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Abstract

This thesis reports some new properties, observations, and algorithms on sev-
eral geometric primitives in the digital plane, and their applications to the
analysis of geometric information embedded in a digital image. Points, con-
stituting one such class of primitives, can be used as features for matching
two objects in the digital plane, for which certain intricate issues have been
identified. For performing efficient approximate matching of two sets of points
in the digital plane, a new data structure called angular tree, has been in-
troduced. To speed up the matching, a digital disc can be substituted by a
regular (real) polygon, and consequently, a (digitally) circular range query may
be replaced by the corresponding polygonal range query in an angular tree. It
is shown that such strategy, in turn, expedites the minutia-based fingerprint
matching schemes. Depending on the digital geometric properties of ridge lines
in a fingerprint, a technique to assign a score to the minutia is also proposed
and evaluated. To further demonstrate the capability of a set of points as a
characteristic feature of a digital image, a new algorithm for the detection of
corners along with the directions of incident edges have been reported.

Apart from points, a set of (digitally) straight lines defining the boundary of a
digital image, carries several strong geometric properties. However, in a real-
world image, a “visually straight” digital curve segment is often fragmented
into multiple digital straight line segments (DSS), because of the violation of
the tight DSS requirements. To extract a fewer number of straight pieces, the
concept of approximate DSS (ADSS) has been introduced here by relaxing cer-
tain properties of a DSS. Two algorithms, one for the extraction of ADSS from
a digital curve and another for determining a polygonal approximation of the
curve based on ADSS, have also been described along with their applications.

Next, a few number-theoretic properties of a digital circle have been derived,
which lend new insight to the interpretation, analysis, and construction of a
digitally circular arc. Finally, an application of a cubic curve such as B-spline,
has been studied for the removal of aberrations in a digital curve.

The descriptions of all experiments and the results of investigations have been
reported in the thesis in support of the theoretical findings.
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Chapter 1

Introduction

If geometry were an experimental science, it would not be an exact science,
it would be subject to continual revision . . . the axioms of geometry are only
de�nitions in disguise. What then are we to think of the question: Is Euclidean
geometry true? It has no meaning. We might as well ask if the metric system is
true and if the old weights and measures are false, if Cartesian coordinates are
true and polar coordinates are false. One geometry cannot be more true than
another; it can only be more convenient.

Jules Henri Poincaré
In M. J. Greenberg, Euclidean and non-
Euclidean Geometries: Development and His-
tory (San Fransisco, 1980)

The nine chapters comprising this doctoral thesis present a cohesive study on certain
properties and applications of low-order geometric entities in the digital plane. The work
reported here is relevant to the emergent fields of digital geometry, discrete structures in
the digital plane, digital image processing, feature extraction, and pattern matching. This
chapter summarizes the overall flow of the thesis. Section 1.1 puts forth the motivation
and gives a preliminary discourse of the chapters to follow, Section 1.2 narrates the scope
of the thesis, and Section 1.3 outlines its organization.

1.1 Geometric Primitives in the Digital Plane

Theoretical interpretations and practical applications of the simple yet prevalent geometric
primitives in the digital plane, such as points, straight line segments, circles, cubic curves,
etc., hail long back from their successful realization in electronic display [Aken and Novak
(1985), Foley et al. (1993)]. The evolution of digital paradigms includes several new
theoretical advances, such as:
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(i) digital calculus [Nakamura and Aizawa (1984), Nakamura and Rosenfeld (1997)];
(ii) digital topology [Kong (2001), Kong and Rosenfeld (1996), Rosenfeld (1979)];
(iii) digital geometry [Bertrand et al. (2001), Klette (1982, 2001a,b), Klette and Rosen-

feld (2004a)];
(iv) computational imaging [Asano et al. (2003b), Klette (1982), Klette et al. (1998)];
(v) theory of words and numbers [Asano and Katoh (1993), Klette and Rosenfeld

(2004b), Klette and Žunić (2000), Mignosi (1991)].

Today, with the proliferating digitization of graphical objects and visual imageries [Klette
and Rosenfeld (2004a,b), Rosenfeld and Kak (1982), Rosenfeld and Klette (2001)], the
analytical studies and experimental validation of these geometric primitives have become
indispensable in order to correlate and harness them for efficient real-world applications.

1.2 Scope of the Thesis

In this thesis, we have reported some interesting properties and empirical observations on
several (digital) geometric primitives, namely points, straight line segments, circles, and
cubic curves (B-splines), and studied their usefulness in extracting the inherent geometric
information present in different types of 2D digital images. An appropriate set of primitives
may capture a strong geometric property of the underlying object, and thus can be used for
an efficient high-level description of the object and for subsequent applications involving
the object in the digital plane. Some of these applications abundantly found in today’s
growing digital world are the following:

(i) digital curve drawing and representation [Aken and Novak (1985), Bresenham (1965,
1977), Foley et al. (1993), Kawamura (2003), Klette and Rosenfeld (2004a), Voss
(1991)].

(ii) digital imaging and modeling [Li and Holstein (2003), Tian et al. (2003)];
(iii) image registration [Banerjee et al. (1995), Likar and Pernus (1999), Maintz and

Viergever (1998), Mount et al. (1998), Williams and Bennamoun (2001)];
(iv) shape analysis [Antoine et al. (1996), Bhowmick et al. (2007a), Biswas et al. (2005c,

2007b), Buvaneswari and Naidu (1998), Pavlidis et al. (1997), Rosin (2000, 2003)]
(v) biometrics [Bhowmick and Bhattacharya (2004a), Biswas et al. (2005b), Gao (2004),

Liang et al. (2003), Luo et al. (2000), Maltoni et al. (2003), Manjunath et al. (1992),
Zhang et al. (2002, 2003, 2005)];

(vi) bioinformatics [Hoffmann et al. (1999), Holm and Sander (1996)];
(vii) medical imaging [Likar and Pernus (1999), Maintz and Viergever (1998), Panek and
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Vohradsky (1999)];
(viii) document analysis [Bhowmick et al. (2007c), Das and Chanda (2001), Garris and

Wilkinson (1992), Märgner et al. (2005), Pitrelli et al. (2006), Plamondon and Srihari
(2000), Zhu et al. (2006)];

(ix) image and video retrieval [Biswas et al. (2004, 2007a), Ducksbury and Varga (1997),
Gu and Tjahjadi (1999), Mokhtarian and Mohanna (2002), Wolf et al. (2000)];

(x) human motion analysis [Gleicher (1999), Jobbágy et al. (1999), Richards (1999)];
(xi) vehicle tracking and classification [Coifman et al. (1998), McCane et al. (2002),

Mohanna and Mokhtarian (2003), Smith and Brady (1995), Zang and Klette (2003)].

A set of points in the digital plane often serves as a useful feature in many interesting
applications involving digital images. Matching of one object with another of similar type
can be reduced to the problem of matching the set of points of the former with the latter,
if each object provides suitable characteristic feature points either in the digital plane.
There exist several methods for (exact/approximate) matching of sets of points [Agarwal
and Erickson (1998)], most of which, however, consider matching in the real domain. For
implementation of these real-domain algorithms in the digital plane, therefore, several
complex issues have to be solved. To address some of them, we have introduced in Chap-
ter 2 a novel data structure called angular tree, which is realizable in the digital plane as
well as in the 2D real domain. The proposed tree can be used for approximate matching
of two sets of points in the digital plane efficiently [Bhowmick and Bhattacharya (2007a)].
Such a data structure allows a polygonal range query invoked in the algorithm on point set
pattern matching in the 2D digital space. Interestingly, it has been shown that a digitally
circular range query can be well-approximated by a regular polygon, and so, a circular
range query may be replaced by the corresponding polygonal range query [Bhowmick and
Bhattacharya (2005a)]. Adoption of this strategy expedites the process of approximately
matching two sets of points representing two digital images, and produces the desired
results quickly. The method includes approximating a given digital circle by an enclosing
polygon using some geometric properties of a digital circle [Bhowmick and Bhattacharya
(2005a)] and polygonal range query on the angular tree, following an efficient algorithm
for approximate matching of one set of digital points with another.

To demonstrate the usefulness of point set pattern matching (PSPM), we have con-
sidered two application domains, namely fingerprint matching and corner detection in a
digital object. For example, in characterizing a fingerprint image, one of the important
features is the set of minutiae [Maltoni et al. (2003)], which are merely sparsely occurring
points (pixels) with certain unique characteristics, whereby the problem of identifying or
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matching a fingerprint image has a strong connection with the PSPM in the digital plane.
Such an example showing the correspondence of fingerprint features with the set of digital
points is given in Fig. 1.1, from which it is evident that an appropriate set of points in
the digital plane can truly portray the characteristic features of the underlying object,
thereby facilitating the further operations on the concerned object. It may be noted that
the step-by-step generation of the final set of minutiae and their ridge directions (shown
in Fig. 1.1(d)) from the gray-scale fingerprint image (shown in Fig. 1.1(a)) can be accom-
plished by running a series of procedures, details of which have been discussed in Chapter 3
[Bhowmick and Bhattacharya (2004a), Bhowmick et al. (2002, 2005a), Bishnu et al. (2002,
2006a)].

Another instance of a very pertinent problem on sets of points in the digital plane is
detection of corners present in an image, as illustrated in Fig. 1.2. Given a digital image,
the set of corners (along with directions of their incident edges) associated with the image
is very likely to express the inherent geometry that might characterize a useful feature set
of the image. Hence, detection of corners in a digital image is a contemporary problem
in the area of computer vision. There exist several works and methodologies on corner
detection [Alkaabi and Deravi (2004), Banerjee et al. (2004), Freeman and Davis (1977),
Koplowitz and Plante (1995), Mokhtarian and Suomela (1998), Smith and Brady (1997),
Zheng et al. (1999)]. We have developed and implemented a novel algorithm called CODE

[Bhowmick and Bhattacharya (2004b, 2005b)], details of which are presented in Chapter 4.
CODE can efficiently extract the corners along with directions of their incident edges from
an image, whether gray-scale or binary. Some results on the detected corners and their
incident edge directions obtained by running CODE are shown in Fig. 1.2.

Similarly, for a digital image with fairly straight edges, the set of (exact or approximate)
digital straight line segments (DSS) carries a strong geometric property of the underlying
image. There exist several DSS recognition algorithms till date, which can efficiently
determine the (digital) straightness of a given one-pixel-thick digital curve. On a set
of curves representing a real-life object/image, however, these algorithms often produce a
large number of segments owing to the enforced constraints inherited from the fundamental
properties of DSS. A curve segment that appears reasonably straight but fails to satisfy
all the DSS properties, is fragmented into multiple DSS in these algorithms.

In Chapter 5 of this thesis, we have introduced the novel idea of extracting approximate
digital straight line segments (ADSS) from a digital curve by relaxing certain digital
geometric properties of DSS. In many instances, a long portion of the curve that looks
visually straight, may fail to satisfy all the necessary conditions of being a single DSS,
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(a) An 8-bit gray-scale image of a fingerprint. (b) Minutiae and ridgelines detected in the

fingerprint after processing and analyzing

the gray-scale image.

(c) Minutiae are digital points, and the ridge-

lines are digital curves, which can suffi-

ciently convey the information present in

the gray-scale fingerprint image.

(d) Further simplification of the feature set

consisting of the minutiae coupled with

ridgelines is achieved by considering the

orientation(s) of the incident ridgeline(s)

for each minutia.

Figure 1.1: The set of minutiae (along with the ridge orientations) is merely a set of digital
points that describes an effective set of features corresponding to a fingerprint image.

and hence is fragmented into multiple DSS. We have shown that the number of ADSS
extracted from a real-world digital curve is remarkably fewer than that of DSS. A low-
level algorithm to extract the segments that are approximately straight from a given set
of digital curves is also presented so that the output complexity (i.e. number of extracted
segments) is appreciably lesser than that of (exact) DSS.

Further, in Chapter 5, we have proposed an algorithm for polygonal approximation of
the ADSS obtained from a given digital curve. Since the set of ADSS provides a fairly
correct approximation of the input curve, it produces the desired approximate polygon
corresponding to the input curve based on a specified error tolerance and an approxima-
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Figure 1.2: Corners and directions of their incident edges in a gray-scale image.

tion criteria. The overall time complexity being strictly linear in the number of points
constituting the input digital curve, and since all computations involve primitive integer
operations only, the entire process has been found to be very fast, efficient, and robust,
as evident from the experimental results reported in that chapter. An application of the
proposed method has been shown in Fig. 1.3, which depicts a polygonal approximation of
a real-world digital curve defining the edge map of a “pyramid” image.

It may be noted in this context that several other methods [Chen and Chung (2001b),
Climer and Bhatia (2003), Guru et al. (2004), Xie and Ji (2001)] have been proposed
earlier for (approximate) line detection. However, the major difference of our method
from the others lies in exploiting fundamental properties of DSS, whereas, the existing
methods mostly used parametric approaches, such as distance criteria, usage of masks,
eigenvalue analysis, Hough transform, etc.

After analyzing digital line segments, we have studied certain aspects of a digital circle.
Several new number-theoretic properties of a digital circle are discussed in Chapter 6,
which may have significant impact on the construction and analysis of a circular arc in the
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(a) An 8-bit gray-scale “pyramid”. (b) The edge map of “pyramid” is considered

to be a real-world digital curve. Note

that the edge map is subject to the pa-

rameter(s) specified in the edge extrac-

tion algorithm.

(c) Polygonal approximation of the edge

map in (b) with the vertices shown in

red color and the edges in blue color.

(d) Polygonal approximation superimposed

on the original gray-scale image shows

how well our algorithm can approximate

a real-world image.

Figure 1.3: Polygonal approximation of an image “pyramid”.

digital plane. For instance, we have shown that the squares of abscissas of equi-ordinate
grid points defining the circumference of a digital circle of a given radius r, lie in a unique
interval (of positive integers), decided by the corresponding ordinate, and of course, by
the radius of the concerned circle; also, the run length (i.e., the number) of grid points
with ordinate j− 1 never exceeds by more than one, the run length of its grid points with
ordinate j.

The number-theoretic analysis, laid down in Chapter 6, establishes the relation of a
digital circle with the distribution of square numbers in discrete intervals. This provides a
new way of understanding a digital circle concerning its visualization and characterization.
Further, two simple algorithms for construction of a digital circle, based on number-
theoretic concepts, have been developed, both of which use a few primitive operations only,
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and are completely free from any floating-point operation. Several illustrations and test
results have been furnished that elucidate the analytical power and algorithmic efficiency
of the proposed approach. It has been also shown, how and why, for sufficiently high
radius, the number-theoretic technique would expedite a circle construction algorithm
significantly.

Regarding the polygonal approximation of a digital circle, we show that an ideal (regu-
lar and convex) polygon corresponding to a digital circle is possible for some of the digital
circles, especially for the ones having smaller radii. For a circle whose ideal regular poly-
gon does not exist, an approximate polygon, tending to the ideal one, can be constructed,
in which the error of approximation can be controlled by the number of vertices of the
approximate polygon. These results have been reported in Chapter 7. Polygonal enclo-
sures of digital circles have several applications in approximate point set pattern matching.
One such application is circular range query in the digital plane using angular tree, which
we have discussed in Chapter 2. We have reported the conditions under which an ideal
regular polygon certainly exists corresponding to a digital circle, and also the cases for
which the existence of an ideal regular polygon becomes uncertain. Experimental results
demonstrate the possibilities of approximation and the trade-off in terms of error versus
approximation.

In Chapter 8, we have shown how a higher order curve, such as B-spline, can be used
to aid the smoothing/processing of a digital curve. Such operations are often needed in
several applications where digital curves play crucial roles. One such application where
the digital curve (in the form of a fingerprint ridgeline) plays a significant role is the Au-
tomatic Fingerprint Identification System (AFIS). Most of the existing AFIS still suffer
from improper treatment of poor quality fingerprint images. Several fingerprint image en-
hancement techniques are well known that aim at rectifying the deformities in a fingerprint
image.

The work in Chapter 8 deals with one such problem besetting fingerprints — that of
eliminating digital aberration. The proposed method, in short, mainly involves fitting of
B-splines for a set of control points chosen appropriately for each ridgeline in a fingerprint
image; and these fitted splines, in turn, output a less distorted, if not undistorted, view of
the concerned fingerprint. Experimental results on several databases have been presented
that justify the strength and elegance of the proposed algorithm.
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1.3 Organization of the Thesis

Keeping in view the order of the geometric primitives, namely points, line segments, cir-
cles, and cubic curves, we have organized the rest of the thesis as follows. In Chapter 2, we
deal with sets of points in the digital plane, and show the construction and the usage of an
angular tree in the polygonal range query on a set of points in the 2D plane [Acharya et al.
(2003a), Bhowmick and Bhattacharya (2004a, 2005a, 2007a)]. In Chapter 3, we show
how the minutiae comprise a representative set of digital points in a fingerprint image for
fingerprint matching [Acharya et al. (2003b, 2004, 2006), Bhowmick et al. (2002, 2005a),
Bishnu et al. (2002)]. In Chapter 4, we describe how the corners can be extracted in the
form of digital points in the case of a general image [Bhowmick and Bhattacharya (2004b)].
In Chapter 5, we discuss in brief a few digital-geometric properties of a digital straight
line segment (DSS), and show how these properties can be relaxed to define a new concept
of approximate digital straight segments (ADSS), and subsequently, how the latter can
be exploited to approximate a digital curve by a polygon using an approximation param-
eter [Bhowmick and Bhattacharya (2007b)]. Chapter 6 focuses on some number-theoretic
properties of a digital circle, which, can be used to develop an alternative algorithm for
constructing a digital circle [Bhowmick and Bhattacharya (2006a)]. In Chapter 7, the
feasibility and accuracy of polygonal approximation of a digital circle have been stud-
ied [Bhowmick and Bhattacharya (2005a)]. These results are needed to substantiate the
polygonal range query as discussed in Chapter 2. Chapter 8 presents how B-splines can
be used for smoothing fingerprint ridges, before invoking an automated fingerprint iden-
tification system [Bhowmick and Bhattacharya (2006b)]. Finally, in Chapter 9, we draw
the concluding notes on the summary of this thesis, and discuss future directions.





Chapter 2

Sets of Points and their Approximate Matching

in the Digital Plane

It is the mark of an instructed mind to rest assured with that degree of precision
that the nature of the subject admits, and not to seek exactness when only an
approximation of the truth is possible.

Aristotle

2.1 Introduction

Approximate Point Set Pattern Matching (APSPM) is a challenging problem that has
numerous interesting applications in the digital plane. Some of these applications are as
follows:

(i) image registration [Banerjee et al. (1995), Likar and Pernus (1999), Maintz and
Viergever (1998), Mount et al. (1998), Williams and Bennamoun (2001)];

(ii) model-based object recognition [Baird (1985), Eric and Grimson (1990)]
(iii) biometrics, e.g. fingerprint matching [Bhowmick and Bhattacharya (2004a), Jain

et al. (1997), Jiang and Yau (2000), Luo et al. (2000), Maltoni et al. (2003)];
(iv) bioinformatics, e.g. protein structure and function determination [Hoffmann et al.

(1999), Holm and Sander (1996)];
(v) medical imaging [Likar and Pernus (1999), Maintz and Viergever (1998), Panek and

Vohradsky (1999)];
(vi) human motion representation for gait analysis, sports studies, animation, computer

games, etc. [Gleicher (1999), Jobbágy et al. (1999), Richards (1999)];
(vii) digital imaging and modeling [Li and Holstein (2003), Tian et al. (2003)];
(viii) drug design [Finn et al. (1997)];
(ix) vehicle tracking [Coifman et al. (1998)].
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(b) with transformation.

Figure 2.1: Approximate matching of two sets of points in 2D (real) plane.

The underlying abstract problem of APSPM may be envisaged as follows. If a board
has some pins randomly fixed on it (background set, Q), and another has some randomly
located holes (pattern set, P ), then, using the term “board” synonymously with the term
“set of points”, the APSPM problem is to check whether the board P can somehow be
placed on the board Q so that in each hole of P , we can see exactly one pin of Q.

If no transformation is allowed, then checking for a match simply means that we have
to place the board P over the board Q, and count the number of holes containing one pin
each (Fig. 2.1(a)). Finally, (approximate) matching decision can be taken based on the
number of holes containing the pins. For matching under transformation, the board P

has to be translated and/or rotated appropriately so as to maximize the number of holes
containing pins (Fig. 2.1(b)).

In a discrete domain, the location of each pin in Q is constrained by its integer coordi-
nates, and each hole in P is a digital disc having integer radius and a center with integer
coordinates. Further, for faster query processing, each digital disc may be replaced by a
suitable regular (real) polygon with its center coinciding with the center of the correspond-
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ing disc. The regular polygon should be such that it should not produce a matching result
different from the one obtained with the digital disc. This can be guaranteed if and only if
there exists no grid point in the digital disc that lies outside the polygon, and conversely,
there exists no grid point outside the digital disc that lies on or inside the polygon. Such a
polygon is called “ideal”. In Chapter 7, we have shown that an ideal regular polygon cor-
responding to a digital disc is analytically possible for some of the digital discs, especially
for the ones having lower radii; for larger digital discs, approximate polygons, tending to
ideal ones, are possible, which would have very low error rates. The usage of a regular
polygon instead of a digital disc for range query on a digital plane simplifies and expedites
the process. Polygonal range query can be efficiently serviced by using an angular tree,
a new data structure, which is introduced in this work. The proposed angular tree is
marked by its admissibility to a query on the 2D plane using any convex query polygon
of arbitrary shape and size. We have also shown that, for a query in set Q containing
n points using such a query polygon having an arbitrarily large number of vertices, the
worst-case time complexity of the proposed range query is bounded by O(n), and hence,
asymptotically independent of the complexity (i.e., number of vertices) of query polygon.
For a smaller size query polygon, of course, the query time is less, and is bounded by
O(log n).

In this work, we have chosen a regular (convex) polygon instead of a (general — regular
or irregular) convex polygon to approximate a digital disc in order to substitute a circular
region of query by a polygonal range query, since the former offers some symmetry (in
resemblance to the 8-axis symmetry of a digital disc) as opposed to the latter. In fact, we
have used a regular 2k-gon (k ≥ 2) to implement our APSPM algorithm, since each edge
e of a regular 2k-gon has a symmetric edge e′ in the same direction as that of e. This, in
effect, reduces the dimensionality of the associated angular tree (when k ≥ 3), and hence
reduces subsequent computations because of fewer transformed axes (as the directions of
the axes are given by those of the edges of the query polygon). Thus, a polygon with an
even number of vertices is easy to handle.

For better approximation of the digital disc, the number of vertices of the regular
polygon may be increased for improved matching. However, the space and time complex-
ities of the allied algorithms and the dimensionality of the supporting data structures will
increase significantly. Having an approximating regular polygon with fewer vertices (with
a trade-off on the acceptable error part) will simplify the query process and expedite the
subsequent matching process with desired accuracy. In most of the practical applications
related to digital images, the circular ranges used in approximate matching are found to
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have reasonably small radii. Thus, an approximating polygon requires only a few vertices
to achieve a desired level of matching accuracy. For instance, in fingerprint matching
[Bhowmick and Bhattacharya (2004a), Bhowmick et al. (2005a)] using the algorithms of
APSPM, the circular range query is evoked for a circular range with radius not exceeding
10 pixels, which can be “ideally” replaced by a regular polygon.

Several methods on APSPM are available in the literature, most of which aim at match-
ing in the real domain. Discussions on these algorithmic techniques for shape matching,
simplification, and morphing using range search may be found in the survey paper by
[Agarwal and Erickson (1998)]. Typically, rectangles, half-spaces, simplices, or balls are
used for range queries. Implementations of these real-domain algorithms in the digital
plane, however, pose difficult problems because of the complexity of the underlying data
structures, which have to be tailored appropriately to suit the digital domain. A few em-
pirical methods for geometric pattern matching algorithms in the digital space have been
reported earlier [Hagedoorn and Veltkamp (1999), Huttenlocher and Rucklidge (1993),
Mount et al. (1998)], which are usually based on an exhaustive search of the transforma-
tion space with suitable pruning techniques.

In this chapter, we present a novel data structure called angular tree that can be
deployed in the 2D digital space (and in the 2D real space also, if required) and whose
(angular) precision can be controlled depending on the requirement of the application.
The angular tree can be used for (regular) polygonal partitioning of 2D digital points to
enable the circular range query required for the algorithm on APSPM in the digital plane.
Since it has been shown [Bhowmick and Bhattacharya (2005a)] that a digitally circular
range query can be well-approximated by a regular (real) polygon in 2D, a circular range
query may be replaced by the corresponding polygonal range query, thereby producing the
desired results of approximate matching (of sets of points) for practical applications related
to digital images. The process of matching has been further expedited by consideration of
the farthest point pair (as the first correspondence between two sets of points) for initial
anchoring, whose rationale is also given in this chapter. Relevant discrete structures
and methodologies of computational geometry have been used along with some geometric
features of digital discs for successful realization of the APSPM algorithm.

A short schematic diagram of our solution to the APSPM problem has been shown
in Fig. 2.2 on a small instance of the pattern set and the background set. Here the
approximation parameter is ε = 3, which is the radius of the circular region/disc centered
about the concerned point of the set of points in the digital plane. The pattern set P

contains 9 points (shown in small black disks) and the background set Q contains 10
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Figure 2.2: A small instance demonstrating our matching scheme for approximation pa-
rameter ε = 3.

points (shown in small green squares). The points of both P and Q have been labeled
with their index numbers increasing from left to right just for sake of easy readability.
In the actual problem, however, the points of P and Q are arbitrarily numbered. After
anchoring the farthest point pair 〈p1, p9〉 of P with (the ε-neighborhood of) the point pair
〈q2, q10〉 of Q, each other point of P is searched in Q using a (regularly shaped) polygonal
(hexagonal in this instance) range query that replaces the corresponding (digital) circular
range query in the set Q. Each circular/polygonal range is defined with the corresponding
point of P as center. The polygonal range query in Q is realizable by the angular tree
defined on Q proposed in this chapter (not shown in this diagram). It may be noticed
that there may be some point (p3) in P for which the (circular range) query does not
return any point from Q. There may be also some point (p2) in P for which the query
may return multiple points (q3 and q4) from Q, or there may be multiple points (p6 and
p8) in P returning the same point (q9) from Q. We have considered all these cases with
proper treatments in our algorithm.

The rest of the chapter is organized as follows. We start with the discussion on how
to approximate a digital disc of given radius by a tight (regular) enclosing polygon in
Sec. 2.2. Section 2.3 elucidates the method of approximate matching of sets of digital
points. In Sec. 2.4, the angular tree and the circular range query in 2D digital space have
been described. Experimental results have been demonstrated in Sec. 2.5. Conclusions
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and discussions on future directions appear in Sec. 2.6.

2.2 Approximation of a Digital Circle by a Regular Polygon

An efficient approximation of a real circle from the continuous domain to the digital do-
main owes its origin to the early adoption of scan-conversion technique (Chapter 6 and
Chapter 7). In a recent work [Bhowmick and Bhattacharya (2005a)] that explores and
exhibits the subtleties and various possibilities on approximation of a digital circle by a
(real) regular (convex) polygon, we have shown that such ideal regular polygons are ana-
lytically possible for some of the digital circles, especially for the ones having lower radii;
and for circles with higher radii, ideal regular polygons are rarely possible. However, in
reality (as revealed by exhaustive procedural results), approximate polygons, tending to
ideal ones, are possible, which would have very low error rates. In Chapter 7, we have
reported the conditions for which an ideal regular polygon definitely exists corresponding
to a digital circle, and the conditions under which the existence of an ideal regular polygon
becomes uncertain. Furthermore, when the complexity (i.e., number of vertices) of the
ideal regular polygon is high, or when an ideal regular polygon does not exist, a regular
polygon with smaller number of vertices can be a useful approximation of the ideal reg-
ular polygon, which have been discussed and substantiated with necessary experimental
findings in Chapter 7.

A pertinent question in the context of this work is whether there always exists such
a regular polygonal enclosure for a digital circle CZ(α, ρ). As shown by Bhowmick and
Bhattacharya (2005a), a regular polygonal enclosure for CZ(α, ρ) certainly exists, provided
there exists a grid point µ in CZ(α, ρ) such that µ has simultaneously maximum isothetic
distance, namely δµ, and maximum radial distance, namely εµ, from CR(α, ρ). Here, the
isothetic distance of µ from CR(α, ρ) is given by the minimum between the horizontal
distance and the vertical distance (in Euclidean metric space on R2) of µ from CR(α, ρ),
whereas, its radial distance indicates its (Euclidean) distance from CR(α, ρ). In short, if
there exists a grid point µ ∈ CZ(α, ρ), such that δµ = max

{
δν : ν ∈ CZ(α, ρ)

}
and εµ =

max
{
εν : ν ∈ CZ(α, ρ)

}
, then the existence of a regular polygonal enclosure for CZ(α, ρ)

is certain; otherwise it is uncertain. In Chapter 7, we have given some experimental
results on (exact/approximate) polygonal enclosures of digital circles, which testifies the
feasibility of replacing a (digitally) circular query by a regular polygonal range query for
effectuating an efficient APSPM algorithm in 2D digital space, as explained in Sec. 2.3.

Since it has been shown that for all digital circles, especially for most of the circles
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with radii exceeding 10 units, ideal enclosing polygons are not possible, but very good
approximate polygons with minor error margins are possible, specifying a proper shape
(i.e., number of vertices) of the approximate polygon is important. The permissible error
in the process of approximation, as explained in and testified by the error distribution plot
in Chapter 7, indicates the number of vertices of the approximate polygon. That is, given
the radius (ρ := ε)1 of a digital circle and the error incurred in approximating the digital
circle by a regular polygon, we can determine the number of vertices (which is 2k for even
number of vertices of the respective polygon.

2.3 APSPM in 2D Digital Plane

In Approximate Point Set Pattern Matching, given two sets of points, P and Q, the
problem is to find a transformation, matching each point p ∈ P into the ε-neighborhood
(ε > 0) of some unique point q ∈ Q. It has two broad variations, namely (i) pattern
matching problem and (ii) largest common point set problem. In a pattern matching
problem, given two sets of points, P and Q, where |P | = m, |Q| = n, with m 6 n and
ε > 0, it is required to find a transformation T such that |d(T (P ), Q)| 6 ε. On the other
hand, in a problem involving the largest common set of points, it is required to find a
transformation T and a set P ′ ⊆ P , such that |P ′| > nmin and |d(T (P ′), Q)| 6 ε. For
these two problems, T is the required transformation given to P , T (P ) is the transformed
set of points after applying the transformation T to P , and |d(T (P ), Q)| denotes the
maximum distance in the set of distances between the corresponding points of T (P ) and
Q.

If ε = 0, then each of the above problems reduces to Exact Point Set Pattern Matching
(EPSPM); otherwise, ε is a positive quantity, and the problem is referred to as Approxi-
mate Point Set Pattern Matching (APSPM) under ε. Each of the above problems again
can have two different variations, namely the decision problem and the optimization prob-
lem. In the case of a decision problem, the value of ε is supplied, and the output of the
program is either a “match” or a “mismatch”, depending on whether or not the two sets
of points approximately match for the given value of ε. On the contrary, the optimization
problem determines the optimized value of ε, so that P and Q match approximately under

1ρ is used to represent the radius of a digital circle in this Section, whereas ρ is replaced by ε in the

subsequent Sections, since the latter is conventionally used to indicate the measure of approximation point

set pattern matching (APSPM), and we use this to define the radius of a digital circle involved in the

approximation procedure.
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ε. In this chapter, we focus on the decision version of the APSPM problem, with references
to EPSPM depending on the relevance.

2.3.1 Existing Algorithms

Several methods have been developed in the past for solving the pattern matching problem.
It is not difficult to design and implement a polynomial time algorithm for EPSPM under
rigid motion, but the challenge lies in the APSPM version. A brief overview of some
existing algorithms for both types of pattern matching is given below.

2.3.1.1 String Matching Algorithm

A problem on EPSPM can be easily reduced to string matching, provided both P and
Q have the same number of points, say n. In the literature, there exist several forms
of this class of algorithms with O(n log n) time complexity, proposed independently by
several authors [Atkinson (1998), de Rezende and Lee (1995)]. In this approach, the polar
coordinates of the points in P and Q with respect to their geometric centroids are used to
prepare the corresponding ordered lists (i.e., lexicographically sorted sequences — angle
first, distance second), say LP and LQ, to find out the exact match between P with Q,
by checking whether LQ is a substring of LP (under any cyclic shift), using a fast string
matching algorithm. It is easy to see that P and Q are exactly congruent if and only if
the algorithm gives a positive answer.

2.3.1.2 Alignment Scheme in EPSPM

In the alignment scheme [Bishnu et al. (2003, 2006b)], the number of points in the two
sets P and Q, namely m and n respectively, are not necessarily equal; wherefore, w.l.o.g.,
if m 6 n, then P ⊆ Q is considered as a valid match, which is an improvement over the
algorithm based on string matching (Sec. 2.3.1.1). In the alignment scheme, the Euclidean
distances for all point pairs in the background set Q are stored in an ordered list (primary
data structure); moreover, for each point q of Q, the distances of all other points of Q

from q are stored in a separate ordered list (secondary data structure). During matching,
an arbitrary point pair of P is aligned with each of the k matching point pairs of Q,
as found from the primary structure. After applying the necessary transformation to P ,
if the (transformed) points of P are found to match with points of Q, which is verified
from the secondary structure, then Q matches with P under the transformation. On the
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contrary, if no such transformation exists, then Q is said to have no match with P . In this
method, the construction of the primary and secondary data structures needs O(n2 log n)
time, whereas, the time complexity of the (successful or unsuccessful) matching process is
bounded by O(km log n) = O(mn4/3 log n), since the maximum number k of a particular
Euclidean distance present in Q is bounded by dn4/3e [Szekely (1997)].

2.3.1.3 Alignment Scheme in APSPM

Different alignment schemes for problems on APSPM have been reported earlier [Alt et al.
(1988), Arkin et al. (1992), Erafat and Itai (1996)]. In an alignment scheme, given ε as
the Euclidean tolerance for matching under arbitrary rigid motions between the sets of
points, P and Q, a valid matching of P with Q is said to exist, provided each point in P

lies in the (ε-) neighborhood of some point in Q. Mapping two points p, p′ ∈ P onto the
(circular) boundaries of q, q′ ∈ Q leaves one degree of freedom, which is parameterized by
the angle φ ∈ [0, 2π) between the vector from q to p and the horizontal line through q.
If we consider any other point p′′ ∈ P , then p′′ will trace an algebraic curve of degree 6
that may intersect the boundary of the disc of radius ε with center at some point q′′ ∈ Q

at most 12 times. Thus, there can be at most 6 intervals of the parameter φ for which
p′′ lies in the neighborhood of q′′. The parameter space [0, 2π) is, therefore, partitioned
into O(n2) intervals, each interval corresponding to a unique point pair in P , so that for
all φ in one interval, the points of P are mapped into the neighborhoods of points in Q.
All these relationships are represented as edges in a bipartite graph whose two sides of
nodes are Q and P . The decision problem has a positive solution exactly, if there is some
φ for which the corresponding graph has a perfect matching. This is checked by finding
the graph for the first sub-interval of [0, 2π) and constructing a maximum matching for
it. Next, while traversing the sub-intervals from left to right, the maximum matching is
updated until a perfect matching is found or it turns out that none exists.

Apart from the fact that the total running time of the above algorithm is O(n8),
determining the intersection points of the curve of degree 6 with circles poses nontrivial
numerical problems. For easier variations of the one-to-one matching problem, simpler and
faster algorithms were found; e.g., for the case of translation only, geometric arguments
have been used by Erafat and Itai (1996), whereas in the algorithm proposed by [Arkin
et al. (1992)], the ε-neighborhoods of the points are assumed to be disjoint. In addition
to these algorithms, there are also several others based on the alignment scheme, such as
Basic Alignment [Goodrich et al. (1994)], Multiple Grid [Indyk et al. (1999)], a comparative
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study of which appeared in the survey paper by Alt and Guibas (1996).

2.3.1.4 Hausdorff Metric

A widely used metric for approximate matching of one set of points with another is the
Hausdorff distance [Huttenlocher and Rucklidge (1993), Huttenlocher et al. (1992), Mount
et al. (1998)]. Given two sets of points, P and Q, the Hausdorff distance from P to Q

is given by h(P, Q) = max{min{d(p, q) : q ∈ Q} : p ∈ P}, where d(p, q) is the Euclidean
distance between points p and q, and the number of points in P does not exceed that in
Q. Thus, h(P,Q) denotes the smallest amount by which we need to “grow” the points of
Q in order that all points in P are covered by the grown set. Hence, given two sets of
points, P and Q, and the space of transformations Γ , P is said to match with Q within a
tolerance parameter ε, provided h(Γ )(P, Q) = min{h(T (P ), Q) : T ∈ Γ} 6 ε.

For approximate matching under arbitrary rigid motion, the concept of a “dynamic”
Voronoi diagram is used [Huttenlocher et al. (1992)], which is the subdivision of the 3-
dimensional space-time whose cross section at a time t equals the Voronoi diagram at
t. The upper bound on the complexity of the dynamic Voronoi diagram, hence obtained
from the number of topological changes undergone by the Voronoi diagram with passage of
time, is subsequently used to show that the time complexity of an optimal match between
two sets of points using Hausdorff distance is O((m + n)6 log (mn)).

2.3.1.5 β-approximate Pattern Matching

In the framework of β-approximate pattern matching [Heffernan and Schirra (1994)], for
a given tolerance ε > 0, the approximate congruence between P and Q is defined as
max

(
h(Γ )(P,Q), h(Γ )(Q,P )

)
. The process of approximation is relaxed by allowing to

“give up”, if ε is found to be “too close” to ε∗ = h(Γ )(P, Q) at any point of time, which,
however, may incur a large computing time in case of no approximation. Further, an
extra parameter, namely β > 0, that corresponds to the accuracy of approximation is
required to take the matching decision of P with Q as follows: (i) if ε∗ 6 ε, then return
a transformation T ∈ Γ , such that h(T (P ), Q) 6 (1 + β)ε; (ii) if ε < ε∗ 6 (1 + β)ε,
then return the required transformation T ; (iii) if ε∗ > (1 + β)ε, then return none. The
rationale is based on the fact that, determining an answer close to optimal is harder than
determining an answer that is further away. Hence, if ε∗ lies in the given approximation
range [ε∗, (1+β)ε], then this approach gives an answer close to the prescribed error bound.
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There exist several other techniques for solving APSPM and related problems. For
example, Parui et al. (1993) constructed the digital Voronoi diagram of a set using Eu-
clidean distances between pairwise points/pixels of an image. From this diagram a certain
planar graph is constructed, which is a subgraph of the Delaunay triangulation of the set
of points. Finally, the shape of the set of points is computed as a subgraph of the planar
graph.

2.4 Proposed Method

We have proposed here a novel algorithm on APSPM in 2D digital space that extends
the conventional orthogonal range query (e.g., kd-tree [Bentley (1975, 1979), Berg et al.
(2000)]) to a (digitally) circular range query. The circular range query, in turn, can be
replaced by a (regular and convex) polygonal range query, where the polygon (in R2) may
be judiciously selected depending on the value of the digital tolerance ε := ρ, since a digital
disc of radius ρ can be replaced by a suitable regular polygon, as explained in Sec. 2.2.

The proposed algorithm uses the angular tree, denoted as Tθ(Q), defined on a set
of points, Q := {q1, q2, . . . , qn} ⊂ Z2, that augments the structure of a kd-tree [Bentley
(1975)] as follows. A kd-tree refers to a k-dimensional tree. If a set of points is defined
in 2-dimensional space (real or digital), then a kd-tree is a balanced tree, meant for
answering 2-dimensional orthogonal range query. Now, given the set of points Q, the kd-
tree defined on Q permits us to search for points contained within a specified orthogonal
box. Since we need circular range query in Q, where the number of vertices of the regular
polygon that replaces a (digital) disc of radius ε depends on ε and the desired degree of
precision associated with the query, we require angular tree Tθ(Q) to suit our purpose.
The speciality of Tθ(Q) is that it accepts all possible values of k(> 2) for a 2k-gonal range
query in Q. For instance, if k = 3, then we can search for points in Q within a (regular)
hexagonal region. Here, θ indicates the internal angle of the respective query polygon in
the corresponding tree Tθ(Q); that is, θ = ((k − 1)/k) 180o. Hence, specifying the value
of k as well describes (dimensionality of) Tθ, wherefore we have used k synonymously with
θ in the subsequent discussions.

2.4.1 Construction of Angular Tree

To illustrate the construction of an angular tree and associated operations, we first start
with k = 2, and then go for the generalization. For k = 2, we split the given set of points,
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Figure 2.3: A set of points, Q, and its corresponding angular tree, Tθ, for θ = 90o(k = 2).

Q of n points, by a horizontal (median) line at the root (depth = 0) of the tree into two
subsets, namely Q1 and Q2, whose sizes differ by at most unity. The splitting line being
stored at the root, and Q1 and Q2 being stored in the respective left and right sub-trees
of the root, Q1 and Q2 are subsequently partitioned recursively by appropriate vertical
and horizontal (median) lines alternately to obtain the desired Tθ for k = 2. Thus, for
k = 2, we split a region by a horizontal line (i.e., 0o line) at a node if its depth is even,
and by a vertical line (i.e., 90o line) at a node if its depth is odd. The general structure of
Tθ for k = 2 is shown in Fig. 2.3, where R1 and R2 represent the respective left and right
sub-trees of Q2 (R1 is shown in detail and R2 is similar). It is easy to observe that, for
k = 2, Tθ is structurally same as the corresponding 2-dimensional kd-tree.

In general, if the splitting line be inclined at an angle φ with the horizontal line, then
at depth d, we have φ = (d mod k) × (180/k). For example, for k = 3, we split a set of
points, Q, by a 0o line at depth d = 0 (root), by a 60o line at d = 1, by a 120o line at
d = 2, by a 0o line at d = 3, by a 60o line at d = 4, and so on. The angular tree for k = 3
corresponding to a small instance of the set of points, Q, is shown in Fig. 2.4. If a point q

lies exactly on the median line, then q belongs to one of the two subsets of the partition,
which is shown by turning the median line around q towards the region in which it is
included, for sake of clarity. The dashed lines indicate the limiting lines of region(root)
associated with the root node of Tθ(Q); and the points {vt : 1 ≤ t ≤ 2k = 6} denote its
vertices obtained from the intersections of these limiting lines (Sec. 2.4.2).

The algorithm Build-Angular-Tree for construction of Tθ(Q) for any given value
of k > 2 is shown in Fig. 2.5. In order to accelerate the repetitive procedure of median



2.4 Proposed Method 23

x max
(1)

x min
(1)

x min
(2)

x max
(2)

x max
(3)

x min
(3)

v2

v3v4

v5

v1v6

l3

l4

l5

l6

l8
q3

q5

q12

l7

q1

l9

q10 q9 q7

q2

l1

l10l11

q11

q8

q4

q6

l2

l2 l3

l1

l7l4

q2 q4 q7 q8 q10 q11

q12l11

l6

l10 q9q6

l5

q5

l9q3

q1

l8

Figure 2.4: The angular tree Tθ(Q) for θ = 120o(k = 3) corresponding to Q containing 12
points on 2D grid.

extraction in Step (5) of the algorithm Build-Angular-Tree, we have pre-sorted the
points of Q in k ordered lists, namely Lφ(Q) for φ = 0, ϕ, 2ϕ, . . . , (k − 1)ϕ, where ϕ =
180/k. Each list Lφ(Q) stores the points in nondecreasing order of their projections
(transformed coordinates) along the line (transformed axis) at an angle of 90o+φ measured
w.r.t. +x-axis in the counterclockwise direction. So, the overall time complexity for the
entire preprocessing (i.e., pre-sorting) phase is T1 = k ×O(n log n) = O(kn log n).

It may be observed that each of the recursive calls for building the left and the right
subtrees (Steps 7 and 8 in Fig. 2.5) has an input set containing at most dn/2e points,
and that all other operations (including the median finding on a pre-sorted list) require
constant time. Hence, after preprocessing, the time to construct Tθ is given by
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Algorithm Build-Angular-Tree (Q, d, k)
Input: set Q, current depth d, number of directions k.
Output: the root of Tθ(Q).
Steps:
1. if Q contains only one point
2. then return a leaf storing this point
3. else
4. φ ← (d mod k)× (180/k)
5. find the median line λφ from Lφ(Q)
6. split Q into Q1 and Q2 by λφ

7. ν1 ← Build-Angular-Tree (Q1, d + 1, k)
8. ν2 ← Build-Angular-Tree (Q2, d + 1, k)
9. create a node v storing λφ

make ν1 the left child and ν2 the right child of ν

10. return ν

Figure 2.5: Algorithm for constructing the angular tree Tθ(Q) corresponding to the set of
points, Q.

T2(n) =

{
O(1) if n = 1,

O(1) + 2T2(dn/2e) if n > 1,

which solves to O(n); wherefore, after including the preprocessing time, the total com-
plexity for building Tθ(Q) containing n points, is given by T (n) = T1(n) + T2(n) =
O(kn log n) + O(n), or, T (n) = O(kn log n). However, it may be noted, if we do not use
any pre-sorting (of the projections of points in Q) for median finding in Step 5 of the al-
gorithm, then each recursive call in Step 5 requires O(n) time, using the worst-case linear
time median finding algorithm [Cormen et al. (2000)]. Hence, T2(n) follows the recursive
equation T2(n) = O(n) + 2T (dn/2e) if n > 1, or T2(n) = O(n log n), thereby giving total
complexity for building Tθ(Q) as T (n) = T2(n) = O(n log n).

Regarding storage, it is easy to observe that at each step of the algorithm, a region is
recursively split into two subregions (subtrees) whose numbers of points differ by at most
unity. The height of Tθ(Q) is, therefore, bounded by O(log n), whence the total number of
(internal and terminal) nodes is O(n). Hence follows the following theorem on time and
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space complexities of the angular tree.

Theorem 2.4.1 An angular tree Tθ(Q) for a set of points, Q of n points, needs O(n)
space, and the tree can be constructed in O(n log n) time with no preprocessing, or al-
ternatively, in O(kn log n) time with preprocessing for pre-sorting the points w.r.t. their
transformed coordinates.

For a given value of k, it is evident that the entire process of building the angular tree
Tθ(Q) needs O(n log n) time, which is independent of k (and independent of preprocessing,
thereof). Hence, in our implementation, we have incorporated the preprocessing phase
in building Tθ(Q). Without preprocessing, the construction of Tθ(Q) needs linear-time
median finding algorithm, which is, however, computationally effective only when n is
sufficiently large — e.g., when n is 2048 or more as found in our implementation. This
is due to large values of the hidden constants associated with the running time of the
algorithm having inherent procedural complexities.

2.4.2 Searching in an Angular Tree

For k = 2, searching of points would be done in Tθ inside a rectangular boundary. Similarly,
for k = 3 or k = 4, a searching has to be performed in a hexagonal region or an octagonal
region respectively. Example of an octagonal query (k = 4) in Tθ is shown in Fig. 2.6, in
which the query polygon R is sufficiently small so that there lies at most one point of Q

in R. The search starts from the root of Tθ(Q), and follows the right path for d = 0 and
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d = 1, and bifurcates at d = 2 as the corresponding node (l3) intersects R indicating that
R has intersections with both the regions divided by l3. At each of the subsequent nodes,
depending on whether or not the corresponding line of division intersects R, the decision
is taken for traversing the left path and/or the right path from the concerned node. In
the leaf-level, q1 corresponds to the leftmost node and q5 to the rightmost node at which
the respective searches along the leftmost path and along the rightmost path terminate.

The query algorithm takes the root of the Tθ and a query range R as input. The query
range R is specified by (i) the center p ∈ Z2 of the corresponding (regular) polygon, (ii) the
perpendicular distance d of an edge of the polygon from its center p, and (iii) the number of
edges (2k) of the polygon. From these specifications of R, the ordered set of 2k real vertices,
namely VR := 〈vt := (xt, yt) ∈ R2〉2k

t=1, is obtained for low-level description of R, where
the first element v1 in VR corresponds to the left-bottom vertex of R. Using a recursive
procedure, the query process reaches each node (i.e., region) intersected by/contained
in R. If the region region(ν) corresponding to a node ν lies entirely inside R, i.e., if
region(ν) ⊆ R, then all the points (leaf nodes) stored in the sub-tree rooted at ν are
reported in O(nν) time, where nν is the number of points in the corresponding sub-tree.
On the other hand, if region(ν)∩R 6= ∅, then the search is carried on along the appropriate
subtree of ν, and if region(ν) ∩ R = ∅, then the search does not proceed down below ν

(but, possibly proceeds from some other node ν ′ of Tθ). The query algorithm, in short, is
given in Fig. 2.7, where the symbols have their usual meanings.

The main test in the query algorithm is for the type of intersection between the query
range R and the region corresponding to a node ν. In order to do this test, we compute
region(ν) for each node ν during construction of Tθ(Q) using the splitting line at ν and the
region of its predecessor node. To start with the root node of Tθ(Q), the corresponding
region is given by (the ordered set of) k pairs of minimum and maximum coordinates
along the (transformed) axes. In other words, if x

(e)
min and x(e)

max denote the respective
minimum and maximum x(e)-coordinates (1 ≤ e ≤ k) for the set of points, Q, as shown
in Fig. 2.4, then the region associated with the root of Tθ(Q) is given by region(root) ={[

x
(e)
min, x

(e)
max

]}k

e=1
.

From the above set, we can define the (ordered set of) vertices of region(root) as
Vroot = {vt := (xt, yt)}2k

t=1, where the point of intersection between the lines1 x
(t)
min and

x
(t+1)
min is vt (1 ≤ t ≤ k − 1); between x

(k)
min and x(1)

max is vk; between x(t)
max and x(t+1)

max is vt

(k + 1 ≤ t ≤ 2k − 1); and between x(2k)
max and x

(1)
min is v2k (Fig. 2.4).

1Here we denote the line x(t) = x
(t)
min by x

(t)
min for simplicity.
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Algorithm Search-Angular-Tree (ν, R)
Input: the root of (a subtree of) Tθ(Q), and

a polygonal range R.
Output: all points in Tθ(Q) lying inside R.
Steps:
1. if ν is a leaf
2. then return ν if it lies in R

3. else if region(left(ν)) ⊆ R

4. then report all nodes in region(left(ν))
5. else if region(left(ν)) ∩R 6= ∅
6. then Search-Angular-Tree(left(ν), R)
7. if region(right(ν)) ⊆ R

8. then report all nodes in region(right(ν))
9. else if region(right(ν)) ∩R 6= ∅
10. then Search-Angular-Tree(right(ν), R)

Figure 2.7: Algorithm for searching in the angular tree Tθ(Q).

Now, the description of region(lr) (and of region(rr)) in terms of its vertices can be
obtained from the vertices of region(root) as follows. Since each vertex (vt) in Vroot is the
point of intersection between the limiting lines (say, x

(t)
min and x

(t+1)
min , w.l.o.g.), the x(t)- and

x(t+1)-coordinates of vt become x
(t)
min and x

(t+1)
min respectively, which are used to obtain its

(x, y) coordinates for computing the other k−2 coordinates of vt. For instance, in Fig. 2.4,
the first two (x(1), x(2)) coordinates of v1 are x

(1)
min and x

(2)
min, and its third (x(3)) coordinate

is obtained from these two; similarly, for v2, we have x(2) = x
(2)
min and x(3) = x

(2)
min, etc. It

may be noted that the other k − 2 coordinates of vt are needed to find the sub-regions of
region(root) as discussed next.

When the first median line x
(1)
med is used to split region(root), we search in Vroot for

two pairs of consecutive vertices, namely (vt, vt+1) and (vt′ , vt′+1), such that x
(1)
med lies

between x(1)-coordinates of (vt, vt+1) and those of (vt′ , vt′+1). For example, in Fig. 2.4,
the first median line is l1 and the corresponding pairs of consecutive vertices are (v2, v3)
and (v4, v5). Subsequently, the fact that the median line x

(1)
med intersects the two edges

(of the polygon region(root)) defined by (vt, vt+1) and (vt′ , vt′+1) at two points, namely
v′ and v′′ respectively, is used to construct the respective vertex sets for the left and
the right sub-regions of region(root) as Vlr = {v1, . . . , vt, v

′, v′′, vt′+1, . . . , v2k} and Vrr =
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{v′, vt+1, . . . , vt′ , v
′′}. Continuing this process, we obtain the vertex set Vν for each node

ν of Tθ(Q) from the vertex set Vπ(ν) of its parent node π(ν) by considering the points of
intersection of the median line at ν with the two concerned edges of Vπ(ν).

The low-level description of the query polygon R, as described above, enables checking
the type of intersection with region(ν), which is performed as follows:

Case (i) if all vertices in Vν lie inside R, then region(ν) ⊆ R;
Case (ii) if no vertex in Vν lies inside R and no vertex in R lies inside Vν , then region(ν)∩

R = ∅;
Case (iii) if Case (i) and Case (ii) fail, then region(ν) has partial intersection with R.

In order to ascertain whether a vertex u := (xu, yu) ∈ Vν lies inside the polygon R

(and to check whether a vertex of R lies inside region(ν)), we check whether u lies to the
left of each edge et directed from vt := (xt, yt) ∈ VR to vt+1 := (xt+1, yt+1) ∈ VR. This is
done by simply computing the sign of the determinant

D(et, u) :=

∣∣∣∣∣∣∣

1 xt yt

1 xt+1 yt+1

1 xu yu

∣∣∣∣∣∣∣
,

since the point u lies to the left of the directed edge et if and only if D(et, u) > 0.
It may be noted that, for a circular range query, the query R is specified by the center

(q) and radius (ε) of the query (digital) disc. Therefore, whether a vertex (or a grid point)
p lies in R (in the above three cases and also in Step 2 of Fig. 2.7) can be checked in O(1)
time by testing whether round (d(p, q)) = b

√
d2(p, q) + 0.5c ≤ ε. Such a simple check

is faster and easier w.r.t. the procedure using the signed value of the determinant D as
mentioned above, which needs O(k) time when R contains O(k) edges. However, we have
to look at D when R is a general convex polygon and not induced by a digital disc.

To estimate the time complexity of searching with a query polygon R of 2k vertices
and arbitrary size (i.e., an arbitrarily large value of the perpendicular distance d of an
edge of the polygon from its center p) in Tθ(Q), let n′(6 n) be the number of reported
points. Hence, the total time for reporting these n′ points after (complete) traversal of the
associated subtrees (Steps 4 and 8) of Tθ(Q) is T1(n) = O(n′). Further, apart from the
traversal of these subtrees, the searching procedure recursively visits some nodes that are
not in these subtrees (Steps 6 and 10). Since R has non-empty intersection with region(ν)
corresponding to each such node ν (by the conditions of if statements in Steps 5 and 9),
the maximum path length (in Tθ(Q)) for the searching recurrence is given by the maximum
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number of regions intersected by an edge of R, or equivalently, by a line having any one
of the k possible slopes corresponding to k numbers of transformed axes. W.l.o.g., let us
consider a horizontal line l for this purpose. Such a horizontal line intersects the regions
whose nodes represent horizontal splitting lines in Tθ(Q). Clearly, the first horizontal
splitting line is the root node (depth = 0), the second one is at depth = k, the third one
at depth = 2k, and so on. For instance, for k = 4, in Fig. 2.6, the node representing l1 is
the first horizontal splitting line, the nodes representing l6 and l7 are the next ones, etc.

Now, at depth k(> 0), Tθ(Q) contains 2k nodes, each representing a region containing
at most d. . . 1

2d1
2dn

2 ee . . .upto ke = dn/2ke points. If the horizontal line l lies below the first
horizontal splitting line, namely l1, then in the worst case, l may intersect all the regions
below l1. Similar arguments hold if l lies above l1. Hence, half of the nodes at depth k,
i.e., 2k−1 nodes, correspond to maximum number of regions intersected by the horizontal
line l. Thus, we have to count the number of intersected regions in the subtrees rooted
at these 2k−1 nodes recursively (Steps 6 and 10). Also, the regions from (and including)
level = 0 to (and including) level = k−1 that are intersected by l are those corresponding
to the root, one of the two children of root, two of the four grandchildren of the root, and
so on, which counts to 1 + 1

2(21 + 22 + . . . + 2k−1) = 1 + 2k−1 − 1 = 2k−1.
Hence, the recursive equation for the number of regions intersected by any line (the

time complexity for recursive traversal of Tθ(Q), there of) is given by

T2(n) =

{
O(n) if n < k,

2k−1 + 2k−1T2

(
n/2k

)
if n > k,

which solves to T2(n) = O(nlog
2k 2k−1

) = O(n(k−1)/k). For an arbitrarily large value of
k, therefore, we get T2(n) = O(n). Hence, the total searching time in Tθ(Q) is given by
T (n) = T1(n) + T2(n) = O(n(k−1)/k + n′), or T (n) = O(n(k−1)/k) if n′ 6 O(n(k−1)/k),
wherefore, for an arbitrarily large size polygonal query region with an arbitrarily large
number of vertices, we get T (n) = T1(n)+T2(n) = O(n+n′) = O(n). The above findings,
therefore, are put together in the following lemma.

Lemma 2.4.2 The worst-case polygonal range query with an arbitrary regular polygon in
an angular tree Tθ(Q), representing a set of points, Q of n points, needs O(n) time.

For searching with small polygonal range queries where a query polygon always con-
tains (and reports) at most one point of Q (which is found in many a practical application,
e.g., fingerprint matching [Bhowmick and Bhattacharya (2005a)]), however, the recursive
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searching procedure would proceed along a single path from the root to the leaf node. The
leaf node where the search terminates corresponds to the point that actually lies inside the
(query) polygon. This is owing to the fact that each edge of the polygon, being suitably
small in length, would intersect just one or two regions at each level of Tθ(Q), thereby
curtailing the recursive searches (Steps 6 and 10) in the search algorithm (see, for exam-
ple, the illustration in Fig. 2.6). To be precise, there will be at most 2k distinct regions
(corresponding to Tθ(Q)) with non-empty intersections with the 2k-gonal query region R,
provided R is sufficiently small in size.

For such a query polygon with proper adjustment of its size, therefore, the above search
time complexity does not reflect the actual run time. Even if the query polygon contains
at most c points, where c is a small constant, then the recursive searching procedure
would proceed at most along c paths from the root to the leaf node. Thus, here the above
bound for T2(n) is given by c× 2k ×O(log n) = O(k log n), which reduces to O(log n) for
a prescribed value of k, and T1(n) reduces to O(1) (since n′ 6 c). Hence the total search
time (for a single point of Q) drops down to T (n) = O(1) + O(log n) = O(log n), which
gives the following lemma:

Lemma 2.4.3 A polygonal range query in an angular tree Tθ(Q), representing a set of
points, Q of n points, needs O(log n) time with the hypothesis that the size of the query
polygon is small enough so that it contains at most one point or a constant number of
points of Q.

In the APSPM algorithm (Sec. 2.4.3) and in the subsequent discussions, we have
assumed that the circular range query is evoked with an appropriately small size of the
query range so that the number of points reported against the query is a small constant.
This in turn, ensures O(log n) time for performing each query in the angular tree.

2.4.3 APSPM Algorithm Using Circular Range Query

For approximate matching of the pattern set P containing m points with the background
set Q containing n points, we construct the angular tree Tθ(Q) corresponding to Q, which
is used for circular/polygonal range query for each point of P . To negotiate the corre-
spondence among the points of P and Q, we adopt an alignment policy that speeds up the
matching process. We pick the point pair in P , having the largest (Euclidean) distance (in
P ), to be anchored near and aligned along a point pair in Q having its distance matching
within a tolerance of ε. Such an act of choosing the largest distance, failure of which is



2.4 Proposed Method 31

followed by repetition(s) with the next largest distance(s), has experimental bearing on
the frequency of distances in a (discrete/real) set of points — the test results being shown
in Sec. 2.5, and also has a theoretical basis as shown below.

Let S be a finite subset of the Euclidean metric space R2. Let a and b be any two
distinct points in S. Let L be the (real) line segment joining a and b, and having length
L. Let a′ and b′ be two distinct points lying on the line segment L. Hence, if the points
a′ and b′ do not simultaneously coincide with the points a and b, then the length L′ of the
line segment L′ joining a′ and b′ follows the relation

0 < L′ < L. (2.1)

Now there may exist infinitely many such point pairs (a′, b′) on the line segment L,
each of which having distance equal to L′. That is, given two real-valued distances, namely
L and L′, satisfying Eqn. 2.1, we get infinitely many point pairs of distance L′ contained by
a line segment of length L that lies in S. Further, since there may exist multiple (infinitely
many, possibly) instances of line segments having length L in S, we might get multiple
assemblages of infinitely many smaller line segments of length L′ contained by the former
line segments (i.e., those with length L).

Apart from the distance L (i.e., line segments of length L) in S, there may exist only
two types of distances in S, which may be classified into two disjoint sets given by

D = {L : L < L} and D = {L : L > L}

so that D ∪ {L} ∪D contains all possible distances in S. No distance L in D will contain
the distance L in S, because a line segment of length L cannot be made to lie on a line
segment of smaller length L. However, some of the distances in D may contain the distance
L′ in S so far as the former distances are greater than the latter (i.e., L′). Thus, the set
D may contribute distance L′ but never contributes the distance L.

Regarding the set D, each of its distances being greater than L, each distance L in
D always contains (infinitely many instances of) the distance L, each of which, in turn,
contains (infinitely many instances of) the distance L′. Therefore, the frequency of distance
L′ contributed by D is always greater than that of the distance L contributed by D. In
particular, the factor by which frequency of L′ exceeds the frequency of L depends on the
ratio L : L′ — higher the ratio, greater will be the frequency of L′ compared to that of L

contributed by the set D.
As a result, in totality, the (continuous) probability density of the distance L′ always

exceeds that of the distance L(> L′) in the finite set S. The above arguments will also
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hold true for the 2D digital space, although the aforesaid monotonically increasing nature
of frequency with decreasing distances corresponding to the continuous case would not
satisfy in the discrete case due to the anisotropic nature of the isothetic grid lines. Hence,
we state the following lemma, whose bearing with the reality is evidenced by few sets of
plots shown in Fig. 2.9 (Sec. 2.5).

Lemma 2.4.4 In a set of real or discrete points, the frequency of distances in the interval
[L− c, L + c] decreases with increase in L, for an appropriate constant c.

Algorithm APSPM-Angular-Tree (P, Q, ε)
Input: sets of points, P,Q, and error tolerance ε.
Output: whether or not P matches Q.
Steps:

1. Determine (/decide) k from the given value of ε ∈ Z+ (Sec. 2.3).

2. Construct Tθ(Q) for the background set Q := {qu}n
u=1, with k from Step 1

(Sec. 2.4.1).

3. Compute the Euclidean distances for all distinct pairs of points in Q,
and store them in the (non-increasing) ordered list, namely L(Q) :=
〈d(q′, q′′) : q′ ∈ Q, q′′ ∈ Q〉.

4. Similarly, construct the ordered list L(P ) := 〈d(p′, p′′) : p′ ∈ P, p′′ ∈ P 〉 in non-
increasing order of the distances in P.

5. Perform the one-dimensional range query with interval [dP − ε, dP + ε], with dP

starting from the first (maximum) distance in L(P ), on L(Q).

6. For each matching distance dQ ∈ [dP − ε, dP + ε] in L(Q), find the necessary
transformation T in order to align the point pair in P (corresponding to dP )
with the matching pair in Q (corresponding to dQ), and apply T on all points in
P to obtain T (P ).

7. Apply circular/polygonal range query in Tθ(Q) for each point in T (P ) to find
the total number of matching points, namely µ(T (P ), Q), in Q.

8. If µ(T (P ), Q)/ (min(m,n)) > %, then a match exists between P and Q under the
transformation T . Otherwise, next matching distance dQ obtained in Step 5 is
tried for, until a match is found or all distances in L(P ) are exhausted.

Figure 2.8: Algorithm on APSPM using angular tree.
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The theoretical justification being given above, the major steps of the algorithm have
been given in Fig. 2.8. In this algorithm, we consider T (P ) to be a valid match with Q

(Step 8), provided the number of points in correspondence between T (P ) and Q exceeds
a certain factor, namely %, of the maximum number of points (i.e., min(m,n)) possible to
produce an ideal match between them. Evidently, a match found with a small value of
% for two given sets, P and Q, signifies a slackened approximation, whereas that with a
large value of the same corresponds to a tight approximation. It may be mentioned here
that all the results shown in Sec. 2.5 are with % = 1.

The time complexity of the proposed algorithm is influenced by the number of failures
for the misalignments arising out of the mismatching transformations in Step 6. For
each such transformation T , all points in P are subject to polygonal range queries in
Tθ(Q), which incurs O(log n) time per query, producing O(m log n) time for m queries
corresponding to P . Each possible alignment of a point pair 〈p′, p′′〉 of P with a matching
pair 〈q′, q′′〉 of Q involves O(ε2) possible positions of p′ in the (ε-)neighborhood of q′ (i.e.,
inside the digital disc with radius ε and center q′). Each such position of p′, in turn,
allows O(ε) positions of p′′ in the neighborhood of q′′ (which are the grid points of the
digital disc, having radius d(p′, p′′) and center p′, lying inside the neighborhood of q′′).
This involves κ(ε) = O(ε3) possible orientations of p′p′′ for (approximate) alignment with
q′q′′. Here, κ(ε) is a cubic function of ε, which has not an effect on the asymptotic time
complexity when ε is considered to be a constant [Li and Klette (2007)]. Thus, the total
complexity for all possible alignments for a given (approximately matching) pair of point
pairs is κ(ε)×O(m log n).

Since there are O(n2) point pairs in P and each of these point pairs may have to
be approximately aligned with any of the O(m2) possible point pairs of Q, the worst
case time complexity for finding out an approximate match (successful or unsuccessful)
between the sets of points, P and Q, in the 2D digital space is given by T (m,n, ε, k) =
O(m2n2) × O(mε3 log n) = O(ε3m3n2 log n), which reduces to O(m3n2 log n) for a fixed
value of ε. Hence, we have the following theorem on the time complexity for approximately
matching a set of 2D points P with another set Q.

Theorem 2.4.5 For ε-approximation matching of P containing m points with Q contain-
ing n points in 2D digital space using angular tree Tθ(Q), the worst-case time complexity
is given by κ(ε)O(m3n2 log n) for a given value of the approximation parameter ε.
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Table 2.1: Comparison of existing methods with the proposed APSPM algorithm

Method Time Space APSPM Difficulty in
implementation

string matchinga O(n log n) O(n) no simple

distance alignmentb O(mn4/3 log n) O(n3) no moderate

ε-alignmentc O(n8) O(n) yes complex

Hausdorff metricd O
(
(m + n)6 log(mn)

)
O(m + n) yes very complex

proposed method O(m3n2 log n) O(m2 + n2) yes moderate

a[Atkinson (1998), de Rezende and Lee (1995)]
b[Bishnu et al. (2003)]
c[Alt et al. (1988), Arkin et al. (1992), Erafat and Itai (1996)]
d[Huttenlocher and Rucklidge (1993), Mount et al. (1998)]

From the above results and discussion, it is clear that the angular tree and the APSPM
algorithm proposed here are having reasonable complexities, and are readily realizable for
relevant applications involving sets of points in a digital plane. We have implemented
and tested the algorithm along with the angular tree, which have produced encouraging
results, as shown in Sec. 2.5. A comparative study of some existing point set pattern
matching algorithms with the proposed algorithm using angular tree is given in Table 2.1,
which indicates its readiness and usability in the digital plane.

2.5 Experimental Results

2.5.1 Polygonal Approximation of Digital Circles

As shown in Chapter 7, each of the digital circles with radii from ρ = 1 to ρ = 10
has a regular polygonal enclosure. Further, for ρ = 12 − 16, 20 − 25, 32, 33, 40, . . ., the
corresponding digital circles possess regular polygonal enclosures as shown in Fig. 7.7 and
Fig. 7.11. In case of a digital circle for which the regular polygonal enclosure is not possible
(ρ = 11, 17− 19, 26− 31, 34− 39, . . .), the error associated with an approximate polygonal
enclosure can be decreased by increasing its number of vertices, as exhibited in Fig. 7.9.
Thus, depending on the related application, the error can be made to lie below the desired
limit by choosing an appropriate number of vertices of the polygonal enclosure.
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2.5.2 Performance of Circular Range Query.

Given a set of points, Q ⊂ R2, containing n points and given a Euclidean distance d, it
has been shown [Szekely (1997)] that the number of distinct point pairs having distance
d may be as high as dn4/3e. Our experimental results, however, reveal that the maximum
observed frequency of a particular distance in Z2 (or, for a better realization in the 2D
plane, the maximum frequency of a particular range of distances) is far short of the
theoretical value.

We have generated 1000 synthetic sets of points in 2D digital space, each set containing
10 to 500 randomly located grid points, and have studied the change in frequency versus
distance in these sets of points. The following three parameters are considered by us to
examine the structural/geometric properties of sets of digital points:

(i) n = number of points (in Q), 10 6 n 6 500;
(ii) dmin = minimum Euclidean distance between two distinct points, 5 6 dmin 6 25;
(iii) A = the discrete orthogonal domain (minimum-area finite region) containing all

points, 50× 50 6 A 6 500× 500.

For a few sample sets of points, the trend of variation of (average) frequency and the
corresponding standard deviation versus (average) distance have been shown in Figs. 2.9(a)–
(c). From these plots, it is evident that, for a given set of points, the number of occurrences
of a particular distance in the set of points decreases with the increase in the distance, and
vice versa. This is instead a practical confirmation of the theoretical interpretation of the
frequency pattern of point-pair distances given in Sec. 2.4.3. In the matching algorithm,
therefore, we select the point pair having the maximum distance (since its frequency is
likely to be very small) from the pattern set as the first matching distance (the anchoring
distance), for applying the alignment scheme (Step 5 of the algorithm in Sec. 2.4).

2.5.3 Execution Time

Given a prescribed value of ε for ε-approximation match, the run-time of the proposed
APSPM algorithm depends upon two parameters:

(i) the number of points m in the pattern set P , and
(ii) the number of points n in the background set Q.

Varying these two parameters (i.e., m and n), we have obtained two sets of plots — one
for m and the other for n — illustrating the variation of CPU time versus the anchoring
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Figure 2.9: Frequency distribution of distances (shown in uniform intervals of size 10) for
different values of n, dmin, and A. The histogram profiles show the average frequencies,
and the points indicate the respective standard deviations.
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distance. These two sets of plots are shown in Fig. 2.10(a), (b). The algorithm has been
implemented in C on SunOS Release 5.7 Generic of Sun Ultra 5 10, Sparc, 233 MHz.

Apart from testing the variation of CPU time with m and n, we have also considered
the dimension k of the angular tree Tθ(Q) defined on Q, and that its effect on the CPU
time is almost negligible is evident from the plots shown in Fig. 2.10(c).

From the above plots, it may be concluded that the running time of the proposed
APSPM algorithm increases with the decrease in the distance of the selected point pair
for anchoring. Hence, instead of selecting the initial point pair randomly from P , first
we select the pair that has the maximum distance in P ; in the case it does not yield a
successful match, we choose the pair(s) with the next maximum distance, and so on. Such
a policy of selecting the furthest point pair from the pattern set for anchoring with some
suitable point pair in the background set reduces the time requirement to a great extent
in real-time matching applications, which is reflected in the plots of Fig. 2.10.

2.6 Conclusion

We have shown how a digital disc can be substituted by an appropriate regular polygon
so that a (digitally) circular range query in Z2 can be efficiently replaced by a polygonal
range query. Such a query for each point in the pattern set P can be performed efficiently
on the background set Q by using an appropriate data structure, namely the angular tree
Tθ(Q), defined on Q. To sum up, the primary aspects of this chapter are as follows.

Replacing a circular range query by a polygonal range query is the major contribution
of this work. Most of the existing approaches rely on orthogonal range query, whereas, here
a (regular) polygonal approximation of a circular query in the digital plane is computed.
This ensures improved matching of a point in the digital pattern set with the circular
neighborhood of a similar point in the digital background set. Further, in the case of a
small disc, its polygonal approximation is almost error-free, whereas for a large disc, the
approximation incurs a very small error. The associated error can also be estimated easily
from the level of approximation.

Regarding polygonal partitioning of points, we have proposed an efficient search tree
in which the 2D points are stored in accordance to their distribution in the digital plane.
The circular neighborhood of a point is defined by the grid points of the corresponding
digital disc with the concerned point as center, which are finite (and small for a small
disc) in number. Hence, the approximate matching of points in the digital plane can be
nicely implemented by using an angular tree that effectively limits the difficult circular
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Figure 2.10: CPU time versus anchoring distance (shown in uniform intervals of size 10)
in case of successful matching of the set of points, P , containing m points with the set of
points, Q, containing n points for different values of m,n, k (A = 200× 200, ε = 6).
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Minutiae detected after analysis of the ridge

lines in a fingerprint image.

The set of digital points formed by the minu-

tiae.

(a) The set of digital points in a fingerprint identification system.

Corners detected in a sample gray scale

image.

The set of digital points formed by the cor-

ners.

(b) The set of digital points in an application where corners are considered.

Figure 2.11: Two instances of applications where the set of digital points plays a crucial
role.
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query to an easier polygonal query. Keeping in mind the trade-off with space and time
complexities, the angular precision (and the error, thereof) can be controlled by varying
the specification of the query polygon, depending on the application.

It has been already made apparent in various works on processing and applications
of sets of digital points that partial approximate matching of sets of points in digital
images is really a captivating problem, and that such a matching algorithm has numerous
applications in the digital paradigm. In Fig. 2.11, we have furnished two typical instances
of sets of points in the digital plane — one related with fingerprint identification system
[Candela et al. (1995), Maltoni et al. (2003)] and the other related with corner points in
digital images [Argyros et al. (2001), Gu and Tjahjadi (1999), Mohanna and Mokhtarian
(2002)].

The proposed approach may be further studied for finding the general solution of
the APSPM problems in higher dimensions. The possibilities lie in deriving the regular
(convex) polytope that would replace the regular 2D polygonal range query, and in con-
structing the (generalized) angular tree based on median hyperplanes instead of 2D median
lines. The allied procedures and associated data structures, of course, would invoke higher
complexities, both in terms of developing theory and subsequent implementation.
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Minutiae in a Fingerprint Image as Geometric Points

All err the more dangerously because each follows a truth. Their mistake lies
not in following a falsehood but in not following another truth.

Blaise Pascal
In W. H. Auden and L. Kronenberger, The
Viking Book of Aphorisms (New York, 1966)

3.1 Introduction

Fingerprints, produced by the ridge and valley patterns on the tip of the fingers, have
been used for biometric authentication for quite a long time [Galton (1892)]. Owing to
their uniqueness and immutability [Lin et al. (1982)], coupled with easy acquisition pro-
cedure, fingerprints provide the most widely used biometric features till today [Maltoni
et al. (2003)]. In the recent years, apart from criminal identification extensively used by
law enforcement agencies, fingerprint verification has become more popular in day-to-day
civilian applications, such as access control, financial security, employee identification,
verification of firearm purchasers, driver license applicants, etc. In the past, fingerprint
verification was performed manually by professional fingerprint experts. However, the
manual matching of fingerprints is very tedious, time consuming, and expensive. A finger-
print image database may contain as high as several million records, thereby making the
manual fingerprint verification an intractable task.

In order to ensure a much faster and efficient fingerprint matching process, Automatic
Fingerprint Identification Systems (AFIS) have evolved in recent times. Most of them are
based on minutiae matching. Minutiae, also called Galton’s characteristics [Galton (1892)],
are points of discontinuities of ridgelines in a fingerprint pattern. The American National
Standards Institute (ANSI) has proposed a classification of minutiae based on four classes:
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Figure 3.1: Minutiae in the gray-scale topography of a fingerprint image.

terminations, bifurcations, trifurcations (or, crossovers), and undetermined [ANSI (1986)].
In practice, however, most of the AFIS follow the two-class minutiae classification, namely
termination and bifurcation, used by the Federal Bureau of Investigation (FBI) [Wegstein
(1982)]. Since in a fingerprint image, trifurcation and undetermined minutiae, if present,
are very few in number, we have adopted the model used by the FBI, and have not
considered a trifurcation minutia or an undetermined minutia as a valid minutia. The
bifurcation and termination minutiae, located in two small regions of size 40 × 40 pixels
each, of a gray-scale fingerprint image having 500 dpi resolution are shown in Fig. 3.1.
These two regions have been carefully selected from a noise-free portion of an image to
have a better understanding of how a bifurcation minutia or a termination minutia looks
like in the gray-scale image topography. In many situations, however, the minutiae are
located in a noisy area when it becomes difficult to recognize them.

In a fingerprint identification system, the fingerprint image is captured by some inking
method or a sensor. The acquired image often contains unclean patterns or noise caused
by under-inking, over-inking, wrinkles, scars, uneven pressure at fingertip, limitations in
the digitization system, etc. Extraction of valid minutiae that characterize a fingerprint
image is a primary task before starting a matching process. The minutiae extraction
can be done either on a gray-scale image or on a binary image. Whatever may be the
technique, the set of extracted minutiae may serve as a distinct feature characterizing the
fingerprint image, and can be finally used in the minutiae matching process for fingerprint
identification [Farina et al. (1999), Kovács-Vajna (2000), Maio and Maltoni (1997), Mehtre
and Murthy (1986), Pernus et al. (1980), Jain et al. (1997)].
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Minutiae detection directly from a gray-scale fingerprint image was considered by Maio
and Maltoni (1997). The basic idea is to trace the ridgelines on the gray-scale image by
“sailing” according to certain directional features. In this scheme, no binarization or thin-
ning is required. Instead, a Gaussian mask for regularizing the uneven “volcano silhouette”
of the transverse section of a ridge is used to locate the local maximum corresponding to the
ridge center. Computation of local ridge direction is done at every step on each ridgeline
to traverse successfully along the ridge centerline, except when, although very rarely, the
ridge has excessive bending. The set of minutiae detected in this approach is then passed
through three filters to remove the invalid minutiae, such as low contrast minutiae, pairs
of close termination minutiae, and bifurcation minutiae crowded in a small neighborhood.

Both the stages of minutiae extraction and minutiae matching have been described by
Jain et al. (1997) for an online fingerprint verification system. For minutiae extraction,
an improved algorithm is implemented by Ratha et al. (1995) for processing an input
gray-scale fingerprint image captured with an online ink-less scanner. A new hierarchical
method is shown for estimation of local orientation field of flow patterns, followed by a
segmentation algorithm to locate the region of interest from the fingerprint image. Bina-
rization is done by convolving the fingerprint image with two masks, adapted to the local
ridge width, to accentuate the local maximum gray-level values along the direction normal
to the local ridge direction. From the binarized ridge map, the holes and speckles, arising
due to the noise present in the input image, are removed before ridge thinning for efficient
minutiae extraction. The thinned ridge map undergoes a smoothing procedure to remove
spikes and to join broken ridges. A final refinement, based on the structural information,
is done to eliminate the spurious minutiae, viz., clustered minutiae in a small region, and
two close minutiae facing each other. For each surviving minutia, its coordinates, orien-
tation (i.e., local ridge orientation of the associated ridge), and the associated ridge are
recorded for matching purpose. The matching procedure consists of two stages, namely,
the alignment stage and the matching stage. In the alignment stage, transformations such
as translation, rotation, and scaling between an input image and a database template
are estimated in order to make the input image aligned with the template minutiae ac-
cording to the estimated parameters (coordinates, orientation, and associated ridge). In
the matching stage, both the input minutiae and the template minutiae are converted to
polygons in polar coordinate system and an elastic string matching algorithm is used to
match the resulting polygons.

In the fingerprint minutiae extraction method developed by Farina et al. (1999), a local
ridge distance map has been derived from the skeleton image. The local ridge distance
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map captures the average ridge distance in each region of the image [Kovács-Vajna et al.
(2000)]. In this method, the skeleton image is processed pixel by pixel to find the number
of outgoing branches that indicate whether the candidate pixel is a minutia or not. This is
followed by (i) pre-filtering to delete one minutia from a pair of minutiae lying close to each
other; (ii) skeleton enhancement or ridge repair to identify ridge breaks, eliminate bridges,
spurs and short ridges; and finally, (iii) removal of islands and validation of bifurcations
and end-points. The final valid set of minutiae is classified as either “highly reliable” or
“less reliable”.

He et al. (2003) developed a fingerprint image enhancement and matching algorithm,
which is a modification over the method used by Jain et al. (1997), and is divided into two
phases, off-line and on-line. In the off-line phase, a fingerprint image is acquired, enhanced
using orientation fields of ridge directions. Thereafter, features of the fingerprint in terms
of minutiae coordinates, its orientation, and relation of the minutiae to some points on
the associated ridge are extracted and stored in a database as a template. In the next
on-line phase, a fingerprint is acquired, enhanced and the same features of the fingerprint
are extracted, fed to a matching model and matched against template models in the
database. The matching phase is akin to the method by Jain et al. (1997), excepting
three aspects. The difference is in the method of alignment, use of ridge information
in the matching process, and the use of a variable bounding box that is more robust to
non-linear deformations between two fingerprints.

Another approach to speed up fingerprint identification problem is the use of indexing.
An indexing algorithm, based on the features of triangles formed by the triplets of minutiae,
and its performance on two different data sets in a black-box approach have been reported
by Bhanu and Tan (2003). The triangle features that are used are its angles, handedness,
type, direction, and maximum side. Experimental results on live-scan fingerprint images of
varying quality and NIST special database 4 show that the indexing approach efficiently
narrows down the number of candidate images in the presence of translation, rotation,
scale, shear, occlusion, and clutter. Thus, the indexing technique significantly reduces the
number of hypotheses to be considered for the verification algorithm. In other words, in a
complete fingerprint recognition system, an indexing technique can be used as front-end
processing, which would be then followed by a back-end verification processing.

Apart from minutiae-based fingerprint matching, there exist other matching algorithms
that largely depend on the ridge and valley topography of a fingerprint image. Traditional
minutiae-based methods suffer from the following shortcomings: (i) they do not fully uti-
lize a significant component of the rich discriminatory information available in the ridge
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and valley structure of fingerprints; and (ii) they cannot produce a quick solution for two
fingerprint images containing different number of unregistered minutiae points [Jain et al.
(2000)]. In a procedure by by Jain et al. (2000), a bank of Gabor filters is used to capture
both local and global details in a fingerprint as a compact fixed length “FingerCode”. This
scheme tessellates an image to extract its FingerCode, which is the ordered enumeration of
the local features contained in the tessellated sectors; the Euclidean distance between two
FingerCodes is used for matching. This has been designed with an objective of computa-
tionally attractive matching and indexing. In the matching scheme, the concept of scores
in the form of vectors is used to express the degree of matching between two fingerprints.
Similarly, Willis and Myers (2001) used the total image, or a better representation thereof,
for recognition of low-quality fingerprints. After necessary smoothing and enhancing of
imperfect images by a threshold FFT technique, valid minutiae are detected to find a ref-
erence point by computing a weighted centroid of all valid minutiae and ridge pixels. The
reference point is used for a wedge ring overlay minutia detector, and finally, a number of
statistical and neural network classifiers are tested to classify the relevant feature vectors
for the recognition task. Ceguerra and Koprinska (2002) follows another approach, which
also combines local as well as global features of a fingerprint image by integrating minutiae
and shape signatures that are used in a neural network for final recognition.

3.2 Preliminaries

A fingerprint image essentially consists of a set of minutiae on the xy plane. Minutiae
are the terminations and bifurcations of ridgelines in a fingerprint image. The ridgelines,
appearing in the foreground of the gray-scale topography, are separated by valley lines
appearing in the background. In a fingerprint image, there exists a striking duality in
the sense that the valley lines also have minutiae (terminations and bifurcations) and flow
patterns similar to the ridgelines [Hrechak and McHugh (1990), Hung (1993)]. The ridge
and valley characteristics, such as ridge and valley flow directions, inter-ridge and inter-
valley distances, ridge and valley breaks, etc., are very useful properties that indicate the
validity criteria of a minutia detected by any algorithm. These parameters have been used
extensively in a number of earlier works. For enhancing a gray-level fingerprint image,
orientation of ridges is used for designing a filter [O’Gorman and Nickerson (1989)], and
for using directional images [Mehtre et al. (1987)]. In the work by Hung (1993), ridge
enhancement is done based on ridge directions, and noise removal and pattern purification
are performed with the help of both ridge and valley characteristics.
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A gray-scale fingerprint image often undergoes binarization, followed by thinning, in
the preprocessing stage, in order to extract the minutia points [Bishnu et al. (2002, 2006a),
Farina et al. (1999), Jain et al. (1997)]. In the process of binarization and thinning,
several ridge deformations, such as spurs, bridges, short ridges, loops, ridge breaks, become
prominent that give rise to false minutiae. These undesired spurious elements in the ridge
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Figure 3.2: Magnified views of a spur and a bridge in a fingerprint image.

skeleton owe their origin to the noise present in the original gray-scale image. A spur
originating from a point p on a ridge gives rise to a false minutia at q. Among the three
branches incident at p, only two branches are aligned while the direction of the third
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branch that corresponds to a spur is generally different. Moreover, the length of a branch,
if forming a spur at p, is within some specified magnitude that helps to identify it as a
spur [Bhowmick et al. (2002, 2005a)]. In general, if λ is the local inter-ridge distance of
the corresponding minutia, then the length of a spur is not more than 3λ/2.

A small region of a gray-scale fingerprint image with 500 dpi resolution that gives rise
to a spur is shown in Fig. 3.2(a), and the corresponding skeletonized version in Fig. 3.2(b).
It is evident from Fig. 3.2(b) that the spur length is 6 pixels, which is about λ/2 for the
associated block of region. The spur has given rise to two false minutiae: one being a false
bifurcation minutia on the ridge from where it has originated, and the other being a false
termination minutia where it ends. The two false minutiae, arising out of the spur, are
shown as black pixels in Fig. 3.2(b).

Another small region of a gray-scale image topography that contains a bridge and
the corresponding skeletonized image are shown in Figs. 3.2(c) and 3.2(d). The latter is
basically a ternary image, where, the darker lines are ridges and the fainter ones are valleys
against a white background. The use of ternary image (ridge, valley, and background) can
be found in many existing techniques on fingerprint matching [Bhowmick et al. (2002),
Haralick (1983), Hung (1993)]. A bridge is nearly orthogonal to the pair of ridges it is
connected to, and its length is, in general, not more than 3λ/2 [Bhowmick et al. (2005a),
Farina et al. (1999)]. Moreover, a bridge gives rise to a valley break [Bhowmick et al.
(2005a), Hung (1993)], thereby creating two valley terminations on its two sides. The
two valley terminations on two sides of the bridge (of ridge skeleton) are shown as black
pixels in Fig. 3.2(d). The bridge itself gives rise to two false minutiae on the pair of ridges
it is connected to. Similarly, short ridges, loops, and ridge breaks are also very common
image impurities, giving rise to false minutiae, whose characteristic nature and invalidation
techniques can be found in the literature [Bhowmick et al. (2005a), Farina et al. (1999),
Hung (1993)].

During preprocessing, apart from spurs, bridges, loops, etc., several spurious and mis-
leading lines appear in the thinned image because of the noise present in the original
gray-scale image. These lines are mere aberrations that often give rise to poor or not-so-
obvious minutiae, thereby delaying the process of minutiae matching, or reporting a poor
fingerprint match. Spurs, bridges, loops, etc. are easily detectable in a less noisy region.
In a substantially large noisy part of an image, several crisscrosses may arise that are not
always detectable as spurs, bridges, or loops. A small region from such a noise-affected
area is shown in Fig. 3.3. There may also exist some minutiae in a noise-free region (ap-
parently, by the naked eye) that are feebly recognizable in the gray-scale image because
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of erratic gray-value pattern in that locality. As a result, an ambiguity may arise regard-
ing the inclusion or exclusion of a minutia depending on its visual clarity in the original
gray-scale image.

The post-processing job on authentication of the detected set of minutiae is also per-
formed in the gray-scale domain under supervised learning. The minutiae-based matching
procedure reported by Prabhakar et al. (2003) uses feed-forward of original fingerprint
image to the feature (minutiae) verification stage. The verification stage re-examines the
gray-scale profile in the neighborhood of a minutia using Learning Vector Quantization.
An overall quality score is assigned to an image, but not to any individual minutia. On the
contrary, our method assigns scores to all valid minutiae, which can be used to evaluate
the overall quality of the concerned image by an efficient technique. Further, it does not
need any training. An important assertion by Prabhakar et al. (2003) that reinforces our
findings is that, they have mentioned about the possibility of improving the accuracy of
the fingerprint verification system by some modified matching algorithm that can take
the confidence value (referred to as score in our work) of the individual minutiae into
account. Another technique proposed by Jiang and Ser (2002) improves the fingerprint
templates by merging and averaging minutiae of multiple fingerprints. The weighted aver-
aging scheme enables the template to change gradually with time according to the change
of skin and imaging conditions. This reduces the storage and computation requirements
by its inherent recursive nature. It can be said that our work just echoes the same idea
when only one fingerprint image is available for an individual being. In fact, the method
of assigning scores to the minutiae will be of greater significance when we have a series of
fingerprint images for the same being over a prolonged period of time.

In order to circumvent the aforesaid uncertainty, we propose a methodology of assigning
a score value to each minutia, after elimination of spurs, bridges, loops, etc. Each minutia is
assigned an integer score in the scale [1, 100] depending on its topographical characteristics
in the skeletonized ternary image (ridge, valley, and background), which in turn, are
derived from its visual prominence in the original gray-scale image. It may be noted
that the proposed score-based technique can be used to expedite both the fingerprint
identification problem (1-to-N) and the verification problem (1-to-1).

3.3 Minutiae Scores in Fingerprint Matching

Let P be the pattern set of minutiae that has to be checked for a match with some
subset of the database set or the background set, namely Q, the latter being stored in
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Figure 3.3: Gray-scale topography of a noisy zone and its corresponding skeletonized
binary structure.

the fingerprint database. The existing matching schemes do not discriminate among
the minutiae apropos their quality either in the database set or in the pattern set. In
these schemes, a match is reported if the coordinates, the types and angles of minutiae
of pattern set P are found to be agreeing with those of database set Q under certain
transformations like translation, rotation, or scaling [Hrechak and McHugh (1990), Jain
et al. (1997), Kovács-Vajna (2000), Maio and Maltoni (1997), Pernus et al. (1980)]. The
authenticity of the minutiae, in general, is not taken into consideration.

In order to consider the relative quality of a minutia in a fingerprint image as a practical
matching criterion, we define a minutia p as a 5-tuple, namely p = 〈x, y, t, θ, s〉, where,
〈x, y〉 = coordinates of p, θ = angle made by the tangent to the corresponding ridge at
the point p, and s = an integer score associated with the minutia p.

The angle θ corresponding to a bifurcation minutia and a termination minutia are
shown in Fig. 3.4(a) and Fig. 3.4(b) respectively. For each valid minutia p, the corre-
sponding value of the associated ridge direction θ, can be estimated by the conventional
linear regression technique.

The score values are normalized within a scale of 1 to 100, where, a minutia with score
nearing 100 is of the highest significance compared to any other minutia with a lower score
value. In other words, if a minutia p1 has a score s1, and another minutia p2 has a score
s2, and if s1 < s2, then p1 is a less dependable minutia than p2. Fig. 3.5(a) exhibits a
small region of a ternary skeletonized image (ridge, valley, and background) which is free
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Figure 3.5: Typical ridge and valley skeletons in the local neighborhood of a strong minutia
(with high score) and a weak minutia (with low score).

of noise, and Fig. 3.5(b) shows a similar region affected by noise. It is quite evident from
this figure that the minutiae p in Fig. 3.5(a) will have a fairly high score, whereas, the
minutiae p in Fig. 3.5(b) will have a poor score value. The ridgelines as well as the valley
lines in the neighborhood of p in Fig. 3.5(b) have erratic and irregular flow patterns that
indicate the presence of noise in this region. On the contrary, the ridge and valley lines
in Fig. 3.5(a) show a smooth flow pattern that speaks of the tidiness of the region. In
Figs. 3.5(a) and 3.5(b), the darker (fainter) lines represent the ridges (valleys). Both the
ridge minutiae and valley minutiae in these figures are highlighted by black pixels.

While applying a fingerprint matching procedure based on minutiae, the scores of
minutiae of P and those of Q can be used to predict how good or bad the match is. Let
Q′ be a subset of Q, and P ′ be a subset of PR,T,S , where, PR,T,S has been obtained from
P after suitable transformations of rotation (R), translation (T ), and scaling (S), such
that Q′ and P ′ form the best possible matching pair of subsets. Let, |P | = m, |Q| = n,
and |P ′| = |Q′| = n̂. If a minutia (xi, yi) with score si in set P ′ is a potential match with
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a minutia (xj , yj) with score sj in set Q′, then the difference between si and sj (|si − sj |)
indicates the quality of matching of (xi, yi) and (xj , yj). For a matching between P and
Q with n̂ minutiae, we define the Matching Index by

MI =
1

nmax

bn∑

i=1

{1
2
(si + sj)− ω|si − sj |}, (3.1)

where, nmax = max(m,n), and 0 ≤ ω ≤ 101
198 .

The rationale of Eqn. 3.1 is as follows. Since 1 ≤ si, sj ≤ 100 for 1 ≤ i ≤ n̂, the
maximum value of (si + sj) is 200, whereas, the minimum value is 2. Thus, for a match
between two best possible minutiae, each with score 100, a value of 100 is contributed
to the matching index. Similarly, a value of 1 is contributed due to a match between
two worst possible minutiae, each with score 1. The parameter ω represents the weight
attached to the difference of scores of two matching minutiae in their way of participating
in the estimate of MI. It can be shown that the value of ω should lie between 0 and 101

198

so that {1
2(si + sj) − ω|si − sj |} is never negative. The case of worst matching (hence

a minimum contribution to MI in Eqn. 3.1) between two corresponding minutiae arises
when one between si and sj is 100 and the other is 1; that is, si and sj differ by maximum
extent. Therefore, in order to reduce the contribution to MI for the worst case to as
low as zero (the lowest possible in our procedure), we should have (as per Eqn. 3.1)
1
2(100 + 1) − ω|100 − 1| = 0, or, ω = 101

198 . A high value of ω nearing 101
198 signifies that

not only the average score of the matching minutiae is considered in the estimate of MI,
but also their difference in scores is taken into consideration with a high weight. For
instance, for ω = 1

2 , if si > sj , then the contribution to MI by the corresponding match
is 1

2(si + sj) − 1
2(si − sj) = sj = min(si, sj). Similarly, for ω = 1

2 , if sj > si, then the
contribution to MI by the corresponding match is 1

2(si+sj)− 1
2(sj−si) = si = min(si, sj).

Thus, for ω = 1
2 , if one of si and sj is very high, and the other one very low, the contribution

to MI by the matching pair (xi, yi) and (xj , yj) is as poor as the score of the minutia of
worse quality. However, as ω approaches 0, the contribution to MI by the matching pair
(xi, yi) and (xj , yj) approaches the average score of this pair of minutiae.

Furthermore, from Eqn. 3.1, it is also evident that, if n̂ is quite small compared to
nmax, then MI will be also quite low even though the scores of all matching minutiae
may be very high. Similarly, MI will also be quite low if scores of each pair of matching
minutiae vary widely instead of n̂ being close to nmax. MI will be high only if n̂ is close
to nmax and all matching minutiae are of good quality. The ideal case for MI = 100
occurs only when m = n = n̂ and si = sj = 100, for i = 1, 2, . . . , n̂. A score-based generic
structure of an AFIS is shown in Fig. 3.6.
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Figure 3.6: Generic structure of an AFIS considering minutiae scores.

3.4 Evaluation of Score

The score s of a minutia p is estimated based on the following properties:

(i) pattern of ridge flow in and around p;
(ii) pattern of valley flow in and around p;
(iii) noise level in the locality of p.

If the ridge and valley lines in the local neighborhood of p have a smooth nature of
flow, then the corresponding minutia p will have a genuine contribution in the fingerprint
matching. On the contrary, if the ridge and valley lines in some region have an erratic
or uneven nature of flow, then a minutia p′ in that region should not predominate in the
matching procedure. The former minutia (p), being located in a tidy region, lends more
confidence in the matching procedure than the latter (p′), which is located in a noisy
region.

For a minutia p(x, y), the score is given by the equation

s = bsrc+ bsvc+ bsnc, (3.2)

where, sr, sv, and sn are the score components due to ridge flow, valley flow, and noise level
respectively in the local neighborhood of p. The components sr and sv denote measures
of (ideality of) ridge and valley flows respectively, which are evaluated based on some
distances estimated in the local ridge and valley topography around the minutia p. To
take into account the noise of the region in and around p, the component sn is estimated
in a local window centered at p. Noise imparts a negative effect on the score.
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Figure 3.7: Ridges r1, r2, and r3 incident at the bifurcation minutia p.

3.4.1 Score of a Bifurcation Minutia

Let λ be the average inter-ridge distance of a fingerprint image. First, we find the three
neighbor pixels p1, p2, p3 of a bifurcation minutia p, considering 8-neighborhood connec-
tivity. p1, p2, p3 are the three starting pixels of the ridges r1, r2, r3 respectively, incident
at p. We explore a walk along each of r1, r2, r3 starting from p1, p2, p3 respectively,
each walk being of length λ. Let these walks be named as w1, w2, and w3 respectively. If
during some walk wi, 1 ≤ i ≤ 3, any bifurcation or termination minutia is encountered,
the walk is halted. Let, li, 1 ≤ i ≤ 3, denote the length of the walk wi. Let, lmin be the
minimum of li, 1 ≤ i ≤ 3, and µ be the number of walks whose lengths are less than λ.
If p is a minutia of good quality, then each li should be at least λ/2, and at least two of
them should be λ. So, if lmin < λ/2 or, µ ≥ 2, we assign 0 to score s and return from
this point. Otherwise, if lmin < λ, then we walk for a length lmin along each of the three
ridges r1, r2, r3 starting from p1, p2, p3 respectively, so that after the (re-)walks, each of
the points q1, q2, q3, reached on the three ridges r1, r2, r3 respectively, is at equal distance
from p (Fig. 3.7).

We need to identify the ridgeline that bifurcates at p. In Fig. 3.7, the three ridges are
shown as r1, r2, and r, where, w.l.o.g., r(= r3) has been depicted as the pre-bifurcated
ridge, and r1 and r2 are its two bifurcations at p. To identify the pre-bifurcated ridge,
we define dmin = min(d12, d23, d31), where, dij denotes the (isothetic) distance between
qi(xi, yi) and qj(xj , yj) given by d>(qi, qj) = max{|xi − xj |, |yi − yj |}, 1 ≤ i, j ≤ 3, i 6= j.
If q1 and q2 are on the two bifurcated ridges r1 and r2, then d12 < d23 and d12 < d31.
However, this condition may fail if p is a poor minutia candidate, viz., when the ridges
incident at p are of uneven nature, and it is difficult to ascertain the pre-bifurcated ridge
among r1, r2, r3. Hence, if dmin > 3lmin/2, then we assign 0 to score s, and return.
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Figure 3.8: Ridge and valley characteristics in the local neighborhood of a bifurcation
minutia p (see text for explanation).

In order to compute the score sr for a bifurcation minutia p, we define the following
distances (Fig. 3.8):

dqn1 = distance from q to neighbor ridge n1;
dqn2 = distance from q to neighbor ridge n2;
dq1n1= distance from q1 to neighbor ridge n1;
dq2n2= distance from q2 to neighbor ridge n2;
dq1r2 = distance from q1 to bifurcated ridge r2;
dq2r1 = distance from q2 to bifurcated ridge r1.

For a strong minutia, the above distances should be close to λ. So, sr is assigned to p

depending on the closeness of dbm,ri ∈ {dqn1 , dqn2 , dq1n1 , dq2n2 , dq1r2 , dq2r1} w.r.t. λ. Thus,
for a bifurcation minutia p, the score w.r.t. the ridge characteristics can be chosen as

sr = αri

∑

dbm,ri

1
λ

(λ− |λ− dbm,ri|), (3.3)

where, αri is the ridge score multiplier for bifurcation minutiae.
Similarly, the score sv for the bifurcation minutia p is based on the following set of

distances:
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dqv1 = distance from q to neighbor valley v1;
dqv2 = distance from q to neighbor valley v2;
dpp′ = distance from p to valley termination minutia p′, if any,

lying near p in between r1 and r2;
dp′′r1 = distance from p′′ to bifurcated ridge r1;
dp′′r2 = distance from p′′ to bifurcated ridge r2;
dp′′v1= distance from p′′ to neighbor valley v1;
dp′′v2= distance from p′′ to neighbor valley v2;

where, p′′ is the point along the valley v at a distance λ from p′, or, a bifurcation or
termination of v appearing within the target walk-length of λ. The distances dpp′ , dp′′r1 ,
dp′′r2 , dp′′v1 , and dp′′v2 exist only if p′ exist near p in between r1 and r2. We consider a valley
termination p′ to be valid corresponding to a ridge bifurcation p if the isothetic distance
between p and p′ does not exceed 3λ/2 and p′ lies between the bifurcated ridgelines, r1

and r2, as shown in Fig. 3.8.

While the parameter {dbm,ri} represents some kind of inter-ridge distance, we de-
fine other distance measures with a subtle difference. Distances in the set {d1

bm,va} =
{dp′′v1 , dp′′v2} are inter-valley distances, which should be ideally close to λ. The other set
{d2

bm,va} = {dqv1 , dqv2 , dpp′ , dp′′r1 , dp′′r2} contains distances from a ridge point to a valley
line, or from a valley point to a ridgeline, and therefore, allowed for a flexibility in their
contribution to sv. Hence, distances in {d1

bm,va} participate in a way similar to distances
in {dbm,ri} in the process of estimating sv. Their contribution to score may be chosen as

s1
v = αva

∑

d1
bm,va

1
λ

(λ− ∣∣λ− d1
bm,va

∣∣); (3.4)

and that due to {d2
bm,va} is

s2
v =

∑

d2
bm,va

sd2
bm,va

, (3.5)

where, sd2
bm,va

is chosen as

sd2
bm,va

=





αva.1 if λ/4 ≤ d2
bm,va ≤ 3λ/4

αva
1
λ(d2

bm,va − λ/4) if d2
bm,va < λ/4

αva
1
λ(3λ/4− d2

bm,va) if d2
bm,va > 3λ/4,

(3.6)

and αva is the valley score multiplier for a bifurcation minutia.
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Figure 3.9: Ridge and valley characteristics in the local neighborhood of a termination
minutia p.

A brief reasoning for the development of Eqn. 3.6 is as follows. Since d2
bm,va is the

distance from a ridge point to a neighboring valley line, or from a valley point to a
neighboring ridgeline, it should be ideally equal to λ/2. But by allowing a tolerance of
±λ/4, a contribution of αva to the score is made if d2

bm,va lies within λ/4 and 3λ/4. On the
other hand, the contribution to score is made negative if d2

bm,va is not within the desired
bounds. Furthermore, to incorporate the deviation of d2

bm,va from the desired value, the
contribution by d2

bm,va is made increasingly negative as it goes farther and farther from
λ/4 or 3λ/4.

3.4.2 Score of a Termination Minutia

Let p be a termination minutia and N be the adjacent ridge pixel of p, considering 8-
neighborhood. Since p is a termination minutia, there will be only one ridgeline, say r,
incident at p (Fig. 3.9). We walk along r starting from N , for a length λ, and designate
the walk as w. Let l denote the length of the walk. Since a skeletonized fingerprint image
should be devoid of spurs and bridges, l should always be equal to λ.

Let q be the point on the ridge r reached after the walk w. For estimation of the score
sr for the termination minutia with respect to ridgelines in the region containing p, we
define the set {dtm,ri} of following distances:
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dqn1= distance from q to neighbor ridge n1;
dqn2= distance from q to neighbor ridge n2.

For p to be a termination minutia of good quality, the above distances should be close
to λ. These distances are basically inter-ridge distances similar to {dbm,ri} in case of
bifurcation minutiae. Hence, the score sr is assigned to p based on the following equation
that resembles with Eqn. 3.3 in form.

sr = βri

∑

dtm,ri

1
λ

(λ− |λ− dtm,ri|); (3.7)

where, βri is the ridge score multiplier for termination minutiae.
Similarly, the score sv for the termination minutia p is based on the set {dtm,va} of

following distances:

dqv1 = distance from q to neighbor valley v1;
dqv2 = distance from q to neighbor valley v2;
dpp′ = distance from p to valley termination minutia p′, if any,

lying near p in between n1 and n2;
dp′′n1= distance from p′′ to neighbor ridge n1;
dp′′n2= distance from p′′ to neighbor ridge n2;

where, p′′ is the point along the valley v at a distance λ from p′, or, a bifurcation or
termination of v appearing within the target walk-length of λ. The distances dpp′ , dp′′n1 ,
and dp′′n2 exist only if p′ is found near p in between n1 and n2. The criterion for such a
valley minutia p′ is similar to that discussed in Sec. 3.4.1.

The above set of distances are measured either from a ridge point to a valley line or
from a valley point to a ridgeline. Hence, their contribution to score sv is given by

sv =
∑

dtm,va

sdtm,va
, (3.8)

where, sdtm,va
is chosen as

sdtm,va
=





βva.1 if λ/4 ≤ dtm,va ≤ 3λ/4
βva

1
λ(dtm,va − λ/4) if dtm,va < λ/4

βva
1
λ(3λ/4− dtm,va) if dtm,va > 3λ/4,

(3.9)

and βva is the valley score multiplier for a termination minutia, the rationale of Eqn. 3.9
being same as that of Eqn. 3.6.
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Figure 3.10: Example showing contributing points ({q1, q2, . . . , q12} in case (a) and
{q1, q2, . . . , q8} in case (b)) in a circular window W centered around the minutia p.

3.4.3 Estimation of Noise

Let p be a bifurcation or termination minutia having a positive score after the evaluation
of sr and sv. If p does not have a positive score, we need not evaluate sn, since sn will
contribute a negative score to p; finally we will consider only the set of minutiae with
positive scores. Consider a circular window W of radius R = Nλ centered at p(x, y), as
shown in Fig. 3.10(a) and Fig. 3.10(b). In Fig. 3.10(a), W lies entirely within the region
of interest (ROI), whereas, in Fig. 3.10(b), W has a partial overlap with the ROI of the
corresponding image. Let W ′ be the region of overlap between W and ROI of the image.
Let {qi : qi lies within W ′; i = 1, 2, . . . , η} be the set of points, with each point qi satisfying
any one of the following 3 properties (Figs. 3.10(a) and 3.10(b)):

(i) qi is a ridge minutia with sr + sv ≤ 0;
(ii) qi is a non-minutia ridge point having three or more ridges incident upon it;
(iii) qi is either a valley bifurcation or a valley termination minutia.

The above definition enables us to use |{qi}| = η as a measure of noise level in the
window W centered around p. We define another parameter ν, called the noise factor,
which is used to find the noise threshold, τnoise, given in the equation below, that will
indicate whether or not the window W associated with a minutia p is noisy.
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τnoise = ν
A

λ2
(3.10)

where, A is the net area of overlap between W and the region of interest (ROI) of the image.
In Fig. 3.10(a), since W is entirely within the ROI, A = πR2, whereas, in Fig. 3.10(b),
since W lies partially within the ROI, A is less than πR2. Contributing points will be
more in number as the overlap between W and ROI is high and will be less in number
when W is centered at a minutia p located near the border of ROI. Hence, the factor A

πR2

is directly related to the number of contributors within the circular window W . Also, since
R = Nλ, the area of window W is directly proportional to N2 for the concerned image.
Hence, on the assumption that the number of contributors within W varies directly with
the area of W , Eqn. 3.10 is derived as follows.

τnoise = [constant]×N2 A

πR2
= [constant]× A

πλ2
= ν

A

λ2
.

If η is higher than τnoise in W corresponding to p(x, y), the noise level in W is considered
high enough and each point qi(xi, yi), i = 1, 2, . . . , η, is accounted one by one for their
individual contribution to the noise-induced (negative) score sn of p. Thus, Eqn. 3.11 can
be used to find si

n attributed by each qi, and Eqn. 3.12 sums up the individual scores to
compute the total score component due to noise.

si
n = γ(R− d>(p, qi)), (3.11)

sn =





0 if η ≤ τnoise,
η∑

i=1
si
n if η > τnoise,

(3.12)

where, γ is the noise score multiplier, and d>(p, qi) = max{|x− xi|, |y − yi|}.

3.4.4 Normalization of Score

In order to bound the minutiae scores in the range of [1, 100], the value of αri (= αva)
has been chosen as 100

13 . The reason is as follows. For evaluating the score of a bifurcation
minutia, we need to compute 6 distances in the set {dbm,ri}, measured w.r.t. different
ridgelines, and 7 distances in the set {dbm,va}, measured w.r.t. different valley lines. In
each of the three Eqns. 3.3, 3.4, and 3.6, value of each of the 13 score elements before getting
multiplied by αri or αva is at most unity. Since there are 13 such score elements, 6 from
{dbm,ri} and 7 from {dbm,va}, maximum score obtainable by a bifurcation minutia, before
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being multiplied by the ridge score multiplier and valley score multiplier, is 13. Assigning
αri = αva = 100

13 fixes the total maximum score to 100. Another suggestive choice can
be αri = 50

6 and αva = 50
7 , giving equal weight to the total ridge score component and

total valley score component. Our choice for αri = αva = 100
13 comes from the principle of

assigning equal weight to all 13 distance measures instead of assigning equal weight to the
two different score components.

Similarly, for finding the score of a termination minutia with respect to the ridge and
valley skeletons, we measure 7 distances in total, 2 distances in the set {dtm,ri} and 5
in {dtm,va}, respectively. In choosing the values for βri and βva, we have adopted to
equal weightage for all these 7 distances, rather than equal weightage to total ridge score
component and total valley score component. Therefore, in our experiments, we have
taken βri = βva = 100

7 .

3.5 Fingerprint Matching

Given an existing database representation of a fingerprint image and a similar input rep-
resentation extracted from a pattern image, the matching stage in a fingerprint verifica-
tion system determines the similarity of the two fingerprint representations and decides
whether they are from the same finger. The most elegant and efficient representation of
fingerprints, which is also adopted in the conventional automatic fingerprint identification
systems (AFIS), is based on a common hypothesis called minutiae owing to their unique
ability to capture the invariant and discriminatory information present in a fingerprint
image. In this work, we have considered two most prominent kinds of minutiae, namely,
ridge termination and ridge bifurcation, which are used by the Federal Bureau of Investiga-
tion [Wegstein (1982)] and adopted in many AFIS. There exist several techniques [Bishnu
et al. (2002), Jiang et al. (1999), Maio and Maltoni (1997)] to extract the minutiae from
a gray-scale fingerprint image.

Being a non-ideal mapping of some part of a three-dimensional finger to a two-dim-
ensional plane, the acquired fingerprint image, and its corresponding representation there
of, inevitably suffers from unpredictable complications, some of which are:

(i) occurrence of spurious minutiae and absence of genuine minutiae during minutiae
detection phase;

(ii) global translation, rotation, and scaling of the minutiae pattern due to unknown
alignment of the finger during image acquisition;

(iii) local non-linear deformations due to uneven pressure at the fingertip or/and digiti-
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zation error in the acquisition mechanism;
(iv) reduction in actual region of interest due to partial overlap between the two impres-

sions;
(v) cut marks and skin imperfections developed in the time span elapsed between ac-

quisitions of the two impressions.

Considering all these factors, a necessary foundation for achieving a good matching
performance is to construct a reliable, realistic, and robust model of fingerprint matching
that takes into account all sort of deviations and anomalies, which are very likely to occur
between two sets of minutiae extracted from different impressions of the same finger. A
number of approaches have been proposed, and most of them are by minutiae matching
based on some variety of point pattern matching [Jain et al. (1997)], and by structural
matching [Hrechak and McHugh (1990), Wahab et al. (1998)]. However, even these meth-
ods fail to perform well [Jain et al. (2001)], because they did not make use of the rich
information content present in a fingerprint pattern. Presently, most fingerprint matching
algorithms follow a dual strategy that combines the minutiae matching with some method
that captures the ridge structure properties in order to improve the overall matching per-
formance [Bhowmick and Bhattacharya (2004a), Jain et al. (2001), Jiang and Yau (2000),
Luo et al. (2000)].

3.6 Score-based Fingerprint Matching

We have developed a new fingerprint matching technique [Bhowmick and Bhattacharya
(2004a)] that exploits both the local topological structures of a valid minutia and the
global geometric structure of the minutiae set as a whole. Both the local and global
structures have been used adaptively in our algorithm, making the matching procedure
more meaningful, efficient, and robust. Though our method also follows a dual strategy by
combining both the local and global perspectives, it is notably different from the existing
methods [Jain et al. (2001), Jiang and Yau (2000), Luo et al. (2000)] as explained below.

We describe each minutia point pi, detected from a fingerprint image, by a 6-element
feature vector given by

pi = 〈xi, yi, ti, φi, λi, si〉, (3.13)

where, xi, yi are the rectangular coordinates of pi w.r.t. image frame; ti is the type of
minutia (ridge termination or bifurcation); φi ∈ [0, 360) is the local ridge direction at pi,
measured in the counterclockwise direction w.r.t. +ve x-axis; λi is the local inter-ridge
distance at pi; si is the score associated with pi as mentioned in Sec. 3.4.
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Figure 3.11: Detected minutiae with impressions of scores in a gray-scale fingerprint image.
The score of a minutia is proportional to the radius of the circle shown around it.

Our consideration of local structural characteristics of a minutia, therefore, differs
from the existing ones [Jain et al. (2001), Jiang and Yau (2000), Luo et al. (2000)]. In
the procedure by by Jain et al. (2001), the gray-scale variance within a tessellated cell
quantifies the underlying ridge structure and is used as a feature; Luo et al. (2000) considers
only the associated ridge on which the minutia lies; the inter-minutia distance and ridge
count are considered by Jiang and Yau (2000) as local structural measure to facilitate the
preliminary matching. On the contrary, in our work, for all detected minutiae, we have
considered their scores, which embrace all the relevant and useful topological properties
and discard the detrimental ones, thereby enriching the minutiae-based matching by final
evaluation of a matching score. An example of detected set of minutiae with positive
scores is shown in Fig. 3.11, where, the minutiae with positive scores are encompassed by
circles, the radius of the circle centered at a minutia being proportional to its score, and
label ‘i’ of a minutia corresponds to the leaf node ‘pi’ in Kk in Fig. 3.12.

Let there be N images in the database, and let Fk, 1 ≤ k ≤ N , represent the kth
database image having nk minutiae described by the feature set Sk = {pi}nk

i=1. In the
preprocessing (off-line) phase, a primary data structure Tk is defined over each Sk. Tk

is an AVL tree that permits 1-dimensional range searching [Berg et al. (2000)] in fastest
possible time. The Euclidean distance d(pi, pj) between two distinct minutiae pi and pj is
stored in a node νij of Tk, which has, therefore,

(
nk
2

)
nodes in total. Apart from the usual

attributes present in an AVL tree, each node νij contains two additional links pointing to
the corresponding feature vectors of pi and pj present in Sk.
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Figure 3.12: The kd-tree Kk storing the minutiae in the fingerprint image shown in
Fig. 3.11.

When a pattern image Fl comes in the online stage, it is first processed to extract
the minutiae feature set Sl = {qi′}nl

i′=1, where, each minutia qi′ is represented conform-
ing to Eqn. 3.13. The extracted set of minutiae are enumerated in Sl in non-increasing
order of their score values, which is necessary to systematically generate all

(
nl
2

)
inter-

minutia Euclidean distances in an ordered list, namely Ll = 〈d(qi′ , qj′) : 1 ≤ i′ < j′ ≤
nl & d(qi′ , qj′) precedes d(qi′′ , qj′′) only if (si′ + sj′) ≥ (si′′ + sj′′)〉. Each entry d(qi′ , qj′) in
Ll additionally has two links pointing to the corresponding minutiae qi′ and qj′ occurring
in Sl. The ordering of the inter-minutiae distances in Ll ensures the maximum likelihood
of finding a matching distance(s) in Tk in the soonest possible time, without considering
a core point. Since a core point may not be always present, or may be present in a noisy
region, in a given fingerprint impression.

It is very likely that, if Fk and Fl are from the same finger, then in their overlapped
region, a minutia with high score in one is present in the other, though in the later it may
or may not have a high score. Hence, it will be wise to search for those minutiae which
are having high scores in Sl into the database set Sk. Based on this novel idea, the search
space in the parameter domain is reduced.
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3.6.1 Range query of a minutia in a kd-tree

A kd-tree stores a set of points in k-dimensional space, and a 2-dimensional kd-tree can be
used for partial match queries in O(

√
n+m) time, where, n is the number of points stored,

and m is the number of (partial) matches reported in the query [Berg et al. (2000)]. In our
work, we consider the coordinates of the minutiae for dimensional splitting while storing
them in a kd-tree. For each database image Fk, 1 ≤ k ≤ N , we maintain a secondary data
structure Kk, which is a 2-dimensional kd-tree containing nk leaf nodes, where, each leaf
node of Kk represents a distinct feature vector of Sk. The structure of Kk for the image
in Fig. 3.11 is shown in Fig. 3.12, where, a non-leaf node splits the preceding region by an
appropriate abscissa or ordinate line whose equation is given in Fig. 3.12, and each leaf
node contains coordinates of a distinct minutia and points to the corresponding feature in
the list Sk.

3.6.2 Matching algorithm based on kd-tree

If any fingerprint image has less than 6 minutiae, it is not considered as a candidate image
in our matching algorithm. The major steps of our algorithm are stated below.

step 1. Estimate the respective mean scores sk and sl for Sk and Sl as follows.

sk =
nk∑

i=1

si and sl =
nl∑

i′=1

si′ .

step 2. For each distance d(qi′ , qj′), starting from the beginning of Ll, till 1
2(si′+sj′) ≥ sl,

evaluate the average λ across the respective pair of minutiae: λi′j′ = 1
2(λi′ +λj′),

and the corresponding tolerance: εi′j′ = 1
2λi′j′ , and search (range query) for every

possible match d(pi, pj) with λij = 1
2(λi + λj), in Tk, such that

d(qi′ , qj′)
λi′j′

− εi′j′ ≤ d(pi, pj)
λij

≤ d(qi′ , qj′)
λi′j′

+ εi′j′ . (3.14)

Let Lkij = 〈d(pi1 , pj1), d(pi2 , pj2), . . .〉 be the ordered sequence of the matching
distances found in Tk, where, (si1 + sj1) ≥ (si2 + sj2) ≥ . . .. For each such
possible match d(pi, pj) ∈ Lkij , starting from the beginning of Lkij , if |(φi −
φi′) − (φj − φj′)| ≤ 221

2

0 (angular tolerance in our experiments [Bhowmick and
Bhattacharya (2004a)] and also agreed to by others [Jain et al. (2001), Jiang and
Yau (2000)]), then transform the entire pattern/query set Sl, such that xi′ = xi
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and yi′ = yi, i.e., the pattern vector −−→qi′qj′ exactly fits the matching database
vector −−→pipj . Eqn. 3.15 provides the necessary translation (∆x along x-axis and
∆y along y-axis), rotation (∆φ), and scaling (∆ζ), depending on the current
match.




∆x

∆y

∆φ

∆ζ



»

i

j

–
7→
»

i′

j′

–

=




1
2(xi + xj)− 1

2(xi′ + xj′)
1
2(yi + yj)− 1

2(yi′ + yj′)

tan−1
(

yj−yi

xj−xi

)
−tan−1

(
yj′−yi′
xj′−xi′

)

d(pi, pj)/d(qi′ , qj′)




(3.15)

step 3. After all the points in Sl are given the subject transformation to obtain a new
ordered feature set S̃l = 〈q̃1, q̃2, . . . , q̃nl

| s̃1 ≥ s̃2 ≥ . . . ≥ s̃nl
〉, for each q̃v =

〈x̃v, ỹv, t̃v, φ̃v, λ̃v, s̃v〉 ∈ S̃l, a 2-dimensional range searching is applied in Kk with
an orthogonal square query box with the diagonal dimension λ̃v and centered
about the coordinates (x̃v, ỹv) of q̃v. We keep a counter m(i 7→ i′, j 7→ j′)(k,l),
initialized to 0, which gets incremented by unity if a match pu, 1 ≤ u ≤ nk, is
found.

step 4. For each matching pair of minutiae (pu ∈ Sk, q̃v ∈ S̃l) obtained in step 3, a
matching score function ξ(su, s̃v) is defined by Eqn. 3.16, which contributes into
the final overall matching score µ(k,l) between the two corresponding feature sets
Sk and S̃l as shown in Eqn. 3.17.

ξ(su, s̃v) =
1
2
(su + s̃v)− ω|su − s̃v| (3.16)

µ(k,l) =
1

m(i 7→ i′, j 7→ j′)(k,l)

m(i7→i′,j 7→j′)(k,l)∑

u,v=1

ξ(su, s̃v) (3.17)

step 5. Reverse the roles of qi′ and qj′ in step 2 such that xi′ = xj and yi′ = yj , i.e.,
the query vector −−→qi′qj′ exactly fits the matching database vector −−→pjpi, and repeat
the process. If the feature set matching score, thus obtained, is greater that the
previous one, then update the final matching score given in Eqn. 3.17 accordingly.

step 6. If max{m(i 7→ i′, j 7→ j′)(k,l)} is at least 6, and µ(k,l) is at least as high as min(sk, sl),
then Fl is reported as a matching image of Fk with a matching score of µ(k,l).

There are several intrinsic adaptive properties of this algorithm. Equation 3.14 takes
care of non-linear deformations in the region lying in between and around the minutiae
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pairs. The condition 1
2(si′+sj′) ≥ sl ensures that, for registration of Fl with Fk, a minutia

pair having a high degree of authenticity in Fl is considered, thereby encouraging a real
match and discouraging a faked one. In step 3, since there cannot lie two minutiae pu and
pu′ within a distance of min(λu, λu′) (if so, they have been already eliminated as spur or
bridge endpoints in the minutiae detection stage), there cannot be more than one minutia
in the database set that lies within the range query box. As a result, if there is (at most)
one minutia pu ∈ Sk lying within the query box, then pu is considered as a valid match
with the corresponding query q̃v, provided they are of identical types, and their directions
differ by at most 221

2

0. In Eqn. 3.16, the parameter ω represents the weightage attached
to the difference of scores of two matching minutiae in their way of participating in the
estimate of µ(k,l). As explained in Sec. 3.3, the value of ω should lie between 0 and 101

198 so
that ξ(su, s̃v) is never negative. In our experiments, we have considered ω = 1

2 .

3.7 Experimental Results

3.7.1 Results of Score Evaluation

We used the fingerprint images from (i) NIST Special Database 4 [Watson and Wil-
son (1992)], (ii) NIST Special Database 14 [Candela et al. (1995)], (iii) Database B1 of
FVC2000 [FVC2000 (2000)], and (iv)Database B2 of FVC2000 [FVC2000 (2000)]. Our
experiments for evaluation of scores have been performed on 50 images of set (i), 124 im-
ages of set (ii), 80 images of set (iii), and 80 images of set (iv). Each image in these four
sets is an 8-bit gray-scale image. The images of set (i) are used after applying Wavelet
Scalar Quantization implemented in PCASYS [Candela et al. (1995)].

First, the input image is transformed to a skeletonized ternary image consisting of
ridges, valleys, and backgrounds. In order to get the skeletonized ternary image from a
gray-scale image, we have used the tool RiVEx developed by us [Project Group: ISI-
Intel (2002b)]. For the detection of minutiae from a skeletonized binary image, consisting
of ridges(1) against background(0), or valleys(1) against background(0), we have used
another tool named as MinuBin [Project Group: ISI-Intel (2002a)]. Four gray-scale
images — one from each of set (i), set (ii), set (iii), and set (iv) — are shown in Fig. 3.13.
The images of set (i) and set (ii) are of size 480 × 512 each, those of set (iii) are of size
300 × 300, and those of set (iv) of size 364 × 256. All the images in these four sets are
recorded at 500 dpi.

The results obtained over the four sets of images are presented in Table 3.1. In Ta-
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Figure 3.13: Sample gray-scale images from 4 databases.
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Table 3.1: Results for 4 sets of fingerprint images
Set Database No. of Image Avg.no.of Mean Std.dev. Avg.time

Imgs. Size Minutiae Score Score in sec.

i NIST sdb-4 50 480×512 33 33.55 22.38 0.121

ii NIST sdb-14 124 480×512 59 48.92 21.84 0.125

iii FVC-2000 80 300×300 16 32.46 19.13 0.045
set-B db-1

iv FVC-2000 80 364×256 23 36.20 20.51 0.053
set-B db-2

ble 3.1, column 3 indicates the number of images considered for generating the results
shown. Column 5 indicates the average number of minutiae with positive scores, nk, for
kth set, vide Eqn. 3.18. Column 6 gives the overall mean score, µk, for the corresponding
set of images, estimated from the individual mean scores of all the images in the set, µkj ,
in accordance with the Eqn. 3.19.

nk =
1

mk

mk∑

j=1

nkj (3.18)

µk =

∑mk
j=1 nkj µkj∑mk

j=1 nkj
(3.19)

where, mk = total number of images in kth set, nkj = number of minutiae with positive
scores, and µkj is the mean score over all minutiae with positive scores, in jth image of
kth set, k ∈ {i, ii, iii, iv}, as shown in the Eqn. 3.20.

µkj =
1

nkj

nkj∑

i=1

skji (3.20)

where, skji is the (positive) score of ith minutiae in the jth image of kth set.

In table 3.1, column 7 displays the overall standard deviation, σk, for the corresponding
set of images, vide Eqn. 3.21, estimated from the individual standard deviations, σkj , of
all the images in the set, in accordance with the Eqn. 3.22. Average time for evaluating
the scores of all minutiae per image of a database is given in column 8.

σk =

[∑mk
j=1(nkj σ 2

kj + nkj µ 2
kj)∑mk

j=1 nkj
− µ 2

k

] 1
2

(3.21)
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Table 3.2: Variation of score with different parameters
Image File N ν γ ni nf ∆n(%) mean score

fpi.001.01 1.0 2.00 0.10 77 51 33.77 60.25

fpi.001.02 1.0 2.00 0.20 77 50 35.06 54.12

fpi.001.03 1.0 1.00 0.10 77 51 33.77 54.06

fpi.001.04 1.0 1.00 0.20 77 50 35.06 39.22

fpi.001.05 2.0 3.00 0.10 77 51 33.77 65.35

fpi.001.06 2.0 3.00 0.20 77 51 33.77 65.35

fpi.001.07 2.0 2.00 0.10 77 46 40.26 65.91

fpi.001.08 2.0 2.00 0.20 77 45 41.56 66.89

fpi.001.09 2.0 1.00 0.10 77 41 46.75 48.24

fpi.001.10 2.0 0.50 0.10 77 41 46.75 38.54

fpi.001.11 2.0 0.50 0.20 77 15 80.52 57.07

fpi.001.12 3.0 1.00 0.10 77 32 58.44 66.72

fpi.001.13 3.0 0.75 0.10 77 19 75.32 58.32

fpi.001.14 3.0 0.50 0.10 77 17 77.92 45.82

σkj =

[
1

nkj

nkj∑

i=1

(skji − µkj)2
] 1

2

(3.22)

In the estimation of noise-based score, a number of parameters are involved. N decides
the area covered by the window W . A higher value of N includes the distant contributors
responsible for noise, whereas, a lower value often fails to incorporate the real noise con-
tributors. Optimization of N is, therefore, a crucial factor. ν decides the noise threshold
τnoise that plays a vital role in deciding the noise level of the window W . The controlling
parameter γ decides the influence of noise on the score. A higher value of γ will enforce
a higher impact of noise in the score. Table 3.2 enumerates the roles played by the noise
detection parameters. Different sets of values of these parameters have been chosen care-
fully to demonstrate their effects on the scores of minutiae for a ternary skeleton image
fpi.001 exhibited in Fig. 3.14. In Table 3.2, the column with heading ni indicates the
initial number of minutiae that are present in the image fpi.001 (Fig. 3.14) prior to score
evaluation. For each set of parameters, the corresponding final number of minutiae with
positive scores is shown in column with heading nf . The column with heading ∆n(%)
shows the percentage of difference of nf from ni. The images with (positively) scored
minutiae for different sets of parameters are shown in Figs. 3.15(a)–(n). In all of these
ternary images shown, the darker lines represent the ridges and the faint lines the valleys.

The score distribution for different images in the 4 sets of images is shown in Table 3.3.
To show our experimental results on these sets, we have chosen N = 2.00, ν = 1.25, γ =
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Table 3.3: Score distribution for different images
Sl. Image Minutiae Minutiae Mean Std.Dev.
no. before with (+)ve Score of Scores

score scores

1 nist.14.1 77 37 59.70 31.59

2 nist.14.2 79 40 58.67 32.25

3 nist.14.3 82 34 60.71 28.66

4 nist.14.4 111 66 62.12 28.05

5 nist.4.1 97 12 44.42 29.26

6 nist.4.2 95 28 35.50 24.43

7 nist.4.3 144 18 28.83 26.61

8 nist.4.4 111 24 33.88 25.25

9 fvc.b1.1 20 11 51.55 17.25

10 fvc.b1.2 34 19 38.74 21.87

11 fvc.b1.3 39 10 44.10 19.06

12 fvc.b1.4 45 11 24.36 28.33

13 fvc.b2.1 20 16 54.62 26.41

14 fvc.b2.2 13 11 51.68 28.01

15 fvc.b2.3 26 22 55.73 35.07

16 fvc.b2.4 25 14 62.64 28.93

0.10. The corresponding image for our chosen set of parameters with some score values
written beside the corresponding minutiae is shown in Fig. 3.16, the darkness of a minutia
being proportional to its score. Table 3.4 includes the scores (positive values only) of the
bifurcation minutiae (bm), followed by those of the termination minutiae (tm), arranged
in ascending orders.

Four typical minutiae out of the 77 minutiae of fpi.001 (Fig. 3.14) are selected along
with their neighborhood regions of size 70 × 70 pixels, shown in Fig. 3.17, to clarify the
three score components, sr, sv and sn, of these minutiae. Each of these minutiae is located
in the center of its corresponding region in Fig. 3.17.

In the minutiae p1 (type: bifurcation, x: 345, y: 414), each of the three score compo-
nents is 0. This is because each of the three ridges incident at p1 is less than λ in length,
thereby failing to establish a positive ridge score for p1, vide Sec. 3.4.1. Furthermore,
the three ridges incident at p1 may be very short and hence, it may not be possible to
ascertain which one of them appears before bifurcation and which two are the bifurcated
ridges. Hence, it is hard to calculate the local ridge angle at p1 that is required as a guiding
direction to find the valley termination minutia expected to be lying between the two bi-
furcated ridges. This makes the second score component, sv, zero at p1. Since sr + sv = 0,
it is not meaningful to find the negative score imparted by noise, and therefore, by default,
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Figure 3.14: fpi.001 with 77 minutiae without scores.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

(a) fpi.001.01 with 51 minutiae
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(b) fpi.001.02 with 50 minutiae
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(c) fpi.001.03 with 51 minutiae
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(d) fpi.001.04 with 50 minutiae
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(e) fpi.001.05 with 51 minutiae
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(f) fpi.001.06 with 51 minutiae
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(g) fpi.001.07 with 46 minutiae
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(h) fpi.001.08 with 45 minutiae
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(i) fpi.001.09 with 41 minutiae
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(j) fpi.001.10 with 41 minutiae
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(k) fpi.001.11 with 15 minutiae
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(l) fpi.001.12 with 32 minutiae
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(m) fpi.001.13 with 19 minutiae
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(n) fpi.001.14 with 17 minutiae

Figure 3.15: Minutiae with scores for different set of noise parameters (given in Table 3.2).
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sn becomes zero. Thus, the total score of minutia p1 becomes 0, and it is not shown in
Figs. 3.15(a)–3.15(n) and Fig. 3.16.

In the next minutiae p2 (type: bifurcation, x : 345, y : 210) of Fig. 3.17, the first
component of score, sr, due to ridge topographical structure in and around p2, is 34.
But the valley termination minutia, supposed to be present near p3 and within the two
bifurcated ridges, is not present. In stead, the said valley termination minutia is lying
outside the two bifurcated ridges. To measure the distances dpp′ , dp′′r1 , dp′′r2 , dp′′v1 , and
dp′′v2 in the set {dbm,va}, the said valley termination minutia is the basic prerequisite. So
the score component due to valley topography, sv, for p2 is as low as 14. The noise level,
η, in the window centered at p2, falls short of the threshold noise, τnoise, set for our chosen
set of parameters, and therefore, sn for p2 turns to be zero. The total score of p2 thus
amounts to be 34 + 14− 0 = 48.

In the minutiae p3 (type: bifurcation, x: 424, y: 55), sr is found to be 35. This
minutia has narrowly escaped to be marked as a loop minutia, since we have set that each
of the edge lengths of a loop should be less than 2λ. The valley termination minutia is
found to be present near p3 between the two bifurcated ridges. Distances in set {dbm,va}
are measured, and sv is found to be 39. However, it is evident from the figure that this
minutia is located in a highly noisy area, and the score component sn is found to be -61
as expected. The total score of p3 thus becomes 35 + 39− 61 = 13.

In the fourth minutia p4 (type: bifurcation, x: 297, y: 197), sr and sv are estimated
to be 37 and 48 respectively, whereas, sn is zero. Total score of p4 thereby amounts to
37 + 48 − 0 = 85. The topographic orderliness of the local neighborhood of p4 clearly
supports the authenticity of the score yielded by the procedure followed.

The proposed method is implemented in C on a Sun Ultra 5 10, Sparc, 233 MHz, the
OS being the SunOS Release 5.7 Generic. The total CPU time for the evaluation of scores
of all minutiae in a ternary skeletonized fingerprint image was found to be around 0.03 to
0.07 sec.

3.7.2 Results of Fingerprint Matching

We used fingerprint images from (i) NIST Special Database 4 [Watson and Wilson (1992)]
and (ii)Database dB1a of FVC2000 [Maltoni et al. (2003)], whose details have been given
in Sec. 3.7.1.

The matching algorithm is implemented in C on a Sun Ultra 5 10, Sparc, 233 MHz,
the OS being the SunOS Release 5.7 Generic. The average execution times for both
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the sets are given in Table 3.5. The times shown in braces are required when minutiae
scores are not considered, which are substantially higher than those, shown outside braces,
when scores are included. Fig. 3.18 shows the different Receiver Operating Characteristic
(ROC) curves by plotting the Authentic Acceptance Rate (AAR) vs. the False Acceptance
Rate (FAR), for the two databases. The firm lines (type 1) represent the ROC when
the individual scores of both the database image and the pattern image are taken into
consideration, whereas, the dotted lines (type 2) the ROC when the conventional method
is followed without considering the local topological properties (scores) of the minutiae.
Type 1 curves are obtained by choosing different threshold values on number of matching
minutiae pairs (default value is 6 in our experiments) and on matching score (default
min(sk, sl)), and type 2 curves by different threshold values only on number of matching
minutiae pairs.

3.8 Conclusion

This chapter describes a mechanism for assigning a score value to each of the extracted
minutiae, based on its topographical properties. Further improvements on score evaluation
might be achieved by designing an appropriate strategy for crosschecking the prominence
of a minutia in the original gray-scale image and the smoothness of curvature of the
ridgelines and valley lines in its local neighborhood in the ternary skeletonized image.

The score values obtained for a set of minutiae have been subsequently used to expedite
a fingerprint matching process by a hierarchical arrangement of the minutiae based on the
minutiae scores. Searching for a fingerprint match in a fingerprint database containing
millions of records may take an excessive amount of time, which is reduced significantly by
adopting a suitable cascading on the minutiae scores. Fingerprint indexing by Bhanu and
Tan (2003) strengthens our assertion on minutiae scores for faster fingerprint recognition.

Improvements on execution time, AAR and FAR may be possible by further experi-
ments on shape of the query box/region like the one in angular tree (Chapter 2), opti-
mization on area covered under the query box, etc. Furthermore, research provision also
lies in automatic thresholding of parameters, which play a crucial role in the score finding
and in the matching process.
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Table 3.4: Score values (s) of the minutiae detected for the fingerprint image in Fig. 3.16.

bifurcation
minutiae (bm)

Sl. x y θ s
no.

1 76 81 315 5

2 342 381 267 13

3 424 55 267 13

4 261 219 41 21

5 50 195 258 24

6 246 261 71 25

7 251 234 248 32

8 441 379 93 38

9 409 205 252 47

10 345 210 250 48

11 56 127 91 65

12 187 88 328 65

13 128 91 304 66

14 407 114 251 67

15 115 55 305 72

bifurcation
minutiae (bm)

Sl. x y θ s
no.

16 408 82 246 74

17 362 115 40 75

18 406 143 252 75

19 294 87 14 76

20 173 432 215 77

21 347 118 229 78

22 433 209 270 78

23 390 77 235 78

24 435 91 267 79

25 146 414 23 79

26 149 388 217 80

27 317 282 108 82

28 356 290 286 83

29 330 352 254 84

30 297 197 39 85

termination
minutiae (tm)

Sl. x y θ s
no.

1 117 337 222 6

2 420 163 75 9

3 412 430 114 22

4 42 205 270 33

5 150 115 116 43

6 82 400 41 47

7 144 215 223 49

8 177 242 34 49

9 154 473 15 50

10 388 202 90 60

11 327 91 22 82

12 115 450 216 86

Table 3.5: Matching results for 2 sets of fingerprint images

NIST 4 FVC dB1

% of invalid images (< 6 minutiae) 6.00 4.36

Avg. time (secs.) for acceptance 0.10 (0.79) 0.06 (0.51)

Avg. time (secs.) for rejection 0.07 (1.02) 0.04 (0.64)
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Figure 3.16: Minutiae shown for image fpi.001 with darkness proportional to scores, Scores
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Figure 3.17: Four sample minutiae, namely p1, p2, p3, p4, of image fpi.001 (Fig. 3.16) in
their local neighborhoods.
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Chapter 4

Points Representing Corners in a General Digital Image

How can it be that mathematics, being after all a product of human thought,
which is independent of experience, is so admirably appropriate to the objects of
reality? Is human reason, then, without experience, merely by taking thought,
able to fathom the properties of real things?

Albert Einstein
Sidelights on Relativity

4.1 Introduction

Corners are important geometric features of a digital image. Being sparse features, mere
presence of them is considered sufficiently informative. Hence, much of the work on two-
dimensional features of an image is focused on detection of corners. However, corners of an
object, by themselves, just represent an ordinary set of points on a two-dimensional plane,
which hardly begets any idea about the underlying object. The object becomes somewhat
apparent once the directions of the incident edges are provided with each corner. In
Fig. 4.1(a), a set of corners for a simple object is shown for illustration, which fails to
yield a definite and conclusive impression about the related object. In Fig. 4.1(b), the
set of corners along with the directions of the incident edges is shown, which produces a
precise conception of the object, shown in Fig. 4.1(c). Hence, an application using corners
will be more efficient if directions of edges incident at each corner are used to fortify the
set of corners.

Detection of corners is often required in numerous applications in pattern recognition,
computer vision, and image processing, some of which are as follows:

(i) shape analysis [Antoine et al. (1996), Biswas et al. (2005b), Buvaneswari and Naidu
(1998), Pavlidis et al. (1997)]
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(a) (c)(b)

Figure 4.1: Only corners (in (a)) fail to suggest the nature of the underlying object, whereas
corners along with the directions of the incident edges (in (b)) produce an impression of
the actual object (in (c)).

(ii) automatic identification of events of interest, e.g. tracking and classification of
moving vehicles [McCane et al. (2002), Mohanna and Mokhtarian (2003), Smith
and Brady (1995), Zang and Klette (2003)]

(iii) optical flow computation [Barnard and Thomson (1980), Nagel (1987), Park and
Han (1997), Smith and Brady (1995)]

(iv) 3D scene analysis and reconstruction from stereo image pairs [Burden and Bell
(1997), Cecelja et al. (2003)]

(v) real-time automatic face tracking, face recognition, and motion correspondence [Gao
(2004), Liang et al. (2003), Manjunath et al. (1992)]

(vi) determination of robot locations/trajectories using object/environment corners [Ar-
gyros et al. (2001), Blisset (1990), S.-Yuan and W.-Hsiang (1991), Tsay et al. (2003)]

(vii) retrieval of images and videos based on object corners [Ducksbury and Varga (1997),
Gu and Tjahjadi (1999), Mokhtarian and Mohanna (2002), Wolf et al. (2000)]

Perception of corners by human visual system involves different kinds of information
associated with an image region, such as brightness, contrast, clarity, rate of change of
contour curvature, degree of straightness of the digital contour, etc. Now, in a gray-level
image, corners are formed at boundaries between two or more significantly dissimilar image
brightness regions, where the boundary curvature is sufficiently high. Using only boundary
analysis based on the pattern of the digital curve, therefore, is very much preconditioned by
the preceding segmentation. Use of only gray-level analysis based on derivatives often leads
to acceptance of false corners and rejection of valid corners, as this method is susceptible
to noise. Furthermore, in gray-level based approaches, the relative brightness parameter
plays a critical role. An appreciable change of this parameter produces abrupt change in
the set of detected corners. Hence, a good corner detection algorithm should satisfy a
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number of important criteria, which are as follows:

(i) Each true corner should be detected, i.e., no false negative should occur.
(ii) No false corner should be detected, i.e., no false positive should creep in.
(iii) Corner points should be well localized, and the estimated directions of incident edges

at a corner point should lie within a reasonable tolerance.
(iv) Corner detector should be robust with respect to noise, i.e., number of false positives

as well as number of false negatives should be minimal.
(v) Corner detector should be stable and efficient, i.e., the set of detected corners should

not vary much with change in any control parameter, e.g. brightness threshold.

Corner detection can be broadly categorized as contour-based method or gray-level
based method. In the contour-based method [Beus and Tiu (1987), Freeman and Davis
(1977), Koplowitz and Plante (1995), Lee et al. (1995), Liu and Srinath (1990)], a seg-
mented boundary is followed, and the rate of change of the contour angle is watched to
detect and locate corners. Thus, this method is quite susceptible to the adopted segmenta-
tion procedures. As an improvement of this method on corner detection, CSS (curvature
scale-space) method [Mokhtarian and Suomela (1998)] is proposed by Mokhtarian and
Suomela, where corners are detected, tracked, and localized through the curvature anal-
yses based on multiple scales. On the contrary, the gray-level based method has been
suggested to detect corners directly from the gray-scale images without any prior segmen-
tation. The use of angle-based templates is proposed by Rangarajan et al. [Rangara-
jan et al. (1989)]. There also exist gradient-based methods [Harris and Stephens (1988),
Kitchen and Rosenfeld (1982), Lindeberg (1994)] for corner detection by identifying curva-
ture changes by differential analysis without the need for prior segmentation. A literature
survey by Zheng et al. [Zheng et al. (1999)] summarizes the existing gray-level corner de-
tection methods. Discussions on the generic methodology for assessing the performance of
corner detection algorithms and several case studies can be found in the existing literature
[Rockett (2003)].

In recent times, several corner detection techniques have been proposed [Alkaabi and
Deravi (2004), Banerjee et al. (2004), Elias and Laganiére (2002), Etou et al. (2002),
Lüdtke et al. (2002), Mohanna and Mokhtarian (2002), Urdiales et al. (2003)]. One of the
widely referred corner detection algorithms is SUSAN [Smith and Brady (1997)], where
a circular mask of fixed diameter (7 pixels) is used to extract the local structural infor-
mation based on the USAN area in order to judge the candidature of the mask’s nucleus
as a corner. The algorithm proposed here differs from SUSAN in several aspects, viz.,
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adaptively augmenting the annular window depending on a number of conditions, design
of an adaptive annular filtering scheme, adaptive thresholding of brightness parameter,
and subpixel-precision evaluation of incident edge directions at each corner. A prelimi-
nary version of the algorithm has been discussed by Bhowmick and Bhattacharya (2004a)
and by Bhowmick and Bhattacharya (2005b).

4.2 Proposed Algorithm

Let I(i, j) be the gray-scale intensity of any point p(i, j) in an eight-bit gray-scale digital
image I with m rows and n columns. Then the gradient of intensity at the point p(i, j)
is given by two components in the right-hand side of Eqn. 4.1.

∇I(i, j) =
〈

∂I

∂x
(i, j),

∂I

∂y
(i, j)

〉
(4.1)

The magnitude of ∇I(i, j) is often used as a measure of the strength of edge, if any,
passing through (i, j), and can be expressed in several suitable forms, depending on the
application, one of which is as follows (L1 norm [Klette and Rosenfeld (2004a)]):

|∇I(i, j)| =
∣∣∣∣
∂I

∂x
(i, j)

∣∣∣∣ +
∣∣∣∣
∂I

∂y
(i, j)

∣∣∣∣ (4.2)

The corresponding second order difference ∇2I(i, j) is used to find the zero-crossing
across the edge, guided by the direction φ as given in Eqn. 4.3.

φ = tan−1

∣∣ ∂I
∂x(i, j)

∣∣
∣∣∣∂I
∂y (i, j)

∣∣∣
(4.3)

Usage of above directional differences (first order and second order) is a traditional
and popular approach to find the gray level topological features (viz. edges, corners, etc.)
of an image, but this has some severe problems, some of which are as follows:

(i) Inappropriate discretization of ∇I(i, j) and ∇2I(i, j): In the discrete domain,
evaluation of ∇I(i, j) and ∇2I(i, j) merely considers the neighboring pixels (in 4-
neighborhood or 8-neighborhood) of (i, j), thereby weakening the relevance of their
definitions in the real domain, especially for the case where the gray level transition
in and around the concerned point (i, j) is spread over a larger region, which often
leads to improper location and erratic detection of desired features.

(ii) Zero crossing problem: For the gray level transition associated with a ramp edge
[Wang et al. (1996)], which is the edge commonly found in a natural gray-scale
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Figure 4.2: A schematic layout of the proposed algorithm CODE.

image, the zero crossing procedure at a point sometimes yields multiple solutions
(when |∇I(i, j)| is same for three or more consecutive pixels along the same “ramp”)
or a staggered edge point (when the zero crossing(s) lies away from the middle of
the same “ramp”), posing further analysis in extracting the true edge point and the
proper edge direction at the concerned point.

(iii) Noise: The presence of noise is a very common characteristic in a digital image,
which, without any noise cleaning, when convoluted with the gradient operators,
∇I(i, j) and ∇2I(i, j), often produces impure results. The refinement process (e.g.
mean filtering, Gaussian filtering, median filtering, etc.), in order to get rid of the
noise from the image, in turn, blurs the image in general, and the edges in particular,
thereby worsening the situation of detecting desired image features.

In order to circumvent the aforesaid problems, in this work, therefore, we have not used
the directional difference operators for detecting the corners. We have not even applied
any standard filtering on the input image, since any filtering mask of some defined size,
say w × w, (viz. 3 × 3, or, 5 × 5 Gaussian mask) may include, in worst case, the gray
values of (w2 − w) non-edge pixels for a true edge pixel, which will affect our feature
detection procedure. Instead, we have designed an adaptive annular filtering scheme as
discussed in Sec. 4.2.1. In Sec. 4.2.2, the why and how of adaptive thresholding of gray
value, necessary for accuracy and stability of the proposed algorithm, have been addressed.
Sec. 4.2.3 elucidates the procedural details, raised to the finest level of precision, for finding
out the directions of the incident edges at each corner point, which are put together in
the form of a concise algorithm in Fig. 4.8. The experimental results and findings are
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given in Sec. 7.3, and finally, in Sec. 4.4, we have indicated the promises and prospects
of using the corners along with their incident edge directions for further applications. In
Fig. 4.2, a schematic diagram of CODE, the proposed algorithm for detection of Corners
and Directions of incident Edges, is shown for an overall glimpse.

4.2.1 Adaptive Annular Filtering

Let p(x, y) be any point in the image I, and C
(x,y)
r be the ordered list of pixels of the

(digital) circle of radius r centered at p, enumerated in clockwise direction starting from
(x + r, y), as shown in Fig. 4.3. Let |Cr| be the number of pixels in C

(x,y)
r , which will be

independent of (x, y) and constant for a given value of r [Foley et al. (1993)]. It may be
noted that, with increase in r, the digital perimeter |Cr| of the corresponding circle also
increases monotonically, thereby improving its digital angular resolution, 3600/|Cr|.

Now we define A
(x,y)
r as the ordered list (of size |Cr|) of image gray values of the points

in C
(x,y)
r , such that for each k, 0 ≤ k ≤ |Cr| − 1, the kth entry in A

(x,y)
r is the gray value

of the kth point in C
(x,y)
r . In the implementation of our algorithm CODE, |Cr|, and the

angular tolerance in degrees, (±)αr, in accordance with Eqn. 4.4, are obtained from Look
Up Table LUT-1, shown in Table 4.1, in order to reduce the execution time. It should be
mentioned here that, structure of LUT-1 is independent of any of the image properties,
and therefore, prepared once for all in the algorithm CODE.
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edge corner

(a) binary image.

edge corner

(b) gray-scale image.

Figure 4.4: Typical examples of edges and corners in binary and gray-scale images, shown
with enlarged pixels.

αr =
⌊

180
|Cr| +

1
2

⌋
(4.4)

r 1 2 3 4 5

|Cr| 8 12 16 20 28

αr 23 15 11 9 6

Table 4.1: LUT-1 for |Cr| and αr.

It may be observed that, if p lies on some edge or corner in a gray-scale image
(Fig. 4.4(b)), or in a binary image (Fig. 4.4(a)), then the gray level transition across
the respective edges would be reflected in the pattern of gray level values in A

(x,y)
r , which

can be exploited to extract the location and direction of the edge. Strengthening and ap-
propriating the procedure of finding the concerned edge directions requires the reduction
of noise present in A

(x,y)
r , which is done by convoluting each element in A

(x,y)
r with a mask

Wr = ω1 ω2 . . . ωλr . . . ω2 ω1 to create a filtered list of gray values F
(x,y)
r = Wr ∗ A

(x,y)
r ,

in accordance with the following equation.

F(x,y)
r (k) =

λr∑
i=−λr

Wr(λr + i) ·A(x,y)
r (k + i)

λr∑
i=−λr

Wr(λr + i)
(4.5)

where, A
(x,y)
r (k + i) denotes the ((k + i) mod |Cr|)-th element in A

(x,y)
r , for k = 0, 1, . . .,

|Cr| − 1. Since the first order difference of the gray value transition along the maximum
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Figure 4.5: An example of finding the directions (θ1, θ2) of incident edges at a point p(x, y)
(shown by ¤) using the angles {θ1,1, θ1,2, . . .} and {θ2,1, θ2,2, . . .} extracted from filtered
annular lists F

(x,y)
1 , F

(x,y)
2 , . . ..

gray value gradient for a ramp edge resembles the one-dimensional Gaussian function, we
resort to the Gaussian mask Wr of size 2λr +1. The speciality of the mask Wr adopted in
our algorithm is that, with increase in the value of r, i.e., higher augmentation of C

(x,y)
r ,

the size of Wr = 2λr +1 is also increased. This is to suit the slant of the ramp edge, since
a lower value of r encompasses a part of the gray value transition, whereas a sufficiently
high value of r ensures the inclusion of the entire gray value transition of the edge in C

(x,y)
r .

A sample image is cropped and magnified as an example in Fig. 4.5 that demonstrates the
increase in the length of the ramp edge, where, there exist two ramp edges, whose ramp
lengths are given in Table 4.2.

ramp length gray value trans.
edge-1 edge-2 edge-1 edge-2

r |Cr| A
(x,y)
r F

(x,y)
r A

(x,y)
r F

(x,y)
r λr F

(x,y)
r F

(x,y)
r

1 8 4 4 4 4 0 92 103

2 12 6 7 5 7 1 141 133

3 16 6 7 6 6 1 165 172

4 20 5 10 5 6 2 177 175

5 28 5 9 5 6 2 177 174

Table 4.2: Gray value ramp lengths and gray value transitions for different values of r in
Fig. 4.5.
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4.2.2 Adaptive Brightness Thresholding

In a natural image, the gray-level value around an edge point or a corner point along
the maximum gradient direction changes gradually. Thus, larger the augmenting window
radius r centered at the corresponding point is, higher is the change of gray value across
an edge, within some suitable range of r. Fig. 4.6 justifies the need for adaptively changing
the brightness threshold γr with r. If Z represents the zero-crossing in a ramp edge as
shown in Fig. 4.6, then γr is practically divided into two equal parts, one above the abscissa
line through Z and the other below it. As a result, the value of 1

2γr (γr, there of) increases
with the window radius r, so that γr is minimum for r = 1 and has no appreciable change
when r exceeds 3 or 4. Hence the brightness threshold has to be adjusted appropriately
in order to judge the candidature of a point as a corner.

Now, an ideal ramp edge is the integration of one-dimensional Gaussian function
[Chanda and Dutta Majumder (1999)]. It may be noted that, integrals of the form∫

xne−kx2
dx, n = 0, 2, 4, . . ., are referred to as “Gaussian” integrals (or integrals of Gaus-

sian functions). It can be shown that the prototype of all such Gaussian integrals is∫∞
−∞ e−x2

dx =
√

π, which can be derived using the fact that
∫∞
0 e−udu = 1. It may be

also noted that, an Error Function, ErF (x), is defined in integral calculus by the finite
integral, given in Eqn. 4.6, such that ErF (∞) = 1.1

ErF (x) =
2√
π

∫ x

0
e−u2

du (4.6)

1 Other integrals can be written in terms of this basic integral. For example, 2√
π

R x

0
e−ku2

du =
1√
k
ErF (x

√
k).
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Further, the finite integral function ErF (x) cannot be evaluated in terms of elementary
functions, defined in the real domain, and therefore, proper approximating techniques must
be used. One such technique is Maclaurin series expansion [Faires and Burden (1998)],
from where we approximate the integral form of ErF (x), given in Eqn. 4.6, to an well-
approximated form given in Eqn. 4.7.

ErF (x) = 2√
π

∞∑
k=0

(−1)kx2k+1

(2k+1)k!

= 2√
π

(
x− 1

3x3 + 1
10x5 − 1

42x7 + 1
216x9 − 1

1320x11 + . . .
) (4.7)

The value of the Error Function, obtained using Eqn. 4.7, correct up to three decimal
places, is considered for determining the pattern of the gray value transition associated
with a ramp edge. Now, on substituting x by r/

√
2σ in Eqn. 4.7, we get the ideal form

of ramp edge whose first derivative obeys the Gaussian form. Fig. 4.6 shows the plot
of ErF (r/

√
2σ) versus r, for different values of σ, where r signifies the distance of the

concerned point from the zero-crossing (r = 0).

It is evident from Fig. 4.6 that, with a low value of σ, the corresponding gray-value
transition associated with a ramp edge is gentle and imperceptible, whereas, with a high
value of σ, the transition becomes very pronounced. A judicious selection of σ is, therefore,
mandatory in order to detect the true edge transitions.

Now, the gray-level change in an annular window corresponds to a valid edge transition,
if the concerned gray-level change exceeds the gray-level threshold associated with the
window radius. Higher the window radius, higher would be the gray-level threshold. In
line with the nature in change of gray-level value associated with a ramp edge, as shown
in Fig. 4.6, therefore, we have fixed the gray-level threshold adaptively with the window
radius, such that the gray-level threshold never exceeds the maximum gray-level threshold,
γ∞, which is the sole parameter supplied by the user.

Based on the observation that an entire edge transition along the maximum gradient
direction (i.e. ramp length as shown in Table 4.2) gets captured in the annular list Ar

for r = 3 or 4, we have considered σ = 1 in our experiments. It may be noted that
implementation of Eqn. 4.7 is realized by a look up table LUT-2, which is prepared only
once for an image for a given value of brightness threshold, γ∞, as shown in Table 4.3.
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r 1 2 3 4 5

γr 19 32 36 38 38

Table 4.3: An instance of LUT-2 for γ∞ = 40 and σ = 1.

4.2.3 Estimation of Edge Directions

Another important feature of the proposed work is the estimation of edge direction by
mean weighted difference. This method of finding edge direction works superbly for both
natural and synthetic images, which usually possess ramp and step edge transitions re-
spectively. For step edges, usual directional derivatives ∂I

∂x and ∂I
∂y provide the necessary

edge directions. However, for ramp edges with low |∇I|, the derivatives produce erratic
edge directions, since calculation of ∂I

∂x and ∂I
∂y deals with only 8× 8 neighborhood of the

concerned point and the entire transition pattern along the maximum gray value gradient
is not considered while estimating the edge direction. In this approach, we have taken into
consideration the entire gray-level transition corresponding to an edge and, therefore, the
estimated edge direction precisely matches the true edge transition.

We define a function ϕ to reorder the annular list F
(x,y)
r by a cyclic forward shift s to

produce a new list F̃
(x,y)
r in order to expedite the edge extraction procedure as follows.

ϕ : {k}|Cr|−1
k=0 7→ {(k + s) mod |Cr|}|Cr|−1

k=0 (4.8)

such that the following two conditions, (c1) and (c2), are satisfied simultaneously.

(c1) 〈F(x,y)
r (k)〉|Cr|−1

0 = 〈F̃(x,y)
r (k + s) mod |Cr|〉|Cr|−1

k=0 ,
where, 0 ≤ s ≤ |Cr| − 1.

(c2) either
(
δ(F̃(x,y)

r , 0, 1) and δ(F̃(x,y)
r , |Cr| − 1, 0)

)
= 0,

or sign
(
δ(F̃(x,y)

r , 0, 1)
)
6= sign

(
δ(F̃(x,y)

r , |Cr| − 1, 0)
)
,

where, δ(F̃(x,y)
r , p, q) = F̃

(x,y)
r (p)− F̃

(x,y)
r (q),

and sign (a) =





−1 if a < 0;
1 if a > 0;
0 if a = 0.

Let 〈F̃(x,y)
r (pu,t) : 1 ≤ t ≤ eu〉 be the uth monotonically ascending (or, monotonically

descending) subsequence of length eu in F̃
(x,y)
r . Then 〈F̃(x,y)

r (pu,t) : 1 ≤ t ≤ eu〉 corresponds
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to the gray value transition for a valid edge if both the following conditions (c3) and (c4)
are true.

(c3) In F̃
(x,y)
r , there exists no monotonically ascending subsequence of length exceeding

eu that contains 〈F̃(x,y)
r (pu,t) : 1 ≤ t ≤ eu〉.

(c4)
∣∣∣δ(F̃(x,y)

r , pu,eu , pu,1)
∣∣∣ ≥ γr.

As there are |Cr| pixels in the annular list F̃
(x,y)
r , the angular resolution at the center

p(x, y) of the digital circle C
(x,y)
r is 3600

|Cr| . So, the angle made by the radius vector joining

the point C
(x,y)
r (t) (please see Fig. 4.3) with the +ve x-axis measured in clockwise direction

is given by t·3600

|Cr| . Further, it may be observed that there are eu discrete gray-values in

the subsequence 〈F̃(x,y)
r (pu,t) : 1 ≤ t ≤ eu, i.e. (eu − 1) gray value differences, which

have a cumulative effect on the value δ(F̃(x,y)
r , pu,eu , pu,1) of overall gray-level transition

corresponding to uth edge incident at p. The dominant ones out of these (eu−1) differences
will outweigh the others in their way of deciding the resultant edge direction. Hence, the
edge direction corresponding to the subsequence 〈F̃(x,y)

r (pu,t) : 1 ≤ t ≤ eu〉 is given by

θu,r =

⌊
3600

|Cr|

(
eu−1∑

t=1

q
(t)
u,r

δ(F̃(x,y)
r , pu,eu , pu,1)

− s

)
+

1
2

⌋
(4.9)

where, q
(t)
u,r = 1

2(pu,t+1 + pu,t) · δ(F̃(x,y)
r , pu,t+1, pu,t).

(a) A
(x,y)
4 and F

(x,y)
4 (b) F̃

(x,y)
4

Figure 4.7: An example of finding the directions (θ1,4, θ2,4) of incident edges at p(x, y) in
Fig. 4.5 using the filtered annular list F̃

(x,y)
4 .
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In Fig. 4.7(a), an instance for r = 4 is shown for the sample given in Fig. 4.5. The
minimum cyclic shift s, shown in Fig. 4.7(a), is required to produce the new (cyclic shifted)
annular list F̃

(x,y)
4 shown in Fig. 4.7(b). The list F̃

(x,y)
4 contains one descending subsequence

{15, 16, . . . , 19, 0, 1, . . . , 4} and one ascending subsequence {10, 11, . . . , 15} (considering the
indices in the original list F

(x,y)
4 ) that satisfy conditions (c3) and (c4). Hence these two

subsequences correspond to the angles θ1,4 and θ2,4, shown by their respective index values
in Fig. 4.7(b), and actual angles overlaid in Fig. 4.5, evaluated from Eqn. 4.9. It may
be noted that, the last entry of the last valid subsequence (conforming to conditions (c3)
and (c4)) may be the first element in F̃

(x,y)
4 , which should be checked exclusively, which

occurs when the start pixel of the first edge transition coincides with the end pixel of the
last edge transition (e.g., in Fig. 4.7(b)).

4.2.4 Validation of Corners

If a point p(x, y) is a true corner, then it should possess at least two edges incident upon
it. Further, if there are exactly two edges incident upon p, then their directions should
differ by an amount that falls “sufficiently” short of 180o; because a difference of 180o

or so indicates that p is not a corner but an ordinary edge point. In addition, for each
edge incident at p, the corresponding direction estimated for a particular window radius
r should match with that estimated for each other window radius r′; to be precise, the
condition |θu,r+1 − θu,r| ≤ αr should hold true for r = 1, 2, 3, . . ., in order that p is a
valid corner. It may be noted that αr decides the allowance that determines whether two
(digital) angles match each other, which has been pre-calculated once for all and stored
in LUT-1 (vide Table 4.1).

Considering the above facts, the necessary and sufficient conditions that validate p as
a true corner are as follows:

(c5) nr+1 = nr, ∀r = 1, 2, . . . , rmax − 1;

(c6) |θu,r+1 − θu,r| ≤ αr, ∀u = 1, 2, . . . , nr, ∀r = 1, 2, . . . , rmax − 1;

where nr denotes the number of distinct edges incident at p, as detected from F̃
(x,y)
r , and

rmax the maximum radius of the annular window. For testing the algorithm, we have
considered rmax = 4 for all images.

Now, if p is validated as a corner, then the direction of each edge incident at p is
assigned as the average of the estimated angles over all window radii.

An example of a valid corner is shown previously, in Fig. 4.5, in which the point p
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gets validated as a true corner. The ordered set of estimated angles for the first edge is
〈θ1,r〉r=4

r=1 = 〈224, 225, 225, 227〉, and that for the second edge is 〈θ2,r〉r=4
r=1 = 〈12, 13, 13, 12〉.

Since for each of the two edges, the estimated angles for consecutive radii are well within
the respective angular tolerance (αr), p becomes a valid corner, and the directions of its
two edges are given by 225o and 13o respectively.

Algorithm CODE(I)

Steps:

1. initialize: αr; γr, ∀ r = 1, 2, . . . , rmax; B from LUT-1, LUT-2

P ← ∅ B set of corners

2. for each point p(x, y) ∈ I

3. for r ← 1, 2, . . . , rmax

4. construct A
(x,y)
r B please see Sec. 4.2.1

5. F
(x,y)
r ← Wr ∗A

(x,y)
r B using Eqn. 4.5

6. construct F̃
(x,y)
r from F

(x,y)
r B conforming to c1 & c2

7. construct {θu,r}nr

u=1 from F̃
(x,y)
r B conforming to c3 & c4, using Eqn. 4.9

8. if r = 1

9. if (n1 < 2) or (n1 = 2 and acute(θ1,1, θ2,1) ≥ 1800 − α1)

10. then goto step 2 B p is not a corner

11. else

12. if nr 6= n1

13. then goto step 2

14. if | θu,r − θu,r−1| > αr for any u, 1 ≤ u ≤ nr,

15. then goto step 2

16. θu ← 1
rmax

rmax∑
r=1

θu,r, ∀ u = 1, 2, . . . , n1

17. P ← P ∪ {p}
18. apply merging for each cluster of corners

Figure 4.8: Algorithm CODE to detect the corners in the input gray-scale image I.
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4.2.5 Merging of Corners

For each cluster of corners accumulated in and around a true corner, selection of the most
appropriate corner and rejection of the rest is done in the final stage to derive the proper
set of corners for a given image. We adopt a simple and fast procedure to perform this
task, which is as follows.

At first, the closely located corners are clustered together using their estimated edge
directions. The strategy for doing this is that, a corner p is put to the cluster C, provided
(i) the number of edges incident at p is same as that of each corner in C,
(ii) p lies in the 8-neighborhood of some other corner Q in C, and
(iii) the direction of each edge of p matches with that of the corresponding edge of Q

(considering a tolerance of α1 = 23o).

Next, for each cluster the best representative corner is chosen as the one having min-
imum variance of edge directions for 1 ≤ r ≤ rmax. For a faster implementation, here
we have not used the statistical variance; instead, we have used the sum of differences
of the estimated edge directions (angles) over all pairs of annular windows with radius r,
1 ≤ r ≤ rmax, for all edges incident at p, which is given by

Σdθ(p) =
n∑

u=1

rmax−1∑

ri=1

rmax∑

rj=ri+1

∣∣θu,ri − θu,rj

∣∣ (4.10)

where n is the number of edges incident at p. The best corner in a cluster is one that
has minimum value of Σdθ in the corresponding cluster. In case of ties, the corner having
minimum value of Σdθ and located closest to the geometric center of the cluster is chosen,
and if any further tie occurs at this level (which is very rare in practice), then it is resolved
arbitrarily.

The various stages of the algorithm CODE being explained above, the major steps of
the algorithm are presented now in Fig. 4.8.

4.3 Experimental Results

We have implemented our algorithm in C in SunOS Release 5.7 Generic of Sun Ultra 5 10,
Sparc, 233 MHz, and compared its performance with SUSAN [Smith and Brady (1997)],
the mostly referred algorithm in recent times. Fig. 4.9 (top row) shows the image (“test-
1”) of a rendered 3D object, which does not have any noise. In Fig. 4.9 (second row), the
corners detected by SUSAN have been shown, which are same as those detected by the
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proposed algorithm (CODE). It also shows the estimated directions of the incident edges
for all the corners detected, which are found to have very good accuracy with respect to
the actual edge directions.

In order to demonstrate the robustness of the proposed algorithm with respect to noise,
we have also shown here the results on a sequence of noise-affected images for the object
“test-1”. Random Gaussian noise with SNR (signal-to-noise ratio), varying from 0.01 to
0.50, has been applied on “test-1”, and the corresponding set of detected corners has been
compared with the ground-truth set, shown in Fig. 4.9. A few sets for some selected
values of SNR have been presented in Fig. 4.9. From the sequence of these images, it
may be observed that, with increase in SNR, the plentitude of false corners detected
by SUSAN goes on rising abnormally compared to CODE. Further, in SUSAN, the set of
false corners is mostly contributed by false positives, which would have a negative effect on
subsequent applications using corners. On the contrary, in CODE, false positives as well as
false negatives are much less; this indicates the robustness of its inherent methodologies.
Fig. 4.10(a) shows the plot on number of false corners (false negatives, false positives,
and total), detected by SUSAN, versus noise level (SNR) for “test-1” image, whereas,
Fig. 4.10(b) shows the same for CODE, which clearly demonstrates the robustness of
CODE to the presence of noise in an image.

Fig. 4.11(a) shows the detected corners on a synthetic image, “test-2”, using SUSAN,
which are identical with those detected by CODE, shown in Fig. 4.11(c), where the bright-
ness (gray-value) threshold for both SUSAN and CODE (γ∞) is fixed at 10. The corners
by CODE, before merging, are shown in Fig. 4.11(b), to show the compactness of a cluster
of the preliminary corners in and around a true corner. The directions of the incident
edges on the corners detected by CODE, shown in Fig. 4.11(d), once again depicts the
precision of the method for estimating the edge directions in the proposed algorithm.

“test-1”: rendered image of a 3D object

Fig. 4.9: continued to next page.
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SUSAN CODE
SNR corners corners incident edges

0.00
Note: SNR= 0.00 implies ground-truth results.

0.10

0.20

0.30

0.50

Figure 4.9: Outputs for “test-1” image for different values of SNR.
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Figure 4.10: Plots showing number of false corners versus noise level (SNR) for “test-1”
image shown in Fig. 4.9.

We have also shown here results on the natural image of “lab” for varying brightness
thresholds, in order to establish the soundness and stability of the proposed corner detec-
tion algorithm. Output images for a few brightness thresholds are displayed in Fig. 4.12.
It is evident from the output images that CODE is quite less sensitive to the brightness
threshold compared to SUSAN.

Figs. 4.13 and 4.14 demonstrate the results obtained for two more gray-scale images,
where the corners (and directions of the incident edges) are better detected by CODE than
by SUSAN. In Fig. 4.15, the outputs for a binary logo image are given for both SUSAN
and CODE, where all the corners along with the incident edge directions are properly
and precisely detected by CODE, whereas, SUSAN fails to produce the desired result,
particularly for the case when there is some jaggedness present in the object contour.

It may be noted that, apart from detection of corners, our algorithm also finds the
directions of incident edges for each corner, and therefore, takes some additional time
during execution. The details of experimental results for our algorithm are shown in
Table 4.4.

4.4 Conclusion

Corners of an object serve as a very powerful geometric feature for different computer
vision applications, as mentioned in Sec. 8.1. Coupled with (directions of) their incident
edges, they provide a powerful abstraction of the underlying object. The nature of as-
sociation of the corners and their incident edges with the corresponding object(s) has a
striking distinctiveness, which, if exploited properly, would act as an effective higher-level
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Image Image # corners Time (secs.)

name size A B C D γ∞

test1 262× 196 185 27 0.32 0.13 10

test2 256× 256 464 61 0.78 0.19 10

lab 512× 512 956 314 2.13 1.07 30

blocks 256× 256 162 56 0.66 0.39 30

house 256× 256 105 60 0.38 0.25 30

logo 256× 256 90 22 0.54 0.21 30

A = No. of corners before merging.

B = No. of corners after merging.

C = Time for detection of corners before

merging.

D = Time for merging corners.

Table 4.4: Results for sample images.

description of the object(s), and thus can be employed to solve many problems of computer
vision, and image retrieval.

The proposed algorithm produces consistent results for both real images and synthetic
images (binary as well as gray-scale), and is characterized by its adaptability with the gray-
scale topology of an image. Though the computational complexity rises with the increase
in radius of the annular list, but in terms of the accuracy and localization of detected
corners and associated edge directions, the algorithm offers a high level of reliability and
efficiency. Furthermore, the algorithm can be extended to devise a procedure of finding
the most genuine corners in any image by augmenting the window to a suitable higher
radius, having predetermined trade-off with computational complexities.

As an application, we can use the set of corners (along with the associated information
such as directions of the incident edges at each corner) of an object to find its similarity
with another object. In such an application, we can use the APSPM algorithm in the
digital space [Chapter 2]. The problem of object matching/object tracking in a digital
image/video, based on the APSPM algorithm using the set of corners and associated
information, may be studied further in the future.
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(a) SUSAN. (b) CODE: corners before merging.

(c) CODE: corners after merging. (d) CODE: incident edges.

Figure 4.11: Outputs for “test-2” image.
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γ∞ SUSAN CODE (corners and incident edges)

20

30

40

Figure 4.12: Outputs for “lab” image for different values of γ∞ (brightness threshold).
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γ∞ SUSAN CODE (corners and incident edges)

60

80

Figure 4.12 (continued).

(a) SUSAN. (b) CODE: corners. (c) CODE: incident edges.

Figure 4.13: Outputs for blocks image.
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(a) SUSAN. (b) CODE: corners. (c) CODE: incident edges.

Figure 4.14: Outputs for house image.

(a) SUSAN. (b) CODE: corners. (c) CODE: incident edges.

Figure 4.15: Outputs for a sample logo image.





Chapter 5

Straight Lines in the Digital Plane

and Polygonal Approximation of Digital Curves

The mathematician's patterns, like the painter's or the poet's must be beautiful;
the ideas, like the colours or the words must �t together in a harmonious way.
Beauty is the �rst test: there is no permanent place in this world for ugly
mathematics.

G. H. Hardy
A Mathematician's Apology (London, 1941)

5.1 Introduction

Efficient representation of lines and curves in the digital plane has been an active subject
of research for nearly half a century [Klette and Rosenfeld (2004a,b), Rosenfeld and Klette
(2001)]. In particular, digital straight line segments (DSS)1 have drawn special attention
for their challenging nature from the viewpoint of theoretical formulation, and also for
their potential applications to image analysis and computer graphics. In a digital image
containing one or more objects with fairly straight edges, the set of (exact or approximate)
DSS captures a strong geometric property that can be used for shape abstraction of the
underlying objects, as well as for finding the resemblance among several digital objects.

The necessary and sufficient conditions for a discrete/digital curve (DC) to be a DSS
have been stated in the literature in various forms [Freeman (1961b), Klette and Rosenfeld
(2004a), Rosenfeld (1974), Rosenfeld and Klette (2001)]. It has been shown by Rosenfeld
in 1974 that a digital curve is the digitization of a straight line segment, if and only if it

1The acronyms “DC”, “DSL”, “DSS”, and “ADSS” have been used in this chapter in both singular

and plural senses, depending on the context.



104

Chapter 5
Straight Lines in the Digital Plane

and Polygonal Approximation of Digital Curves

4

3

6
7

0

2

5

1

(a) chain codes in 8-N.

0 1 2 3 4 5

6

5

4

3

2

0

1

5

01

7

63

4 5

s

(b) since (1, 2) is the start

point, the chain code is

(1, 2)10756543.

0 1 2 3 4 5

6

5

4

3

2

1

0

5

01

7

63

4 5

s

7

6

p

(c) since (3, 4) is a branch-

ing point, the complete

chain code is

(1, 2)10756543(3, 4)75.

0
0 1 2 3 4 5

1

2

3

4

5

6

5

0

7

6

5

1

1

2

3

4

s

(d) with (2, 1) as the start

point, the chain code is

(2, 1)0756543121.

Figure 5.1: Chain codes and their enumeration for defining digital curves.

has the chord property. A digital curve C has the chord property if, for every (p, q) in C,
the chord pq (the line segment, drawn in real plane, joining p and q) “lies near” C, which,
in turn, means that for any point (x, y) of pq, there exists some point (i, j) of C such that
max(|i− x|, |j − y|) < 1. Few other definitions related to this work are given below.1

Chain Code: If p (i, j) is a grid point, then the grid point (i′, j′) is a neighbor of p, provided
max(|i− i′|, |j− j′|) = 1. The chain code [Freeman (1961a,b)] of p w.r.t. its neighbor grid
point in C can have a value in {0, 1, 2, . . . , 7}, as shown in Fig. 5.1(a).

Digital Curve (DC): A digital curve C is an ordered sequence of grid points (representable
by chain codes) such that each point (excepting the first one) in C is a neighbor of its
predecessor in the sequence (see Fig. 5.1(b)–(d)).

Irreducible Digital Curve: An open-end digital curve C is said to be irreducible if and only
if removal of any grid point (excepting the end points) in C makes C disconnected. If C is
a closed digital curve (Fig. 5.1(d)), then C is irreducible if and only if removal of any of
its grid points makes it open-end. All the DC shown in Fig. 5.1 are irreducible. A DSS is
essentially an irreducible DC.

1The definitions and discussions in this chapter are with respect to 8-neighbor connectivity [Klette and

Rosenfeld (2004a)] of the object, and are valid for 4-neighbor connectivity as well with certain modifications.
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An example of an open-end DC is shown in Fig. 5.1(b). The traversal of an open-end
DC using Depth First Search (DFS) [Cormen et al. (2000)], starts from one of its two end
points, say s. Thus, the chain code of C is given by (1, 2)10756543, considering s = (1, 2).
If C has some branching (Fig. 5.1(c)), then the complete chain code of C can be written as
(1, 2)10756543(3, 4)76. If C is a closed curve, then the DFS may start from any suitable
grid point of C (Fig. 5.1(d)).

Several intriguing problems and properties related to DSS and DSL (digital straight
line/ray) have been studied by various authors [Bresenham (1965), Povazan and Uher
(1998), Rosenfeld and Klette (2001)]. Many attributes of DSS can be interpreted in terms
of continued fractions [Koplowitz et al. (1990), Mignosi (1991), Voss (1991)]. The most
fundamental problem, which is highly relevant to pattern recognition in general, and to
curve approximation in particular, is to ascertain whether or not a given DC is a DSS.
Many solutions to this problem have been reported in the literature [Creutzburg et al.
(1982), Davis et al. (1976), Debled-Rennesson and Reveilles (1995), Kovalevsky (1990),
Mieghem et al. (1995), Smeulders and Dorst (1991)]. Debled-Rennesson et al. (2003) has
proposed the concept of fuzzy segments for a flexible segmentation of discrete curves, using
an arithmetic approach of discrete straight lines.

The proposed work introduces a new concept of approximate digital straight line seg-
ments (ADSS), by preserving some of the most fundamental properties of a DSS, while
relaxing or dropping a few others (see Fig. 5.4). A procedure is then described for extract-
ing the set of ADSS required to cover a given DC assuming 8-neighborhood connectivity.
The number of ADSS extracted from a set of DC in a real world scenario is likely to be
appreciably fewer than that of DSS cover, since many visually straight segments may fail
to satisfy all the stringent properties of an exact DSS, and thus are recognized as multiple
DSS by the extraction algorithms. Some examples of DSS and ADSS present in digital
curves have been shown in Fig. 5.2. It may be observed that the set of DSS in Fig. 5.2
contains forty-eight fragments each of which is “exactly straight”, whereas, that of ADSS
contains only twenty, which look “visually straight”.

The concept of ADSS can also be used to construct polygonal approximation of a
DC efficiently. Since the set of ADSS provides an elegant and compact representation
of digital curves, it is very effective in producing approximate polygons (or, polychains)
using a single parameter. The whole process consists of two stages — first, extraction of
ADSS, and then the second stage of polygonal approximation. A glimpse of the algorithm
has been shown in Fig. 5.3 for a preliminary introduction on a set of digital curves taken
from the real-world image representing the contour of a “duck”. Both the stages in the
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(a) DSS (48 nos.) (b) ADSS (20 nos.)

Figure 5.2: Set of DSS and that of ADSS extracted from a small (cropped) set of digital
curves, the segments being alternately colored in black and gray colors.

algorithm can be easily implemented, and have been found to work correctly and efficiently
on different sets of digital curves of arbitrary shapes and complexities. The major features
of the algorithm are as follows:

(i) The detection of ADSS in stage 1 is based on simple chain code properties; thus,
only primitive integer operations, namely comparison, increment, shift, and addition
(subtraction) are required.

(ii) The ADSS extraction algorithm does not use any recursion, and thus saves execution
time.

(iii) To compute the polygonal approximation in stage 2, only the two end points of each
ADSS are required as input data and a few integer multiplications as operations;
thus the algorithm runs very fast.

(iv) The actual approximation of a DC never oversteps the worst-case approximation for
a given value of a control parameter. That is, the maximum deviation (of an edge)
of the resulting polygon from the original curve never exceeds the prescribed value
of the approximation (control) parameter.

Several other methods [Asano and Kawamura (2000), Asano et al. (2003a), Chen and
Chung (2001b), Climer and Bhatia (2003), Guru et al. (2004), Xie and Ji (2001)] have been
proposed recently for (approximate) line detection. Most of the conventional parametric
approaches are based on certain distance criteria, usage of masks, eigenvalue analysis,
Hough transform, etc. In contrast, the proposed method relies on utilizing some of the
basic properties of DSS for extraction of ADSS.

Many algorithms for approximating a given digital curve or contour are well known
[Aken and Novak (1985), Attneave (1954), Imai and Iri (1986)]. Several variants of effi-
cient but suboptimal algorithms had been proposed later [Bhowmick et al. (2005b, 2006),
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input

→

end points

→

ADSS

→

polygonal

approximation

Figure 5.3: A brief demonstration of the proposed algorithm on the “duck” image.

Biswas et al. (2005c), Perez and Vidal (1994), Schröder and Laurent (1999), Schuster and
Katsaggelos (1998)]. The class of polygonal approximation algorithms, in general, can be
broadly classified into two categories — one in which the number of vertices of the approx-
imate polygon(s) is specified, and the other where a distortion criterion (e.g. maximum
Euclidian distance) is used.

Most of the existing polygonal approximation algorithms, excepting a few, have super-
linear time complexities; to cite a few, the complexities are O(N) in [Wall and Danielsson
(1984)], O(MN2) in [Perez and Vidal (1994)], O(N2) in [Schröder and Laurent (1999),
Schuster and Katsaggelos (1998)], O(N3) in [Rocha and Bernardino (1998)], where M

denotes the number of segments, and N the total number of points representing the input
set of DC. A comparative study of these algorithms can be found in the paper by Yin
(1998). Further, in order to analyze curvature, most of them require intensive floating-
point operations [Anderson and Bezdek (1984), Fischler and Wolf (1994), Freeman and
Davis (1977), Teh and Chin (1989), Wuescher and Boyer (1991)]. For other details, the
related procedures in several other works [Bezdek and Anderson (1985), Dunham (1986),
Pavlidis (1980), Rosin (1997), Teh and Chin (1989), Wall and Danielsson (1984), Wu
(1984), Yin (2003, 2004)] may be looked at. The method developed by us uses integer
operations only, and yields a suboptimal polygonal approximation with linear time com-
plexity. A comparison of the proposed technique with some of the important approaches
has been shown in Table 5.1.

A brief outline of the chapter is as follows. In Sec. 5.2, we start with a brief overview
of some fundamental digital-geometric properties of a DSS, followed by the motivation
and underlying principle for extraction of the approximate segments (ADSS) in Sec. 5.2.1.
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Table 5.1: A comparative study of some existing algorithms with the proposed one.

Algorithm
and
its features

Non-
Eucli-
dean

Flexi-
bilitya

Proce-
dural
comple-
xity

Difficulty
in
imple-
mentation

Error
control

Non-
recur-
sive

1. curvature maxima
[Teh and Chin (1989)]
– region of support
– measure of significanceb

– non-maxima suppression

no no highc medium no no

2. ant colony search
[Yin (2003)]
– graph representation
– node transition rule
– pheromone updating rule

no no very
highd

high yes no

3. area deviation per unit
length of approximating seg-
ment [Wall and Danielsson (1984)]

yese no low low yes yes

4. perceptual organization
[Hu and Yan (1997)]
– link classificationf

– linking-merging
– smoothing
– application of knowledge or rule

yes no highg high yes no

5. using ADSS (proposed). yes yes very low low yes yes

aw.r.t. (self-)intersecting/branching curves when the input set of grid points
constituting a curve is not ordered

be.g., cosine curvature, k curvature, 1 curvature, etc.
cdue to multiple iterations for non-maxima suppression (in 4 passes) and
curvature finding

ddue to complex calculations, e.g., exponentiation in selection problem of a
node

eby replacing
p

x2 + y2 with (|x|+ |y|) or max{|x|, |y|}
fparallel links (class 1 & 2), intersection links, and single links.
gdue to three stages, each using multiplications for the entire set of points
on the curve
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Sec. 5.2.2 presents the algorithm on extraction of ADSS along with its brief analysis, and
in Sec. 5.2.3, the condition of erroneousness of a point in an ADSS (due to deviation from
the DSS properties) has been derived. The proposed method on (suboptimal) polygonal
approximation has been explained in Sec. 5.3, with the two possible approximation crite-
ria briefed in Secs. 5.3.1.1 and 5.3.1.2, the algorithm stated in Sec. 5.3.2 along with the
proof of its linear time complexity, and the subsequent quality of approximation formu-
lated in Sec. 5.3.3. Sec. 5.4 exhibits some test results (including DSS extraction, ADSS
extraction, polygonal approximation, and quality measures of approximation), endorsing
the supremacy of ADSS in polygonal approximation. Finally, Sec. 5.5 summarizes the
work.

5.2 Exact and Approximate Straight Line Segments

In this work, we use some regularity properties of DSS that can be successfully derived from
the chord property. Before justifying the rationale of our algorithm, the DSS properties
(defined w.r.t. chain codes [Freeman (1961a)]) [Freeman (1961b), Rosenfeld (1974)] are
listed below.

(F1) at most two types of elements can be present, and these can differ only by unity,
modulo eight;

(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly spaced as

possible.

The properties (F1–F3) were based on heuristic insights [Freeman (1961b)]. Further,
the property (F3) is not precise enough for a formal proof, as stated by Pavlidis (1977).
A formal characterization of DSS was provided later [Rosenfeld (1974)], stated as follows.

(R1) The runs have at most two directions, differing by 450, and for one of these directions,
the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the run lengths can occur only once at a time.
(R4) For the run length that occurs in runs, these runs can themselves have only two

lengths, which are consecutive integers; and so on.

Few instances have been given in Sec. 5.2.1 (see Fig. 5.4) to clarify the significance of
(R1–R4) in characterizing a DSS.
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5.2.1 Extraction of ADSS

In the proposed algorithm, Extract-ADSS, designed for extraction of ADSS from a DC,
we have used (R1) along with certain modifications in (R2). However, we have dropped
(R3) and (R4), since they impose very tight restrictions on a DC to be recognized as a
DSS. Such a policy, with adoption of (R1), modification of (R2), and omission of (R3) and
(R4), has been done in order to successfully extract the ADSS from a DC, and some of
the major advantages of this scheme are as follows:

(i) avoiding tight DSS constraints, especially for the curves representing the gross pat-
tern of a real-life image with certain digital aberrations/imperfections;

(ii) enabling extraction of ADSS from a DC, thereby straightening of a part of the DC
when the concerned part is not exactly “digitally straight”;

(iii) reducing the number of extracted segments, thereby decreasing storage requirement
and run-time in subsequent applications;

(iv) reducing the CPU time of ADSS extraction;
(v) usage of integer operations only.1

Since the chain code of a DC is a one-dimensional list, C, the ADSS may be charac-
terized by the following sets of parameters:

(i) orientations parameters given by n (non-singular element), s (singular element), l

(length of leftmost run of n), and r (length of rightmost run of n), which play decisive
roles on the orientation (and the digital composition, thereof) of the concerned
ADSS. For example, in Fig. 5.4, the curve C1 has n = 0, s = 1, and chain code
04105105104104105 having l = 4 and r = 5.

(ii) run length interval parameters given by p and q, where [p, q] is the range of possible
lengths (excepting l and r) of n in C that determines the level of approximation of
the ADSS, subject to the following two conditions:

(c1) q − p ≤ d = b(p + 1)/2c. (5.1)

(c2) (l − p), (r − p) ≤ e = b(p + 1)/2c. (5.2)

While implementing Extract-ADSS, we have strictly adhered to (R1), as it is directly
related to the overall straightness of a DC. However, we have modified the stricture in (R2)
by considering that the run lengths of n can vary by more than unity, depending on the

1 No floating-point operations are required in Extract-ADSS. Only integer operations for addition,

shift, and comparison are necessary. Even multiplications and divisions have been avoided, e.g., to compute

b(p + 3)/4c, 3 is added with p, followed by two successive right shifts.
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4
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C1: Chain code 04105105104104105

(from left to right) (p = 4, q = 5, l =
4, r = 5) does not satisfy (R3), since
both the run lengths 4 and 5 have
non-singular occurrences in the code of
run lengths: 455445. C1 is not a DSS
but an ADSS.

5
4 5

4
5 5

4

C2: Chain code 04105104105105105104

(p = 4, q = 5, l = 4, r = 4) does not sat-
isfy (R4), since in the run length code
4545554, the runs of 5 have lengths 1
and 3 that are not consecutive. C2 is not
a DSS but an ADSS.

4
5

54

54

C3: Chain code 04105104105104105 (p =
4, q = 5, l = 4, r = 5) satisfies (R1–R4)
and (c1, c2). C3 is an ADSS as well as a
DSS.

4
5

54
1 8

C4: Chain code 0410510108104105 (p =
1, q = 8, l = 4, r = 5) does not satisfy
(R2) and conditions (c1, c2). C4 is nei-
ther a DSS nor an ADSS.

2
11 2

1
1 1

C5: Chain code 011102102101010 (p =
1, q = 2, l = 11, r = 1) violates (R2) and
so it is not a DSS. Further, although it
satisfies (c1) (as q − p (= 1) ≤ d (= 1)),
but since l − p (= 10) 6≤ e (= 1), it fails
to satisfy (c2); hence, it is not even rec-
ognized as an ADSS.

Figure 5.4: Instances of digital curves showing the significance of properties and conditions
related with DSS and ADSS recognition.
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pi

ε
real line

θ

Figure 5.5: Maximum (isothetic) error ε corresponding to a run length pi (of 0’s) — with
pi + 1 number of grid points in the corresponding row — for an ADSS representing a real
line segment with slope m = tan θ, 0 ≤ m ≤ 1. Although the real line intersects the run,
in some other instance it may not.

minimum run length of n. The rationale of modifying (R2) to the condition (c1) lies in the
fact that, in order to approximate the extracted line segments from the DC, an allowance
of approximation (d) specified by (c1) may be permitted. Given a value of p, the amount
d by which q is in excess of p indicates the deviation of the ADSS from the actual/real
line, since ideally (for a DSS) q can exceed from p by at most unity; and the significance
of d in characterizing an ADSS is as follows.

W.l.o.g., let L be an ADSS with slope in the interval [0, 1]. Let p0 = p, p1 = p0+1, p2 =
p1 + 1, . . . , pd = q be the run lengths of 0’s present in L, and let the frequency of the
run length pi in L be ni (≥ 0), for i = 0, 1, . . . , d. Then the slope of the real line (joining
the start point and the end point of L) is given by

m =

d∑
i=0

ni − 1

d∑
i=0

ni(pi + 1)
=

N − 1
d∑

i=0
ni(pi + 1)

, (5.3)

where, N =
d∑

i=0
ni. Hence, using the fact that p ≤ pi ≤ q for i = 0, 1, . . . , d, we get

N − 1
d∑

i=0
ni(q + 1)

≤ m ≤ N − 1
d∑

i=0
ni(p + 1)

,

or,
N − 1

N

1
q + 1

≤ m ≤ N − 1
N

1
p + 1

. (5.4)

Thus, when the real line intersects the concerned run (if the real line does not intersect
the concerned run of L, then the error is greater), the isothetic error of a run length pi in
L (see Fig. 5.5) is given by

ε ≤ m(pi + 1) ≤ N − 1
N

pi + 1
p + 1

≤ N − 1
N

q + 1
p + 1

≤
(

1− 1
N

)(
1 +

d

p + 1

)
,
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or, ε ≤ 1 +
d

p + 1
. (5.5)

Hence, it is evident that the error incurred with an ADSS is controlled by d, and by
Eqn. 5.5, lower the run length (p) of n, lower would be this allowance of approximation.
Thus, we keep the provision for adaptively changing this allowance of approximation, so
that elongation of an ADSS is made as much as possible till it does not lose its overall
visual straightness.

Apart from d, the other parameter, namely e, is incorporated in (c2), which, along
with (c1), ensures that the extracted ADSS is not badly approximated owing to some
unexpected values of l and r. The DSS properties, (R1–R4) however, do not give any idea
about the possible values of l and r (depending on n). Further, in the algorithm for DSS
recognition [Creutzburg et al. (1982)], l and r are not taken into account for adjudging
the DSS characteristics of a DC. However, we have imposed some bounds on the possible
values of l and r, in order to ensure a reasonable amount of straightness at either end of
an extracted ADSS. The values of d and e are heuristically chosen so that they become
computable with integer operations only. Some other values, like d = b(p + 3)/4c and
e = b(p + 1)/2c, or so, may also be chosen provided the computation is realizable in
integer domain and does not produce any undesirable ADSS. For example, in Fig. 5.4, the
curve C5 has p = 1, q = 2, l = 11, r = 1. In our case (Eqns. 5.1 and 5.2), therefore, we
get d = 1 and e = 1 resulting a violation of (c2) by l; thus C5 will not be accepted as an
ADSS.

To justify the rationale of (c1) and (c2), we consider a few digital curves, C1–C5, as
shown in Fig. 5.4. It is interesting to observe that, although each of C1 and C2 has the
appearance of a digital line segment, they fail to hold all the four properties of DSS
simultaneously, as shown in their respective figures. The curve C1 violates (R3), and the
curve C2 violates (R4). However, they satisfy (R1), (c1), and (c2) and therefore, each of
them is declared as an ADSS. Similarly, the curve C3 satisfies (R1–R4) and (c1, c2); it is
both an ADSS and a DSS. However, none of the curves C4 and C5 can be announced as a
DSS or an ADSS because of the violation of (R2), (c1), and (c2) [see Fig. 5.4].

5.2.2 Algorithm Extract-ADSS

Figure 5.6 describes the algorithm Extract-ADSS for extracting ADSS from the chain
code of each DC, say Ck, stored in the list C. This requires nk repetitions from Step 2
through Step 23, where nk is the number of ADSS in Ck. Let the ith repetition on Ck
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produce the ADSS L(k)
i . Recognition of L(k)

i is prompted by finding its corresponding
parameters (n, s, l) using the Find-Params procedure in Step 2 of Extract-ADSS.
This is followed by checking/validation of

(i) property (R1): Step 4 and Step 10;
(ii) condition (c1): while loop check at Step 9;
(iii) condition (c2): on the leftmost run length l in Step 8 and Step 11, and on the

rightmost run length r in Step 14.

Proof of correctness: For each ADSS, L(k)
i , we show that property (R1) and conditions

(c1) and (c2) are simultaneously satisfied. We also show that L(k)
i is maximal in length in

Ck in the sense that inclusion of the character (n or s or any other in {0, 1, . . . , 7}) (or a
substring of characters) that immediately precedes or follows the part of DC corresponding
to L(k)

i in Ck does not satisfy the ADSS property/conditions.

While checking (R1) in Step 4 or Step 10, if an expected n or s is not found at the
desired place in Ck, then the current ADSS, L(k)

i ends with the previously checked valid
characters. This is explicit in Step 4 and implicit in Step 10. Thus L(k)

i satisfies (R1), and
is maximal from its starting point and the finishing end, since either it is the first ADSS
in Ck or the previous ADSS L(k)

i−1, was maximal.

Now, for each new run (of n), (c1) is verified in Step 9 — excepting the leftmost run, l,
which is not required since p (and q) does not exist for a single run — after appropriately
updating p and q in Step 17 and Step 19 respectively, whenever necessary. In Step 9, if it
is found that q is unacceptably large (i.e., q 6≤ p + d), then the while loop (steps 10–19)
is not executed, and the current ADSS, L(k)

i , ends with the truncated part of that run
(truncated maximally, i.e., up to length p + e, in Step 15 of the previous iteration) as its
rightmost run, r.

For checking (c2), however, we have to be more careful. For the second run (i.e., the
run immediately following l) of the current ADSS, (c2) is checked (with respect to l) in
Step 8. It may be noted that, if l − p > e, then (c2) is not satisfied, and so the first two
runs (l and its successor) trivially constitute an ADSS by Step 7; because for two runs,
we get only l and r (and no p or q), and no relation is imposed between l and r to define
an ADSS.

For the third and the subsequent run(s), if any, the corresponding run length is stored
in k (Step 10). If some (small enough) k violates (c2), then that k is treated as r (steps 11–
13), and the current ADSS ends with that run as the rightmost run (of run length k),
whereby the maximality criterion of the ADSS is fulfilled. Otherwise, if k does not exceed
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Algorithm Extract-ADSS (C)

Steps:
1. A ← {1}, u ← 1
2. Find-Params (C, u)
3. c ← l

4. if s− n (mod 8) 6= 1 then
goto Step 20

5. p ← q ← length of next run of n
6. d ← e ← b(p + 1)/2c
7. c ← c + 1 + p

8. if l − p > e then goto Step 20
9. while q − p ≤ d

10. k ← length of next run of n
11. if l − k > e then
12. c ← c + 1 + k

13. break
14. if k − p ≤ e then c ← c + 1 + k

15. else c ← c + 1 + p + e

16. if k < p then
17. p ← k

18. d ← e ← b(p + 1)/2c
19. if k > q then q ← k

20. u ← u + c

21. A ← A ∪ {u}
22. u ← u + 1 . next start point
23. repeat from Step 2 until C is finished

Procedure Find-Params (C, u)

Steps:
1. i ← u

2. if C[i] = C[i + 1] then
3. n← C[i]
4. s← element 6= n following C[i + 1]
5. l ← leftmost run length of n
6. return
7. else
8. n← C[i], s← C[i + 1], l ← 1
9. i ← i + 1

10. while C[i + 1] ∈ {n, s}
. C ends if C[i + 1] = −1

11. if C[i] = C[i + 1] then
12. if C[i] = s then
13. swap n and s
14. l ← 0
15. return
16. else
17. i ← i + 1
18. return

Figure 5.6: Algorithm Extract-ADSS and the procedure Find-Params to find out the
ordered list A of end points of ADSS in the input curve C that contains the chain code
for each irreducible digital curve segment.
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the maximum possible length of the rightmost run (checked in Step 14), then we consider
k as a valid run of the current ADSS (Step 14), else we truncate it to the maximum
permissible length (p + e) as the rightmost run (Step 15). Note that, if k > p + e, then
k > q (for p+e ≥ p+d ≥ q), and Step 19 updates q to k, whence (c1) will be false in Step 9
in the next iteration, and so, the ADSS will end here with the (maximally) truncated part
(p + e) as its rightmost run.

Time Complexity: Determination of the parameters (n, s, l) in Find-Params consists of
two cases — the first one (steps 2–6) being easier than the second (steps 7–18). In either of
these two cases, the procedure searches linearly in C for two distinct (but not necessarily
consecutive) chain code values and determines the parameters accordingly. As evident
from the loop in either case, the three parameters are obtained using only a few integer
comparisons. The number of comparisons is l+1 for the first case, and that for the second
case is the number of characters in C until two consecutive non-singular characters are
found.

The parameters n, s, l obtained in Find-Params are successively passed through a
number of check points, as mentioned earlier, which take constant time as evident in
steps 3–8 of Extract-ADSS. In Step 5 of Extract-ADSS, the first run length of n
is measured immediately after the leftmost run length of n, if any, and it starts from
the first non-singular character out of the two consecutive characters detected in Find-

Params. In Step 10 of Extract-ADSS, we have another simple (and silent) loop that
determines in linear time each valid run of n in C, the validity criteria being verified and
updated in steps 9–19, each of these steps taking constant time. Hence, for the ADSS,
L(k)

i , the algorithm Extract-ADSS, together with the procedure Find-Params, takes
linear time; wherefore the time complexity for extraction of all ADSS in C is strictly linear
on the number of points in C.

5.2.3 Error Points

An ADSS extracted from an input digital curve may not be a perfect DSS, and erroneous
points may occur. An erroneous point or error point is that whose isothetic distance (i.e.,
minimum of the vertical distance and the horizontal distance) from the real straight line
corresponding to the concerned ADSS is greater than 1

2 .

Let Si and Ei be the start point and the end point of the ith ADSS, and let Pij be the jth
digital point on the ith ADSS, as shown in Fig. 5.7. Let SiEi denote the real line segment
joining Si and Ei. Let the point on SiEi vertically above (or below) Pij be Vij , and let the
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e

Figure 5.7: Isothetic distance of Pij (from SiEi) is PijVij , which is greater than 1
2 , thereby

making Pij an error point, whereas, Pik is not an error point, since the isothetic distance
of Pik is PikVik, which is lesser than 1

2 .

point on SiEi horizontally left (or right) of Pij be Hij . Also, let Si = (xs, ys), Ei = (xe, ye),
Pij = (xp, yp), Vij = (xv, yv), and Hij = (xh, yh), where the suffixes (i and j) are dropped
for notational simplicity. Now, the slope of SiEi is given by m = (ye − ys)/(xe − xs). In
addition, as shown in Fig. 5.7, we have xp = xv and yp = yh, whence Vij = (xp, yv) and
Hij = (xh, yp).

So |yv − yp| is the vertical distance and |xh − xp| is the horizontal distance of Pij from
SiEi. Now it can be said that Pij is not a digitization point of SiEi, or, in other words,
Pij is an error point, if and only if min {|xh − xp| , |yv − yp|} > 1

2 . Hence, w.l.o.g., if
|xh − xp| ≥ |yv − yp|, i.e., if |xe − xs| ≥ |ye − ys|, then Pij is an error point if and only if
|yv − yp| > 1

2 . Now, since Vij and Si are on the same line SiEi with slope m, we have

mxp − yv = mxs − ys,

or, yv = m(xp − xs) + ys = {(ye − ys)(xp − xs) + ys(xe − xs)}/(xe − xs),

or, yv = {ye(xp − xs) + ys(xe − xp)}/(xe − xs),

whence the condition for Pij to be an error point is given by

|yv − yp| > 1
2
,

or,
|ye(xp − xs) + ys(xe − xp)− yp(xe − xs)|

|xe − xs| >
1
2
,

or, 2 |ye(xp − xs) + ys(xe − xp)− yp(xe − xs)| > |xe − xs|,
or, 2 |(xe − xs)(ye − yp)− (xe − xp)(ye − ys)| > |xe − xs|,
or, 2 |x

ES
y

EP
− x

EP
y

ES
| − |x

ES
| > 0, if |x

ES
| ≥ |y

ES
| , (5.6)
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where, x
ES

= xe − xs, y
ES

= ye − ys, etc.
On the contrary, if |xh − xp| < |yv − yp|, i.e., if |xe − xs| < |ye − ys|, then in order

that Pij becomes an error point, |xh − xp| should be greater than 1
2 ; wherefore, by similar

deduction, we have the condition

2 |x
ES
y

EP
− x

EP
y

ES
| − |y

ES
| > 0, if |x

ES
| < |y

ES
| . (5.7)

Combining Eqn. 5.6 and Eqn. 5.7, therefore, it can be said that Pij := (xp, yp) is an
error point corresponding to the line SiEi, if and only if

2 |x
ES
y

EP
− x

EP
y

ES
| −max {|x

ES
| , |y

ES
|} > 0. (5.8)

Although Eqn. 5.8 is not required at any stage in our algorithm to find the ADSS or to
find the approximate polygon, the condition given by this equation, however, enables us
to check whether or not Pij is an error point without using any floating-point arithmetic.
Further, the realization of Eqn. 5.8 does not even require any integer multiplication, the
explanation being as follows.

In order to check the error points in the ith ADSS, we start from Pi1 := (x1, y1) = Si :=
(xs, ys), which is (trivially) not an error point. W.l.o.g., if we consider that 0 ≤ m ≤ 1,
then for the next point Pi2 := (x2, y2), we have x2 = x1 + 1, and y2 = y1 or y1 + 1.
That is, in general, for the point Q := Pi,j+1 following Pij , we have xj+1 = xj + 1, and
yj+1 = yj +a, where a ∈ {0, 1}. It may be observed that, this owes to the property (R1) of
DSS (and is also possessed by an ADSS), as explained in Sec. 5.2.1. Thus, the parameter
φj+1 = x

ES
y

EQ
− x

EQ
y

ES
for Q is obtained from the parameter φj = x

ES
y

EP
− x

EP
y

ES
for P,

using one or two integer additions only, as follows.

φj+1 = x
ES

(y
EP
− a)− (x

EP
− 1)y

ES

= φj − ax
ES

+ y
ES

, where a ∈ {0, 1}. (5.9)

It may be noted that, for all other possible intervals of m, the erroneousness of a point
on an ADSS can be verified similarly with an appropriate form of Eqn. 5.9.

5.3 Polygonal Approximation

Extraction of the ADSS for each curve Ck in the given set (binary image) I := {Ck}K
k=1 of

DC generates an ordered set of ADSS, namely Ak := 〈L(k)
i 〉nk

i=1, corresponding to Ck. In
each such set Ak, several consecutive ADSS may occur, which are approximately collinear
and, therefore, may be combined together to form a single segment.
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Let 〈L(k)〉j2j1 be the maximal (ordered) subset of the ADSS starting from L(k)
j1

that
conforms to some approximation criterion. Then these j2 − j1 + 1 segments in Ak are
combined together to form a single straight line segment starting from the start point of
L(k)

j1
and ending at the end point of L(k)

j2
. This procedure is repeated for all such maximal

subsets of Ak in succession to obtain the polygonal approximation (in case Ck is a closed
curve) or polychain approximation (in case Ck is open), namely Pk, corresponding to Ck.

In the proposed algorithm, depending on the approximation criterion, we have used a
greedy method of approximating the concerned curve Ck starting from the very first ADSS
in Ak. Determination of a minimal set of DSS (and a minimal set Ak of ADSS, thereof)
corresponding to a given curve Ck is known to be computationally intensive [Klette and
Rosenfeld (2004a), Rosenfeld and Klette (2001)]; so for real-time applications, a near-
optimal but speedy solution is often preferred than the optimal one.

5.3.1 Approximation Criterion

There are several variants of approximation criteria available in the literature [Rosin
(1997)]. We have tested our algorithms with two variants of the approximation measures
based on area deviation [Wall and Danielsson (1984)]. Both the algorithms are realizable
in purely integer domain subject to few primitive operations only. The approximation
criterion is defined w.r.t. the approximation parameter or error tolerance, denoted by τ ,
as follows.

5.3.1.1 Cumulative Error (criterion CP)

Let 〈L(k)〉j2j1 , be an ordered subset of Ak as discussed above. Then the ADSS (j2 − j1 + 1
in number) in Ak are replaced by a single straight line segment starting from the start
point of L(k)

j1
and finishing at the end point of L(k)

j2
, if:

j2−1∑

j=j1

∣∣∣4
(
s(L(k)

j1
), e(L(k)

j ), e(L(k)
j2

)
)∣∣∣ ≤ τd>

(
s(L(k)

j1
), e(L(k)

j2
)
)

(5.10)

where, s(L(k)
j ) and e(L(k)

j ) represent the respective start point and the end point of the

ADSS L(k)
j , etc. The start point of L(k)

j coincides with the end point of the preceding

ADSS, if any, in Ak, and the end point of L(k)
j coincides with the succeeding one, if any.

In Eqn. 5.10, |4 (p, q, r)| denotes twice the magnitude of area of the triangle with vertices
p := (xp, yp), q := (xq, yq), and r := (xr, yr), and d>(p, q) the maximum isothetic distance
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between two points p and q. Since all these points are in two-dimensional digital space, the
above measures are computable in the integer domain as shown in the following equations.

d> (p, q) = max {|xp − xq| , |yp − yq|} (5.11)

4 (p, q, r) =

∣∣∣∣∣∣∣

1 1 1
xp xq xr

yp yq yr

∣∣∣∣∣∣∣
(5.12)

From Eqn. 5.12, it is evident that 4 (p, q, r) is a determinant that gives twice the
signed area of the triangle with vertices p, q, and r. Hence the ADSS in the given subset
are merged to form a single straight line segment, say L̃, provided the cumulative area of
the triangles (j2 − j1 in number), having L̃ as base and the third vertices being the end
points of the ADSS (excepting the last one) in the subset 〈L(k)〉j2j1 , does not exceed the
area of the triangle with base L̃ (isothetic length) and height τ .

5.3.1.2 Maximum Error (criterion Cmax)

With similar notations as mentioned above, using the maximum error criterion, the ADSS
in 〈L(k)〉j2j1 would be replaced by a single piece, provided the following condition is satisfied.

max
j16j6j2−1

∣∣∣4
(
s(L(k)

j1
), e(L(k)

j ), e(L(k)
j2

)
)∣∣∣

≤ τd>
(
s(L(k)

j1
), e(L(k)

j2
)
)

(5.13)

The rationale of considering two such criteria is as follows. Since we would be replacing
a number of ADSS, which are almost straight, and more importantly, are not ordinary
digital curves of arbitrary patterns and arbitrarily curvatures, the end point of each ADSS
makes a triangle with the replacing segment, namely L̃. So the sum of the areas of triangles
formed by the end points of these ADSS in combination with the replacing line L̃ gives
a measure of error due to approximation of all ADSS in 〈L(k)〉j2j1 by L̃. Alternatively, if
we are guided by the worst case approximation, that is, if the mostly digressing ADSS is
considered to estimate the error, then the maximum of the areas of these triangles should
be considered as the error measure for approximation of worst ADSS in 〈L(k)〉j2j1 by L̃.

Empirical observations as reported in Sec. 5.4, reveal that the above two criteria are
essentially similar in the sense that they produce almost identical polygons for different
DC for different values of the error tolerance (i.e., τ). This is quite expected as far as the
output is concerned.
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As mentioned earlier in Sec. 5.3, to construct polygonal approximation we consider the
start point of the first ADSS (i.e., L(k)

j1
), and the end point of the last ADSS (i.e., L(k)

j2
).

This can be justified as follows.

Fact 1. The sum (for criterion CP) or the maximum (for criterion Cmax) of the isothetic
distances of the end points of each ADSS from the replacing line L̃ never exceeds the
specified error tolerance τ . This follows easily on expansion of the left hand side of the
corresponding Eqns. 5.10 and 5.13, and from the fact that the term d>

(
s(L(k)

j1
), e(L(k)

j2
)
)

represents the isothetic length of L̃.

Fact 2. Since each ADSS L(k)
j is approximately a DSS, we consider that @p ∈ L(k)

j such

that the isothetic distance of p from DSL passing through the end points of L(k)
j exceeds

unity (as testified in our experiments). Although for sufficiently long ADSS, this may not
hold for the underlying conditions (c1) and (c2) as stated in Sec. 5.2; however, in our
experiments with real world images, this was found to hold. In the case of any violation,
some heuristics may be employed to find the error points and to find smaller ADSS to
resolve the problem.

5.3.2 Algorithm for Polygonal Approximation

The algorithm for polygonal approximation of a sequence of ADSS in the set A, using the
approximation criterion of Eqn. 5.10, is described in Fig. 5.8. To take care of the criterion
Cmax of Eqn. 5.13, a similar procedure may be written.

Final Time Complexity: As explained in Sec. 5.2.2, the time complexity for extracting the
ADSS in a set of DC, I := {Ck}K

k=1, is given by Θ(N1) + Θ(N2) + . . . + Θ(NK) = Θ(N),
where N(= N1 +N2 + . . .+NK) is the total number of points representing I. Now, in the
algorithm Merge-ADSS, we have considered only the ordered set of vertices of the ADSS
corresponding to the curves, so that the worst-case time complexity in this stage is linear
in N . Hence, the overall time complexity is given by Θ(N) + O(N) = Θ(N), whatsoever
may be the error of approximation τ .

5.3.3 Quality of Approximation

The goodness of an algorithm for polygonal approximation is quantified, in general, by
the amount of discrepancy between the approximate polygon(s) (or polychain(s)) and the
original set of DC. There are several measures to assess the approximation of a curve Ck,
such as
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Algorithm Merge-ADSS(A, n, τ)

Steps:
1. for m ← 1 to n

2. for S ← 0, i ← 1 to (n−m− 1)
3. S ← S +4(A[m],A[m + i],A[m + i + 1])
4. dx ← |A[m].x−A[m + i + 1].x|
5. dy ← |A[m].y −A[m + i + 1].y|
6. d ← max{dx, dy}
7. if S ≤ dτ

8. delete A[m+i] from A

9. else
10. break
11. m ← m + i− 1

Figure 5.8: Algorithm Merge-ADSS for polygonal approximation of a sequence of ADSS
in A using criterion Cmax.

(i) compression ratio CR = Nk/Mk, where Nk is the number of points in Ck and Mk is
the number of vertices in the approximate polygon Pk;

(ii) the integral square error (ISE) between Ck and Pk.

Since there is always a trade-off between CR and ISE, other measures may also be used
[Held et al. (1994), Rosin and West (1995), Sarkar (1993)]. These measures, however, may
not always be suitable for some intricate approximation criterion. For example, the figure
of merit [Sarkar (1993)], given by FOM = CR/ISE, may not be suitable for comparing
approximations for some common cases, as shown by Rosin (1997). In a work by Ventura
and Chen (1992), the percentage relative difference, given by ((Eapprox−Eopt)/Eopt)×100,
has been used, where Eapprox is the error incurred by a suboptimal algorithm under con-
sideration, and Eopt the error incurred by the optimal algorithm, under the assumption
that same number of vertices are produced by both the algorithms. Similarly, one may
use two components, namely fidelity and efficiency, given by (Eopt/Eapprox) × 100 and
(Mopt/Mapprox)× 100 respectively, where Mapprox is the number of vertices in the approx-
imating polygon produced by the suboptimal algorithm and Mopt is the same produced
by the optimal algorithm subject to same Eapprox as the suboptimal one [Rosin (1997)].
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The algorithm proposed here is not constrained by the number of vertices Mk of the
output polygon Pk, and therefore, the measures of approximation where Mk acts as an
invariant, are not applicable. Instead, we have considered the error of approximation,
namely τ , as the sole parameter in our algorithm, depending on which the number of
vertices Mk corresponding to Pk will change. A high value of τ indicates a loose or slacked
approximation, whence the number of vertices Mk decreases automatically, whereas a low
value of τ implies a tight approximation, thereby increasing the number of vertices in the
approximate polygon. Hence, in accordance to the usage of τ in both of our proposed
methods, one based on criterion CP and the other on Cmax, the total number of vertices
M := M1 + M2 + . . . + MK in set of approximate polygons {Pk}K

k=1 corresponding to
the input set of DC, namely I := {Ck}K

k=1, versus τ , provides the necessary quality of
approximation. Since the total number of points lying on all the points in I characterizes
(to some extent) the complexity of I, we consider the compression ratio (CR) as a possible
measure of approximation.

Another measure of approximation is given by how much a particular point (x, y) ∈
Ck ∈ I has deviated in the corresponding polygon Pk. If p̃ := (x̃, ỹ) be the point in Pk

corresponding to p := (x, y) in I, then for all points in I, this measure is captured by
the variation of the number of points with isothetic deviation d⊥ w.r.t. d⊥, where the
(isothetic) deviation from p to p̃ is given by

dev⊥(p → p̃) = min{|x− x̃|, |y − ỹ|}. (5.14)

Further, since dev⊥(p → p̃) depends on the chosen value of τ in our algorithm, the fraction
of the number of points in I with deviation d⊥ varies plausibly with τ . So, the isothetic
error frequency (IEF) (or, simply error frequency), given by

f(τ, d⊥) =
1
N
|{p ∈ I : dev⊥(p → p̃) = d⊥}| , (5.15)

versus τ and d⊥, acts as the second measure that provides the error distribution for the
polygonal approximation of I.

It may be observed that, the error frequency distribution in Eqn. 5.15 is equivalent to
the probability density function, and satisfies the criterion

∑

d⊥

f(τ, d⊥) = 1, for τ = 0, 1, 2, . . . .

In fact, the error frequency distribution function in our measure is a bivariate distribution
of (finite-size) samples of size N , depending on the two variables, namely τ and d⊥. A
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Table 5.2: Comparison of DSS and ADSS extraction algorithms on different images

Image name No. of P.A.# No. of segs. Avg. length CPU time (secs.)
& size (pixels) points (secs.) DSS ADSS DSS ADSS DSS ADSS {P}?

bird-nestlings
480×320

3041 6.38 902 327 3.37 9.30 5.42 0.17 0.05

climber
320×330

2750 5.92 1170 419 2.35 6.56 6.74 0.20 0.05

india
325×285

2552 7.15 1735 597 1.47 4.27 9.06 0.29 0.06

leaf
240×256

1312 3.88 341 106 3.85 12.38 2.17 0.08 0.02

spider
292×286

1767 4.20 583 157 3.03 11.25 3.93 0.11 0.03

test-001
140×1050

2809 6.26 858 276 3.27 10.18 4.48 0.14 0.04

vase
408×333

6066 10.81 1972 681 3.07 8.91 14.52 0.43 0.10

#CPU time for polygonal approximation using area deviation [Wall and Danielsson (1984)] without

ADSS.
?average CPU time for polygonal approximation with ADSS using criteria CP and Cmax, and τ =

1− 20.

study on the nature of the error frequency distribution for a sufficiently large population
of arbitrary digital curves may be, therefore, a promising area of theoretical analysis of
polygonal approximation of digital curves.

5.4 Experimental Results

We have implemented one algorithm for DSS extraction based on DSS recognition [Creutzburg
et al. (1982)]1, and the proposed algorithm Extract-ADSS, in C on the SunOS Release
5.7 Generic of Sun Ultra 5 10, Sparc, 233 MHz. The results of the two algorithms on
several binary image files of curves and contours are reported here.

We have also compared the results of our method with those of some existing methods
as shown in Table 5.1. In Fig. 5.9 and in Fig. 5.10, we have presented the comparative re-

1We have implemented the DSS-recognition algorithm [Creutzburg et al. (1982)] given in [Klette and

Rosenfeld (2004a)], and have not incorporated the errata given in [Klette (2004)].
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input curve

(N = 60)

curvature max.

[Teh-Chin (1989)]

(M = 16)

ant colony srch.

[Yin (2003)]

(M = 12)

area deviation

[Wall-D’sn (1984)]

(M = 12)

perceptual org.

[Hu-Yan (1997)]

(M = 15)

ADSS (n = 14)a (τ = 0 : M = 23) (τ = 1 : M = 11) (τ = 2 : M = 10) (τ = 3 : M = 6)

a A blue point indicates the start point and a red point indicates the end point of an ADSS. A green point
indicates an ADSS with its end point coinciding with its start point, which is a degenerate case arising
out of our consideration of the chain code of a start point w.r.t. the end point of the previous ADSS in
the sequence.

Figure 5.9: Results of polygonal approximations on “chromosome” by the existing methods
mentioned in Table 5.1 and by the proposed method, Merge-ADSS (using criterion CP),
after extraction of ADSS (using algorithm Extract-ADSS) from the input curve.

sults on polygonal approximation of two benchmark curves, namely, “chromosome” (given
in Appendix B of Teh and Chin (1989)), and “semicir” respectively. The results show that
our method compares favorably with others when we consider τ = 1 in Merge-ADSS.

It may be noted that, for τ = 2, 3, . . ., the approximation obtained by our method re-
quires fewer number of vertices (M), but at the cost of some error incurred, and may not
be profitable for small curves like “chromosome” (and the other test/benchmark curves
considered in the existing works [Rosin (1997), Teh and Chin (1989), Wall and Danielsson
(1984), Wu (1984), Yin (2003)]). However, for sufficiently large curves (a few being pre-
sented in Figs. 5.14, 5.16, 5.17, and 5.18), slackening of τ reduces the number of vertices
to the desired limit, as explained later in this section.

In our implementation, the procedure for extraction of the straight line segments
(DSS/ADSS) from a given curve starts from one end of the curve if it is an open-end,
or starts from a point with chain code (w.r.t. its neighbors) not satisfying property (R1)
if it is a closed one; in the case of failure of the above two criteria, the start point is chosen
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arbitrarily.

The results for the algorithm on DSS extraction and that on ADSS extraction for an
image of a leaf (cropped and zoomed for pixel-wise clarity) are shown in Fig. 5.11. Earlier,
in Fig. 5.2, similar results have been shown for another image (cropped). It is evident from
the extracted set of DSS and that of ADSS that, not only an extracted ADSS is reasonably
straight, but also the number of ADSS is appreciably smaller than that of DSS, a result
that is used to expedite the subsequent algorithm for polygonal approximation. Because
of the recursive nature (apropos the run of run lengths) of the DSS extraction algorithms,
they are inherently much slower than the ADSS algorithm, as reflected by the CPU times
reported in Table 5.2. In this table, we have also given the CPU time required for polygonal
approximation by the algorithm based on area deviation [Wall and Danielsson (1984)] (by
considering all points in the input set of curves instead of end points of their ADSS) to
show how ADSS extraction prior to polygonal approximation accelerates the process. We
have also furnished some other significant parameters to justify the use of ADSS in our
polygonal approximation algorithm. Since such an algorithm will run faster for a smaller
set of segments (whether exact or approximate), the set of ADSS may be used instead of
that of DSS.

We have tested our polygonal approximation algorithms on two classes of test images
— one with 500 sets containing randomly generated DC of lengths varying from N = 500
to N = 2000, and another class with 20 sets of hand-drawn curves — one such hand-drawn
test set is shown in Fig. 5.12. In addition, results on 150 real-world binary images (edge
maps) of various natures have been generated.

Fig. 5.12 demonstrates the polygonal approximation with the criterion CP. The input
image consists of a single (hand-drawn) curve, with seven orientations at 15o increments,
such as 0o, 15o, . . . , 90o. It is interesting to notice that as the approximation tolerance τ

continues to increase, the sets of vertices tend to become increasingly similar, indicating the
invariance of polygonal approximation to rotation (or, orientation) when τ becomes suffi-
ciently high. Further, due to the anisotropic nature of the square grid and the rounding-off
error in digitization and thinning [Gonzalez and Woods (1993), Rosenfeld and Kak (1982)]
applied on a rotated curve, the difference chain code [Rosenfeld and Kak (1982)] of the
rotated curve is likely to differ from that of the original curve. Hence, for smaller values of
τ , the difference in such chain codes representing two orientations plays a critical role in
ascertaining approximate straightness of a small component (whose “smallness” is decided
by τ). A larger value of τ , however, compensates for such local anomalies in a DC, and
thus produces almost identical polygons.
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input curve

(N = 102)

curvature max.

[Teh and Chin (1989)]

(N = 22)

ant colony srch.

[Yin (2003)]

(M = 17)
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[Wall and Danielsson (1984)]

(M = 19)

perceptual orgn.

[Hu and Yan (1997)]

(M = 26)

using ADSS

(our method)

(τ = 1 : M = 20)

Figure 5.10: Results on “semicir”: by some existing methods mentioned in Table 5.1 and
by the proposed method.

(a) DSS (b) ADSS

Figure 5.11: Set of DSS and that of ADSS extracted from the image of a leaf (cropped).
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input image τ = 1 τ = 2 τ = 4

Figure 5.12: Polygonal approximations for a set of small test images, using criterion CP.
(The vertices of the approximate polygon have been shown in red, the edges in blue, and the original curve

in faded green. There are 6 rotations, at 15o increments, of the first object in the input set.)
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τ = 6 τ = 8 τ = 11 τ = 14

Figure 5.12 (continued): It is evident from the above results that the polygonal approximation of the

object becomes almost invariant (w.r.t. the object orientation) when the approximation parameter τ is

sufficiently high. See text for further explanation.



130

Chapter 5
Straight Lines in the Digital Plane

and Polygonal Approximation of Digital Curves

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20

N
/M

τ

CΣ
Cmax

(a)

 0

 5

 10

 15

 20

τ

 2
 4

 6
 8

 10
 12

 14
d⊥

 0

 0.2

 0.4

 0.6

 0.8

 1

f (τ, d⊥ )

(b)

Figure 5.13: Quality of approximation for the “test-001” image shown in Fig. 5.12. In (a),
two histogram profiles on N/M verses the error tolerance τ have been shown, where one
histogram corresponds to criterion CP and the other to criterion Cmax. In (b), the plot on
IEF := f(τ, d⊥) verses the error tolerance τ and the isothetic distance d⊥ corresponding
to criterion CP has been shown, and that corresponding to criterion Cmax is very much
similar. It may be noted that, here τ = 0 corresponds to the number of vertices without
any polygonal approximation (i.e., with ADSS only).
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(a) input set of digital curves (b) ADSS

(c) CP : τ = 2 (d) Cmax : τ = 2

Figure 5.14: Results on “bird-nestlings” image (shown in (a)) including extraction of ADSS
(shown in (b) with end points highlighted in red).
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(e) CP : τ = 4 (f) Cmax : τ = 4

(g) CP : τ = 8 (h) Cmax : τ = 8

Figure 5.14 (continued).
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Figure 5.15: Quality of approximation for the “bird-nestlings” image shown in Fig. 5.14.
See text and Fig. 5.13 for the significance of the plots.
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(a) τ = 1 (b) τ = 2 (c) τ = 4

(d) τ = 1 (e) τ = 2 (f) τ = 4

(g) τ = 1 (h) τ = 2 (i) τ = 4

Figure 5.16: Approximate polygons for a few values of τ on “climber”, “spider”, and
“vase” images, using criterion CP.
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geese pyramid

houses-in-street man-with-bags

hut

snake-crossing umbrella-park

Figure 5.17: Approximate polygons for few more images with τ = 4 and criterion CP.
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The two measures on quality of approximation for the “test-001” image have been
rendered in Fig. 5.13. In Fig. 5.13(a), the profiles of two histograms demonstrating the
distribution of the compression ratio CR = N/M w.r.t. the error tolerance τ have been
shown corresponding to criteria CP and Cmax. The stability of the algorithm on polygonal
approximation is evident from the nature of the plots shown for both the criteria. For
sufficiently high value of τ , the CR becomes almost asymptotically constant owing to the
fact that nearly identical sets of vertices are produced for two close (and sufficiently high)
values of τ , as shown in Fig. 5.12.

In Fig. 5.13(b), the plot on IEF using criterion CP only has been shown, since that
with criterion Cmax is very much similar. It may be observed from this plot that, for
higher values of τ(≥ 6), the amount of maximum (isothetic) deviation (say, d⊥(max)) in
all the seven curves in Fig. 5.12 falls quite short of the permissible limit (i.e., τ), and no
less importantly, for a given value of τ , the number of points (say, Nd⊥) with deviation
d⊥ (and IEF, thereof) decreases almost monotonically with d⊥. A small subset of the
numerical figures in our experiment with the “test-001” curve is furnished below.

τ 6 7 · · · 16 18 20
d⊥(max) 4 5 · · · 13 15 15

Nd⊥(max) 35 15 · · · 2 9 13

The above data clearly shows that for the curves given in Fig. 5.12, for τ ≥ 6, we
get d⊥(max) appreciably smaller than τ , and more importantly, IEF for d⊥ = d⊥(max) is
very small (e.g., for τ = 20, IEF = 13/2809 = 0.0046, etc.), which indicates that error
values nearing d⊥(max) have very low frequency, thereby reinforcing the expectation of high
quality in the approximation process. This assertion is true as well for the other images,
whether synthetic or real-world.

Since most of the images in practical applications involve real-world images, we have
presented here results on few of such images considered in our experiment. Figure 5.14
exhibits the approximate polygons for “bird-nestlings” image for a few values of τ corre-
sponding to each of the approximation criteria. It is apparent from this figure, that the
resultant sets of polygons for the two criteria differ marginally (the set corresponding to
criterion CP is marginally better than Cmax), and that the number of vertices falls off
drastically in the lower end of the spectrum (of τ) and gradually becomes almost constant
in the upper end of the spectrum. Further, that our algorithm in the case of this real-
world “bird-nestlings” image has very closely similar characteristics with the test image
(Fig. 5.12) as evidenced by the resemblance of its quality measures given in Fig. 5.15 with
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those in Fig. 5.13, certifies the efficiency and robustness of our algorithm, irrespective of
the nature and complexity of the digital curves.

In Figs. 5.16, 5.17, and 5.18, approximate polygons for few other images with τ = 4,
corresponding to the approximation criterion CP, have been shown. The quality measures
for these images are not, however, included in this chapter for their almost similar patterns
with those given in Figs. 5.13 and 5.15.

5.5 Conclusion

It is evident from the discussions and the algorithms, proposed here, that a set of ADSS
extracted from a DC is significantly smaller in size than that of DSS extracted from
the same, although each ADSS can be treated as sufficiently straight for various practical
applications. Furthermore, the CPU time needed for ADSS extraction is remarkably lesser
than that for DSS extraction.

Regarding polygonal approximation, the proposed method has been found to work
well to determine a suboptimal solution from an arbitrary set of DC. It is evident from
the experimental result and analysis that the polygon vertices are densely located in and
around the regions with high curvature, and sparsely in the regions with low curvature,
owing to the fact that the length of an ADSS (alternatively, a DSS) is small in the former
region but high in the latter.

The major contributions of our work are summarized as follows:

Approximate straightness. This is the major strength of the algorithm and marks its
difference from the existing algorithms. The proposed algorithm utilizes the basic concepts
of digital geometry, and outputs the polygon efficiently and successfully using low-level
operations.
Primitive integer operations. As no floating-point operations are needed, the algo-
rithms run very fast. Herein lies one of the major differences from the existing approaches.
Convergence property. The algorithm converges to a quasi-static set of polygons for
sufficiently high values of τ , as evident from the analysis and observations.
Robustness. The proposed algorithms are robust because of the fact that the basic prop-
erties of approximate straightness are inherited from those of the exact digital straightness.
Minor dependence on optimality criterion. As the set of ADSS is generated first,
the final stage of merging the collinear ADSS to a single edge of the approximate polygon
becomes relatively simple, when either of the two approximation criteria proposed here is
used.
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(a) “map of India” (input) (b) ADSS (c) τ = 1

(d) τ = 2 (e) τ = 4 (f) τ = 6

(g) τ = 8 (h) τ = 10 (i) τ = 12

Figure 5.18: Polygonal approximations for “map of India” for different values of τ corre-
sponding to criterion CP.
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In the future, optimizing the set of ADSS to cover a given DC would be a promising area
of research, since the output set of the algorithm Extract-ADSS depends on the starting
point and the direction of the traversal. A theoretical analysis of the error distribution in
an ADSS extraction algorithm, as well as investigation of other underlying properties of
ADSS, is another field for conducting further research.





Chapter 6

Digital Circles: Interpretation and Construction

Using Number Theory

Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony
beautiful. If you don't see why, someone can't tell you. I know numbers are
beautiful. If they aren't beautiful, nothing is.

Paul Erdös

6.1 Introduction

As mentioned in Chapter 1, theorization, interpretation, and rendition of the (digital)
geometric primitives, especially those of straight lines and circles [Aken and Novak (1985),
Foley et al. (1993), Klette and Rosenfeld (2004a)], mark a promising area of research
in today’s digital technology. The weird and challenging nature of circles and circular
arcs in the digital domain have drawn immense interest since the early adoption of scan-
conversion technique [Badler (1977), Bresenham (1977), Chung (1977), Danielsson (1978),
Doros (1979), Horn (1976), Kulpa (1979), Pitteway (1974), Shimizu (1981)] for computing
an efficient approximation of a (real) circle from the continuous domain to the digital
domain. Subsequent improvements of these algorithms meant for generation of circular
arcs were achieved by several researchers in the later periods, which may be seen in the
literature [Blinn (1987), Bresenham (1985), Hsu et al. (1993), Mcllroy (1983), Suenaga
et al. (1979), Wright (1990), Wu and Rokne (1987), Yao and Rokne (1995)]. Further,
apart from the circle generation algorithms, other interesting studies on digital circles and
related problems have also appeared from time to time, some of which are as follows:
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(i) polygonal approximation of digital circles [Bhowmick and Bhattacharya (2005a),
Hosur and Ma (1999)];

(ii) characterization of digital circles [Biswas and Chaudhuri (1985), Doros (1984), Har-
alick (1974), Nagy (2004), Worring and Smeulders (1995)];

(iii) detection/segmentation of circular arcs/objects in digital images [Chattopadhyay
et al. (1994), Chen and Chung (2001a), Chiu and Liaw (2005), Coeurjolly et al.
(2004), Davies (1987), Ho and Chen (1995), Kim and Kim (2001), Kulpa and Kruse
(1983), Nakamura and Aizawa (1984), Pla (1996), Rosin and West (1988)];

(iv) parameterization of circular arcs [Chan and Thomas (1995), Davies (1988), Thomas
and Chan (1989), Yuen and Feng (1996)];

(v) anti-aliasing solutions for digital circles [Field (1986)].

It may be mentioned that there exist various composite techniques [Blinn (1987), Hsu
et al. (1993), Wright (1990), Wu and Rokne (1987), Yao and Rokne (1995)], designed to
expedite and contend the procedure of Bresenham’s Circle Drawing algorithm. However,
these algorithms do not have considerably large gains over Bresenham’s method. For
instance, for radius from 1 to 128, the most efficient ones (see, for example, the algorithms
and results by Hsu et al. (1993), and by Yao and Rokne (1995)) of these algorithms are
0.62 times to 1.53 times faster on the average with respect to Bresenham’s algorithm.
This is quite expected for the inherent brevity and simplicity of Bresenham’s algorithm
owing to the judicious usage of primitive arithmetic operations, which have been worked
out sensibly and skillfully from the fundamentals of digital calculus.

However, the essence of all these algorithms is that, although a circle drawing algorithm
primarily originates from the naive concept of intelligent digital applications of 1st order
and 2nd order derivatives (differences) as in Bresenham’s, a digital circle is endowed with
some other interesting properties contributed by the classical theories in the discrete do-
main. It has been gradually made apparent from these studies that digital circles, similar
to digital straight lines [Klette and Rosenfeld (2004b)], possess some striking characteris-
tics, which, if interpreted rightly and exploited properly, may produce interesting results
and scope for subsequent potential applications in the discrete domain.

This chapter reveals the relation between perfect squares (square numbers) in discrete
(integer) intervals and few interesting and useful properties of a digital circle. Based on
these number-theoretic properties, the problem of constructing a digital circle or a circular
arc maps to the new domain of number theory. However, the construction of a digital
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circle using these properties should not be examined only in computational perspectives
compared to Bresenham’s algorithm or any other similar algorithm; rather, these number-
theoretic properties enrich the understanding of digital circles from a perspective that is
different from the customary aspects of digital calculus. It is also discussed in this chapter
how these intervals can be obtained for the given radius of a circle, and what effects these
intervals have on the construction of a digital circle.

0

2

6

4

5 7

3 1

Figure 6.1: The digital circular arc CZ, I(O, 41) for a real circle (shown in red) of radius 41.
The chain codes of the eight neighbors of the grid point (i, j) are shown aside, with the
convention of the right point (i, j+1) as ‘0’, followed by the other points in counterclockwise
direction.

An instance of the digital circle for radius 41 is shown in Fig. 6.1. It may be seen
that the corresponding chain code for this part of the circle, starting from the point
(0, 41), is given by 067037037070707073073, whence it is easy to observe that the runs
of 0 “usually” decrease or continue to be same in length in the first octant as long as 7

appears as a singular character in the chain code. Alternatively, as shown in this chapter,
the topmost run length (number of grid points with ordinate = 41) is given by the number
of perfect squares in the (closed) interval [0, 40], the next run length (number of grid points
with ordinate = 40) given by that in [41, 120], the next one (ordinate = 39) by that in
[121, 198], and so on. To elaborate, if s[v, w] denotes the number of perfect squares in the
closed interval [v, w], then we get s[0, 40] = 7 (since 7 perfect squares, i.e., 0, 1, 4, . . . , 36,
lie in [0, 40]), s[41, 120] = 4 (since 49, 64, 81, 100 lie in [41, 120]), s[121, 198] = 4 (since
121, 144, 169, 196 lie in [121, 198]), etc. Hence, the square numeric code of the above circle
in the first octant is given by 〈7, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1〉, which can be shortened to
〈7, 42, 24, 12, 2, 13〉, whence it is again apparent that the numbers of perfect squares are
either non-increasing (predominant) or increasing by at most unity (occasional).

The brief outline of the chapter is as follows. In Sec. 6.2, we start with some funda-
mental properties of a digital circle, followed by the basic principle for its generation in
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Sec. 6.2.1. In Sec. 6.2.2, we have explored few properties on the distribution of grid points
for a digital circle based on the square numbers in discrete intervals, which may be used
to design an algorithm on generation of the circle using few primitive integer operations
only, given in Sec. 6.2.3, along with its analysis in Sec. 6.2.4 and comparison with Bre-
senham’s algorithm in Sec. 6.2.5. Some other excellent properties have been presented in
Sec. 6.3, which have been derived using the rudimentary number-theoretic concepts once
again. These properties improve the former algorithm (Sec. 6.2.3) to actualize another
algorithm, given in Sec. 6.3.1, using a modified binary search technique and without using
any floating-point operation at any stage, which has been shown to be very effective for
circles of higher radii, as evident from its analysis given in Sec. 6.3.2. Sec. 6.4 exhibits
some test results that demonstrate the analytical strength and algorithmic applications of
the novel approach proposed in this chapter. In Sec. 6.5, procedures for construction, seg-
mentation, and characterization of digital circles/circular arcs by intelligent deployment
of such number-theoretic properties, have been discussed.

6.2 Properties of Digital Circles

Let CZ(p, r) be the digital circle with center at p ∈ Z2 and radius r ∈ Z+. For simplicity
of notations, CZ(p, r) is also used to denote the set of grid points/pixels constituting the
digital circle with center at p and radius r in an appropriate context. Further, if q ∈ Z2

be such that q ∈ (set) CZ(p, r), then q is said to be “lying on” (circle) CZ(p, r).
To start with, we observe a simple and very useful representation of a digital circle,

which is required for construction of the digital circle about any grid point p as its center.
The most convenient and customary representation of any digital curve (and a digital
circle, thereof) is by means of Freeman’s chain code [Freeman (1961a,b)], where the locally
represented enumeration of the digital curve is mapped to the global coordinate system
using a defined (global) point of reference, customized to specific requirements. For the
digital circle CZ(p, r), if we consider the center p as the origin (point of reference) of the
local coordinate system in Z2, then it can be shown that the set of grid points, enumerated
in chain coded form w.r.t. p, representing the circle CZ(p, r), will be always independent of
p and will be depending only on its radius r. Hence, we obtain the following lemma, which
can be exploited to draw a digital circle CZ(p, r) centered at any point p ∈ Z2, provided
CZ(O, r) is known, where, O = (0, 0).

Lemma 6.2.1 If G(CZ(p, r), q) represents the set of grid points lying on a digital circle
CZ(p, r) with q as the point of reference for the representation, where, p, q ∈ Z2 and r ∈ Z+,
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then the sets G(CZ(p, r), p) and G(CZ(O, r),O) are identical.

It may be noted that, the conversion of a digital circle CZ(O, r) from the correspond-
ing real circle CR(O, r) is done using the property of 8-axes symmetry of digital circles
[Bresenham (1977), Foley et al. (1993)]. A sample digital circle CZ(O, 11) along with its
eight octants, and the corresponding real circle CR(O, 11) are shown in Fig. 6.2 for a ready
reference. In order to obtain the complete circle CZ(O, r), therefore, generation of the first
octant, CZ, I(O, r), (pixels or grid points in the closed interval [00, 450], measured w.r.t.
+y-axis in clockwise direction) of CZ(O, r) suffices.

Octant 5 Octant 4

O
ct

an
t 3

O
ctant 6

O
ct

an
t 7

O
ctant 2

Octant 8 Octant 1

y

x
O

Figure 6.2: A real circle, CR(O, 11), and the eight octants of the corresponding digital
circle, CZ(O, 11).

6.2.1 Generation of a Digital Circle

While generating CZ, I(O, r), decision is taken to select between east pixel (E := (i + 1, j))
or south-east pixel (SE := (i + 1, j − 1)), standing at the current pixel (P := (i, j)),
depending on which one between E and SE is nearer to the point of intersection of the
next ordinate line (i.e., x = i + 1) with the real circle CR(O, r). In the case of ties, any
one between E and SE may be selected. It is, however, interesting to note that such a tie
is never possible, and can apparently occur only if there is a computation error, the proof
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being as follows.
Let a tie occur when the real circle CR(O, r) has (i, j +1/2) as the corresponding point

of intersection in the first octant with the vertical grid line x = i. Since (i, j + 1/2) lies
on CR(O, r), we have

i2 + (j + 1/2)2 = r2,

or, r2 − (i2 + j2 + j) = 1/4,

which is impossible, since r2 ∈ Z, and (i2 + j2 + j) ∈ Z. Hence we observe the following
lemma.

Lemma 6.2.2 A tie for selecting one of the two candidate pixels can never occur.

Remark: Ideally, a tie as described above is impossible. Because of errors in floating-point
computation, a tie may apparently occur.

6.2.2 Relation of Digital Circles with Square Numbers

Let CZ, I(O, r) represent the first octant of CZ(O, r) and let P(i, j) lie in CZ, I(O, r). Hence
the point of intersection Q of CR(O, r) with the vertical grid line x = i should have distance
less than 1

2 from P, as shown in Fig. 6.3. Hence, if (i, j− δ) be the coordinates of Q, then
we have −1

2 < δ < 1
2 , where it may be noted that |δ| can never be equal to 1

2 , as evident
from Lemma 6.2.2.

C rR (O,   )

y=j +1

y=j

y=j −1

x=i −1 x=i +1

P

Q

x=i

M

N

Figure 6.3: P(i, j) lies on CZ, I(O, r) provided the point of intersection Q of CR(O, r) with
the vertical line x = i lies between M(i, j − 1

2) and N(i, j + 1
2).

Now, since Q(i, j − δ) lies on the real circle CR(O, r), we get

i2 + (j − δ)2 = r2,
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or, δ2 − 2jδ + (i2 + j2 − r2) = 0,

or, δ =
1
2

(
2j ±

√
4j2 − 4(i2 + j2 − r2)

)
,

or, δ = j −
√

r2 − i2, since − 1
2

< δ <
1
2
. (6.1)

Therefore, extending Eqn. 6.1 and using the fact that −1
2 < δ < 1

2 , we get

−1
2

< j −
√

r2 − i2 <
1
2
,

or, −1
2
− j < −

√
r2 − i2 <

1
2
− j,

or,
1
2

+ j >
√

r2 − i2 > j − 1
2
,

or, (j − 1
2
)2 < r2 − i2 < (j +

1
2
)2,

or, j2 − j +
1
4

< r2 − i2 < j2 + j +
1
4
,

or, j2 − j < r2 − i2 6 j2 + j, [since i, j, r ∈ Z]

or, −j2 − j 6 i2 − r2 < −j2 + j,

or, r2 − j2 − j 6 i2 < r2 − j2 + j. (6.2)

Eqn. 6.2 reveals the pattern of the grid points that would represent the digital circle
CZ(O, r) in the first octant. Since the first grid point in the first octant is always (0, r)
(considering the clockwise enumeration), Eqn. 6.2 for the topmost grid points (i.e. j = r)
becomes 0 6 i2 < r2− r2 + r = r, or, 0 6 i2 6 r− 1. This implies that, in the first octant,
the grid points, having their ordinates as r, will have the squares of their abscissas in the
(closed) interval [0, r − 1]. Let us denote the interval [0, r − 1] by I0 (zero-th interval).

Let I1 be called as the first interval, which is obtained by substituting j = r − 1
in Eqn. 6.2. So, I1 =

[
r2 − (r − 1)2 − (r − 1), r2 − (r − 1)2 + (r − 1)− 1

]
= [r, 3r − 3],

which contains the squares of abscissas of all the grid points (in the first octant) whose
ordinates are r − 1. Thus, in general, if Ik denotes the k-th (k > 1) interval, given by

Ik =
[
r2 − (r − k)2 − (r − k), r2 − (r − k)2 + (r − k)− 1

]

= [(2k − 1)r − k(k − 1), (2k + 1)r − k(k + 1)− 1] , (6.3)

which is obtained by substituting j = r− k in Eqn. 6.2, and then, proceeding in this way,
for a digital circle with radius r > 1 and center at (0, 0), we get the following lemma.

Lemma 6.2.3 The interval Ik = [(2k − 1)r − k(k − 1), (2k + 1)r − k(k + 1)− 1] contains
the squares of abscissas of the grid points of CZ, I(O, r) whose ordinates are r−k, for k > 1.
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The length lk of the interval Ik (k > 1) is, therefore, given by

lk = ((2k + 1)r − k(k + 1)− 1))− ((2k − 1)r − k(k − 1)) + 1

= 2r − 2k. (6.4)

Using Eqn. 6.4, the length lk+1 for interval Ik+1 is given by lk+1 = 2r−2(k+1) = lk−2,
whence we have the following Lemma.

Lemma 6.2.4 The lengths of the intervals containing the squares of equi-ordinate abscis-
sas of the grid points in CZ, I(O, r) decrease constantly by 2, starting from I1.

6.2.3 Algorithm DCS: Digital Circle Using Square Numbers

An algorithm for construction of digital circles can be designed, therefore, based on (num-
bers of) square numbers in the intervals
I0 = [0, r − 1],
I1 = [r, 3r − 3],
I2 = [3r − 2, 5r − 7],
. . .,
Ik = [(2k − 1)r − k(k − 1), (2k + 1)r − k(k + 1)− 1],
. . .,
as shown in Sec. 6.2.2. The length of the first interval I1 is greater than that of I0 by
2(r − 1), as given by Eqn. 6.4. More interestingly, for k > 1, the length of each interval
Ik+1 is lesser than that of Ik by 2, which is a constant. Hence, in the algorithm DCS, using
square numbers, we search for the number of perfect squares in each interval Ik, k > 0,
which, in turn, gives the number of grid points with ordinate r−k. The following theorem
contains the above facts and findings in a concise way.

Theorem 6.2.5 The squares of abscissas of grid points, lying on CZ, I(O, r) and having
ordinate = r − k, lie in the interval [uk, vk := uk + lk − 1], where uk and lk are given as
follows.

uk =

{
uk−1 + lk−1 if k > 1
0 if k = 0

(6.5)

lk =





lk−1 − 2 if k > 2
2r − 2 if k = 1
r if k = 0

(6.6)
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Proof. Follows easily from Lemma 6.2.3 and Lemma 6.2.4.

Exerting Theorem 6.2.5, therefore, the algorithm DCS may be designed, as shown in
Fig. 6.4. It may be noted that, since the (i + 1)th square number Si+1 = (i + 1)2 can be
obtained easily from the previous square number Si = i2, since Si+1 = (i+1)2 = Si+2i+1,
which is equivalent to adding a “gnomon” [Shanks (1993)], as shown in Fig. 6.5 (cour-
tesy, http://mathworld.wolfram.com). This is incorporated in the algorithm (steps 5–7),
shown in Fig. 6.4, where the gnomon addition of 2i + 1 is realized by adding i with
the previous square s, followed by adding an incremented value (i + +) of i, in order to
optimize the primitive arithmetic operations. It is evident that, in Step 4, the proce-
dure include 8 sym points (i, j) includes the set of eight symmetric grid points, namely
{(±x,±y) : {x} ∪ {y} = {i, j}}, in CZ(O, r).

Algorithm DCS (int r) {
1. int i = 0, j = r, s = 0, w = r − 1;
2. int l = w << 1;
3. while (j > i) {
4. do { include 8 sym points (i, j);
5. s = s + i;
6. i + +;
7. s = s + i; } while (s 6 w);
8. w = w + l;
9. l = l − 2;
10. j −−; }}

Figure 6.4: Algorithm DCS.

Figure 6.5: Generation of a square number Si+1 by adding a “gnomon” to Si. All circles
in the previous square number Si are shown by unfilled circles in Si+1, whereas the gray
ones (2i numbers) and the black one denote the gnomon added to Si to get Si+1.
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It is worthwhile mentioning here that, although, from the two recurrence equations
for uk and lk in Theorem 6.2.5, the run length λ(r − k) (and the “square numeric code”,
thereof) at ordinate r − k in the first octant can be obtained by

λ(r − k) =
⌊√

uk + lk − 1
⌋
− ⌊√

uk − 1
⌋
, (6.7)

evaluation of Eqn. 6.7 needs the square root operation, invoking unwanted floating-point
computation, corresponding to each run. The algorithm DCS, given in Fig. 6.4, is a
circumvention of Eqn. 6.7, using few primitive operations in the integer domain.

6.2.4 Analysis of Algorithm DCS

We discuss here about the number of elementary operations, namely comparison, addition
(subtraction), and increment (decrement), required over all the iterations in the algorithm
DCS. The inside do–while loop (steps 4–7) will find out the consecutive equi-ordinate
(ordinate= j) grid points (to be precise, the squares of their abscissas) in CZ, I(O, r) at
each iteration of the outside while loop (Step 3).

Now, each iteration of the outside while loop corresponds to a particular ordinate j,
which gets decremented by unity (Step 10) for the next iteration corresponding to the next
ordinate, i.e. j−1, for which, it may be observed, the upper limit w and the interval length
l of the corresponding interval are being updated (Step 8 and Step 9) in accordance with
Theorem 6.2.5. Hence, the total number of iterations of the outside while loop is given by
the number of south-east (SE) transitions in the digital arc representing CZ, I(O, r). The
total number of comparisons required for checking the condition (j > i) is, therefore, given
by |SE|+1, where, |SE| denotes the total number of SE transitions in CZ, I(O, r). The total
number of comparisons for checking the condition (s 6 w) involved in the do–while loop,
would be given by the total number of grid points in CZ, I(O, r), i.e. |E|+ |SE|, where, |E|
denotes the total number of east (E) transitions in CZ, I(O, r). Also, for each transition
(whether E or SE), two additions (Step 5 and Step 7) and one increment (Step 6) are
mandatory. In case of each SE transition, two extra additions (Step 8 and Step 9) and one
extra increment (Step 10) are required. Hence, for the entire algorithm, the total numbers
of comparisons (nc), additions (na), and increments (ni) are given by

nc = |E| + 2|SE| + 1
na = 2|E| + 4|SE|
ni = |E| + 2|SE|

(6.8)
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Algorithm Circle Bresenham (int r) {
1. int i = 0, j = r, h = 1− r, dE = 3, dSE = −2r + 5;
2. include 8 sym points (i, j);
3. while (j > i) {
4. if (h < 0) {
5. h = h + dE;
6. dE = dE + 2;
7. dSE = dSE + 2;
8. x + +; }
9. else {
10. h = h + dSE;
11. dE = dE + 2;
12. dSE = dSE + 4;
13. x + +; y + +; }
14. include 8 sym points (i, j); }}

Figure 6.6: Bresenham’s Algorithm.

6.2.5 Comparison with the Bresenham’s Algorithm

Similar to the analysis given in Sec. 6.2.4, for the Bresenham’s algorithm [Bresenham
(1977)], given in Fig. 6.6, the total numbers of comparisons (nbc), additions (nba), and
increments (nbi) would be given by

nbc = 2|E| + 2|SE| + 1
nba = 3|E| + 3|SE|
nbi = |E| + 2|SE|

(6.9)

Hence, it is easy to observe that the algorithm DCS and Bresenham’s are very much
similar in their efficiency and ease in implementation. However, the algorithm DCS can
be further endowed with some other (run length) properties of digital circles, which are
discussed in the following Section.

6.3 Run Length Properties of Digital Circles

Lemma 6.3.1 The number of perfect squares in a closed interval [v, w] is at most one
more than the number of perfect squares in the preceding closed interval [u, v− 1] of equal
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v−1

Sn+p+q+1Sn+p+qS 1Sn+pSn+1uSn v
w

n+p+

Figure 6.7: Square numbers on the number axis.

length, where the intervals are taken from the non-negative integer axis.

Proof. Let p and q denote the numbers of perfect squares in the closed intervals [u, v−1]
and [v, w] respectively. Let Sn = n2 be the largest square number lesser than u. Then,
the square numbers lying in [u, v − 1] are Sn+1, Sn+2, . . . , Sn+p, and those lying in [v, w]
are Sn+p+1, Sn+p+2, . . . , Sn+p+q, as shown in Fig. 6.7. Now, using the relation Sm+1 =
(m + 1)2 = Sm + 2m + 1 and applying the method of induction, we get

Sn+k = Sn + 2kn + k2. (6.10)

Considering the fact that the difference between the highest and the lowest square
numbers in [v, w] is at most the length of the interval, that is w− v + 1 (see Fig. 6.7), we
have

Sn+p+q − Sn+p+1 6 w − v, (6.11)

where, it may be noted, the equality holds true when both v and w are perfect squares
and, therefore, become equal to Sn+p+1 and Sn+p+q respectively. Similarly, considering
the square number (Sn+p+1) just greater than the largest square in [u, v−1] and the square
number (Sn) just lesser than the smallest square in [u, v − 1] (Sn would be equal to 0 for
the degeneracy when u = 0), we get

Sn+p+1 − Sn > v − u. (6.12)

Hence, combining Eqn. 6.11 and Eqn. 6.12 with our consideration that w−v = v−1−u,
we get

Sn+p+q − Sn+p+1 6 w − v < v − u < Sn+p+1 − Sn,

or, Sn+p+q − Sn+p+1 < Sn+p+1 − Sn,

or, Sn + 2(p + q)n + (p + q)2 − Sn − 2(p + 1)n− (p + 1)2

< Sn + 2(p + 1)n + (p + 1)2 − Sn,

or, 2(q − 1)n + (2p + q + 1)(q − 1) < 2(p + 1)n + (p + 1)2,

or, (q − 1)(2n + 2p + q + 1) < (p + 1)(2n + p + 1). (6.13)
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Since the second factor in the left hand side of Eqn. 6.13 never falls short of the second
factor in the right hand side, i.e., 2n + 2p + q + 1 > 2n + p + 1 for all cases, including the
degenerate cases when p = 0 or/and q = 0 or/and n = 0, validity of Eqn. 6.13 implies that
the first factor in its left hand side is strictly lesser than the first term in its right hand
side. Hence, q − 1 < p + 1, or, q 6 p + 1.

Theorem 6.3.2 The run length of grid points of CZ, I(O, r) with ordinate j − 1 never
exceeds one more than the run length of its grid points with ordinate j.

Proof. From Lemma 6.2.4, it is obvious that the length of the interval, containing the
squares of abscissas (of grid points of CZ, I(O, r)) with ordinate j − 1, is 2 less than that
corresponding to ordinate j. Even if the interval corresponding to ordinate j − 1 had
been equal in length to the preceding interval corresponding to ordinate j, then from
Lemma 6.3.1, the maximum number of grid points with ordinate j − 1 would not have
exceeded one more than the number of grid points with ordinate j. Hence the proof.

It is interesting to note that Theorem 6.3.2 provides a good and useful upper bound
on the number of grid points with ordinate j w.r.t. that corresponding to ordinate j − 1.
The derivation of lower bound that we have obtained is, however, not so straightforward,
as evident in the following statements.

If p and q denote the numbers of perfect squares in the closed intervals [u, v − 1] and
[v, w] (of equal length, i.e., v − 1 − u = w − v) respectively, and Sn = n2 be the largest
square number lesser than u, as discussed earlier, then (see Fig. 6.7) it can be shown that1

Sn+p+q+1 − Sn+p > Sn+p − Sn+1,

or, 2n(p + q + 1) + (p + q + 1)2 − 2np− p2 > 2np + p2 − 2n− 1,

or, 2n(q + 1) + 2p(q + 1) + (q + 1)2 > 2n(p− 1) + p2 − 1. (6.14)

Now, since our concern is to find a lower bound of q in terms of p, we consider q + 1 6
p− 1, i.e., 2n(q + 1) 6 2n(p− 1), whence Eqn. 6.14 produces the following relation.

2p(q + 1) + (q + 1)2 > p2 − 1,

or, (p + q + 1)2 > 2p2 − 1,

1Sn+p+q+1 > w and −Sn+p > −v implies Sn+p+q+1 − Sn+p > w − v.

Sn+p 6 v − 1 and −Sn+1 6 −u implies Sn+p − Sn+1 6 v − 1− u(= w − v).

Thus, Sn+p+q+1 − Sn+p > Sn+p − Sn+1.
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or, (p + q + 1)2 > 2p2,

or, q > (
√

2− 1)p− 1,

or, q >
⌈
(
√

2− 1)p− 1
⌉

,

or, q >
⌊
(
√

2− 1)p
⌋

, (6.15)

since p and q are integers and (
√

2− 1)p− 1 is irrational.

The bound for q in Eqn. 6.15 has two weaknesses. The first one is that we get a loose
lower bound of q that would cause some redundant operations while deciding the run length
of grid points at ordinate j− 1 from that in the preceding ordinate j. Secondly, and more
importantly, computation of the lower bound of q in accordance with Eqn. 6.15 requires a
square root operation followed by a floor/truncation operation, which is computationally
expensive and not desirable in the run length finding procedure of circle construction
algorithm.

In order to circumvent the aforesaid problems, therefore, we turn around in a different
way from Eqn. 6.14 to obtain a nicer bound for q as follows.

(q + 1)(2n + 2p + q + 1) > (p− 1)(2n + p + 1),

or, (q + 1)(p + q) > (p− q − 2)(2n + p + 1). (6.16)

It is easy to observe from Eqn. 6.16 that, if the interval [u, v − 1] containing p perfect
squares be such that p < 2n, where Sn is the largest square number lesser than u, then
q 6 p + 1, or, q < 2n + 1, which implies p + q < p + 2n + 1. Hence, from Eqn. 6.16, we get

q + 1 > p− q − 2,

or, 2q > p− 3,

or, q >
p− 1

2
− 1,

or, q > p− 1
2

>
⌊

p− 1
2

⌋
. (6.17)

From the result obtained in Eqn. 6.17, we can, therefore, make the following observa-
tion.

Lemma 6.3.3 The number of perfect squares in a closed interval [v, w] is at least (floor
of) half the number of perfect squares less one in the preceding closed interval [u, v− 1] of
equal length, provided u is sufficiently high compared to the length of the interval [u, v−1].
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Putting together the above findings, therefore, we get the following theorem that cap-
tures the run length properties of a digital circle in a precise form.

Theorem 6.3.4 If λ(j) be the run length of grid points of CZ, I(O, r) with ordinate j, then
the run length of grid points with ordinate j − 1 is given by

λ(j − 1) >
⌊

λ(j)− 1
2

⌋
− 1.

Proof. From Lemma 6.2.4, the length of the interval containing the squares of abscissas
of grid points with ordinate j − 1 is 2 less than that corresponding to ordinate j. Had
the interval corresponding to ordinate j− 1 been equal in length to the preceding interval
(ordinate j), then from Lemma 6.3.3, the number of grid points with ordinate j− 1 would
have been at least b(λ(j)− 1) /2c. In case the next integer or the next-to-next integer
immediately after the interval corresponding to ordinate j − 1 is a perfect square, the
minimum possible value of λ(j − 1) would be further less by unity.

6.3.1 Algorithm DCR

Combining Theorem 6.3.2 and Theorem 6.3.4, therefore, we obtain Eqn. 6.18, which can
be used to derive the the horizontal run of grid points with ordinate j − 1, from the
previous run with ordinate j, for j 6 r.

⌊
λ(j)− 1

2

⌋
− 1 6 λ(j − 1) 6 λ(j) + 1 (6.18)

The algorithm that incorporates Eqn. 6.18 is shown in Fig. 6.8. It may be noted that,
in Fig. 6.8, only the upper limit (λ(j) + 1) of the term λ(j − 1) has been considered for
simplicity. The lower limit (

⌊
1
2(λ(j)− 1)

⌋− 1) of λ(j − 1) may be considered in a similar
fashion. In order to obtain the exact value of λ(j − 1), binary search has been used. The
binary search assumes minimum value as 1 and maximum value as λ(j)+1 to start with for
λ(j− 1). The binary search is performed on the Look-Up-Table, implemented in the form
of a 1-dimensional array, namely square[ ], that contains the square Sn of each integer
n = 0, 1, 2, . . . , N , where N2 is the largest square not exceeding the maximum value R

of radius r. For example, for R = 1000, N (and the size of the Look-Up-Table, thereof)
equals to 31.

It may be noted that the binary search procedure incorporated in Fig. 6.8 is a modified
one, based on our requirements, from the conventional one found in the literature [Langsam
et al. (2000)]. In accordance with the conventional procedure, one has to check at first



156

Chapter 6
Digital Circles: Interpretation and Construction

Using Number Theory

whether the middle element (m in our figure) equals to the search key, failing which
one between two other checks (smaller or greater) is performed. We have modified this
(steps 7–10) to reduce the number of comparisons in each iteration of the inner while
loop.

A demonstration of the algorithm DCR for r = 106 has been graphically shown in
Fig. 6.9 till a run of unit length is found. For each row, the binary search is illustrated
by circular dots, where each dot corresponds to the middle element (m) of the respec-
tive sub-array (square[s..t]). It may be noticed that, m in Fig. 6.8 (Step 6) denotes the
abscissa (vertical) line x = m − 1 in Fig. 6.9. As the binary search, associated with a
particular row, proceeds and converges to produce the final run of the corresponding row,
the respective dots have been gradually darkened to depict the impact of the run length
finding procedure. The end of the run at each row is emphasized by highlighted abscissa
lines passing through the end point of that run for visual clarity. For instance, for the
topmost row, m starts with 53, followed by 26, 13, and so on, until s = t = 11, whence
m finally becomes 11, thereby yielding the run length equal to 11. Similarly, for the
next row, since the start values of s and t are 11 and 23 respectively, the subsequent
values of m are 17, 20, 19, and (finally) 18, which makes the corresponding run length
to 18 − 11 = 7. Thus, the run length of a particular row (y = j) is given by the cu-
mulative run length up to that row minus the preceding cumulative run length, which
is realized by the function include run (x, s − x, j) in Step 6 of the algorithm. The
“square numeric code” of a circle with radius 106 in the first octant, therefore, turns out
to be 〈11, 7, 5, 5, 3, 3, 3, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1〉, which can
be compressed to 〈11, 7, 52, 34, 23, 3, 1, 23, 1, 2, 1, 2, 12, 2, 13, 2, 15〉, which, in turn, can be
used to easily derive the chain code representation of the circular arc, as mentioned in
Sec. 8.1 for Fig. 6.1.

It is worth mentioning here that, implementation of the Look-Up-Table in the form,
mentioned above, avoids floating-point operations of any sort at any stage, such as square
root operation to find the run for j = r in the algorithm proposed by Yao and Rokne
(1995). Also, the above algorithm will not be so efficient for circles (1st octant) of small
radii, or to find out a run length of small value, such as when y/x 6 4 or so (see Sec. 6.4)
since the operations (comparisons etc.) needed in the binary search for small run lengths
would raise the overall time of the algorithm. Hence, the algorithm DCR may be used
in some model of hybridization, whose realization, in some form, may be seen in some
existing studies, e.g. Yao and Rokne (1995).
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Algorithm DCR (int r) {
1. int i = 0, j = r, s = 0, w = r − 1, t = r, x = 0,m;
2. int l = w << 1;
3. while (j > i) {
4. while (s < t) {
5. m = s + t;
6. m = m >> 1;
7. if (w 6 square[m])
8. t = m;
9. else
10. s = m + 1; }
11. if (w < square[s])
12. s−−;
13. s + +;
14. include run (x, s− x, j);
15. t = s + s− x + 1;
16. x = s;
17. w = w + l;
18. l = l − 2;
19. j −−; }}

Figure 6.8: Algorithm DCR using run length properties in part (see text for explanation).

6.3.2 Analysis of Algorithm DCR

We would analyze the algorithm DCR for showing its readiness in hybridizing a circle
construction algorithm, e.g. DCS given in Fig. 6.4. We assume that some of the top runs
(i.e. j = r, r−1, r−2, . . .) are generated by the algorithm DCR, followed by the generation
of the remaining runs by a simpler algorithm like DCS. The problem is, therefore, for
generation of how many runs (starting from the topmost one) the algorithm DCR should
be used, so that the overall time of the resultant hybrid algorithm is minimized.

The analysis of the algorithm DCS, as put in Sec. 6.2.4, shows that the total number
of operations (comparisons, additions, and increments) for generation of k+1 runs is given
by 4|E|+8|SE|+1, from which, by dropping ‘+1’, the lower bound is given by 4|E|+8|SE|.
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Figure 6.9: Demonstration of algorithm DCR for radius 106 (see text for explanation).

Now, observing that |SE| is the number of south-east transitions, which is simply k, and
|E| is the number of east transitions, given by

|E| =
⌊√

kr + r(k + 1)− k(k + 1)− 1
⌋
− k [from Eqn. 6.3]

>
⌊√

kr
⌋
− k [since r > k].

For producing the top k + 1 runs (i.e., for j = r, j = r − 1, . . . , j = r − k) by the
algorithm DCS, therefore, the total number of primitive operations is given by

n
(k+1)
1 > 4

(⌊√
kr

⌋
− k

)
+ 8k = 4

⌊√
kr

⌋
+ 4k. (6.19)

For the algorithm DCR, in accordance with the simple implementation, as shown in
Fig. 6.8, for the topmost row (i.e., j = r), the number of iterations of the inner while loop
(Step 4), meant for binary search as discussed in Sec. 6.3.1, is given by dlog re, the base
of log(·) being 2 in this discussion. For the binary search on finding out each run length
at j < r, the number of iterations depends on the length of the search interval (i.e., initial
values of s and t for the corresponding j, see Fig. 6.8), which depends on the preceding
run length due to the inherent recursive nature of Eqn. 6.18 used in the algorithm. This
poses a problem in deriving the number of primitive operations in the algorithm for the
individual runs. However, it is easy to observe that for each subsequent value of j(< r),
the inner while loop iterates for not more than dlog(

√
r)e =

⌈
1
2 log r

⌉
times, since the

run length for j 6 r− 1 would be always lesser than that for j = r (which is b√rc+ 1); in
fact, for j 6 r− 1, the value b√rc turns out to be a loose upper bound for its run length,
where the actual run length for j = r − k(k > 0) falls shorter and shorter of b√rc as k

goes higher and higher.
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Now, for each iteration of the inner while loop, including the check (s < t) in Step 4,
and assuming that the logical expression (w 6 square[m]) in Step 7 is always false (worst
case), thereby requiring one addition in Step 10 at each iteration, the total number of
operations (comparisons, additions, right shifts, and increments) per iteration turns out
to be 5 in the worst case.

Similarly, for each iteration of the outer while loop, the total number of all primitive
operations can be shown to be at most 11. Further, for the outer while loop, the total
number of iterations is simply the number of SE transitions, which becomes k, if k + 1
runs are produced by the algorithm DCR.

Thus, for producing k + 1 runs, the total number of primitive operations (worst case)
required by the algorithm DCR is given by

n
(k+1)
2 < 5 (dk/2e+ 1) dlog re+ 11k. (6.20)

Hence, from Eqns. 6.19 and 6.20, the algorithm DCR would be faster than DCS for
generating the top k + 1 runs, provided

5 (dk/2e+ 1) dlog re+ 11k < 4
⌊√

kr
⌋

+ 4k,

or, 5 (dk/2e+ 1) dlog re+ 7k < 4
⌊√

kr
⌋

. (6.21)

It may be noted that, while deriving the lower bound for n
(k+1)
1 and upper bound for

n
(k+1)
2 in Eqns. 6.19 and 6.20 respectively, we have used some loosely-framed inequalities.

The relation shown in Eqn. 6.21, therefore, does not impose a tight restriction on the
number of runs (i.e., k + 1) that should be produced by the algorithm DCR. However,
from Eqn. 6.21, we get, for a given value of radius r, the least number of runs that
should be generated by DCR, followed by the remaining runs by the algorithm DCS (or
Bresenham’s algorithm) for an efficient hybridization.

6.4 Experimental Results

Implementation of the two algorithms DCS and DCR, whose pseudocodes are given in
Fig. 6.4 and Fig. 6.8, is simple as that of Bresenham’s. As mentioned in Sec. 8.1, since
construction of a digital circle using the number-theoretic properties, discussed in this
chapter, should not be considered as to contend Bresenham’s algorithm, but as to supple-
ment it in theoretical perspectives, we have not produced here results on (CPU) run times;
rather, few results on the number of primitive operations required for the algorithms are
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Figure 6.10: Primitive operations in DCS algorithm and Bresenham’s algorithm for radius
r from 1 to 1000. The plots have been given in log10 scale.

presented below. It may be noted that, for a given radius r, the number of primitive op-
erations to generate (first octant of) the corresponding digital circle is always fixed (i.e.,
deterministic) for any one of the algorithms on circle construction. Furthermore, since
the CPU times are dependent on the machine configuration and code optimization by the
associated compiler, CPU times not necessarily reflect the true picture of the speed and
efficiency of an algorithm.

In Fig. 6.10, the major primitive operations, namely comparisons, additions, and in-
crements, have been shown for the algorithm DCS in log10 scale for radius from 1 to 1000.
It is evident from these plots, which are just experimental authetications of the theoretical
values of the number of operations, given in Eqn. 6.8, that the number-theoretic algorithm
DCS is no less efficient and no less dependable than Bresenham’s algorithm.
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Figure 6.11: Total number of operations (given in log10 scale) in DCR algorithm (given
in Fig. 6.8) and Bresenham’s algorithm for different starting parts (y > x, y > 2x, . . .) of
1st octant.

In Fig. 6.11, the total number of primitive operations that includes comparisons, ad-
ditions, right shifts, and increments, have been shown for the algorithm DCR. The plots
in this figure are for the generation of some initial parts (till y > tx, t = 1, 2, 4, 16) of
the first octant, starting from the topmost row (i.e., j = r). As discussed in Sec. 6.3 and
Sec. 6.3.2, proper hybridization techniques may be designed that would first generate the
runs (using a binary search technique, as discussed earlier, and an example illustrated in
Fig. 6.9), starting from the topmost row, and then use DCS (or Bresenham’s algorithm,
or any similar algorithm) for remaining part of the first octant. The top runs would be
generated by a number-theoretic algorithm, such as the algorithm DCR, as long as the
run-generation procedure is appreciably faster than the other, as explained in Sec. 6.3.2.
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The trade-off in the hybridization is a critical issue, which has been portrayed in
the plots in Fig. 6.11. From these plots, it is apparent that for radius exceeding 100
or so, the number-theoretic algorithm (DCR) has appreciable margin over Bresenham’s
algorithm. Further, as evident from the plots, the gain for the run length finding approach
using the number-theoretic technique goes on increasing as the radius increases. For very
large radius, say that exceeding 1000, the number-theoretic technique would contribute
substantial improvements to any circle generation procedure.

6.5 Conclusion

We have shown how the number-theoretic method can be used to identify some fundamen-
tal and interesting properties of a digital circle, which are of immense significance to its
mathematical interpretation and its subsequent graphical construction. These number-
theoretic properties not only conform to, but also supplement and enrich further, the
properties originated from the conventional concepts of digital calculus, such as those
used in Bresenham’s circle construction algorithm.

Although we have discussed in this chapter about the scope and merits of design-
ing circle construction algorithms (regular as well as hybridized) using number-theoretic
properties, further improvement of these algorithms still remains an open problem. For
instance, to explore the possibility of finding all the run lengths in the first octant for a
given radius r, without using the information of the other (preceding) run length(s), is an
engrossing problem that may be worked upon, which, if solved, would bring down the com-
putation time, and also might lead to an efficient parallelization of the circle construction
algorithm.

Further, although there exist several studies at present on segmentation and charac-
terization of digital circles and circular arcs using geometric properties, as indicated in
Sec. 8.1, an intricate problem lies in discovering some advanced number-theoretic prop-
erties that may aid and expedite the process of segmentation/characterization of circular
arcs in a digital image. For instance, given the chain code representation (the “square
numeric code”, thereof) of a digital curve, what policy should be adopted in order to
decide whether or not the corresponding curve is an arc of a digital circle. To design an
efficient algorithmic approach for this, using the primitive operations in the integer domain
only, several other necessary (and desirably, sufficient) number-theoretic properties have
to be discovered, apart from those presented in this chapter. It has been already made
apparent in studies on processing and applications of digital images (some of which have
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been mentioned in Sec. 8.1) that segmentation of circular arcs in a digital image is really
a captivating and intriguing problem with numerous applications in digital geometry.





Chapter 7

Digital Circles: Approximation by Real Polygons

By natural selection our mind has adapted itself to the conditions of the external
world. It has adopted the geometry most advantageous to the species or, in other
words, the most convenient. Geometry is not true, it is advantageous.

Jules Henri Poincaré
Science and Method

7.1 Introduction

As discussed in Chapter 6, the construction, properties, and characterization of digital
circles constitute a very interesting area of research, and there exist several studies on
digital circles and related problems — originating from different theoretical perspectives
and depending on their application areas in the digital domain. Described in this chapter
is a novel work that explores the subtleties and various possibilities on the problem of
approximating a digital circle by a regular (convex) polygon.

It may be emphasized that the approximation of a given digital circle by a suitable
regular polygon has significant applications to approximate matching of sets of points on
two-dimensional plane [Chapters 1, 2, and 3]. For instance, in fingerprint matching, given
a set A of grid points, which are the feature points called “minutiae” in a fingerprint image
[Chapter 3], the task of finding those points (minutiae) in A, which would be lying on or
inside a given digital circle, becomes tedious and time-consuming. The process (circular
range query [Chapter 2]) becomes faster and efficient if we can find a suitable regular
polygon in R2 (meant for polygonal range query) corresponding to the given digital circle.
The ideal regular polygon should be such that it should not produce a matching result
different from the result obtained with the digital circle, which is possible if and only if
there exists no grid point on or inside the digital circle that lies outside the polygon, and
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also, there exists no grid point outside the digital circle that lies on or inside the polygon.
In other words, all the grid points lying on and inside the digital circle should lie on and
inside the (ideal) polygon, and vice versa.

It may be noted that, with the increase in the number of vertices of the regular polygon
approximating the circle in the discrete domain, the final matching results go on improving
but the space and time complexity goes on worsening owing to the rise in complexity of the
allied algorithms and increase in dimensionality of the supporting data structures [Berg
et al. (2000)]. With lesser size (i.e., fewer number of vertices) of the approximating regular
polygon (and with a bit of compromise on the acceptable error part, thereof), the query
and the subsequent matching process become faster with desired near-exact results.

In this chapter, we show that an ideal regular polygon corresponding to a digital
circle is analytically possible for some of the digital circles, especially for the ones having
lower radii. For larger digital circles, ideal regular polygons are rarely possible. However,
approximate polygons, tending to ideal ones, are possible, which would have very low error
rate. We have reported the conditions under which an ideal regular polygon definitely
exists corresponding to a digital circle, and also the conditions under which the existence
of an ideal regular polygon becomes uncertain. Furthermore, when the complexity (i.e.,
number of vertices or number of edges) of the ideal regular polygon is high, or when an
ideal regular polygon does not exist, a regular polygon with smaller number of vertices
can be a useful approximation of the ideal regular polygon. Results on testing different
parameters of characterization of digital circles have been given to indicate the possibilities
of approximation and the subsequent errors, thereof.

7.2 Approximation of a Digital Circle to a Real Polygon

A disc DR(q, r) lying in the real plane R2, q ∈ R2 and r ∈ R+ being its center and radius
respectively, can be conceived in the discrete domain Z2 by the corresponding digital disc,
namely DZ(DR(q, r)), in either of the following three possible ways (Fig. 7.1):

DZ(DR(q, r)) =





DZ(α, ρ) =
{
p ∈ Z2 : round(d(p, α)) ≤ ρ

}
for Type 1

DZ(q, ρ) =
{
p ∈ Z2 : round(d(p, q)) ≤ ρ

}
for Type 2

DZ(q, r) =
{
p ∈ Z2 : d(p, q) ≤ r

}
for Type 3

Here, d(p, q) =
√

(xp − xq)2 + (yp − yq)2 with p = (xp, yp) etc., α is the nearest grid point
in Z2 corresponding to q in R2, and ρ is the nearest integer corresponding to r; i.e., if
α = (xα, yα), then xα = round(xq), yα = round(yq), and ρ = round(r), considering
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round(x) = bx + 0.5c for x ∈ R. It is easy to observe that the grid points defining the
boundary of a digital disc (of any type) constitute the corresponding digital circle. This
is evident from the digital discs and their respective digital circles shown in Fig. 7.1.

Type 1 Type 2 Type 3

Figure 7.1: Three types of digital discs (top row) and the corresponding digital circles
(bottom row) obtained by three different procedures on discretization of a real disc/circle
with center q = (−0.25, 0.00) and radius r = 4.90. See text for details.

It is known that [Hosur and Ma (1999), Worring and Smeulders (1995)], when the
real disc DR(q, r) is discretized without rounding q and r as mentioned above, the result
(digital disc of Type 2) is not necessarily same as that for Type 1 digital disc. In another
procedure to discretize a real disc [Worring and Smeulders (1995)], the digital disc is
defined to have the same center (q) and the same radius (r) as that of the given real
disc, such that, finally each grid point, defining this digital disc (Type 3), has distance
not exceeding r as measured from q. Thus, contrary to Type 1, the center or/and radius
(of the digital discs) are not necessarily integers in Type 2 and Type 3. Since for an
APSPM involving the sets of points in the digital plane [Chapter 2], the coordinates of
the center and radius of the digital disc for circular range query are integers, we have
considered only Type 1 digital discs in this work. Nevertheless, Type 2 and Type 3 discs
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may be investigated for exploring other possible applications to circular range query in
the APSPM problem.

In this chapter, CZ(α, ρ) is used to denote the digital circle with center at α and radius
ρ. For simplicity of notations, CZ(α, ρ) is also used to denote the set of grid points (pixels)
constituting the digital circle with center at α and radius ρ in an appropriate context.
Further, if ν ∈ Z2 be such that ν ∈ (set) CZ(α, ρ), then ν is said to be “lying on” (cir-
cle) CZ(α, ρ). Now, since the points lying on CZ(α, ρ) are considered to be connected in
8-neighborhood, CZ(α, ρ) gives a closed digital arc that partitions the set of background
points (Z2 r CZ(α, ρ)) into two disconnected components (in 4-neighborhood), whose lo-
cations are easily understood — one inside CZ(α, ρ), and the other outside CZ(α, ρ), which
are denoted by the sets C

Z
in(α, ρ) and C

Z
out(α, ρ), respectively. If ν ∈ C

Z
in(α, ρ), then ν is

said to be “lying inside” CZ(α, ρ), and if ν ∈ C
Z
out(α, ρ), then ν is said to be “lying outside”

CZ(α, ρ). Similarly, any real point p ∈ R2 is said to lie inside, or lie on, or lie outside the
real circle CR(q, r), the regions being denoted by C

R
in(q, r), CR(q, r), and C

R
out(q, r) respec-

tively, depending on whether the line segment joining p and q is less than, or equal to, or
greater than r, respectively.

For construction of the digital circle CZ(α, ρ) about any grid point α as its center, we
can use CZ(O, ρ) and Freeman’s chain code [Freeman (1961a,b)], as shown in Chapter 6.
Using Lemma 6.2.1 stated in Chapter 6, we can draw the digital circle CZ(α, ρ) centered at
any point α ∈ Z2, provided CZ(O, ρ) is known, where O = (0, 0). Further, the conversion
of a digital circle CZ(O, ρ) from the corresponding real circle CR(O, ρ) is done using the
property of 8-axes symmetry of digital circles, as explained in Chapter 6. The eight octants
of a digital circle CZ(O, 6) are shown in Fig. 7.2.

7.2.1 Definitions and Preliminaries

As explained in Chapter 6, for generating CZ, I(O, ρ), decision is taken to select the nearer
pixel between the east pixel (E: (i+1, j)) and the south-east pixel (SE: (i+1, j−1)) w.r.t.
the current pixel (i, j). It is also important to note that, there does not arise any case of
ties (between E and SE), for ρ being an integer, as shown in Lemma 6.2.2 of Chapter 6.

To obtain the regular polygonal enclosure of CZ(O, ρ), the following definitions are now
stated, whose underlying significance is detailed in Fig. 7.3.

Definition 7.2.1 A point (x, y) (in Z2 or in R2, as the case may be) is said to be lying
in the first octant (with respect to O, unless stated otherwise) if and only if 0 6 x 6 y.
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Figure 7.2: A real circle, CR(O, 6), and the eight octants of the corresponding digital circle
(Type 1), CZ(O, 6).

Definition 7.2.2 If a grid point (i, j) lies in the first octant and outside CR(O, ρ) (Fig. 7.3),
then its x-distance (also called horizontal distance) from CR(O, ρ) is given by

dx =





i− xj , if j 6 ρ, where the horizontal grid line through (i, j) intersects
CR(O, ρ) in the first quadrant at (xj , j);

∞, otherwise.

Definition 7.2.3 If a grid point (i, j) lies in the first octant and outside CR(O, ρ), then
its y-distance (also called vertical distance) from CR(O, ρ) is given by

dy =





j − yi, if i 6 ρ, where the vertical grid line through (i, j) intersects
CR(O, ρ) in the first quadrant at (i, yi);

∞, otherwise.

Definition 7.2.4 If a grid point (i, j) lies in the first octant and outside CR(O, ρ), then
its xy-distance (also called isothetic distance) from CR(O, ρ) is given by

d⊥ =





dx, if dx 6= ∞, and dx < dy;
dy, if dy 6= ∞, and dy 6 dx;
∞, otherwise.

Definition 7.2.5 If a grid point (i, j) lies outside CR(O, ρ), then its radial distance from
CR(O, ρ) is given by dr =

√
i2 + j2 − ρ.
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Figure 7.3: x-distance and y-distance of a grid point (i, j) from CR(O, ρ), where, (i, j) lies
in the first octant and outside CR(O, ρ). The horizontal and the vertical grid lines passing
through (i, j) intersect CR(O, ρ) in its first quadrant at H(xj , j) and V(i, yi) respectively,
and M is the midpoint of chord HV.

As shown in Fig. 7.3, it may be noted that, if (i, j) lies inside the shaded region, then
both the x-distance and the y-distance are finite; otherwise, at least one of them is ∞,
in accordance with Defs. 7.2.2 and 7.2.3. It may be also noted that Def. 7.2.1 can be
easily extended to interprete the location of a point lying in one of the remaining seven
octants. Similarly, the definitions of x-distance and y-distance for grid points, located
in the remaining seven octants can be properly modified from those in octant 1 given in
Defs. 7.2.2 and 7.2.3 respectively. It can be proved that if a grid point (i, j) lies in any
one of octants 1, 8, 4, and 5, then d⊥ = dy, and if it lies any one of the other four octants,
namely octants 2, 7, 3, and 6, then d⊥ = dx.

For instance, if (i, j) lies in the first octant, then Def. 7.2.4 ensures that d⊥ = dy, since
dy never exceeds dx. The proof is as follows. If i 6 ρ and j > ρ, then dx = ∞, dy < ∞.
If i > ρ, then both dx and dy are ∞. If i 6 ρ and j 6 ρ, i.e., (i, j) lies inside the shaded
region as shown in Fig. 7.3, then consider the midpoint M(xM, yM) of the chord HV, where,
the horizontal and the vertical grid lines passing through (i, j) intersect CR(O, ρ) in the
first quadrant (the first two octants) at H(xj , j) and V(i, yi) respectively. Let θH be the
angle between OH and +y axis, and θV be the angle between OV and +x axis. Let the
chord HV subtend an angle θ at O. M being the midpoint of chord HV, the line OM bisects
the angle VOH. So, angle between +y axis and OM is θH + θ/2, and that between +x axis
and OM is θV + θ/2. Now, since (i, j) lies in the first octant, therefore, from Def. 7.2.1,
0 6 i 6 j. Hence, we get

cos−1(i/ρ) > cos−1(j/ρ),
or, θV > θH, or, θV + θ/2 > θH + θ/2,
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or, angle between +y axis and OM 6 45o,
or, M lies in the first octant, or, xM 6 yM [from Def. 7.2.1],
or, 1

2(xj + i) 6 1
2(j + yi), or, (j + yi)/(i + xj) > 1.

Now, since H(xj , j) and V(i, yi) lie on CR(O, ρ), we have

x2
j + j2 = ρ2 = i2 + y2

i , or, i2 − x2
j = j2 − y2

i ,
or, (i− xj)/(j − yi) = (j + yi)/(i + xj),
or, dx/dy = (j + yi)/(i + xj) > 1, or, dy 6 dx.

For all other octants, the proof is similar as given above. These findings are put
together in Theorem 7.2.1.

Theorem 7.2.1 If a grid point (i, j) lies outside CR(O, ρ), then its xy-distance from
CR(O, ρ) is given by

d⊥ =

{
dy, if (i, j) lies in octant 1/8/4/5;
dx, if (i, j) lies in octant 2/7/3/6.

Hence, if any grid point (i, j) lies on CZ, I(O, ρ) but outside CR(O, ρ), then it must
have isothetic distance strictly less than 1

2 grid unit from CR(O, ρ). And this is true as
well if the center of the circle is at any grid point α instead of O. The fact that isothetic
distance of (i, j) is “strictly less” than 1

2 grid unit from CR(O, ρ) owes to our tie-resolution
policy, where the grid point lying on CZ, I(O, ρ), corresponding to a tie (occurring due
to computation error only), lies “inside” the real circle CR(O, ρ). This, in turn, ensures
that any grid point, lying outside CR(O, ρ) in any octant with isothetic distance not less
than 1

2 grid unit from CR(O, ρ), does not lie on CZ(O, ρ). This analysis is captured in
Theorem 7.2.2.

Theorem 7.2.2 Any grid point, not lying on CZ(α, ρ) and lying outside CR(α, ρ), must
be located at xy-distance of at least 1

2 grid unit from CR(α, ρ).

7.2.2 Enclosing Circle

Let µ(iµ, jµ) be a grid point, lying on CZ, I(O, ρ), such that µ has maximum y-distance
from CR(O, ρ), the corresponding y-distance being δµ, where, 0 < δµ < 1

2 for ρ > 2
(for ρ = 1, δµ = 0). If (ρµ, θµ) ∈ R2 be the corresponding polar coordinates of µ, then
ρµ =

√
i2µ + j2

µ = ρ + εµ, and θµ = tan−1 (jµ/iµ), where, εµ(< δµ sin θµ) is the radial

distance of µ from CR(O, ρ), as shown in Fig. 7.4.
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for µ ∈ CZ, I(O, ρ), ρ>2.

The next point of curiosity about a digital circle is that, whether µ (the grid point,
lying on CZ, I(O, ρ), having maximum y-distance from CR(O, ρ)) is unique or not. To
uncover the fact about the uniqueness of µ, let us consider two distinct grid points, µ1

and µ2, lying on CZ, I(O, ρ), such that each of them has maximum y-distance, δµ, from
CR(O, ρ). Let µ1 = (i1, j1) and µ2 = (i2, j2). Since in the first octant, no two grid points
lying on CZ, I(O, ρ) can have same abscissa, i1 6= i2. Therefore, w.l.g., let i1 > i2, which
implies j2 > j1, since both µ1 and µ2 lie on CZ, I(O, ρ). It may be observed that, since
µ1 = (i1, j1) and µ2 = (i2, j2) have same y-distance from CR(O, ρ), j1 = j2 is not possible.
Let the corresponding points of intersection of CR(O, ρ) with the vertical grid lines x = i1

and x = i2 in the first octant be (i1, y1) and (i2, y2) respectively, where, y1, y2 ∈ R+rZ+.
Since (i1, y1) and (i2, y2) lie on CR(O, ρ), we have

i21 + y2
1 = i22 + y2

2 = ρ2, and j1 − y1 = j2 − y2 = δµ.
So, y2

2 − y2
1 = i21 − i22,

or, y2
2 − y2

1 ∈ Z+ [since i21 − i22 ∈ Z+],
or, (y1 + y2)(y2 − y1) ∈ Z+,
or, (y1 + y2)((j2 − δµ)− (j1 − δµ)) ∈ Z+,
or, (y1 + y2) is rational [since (j2 − j1) ∈ Z+].

Now y2
1 = ρ2 − i21 = a (say) is an integer but not a perfect square, since y1 6∈ Z.

Similarly, y2
2 = ρ2− i22 = b (say) is also a non-square integer. Therefore, y1 +y2 =

√
a+

√
b

would be irrational. The reason is as follows. Let
√

a +
√

b be a rational number c, if
possible. Then, a = (c−

√
b)2 = c2+b−2c

√
b. Since the product of any rational number and

any irrational number is always irrational, 2c
√

b is irrational. Hence a becomes irrational,
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which is a contradiction. [It may be noted that the sum of two irrational numbers is not
necessarily an irrational number; but if a and b are any two non-square integers, then√

a +
√

b would be always irrational.]

Therefore, y1 + y2 can never be rational, thereby contradicting our assumption that µ

is not unique. Hence µ is a unique grid point in the first octant that lies on CZ, I(O, ρ),
and has maximum y-distance from CR(O, ρ). The result obtained, along with its proof
(with minor modifications), can be applied equally well for any arbitrary center α ∈ Z2.
Thus we have the following theorem.

Theorem 7.2.3 In the set of grid points lying on CZ, I(α, ρ), there is a unique grid point
that has maximum y-distance from CR(α, ρ).

Now consider the circle CR(O, ρµ) passing through µ (Fig. 7.4). Since µ lies in the first
octant, we have 0 < iµ 6 jµ (for ρ > 2, iµ 6= 0), whence 450 < θµ < 90o, which implies
1√
2
δµ < εµ < δµ. Let ν(iν , jν), ν 6= µ, be any grid point that lies on CZ, I(O, ρ). Let δν

be the y-distance of ν from CR(O, ρ), and (ρν , θν) be the corresponding polar coordinates
of ν, such that ρν =

√
i2ν + j2

ν = ρ + εν , and θν = tan−1 (jν/iν), where εν = δν sin θν .
Therefore, ν would lie on or inside CR(O, ρµ) if and only if εν =6 εµ. Further, since µ

is the grid point having maximum y-distance from CR(O, ρ), we have δν < δµ (δν 6= δµ,
since from Theorem 7.2.3, the grid point in the first octant with maximum y-distance is
unique). Hence, if ν be such that in spite of δν being less that δµ, θν is so high compared
to θµ that εν is higher than εµ, then ν does not lie on or within CR(O, ρµ).

On the contrary, if we call the point µ̌ as the grid point lying on CZ, I(O, ρ), for which
εµ̌ is maximum in

{
εν : ν lies on CZ, I(O, ρ)

}
, then it may happen that there exists some

grid point ν ′ = (i′, j′) lying in the first octant and outside CZ, I(O, ρ) for which εν′ does
not exceed εµ̌ (although δν′ is not less than 1

2 , as stated in Theorem 7.2.2), and therefore,
ν ′ lies on or inside CR(O, ρµ̌).

Based on the above findings, it can be inferred that, for the set of all digital circles
{CZ(O, ρ) : ρ ∈ Z+}, we cannot find the canonical solution for the set of enclosing circles,
{CR(O, ρ′) : ρ′ ∈ R+}, for all possible values of ρ, so that for each CZ(O, ρ), no grid
points but those lying on or inside CZ(O, ρ) would lie on or inside CR(O, ρ′). And no less
importantly, we can for sure construct the circle CR(O, ρµ), passing through µ, where, µ

has maximum y-distance from CR(O, ρ), so that all grid points, lying on or inside CZ(O, ρ),
would lie on or inside CR(O, ρµ), if and only if µ has maximum radial distance (εµ) from
CR(O, ρ) among all grid points lying on CZ, I(O, ρ). This is stated in Theorem 7.2.4,
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where the center of the digital circle, in general, is considered at α ∈ Z2, with obvious
justification.

Definition 7.2.6 If there exists a circle CR(α, ρ′), such that all grid points on and inside
CZ(α, ρ) would lie on and inside CR(α, ρ′) and no grid point outside CZ(α, ρ) would lie
on or inside CR(α, ρ′), then the circle CR(α, ρ′) is called an enclosing circle for the digital
circle CZ(α, ρ). Such an enclosing circle with minimum radius is termed as the smallest
enclosing circle, and that with maximum radius is termed as the largest enclosing circle,
for the digital circle CZ(α, ρ).

Theorem 7.2.4 If there exists a grid point µ lying on dcirI(α, ρ), such that
δµ = max

{
δν : ν lies on CZ, I(α, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(α, ρ)

}
,

then CR(α, ρµ) is the smallest enclosing circle for CZ(α, ρ).
If no such grid point µ exists for CZ, I(α, ρ), then the existence of an enclosing circle

for CZ(α, ρ) becomes uncertain.

7.2.3 Enclosing Polygon

The following definitions are needed in the context of enclosing polygons.

Definition 7.2.7 A central chord of a regular polygon in R2 is any line segment in R2

whose end points lie on the polygon and which passes through the center of the polygon.

Definition 7.2.8 A regular polygon in R2 that encloses the digital circle CZ(α, ρ), such
that each point in Z2 lying on or inside the digital circle CZ(α, ρ) lies on or inside the
polygon, and no point in Z2 lying outside the digital circle CZ(α, ρ) lies on or inside the
polygon, is defined as a regular polygonal enclosure, ER(CZ(α, ρ)), for the digital circle
CZ(α, ρ).

Let, for a given value of ρ ∈ Z, there be a grid point µ lying on CZ, I(O, ρ), such that
δµ = max

{
δν : ν lies on CZ, I(O, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(O, ρ)

}
. Then, from

Theorem 7.2.4, CR(O, ρµ) is the smallest enclosing circle for CZ(O, ρ). Hence, any grid
point ν ′, lying in the first octant and outside CZ(O, ρ), lies outside CR(O, ρµ).

Let µ′ be a grid point, lying in the first octant and outside CR(O, ρµ), such that
εµ′ = min

{
εν′ = ρν′ − ρ : ν ′ ∈ Z2 lies in the first octant and outside CR(O, ρµ)

}
,

where, (ρν′ , θν′) ∈ R2 and (ρµ′ , θµ′) ∈ R2 are the polar coordinates of ν ′ and µ′ re-
spectively. Let ρ̃ ∈ R+ be the quantity given by ρ̃ = max

{
ρ′ : ρµ < ρ′ < ρµ′

}
, i.e.,
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Figure 7.5: Generation of the enclosing polygon of CZ(α, ρ).

ρ̃ = limith→0+

(
ρµ′ − h

)
. Therefore, any grid point in the first octant that lies outside

CR(O, ρµ) also lies outside CR(O, ρ̃). Furthermore, CR(O, ρ̃) has to be the largest enclos-
ing circle of CZ(O, ρ) in accordance with our consideration of ρ̃. And this argument is true
as well if we shift the center of the digital circle from O to α.

Thus, all grid points, lying on and inside CR(α, ρµ), lie (strictly) inside CR(α, ρ̃); and
all grid points, lying (strictly) outside CZ(α, ρµ), lie (strictly) outside CR(α, ρ̃). As a result,
there exists no grid point that lies on or inside CR(α, ρ̃) and outside CR(α, ρµ). That is,
the annular space defined by

(
CR(O, ρ̃) ∪ C

R
in(O, ρ̃)

)
r

(
CR(O, ρµ) ∪ C

R
in(O, ρµ)

)
does not

contain any grid point.

Now, in R2, we can construct a regular polygon, centered at α and having a set of n

vertices, such that the following conditions are simultaneously satisfied.

(c1) each vertex lies on or inside CR(α, ρ̃);
(c2) each edge touches CR(α, ρµ);
(c3) each edge subtends same angle 2φ (= 2π

n rads.) at α.

Let N be the point of contact of one edge of the enclosing polygon for the digital circle
CZ(α, ρ) with CR(α, ρµ), as shown in Fig. 7.5. Let M be one of the two vertices adjacent to
N, and λ be the distance of M from α. So, the angle subtended at α by the line segment
MN is φ, which implies cosφ = ρµ/λ. Since M should lie inside the annular region between
CR(α, ρµ) and CR(α, ρ̃), including the circumference of CR(α, ρ̃), λ should not exceed ρ̃.
Hence, cosφ should be at least ρµ/ρ̃, which implies φ should be at most cos−1(ρµ/ρ̃), or,
φ should be strictly less than cos−1(ρµ/ρµ′), since ρ̃ < ρµ′ . Also, φ (in radians) should be
such that π

φ ∈ Z, since n = π
φ gives the number of edges of the enclosing polygon.

Since there exists no grid point that lies in the annular space between CR(α, ρµ) and
CR(α, ρ̃) (including the circumference of CR(α, ρ̃)), this polygon would be a regular polyg-
onal enclosure for the digital circle CZ(α, ρ). Note that the shortest central chord for
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Figure 7.6: εµ (thick-lined silhouette) and εµ′ (thin-lined bars) plotted against ρ. εµ′ has
been shown only when it exceeds εµ. A regular polygonal enclosure exists for a digital
circle with radius ρ if εµ′ > εµ.

this polygon would be the diameter of the circle CR(α, ρµ); and the longest central chord
for this polygon would be at most the diameter of the circle CR(α, ρ̃) (when both the end
points of each longest central chord of the polygon lie on CR(α, ρ̃)). The following theorem,
therefore, concludes these findings.

Theorem 7.2.5 If there exists a grid point µ lying on CZ, I(α, ρ), such that
δµ = max

{
δν : ν lies on CZ, I(α, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(α, ρ)

}
,

then there always exists some ER(CZ(α, ρ)) corresponding to CZ(α, ρ).

Now, subject to the conditions c1, c2, and c3, if 2φ be the angle subtended at α

by each edge of the regular polygonal enclosure for the digital circle CZ(α, ρ), where, φ <

cos−1(ρµ/ρµ′), then the corresponding number of minimum edges nmin of the corresponding
polygon can be easily obtained using Theorem 7.2.6.

Theorem 7.2.6 Minimum number of edges nmin of ER(CZ(α, ρ)) is given by nmin =
bπ/φ0c + 1, where, φ0 = cos−1(ρµ/ρµ′), µ′ being the grid point with properties as dis-
cussed above.

7.3 Experimental Results

As discussed in Sec. 7.2.2 and Sec. 7.2.3, and stated in Theorem 7.2.5, the existence
of a regular polygonal enclosure (vide Def. 7.2.8) is always true, provided there exists
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Figure 7.7: 2kmin (thick line) and nmin (thin bars) plotted against ρ.

a grid point µ ∈ CZ, I(α, ρ), such that δµ = max
{
δν : ν lies on CZ, I(α, ρ)

}
and εµ =

max
{
εν : ν lies on CZ, I(α, ρ)

}
, that is, µ has simultaneously maximum isothetic distance

and maximum radial distance from CR(α, ρ).

Exhaustive procedural checking has revealed that each of the digital circles with radii
from ρ = 1 to ρ = 10 has such a grid point µ that has simultaneously maximum isothetic
distance and maximum radial distance, which implies that each of the digital circles with
radii from ρ = 1 to ρ = 10 has regular polygonal enclosure. The chance of existence of such
a grid point µ, however, goes on decreasing as the radius ρ of the circle gets increasing. In
other words, the existence of a regular polygonal enclosure for a digital circle with radius
ρ becomes more and more uncertain as the radius ρ goes on increasing. To cite a few
more, for ρ = 12− 16, 20− 25, 32, 33, 40, the corresponding digital circles possess regular
polygonal enclosures.

Figure 7.8: Enclosing polygon with 2kmin vertices for the digital circle CZ(α, ρ). The gray
region denotes the region where each grid point ν ′, lying outside CR(α, ρµ) and inside
CR(α, λ), always lies outside the polygon.
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Figure 7.9: Error (%) plotted against ρ and k shows that higher values of k = n/2 drasti-
cally reduce the error.

The thin-lined vertical bars, shown in Fig. 7.6, indicate the circles for which regular
polygonal enclosures exist. But it should be noticed that for each of these circles hav-
ing regular polygonal enclosures, it is not always true that ∃ µ ∈ CZ, I(α, ρ), such that
δµ = max

{
δν : ν lies on CZ, I(α, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(α, ρ)

}
are valid si-

multaneously (vide Sec. 7.2.2 and Theorem 7.2.4). The fillets on the axis of ρ within
the thin-lined bars, shown in Fig. 7.6, indicate the circles for which ∃ µ ∈ CZ, I(α, ρ),
such that δµ < max

{
δν : ν lies on CZ, I(α, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(α, ρ)

}
.

And those without fillets indicate the circles for which ∃ µ ∈ CZ, I(α, ρ), such that δµ =
max

{
δν : ν lies on CZ, I(α, ρ)

}
and εµ = max

{
εν : ν lies on CZ, I(α, ρ)

}
.

Theoretically, if there exists a regular polygonal enclosure for a digital circle CZ(α, ρ),
then in accordance with conditions c1, c2, and c3, and as expressed in Theorem 7.2.6,
minimum number of edges nmin for the polygon is given by nmin = bπ/φ0c+1. While test-
ing in our program with different digital circles, however, it is found that if a digital circle
CZ(α, ρ) possesses a regular polygonal enclosure with minimum number of vertices nmin

(theoretical), then in practice, it can be often enclosed by a regular polygonal enclosure
with lesser number of vertices. This is illustrated in Fig. 7.7.



7.4 Conclusion 179

In Fig. 7.7, the thin-lined vertical bars denote the values of nmin, plotted against the
radii ρ of digital circles, for the regular polygonal enclosures possible for the corresponding
digital circles. In this figure, the thick vertical lines represent the corresponding minimum
even number of vertices, 2kmin, found experimentally, that the regular polygonal enclosures
should possess, satisfying Def. 7.2.8. It may be observed that, for a digital circle, having
ρ > 2 and whose regular polygonal enclosure exists, 2kmin is appreciably lesser than the
corresponding nmin, which occurs due to the following reason.

Let λ be the distance of each of the 2kmin (< nmin) vertices of the regular polygonal
enclosure from the center α of the corresponding circle CZ(α, ρ), as shown in Fig. 7.8. Then
each of these 2kmin vertices lies on CR(α, λ). Let vt and vt+1 be two such adjacent vertices
of the polygon. Now it may happen that each grid point ν ′, lying outside CR(α, ρµ) and
inside CR(α, λ), always lies outside the enclosing polygon, as shown in Fig. 7.8.

It should be noted that, for those circles with εµ′ 6> εµ, (regular) polygonal enclo-
sures, as defined in Def. 7.2.8, are certainly not possible. For such digital circles, which
are found to be the majority in the output of our program (some part of which is il-
lustrated in Fig. 7.6), approximate polygonal enclosures with low error rates are possi-
ble. If DZ(α, ρ) (disc with radius ρ and center α) represents the set of grid points in
CZ(α, ρ) ∪ C

Z
in(α, ρ), and PR

(
CZ(α, ρ), 2k

)
represents the set of grid points lying on and

inside the approximate polygon with 2k vertices and one edge parallel to x-axis, such
that DZ(α, ρ) ⊂ PR

(
CZ(α, ρ), 2k

)
, then the number of erroneous grid points is given by∣∣PR (

CZ(α, ρ), 2k
)
rDZ(α, ρ)

∣∣. The relative error, therefore, is given by

error =

∣∣PR (
CZ(α, ρ), 2k

)
rDZ(α, ρ)

∣∣
|DZ(α, ρ)| × 100%,

which is a measure of inaccuracy of the approximate polygon. The error, however, falls
of drastically as the number of vertices of the approximate polygons increases, which
is evident from Fig. 7.9. In Fig. 7.10, few approximate polygons have been shown for
a sample digital circle with radius ρ = 8 to demonstrate the rapid convergence of the
polygon towards ideal situation with increase in its number of vertices. In Fig. 7.11, we
have shown the (exact/ideal) enclosing polygons for digital circles with radius r from 2 to
10.

7.4 Conclusion

This work explores some interesting and useful properties of a digital circle, based on
which an approximate (if not ideal) regular polygon of a digital circle can be determined.
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As discussed in Sec. 7.1, identifying an approximate regular polygon will have several
applications to the Approximate Point Set Pattern Matching (APSPM) problem. It is
encouraging to note that, in fingerprint matching using the algorithms of APSPM, the
circular range query is evoked for a circular range (disc) with radius not exceeding 10
pixels, which can be “ideally” replaced by a regular polygon. This will enable faster and
better matching results, using an appropriate angular tree as explained in Chapter 2.

We have applied the facts and results discussed in this chapter to APSPM, with relevant
extensions to fingerprint matching [Chapter 3] and for matching one object with another
with their detected sets of corners [Chapter 4]. Observing the variation of accuracy and
speed of the matching process with the level of approximation of the digital circle by a
regular polygon, may be investigated in the future.
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(a) k = 2: η = 68. (b) k = 3: η = 18. (c) k = 4: η = 8.

(d) k = 7: η = 0.

Figure 7.10: Few approximate regular polygons for the digital circle with radius ρ = 8.
For other values of k, the corresponding errors are: η(k = 5) = 8, η(k = 6) = 4, and
η(k > 7) = 0.
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r = 2 r = 3 r = 4

r = 5 r = 6 r = 7

r = 8 r = 9 r = 10

Figure 7.11: Enclosing polygons for radius r from 2 to 10.
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Even as the �nite encloses an in�nite series
And in the unlimited limits appear,

So the soul of immensity dwells in minutia
And in the narrowest limits no limit in here.
What joy to discern the minute in in�nity!

The vast to perceive in the small, what divinity!
Jacob Bernoulli

Ars Conjectandi

8.1 Introduction

Score-based minutia matching in fingerprint images has been elaborated earlier in Chap-
ter 3. In this chapter, we focus on a refinement technique targeted to eliminate digital
aberrations from a fingerprint image. Such a refinement is required to improve the score
finding mechanism [Chapter 3], in which the flow patterns of ridgelines are exploited for
evaluation of the score of each valid minutia in a fingerprint image. The ridge refine-
ment method, proposed here, successfully removes the digital aberrations present in a
ridgeline. It may be pointed out that ridgeline aberrations creep in during the stage of
ridge extraction (and the thinning procedure) from a gray-scale fingerprint image. The
proposed method mainly involves smoothing of the aberrated ridgelines using appropriate
cubic B-splines defined by a set of control points chosen judiciously for each ridgeline of a
fingerprint image.
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8.1.1 Fingerprint Image Processing

Most of the contemporary AFIS are based on a dual strategy that combines minutiae
matching with some method that captures the ridge structure properties in order to im-
prove the overall matching performance [Bhowmick et al. (2005a), Ceguerra and Koprinska
(2002), He et al. (2003), Jain et al. (2001), Jiang and Yau (2000), Luo et al. (2000), Mal-
toni et al. (2003)]. Appropriate correction of the ridge topography is, therefore, necessary
to design and implement a robust AFIS model. A scheme on adaptive filtering for en-
hancing distorted and damaged fingerprint images, which uses foreground and background
characteristics (i.e., ridge and valley minutiae), especially to correct the broken ridges, has
been discussed by Hung (1993). Combination of some statistical and structural techniques
can also be employed for detecting the false minutia patterns in a fingerprint image [Xiao
and Raafat (1991)]. A multi-resolution analysis of global texture and local orientation by
wavelet transform has been proposed by Hsieh et al. (2003) to improve the clarity and
continuity of ridge structures. Use of Gabor filter for fingerprint image enhancement has
also been studied [Yang et al. (2003)]. A thin-plate spline (TPS) model has been proposed
to treat elastic distortions in fingerprints in the minutiae matching method [Bazen and
Gerez (2003)].

Thin-plate splines (TPS) have been also used very recently [Ross et al. (2006)] to
estimate the nonlinear distortion in a pair of fingerprint images based on ridge curve
correspondences. When multiple impressions of a specific finger are available, the corre-
sponding “optimal” deformation is subsequently utilized to distort the template fingerprint
prior to matching it with the input fingerprint. In another contemporary work [Chikkerur
et al. (2007)], contextual filtering using Short Time Fourier Analysis (STFT) has been
proposed in order to obtain the local ridge orientation and the ridge frequency informa-
tion associated with a fingerprint image (and also to segment the image using the energy
map received during STFT analysis). All these studies throughout the years, in essence,
show the need and significance of related fingerprint enhancement schemes to take care
of various deformations associated with a fingerprint image while designing an efficient
fingerprint identification system.

The motivation of this work lies in deciding the authenticity of a local ridge structure
(and an associated minutia, thereof) in its way of participating in the fingerprint matching
process. It may be observed that, if the ridge and valley lines in the local neighborhood of
a minutia P have a smooth nature of flow, then the corresponding minutia P should have
a genuine contribution in the fingerprint matching. On the contrary, if in some region,
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the ridge and valley lines have an erratic or uneven nature of flow, a minutia P ′ in that
region should not predominate the matching procedure. The former minutia (P ), being
located in a tidy region, lends more confidence in the matching procedure than the latter
(P ′), which is located in a noisy region. The relative role played by these two classes of
minutiae in fingerprint matching has been discussed in detail by Bhowmick et al. (2005a).

An appropriate rectification of the ridgelines in a fingerprint image is, therefore, manda-
tory in order to achieve desired results in the subsequent processes. A fingerprint image,
acquired in non-ideal situations, may have low and uneven contrast with poorly defined
features. Hence, a poor quality fingerprint image may lead to a very frustrating matching
result. Several problems listed below are responsible for the deteriorating performance of
fingerprint matching.

(a1) fingerprints captured with unpredictable non-rigid transformations;
(a2) cuts and abrasions on the finger;
(a3) dirt, oil, or moisture on the finger tip or scanner;
(a4) digitization error in the acquisition mechanism;
(a5) nondeterministic/non-ideal behavior of fingerprint processing algorithms (e.g. ridge

extraction, thinning of ridgelines, etc.).

The above-mentioned aberrations and malformations of a fingerprint image result in
relative deviation of features (ridges and minutiae) from their actual locations, thereby
posing severe problems in the subsequent steps of fingerprint matching.

Considering the above artifacts, a necessary foundation for a robust and efficient AFIS
is to design a reliable post-processing stage that takes into account the aberrations present
in the ridge topography of a fingerprint image (acquired and processed). A schematic dia-
gram for a modified AFIS that incorporates (B-)spline correction for removal of ridgeline
aberrations from the extracted binary skeleton of a fingerprint image is shown in Fig. 8.1.
The stage on spline correction will effectuate the smooth flow of the ridgelines that, in
turn, will ensure better processing in the subsequent stages.

The topography of ridgelines (coupled with valley-lines) in a fingerprint image has
been observed to play a crucial role in estimating the authenticity of a detected minutia
[Bhowmick et al. (2005a)], where the authenticity of a minutia has been referred to and
measured as “score” (a numerical value that lies in [0, 100]) of the corresponding minutia.
The score of a minutia is estimated using several distance measures defined on the ridge
topography in and around the corresponding minutia, which correspond to the orderliness
and smoothness of ridgelines prevailing in its associated neighborhood. A minutia having a
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Acquired Image Enhanced Image Binary Skeleton

Minutiae with Score Spline Correction

Device
Imaging

Database Image

MATCHING

Figure 8.1: A generic scheme of AFIS that includes the proposed stage on spline correction
for removal of ridgeline aberrations.

high score indicates its genuineness in its way of participation in the subsequent fingerprint
matching, whereas a minutia with a low score is considered as a less reliable one in the
matching stage. This leads to an efficient and reliable AFIS based on minutiae matching
[Bhowmick and Bhattacharya (2004a)]. A high matching index is produced in the case of
a good matching, whereas a poor matching produces a low index.

To further strengthen the score finding process (and the AFIS, thereof) that utilizes
the ridge flow pattern in a fingerprint image, smoothing or correction of the ridgelines
is thus necessary. The proposed work is focused on removal of digital aberrations in the
fingerprint ridgelines, arising mainly out of the ridge extraction, followed by thinning, of
a fingerprint image (problem (a5)). However, this problem (a5) is not independent of all
the other problems mentioned earlier. In most of the cases, the problems (a2) and (a3)
may cause problem (a5), since a poor quality gray-scale image is more liable to aberrate
the corresponding binary ridge structure obtained by the ridge-extraction and thinning
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procedures. The proposed method mainly involves smoothing of the aberrated ridgelines
using appropriate cubic B-splines defined by a set of control points chosen judiciously for
each ridgeline of a fingerprint image. Experimental results on four different classes of
benchmark data sets indicate the strength and novelty of the proposed algorithm.

8.1.2 Existing Methods

Existing approaches used to eliminate the unwanted deformations/distortions in finger-
prints can be broadly categorized into two classes. The simplest is a combination of
physical design and operator training. By proper use of a fingerprint capturing device,
e.g., by guiding the finger to the capture surface with appropriate guides/moulds around
the scanner, the fingertip pressure during capture can be controlled, specially for coopera-
tive users. In the non-cooperative situation, although a trained person is there to monitor
the acquisition process, the quality of the acquired print may not be always satisfactory.

In the second category, the methods are unsupervised. One such method, proposed by
Dorai et al. (2000), measures distortion in a video sequence of fingerprint images when a
finger is presented to the scanner. In the case of excessive distortion, the print would be
rejected and a new print requested. In another method by Ratha and Bolle (1998), the
forces and torques on the scanner are measured directly to prevent a capture when excessive
force is applied. These methods, requiring specialized hardware, have the limitation that
once a print is acquired, nothing can be done about the data imperfections. Large legacy
databases are in use, containing prints of poor quality, which are not benefited by these
techniques, since they, in principle, prevent the acceptance of the aberrated/distorted
data.

Residual errors are, therefore, unavoidably present in the acquired image of a finger-
print, and in order to cope with them, an efficient AFIS should have the provision to
withstand reasonable amount of errors in the input image. For instance, tolerance regions
(circular/rectangular) have been used by Bhowmick and Bhattacharya (2004a), and by
Ratha et al. (1996), so that a minutia in the query print can be made to match a minutia
lying inside the corresponding tolerance region in the database print. Alternatively, the
parameters of representation (using minutiae triplets) are binned/quantized in a proce-
dure by Germain et al. (1997) in order to impart robustness to distortion and noise. The
cumulative effects of small local perturbations have been shown with graphical demon-
stration to enhance the matching process [Kovács-Vajna (2000)]. This method also uses
tolerance bounds of inter-minutiae distances and angles for minutiae correspondences. An-
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other method based on local warping is reported, which tends to remove distortions to
some extent but becomes vulnerable to high rate of false acceptance [Thebaud (1999)].

The proposed method differs from the existing ones in the sense that it considers
the individual pattern of each ridgeline, and reconstructs it after minimizing its undula-
tions/aberrations, if any. The reconstructed ridgeline is smoother and steadier than its
earlier erratic form, and hence can be used more reliably in subsequent applications. One
such application is discussed earlier [Bhowmick et al. (2005a)], where it has been shown
how the flow pattern of ridges and valleys in the local neighborhood of a minutia can
be exploited to decide whether or not a minutiae is true and also, how the distances of
the ridges and valleys from a true minutia can be used to estimate its score. The scores
of the true minutiae, can be used, in turn, to enhance the matching result in an (score-
based) AFIS [Bhowmick and Bhattacharya (2004a), Bhowmick et al. (2005a)]. Hence, for
validating the true minutiae in a fingerprint image and for proper estimation of scores of
the true minutiae, an efficient algorithm for correcting the aberrated ridgelines is necessary.

8.2 Proposed Work

Digital aberrations in a fingerprint image are caused by unevenly located sequences of ridge
and valley pixels, which upsets the smooth configuration of its ridge-valley topography.
Given a binary image I of a fingerprint, our task is to remove such aberrations from the
ridgelines by fitting appropriate uniform non-rational B-splines [Foley et al. (1993)]. In the
rectified image J, produced as the output, however, the set of minutiae and non-minutia
points of discontinuity (stated in Sec. 8.1), {µi}n

i=1, as present in the input image I, should
remain unaltered. For removal of digital aberrations from an imperfect ridgeline, we have
used a set of B-splines, which are cubic polynomial curves, as explained below:

(i) Polynomials with cubic degree are widely used in applications related to computer
graphics and image processing for their simple but effective nature. The quadratic
polynomial representation does not offer much flexibility, and for polynomials with
higher degrees, there is always a trade-off between the complexity of the polynomial
and the nature of the underlying digital curve.

(ii) Cubic B-splines possess C0, C1, and C2 continuities1, which ensure the smoothness
and the optimal exactness of the fitted curve against the given set of control points.

1A curve that is only C0 continuous may have a “kink” in the “knot point” between two consecutive

segments. Hence a curve is made to be Ck continuous so that all k derivatives of the curve are continuous.



8.2 Proposed Work 189

φ6

φ7

φ8

φ1 φ4φ2 φ3= = =

φ5

φ9 φ10 φ12φ11= ==
u1 u2

u3

u7
u8

u6
u5u4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 8.2: A set of B-spline segments (solid line), fitted against a set of control points
{φ1, φ2, . . . , φ12}, possesses lesser irregularity than the curve (dotted line) containing the
control points, the “knot points” being {u1, u2, . . . , u8}.

(iii) Since a set of B-splines is piecewise continuous, the order of the curve that interpo-
lates a set of m(≥ 4) control points is not dependent on m.

An example of a set of B-spline segments, fitted against an input set of control points
{φ1, φ2, . . . , φ12}, is shown in Fig. 8.2. It may be noted that, the start point of the B-spline
coincides with the first four (coincident) control points, and its end point with the last four
(coincident) control points, which have been intentionally done by making three copies of
the first control point and three copies of the last control point. In Fig. 8.2, there exist
seven B-spline segments of positive lengths – the first one being from knot point u1 to
knot point u2, the second from u2 to u3, . . ., and the seventh from u7 to u8; in addition,
there also exist two B-splines of zero length each (degenerate case), one at u1 and the
other at u8.

In order to extract the thinned binary image I representing the ridge topography from a
gray-scale fingerprint image F, we have used an earlier ridge-extraction algorithm [Bishnu
et al. (2002)]. The set {µi}n

i=1, consisting of minutiae (bifurcation and termination) and
points of discontinuity in the binary fingerprint image I, have been extracted and stored
in a list L. Hence, each ridgeline has exactly two endpoints, µp and µq, 1 ≤ p, q ≤ n,
which are minutia(e) or non-minutia point(s) of discontinuity in the detected set {µi}n

i=1.
Let ρ(p, q) represent the ridgeline with endpoints µp and µq.

Now, for each ridgeline ρ(p, q), an ordered set of control points, 〈φj(p, q)〉mj=1, is defined
starting from φ1(p, q) = µp and ending at φm(p, q) = µq, using the average inter-ridge
distance λ (nearest integer value) corresponding to I. It may be noted that, for the
ridgeline ρ(p, q), each control point φj(p, q), 1 ≤ j ≤ m, lies on ρ(p, q). Further, the
control points are taken in a manner so as to minimize the deviation of the overall flow
pattern of the corrected ridgeline ρ̃(p, q) from the original (aberrated) ridgeline ρ(p, q).
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Since the curvature of the ridgeline is likely to be higher near either of the endpoints,
namely φ1(p, q) and φm(p, q), we have considered higher density of control points near
φ1(p, q) and φm(p, q), and fewer control points in the intermediate region of ρ(p, q) (see
Figs. 8.3 and 8.4). This strategy is based on the fact that authenticity of a minutia is
adjudged by the ridge topography in the local neighborhood of the corresponding minutia
[Bhowmick et al. (2005a)], and requires minimal digression of the ridge segments in that
region.

(a) uniformly spaced control points (b) control points located densely near
a minutia and sparsely located away
from it

Figure 8.3: Selecting control points (red pixels) with increasing density (i.e., decreasing
separation) near a minutia ensures little or no deviation of the corrected ridgeline from its
original location near the corresponding minutia. The figure has been shown with τ = 2.
See Fig. 8.4 and text for further explanations.

8.2.1 Formation of B-splines

Let Φ := [φs−1 φs φs+1 φs+2]′ (φj := [xj yj ], for s − 1 ≤ j ≤ s + 2) be the geometry
vector defined by the set of 4 successive control points chosen from the ridgeline ρ(p, q),
required for each spline segment that would (piecewise) replace the ridge segment from
φs−1 to φs+2. Then the parametric form of a point P := [x(u) y(u)] lying on the B-spline
curve segment, defined by these four control points, considering u (0 ≤ u ≤ 1) as the
corresponding parameter, can be expressed as:
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P = UC, (8.1)

using the parameter vector

U := [u3 u2 u 1], (8.2)

and the coefficient matrix

C :=




cx3 cy3

cx2 cy2

cx1 cy1

cx0 cy0




. (8.3)

Since a basis matrix B := [bij ]4×4 is necessary to capture the underlying nature of a
B-spline segment, the coefficient matrix is rewritten as

[C]4×2 = [B]4×4[Φ]4×2, (8.4)

whence we get

P = UBΦ. (8.5)

Now, for uniform non-rational B-splines, the basis matrix [Foley et al. (1993)] is given
by

B =
1
6




−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0




, (8.6)

which is obtained from the parametric continuity and the geometric continuity of B-splines,
as mentioned earlier. Hence, from Eqn. 8.5, we get

x(u) =
1
6
(−xs−1 + 3xs − 3xs+1 + xs+2)u3 +

1
2
(xs−1 − 2xs + xs+1)u2 +

1
2
(−xs−1 + xs+1)u +

1
6
(xs−1 + 4xs + xs+1), (8.7)

y(u) =
1
6
(−ys−1 + 3ys − 3ys+1 + ys+2)u3 +

1
2
(ys−1 − 2ys + ys+1)u2 +

1
2
(−ys−1 + ys+1)u +

1
6
(ys−1 + 4ys + ys+1). (8.8)
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8.2.2 Parameter Setting

It is important to note that the average inter-ridge distance λ plays a crucial role in
our method. The maximum distance between two consecutive control points, φj(p, q) and
φj+1(p, q), 1 ≤ j ≤ m−1, for each ridgeline ρ(p, q), has been considered to be τλ, where τ is
defined as the smoothness parameter, the rationale being as follows. Since λ is the average
inter-ridge distance of I, the ridge topography of I largely depends on λ [Haralick (1983),
Kovács-Vajna et al. (2000)] and the length of each ridgeline ρ(p, q) also varies with λ for
a particular finger depending on the resolution/scale of the acquired image. Further, the
trade-off deciding the level of accuracy to which an aberrated ridgeline would be corrected
versus the departure of the corrected ridgeline from the original (aberrated) one, would
depend on the number of control points selected for the corresponding ridgeline. With
fewer control points selected for a ridgeline ρ(p, q), the corresponding output ridgeline
ρ̃(p, q) would be smoother, allowing higher deviation of ρ̃(p, q) from ρ(p, q). When more
control points are chosen, the output ridgeline ρ̃(p, q) would become less smoother because
of its lesser deviation from ρ(p, q).

Hence, a proper selection of τ is of primary concern in the proposed method. A change
in the value of τ will have several significant consequences in the final output, some of
which are as follows:

(i)A higher value of τ increases the separation between the control points, thereby improv-
ing the quality of corrected ridges and reducing the overall time requirement for smoothing
the ridges in a given fingerprint image.

(ii) A lower value of τ reduces deviation from the original input image, i.e., the output
image approximates the input image more accurately, although overall time requirement
increases in this case.

An optimal value of τ should be chosen, therefore, depending upon the characteristics of
the input fingerprint image and the subsequent purpose of use of the output image. It
should be noted that, a value of τ in the range [1, 2] produces desired results, as observed
in our experiments with the four benchmark image databases we have considered.

Another parameter that defines a set of B-splines is the total number of control points
given as input. Although four control points are sufficient to define a (single) B-spline,
four closely located points on the discrete plane may not give rise to a digitally smooth
B-spline segment. Hence, we have applied the smoothing procedure on a ridgeline ρ(p, q)
only if its digital length L(ρ(p, q)) exceeds a predefined threshold Lmin, which is defined
as follows:
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Figure 8.4: Corrected ridgelines (black) versus distorted ones (gray) for a sample finger-
print image. Red pixels indicate control points for defining the set of B-splines.

Lmin = τλ + 2
(bτλ/2c+ bτλ/22c+ · · ·+ 1

)
(8.9)

The above equation owes from our consideration of densely located control points
near the endpoints µp and µq, and sparsely located control points in the intermediate
part of a ridgeline ρ(p, q). We consider the second control point φ2(p, q) at unit dis-
tance from the first control point µp = φ1(p, q), the third control point φ3(p, q) at a
distance of two units from the second, and so on, such that the maximum distance be-
tween two consecutive control points is τλ, as mentioned above. The trailing control
points, φm−1(p, q), φm−2(p, q), . . ., are also selected in a similar fashion with respect to the
last control point φm(p, q). This is followed in order to impose some strictness of ridgeline
characteristics near each minutia, failing which, the local ridge topography in and around
the minutia may get digressed from its original one. Fig. 8.3 demonstrates its rationale. It
is evident from Fig. 8.3(a) that a uniform spacing of control points along a ridge segment
incident at a minutia, suffers from undesired deviations of the corrected ridge segments
from the original one (the region centered around each (bifurcation) minutia highlighted
in yellow); on the contrary, as shown in Fig. 8.3(b), selecting control points with increasing
density (i.e., decreasing separation) towards a minutia ensures little or no deviation of the
corrected ridgeline from its original location near the corresponding minutia (the region
centered around each (bifurcation) minutia highlighted in green).

There exist some subtle characteristics of a B-spline and related issues on its implemen-
tation, which should be mentioned in this context. Since a B-spline not necessarily passes
through its defining control points, the start point and the end point of the fitted B-spline
segment often deviate from the desired points, i.e., the first and the last control points re-
spectively. In order to overcome this limitation, for each ordered set of B-spline segments,
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〈Bk(p, q)〉m−3
k=1 , defined by the ordered set of m control points, 〈φj(p, q)〉mj=1, corresponding

to the ridgeline ρ(p, q), the start point of the first B-spline segment, B1(p, q), is forced
to coincide with the first control point, µp = φ1(p, q), and end point of the last B-spline
segment, Bm−3(p, q), is forced to coincide with the last control point, µq = φm(p, q). This
is achieved by copying φ1(p, q) three times, thereby creating four coincident control points
at the start point µp of the ridgeline, and similarly creating four coincident control points
at the end point µq. An example on fitted B-splines for (part of) three irregularly flowing
ridges (gray pixels) incident at a bifurcation minutia has been shown in Fig. 8.4, in which
the control points (shown in red) are densely placed near the minutia and sparsely away
from the minutia, thereby producing the desired B-spline-corrected output (black pixels).

8.2.3 Proposed Algorithm

For obtaining the ternary fingerprint image consisting of ridges and valleys (against the
background) from a gray-scale image, and subsequently extracting the minutiae and the
noisy features (e.g., bridges, loops, and spurs), we have used an earlier algorithm [Acharya
et al. (2006)]. The procedure for removal of digital aberrations from a skeletonized binary
fingerprint image I starts with the extraction of minutiae and points of discontinuity, and
storing these points in a list L. For each point in L, there is one or more ridge segments
incident on it, which are obtained using the depth-first-search (DFS) procedure [Cormen
et al. (2000)] initiated from the corresponding point. It may be noted that if µp is a
point in L, from which a DFS is invoked to traverse and obtain a ridge segment ρk(µp, µq)
ending at some other point µq in L, then the ridge segment ρk(µq, µp), being identical
with ρk(µp, µq), is not again traversed when µq is processed in its turn.

The process of defining the control points for each ridge segment ρk is executed, pro-
vided L(ρk) ≥ Lmin, as explained in Sec. 8.2.2. If L(ρk) < Lmin, then the ridge segment ρk

is left unaltered. Here L(ρk) denotes the number of grid points (pixels) lying on the ridge
ρk. The control points are used to draw a set of B-spline segments for each valid ridge
segment ρk. If there are m control points, then m− 3 B-spline segments are drawn to re-
place the ridge segment ρk. Finally, the corrected image J consists of the (spline-)corrected
ridge segments whose lengths (in I) are at least Lmin and few uncorrected segments whose
lengths are less than Lmin.

In Fig. 8.5, the proposed algorithm is presented in a concise form. For finding the
average inter-ridge distance, λ, a procedure by Bhowmick et al. (2005a) is used. Steps 1
to 4 of the algorithm Correct-Ridges are needed for extracting the minutiae and points
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Algorithm Correct-Ridges (image I, int λ, float τ, image J)
1. L ← ∅
2. for each (x, y) ∈ I

3. if |{(x′, y′) : max(|x′ − x|, |y′ − y|) = 1}| 6= 2
4. L ← L ∪ {(x, y)}
5. for each point µp ∈ L

6. {µq} ← Depth-First-Search (I, µp)
7. for each ridge segment ρk(p, q) from µp to µq

8. if L(µp, µq) ≥ Lmin

9. φ[1..m] ← Control-Points (ρk(p, q), dτλe)
10. for j ← 1 to m− 3
11. Draw-B-Spline (φ[j..j + 3], J)

Figure 8.5: Proposed algorithm for removal of digital aberrations in fingerprint ridgelines.

of discontinuity, and storing them in the list L. In Step 5, each point µp in L is considered
one by one to extract the ridge segments present in the image in the next step using
the procedure of Depth-First-Search as discussed earlier. In Step 9, m(≥ 4) control
points, namely 〈φj(p, q)〉mj=1, are defined (for each ridgeline having length at least Lmin

— verified in Step 8) from φ1(p, q) = µp to φm(p, q) = µq, using the average inter-ridge
distance λ and smoothness parameter τ , which are used in steps 10 and 11 to draw the
set of B-splines, one for every four successive points in 〈φj(p, q)〉mj=1 (Sec. 8.2.1). In Step 9
of the procedure Control-Points (ρk(p, q), dτλe), the argument dτλe is used to decide
the maximum distance (measured by the number of pixels lying on the ridgeline) between
two consecutive control points lying on the ridge ρk(p, q).

8.2.4 Approximation Error

Let the input binary fingerprint image I consist of a set of r ridges, namely {ρk(u, v)}r
k=1,

where µu and µv are the uth and the vth point (minutia(e) or point(s) of discontinuity)
in the set {µi}n

i=1. Let L(ρk) be the digital length of (i.e., number of pixels on) the
kth ridge segment ρk. Then the Hausdorff distance, denoted by dh (ρk, Bk), of the ridge
segment ρk from its corresponding B-spline segment, namely Bk, is a measure for error of
smoothing (approximating) the ridge ρk (by Bk)1. Since dh (ρk,Bk), in effect, is given by

1Instead of Hausdorff distance, other measures of correspondence can be used, since Hausdorff distance

is noise-sensitive [Klette and Zamperoni (1987)].
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the maximum over the distances measured (in terms of average inter-ridge distance, λ, of
I) from all points of ρk to the corresponding nearest points of Bk, we get

dh (ρk, Bk) =
1
λ

(
max

{
min

{
d∞(p, p′) : p′ ∈ Bk

}
: p ∈ ρk

})
, (8.10)

where, the 8-distance (Minkowski norm L1), d∞(p, p′), between two points p := (x, y) and
p′ := (x′, y′) is given by

d∞(p, p′) = max(|x− x′|, |y − y′|). (8.11)

The maximum error, associated with the spline-correction of an image I to obtain the
image J is, therefore, given by

ξmax(I, J) = max
1≤k≤r

{
dh (ρk, Bk) : ρk ⊂ I, Bk ⊂ J

}
, (8.12)

and the corresponding average error ξavg (I, J) in the output image J, due to approximation
by B-spline, would be

ξavg (I, J) =

r∑
k=1

dh (ρk,Bk)

r∑
k=1

L(ρk)
. (8.13)

For a given database D, consisting of |D| images, the corresponding overall maximum
error, ξmax, and the overall average error, ξmax, are therefore obtained as follows.

ξmax =
1
|D|

∑

I∈D

ξmax(I, J) (8.14)

ξavg =
1
|D|

∑

I∈D

ξavg(I, J) (8.15)

Using Eqns. 8.14 and 8.15, the standard deviation of maximum errors and that of average
errors for the image database D are given by:

σmax =

[
1
|D|

∑

I∈D

(
ξmax(I, J)− ξmax

)2

] 1
2

(8.16)

σavg =

[
1
|D|

∑

I∈D

(
ξavg(I, J)− ξavg

)2

] 1
2

(8.17)
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Table 8.1: Experimental results for four databases of images for τ = 2

Set Database |D| Image size n ξmax σmax ξavg σavg T

i NIST sdb-4 50 480×512 127 2.703 1.327 0.411 0.172 0.180

ii NIST sdb-14 124 480×512 141 2.925 1.184 0.489 0.185 0.207

iii FVC-2000 B:db-1 80 300×300 73 3.038 1.504 0.396 0.190 0.095

iv FVC-2000 B:db-2 80 364×256 94 2.982 1.588 0.439 0.199 0.081

n =average number of points of discontinuity (minutiae and non-minutiae) for all images in D

T= average CPU time in seconds for all images in D

8.3 Experimental Results

The proposed method is implemented in C on a Sun Ultra 5 10, Sparc, 233 MHz, the
OS being the SunOS Release 5.7 Generic. We used the fingerprint images from (i) NIST
Special Database 4 [Watson and Wilson (1992)], (ii) NIST Special Database 14 [Watson
and Wilson (1992)], (iii) Database B1 of FVC2000 [FVC2000 (2000)], and (iv) Database
B2 of FVC2000 [FVC2000 (2000)]. Each image in these four sets is an 8-bit gray-scale
image, recorded at 500 dpi. The images are used after applying Wavelet Scalar Quantiza-
tion [Bhowmick et al. (2005a)], followed by (thinned) ridge extraction proposed by Bishnu
et al. (2002).

The experimental results on B-spline correction for these four databases are reported
in Table 8.1 and some plots on errors associated with B-spline correction are shown in
Fig. 8.6 and Fig. 8.7. In Table 8.1, column 3 indicates the number of images considered
for generating the results shown. Column 5 indicates the average number of minutiae
and non-minutia points of discontinuity for image set D. Column 6 shows the overall
maximum error, ξmax, whereas column 8 the overall average error, ξavg, for the set of
images in the corresponding database D containing |D| = N images, estimated from the
maximum errors (Eqn. 8.12) and the average errors (Eqn. 8.13) of the individual images
in D, as given in Eqn. 8.14 and Eqn. 8.15 respectively. The respective standard deviations
corresponding to maximum error and average error (Eqns. 8.16 and 8.17) have been shown
in columns 7 and 9. The average CPU time for correction of the ridgelines per image of a
database is given in column 10.

In Fig. 8.6, we have shown the maximum error ξmax, and the average error ξavg, as
explained in Sec. 8.2.4 (Eqns. 8.14 and 8.15). The errors have been plotted against τ

(varying from 1/8 to 6) for the images in the databases. It is evident from these plots that
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Figure 8.6: The maximum error (ξmax: Eqn. 8.14) and the average error (ξavg: Eqn. 8.15),
for the images in each of the four databases (sets (i)–(iv)) from τ = 1/8 to τ = 6. One unit
of the vertical (error) axis equals to λ pixel units, where λ = average inter-ridge distance
that lies in the interval [7, 11]; and a pixel unit means 1

500th of an inch for each image
(500 dpi). The horizontal axis corresponds to τ , and is, therefore, unit-free.

for τ in the range [1, 2], the errors of the spline-corrected ridgelines is appreciably small,
which justifies the usefulness of B-spline correction of the uneven ridgelines. Further, as
shown Fig. 8.7, the standard deviations of both the maximum error and the average error
for τ in the range [1, 2] are also small, an observation that justifies the use of B-splines for
smoothing aberrated ridgelines.

To further demonstrate the usefulness of B-spline correction of ridgelines in an AFIS,
we have shown some Receiver Operating Characteristic (ROC) curves in Fig. 8.8 by plot-
ting the Authentic Acceptance Rate (AAR) versus the False Acceptance Rate (FAR) for
database NIST-4 and database fvc2000: db-1a. It may be observed from these ROC curves
that, for an appropriate value of τ (e.g., for τ = 2), the matching performance is better
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Figure 8.7: The standard deviations of maximum errors (σmax: Eqn. 8.16) and of average
errors (σavg: Eqn. 8.17) for the four databases (τ = 1/8−6, axis units same as in Fig. 8.6).

for the fingerprints that have undergone ridgeline corrections (using B-splines as proposed
in this work) compared to the same database containing fingerprints with uncorrected
ridgelines. Another advantage of the proposed spline correction is that, for a low value
of FAR, the AAR is appreciably better than the AAR corresponding to the same FAR
without spline correction; this effect is, however, prominent for τ nearing 2.

For τ nearing or exceeding 3, the matching result deteriorates. This is caused by
excessive bending of the corrected ridgelines from their original positions, thereby creating
false acceptance or false rejection. The fact that a high value of τ creates undue shifting of
the ridgelines after B-spline correction, has been explained in Sec. 8.2.2. It is also apparent
from the plots of errors and their standard deviations given in Figs. 8.6 and 8.7.

Results on a sample image (db2a 15 1.pgm) in set (iv) have been shown (cropped and
magnified) in Fig. 8.9. The original gray-scale image and the subsequent enhanced image
are shown in Fig. 8.9(a) and Fig. 8.9(b) respectively, from where the input image, shown
in Fig. 8.9(c), is obtained using an earlier method [Bishnu et al. (2002)]. The extracted set



200

Chapter 8
Cubic B-spline and its Usage

for Correcting Digital Aberrations in Fingerprints

 65

 70

 75

 80

 85

 90

 95

 100

 0.001  0.01  0.1  1  10

A
ut

he
nt

ic
 A

cc
p.

 R
at

e 
(A

A
R

)

False Acceptance Rate (FAR)

without correction

τ=1

τ=2

τ=3

NIST-4

 70

 75

 80

 85

 90

 95

 100

 0.001  0.01  0.1  1  10

A
ut

he
nt

ic
 A

cc
p.

 R
at

e 
(A

A
R

)

False Acceptance Rate (FAR)

without correction

τ=1

τ=2

τ=3

FVC2000: db-1a

Figure 8.8: ROC curves of fingerprint matching after B-spline correction with τ = 1, 2, 3
versus those without correction justify the importance of the proposed scheme in an AFIS.

of ridgelines is shown in Fig. 8.9(d), the endpoints of ridgelines being colored in red. The
set of control points, shown in red in Fig. 8.9(e), is used to finally obtain the corrected
image, shown in Fig. 8.9(f), where the blue color of a ridgeline indicates that it is not
corrected in the procedure, since its length does not exceed the requisite length Lmin (see
Eqn. 8.9).

The effect of τ on the degree of smoothing versus the deviation of the corrected ridge-
lines w.r.t. their original positions has been illustrated by the results shown in Fig. 8.10.
The set of B-spline segments (black) versus the corresponding ridge segments (gray) for
τ = 1, 2, 3, 4 indicates that a judicious selection of τ is an important prerequisite in the
smoothing procedure. A value of τ in the order of 1 − 2 is likely to produce the desired
smoothness of ridgelines with minimal deviation from their original shape and position.
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In Fig. 8.11, the binary skeleton before and that after the subsequent correction have
been shown to demonstrate the effect of correction on determining the flow pattern of the
ridgelines in a fingerprint image.

8.4 Conclusion

We have proposed here a new technique for removing arbitrary digital aberrations/defor-
mations in the binary ridge topography of a fingerprint image. Previous methods dealing
with distortions have sought to prevent distorted fingerprints from being captured or
matched, or have allowed increasing tolerance, thereby compromising with the reliability
and efficiency of the system. On the contrary, we have designed and tested a method
that can actually reduce malformations in previously captured fingerprints, in an auto-
matic unsupervised manner, based on certain logical assumptions about the undistorted
fingerprints. The method is fast, robust, efficient, and easy to implement. The corrected
ridgelines are smooth, continuous, and preserve the end points.

In this work, a set of geometrically and parametrically continuous set of uniform non-
rational B-splines is fitted to each section of the digital curve (ridgeline) between two
minutia(e) or point(s) of discontinuity. Further improvements of the proposed system
may be obtained by inclusion of some other possible aspects, such as (i) correction of
inter-ridge spacing; (ii) adaptivity of τ with the local curvature of each ridgeline; etc.

(a) gray-scale (b) enhanced

Figure 8.9: continued to next page.
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(c) binary image (input) (d) set of ridge segments

(e) control points (f) corrected image

Figure 8.9: Results for a sample image (shown in (a)) from set (iv) after its necessary
enhancement (shown in (b)). From the input binary skeleton (shown in (c)), the ridge
segments (shown in (d)) are extracted to obtain the corresponding output set of B-spline
segments (shown in (f)) using selected control points (shown in (e)) with τ = 2.
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(a) τ = 1 (b) τ = 2

(c) τ = 3 (d) τ = 4

Figure 8.10: The set of B-spline segments (shown in black) versus the corresponding ridge
segments (shown in gray) for different values of τ . It is evident from these figures that
selection of τ in and around the interval [1, 2] produces smoothly flowing ridgelines with
minimal deviation from their original pattern.
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(a) before correction (b) after correction

Figure 8.11: Binary skeleton (red) superimposed on the original gray-scale image (shown
in Fig. 8.9) testifies that the flow patterns of ridgelines are smoother after correction.



Chapter 9

Conclusion

The whole is more than the sum of its parts.
Aristotle

Metaphysica

Some novel theoretical interpretations and related applications of low-order digital-
geometric primitives, such as points, line segments, circles, and cubic curves, have been
studied in this thesis. Comparative performances of existing approaches to solving some
contemporary problems in the digital plane have been assessed. Appropriate modelings
and reformulations have been done to conceive the problems in the digital plane, and some
new techniques have been suggested to solve these problems using digital-geometric ap-
proaches. Diverse applications of these ideas to biometrics, geometric feature extraction,
image matching, curve approximation, and computer graphics have been aptly demon-
strated with both theoretical and experimental results.

Combining interdisciplinary paradigms like digital imaging, number theory, computa-
tional geometry in general, and digital geometry in particular, we have formulated and
strengthened the proposed methods reported in this thesis. The emerging subject of digital
geometry, with its immense potential in solving various geometric problems in the digital
domain, has found many interesting applications to image analysis, for example, circular
range query, approximate point set pattern matching, characterization and approximation
of digital circles, approximate digital straight line segments, etc. We speculate that sev-
eral other areas, for example, medical imaging and diagnostics, are yet to be looked at to
enrich the theory and to explore future application domains in the digital space.

There are several open problems relevant to the work undertaken in this thesis. One
is the precise formulation of “approximate straightness” w.r.t. a quantified approximation
criterion, such as τ as mentioned in Chapter 5. In other words, how a set of properties
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(similar to [R1–R4] related with DSS) can be derived, which are necessary (and sufficient,
preferably) to declare a digital curve as τ -straight in the sense that no grid point lying on
that curve is at a distance exceeding τ from a real line that has a correspondence with the
concerned curve. Another problem is extending the digital-geometric/number-theoretic
interpretation of digital circles [Chapter 6] to explore further properties for extracting
circular arcs from a digital image (e.g., an engineering drawing) using simple primitive
operations in the digital space. We have already worked out and tested a few more
interesting properties in this direction, which would be reported shortly.
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∗ operation of convolution,
∅ empty set,
B indicates a comment in an algorithm,

αr angular tolerance, 4.2
a, b, a′, b′ points in S, 2.4
A discrete orthogonal domain (minimum-area finite region) con-

taining all points in a set of points, 2.5
A (Ak) ordered list of end points of ADSS corresponding to a (kth)

digital curve, 5.2
A

(x,y)
r ordered list of image gray values of the pixels lying on a digital

circle of radius r centered at (x, y), 4.2
ADSS approximate digital straight line segment, 5.1
AFIS Automatic Fingerprint Identification Systems, 8.1
APSPM Approximate Point Set Pattern Matching, 2.1

β measure of accuracy of approximation in APSPM, 2.3
bij an element of basis matrix B, 8.2
B basis matrix defining a given B-spline segment, 8.2

c1, c2 conditions of an ADSS, 5.2
cx(0−3), cy(0−3) elements of coefficient matrix C, 8.2
C coefficient matrix defining a given B-spline segment, 8.2
C

(x,y)
r ordered list of pixels of the digital circle of radius r centered at

(x, y), 4.2
Ck kth digital curve in a given set, 5.3
CR(p, r) real circle with center p and radius r, 6.2, 7.2
Cmax maximum error criterion, 5.3
CP cumulative error criterion, 5.3
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CZ(p, r) (set of grid points/pixels of) digital circle with center at p ∈ Z2

and radius r ∈ Z+, 6.2, 7.2
CZ, I(O, r) first octant of the full circle CZ(O, r), 6.2
CODE algorithm for detection of Corners and Directions of incident

Edges, 4.2
CR compression ratio, 5.3

δ distance of nearest grid point from a point on the grid line, 6.2
δµ isothetic distance of grid point µ from CR(α, ρ), 2.2, 7.2
d allowance in variation of run-lengths of non-singular character

n in an ADSS, 5.2
d depth of a node in an angular tree, 2.4
dev⊥(p → p̃) isothetic deviation from p to p̃, 5.3
dmin minimum Euclidean distance between pairs of points in a set

of points, 2.5
dP a distance (between two points) in P , 2.4
d⊥(max) maximum isothetic deviation, 5.3
d(p, q) Euclidean distance between points p and q, 2.3
d>(p, q) maximum isothetic distance between two points p and q, 5.3
DR(q, r) disc lying in the real plane R2 with center q ∈ R2 and radius

r ∈ R+, 7.2
DZ(α, ρ) digital disc with center α ∈ Z2 and radius ρ ∈ Z, 7.2
D(et, u) determinant to check the position of point u w.r.t. the directed

edge et, 2.4
D(D) the set of distances/lengths greater (smaller) than L in S, 2.4
DC Digital Curve, 5.1
DCR algorithm to construct Digital Circle using Run length proper-

ties, 6.3
DCS algorithm to construct Digital Circle using Square Numbers,

6.2
DSL digital straight line/ray, 5.1
DSS digital straight line segment, 5.1

ε, ε∗ measures of approximation of an APSPM algorithm, 2.2, 7.2
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εµ radial distance of grid point µ from CR(α, ρ), 2.2, 7.2
e(L) end point of the line L, 5.3
et edge directed from vt ∈ VR to vt+1 ∈ VR, 2.4
E pixel east of current pixel, 6.2
Ei end point of ith ADSS, 5.2
Eapprox error incurred by a suboptimal polygonal approximation algo-

rithm, 5.3
Eopt error incurred by an optimal polygonal approximation algo-

rithm, 5.3
EPSPM Exact Point Set Pattern Matching, 2.1
Extract-ADSS proposed algorithm for extraction of ADSS from a digital curve,

5.2

f(τ, d⊥) see IEF, 5.3
F gray-scale fingerprint image, 8.2
F

(x,y)
r filtered list of gray values lying on a digital circle of radius r

centered at (x, y), 4.2
F̃

(x,y)
r reordered gray-values in F

(x,y)
r after cyclic shift ϕ subject to

conditions c1 and c2, 4.2
F1–F3 properties of DSS (Freeman (1961a)), 5.2
Find-Params procedure to find the parameters (n, s, l) for an ADSS, 5.2
FOM figure of merit, 5.3

γ∞ sole parameter defined by user for adaptive brightness thresh-
olding, 4.2

γr adaptive brightness threshold for radius r, 4.2
Γ space of transformations, 2.3
G(CZ(p, r), q) enumerated set of grid points lying on the digital circle CZ(p, r)

with q as the point of reference, 6.2

h(P, Q) Hausdorff distance from P to Q, 2.3

I image/set of digital curves, 5.3, 8.2
I(i, j) gray-scale intensity at the point (i, j) in a digital image I, 4.2
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∇I(i, j) magnitude of gradient of intensity at a point (i, j) in an image
I, 4.2

Ik k-th interval (Eqn. 6.3), 6.2
IEF isothetic error frequency (or, error frequency), 5.3
ISE integral square error, 5.3

J output binary fingerprint image with smoothed ridgelines, 8.2

k half the number of edges of a regular query polygon with even
number of vertices, 2.4

K number of digital curves in a given set, 5.3

λ inter-ridge distance in a fingerprint image, 3.2, 8.2
λr floor of half the size of mask Wr, 4.2
λφ median line during construction of angular tree, 2.4
λ(j) run length of grid points of CZ, I(O, r) with ordinate j, 6.3
λ(r − k) run length at ordinate r − k in the first octant of digital circle

with radius r, 6.2
l length of leftmost run of the non-singular element in a

DSS/ADSS, 5.2
lk length of interval Ik (Eqn. 6.4), 6.2
L list of minutiae/points of discontinuity, 8.2
L̃ ADSS formed after merging several ADSS, 5.3
L,L′ line segments in R2, 2.4
L,L′ lengths of L,L′, 2.4
L(k)

i the ADSS produced by ith repetition of Extract-ADSS al-
gorithm on kth digital curve, 5.2

LP lexicographically sorted sequence – angle first, distance second
– of points in P , 2.3

L(P ) list containing distances in set of points, P non-increasing or-
der, 2.4

µ grid point on CZ(α, ρ), 2.2, 7.2
µi ith minutia/point of discontinuity, 8.2
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µ(T (P ), Q) number of matching points between T (P ) and Q, 2.4
m slope of a line, 5.2
m number of control points selected on a ridge segment to be

smoothened, 8.2
m, n number of rows and number of columns in a digital image, 4.2
M total number of vertices in the approximate polygon(s), 5.1
MI Matching Index, 3.3
Mk number of vertices in the approximate polygon Pk, 5.3
Mapprox number of vertices in the suboptimal polygon(s), 5.3
Mopt number of vertices in the optimal polygon(s), 5.3
Merge-ADSS proposed algorithm for polygonal approximation of all ADSS

in a digital curve, 5.3

ν grid point on CZ(α, ρ), 2.2, 7.2
ν, ν1, ν2 parent node and its left and right child nodes in an angular

tree, 2.4
n non-singular element in a DSS/ADSS, 5.2
n number of ADSS detected in a digital curve, 5.3
n number of minutiae/points of discontinuity in a fingerprint

image, 8.2
n̂ number of matching minutiae for two sets of minutiae, 3.3
nmin minimum number of matching vertices for a successful APSPM

between sets of points, P and Q, 2.3
N number of points in the input set of digital curves, 5.1
Nd⊥ number of points with deviation d⊥ due to polygonal approxi-

mation, 5.3
Nk number of points/points defining the kth digital curve, 5.3

ω weight assigned for matching minutiae, 3.3
O origin of the rectangular coordinate system, 6.2, 7.2

φ angle made by the splitting line with the horizontal line in an
angular tree, 2.4

φ angle of gradient of intensity at a point (i, j) in an image I, 4.2
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φi ith control point to fit B-spline(s), 8.2
φj parameter used for error checking in recurrence Eqn. 5.9, 5.2
φj(p, q) jth control point on the ridge segment starting from φ1(p, q) =

µp and ending at φm(p, q) = µq, 8.2
Φ geometry vector, 8.2
p lower limit of run-length interval to find an ADSS, 5.2
pi ith point in P , 2.3
p, p′, p′′, p1, . . . points in the set P/P ′, 2.3, 3.2, 6.2
p̃ deviation of point p due to polygonal approximation, 5.3
pq line segment in R2 joining points p and q, 5.2
P, P ′ pattern set (of minutiae, corners, etc.), 2.1, 3.3, 4.2
Pk the approximate polygon/polychain corresponding to kth

digital curve, 5.3
PR,T,S transformed set obtained from set P after rotation (R), trans-

lation (T ), and scaling (S), 3.3

q upper limit of run-length interval to find an ADSS, 5.2
q, q′, q1, . . . points in set Q, 2.3 3.2
Q database/background set (of minutiae), 2.1, 3.3

ρ radius of a digital circle, 2.3
ρ(p, q) ridgeline with endpoints µp and µq, 8.2
r length of rightmost run of the non-singular element in a

DSS/ADSS, 5.2
r radius of a circle, 4.2 6.2
rmax maximum radius of an annular window, 4.2
region(ν) 2D region corresponding to a node ν of an angular tree, 2.4
R query (polygonal) region, 2.4
(R2, d) 2D Euclidean metric space, 2.4
R1–R4 properties of DSS (Rosenfeld (1974)), 5.2

Σdθ(p) variance of edge directions for 1 ≤ r ≤ rmax, 4.2
s singular element in a DSS/ADSS, 5.2
s score (in [1− 100]) associated with a minutia, 3.3
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s(L) start point of the line L, 5.3
sr, sv, sn Score components of a minutia due to ridge flow, valley flow,

and noise level respectively, 3.4
S a finite subset of 2D Euclidean metric space, 2.4
Si start point of ith ADSS, 5.2
Sn square number equal to n2, 6.3
SE pixel south-east of current pixel, 6.2
SNR signal-to-noise ratio, 4.3

τ approximation parameter or error tolerance, 5.3
θ angle made by the tangent to the corresponding ridge at a

minutia, 3.3
θ internal angle of the query polygon corresponding to Tθ(Q), 2.4
θu direction of uth edge at a point p, 4.2
θu,r direction of uth edge at p as per the gray value analysis of the

annular list with radius r centered at p, 4.2
t type of a minutia (bifurcation or termination), 3.3
Tθ(Q) angular tree defined on the set of points, Q, 2.4
T transformation on a set of points, 2.3
T (P ) transformed set of points, P , 2.3
T, T1, T2 time complexities, 2.4

u parameter defining a given B-spline segment, 8.2
ui ith knot point in a set of B-splines, 8.2
uk lower limit of interval Ik (Eqn. 6.6), 6.2
U parameter vector needed to define a B-spline segment, 8.2

% threshold parameter in the proposed APSPM algorithm, 2.4
vk upper limit of interval Ik (Eqn. 6.6), 6.2
vt tth vertex in VR, 2.4
VR ordered set of vertices of query region R, 2.4

Wr mask of size 2λr + 1, 4.2
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(x, y) coordinates of a point or minutia, 3.3, 5.2
xj , yj coordinates of (the control point) φj , 8.2
(xp, yp) coordinates of a point P, 5.2
x

PQ
projection of line segment PQ on x-axis, 5.2

y
PQ

projection of line segment PQ on y-axis, 5.2
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