + A5(p), where A123(p) = A1(p) +

A2(p) + A3(p).

Note that, if p is a Steiner point, then one of the two supporting angles must be equal

to the corresponding sector angle. While computing each Steiner point, its one of the

supporting vertices is known; thus, the other supporting vertex, and the apex point
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can be determined using Observation 4.3. The areas of Zone-I and Zone-II can be

determined immediately. The area of Zone-III can be obtained from a global counter

µ maintained during the execution using a pair of pointers pt1 and pt2 as described in

the proof of Lemma 4.3. While identifying a new Steiner point, if there is a move of pt1

from vc to vc+1, area(∆vcvc+1va) is subtracted from the existing value of µ, and if pt2

moves from va to va+1, then area(∆vava+1vc) is added with µ.

Therefore we can conclude the following lemma.

Lemma 4.4 The area of Zone-I, Zone-II and Zone-III for all the 2n Steiner points can

be computed in O(n) time.

Proof : Follows from the same technique for generating the Steiner points as described

in proof of Lemma 4.3. 2

Let S be a set consisting of of n vertices and at most 2n Steiner points. Lemma

4.5, stated below, indicates that the optimal position of the guard must be one of the

points in S that maximizes the territorial region under L-visibility. Gewali et al. [72]

conjectured that, one may have to investigate a set of O(n) Steiner points in order to

identify the optimal location of the guard.

Lemma 4.5 An optimal location of the guard must be one of the points in S that

maximize the area of the territory under L-visibility.

Proof : Let pm be a point on an edge e of P which is not in S. We can always find two

points pl and pr to the left and right side of pm respectively on the same edge e such that

pl and pr are at equal distance from pm, and there is no point of S in the interval [pl, pm].

Let al, am and ar be the apex points of pl, pm and pr respectively. Observe that, for such

a choice of pl and pr, the supporting vertices of the apex points al, am and ar will be the

same, and the set of vertices of P that lie on the boundary of the Zone-III of the apex

points al, am and ar will also remain same. We prove that pm cannot be an optimum

location for placing the guard, by showing area(A(pl))+area(A(pr)) ≥ 2×area(A(pm)).
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Figure 4.5: Illustrating the proof of Lemma 4.5

It is easy to observe that A5(pl)+A5(pr) = 2A5(pm). Let vi be a vertex on the path from

vc−1 to va+1 in anticlockwise direction. The distance of vi from pm, pl and pr are di, di−ε

and di + ε respectively. Simple algebraic inequality says that 2(L− di)
2 θi

2
< ((L− di−

ε)2 +(L−di + ε)2) θi

2
. Adding over all such vertices, we have A4(pl)+A4(pr) > 2A4(pm).

We now prove that A123(pl) +A123(pr) > 2A123(pm).

Since vc and va are the supporting vertices of the apex points al, am and ar corresponding

to the positions of the guard at pl, pr and pm respectively, the points al, am and ar lie

on the ellipse with foci at vc and va. We extend the edge (vc−1vc) from vc onwards; the

half-line −−−→vc−1vc hits the territory of pl, pm and pr at sl, sm and sr respectively. Similarly,

the half-line −−−−→va+1va hits the territory of pl, pm and pr at s′l, s′m and s′r respectively.

Note that, apex point for guard located at p ∈ {pl, pm, pr} is not in the Zone-III of the

guard located at a point other than p on the boundary of P . We further partition the

union of Zone-I, Zone-II and Zone-III generated by the guards located at pl, pm and pr

as follows (see Figure 4.5).
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A: Region bounded by the arc s̃rq2 and the line segments srvc and q2vc.

B: Region bounded by the arcs s̃rar, s̃mq3 , ãrq3 and the line segment srsm.

C: Region bounded by the arcs ãrq3, ˜q3am, ãrq2 and the line segment q2am.

D: Region bounded by the arcs s̃lq4, s̃mq3, q̃3q4 and the line segment slsm.

E: Region bounded by the arcs q̃3q4, q̃4q5, ˜q3am, and ãmq5.

F: Region bounded by the arcs q̃4s′r, ˜q5s′m, q̃4q5 and the line segment s′rs′m.

G: Region bounded by the arcs ãmq5, q̃5al, q̃1al and the line segment amq1.

H: Region bounded by the arcs ˜q5s′m, q̃5al, ãls′l and the line segment s′ms′l.

K: Region bounded by the arc q̃1s′l and the line segments q1va, s′lva.

Thus, we have

A123(pl) = area(A) + area(B) + area(C) + area(D) + area(E) + area(G) + area(K) +

area(J),

A123(pm) = area(A) + area(B) + area(C) + area(G) + area(H) + area(K) + area(J),

and

A123(pr) = area(A) + area(C) + area(E) + area(G) + area(F ) + area(H) + area(K) +

area(J).

Note that, (i) al and am lie on the circumference of an ellipse, where al appears in

the anticlockwise direction from am, and (ii) s̃lal is a circular arc whose center is at vc

and radius greater than the length of the line segment [vc, am]. Thus the half-line −−→vcam

intersects the arc s̃lal and splits the region G. Therefore, area(A∪B ∪C ∪D ∪E ∪G)

is greater than the area bounded by the arc s̃lal with lines −→slvc and −−→amvc. Again if the

distance from pm to vc is d and θ = 6 smvcam, then 2(L− d)2 θ
2

< ((L− d− ε)2 + (L−
d + ε)2) θ

2
. Hence, we can conclude that area(A) + area(A ∪ B ∪ C ∪ D ∪ E ∪ G) >

2.area(A∪B ∪C) and area(K)+area(C ∪E ∪F ∪G∪H ∪K) > 2.area(G∪H ∪K).

Adding these two inequalities, we have A123(pl) +A123(pr) > 2A123(pm). 2
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Using the above observations, we can identify a point p (the position of the guard) for

which the area of the territory is maximum, by computing A(p) for every point p ∈ S.

For each point p ∈ S, the time required for calculating A(p) (or more specifically, A4(p))

is O(n). Since the cardinality of the set S is O(n), we can detect the optimum location

of the guard in O(n2) time. In the next section, we will describe an incremental way

of computing A4(p), which leads to a linear time algorithm for computing the optimum

location of the guard.

4.2 Efficient Computation of the area of Zone-IV

It is already mentioned that the area of Zone-V is same for all the Steiner points p ∈ S.

By Lemmata 4.4 and 4.5, A123(p) can be computed for all p ∈ S in O(n) time. In this

section, we describe an accelerated method of computing the area of Zone-IV for all the

members in S.

We redefine P assuming all the 3n points in the set S as the vertices of P . Therefore,

the vertices of P are v0, v1, . . . , v3n−1 in clockwise direction with edges ei = (vi, vi+1)

having length li. The angle of the polygon at the original Steiner vertices are equal to

π and the corresponding sector angles are equal to 0. Since L is strictly greater than

half of the perimeter of P , the apex point cannot lie on the boundary of the polygon for

any position of the guard on the boundary of P . Thus, none of the supporting vertices

can be an original Steiner point. It is already proved in Lemma 4.5 that, the optimal

position of the guard can be one of the vertices of the redefined polygon P . From now

onwards, by vertices we mean the vertices of the redefined polygon.

We assume that each vertex vi of P is attached with (i) the sector angle (θi) of vi, (ii)

length (li) of the edge ei = (vi, vi+1), (iii) the supporting vertices vc and va when the

guard is positioned at vi, and (iv) the following six parameters:

sumi
1 = li+1 + li+2 + · · ·+ lc−1,

sumi
2 = li−1 + li−2 + · · ·+ la+1,
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Θi
1 = θi+1 + · · ·+ θc−1,

Θi
2 = θi−1 + θi−2 + · · ·+ θa+1,

Γi
1 = li+1(θi+2 + θi+3 + · · ·+ θc−1) + li+2(θi+3 + θi+4 + · · ·+ θc−1) + · · ·+ lc−2(θc−1)

Γi
2 = li−1(θi−1 + θi−2 + · · ·+ θa+1) + li−2(θi−2 + θi−3 + · · ·+ θa+1) + · · ·+ la+1(θa+1)),

where the indices in the above expressions are written in modulo n form. These param-

eters will be used for the computation of A4(vi).

For each vertex vi of P , these parameters can be computed in an amortized O(1) time

as follows:

The time needed for computing the parameters attached to v1 is O(n). While computing

the parameters of vi+1, we assume that the parameters of vi is already available. The

sumi+1
1 , sumi+1

2 , Θi+1
1 and Θi+1

2 can be easily computed observing its corresponding

supporting vertices in O(1) time, since at most one of the two supporting vertices of

vi+1 may differ from that of vi. In order to compute Γi+1
1 and Γi+1

2 , we need to consider

three cases depending on whether (i) clockwise supporting vertex of vi+1 has changed to

vc+1, where vc is the clockwise supporting vertex of vi, or (ii) anticlockwise supporting

vertex of vi+1 has changed to va+1, where va is the anticlockwise supporting vertex of

vi, or (iii) the supporting vertices of vi+1 are same as those of vi.

Case (i) Here Γi+1
1 = Γi

1 − li+1(θi+2 + θi+3 + · · ·+ θc−1) + θc(li+2 + li+3 + · · ·+ lc−1) =

Γi
1 − li+1(Θ

i
1 − θi+1) + θc(sumi

1 − li+1), and

Γi+1
2 = Γi

2 + li(θi + θi−1 + · · ·+ θa+1) = Γi
2 + li(Θ

i
2 + θi),

Case (ii) Here Γi+1
1 = Γi

1 − li+1(θi+2 + θi+3 + · · ·+ θc−1) = Γi
1 − li+1(Θ

i
1 − θi+1), and

Γi+1
2 = Γi

2 + li(θi + θi−1 + · · ·+ θa+2)− θa+1(li−1 + li−2 + · · ·+ la+1) = Γi
2 + li(Θ

i
2 +

θi − θa+1)− θa+1sumi
2,

Case (iii) Here Γi+1
1 = Γi

1 − li+1(θi+2 + θi+3 + · · ·+ θc−1) = Γi
1 − li+1(Θ

i
1 − θi+1), and

Γi+1
2 = Γi

2 + li(θi + θi−1 + · · ·+ θa+1) = Γi
2 + li(Θ

i
2 + θi).

We now concentrate on the computation of A4(vi) (the area of Zone-IV) for all vertices

vi of P . Suppose A4(vi) is already computed (considering vc and va as its supporting
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vertices), and is equal to

A4(vi) = 1
2
[{θi+1(L− li)

2 +θi+2(L− li− li+1)
2 +θi+3(L− li− li+1− li+2)

2 + · · ·+θc−1(L−
li − li+1 − li+2 − · · · − lc−2)

2} + {θi(L)2 + θi−1(L − li−1)
2 + θi−2(L − li−1 − li−2)

2 · · · +
θa+1(L− li−1 − li−2 − · · · − la+1)

2}]

While computing A4(vi+1), if vc′ and va′ are the supporting vertices, then

A4(vi+1) = 1
2
[{θi+2(L − li+1)

2 + θi+3(L − li+1 − li+2)
2 + θi+4(L − li+1 − li+2 − li+3)

2 +

· · ·+ θc′−1(L− li+1 − li+2 − li+3 − · · · − lc′−2)
2}+ {θi+1(L)2 + θi(L− li)

2 + θi−1(L− li −
li−1)

2 + θi−2(L− li − li−1 − li−2)
2 + · · ·+ θa′+1(L− li − li−1 − li−2 − · · · − la′+1)

2}].

= 1
2
[{θi+1(L − li)

2 + θi+2(L − li − li+1)
2 + θi+3(L − li − li+1 − li+2)

2 + · · · + θc′−1(L −
li− li+1− li+2− li+3− · · · − lc′−2)

2}+ {θi(L)2 + θi−1(L− li−1)
2 + θi−2(L− li−1− li−2)

2 +

θi−3(L− li−1− li−2− li−3)
2 + · · ·+ θa′+1(L− li−1− li−2− li−3−· · ·− la′+1)

2}]− 1
2
[θi+1(L−

li)
2 + l2i (θi+2 +θi+3 + · · ·+θc′−1)−2li{θi+2(L− li+1)+θi+3(L− li+1− li+2)+ · · ·+θc′−1(L−

li+1 − li+2 − · · · − lc′−2)}] + 1
2
[θi+1L

2 + l2i (θi + θi−1 + · · · + θa′+1) − 2li{θiL + θi−1(L −
li−1) + · · ·+ θa′+1(L− li−1 − li−2 − · · · − la′+1)}].

= 1
2
[T1 − T2], where

T1 = {θi+1(L − li)
2 + θi+2(L − li − li+1)

2 + θi+3(L − li − li+1 − li+2)
2 + · · · + θc′−1(L −

li− li+1− li+2− li+3− · · · − lc′−2)
2}+ {θi(L)2 + θi−1(L− li−1)

2 + θi−2(L− li−1− li−2)
2 +

θi−3(L− li−1 − li−2 − li−3)
2 + · · ·+ θa′+1(L− li−1 − li−2 − li−3 − · · · − la′+1)

2}, and

T2 = θi+1(L − li)
2 + l2i Θ

i+1
1 − 2li{Θi+1

1 (L − li+1) − Γi+1
1 } − θi+1L

2 − l2i Θ
i+1
2 + 2li{(L +

li)Θ
i+1
2 − Γi+1

2 }.

Observe that, both T1 and T2 can be computed in O(1) time, but while computing T1,

we need to consider the following three cases: (i) vc′ = vc+1 and va′ = va, (ii) vc′ = vc

and va′ = va+1, and (iii) vc′ = vc and va′ = va.

In Case (i), T1 = A4(vi) + θc(L− sumi
1 − li)

2,

in Case (ii), T1 = A4(vi) − θa+1(L − sumi
2)

2, and in Case (iii), T1 = A4(vi) (here the

necessary changes are captured in T2). Thus we have the following lemma:
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Lemma 4.6 The total time required for computing A4(vi) for all the vertices vi in P

is O(n).

This leads to the final result of this chapter as follows:

Theorem 4.1 The location of the guard on the boundary of the given convex polygon

that yields the maximum territorial region can be computed in O(n) time.

Proof : Follows from Lemmata 4.3, 4.4, 4.5 and 4.6. 2

4.2.1 Conclusion

We consider the problem of finding the location of a guard on the boundary of a convex

polygon P such that the external area that can be covered under L-visibility is max-

imized. A restricted version of this problem where the length of L is less than half

of the perimeter of P was solved by Gewali et al. [72]. The time complexity of their

algorithm is O(n). Here we present a linear time algorithm for the general version of

this problem. An interesting open problem is to determine the location of the guard

anywhere outside the polygon P such that the guard can cover the boundary of the

polygon and can optimize its territory under L-visibility.
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Chapter 5

Approximate Shortest Path in

Weighted Polyhedra

Locating shortest path on weighted polyhedral surface in 3D are sometimes essential

in facility location in the context of geographical information system and robotics. A

polyhedral surface can be represented by a set of faces, edges and vertices, where the

vertices are the end points of the edges, each edge is the intersection of two faces,

and each face is a plane in 3D. Without loss of generality, we assume that a polyhedron

consists of n triangular faces. The shortest path problem in weighted polyhedral surfaces

is in general NP-hard, and several approximation algorithms are already available. The

first work on approximating the minimum cost path between two points on the surface

of an weighted polyhedron appeared in [122]. It exploits the fact that the minimum

cost path follows Snell’s law of refraction, and uses continuous Dijkstra method [121]

to compute the minimum cost path.

Recently some interesting algorithms for this problem are developed, which are based on

the method of introducing Steiner points on the edges of the triangulated polyhedron.

Lanthier et al. [109] proposed an approximation algorithm for the minimum cost path

problem, which adds equally spaced Steiner points on the edges of the polyhedron. It



approximates the cost of the optimum path to opt′ = opt + LW , where opt is the cost

of the optimum path, W is the maximum weight among the faces of the triangulated

polyhedron P , and L is the longest edge of the polyhedron. The running time of the

algorithm is O(n5). In the same paper, another algorithm was presented using graph

spanners; it runs in O(n3 log n) time to report an approximation of the optimum path

whose cost is no more than β(opt + LW ), where β > 1. Lanthier in his Ph.D. thesis

[107] proposed an algorithm that runs in O(n log n) time and produces a solution

with worst case length 2
sin(θ)

× opt. The latest algorithm for this problem [13] produces

(1 + ε) × opt solution and it runs in O(C(P ) n√
ε
log n

ε
log 1

ε
). Here C(P ) captures the

geometric parameters and weights of the faces of the given weighted polyhedron. As

shown in Lemma 2.3 of [13], C(P ) is bounded by 4.83Γ log2(2L) where Γ is the average

of the reciprocal of the sinuses of angles in the polyhedron P and L is the maximum

of the ratios |`(v)|
r(v)

among all vertices v ∈ P . Here |`(v)| is the length of the bisector

of the angle incident at v in a triangular face and r(v) = wmin(v)
7wmax(v)

d(v), where wmax(v)

and wmin(v) are the maximum and the minimum weights of the faces incident to v,

respectively. The distance d(x) is the minimum Euclidean distance from a point x ∈ P

to the boundary of the union of the faces containing x.

Here we propose an alternative scheme of approximating the minimum weight path

of the polyhedron P . Our algorithm terminates in finite time and the approximation

bound is (1 + 1
sin θ

) × opt + εnW . Although it has some additive factor, the factor can

be reduced by decreasing the value of ε, which in turn increases the time complexity.

Detailed analysis shows that, the time complexity of our algorithm is O(n(log2 L
ε
) +

n(log L
ε
) log n). Note that, the factor (1 + 1

sin θ
) is always strictly less than 2

sin θ
, since θ

(the minimum angle incident to the vertices of all triangular faces of P ) is less than or

equal to π
3
. Furthermore, the time complexity of our algorithm does not depend on the

geometric parameter θ. Finally we became able to show that for a restricted polyhedra

where each triangular face is non-obtuse and the perpendicular distance of each side

from its opposite vertex in each triangular face is less than the length of that side,

then our algorithm achieves a solution path having length at most 2× opt + εnW . Our
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algorithm is very easy to implement. Thus it can be considered as one of the possible

alternatives for solving the weighted shortest path problem with reasonable time and

with reasonable approximation factor.

5.1 Our Proposed Algorithm

We propose an alternative scheme for placing Steiner points on the edges of the polyhe-

dron which guarantees the termination of the algorithm, but the approximation factor

depends on the fatness of the triangular faces of the polyhedron. Throughout this chap-

ter, we will use (i) (u, v) to denote an edge joining the vertices u and v of the polyhedron

P , (ii) [α, β] to denote a line segment joining points α and β, and (iii) d(α, β) to denote

the Euclidean distance between the pair of points α and β.

We consider each edge of P separately and put Steiner points as follows: let (u, v) be an

edge and µ be its middle point. We put a Steiner point at µ, and assume p0 = q0 = µ.

Next, we put two sets of Steiner points p1, p2, . . . pk and q1, q2, . . . , qk on the segments

[u, µ] and [µ, v] respectively, such that pi (resp. qi) is the middle point of [u, pi−1] (resp.

[v, qi−1]), for i = 1, 2, . . . , k, where k is such that d(u, pk) = d(v, qk) ≤ ε, for an user-

defined constant ε (see Figure 5.1). We denote the points u and v by pk+1 and qk+1

respectively. Given the value of ε, we will choose k such that around each vertex v of the

polyhedron, the portion of each edge (adjacent to v) inside the ε-ball contain exactly

one Steiner point excepting the vertex v itself. Next, we form a graph G in the same

manner as was done in [10]. The vertices of this graph are all the vertices of P and are

the Steiner points generated on all the edges in P . The edges of the graph are drawn

as follows:

{ {ε ε
u v

µ p1 p2 pkq1q2qk
x x

Figure 5.1: Our scheme of placing Steiner points
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Consider each face fi, 1 ≤ i ≤ n of P , connect a pair of vertices by an edge if and

only if the points corresponding to va and vb (i) appear on two different edges of

fi or (ii) are adjacent on an edge of fi. The weight of an edge (va, vb) is equal to

w(fi)× d(va, vb) where w(fi) is the weight attached to the face fi.

Lemma 5.1 The number of vertices and edges of the graph G are O(N log(L
ε
)) and

O(N(log(L
ε
))2) respectively in the worst case, where N denotes the number of faces of

the polyhedron and L is the length of its longest edge.

Proof : Follows from the fact that (i) the number of Steiner points on an edge of length

λ is equal to 2 log(dλ
ε
e)− 1, and (ii) a vertex on a particular edge is connected with the

vertices on at most 4 edges. 2

We apply Dijkstra’s algorithm for computing the minimum cost path in the weighted

graph G. The running time of our algorithm is O(E + V log V ), where E denotes the

number of edges and V denotes the number of vertices in the graph G.

5.1.1 Analysis of approximation factor

In this section, we estimate the approximation factor of the path produced by our

algorithm with respect to the optimum solution. Let θ be the minimum angle among

all angles incident to the vertices of all the triangular faces in P . Suppose ∆uvw is a

triangular face of the polyhedron P and let a1, a2, . . . , ak be the set of Steiner points on

the edge (v, u) of ∆uvw when observed from v towards u. Now we have the following

results.

Lemma 5.2 If ai and ai+1 are two consecutive Steiner points on an edge (v, u) of the

polyhedron then d(ai, ai+1) ≤ d(v, ai).

Proof : Here we need to consider the following three cases:

d(v, ai) < d(u,v)
2

and d(v, ai+1) ≤ d(u,v)
2

: Here d(ai, ai+1) = d(v, ai).
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d(v, ai) = d(u,v)
2

and d(v, ai+1) > d(u,v)
2

: Here we have d(ai, ai+1) = d(u,v)
4

.

d(v, ai) > d(u,v)
2

and d(v, ai+1) > d(u,v)
2

: Here d(ai, ai+1) < d(u,v)
4

. 2

Lemma 5.3 d(ai, ai+1) ≤ 1
sin(θ)

×pdist(ai, vw). where pdist(ai, vw) denotes the perpen-

dicular distance of point ai from a line containing the line segment [v, w].

ai

ai+1

ai

ai+1

µv

u w
u

v

w
(a) (b)

pdist(ai,vw)

Figure 5.2: Proof of Lemma 5.3

Proof : Here we need to consider the following two cases:

6 uvw ≤ π
2
: We draw a line perpendicular from ai on the line segment [v, w] (see Figure

5.2(a)). Let it meets [u, v] at a point µ. Now, d(v,ai)
d(ai,µ)

= 1
sin(6 uvw)

. Using Lemma

5.2, we have d(ai,ai+1)
d(ai,µ)

≤ 1
sin( 6 uvw)

. As 6 uvw ≥ θ, the result follows.

6 uvw > π
2
: By Lemma 5.2, d(ai, ai+1) ≤ d(v, ai). Again, pdist(ai,vw)

d(v,ai)
= sin(π − 6 uvw)

(see Figure 5.2(b)). As π− 6 uvw = 6 vuw + 6 vwu ≥ θ, and sin(.) is an increasing

function in [0, π
2
], we have the result in this case.

2

In order to compute the worst case approximation factor for the cost of the path from s

to t along the surface of P , consider a path Π1(s, t) corresponding to a graph-theoretic

path from s to t in G which strictly passes through the same sequence of faces and

edges of the polyhedron P as in the optimal path Π(s, t). Note that, this may not be

the output Π2(s, t) of Dijkstra’s algorithm on finding the minimum cost graph-theoretic

path from s to t in G. We will compute Π2(s, t) as an approximation to the optimal

path Π(s, t). But in order to prove the approximation factor, we will use Π1(s, t). For

75



each line-segment σ on the Π(s, t), any one of the three cases may arise: (A) it may

pass through a portion of an edge, (B) it completely lies inside the ε-ball attached to a

vertex of the corresponding face, and (C) it crosses a face but does not satisfy case (B).

Let us consider that Π(s, t) is approximated by Π1(s, t). In other words, each segment

σ ∈ Π(s, t) is approximated by a path segment σ′ ∈ Π1(s, t) passing through the same

face of σ. Here σ′ may be an edge in G or concatenation of more than one edges in

G depending on the aforesaid three cases. In case both the end points of σ map to

the same Steiner point, σ′ is considered as zero-length segment. The approximation

ratio |σ′|
|σ| is calculated for all σ ∈ Π(s, t). An upper bound of the overall approximation

factor is the maximum of the approximation ratios corresponding to all the segments

on the optimal path Π(s, t). It needs to be mentioned that, if Dijkstra’s shortest path

algorithm on graph G outputs a path Π2(s, t) which is different from Π1(s, t), then its

cost must be less than or equal to that of Π1(s, t). Now, we explain the nature of σ′ in

three different cases.

Case A: when a segment of the optimal path passes along a side

Let the optimal path Π(s, t) enters in a face f = ∆uvw through a point p ∈ (u, w) and

exits from f through a point q ∈ (v, w). But the weights of the other face f ′ adjacent

to the edge (u, v) is small enough such that the optimal path has to pass through (u, v)

along a line segment [α, β]. If a1 and a3 be the Steiner points on (u, v) which are closest

to α and β respectively, then we approximate [α, β] by [a1, a3]. If a1, a2, a3 are three

consecutive Steiner points on (u, v), the length of [a1, a3] may be at most 2 × d(α, β)

(as shown in Figure 5.3(b)). If the number of Steiner points between a1 and a3 is more

than one, then the approximation factor will surely be less than 2.

Case B: when a segment of the optimal path passes through the ε-ball at-

tached at a vertex of the polyhedron

Here we approximate the length of the optimal path segment σ by a pair of very small

line segments inside the ε-ball which are along the sides of the polyhedron and incident

at the said vertex. Thus, the total weight will be less than 2ε× w(f).
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a1

α

a3

β

u

v

a2

w

v

u w

a1

a2

b1

b2
β

α
a’

b’optimal 
path segment

approximated
path segment 
in ∆uvw

(a) (b)

p

q

Figure 5.3: Calculation of approximation factor inside a face

Case C: when a segment of the optimal path crosses a face, but does not

satisfy case B

Let a line segment σ of the path Π(s, t) crosses a face f = ∆uvw, and it intersects

(u, v) and (v, w) at points α and β respectively (see Figure 5.3(a)). Let a1 and a2 be

two Steiner points on the edge (u, v) which appear on two sides of α. Similarly, b1 and

b2 be two Steiner points on (v, w) which appear on two sides of β. Let a′ and b′ be the

mid-points of [a1, a2] and [b1, b2] respectively. Now, if α is closer to ai, i = 1 or 2, and β

is closer to bj, j = 1 or 2, then we approximate the path segment [α, β] by [ai, bj]. The

approximation factor analysis is as follows:

d(ai, bj) ≤ length of the path segment (ai → α → β→bj)

= d(ai, α) + d(α, β) + d(β, bj))

Thus approximation factor
d(ai,bj)

d(α,β)
≤ d(ai,α)+d(α,β)+d(β,bj)

d(α,β)
≤ 1 + d(ai,α)

d(α,β)
+ d(β,bj)

d(α,β)
≤ 1 +

d(ai,ai+1)

2

d(α,β)
+

d(bj ,bj+1)

2

d(α,β)
≤ 1 +

d(ai,ai+1)

2

pdist(α,vw)
+

d(bj ,bj+1)

2

pdist(β,uv)
≤ (1 + 1

sin(θ)
) (from Lemma 5.3).

The analysis of the cases A, B, and C lead to the following theorem:

Theorem 5.1 The length of the path produced by our algorithm is at most

(1 + 1
sin(θ)

)Π(s, t) + 2ε× (w(fα1) + w(fα2) + . . . + w(fαm)),

where fα1 , fα2 , . . . , fαm are the faces such that an ε-ball of each of these faces contains

a complete segment of the optimal path Π(s, t).
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Remark 5.1 Theorem 5.1 says that, the approximation factor depends upon the geo-

metric parameter θ, which indicates the smallest angle among the triangles of the poly-

hedron. But by Lemma 5.1, the execution time and space requirement of our algorithm

does not depend on this geometric parameter.

5.1.2 A more restricted model with better approximation bound

We may get better approximation bound if the faces of the polyhedron can be triangu-

lated satisfying the following nice property: each triangular face ∆ is non-obtuse and

the perpendicular distance of each side of ∆ from its opposite vertex is less than the

length of that side.

Lemma 5.4 A triangle satisfying the aforesaid nice property, have each angle ≥ π
4
.

u w

v’ v"

v

C

Figure 5.4: Proof of Lemma 5.4

Proof : Consider a non-obtuse triangle ∆uvw, whose base is [u,w]. Consider a corridor

in the plane containing ∆uvw by drawing perpendiculars on [u,w] at the points u and

w respectively. If the point v is inside the corridor, the angles 6 vuw and 6 vwu are both

non-obtuse. Now, if the perpendicular distance of v on [u,w] is less than the length of

[u,w], the point v must be inside the square 2v′v′′uw (see Figure 5.4). Note that if v is
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aligned with v′ or v′′, then 6 uvw = π
4
. Thus, we can consider a circle C passing through

the four points v′, v′′, u and w. Note that, v ∈ 2v′v′′uw implies v ∈ C, which in turn,

implies 6 uvw ≥ π
4
. 2

Lemma 5.4 has the following immediate consequence: If the faces of the polyhedron

satisfy the nice property then a trivial upper bound on the weighted length of the path

produced by our algorithm is (1 +
√

2)Π(s, t) + 2nε ×W (see Theorem 5.1), where W

is the maximum weight among all the n faces in P .

Below we show that the approximation bound of our algorithm is much better than this

trivial bound.

Lemma 5.5 Let [α, β] be a segment of the optimal path Π(s, t), which passes through

the interior of a face ∆uvw satisfying nice property with α ∈ (u, v) and β ∈ (v, w). If

a and b are the two Steiner points appearing on (u, v) and (v, w) which are closest to α

and β respectively, then, d(a,b)
d(α,β)

< 1.5.

Proof : Let us align the side (u, w) of ∆uvw with the X-axis. Let the coordinates of

u, v and w be u = (0, 0), v = (h, k), and w = (h + δ, 0). Here h + δ ≥ k since ∆uvw

satisfies the nice property. Let µ and γ be the mid points of the edges (u, v) and (v, w)

respectively.

Let [α, β] be the path segment inside f = ∆uvw and is approximated by [a, b], where a

and b are two Steiner points on (u, v) and (v, w) respectively. In Figure 5.5(a), the line

segment [a, b] is shown using dotted line, and [α, β] is shown using solid line.

We prove the lemma by showing D = 9× (d(α, β))2− 4× (d(a, b))2 ≥ 0 considering the

following four exhaustive cases :

Case 1: a is below µ on (u, v) and b is above ν on (v, w)

This situation is demonstrated in Figure 5.5(a). Let us assume that the coordinates of

a and b be a = ( h
2i+1 ,

k
2i+1 ) and b = (h + δ

2j+1 ,
2j+1−1
2j+1 k), i, j ≥ 1. The two neighboring

Steiner points of a on (u, v) are a1 = ( h
2i ,

k
2i ) and a2 = ( h

2i+2 ,
k

2i+2 ), and two neighboring
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u=(0,0) w=(h+δ,0)

v=(h,k)

ν=(h+δ/2, k/2)

b’

b

b1

µ=(h/2, k/2) 

b"

a1

a
a’(=α)

b2

a2

β

a"

u=(0,0) w=(h+δ,0)

v=(h,k)

ν=(h+δ/2, k/2)

b’

b

b1

b"
b2

β
a1

a

a’(=α)

a2

a"

(a) (b)

Figure 5.5: Proof of Lemma 5.5

Steiner points of b on (v, w) are b1 = (h + δ
2j ,

2j−1
2j k) and b2 = (h + δ

2j+2 ,
2j+2−1
2j+2 k). The

mid-points of [a1, a] and [a, a2] are a′ = ( 3h
2i+2 ,

3k
2i+2 ) and a′′ = ( 3h

2i+3 ,
3k

2i+3 ) respectively, and

mid-points of [b1, b] and [b, b2] are b′ = (h + 3δ
2j+2 ,

2j+2−3
2j+2 k) and b′′ = (h + 3δ

2j+3 ,
2j+3−3
2j+3 k)

respectively. As [a, b] is the approximation of the optimal path segment [α, β] inside

∆uvw, α must lie in the interval [a′, a′′] and β must lie in the interval [b′, b′′].

If β is fixed at any point on [b′, b′′], the minimum length of [α, β] is attained when α = a′.

Now, in order to prove the lemma, we need to consider the following two subcases:

Case 1.1: β lies on the line segment [b, b′]

Here, assume that the minimum value of d(α, β) is achieved when d(b′, β) :

d(β, b) = r : 1 for some r ≥ 0. Thus, the coordinate of β is β = ((h + δ
2j+2 + r+2

r+1
×

δ
2j+2 ), (k − k

2j+2 − r+2
r+1

× k
2j+2 )), and

d(α, β) = d(a′, β)

=
√

(h− 3h
2i+2 + δ

2j+2 + r+2
r+1

× δ
2j+2 )2 + (k − 3k

2i+2 − k
2j+2 − r+2

r+1
× k

2j+2 )2.
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The length of the approximated path

d(a, b) =
√

(h− h
2i+1 + δ

2j+1 )2 + (k − k
2i+1 − k

2j+1 )2.

Substituting the values of d(α, β) and d(a, b) on the expression of D, we have

D = 9× (d(α, β))2 − 4× (d(a, b))2,

= (5h− 13h
2i+2 + 10δ

2j+2 + 3δ
(r+1)2j+2 )× (h− 5h

2i+2 + 2δ
2j+2 + 3δ

(r+1)2j+2 )

+ (5k − 13k
2i+2 − 10k

2j+2 − 3k
(r+1)2j+2 )× (k − 5k

2i+2 − 2k
2j+2 − 3k

(r+1)2j+2 ).

If i ≥ 1 and j > 1, D ≥ 0 for all r ≥ 0.

If i = j = 1, D = 1
64

((27×h+10×δ+ 3δ
r+1

)(3×h+2×δ+ 3δ
r+1

)+(k)2(17− 54
r+1

+ 9
(r+1)2

)).

Here also, D > 0 for all r ≥ 0, since the value of k can be at most h + δ.

Case 1.2: β lies on the line segment [b′′, b]

Here, assume that the minimum value of d(α, β) is achieved when d(b′′, β) :

d(β, b) = r : 1 for some r ≥ 0. Thus,

β = ((h + 3δ
2j+3 + r

r+1
× δ

2j+3 ), (k − 4r+3
r+1

× k
2j+3 )), and

and d(α, β) =
√

(h− 3h
2i+2 + 3δ

2j+3 + r
r+1

× δ
2j+3 )2 + (k − 3k

2i+2 − 4r+3
r+1

× k
2j+3 )2.

Note that, in this case the optimal path segment is not shown in Figure 5.5(a).

Here, D = 9× (d(α, β))2 − 4× (d(a, b))2,

= (5 × h − 13×h
2i+2 + 17×δ

2j+3 + r
r+1

× 3δ
2j+3 ) × (h − 5×h

2i+2 + δ
2j+3 + 3r

r+1
× δ

2j+3 ) + (5 × k −
13×k
2i+2 − 17×k

2j+3 − 3r
r+1

× k
2j+3 )× (k − 5×k

2i+2 − k
2j+3 − 3r

r+1
× k

2j+3 ).

It can be shown that D > 0 for all i, j ≥ 1 and r ≥ 0.

Case 2: both a and b are above the line containing [µ, ν], and [a, b] is not

parallel to the edge (u,w)

This case is demonstrated in Figure 5.5(b). Without loss of generality, assume that

a = (2i−1
2i h, 2i−1

2i k) and b = (h + δ
2j+1 ,

2j+1−1
2j+1 k), 1 ≤ i ≤ j.

Using the same notation as in Case 1,

a1 = (2i+1−1
2i+1 h, 2i+1−1

2i+1 k) and a2 = (2i−1−1
2i−1 h, 2i−1−1

2i−1 k) are the neighboring Steiner points of

a, and on (u, v),
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a′ = (2i+2−3
2i+2 h, 2i+2−3

2i+2 k) and a′′ = (2i+1−3
2i+1 h, 2i+1−3

2i+1 k) are the mid-points of [a, a1] and

[a, a2],

b1 = (h + δ
2j ,

2j−1
2j k) and b2 = (h + δ

2j+2 ,
2j+2−1
2j+2 k) are the adjacent Steiner points of b on

(v, w),

b′ = (h + 3δ
2j+2 ,

2j+2−3
2j+2 k) and b′′ = (h + 3δ

2j+3 ,
2j+3−3
2j+3 k) are the mid-points of [b, b1] and

[b, b2].

As the optimal path segment [α, β] is approximated by [a, b], α ∈ [a′, a′′] and β ∈ [b′, b′′].

Using similar argument as in Case 1, we can say that, for some fixed β ∈ [b′, b′′], d(α, β)

achieves minimum if α coincides with a′. As in Case 1, here also we need to consider

the following two subcases:

Case 2.1: β ∈ [b, b′]

Let the length of [α, β] becomes minimum when

d(b, β) : d(β, b′) = 1 : r for some r ≥ 0.

Thus, β = ((h + δ
2j+2 + r+2

r+1
× δ

2j+2 ), (k − k
2j+2 − r+2

r+1
× k

2j+2 )).

Now, D = 9× (d(α, β))2 − 4× (d(a, b))2,

= k2

22i+4 (17− 44
2j−i − 54

(r+1)2j−i + 36
(r+1)22(j−i) + 20

22(j−i) + 9
(r+1)222(j−i) )+ 1

22i+4 (17h2 + 44hδ
2j−i +

54hδ
(r+1)2j−i + 36δ2

(r+1)22(j−i) + 20δ2

22(j−i) + 9δ2

(r+1)222(j−i) ).

It can be easily observed that this expression is positive when j−i > 2, and with a

simple algebraic manipulation it can be shown that D is positive for j− i = 0, 1, 2

also.

Case 2.2: β ∈ [b, b′′]

Let the length of [α, β] becomes minimum when

d(b2, β) : d(β, b) = r : 1 for some r ≥ 0.

Thus,

β = ((h + 3δ
2j+3 + r

r+1
× δ

2j+3 ), (k − 4r+3
r+1

× k
2j+3 )), and

d(α, β) =
√

(h− 3h
2i+2 + 3δ

2j+3 + r
r+1

× δ
2j+3 )2 + (k − 3k

2i+2 − 4r+3
r+1

× k
2j+3 )2.

It needs to be mentioned that in this case the optimal path segment is not shown

in Figure 5.5(b).
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Now, D = 9× (d(α, β))2 − 4× (d(a, b))2

= (17×h
2i+2 + 17×δ

2j+3 + 3×rδ
(r+1)2j+3 )× ( h

2i+2 + δ
2j+3 + 3×rδ

(r+1)2j+3 ) + (17×k
2i+2 − 17×k

2j+3 − 3rk
(r+1)2j+3 )×

( k
2i+2 − k

2j+3 − 3×rk
(r+1)2j+3 )

It is easy to show that, D > 0 for all j ≥ i and for all r ≥ 0.

Case 3: both the Steiner points a and b are below the line containing [µ, ν]

In this case, D can be shown to be positive in a manner similar to Case 2.

Case 4: ab is parallel to (u,w)

This situation is demonstrated in Figure 5.6(a). To analyze this situation, we use the

same notations as in the earlier cases. Here, [a′, b′] is also parallel to the edge (u,w).

Let us draw two line segments parallel to (u,w) from α and β which intersects (u, v)

and (v, w) at β∗ and α∗ respectively. Now, d(α, β) ≥ min(d(β, β∗), d(α, α∗)) ≥ d(a′, b′).

Thus, d(a,b)
d(α,β)

≥ d(a,b)
d(a′,b′) = d(u,a)

d(u,a′) = C (say).

When a is below µ (the mid-point of (u, v)) then the approximation ratio can can directly

be shown to be C = 2i+2−2
2i+2−3

, assuming a = ( h
2i+1 ,

k
2i+1 ) and b = (h + 2i+1−1

2i+1 × δ, k
2i+1 ),

If a is above µ, then it can be shown that C is at most 4
3
. 2

Remark 5.2 It needs to be mentioned that, the approximation factor 2
√

5
3
≈ 1.4907 is

achievable for an instance satisfying Case 2.1 with i = j = 1, δ = 0 and h = k (see

Figure 5.6(b)).

Theorem 5.2 The length of the path produced by our algorithm is at most

2× Π(s, t) + 2ε× (w(fα1) + w(fα2) + . . . + w(fαm)),

where fα1 , fα2 , . . . , fαm are the faces such that an ε-ball of each of these faces contains

a complete segment of the optimal path Π(s, t) and is computable in O(n(log2 L
ε
) +

n(log L
ε
) log n) time, where n denotes the number of triangulated faces of the polyhedron

and L is the length of its longest edge.

Proof : If each segment of the optimal path does not coincide with an edge of the

polyhedron, and is not completely contained in the ε-ball of a vertex, then by Lemma

5.5 the approximation factor is bounded above by 1.5. But if there exists instance(s)
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u=(0,0) w=(h,0)

v=(h,h)

n=b1=(h,k/2)

b’=(h,5k/8)

b=(h,3k/4)a1=(3h/4,3k/4)

a=(h/2,k/2)

a’=(5h/8,5k/8)

(b)

βα

u=(0,0) w=(h+δ,0)

v=(h,k)

b

b’

b

b2

b"

b1

β

a2

a1

a"

a

a’

(a)

a α*
β*

optimal path 
segment

approximated 
path segment

Figure 5.6: (a) Illustration of Case 4, and (b) An example achieving 1.4907 approxima-

tion factor

where the optimum path coincides with edge(s) of the polyhedron then by the analysis

of Case A in Section 5.1.1, the approximation factor can be at most 2. The additive

term appears if there exists instances of Case B as described in Section 5.1.1. 2

5.2 Conclusion

An efficient and implementable algorithm for computing the shortest path between a

pair of points on the surface of a weighted polyhedron is proposed. The approximation

bound of the result produced by our algorithm is (1 + 1
sinθ

)opt + εnW , where θ is

the smallest angle among the triangular faces of the polyhedron and W denotes the

maximum weight among the faces of the polyhedron P . In a restricted case, where

each triangular face is non-obtuse and the perpendicular distance of each side from its

opposite vertex in each of the triangular faces is less than the length of that side, our

algorithm achieves a solution whose length is at most 2× opt + εnW , where opt is the

length of the shortest path.
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Chapter 6

Monotone Descent Path Problem

on a Polyhedral Terrain

In this chapter, we will consider a constrained variation of the shortest path problem,

on the surface of a polyhedral terrain. As in the earlier chapter, we will assume that the

faces of the terrain are triangulated. We will use n to denote the number of vertices of

the terrain. Here the desired shortest path must be monotone descent from the source

point s to the destination point t, and it must pass through the surface of the terrain.

Thus, for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the

path, if dist(s, p) < dist(s, q) then z(p) ≥ z(q), where dist(s, p) denotes the distance

of p from s along the aforesaid path. This problem is posed as an open problem by

Berg and Kreveld [26], in the sense that no bound on the combinatorial or Euclidean

length of the shortest monotone descent path between a pair of points on the surface of

a polyhedral terrain is available in the literature. Some interesting observations of the

problem lead us to design efficient polynomial time algorithm for solving the shortest

monotone descent path problem in the following special cases:

1. there exists at least one monotone descent path from s to t through a sequence of

faces such that each pair of consecutive faces are in convex position (see Section

6.3), and



2. given a sequence of pairwise adjacent faces having their boundaries parallel to each

other (but the faces are not all necessarily in convex (resp. concave) position).

The objective is to find the shortest monotone descent path from s to t through

that sequence of faces (see Section 6.4).

In Case 1, if the terrain contains n triangulated faces, the preprocessing of those faces

need O(n2logn) time and O(n2) space, and the shortest path query can be answered

in O(k + logn) time, where k is the number of faces through which the optimum path

passes. In Case 2, if a sequence of n faces with their boundaries in parallel position

is given, the shortest monotone descent path from s to t through that edge sequence

can be computed in O(nlogn) time. The solution technique for this case indicates the

difficulties of handling the general terrain.

The problem is motivated from the agricultural applications where the objective is to

lay a canal of minimum length from the source of water at the top of the mountain

to the ground for irrigation purpose. Another application of Case 2 can be observed

in the design of fluid circulation systems in automobiles or refrigerator/air-condition

machines.

6.1 Preliminaries

A terrain T is a polyhedral surface in IR3 with a special property: the vertical line at any

point on the xy-plane intersects the surface of T at most once. Thus, the projections of

all the faces of a terrain on the xy-plane are mutually non-intersecting at their interior.

Each vertex p of the terrain is specified by a triple (x(p), y(p), z(p)). More formally,

a terrain T is the image of the real bivariate function ζ defined on a compact and

connected domain Ω in the Euclidean plane, i.e, T = {(x, y, ζ(x, y)), (x, y) ∈ Ω} [135].

Without loss of generality, we assume that all the faces of the terrain are triangles, and

the source point s is a vertex of the terrain.
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Definition 6.1 [121] Let f and f ′ be a pair of faces of T sharing an edge e. The

planar unfolding of face f ′ onto face f is the image of the points of f ′ when rotated

about the line e onto the plane of f such that the points in f and the points in f ′ lie in

two different sides of the edge e respectively (i.e., the faces f ′ and f becomes coplanar

and they do not overlap after unfolding).

Let {f0, f1, . . . , fm} be a sequence of adjacent faces. The edge common to fi−1 and fi is

ei. We define the planar unfolding with respect to the edge sequence E = {e1, e2, . . . , em−1}
as follows: obtain the planar unfolding of face fm onto face fm−1, then get the planar

unfolding of the resulting plane onto fm−2, and so on; finally, get the planar unfolding

of the entire resulting plane onto f0. From now onwards, this event will be referred to

as U(E).

Definition 6.2 [121] A geodesic path is a simple path (i.e., not self-intersecting) whose

intersection with any face is the union of disjoint line segments and is locally optimal.

Therefore it can not be shortened by slight perturbations.

Definition 6.3 A path π(s, t) from a point s to a point t on the surface of the terrain

is said to be a relaxed geodesic path if (i) it entirely lies on the surface of the terrain, (ii)

it is not self-intersecting, and (iii) in each face through which it passes, the intersection

of this path and the corresponding face is a straight line segment.

The distance dist(p, q) between a pair of points p and q on π(s, t) is the length of the

simple path from p to q along π(s, t). The path πgeo(s, t) is said to be the shortest

geodesic path if the distance between s and t along πgeo(s, t) is minimum among all

possible geodesic paths from s to t. Note that, πgeo(s, t) is the relaxed geodesic path

between two points s and t having minimum length.

Lemma 6.1 For a pair of points α and β, if πgeo(α, β) passes through the interior of

each edge in an edge-sequence E of a polyhedron, then in the planar unfolding U(E), the

path πgeo(α, β) is a straight line segment.
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Proof : The proof follows from Lemma 3.3 in the paper by Mitchel et al. [121]. 2

Definition 6.4 A path π(s, t) (z(s) ≥ z(t)) on the surface of a terrain is a monotone

descent path if for every pair of points p, q ∈ π(s, t), dist(s, p) < dist(s, q) implies

z(p) ≥ z(q).

We will use πmd(p, q) and δ(p, q) to denote the shortest monotone descent path from p

to q and its length, respectively. If πgeo(p, q) corresponds to the line segment [p∗, q∗] in

the unfolded plane along an edge sequence and it satisfies monotone descent property,

then q is said to be straight line reachable from p in the unfolded plane. In such a case,

πmd(p, q) = πgeo(p, q).

Remark 6.1 A monotone descent path between a pair of points s and t may not exist

(Figure 6.1(a)). Again, if monotone descent path from s to t exists, then πmd(s, t) may

not coincide with πgeo(s, t) (Figure 6.1(b)).

(110)

t(70)

s(100)

(100)

(b)

(140)

t(70)

s(100)

(110)

(a)

Figure 6.1: Justification of Remark 6.1

Lemma 6.2 If the shortest monotone decent path πmd(s, t) passes through a face f ,

then the intersection of πmd(s, t) with the face f is a straight line segment.

Proof : [By contradiction] Let the portion of πmd(s, t), which lies in face f , is not a

single line segment. Let us consider a pair of points p1, p2(∈ f) on the path πmd(s, t)

(with dist(s, p1) < dist(s, p2)) such that their joining line segment does not coincide
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with an edge of πmd(s, t). Note that, the line segment [p1, p2] satisfies the monotone

descent property, and its length is less than the length of the path from p1 to p2 along

πmd(s, t). Hence we have a contradiction. 2

Lemma 6.3 Given a vertex s and a pair of points α and β on the terrain T , πmd(s, α)

and πmd(s, β) can not intersect except at some vertex of T . Moreover, if they intersect

at a vertex v then the length of the subpath from s to v on both πmd(s, α) and πmd(s, β)

are same.

Proof : Let πmd(s, α) and πmd(s, β) intersects at a point γ, which is equidistant from

s along both the paths πmd(s, α) and πmd(s, β), otherwise one of these two paths can

not be optimum. Thus, the second part of the lemma follows.

s
s

a b

c d

a b

c d

g h

γ γ

(a) (b)

α β
βα

e

e

Figure 6.2: Proof of Lemma 6.3

We prove the first part by contradiction. We need to consider two cases: (i) γ is inside

a face f , and (ii) γ lies on an edge e which is adjacent to a pair of faces f and f ′.

In case (i) consider a very small circle centered at γ which completely lies inside the

face f . The path πmd(s, α) intersects the circle at two points b and c, and the path

πmd(s, β) intersects the circle at a and d (see Figure 6.2(a)). From the second part of

the Lemma, the length of the paths s ∼ b → γ → c ∼ α and s ∼ a → γ → c ∼ α are
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same, and both are optimum paths (by the statement of the lemma). Now, consider

the path s ∼ a → c ∼ α. Its length is less than both the paths mentioned above (by

triangle inequality). Again, z(a) ≥ z(γ) ≥ z(c) due to the fact that both πmd(s, α) and

πmd(s, β) are monotone descent. So, the path s ∼ a → c ∼ α is monotone descent also.

Thus, we have a contradiction.

The case (ii) can be handled by unfolding f onto f ′ and drawing the circle around γ in

the unfolded plane. The path πmd(s, α) intersects the circle at two points b and c, and

the path πmd(s, β) intersects the circle at a and d. The edge e intersects the line segment

[a, c] at the point g and the line segment [b, d] at the point h (see Figure 6.2(b)). If all

the three values z(a), z(b), z(γ) are equal then the plane is horizontal. In that case the

length of the path s ∼ a → c ∼ α is monotone descent and its length is less than the

paths mentioned above. Thus, we have a contradiction. Similarly, we can argue for the

case when z(c) = z(d) = z(γ). Next, we consider the case where none of the planes are

horizontal. Here we need to consider the following three cases:

z(γ) ≥ z(h): Here we can always get a point p on the interval [h, γ) such that z(b) ≥
z(γ) ≥ z(p) ≥ z(d). Hence, the path s ∼ b → p → d is monotone decreasing, and

is shorter that the path s ∼ b → γ → d.

z(γ) < z(h) and z(b) > z(γ): Here we can identify a point p in the interval [h, γ) such

that z(b) > z(p) ≥ z(c). Hence, the path s ∼ b → p → d is monotone decreasing,

and is shorter that the path s ∼ b → γ → d.

z(γ) < z(h) and z(b) = z(γ): Here z(a) < z(γ), and therefore no monotone descent

path of the form s ∼ a → γ exists.

Thus, in all the above three cases, we reached to the contradiction. 2

Definition 6.5 Given an arbitrary point p on the surface of the terrain T , the descent

flow region of p (called DFR(p)) is the region on the surface of T such that each point

q ∈ DFR(p) is reachable from p through a monotone descent path.
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Thus, given a polyhedral terrain T and a given point s ∈ T , we study the following

problems:

P1 Construct DFR(s).

P2 For a given query point t ∈ DFR(s) report πmd(s, t), and its length.

Problem P2 seems to be difficult in general. We identified the following two special

cases where it can be solved in polynomial time.

P2.1 Assuming that the source point s is in a face f0, we construct a data structure

such that given any query point t in face fm, we can identify a monotone descent

shortest path passing through a sequence of faces {f0, f1, . . . , fm−1, fm} that are

in convex position (to be defined in Section 6.3), provided such a path exists.

P2.2 Given a sequence of faces {f0, f1, . . . , fm} of a polyhedral terrain (not necessarily

convex/concave), if ei denotes the edge separating fi−1 and fi, and the projections

of the edges e1, e2, . . . , ek on the XY -plane are parallel, then we can identify the

monotone descent shortest path between a pair of points s ∈ f0 and t ∈ fm

through that sequence of faces.

6.2 Computation of DFR(s)

Given the source point s, if it lies on an edge e of a triangulated face, we connect s by

adding edges with the vertices opposite to e in both the faces adjacent to e. If s lies

inside a triangulated face then s is connected to all the three vertices of the face by

adding edges. Thus s may always be considered as a vertex of the triangulated terrain.

Observation 6.1 If r is reachable from s using a monotone descent path, then DFR(r) ⊆
DFR(s).

Observation 6.2 Let ∆spq be a triangular face adjacent to the source s with z(p) ≤
z(q). Now,
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(i) if z(s) ≥ z(q) then ∆spq ⊆ DFR(s),

(ii) if z(s) < z(p) then ∆spq ∩DFR(s) = φ (empty region), and

(iii) if z(p) ≤ z(s) < z(q) then there exists a point r on the edge (p, q) (with z(r) = z(s))

such that ∆spr ⊆ DFR(s), and no point in the properly inside of ∆srq is in DFR(s). In

this case, if z(p) = z(r), then ∆spr degenerates to the line segment [s, p] (or equivalently

[s, r]).

In Figure 6.3, faces B and F satisfy Cases (i) and (ii) of Observation 6.2 respectively;

all other faces satisfy Case (iii) of Observation 6.2.

We consider all the faces adjacent to s, and compute the initial descent flow region

inside those faces. The union of these regions is denoted as IDFR(s). The projection

of IDFR(s) in the XY -plane is a connected region, which may be (i) a simple polygon

with s inside it or (ii) a collection of simple polygons each having s as a vertex. The

vertices of IDFR(s) (excluding s itself) are said to be the descent flow neighbor of s,

and is denoted as DFN(s) (see Figure 6.3).

[35]
[70]

[43]

[30]

[65]

[50]

[60]

A

BC

D

E F

s

Figure 6.3: Illustration of DFN(s)

Lemma 6.4 DFR(s) = (∪r∈DFN(s)DFR(r))
⋃

IDFR(s).

Proof : From Observations 6.1 and 6.2,

(
⋃

r∈DFN(s) DFR(r))
⋃

IDFR(s) ⊆ DFR(s). We now prove that

DFR(s) ⊆ (
⋃

r∈DFN(s) DFR(r))
⋃

IDFR(s).
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Let q be a point in DFR(s) but not in (
⋃

r∈DFN(s) DFR(r))
⋃

IDFR(s). Consider a

monotone descent path from s to q. By Observation 6.2, it intersects a boundary edge

[a, b] of IDFR(s) at a point c. Assume that z(a) ≥ z(b). The path from the point a to

the point c along the boundary [a, b] is a monotone descent path. Thus, q ∈ DFR(a),

which leads to the contradiction. 2

We compute IDFR(s) by considering the faces adjacent to s. The processing of the

triangular faces which are not adjacent with the source s is discussed below.

Observation 6.3 If more than one point on the boundary of a face ∆abc are reachable

from s, then for each pair of such points α and β, z(α) < z(β) implies DFR(α)∩∆abc ⊆
DFR(β) ∩∆abc.

Observation 6.4 The intersection of a face of T with DFR(s) may be a vertex of that

face, an edge of that face which is parallel to XY -plane, or a polygonal region.

During the execution of the algorithm, we maintain a priority queue Q which is ini-

tialized with DFN(s), and process these elements in an ordered manner (as discussed

below). During the processing of a member α ∈ Q, the set of points DFN(α) are also

inserted in Q. The algorithm continues until all the members in Q are processed.

While processing an element α ∈ Q, if it is a vertex of a triangular face ∆abc, then it

is processed as in Lemma 6.4. If it appears in the middle of an edge (a, b) (assuming

z(a) > z(b)) then two situations may arise.

• if z(c) > z(α) then there exists a point β on the edge (b, c) with z(β) = z(α). Here,

the triangular region ∆bαβ is included in DFR(s) (see Figure 6.4(a)).

• if z(c) < z(α) then there exists a point β on the edge (a, c) with z(β) = z(α). Here

the quadrilateral 2bαβc is included in DFR(s) (see Figure 6.4(b)).

In order to explain the order of processing of the elements in Q, let us consider a terrain

in Figure 6.5, the z-coordinates of all the vertices are given in square bracket, and the

DFN(s)’s are marked with dark circles. Now, consider the following situations:
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Figure 6.4: DFR of a point α on an edge (a, b) where (a) z(c) > z(α) and (b) z(c) < z(α)
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Figure 6.5: Order of processing of the DFNs’

c is processed prior to b: Here, after processing of c, the region ∆cbk is included

in DFR(s), and generates the point k as a new DFN . After processing k, 2kbgj is

included in DFR(s). Next, when b is processed, ∆bga is included in DFR(s) (see

Figure 6.5(a)).

b is processed prior to c: Here, after processing of b, ∆abg, and ∆bgh (⊂ ∆bgi)

are included in DFR(s). Now, if we process the point c then, as mentioned above, the

2cbgj is included in DFR(s) (see Figure 6.5(b)).

In the latter situation, ∆bgh will be included twice in DFR(s). This situation can be

avoided by (i) processing the DFNs’ in decreasing order of their z-coordinates using

the priority queue, and (ii) maintaining a flag with each face which will be set to the

value ”1” if it is considered during the processing of a DFN . Observation 6.3 along

with the above discussion lead to the following algorithm which identifies DFR(s) for

a given source vertex s, and stores it in the form of a doubly connected edge list.

We also maintain a data structure PSLG for planar point location query using the
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projections of the faces of DFR(s) on the XY -plane and following the method described

by Kirkpatrick [106].

Algorithm

Input: A triangulated polyhedral terrain, and the source s.

Output: DFR(s) in the form of doubly connected edge list DCEL, and

a planar point location data structure PSLG.

Data structure: A priority queue Q to store the unprocessed DFNs’ in decreasing

order of their z-coordinates.

begin

put s in Q;

while Q is not empty do

p = Q(1);

for each face f attached to p do

if flag of face f is not equal to 1 then

compute DFN(p) in face f and insert them in Q;

set flag of face f to 1;

endif

endfor

compute the faces in DFR(p) attached with point p;

insert each of them in the data structure DCEL

endwhile

Use DCEL to construct the PSLG data structure [106]

end.

Lemma 6.5 The proposed algorithm processes each face at most once, and outputs

DFR(s) correctly.

Proof : The first part of the lemma follows from the use of flag bit during the processing.
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For the second part, consider a portion of a face f is in the descent flow region of s

but is not included in DFR(s) by our algorithm. Let p be a point in this region having

maximum z-coordinate. Surely, p is on an edge of f , and p is not processed as a DFN

from Q. Note that, the flow can reach from s to p through a face f ′ (which is adjacent to

f), which is also not included in DFR(s). We can apply the same argument repeatedly

to prove that s is not inserted in Q. Thus, we have a contradiction. 2

Theorem 6.1 The proposed algorithm for computing DFR(s) needs O(nlogn) time

and O(n) space, and given an arbitrary point t, it searches in DFR(s) data structure

in O(logn) time to report whether a monotone descent path exists from s to t along the

surface of T .

Proof : Each face is processed at most once for inclusion in DFR(s) (by Lemma 6.5),

and while processing each (triangulated) face at most three DFNs’ are generated (see

Figure 6.5). Thus, total number of DFNs’ inserted in Q is O(n) in the worst case.

Inserting a part of a face in DCEL requires O(1) time. Since a single operation in a

priority queue needs O(log n) time, DCEL can be constructed in O(n log n) time. The

same argument leads to the fact that DCEL needs O(n) space. Given the DCEL, the

PSLG data structure can also be constructed in O(n log n) time using O(n) space [106].

For the query time complexity, see [106]. 2

6.3 Shortest Monotone Descent Path on Convex DFR

We now study a restricted version of the descent flow problem where DFR(s) is convex.

Definition 6.6 Let f and f ′ be two adjacent faces of the terrain T = {(x, y, ζ(x, y)), (x, y)

∈ Ω} sharing an edge e. The faces f and f ′ are said to be in convex (resp. concave)

position, if for any two points p ∈ f , q ∈ f ′ and p, q not lying on e, and for a point κ

on the straight line segment (p, q) with (x(κ), y(κ), ζ(x(κ), y(κ))) lying in f or f ′, then

ζ(x(κ), y(κ)) > z(κ) (resp. ζ(x(κ), y(κ)) < z(κ)).
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Definition 6.7 Given a terrain T and a source point s, DFR(s) is said to be convex if

every two adjacent faces in DFR(s) are in convex position. Similarly, DFR(s) is said

to be concave if its every pair of adjacent faces are in concave position.

We now study the properties of shortest monotone descent path in a convex DFR(s).

The convexity of DFR(s) can be tested very easily by observing the neighbors of its

each face. From now onwards, we assume that the DFR(s) on which we are working,

is convex.

Observation 6.5 If p1, p2 be two points on a face of T , and p3 be another point on the

line segment [p1, p2], then z(p1) > z(p3) implies z(p2) < z(p3).

Lemma 6.6 Let f and f ′ be two adjacent faces of a polyhedral terrain which are in

convex position. f and f ′ are separated by an edge e = (a, b) where z(b) > z(a).

Consider a pair of points p and q on faces f and f ′ respectively, and a point c on e with

z(p) = z(c).

(a) Now the edge e can be partitioned into two parts [a, c] and (c, b] such that the descent

flow from p to the face f ′ is possible through the portion [a, c] ∈ e but not possible through

the portion (c, b].

(b) Let q∗ denote the image of the point q in the planar unfolding of f ′ onto f . Now, (i)

if the line segment [p, q∗] intersects the line segment [a, c] (∈ e) in the unfolded plane,

then q ∈ DFR(p) and the geodesic shortest path from p to q through the edge e is the

shortest monotone decent path from p to q, and (ii) if [p, q∗] intersects the line segment

(c, b] but q ∈ DFR(p), then [p, c] + [c, q] forms the shortest monotone descent path from

p to q through the edge e.

Proof : Part (a) of the lemma is trivial. We now prove part (b) of the lemma.

Let πgeo(p, q; e) denote the geodesic shortest path from p to q passing through the edge

e. If the line segment [p, q∗] (in the unfolded plane) intersects e (at a point, say η) in its
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interior, then by Lemma 6.1, the image of πgeo(p, q; e) in the unfolded plane coincides

with the line segment [p, q∗]. Now, two cases need to be considered: (1) z(η) ≤ z(p)

and (2) z(η) > z(p).

Case 1: By Observation 6.5, z(q∗) < z(η). As the two faces f and f ′ are in convex

position, z(q) ≤ z(q∗). Thus both the line segments [p, η] and [η, q] are monotone

descent (see Figure 6.6(a)), and part (i) of the lemma follows.

Case 2: Here the line segment [p, η] is not monotone descent in the plane f . Consider

any monotone descent path from p to q which intersects the line segment [a, c] (at a

point, say η′). Note that, the length of such a path remains same as that of its image in

the unfolded plane, and it attains minimum when η′ = c as illustrated in Figure 6.6(b).

This proves part (ii) of the lemma. 2

 q
p 
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η’

b

a
 q

p 
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η

b
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(a) (b)

ηη

f
f’

f’f

Figure 6.6: Proof of Lemma 6.6

Let v be a vertex of T and p be a point in DFR(v) which is reachable from v through

a sequence of edges E = {e1, e2, . . . , em} of DFR(v); the faces fi−1 and fi, attached to

edge ei, are in convex position; v ∈ f0, p ∈ fm. Now, let R∗ denote the region obtained

by the planar unfolding U(E). It is possible that R∗ is self-overlapping. Now we have

the following result:

Lemma 6.7 If p∗ denotes the image of the point p in R∗, and the line segment [v, p∗]

intersects the images of the edges E = {e1, e2, . . . , em} in that order, then the path π(v, p)

on T , whose image in R∗ is the line segment [v, p∗], is the shortest monotone descent

path from v to p through the faces {f0, f1, f2, . . . , fm}.
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Proof : From Lemma 6.1, the path π(v, p) is a shortest geodesic path through {f0, f1, f2,

. . . , fm}. Next, we show that π(v, p) is a monotone descent path.

Let ci be the point of intersection of π(v, p) with the edge ei. Since π(v, p) passes

through DFR(v), z(ci) < z(v) for all i = 1, . . . , m. Rename v = c0 and p = cm+1.

Now, by repeated application of the proof technique of Lemma 6.6, it can be shown

that z(c0) > z(c1) > z(c2) > . . . > z(cm) > z(cm+1). 2

Remark 6.2 If the shortest monotone descent path from a vertex v to a point p is

obtained as in Lemma 6.7, then the point p is straight-line reachable from the vertex v.

Remark 6.3 Let e be an edge of T separating the faces f and f ′. A point p on e may

be straight line reachable from a vertex v through different edge sequences. Thus, p may

be straight line reachable from v through both f and f ′.

Definition 6.8 A point α on a line segment [a, b] (portion of an edge) is said to be the

frontier point with respect to a vertex v if α is straight line reachable from v through an

edge sequence E and it is the closest point of v on the line segment [a, b].

It is easy to see that α can be either a or b or the perpendicular projection of v on the

line segment [a, b] in the planar unfolding R∗.

The above discussions lead to a preprocessing step of DFR(s) similar to [121]. It splits

each face f of DFR(s) into homogeneous partitions such that for every point p in a

partition the shortest monotone descent path from s reaches p through the same edge

sequence. Note that, each of these partitions must be maximal in the sense that it is

not properly contained in some other homogeneous partition of f . We will refer the

data structure storing this homogeneous partitions of DFR(s) by HDFR.

Definition 6.9 A segment I = [a, b] on an edge e ∈ DFR(s) is said to be a homoge-

neous segment (or h-segment in short) if for every point α ∈ I, the shortest monotone

descent path from s to α passes through the same edge sequence.
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6.3.1 Preprocessing

Our algorithm for finding shortest monotone descent path on convex DFR(s) creates

a data structure HDFR in two phases. In Phase 1, each edge e = (a, b) of DFR(s) is

split into h-segments {Ii = [ai, ai+1], i = 0, . . . , k − 1}, a0 = a, ak = b,
⋃k−1

i=0 Ii = e. The

points a0, a1, a2, . . . , ak are referred to as break-points. In Phase 2, the interior of each

face in DFR(s) is split into homogeneous partitions (similar to Voronoi partitions).

Below, we describe Phase 1 and Phase 2 in detail. The HDFR data structure is similar

to the data structure for storing DFR(s) as defined in Section 6.2; but each edge e in

the DCEL data structure is attached with an associated structure AV L(e) which is

defined in Phase 1, and each face f = ∆abc in the DCEL data structure is attached

with three associated structures V ORab(f), V ORbc(f) and V ORac(f) which are defined

in Phase 2.

Phase 1: Let p be a point on the surface of T which is straight-line reachable from a

vertex r ∈ DFR(s). The shortest monotone descent path from s to p passing through

the vertex r, denoted by πr(p), is the concatenation of πmd(s, r) and the line segment

[r, p]. Its length is δr(p) = δ(s, r) + d(r, p), where d(r, p) denotes the length of the

straight line segment [r, p] in the unfolded plane.

Definition 6.10 Let I = [a, b] be an h-segment on an edge e such that πmd(s, α) =

πr(α) for every point α ∈ I, then the vertex r is said to be the link-vertex for the

h-segment I.

The end points of the h-segments are the break-points. If r is the link-vertex of a

h-segment I, and E = {e1, e2, . . . , em} be the edge sequence which are intersected by

the line segment [r, α] for every point α ∈ I, then the last edge em in E is called the

predecessor of I in the HDFR data structure. If [r, α] does not intersect any edge, then

the predecessor of I is r itself. Now, we have the following remarks.

Remark 6.4 If ai is a break-point on an edge e, and is shared by two h-segments

[ai−1, ai] and [ai, ai+1] with link vertices r and u respectively, then δr(ai) = δu(ai).
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Remark 6.5 If I1 = [a1, b1] and I2 = [a2, b2] are two h-segments on an edge e (adjacent

to faces f and f ′) with link-vertex r1 and r2 respectively, and both I1 and I2 are reachable

from r1 and r2 respectively through the same face f , then I1 and I2 have mutually disjoint

interiors.

Thus, the h-segments generated on an edge e are non-overlapping, and can be orderly

maintained in an AVL-tree, called AV L(e). Each of these intervals is attached with its

(i) predecessor and (ii) link-vertex. In addition, we need to compute the frontier-point

on each h-segment [a, b] with respect to its link-vertex. A vertex of DFR(s) in the

HDFR data structure is also attached with its predecessor and link-vertex; these can

be defined in a manner similar to the h-segments in HDFR.

During the execution of the HDFR creation algorithm, we use a MIN HEAP as the

event queue. It contains all the vertices, break-points and frontier-points explored so far.

Execution starts by putting s in MIN HEAP with δ(s, s) = 0, and proceeds in a manner

similar to Dijkstra’s shortest path algorithm. But, unlike Dijkstra’s algorithm, here the

event-points are generated during the execution and are inserted in the MIN HEAP.

The elements in the MIN HEAP are the points where the monotone descent path from

s exist, but for each of these points, there is a possibility of obtaining an alternate path

of smaller length, except the one, say v, having minimum δ-value. Thus, each element α

in the MIN HEAP is attached with δ(s, α) (explored so far), and a pointer field, called

self ptr. The self ptr field points to the h-segment in the HDFR, which has introduced

the point α in the MIN HEAP data structure.

Each time, we choose a member v from the MIN HEAP having minimum δ-value, and

process its adjacent face(s) to include some more region in DFR(s). The link-vertex

attached to v is u, and the h-segment attached to v is [α, β], where [α, β] is on an edge

e0 = (a, b). We process the face f = ∆abc which is adjacent to e0, and is in the other

side of the vertex u. Let us name the other two edges of face f as e1 = (a, c), e2 = (b, c)

respectively. We need to consider two distinct cases: (i) v is not a vertex of DFR(s),

(see Figure 6.7) and (ii) v is a vertex of DFR(s) (see Figure 6.9).
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Figure 6.7: Processing a point v which is not a vertex of DFR(s)

v is not a vertex of DFR(s)

Let R be the planar unfolding of all the faces intersected by the path π(u, v). We unfold

face f onto R, join (u, α) and (u, β) and extend them inside face f . These lines hit

the boundary of f at µ and ω respectively. Let I be the portion of the boundary of

f from µ to ω, which is straight-line reachable from u in the planar unfolding R. I

contributes one or two h-segments in HDFR depending on whether it is a single interval

(on either e1 or e2) or contains the vertex c (see Figures 6.7(a) and 6.7(b) respectively).

We compute δu(µ) and δu(ω) and identify the interval [µ, ω] in the AV L(e) attached to

edge e in the HDFR data structure.

If I does not overlap with the existing h-segments then we (i) insert the h-segment

[µ, ω] in AV L(e), (ii) insert µ and ω in MIN HEAP with respect to δu(µ) and δu(ω)

respectively, (iii) insert the frontier-point φ ∈ [µ, ω] (with respect to δu(φ)) if it does not

coincide with any of µ and ω, and (iv) set the self ptr of µ, ω and φ to point I = [µ, ω]

in HDFR data structure.

If I overlaps with the h-segments {Ji = [φi, ψi], i = 1, . . . , k}, k ≥ 1 on an edge e, µ ∈ J1

and ω ∈ Jk (see Figure 6.8(a)), and the link-vertex attached to Ji is ri, then we consider

each interval Ji, i = 1, 2, . . . , k in order. For each Ji, we compute δri
(φi), δri

(ψi), δu(φi)

and δu(ψi). Depending on the relationship among these four quantities, we may have

to replace Ji in AV L(e) by some newly generated h-segments as described below. The

same technique was followed in [121]. If Ji = [φi, ψi] needs to be replaced then we split
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Figure 6.8: Overlaps of I with other h-segments

it two or three pieces depending on the following situations:

Case 1 (µ ∈ [φi, ψi] but ω 6∈ [φi, ψi]): Here Ji splits into two pieces, namely J1i = [φi, µ]

and J2i = [µ, ψi] (see Figure 6.8(b)).

Case 2 (µ, ω ∈ [φi, ψi]): Here Ji splits into three pieces, namely J1i = [φi, µ], J2i =

[µ, ω] and J3i = [ω, ψi] (see Figure 6.8(c)).

Case 3 (µ 6∈ [φi, ψi] but ω ∈ [φi, ψi]): Here Ji splits into two pieces, namely J2i = [φi, ω]

and J3i = [ω, ψi] (see Figure 6.8(d)).

In either of these cases, we identify the tie-point τ ∈ J2i (see p. 658 of [121]), where

δri
(τ) = δu(τ) (if it exists). If the tie-point (τ) is found, then it splits J2i into two

intervals. Finally, we delete Ji and insert all the newly generated h-segments (with

their corresponding predecessors and link-vertices) in AV L(e).

After processing all the Jis’ for i = 1, 2, . . . , k, we replace all the h-segments in AV L(e)

having the same link-vertex u by a single h-segment which is obtained by merging them.
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If the above steps are executed for at least one Ji, then we insert µ (or the corresponding

tie-point) and ω (or the corresponding tie-point) as break-points in the MIN HEAP

along with their respective δ-values and self ptr. For each newly inserted h-segment the

corresponding frontier-point is also to be inserted in MIN HEAP.

v is a vertex of DFR(s)

Let the h-segment attached to v be [v, α]. We unfold the face f onto R, and extend the

straight lines L1 = (u, v) and L2 = (u, α) beyond v and α respectively. If both L1 and

L2 go outside f then both the edges e1 and e2 of f are straight line reachable from u,

and they will be considered as h-segments (see Figure 6.9(a)). If one or both of L1 and

L2 hit(s) the boundary of f , then one or two h-segments will be generated (see Figures

6.9(b), 6.9(c)). For each of them, link-vertex is u and predecessor is [v, α].

v

u

c
L1

L2

v

u

α

L1

L2γ

α=b

β

c

(a) (c)

v

u

c
L1

L2

β

(b)

bα b

Figure 6.9: Processing a vertex

In addition, we need to consider each edge e in IDFR(v) (defined in Section 6.2) which

are not adjacent to v. If e (or a portion of e) lies to the other side of α with respect

to the line L1, then it is considered as h-segment with link-vertex and predecessor both

equal to v. Similar technique is adopted in [121], but the monotone descent property

from v was not required there.

Each of these newly generated h-segments may overlap on some existing h-segments, and

it need to be tackled using the same technique as before. Finally, all newly generated

h-segment are inserted in respective AV L-trees of the HDFR data structure, and all

the break-points and a frontier-point are inserted in MIN HEAP as in [121]. If v is

observed to be a break-point of a h-segment, it is also to be inserted in MIN HEAP for

processing the other faces incident to v.
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Figure 6.10: Demonstration of frontier point

Role of the frontier-points

Consider the planar unfolding along an edge sequence of the terrain T . The break-

points a, b, c and d are stored in MIN HEAP and their distances are shown inside

square brackets in Figure 6.10. If we do not consider the frontier-point then after

processing d from MIN HEAP, the point q will be pushed in the MIN HEAP, with

δ(s, q) = δr2(q) = 39 (say). As δ(s, q) < min(δ(s, a), δ(s, b)), after processing c from

MIN HEAP, q will be chosen for processing. This implies, the distance of q will not

be reduced further by Lemma 6.8. But Figure 6.10 shows that q is also straight-line

reachable from r1 and δr1(q) = 38. Note that, if we consider frontier-points γ1 and γ2,

then δr2(q) > min(δ(s, γ2), δ(s, γ1)). Thus, either γ1 or γ2 will be chosen prior to the

processing of q, and δ(s, q) will be set correctly prior to its processing as described in

the following lemma.

Lemma 6.8 Every time the path-length attached to the top-most element of the MIN HEAP

is optimum.

Proof : [By contradiction] Let the distance attached to q in MIN HEAP represent the

length of the path π1 from s to q through the link-vertex r1, and through the edge

sequence E1 (see Figure 6.11). Suppose π1 is not optimum; there exists another path π2

from s to q through the link-vertex r2 and passing through the edge sequence E2, such

that δr1(q) > δr2(q). Let ek ∈ E2 and closest to q. Since δr2(r2) < δr2(q) < δr1(q), and q is
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currently being processed, r2 is already processed. Moreover, since π2 passes through ek,

there exists a frontier point, say α, on ek with respect to r2, and δr2(α) < δr2(q) < δr1(q).

While processing α, we will discover q, and compute δr2(q). Thus, the hypothesis that

distance attached to q = δr1(q) is not correct. 2

Phase 2: In this phase, we compute the three homogeneous partitions inside each face

separately. Let us consider a face f = ∆abc. We compute the homogeneous partition

with respect to all the three edges of face f as follows.

Consider the h-segments on edge e = (a, b) of face f ; and their link-vertices are con-

sidered as weighted points. The weight of a link-vertex v is δ(s, v). We unfold the

faces of the terrain such that the link-vertices of all the h-segments on edge e belong

to the same plane containing f . The homogeneous partition V ORab(f) of the face f

is the Voronoi partition of the interior of face f with respect to those weighted points.

This can be computed in O(KlogK) time, where K is the number of h-segments on

the boundary of f . Each such partition points to its corresponding h-segment in the

HDFR data structure. The detailed description of this technique is available in [121].

Similarly V ORbc(f) and V ORac(f) are obtained.

6.3.2 Query answering

For a given query point t, we first locate the face f = ∆abc of DFR(s) containing t.

Next, we need to search in the three data structure V ORab(f), V ORbc(f) and V ORac(f)
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separately. The shortest path from s to t which enters face f through the edge (a, b)

(of f) can be obtained by searching V ORab(f). This actually gives the h-segment Iab

through which the shortest path from s to t has entered the face f crossing the edge

(a, b), and the length of the corresponding path (see Theorem 6.3). Similarly, the other

two data structures also report the corresponding h-segments and the distances. The

minimum among these three distances will indicate the length of the optimum path.

Let it correspond to the h-segment It. We use predecessor links of the h-segments to

obtain the edge (to be precise, h-segment) sequence E = {e1, e2, . . . , em}, to reach the

link-vertex r (a vertex of DFR(s)) attached to It. Thus, the shortest monotone descent

path π(r, t) passes through faces f0, f2, . . . , fm = f , where r is a vertex of f0, and t ∈ fm,

and the edge ei is shared by fi−1 and fi. Finally, we obtain the entire path π(s, t) using

the following steps.

• Compute π(r, t) through the edge sequence E as mentioned above.

• From r, reach its link-vertex r1 through an edge sequence obtained using predecessor

pointers. Compute the planar unfolding of the faces, adjacent to that edge sequence.

The inverse image of the line segment [r1, r] in the unfolded plane is the shortest descent

flow path from r1 to r.

• Treat r1 as r, and repeat step (ii) until the vertex s is reached.

6.3.3 Complexity analysis

The total number of vertices and edges in DFR(s) are both O(n). Let us consider the

h-segments on an edge e coming through one of its adjacent faces. Each such h-segment

is designated by two lines originating from its link vertex and is supported by some other

vertex of T . Note that, one vertex can not support more than one such lines. Thus, the

number of such h-segments is O(n) in the worst case. The final set of h-segments on an

edge is obtained by merging the two sets of h-segments coming through its two adjacent

faces, which is also O(n). Each h-segment is attached with a frontier-point. Thus, the
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total number of event-points pushed in the MIN HEAP may be O(n2) in the worst case.

Processing of all these event-points needs O(n2logn) time. Finally, in Phase 2, the time

complexity of homogeneous partitioning of all the faces is O(n2logn) in total, and it

produces O(n2) homogeneous partitions. The worst case size of the HDFR is O(n2).

The query time needs O(logn+k), where O(logn) time is required for four point location

queries for t as mentioned in Subsection 6.3.2, and k is the number of line segments on

the shortest path from s to t. Thus we have the following theorem:

Theorem 6.2 Given a polyhedral terrain T with n vertices, and a source point s, our

algorithm (i) creates the HDFR data structure in O(n2logn) time and O(n2)space. (ii)

For a given query point t, it outputs a monotone descent path from s to t through a

sequence of faces in convex position (if exists) in O(k + logn) time, where k is the

number of line segments on the optimal path.

6.3.4 A simple variation: the distance query

A simpler version of the above problem is the distance query, where the objective is to

compute the length of the monotone descent path from s to a given query point t. We

show that, a minor tailoring of the HDFR data structure helps us to report the length

in O(logn) time.

Recall the Phase 2 of the preprocessing. Here, we have assumed that the length of the

shortest path of each link-vertex is already known. At each face, we have considered

the link-vertices attached to the h-segments on its boundary as weighted points, where

the weight attached to a link vertex is the length of the shortest monotone descent path

from s to that point. Next, we computed the Voronoi diagram of those weighted points

inside that face. At each partition, we attach two scalar information: (i) the coordinate

of the image of its corresponding link-vertex in the unfolded plane, and (ii) the distance

of that link-vertex from s.

During the distance query for a query point t, we identify the partition in which it
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belongs by point location. Let r be the link-vertex attached to that partition. The

length of the shortest monotone path from s to t is obtained by δ(s, r) + d(r, t), where

d(r, t) is the Euclidean distance of this point from the the image of the link-vertex r in

the unfolded plane. Thus, we have the following result:

Theorem 6.3 Given a polyhedral terrain T with n vertices, and a source point s, the

revised HDFR data structure can be created in O(n2logn) time and O(n2) space, such

that given any arbitrary query point t, the distance query can be answered in O(logn)

time.

6.4 Shortest Monotone Descent Path through Par-

allel Edge Sequence

In this section, we shall consider a slightly different problem on a general terrain where

each pair of adjacent faces are not restricted to only in convex position. Here, along

with the source (s) and destination (t) points, a sequence of faces F = {f0, f1, . . . , fm},
s ∈ f0, t ∈ fm, is given. The objective is to find the shortest descent flow path

through F . This problem in its general form seems difficult. But we are proposing

an efficient solution in a restricted setup. Let E = {e1, e2, . . . , em} be the sequence

of edges separating the consecutive faces in F . We assume that the members in the

edge sequence E are parallel to each other. Note that, here we are deviating from the

assumption that the faces in the terrain are triangular.

The problem is very much similar to the L2-shortest path problem over walls, defined in

[123]. Here a set of n vertical walls parallel to x-axis are given. Each wall is positioned

on the xy-plane. The i-th wall, is positioned at y = ai, and its top boundary, denoted

by ei, is a line of the form z = bix + ci, where ai, bi and ci are given constants,

a1 < a2 < · · · < an. The objective is to report the L2-shortest path between a given

pair of query points s and t, where s < a1 and t > an. They proved that, the shortest
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path is always monotone with respect to the y-axis, and it bends on the edges ei. It

is also proved that, the shortest path from s to t is the concatenation of two sub-

paths, one of them is monotone ascending and the second one is monotone descending

with respect to z-coordinate. The standard method of solving this problem involves

a preprocessing phase which splits each edge ei into segments, and then defines the

shortest path map [135]. The optimal L2-shortest path from s to t can be obtained by

following an appropriate path in that map. It is proved that the size of the shortest path

map is O(n2) in the worst case, but finding a polynomial time algorithm for constructing

the map is left as an open problem [123]. Our case is a simpler version, where the

plane between two consecutive edges is known, and we are specifically searching for a

monotone descent path which is constrained to lie on the plane.

6.4.1 Properties of parallel edge sequence

Lemma 6.9 Let p and q be two points on two consecutive members ei and ei+1 of E
which bound a face f , and z(p) = z(q). Now, if a line ` on face f intersects both ei

and ei+1, and is parallel to the line segment [p, q], then (i) the length of the portion of

` lying in face f is equal to the length of the line segment [p, q], and (ii) all the points

on ` have same z-coordinate.

Proof : Part (i) of the lemma follows from the fact that as ei and ei+1 are parallel,

the portion of ` on f and the line segment [p, q] appear as two parallel edges of a

parallelogram on face f .

Part (ii) of the lemma trivially follows if the face f is horizontal. So, we prove it for the

case where f is not horizontal.

Consider a horizontal plane h at altitude z(p). The intersection of the face f and the

plane h is the line segment [p, q] (by part (i) of this lemma). Consider another horizontal

plane h′ through a point r on line `. The intersection of f and h′ must be parallel to

[p, q], and hence it coincides with the line `. Thus, all the points on the line ` have the

same z-coordinate. 2
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Lemma 6.10 Let ei and ei+1 be two edges in E bounding a face f . For a pair of points

p, p′ ∈ ei and a pair of points q, q′ ∈ ei+1, if z(p) > z(p′) and z(q) > z(q′), then the line

segments [p, q] and [p′, q′] do not intersect on face f ; but the line segments [p, q′] and

[p′, q] must intersect on face f .

p[35]

p’[20]

q[10]
q’[5]

ei

ei+1

p p

p’ p’
q

q’
q’

q

(a) (c)(b)

l1

l2
l1

l2

l1

l2

ei ei
ei+1 ei+1

Figure 6.12: Proof of Lemma 6.10

Proof : Without loss of generality, assume that z(p) > z(q). Draw two horizontal

planes h1 and h2 through p and q respectively which intersect face f along lines `1 and

`2 respectively. Note that, `1 is above `2 with respect to their z-coordinates. Here any

one of the three cases may arise: (i) both p′ and q′ are above h2, (ii) both p′ and q′

are below h2, (iii) p′ and q′ appear in different sides of h2. Case (i) is impossible since

z(q) > z(q′). In Case (ii), the line segment [p, q] and [p′, q′] appear in different sides

of the plane h2, and hence they can not intersect (see Figure 6.12(a)). In Case (iii),

z(p′) > z(q) and z(q′) < z(q). Here, if [p, q] and [p′, q′] intersect, then ei and ei+1 can

not be parallel (see Figure 6.12(b)). The reason is that, as ei and ei+1 are parallel

and z(p) > z(p′) > z(q) & z(q) > z(q′), then [p, q] and [p′, q′] are the sides (not the

diagonals) of the trapezoid 2pp′q′q (see Figure 6.12(c)). 2

Theorem 6.4 Let f1 be a non-horizontal face bounded by two parallel edges e1 = [a1, b1]

and e2 = [a2, b2] (z(ai) < z(bi), i = 1, 2); the point s appears in its adjacent face f0 such

that f0 and f1 are separated by the edge e1. If there exist a pair of points p ∈ e1 and

q ∈ e2 with z(p) = z(q) < z(s), and the points s, p, q∗ (q∗ is the image of the point q in

the planar unfolding U(e1)) are collinear, then
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(i) for any point α in the interval [q, a2], shortest monotone descent path along e1 is the

inverse-image of the straight line segment [s, α∗] in the unfolded plane provided [s, α∗]

intersects the edge e1 in its interior.

(ii) for any point α in the interval [b2, q], shortest monotone descent path along e1 is not

an inverse-image of the straight line segment [s, α∗] in unfolded plane. Here πmd(s, α)

will pass through a point β ∈ [b1, p] with z(β) = z(α) in the original terrain.
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Figure 6.13: Proof of Theorem 6.4

Proof : The line segment [p, q] partitions the face f1 into two parts, and the points b1

and b2 belong to the same side of [p, q] (by Lemma 6.10). Consider a point α ∈ [q, a2]

on the edge e2 (see Figure 6.13(a)). In the planar unfolding U(e1), the straight line

segment [s, α∗] intersects e1 at a point, say β. By Lemma 6.10, the line segment [α, β] is

below the line segment [p, q]. Thus, if β is in the interior of the edge e1 then β ∈ [p, a1].

Let us consider a line segment [β, γ] on the face f1 which is parallel to [p, q], and γ is on

the edge e2. Now consider the triangle ∆sq∗α∗ in the unfolded plane, where the point

β lies on [s, α∗]. As the line segment [β, γ∗] is parallel to [s, q∗], γ lies on [q∗, α∗]. So,

z(α) < z(γ) < z(q). By Lemma 6.9, z(γ) = z(β). Hence part (i) of the lemma follows.

The proof of part (ii) follows from the following argument. Consider a point α ∈ [q, b2]

(See Figure 6.13(b)); the line segment [s, α∗] intersects the edge e1 at γ in the unfolded

plane U(e1). Draw a line segment [α, β] on face f1 which is parallel to [p, q]. As
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z(β) = z(α) (by Lemma 6.9), we have z(γ) < z(α). Thus, the shortest monotone

descent path from s to α can not be the geodesic shortest path between them. As

z(β) = z(α) < z(s), all the monotone descent path from s to α through edge e1 must

pass through the line segment [β, b1]. Hence, from triangle inequality, we can conclude

that the shortest monotone descent path from s to α will be the concatenation of line

segments [s, β] and [β, α]. 2

In order to describe our algorithm, let us introduce the following terminology.

We obtain the planar unfolding of the faces F = {f1, f2, . . . , fm} onto face f0, and

use a two dimensional coordinate system for the entire unfolded plane such that the

members in the edge-sequence E = {e1, e2, . . . , em} are ordered from left to right, and

each of them is parallel to the y-axis. The z-coordinate of a point in the unfolded plane

indicates the z-coordinate of that point in the original terrain. In this planar unfolding,

if an edge ei of the terrain is represented as [ai, bi], with y(ai) < y(bi) then z(ai) ≤ z(bi)

(see Lemma 6.9). The source s is in f0, then flow passes through the edge sequence E
to reach a point t ∈ fm. If a path π(s, t) enters into a face fi along a line `i, then the

angle of incidence of π(s, t) in face fi (with edge ei) is denoted by θi, and henceforth

will be referred to as slope of `i.

Let e1 and e2 be two parallel boundaries of a face f . The translation event for face f ,

denoted by T (f) is a linear translation of e2 on e1 such that the entire face f is merged

to the line e1 as follows:

The points in the unfolded plane lying on the same side of s with respect to e1 remain

unchanged.

Each point p lying in the proper interior of the face f is mapped to a point q ∈ e1 such

that z(p) = z(q).

Each point p = (xp, yp) on the edge e2 is mapped to a point q = (xq, yq) on the edge e1

such that z(p) = z(q). Under this transformation xq = xp + α, yq = yp + β, where

α, β are constants, and they depend on the slope and width of face f .
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Each point (x, y) in the unfolded plane lying on the other side of s with respect to e2

is moved to the point (x + α, y + β).

The slope of the line containing (p, q) is referred to as merging direction of face f , and

is denoted as φ(f). Theorem 6.4 indicates the following result.

Corollary 6.4.1 If the slope θ of a line segment ` in face f is such that (i) θ < φ(f) then

` is strictly monotone descent, (ii) θ = φ(f) then all points in ` have same z-coordinate,

and (iii) θ > φ(f) then ` is strictly monotone ascent.

Let πmd(s, t) be the shortest monotone descent path from s ∈ f0 to t ∈ fm passing

through a sequence of parallel edges {e1, e2, . . . , em−1}. Along this path there exist

some faces {fj1 , fj2 , . . . , fjk
} such that all the points on the path πmd(s, t) in face fji

have

same z-coordinate ξji
; the portions of the path in all other faces are strictly monotone

descent. Now, we have the following theorem.
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Figure 6.14: Demonstration of translation event where face f is merged to the line ea

Theorem 6.5 If the translations T (fj1), T (fj2), . . . , T (fjk
) are applied (in any order)

on the unfolded plane of faces f0, f1, . . . , fm then the shortest monotone descent path

πmd(s, t) will become a straight line segment from s to t in the transformed plane.

Proof : Let us first assume that k = 1, i.e., πmd(s, t) passes through a face f with all

points having the same z-coordinate. Let fa and fb be its preceding and succeeding faces
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with separating edges ea and eb respectively. We also assume that πmd(s, t) consists of

three consecutive line segments [s, a], [a, b], [b, t] lying in fa, f and fb respectively. Note

that, all the points on [a, b] have same z-coordinate. If we apply T (f), the points b

and t will be mapped to a and t′ (see Figure 6.14). Now, in the transformed plane,

the shortest path from s to t′ is the straight line segment [s, t′]. We argue that [s, t′]

will pass through a. On the contrary, assume that [s, t′] intersect ea at a′, and a′ is the

image of b′ ∈ eb under T (f), b′ 6= b. Thus, d(s, a′) + d(a′, t′) < d(s, a) + d(a, t′). Now,

applying reverse transformation, d(s, a′) + d(b′, t) < d(s, a) + d(b, t). From Lemma 6.9,

d(s, a′) + d(a′, b′) + d(b′, t) < d(s, a) + d(a, b) + d(b, t). This leads to a contradiction.

Let there exist several faces on the path πmd(s, t) such that all the points of πmd(s, t) in

that face have same z-coordinate. If we apply transformation T on one face at a time,

the above result holds. The order of choosing the face for applying transformation T

is not important due to the following argument: (i) a point p on the unfolded plane

will be affected due to the same set of transformation irrespective of in which order

they are applied, and (ii) the effects of all the transformations affecting on a point are

additive. 2

Lemma 6.11 If the shortest monotone descent path πmd(s, t) passes through a sequence

of parallel edges, then all the line segments of πmd(s, t), which are strictly monotone

descent, are parallel in the unfolded plane of all the faces.

Proof : Follows from Theorem 6.5. 2

Theorem 6.6 If the line segments of shortest monotone descent path πmd(s, t) in faces

f1∗ , f2∗ , . . . , fk∗ are strictly monotone descent then their slopes are equal. The slope

of the portions of πmd(s, t) in all other faces are equal to the merging angle of the

corresponding faces.
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Algorithm

Step 1: We compute the planar unfolding of the faces f1, f2, . . . , fm on the face f0 that

contains s. We assume that the entire terrain is in first quadrant, and all the edges in

T are parallel to the y-axis.

Step 2: We compute the merging angles of all the faces fi, i = 1, 2, . . . ,m, and store

them in an array Φ in ascending order. Each element contains its face-id.

Step 3: Let θ be the slope of the line joining s and t in the unfolded plane. We

sequentially inspect the element of the array Φ from its first element onwards and go

on marking the faces that need to be merged. Here the optimum path passes through

the marked face at equal altitude. We initialize k by 1.

Step 4: Repeat the following procedure until Φ[k] > θ

Merging phase: (* Here Φ[k] < θ, and the translation event take place as follows *)

Let Φ[k] correspond to a face f . We transform the entire terrain by merging the two

boundaries of face f , i.e., compute the destination point t under the translation.

The face f is marked. We update k by k + 1 and update θ by the joining s with

the new position of t.

Step 5: The value θ, after the execution of Step 4, corresponds to the slope of the path

segments which are strictly monotone descent along πmd(s, t). We start from the point

s at face f0, and consider each face fi, i = 1, 2, . . . , m in order. If face fi is not marked,

πmd(s, t) moves in that face along a line segment of slope θ; otherwise, πmd(s, t) moves

along a line segment of slope Φ[i].

Step 6: Finally, report the optimum path πmd(s, t).
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6.4.2 Correctness and complexity analysis of the algorithm

Lemma 6.12 Our algorithm correctly computes the shortest monotone descent path

between two query points s and t through a sequence of m faces of a polyhedral terrain

bounded by parallel edges in O(mlogm) time.

Proof : We prove the correctness of the algorithm by contradiction. The path obtained

by our algorithm is π(s, t). It passes through the faces at equal altitude for which the

merging angles are {Φ[1], . . . , Φ[k]}(⊆ Φ), and follows strictly monotone descent (with

angle = θ) in the faces having merging angles {Φk+1, Φk+2, . . . , Φm}, where Φi < θ for

i = 1, . . . , k, and Φi > θ for i = k + 1, . . . , m.

Let the optimum path π′(s, t) passes through the faces at equal altitude for which the

merging angles are {Φ[1], . . . , Φ[k′]}(⊆ Φ), and follows strictly monotone descent (with

angle = θ′) in the faces having merging angles {Φk′+1, Φk′+2, . . . , Φm}, where Φi < θ′ for

i = 1, . . . , k′, and Φi > θ′ for i = k′ + 1, . . . , m.

If k = k′, then by Theorem 6.5 and 6.6 we conclude that θ = θ′, and the path obtained

by our algorithm is optimum. Below we argue that k cannot be different than k′.

Let us assume that k < k′, or in other words, θ < θ′ (since Φ is created in ascending

order of merging angles). Thus, our algorithm chooses few more faces than the optimum

solution where the path goes through the same height. Now, the three cases stated below

are exhaustive.

As θ < θ′, π′(s, t) diverges upward from π(s, t) in all the faces where both the paths

follow strictly monotone descent property.

In some faces π′(s, t) goes through equal height but π(s, t) follows monotone descent

property. There also π′(s, t) diverges upward from π(s, t).

In those faces where π′(s, t) and π(s, t) go through equal height, they remain parallel.
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Since π(s, t) has reached t, π′(s, t) will reach somewhere above t in face fm. The similar

argument proves that k 6> k′.

Given a sequence of m faces of a polyhedral terrain bounded by parallel lines, and two

query points s and t, Steps 1 and 2 of the algorithm compute the merging angles and

sort them in O(mlogm) time. Step 3 needs O(1) time. Each iteration of Step 4 needs

O(1) time, and we may need O(n) such iterations for reporting the shortest monotone

descent path from s and t. Thus the time complexity result follows. 2

Below we present an improvement of our algorithm suggested by an anonymous exam-

iner of this thesis.

Note that, the slope of the line segments of shortest monotone descent path πmd(s, t)

in the faces where they are strictly monotone descent, are all equal (see Lemma 6.11.

Let θ be the slope of those line segments. If we can predict the slope θ then we can

detect the faces that are being merged using translation events in merging face. But,

since θ is not known a priori, we choose different values of θ from the array of merging

angles Φ (unsorted) in a systematic manner. Initially, we compute the planar unfolding

of all the faces, and mark s and t in the unfolded plane. We copy the array Φ in a

temporary array Θ; each element of Θ also points to its corresponding face. We execute

the following steps to justify the correctness of our choice. A flag bit is used during the

execution, and is initialized with “0”.

Step 1: Compute θ′ = median of the elements in Θ.

Step 2: Split Θ in two subsets, namely Θ1 = the members in Θ whose values are less than

θ′, and Θ2 = the members in Θ whose values are greater than θ′.

Step 3: Let θ1= maximum element in Θ1 and θ2 = minimum element in Θ2.

Step 4: Execute the translation events for the members in Θ1 as follows:

• If flag = 0, then apply the translation event of all the faces in Θ1.

• If flag = 1, then undo the translation event of all the faces in Θ2. The reason is
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that, the translation event applied on these faces in the previous iteration, is not

required in this iteration.

• Update the location of t in the changed environment.

Step 5: Join s and t by a straight line (in the unfolded plane). Let the angle of this line

is θ̂. Here one of the following three situations may take place: (i) θ̂ ∈ [θ1, θ2], (ii)

θ̂ < θ1, and (iii) θ̂ > θ2.

In Case (i) θ̂ = θ. In Case (ii), θ < θ̂; so, we assign Θ = Θ1, and repeat the same

process with flag = 0. In Case (iii), θ > θ̂; so we assign Θ = Θ2, and repeat the same

process with flag = 1.

Theorem 6.7 The shortest monotone descent path between two query points s and t

through a sequence of m faces of a polyhedral terrain bounded by parallel edges can be

computed in O(m) time.

Proof : At each inductive step, the computation of median among the elements in

Θ needs O(|Θ|) time [51]. The translation events for the faces in Θ1 or the undo of

the translation events for the faces in Θ2 also needs O(|Θ|) time. This computes the

updated position of t also. Since in each iterative step, the size of Θ is reduced by half

of its previous step, the time complexity of the entire algorithm is O(m). 2

6.5 Conclusion

We have proposed polynomial time algorithms for finding the shortest monotone descent

path from a point s to a point t in a polyhedral terrains in two special cases where (i) t

is a point in convex DFR(s), and (ii) the path from s to t passes through a set of faces

bounded by parallel edges. The general problem is still unsolved. Even the shortest

monotone descent path through a given edge sequence is difficult to compute.
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Chapter 7

Conclusion

In this thesis, we studied various facility location optimization problems which have po-

tential applications in several practical problems in wireless communication, operations

research, guard placement, drainage network design, irrigation canal layout, and many

such other problems. Our concentration was mainly focused on the geometric domain,

and the objective was to design simple, efficient and implementable algorithms for those

practical problems. In the first chapter we made a brief survey of the related problems

and highlighted the challenging open problems mentioned in those papers. We could

solve few of those problems. We introduced some new problems in the area of geometric

facility location, and discussed their importance in practical world. Our contribution

in this thesis is mentioned below.

In Chapter 2, we studied the problem of locating the position of a single base station on

the boundary of a convex region in the context of wireless communication. The problem

is important in the sense that sometime some region may be forbidden for installing

the tower of the base-station for wireless communication. But inside this region, mobile

communication is always necessary. So, our objective was to place the base station

at the boundary of that region such that by assigning minimum range to this base

station we can cover the entire region. We considered a simplified version where the



region under consideration is convex. Our proposed algorithm for this problem runs

in O(n) time. An obvious generalization is, instead of one, try to install two or more

base stations having equal range. Here also, the objective is to cover the entire region

with minimum range of the base stations. We could not solve this problem in general.

But, if we have to place two base stations, and the center of these two base stations

are restricted to appear on a specified edge of the polygonal region, the problem can be

solved in O(n) time. As a future work, we either have to prove the hardness result for

the general problem, or to design a polynomial time algorithm.

In the next chapter, we solved the query version of the above problem. Here, the convex

polygon is given; we have to preprocess it such that, we can identify the location of one

base station on the query line segment that can cover the entire polygon with minimum

range. The preprocessing time and space complexities of our proposed algorithm are

O(n log n) and O(n) respectively, and the worst case time required for the query an-

swering is O(log2 n). An interesting problem is to design an efficient data structure and

algorithm that can reduce the query time to O(log n).

Then we considered the problem of finding the location of a guard on the boundary

of a convex polygon P that maximizes the external area that can be covered under L-

visibility, where the length L and the polygon P are supplied as an input. A restricted

version of this problem was already solved in linear time by Gewali et al. [72], where

the length of L is less than half of the perimeter of P . We addressed the same problem

where L is greater than half of the perimeter of P , and proposed a simple algorithm

that runs in linear time.

In the last two chapters, we switched our attention in designing the algorithms for the

following two variations of the shortest path problems on the surface of a polyhedron.

In chapter 5, an efficient and implementable algorithm for computing the approximate

shortest path between a pair of points on the surface of a weighted polyhedron was

proposed. Several algorithms on this problem are already available; but their running

time depend on the geometric parameter of the input polyhedron. We tried to remove
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one among these geometric parameters from the time complexity. But unfortunately

for an arbitrary polyhedron, the approximation factor of our proposed algorithm is

dependent on that geometric parameter. But we showed that, in a restricted case,

where each triangular face is non-obtuse and the perpendicular distance of each side of

from its opposite vertex is less than the length of that side, our algorithm achieves a

solution whose length is at most 2× opt + εnW , where opt is the length of the shortest

path. Thus both the approximation factor and the time complexity of our algorithm

is free from the geometric parameter θ (where θ is the minimum angle incident to the

vertices of all the triangular faces in P ) in the restricted case as mentioned above.

In Chapter 6, we concentrated on the polyhedral terrain, and studied the problem of

designing the shortest monotone descent path from a given source point s. This problem

is very important in the context of irrigation and drainage layout. The general problem

is very hard to solve, and was mentioned as an open problem in [26]. We solved the

problem in two special cases when (i) the terrain is a convex one, and (ii) when the

desired path is searched through a sequence of faces where the two mutually opposite

boundaries of each face are parallel. For the variation (i), the given convex terrain can

be preprocessed in O(n2 log n) time using O(n2) space with respect to a given source

point s such that for any query point t we could report the shortest distance in O(log n)

time. The path itself can be reported in O(log n + k) time where k is the number of

faces through which the shortest path passes. For the variation (ii), we could propose an

O(n log n) time algorithm for finding the shortest path between a pair of points through

a given sequence of faces which are not necessarily in convex position, but are bounded

by parallel edges. The general problem is still unsolved.
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