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Chapter 0

Introduction

In this introductory chapter, we begin with a brief description of spin glasses in section
1. We are not physicists. The purpose of this section is to trace the history of the
models. Section 2 gives a brief summary of the thesis and section 3 recalls certain
known facts which will be used later in the thesis.

0.1 Origin of the problem

The models considered in this thesis have their origin in spin glass theory. Roughly,
spin glass is a glassy state in a spin system or a disordered material exhibiting high
magnetic frustration. The origin of this behavior can be either a disordered structure
(such as that of a conventional, chemical glass) or a disordered magnetic doping in
an otherwise regular structure. But what is a glass? Loosely speaking, it is a state of
spins with local ordering (in solid state physics, this is called local ‘freezing’ - locally,
the system looks more like an ordered solid rather than a disordered liquid) but no
global ordering. Spin glass can not remain in a single lowest energy state (the ground
state). Rather it has many ground states which are never explored on experimental
time scales. The freezing of the spins, in spin glasses, is not a deterministic one like
ferromagnetic materials. Rather they freeze in random with some memory effect.

Experiments show that the susceptibility obtained by cooling the spin glass system
in the presence of a magnetic field yielded a higher value than that obtained by first
cooling in zero field and then applying the magnetic field. If the spin glass is cooled
below Tc (a certain critical temperature) in the absence of an external field, and then
a magnetic field is applied, there is a rapid increase towards a value, called the zero-
field-cooled magnetization. This value is less than the field-cooled magnetization.
The following phenomenon has also been observed in the measurement of remanent
magnetization (the permanent magnetization that remains after the external field is
removed). We can cool in the presence of external field, remove the external field
and then measure the remanent magnetization. Alternatively, first cool with out the

1
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external field, then apply the external field and measure the remanent magnetization
after removing the external field. The first value is larger than the second one.

The other peculiarity of the spin glasses is its time dependence, which will be
explained now, that makes it different from other magnetic systems. Above the spin
glass transition temperature, Tc, the spin glass exhibits typical magnetic behavior.
In other words, at temperature above Tc, if an external magnetic field is applied and
the magnetization is plotted versus temperature, it follows the typical Curie law (in
which magnetization is inversely proportional to temperature). This happens until Tc

is reached, at which point the magnetization becomes virtually constant. This is the
onset of the spin glass phase. When the external field is removed, the spin glass has
a rapid decrease of magnetization to a value called the remnant magnetization, and
then a slow decay as the magnetization approaches zero (or some small fraction of the
original value). This decay is non-exponential and no single function can fit the curve
of magnetization versus time adequately below Tc. This slow decay is particular to
spin glasses. If a similar procedure was followed for a ferromagnetic substance, when
the external field is removed, there would be a rapid change to a remnant value, but
this value is a constant in time. For a paramagnetic material, when the external field
is removed, the magnetization rapidly goes to zero. In each case, the change is very
rapid and if carefully examined it is exponential decay.

Behind this strange behaviour of spin glasses, according to physicists, there are
essentially two major causes. These are quenched disorder and frustration. The term
“quenched disorder” refers to constrained disorder in the interactions between the
spins and/or their locations but does not evolve with time. In statistical physics, a
system is said to present quenched disorder when some parameters defining its be-
haviour are random variables which do not evolve with time, i.e., they are quenched
or frozen. This is in contrast to annealed disorder, where the random variables are
allowed to evolve themselves. Usually the spin orientations depend on several facts
such as the interactions, external fields and thermal fluctuations. Their dynamics
or thermodynamics will suggest whether to order or not. The spin glass phase is
an example of spontaneous cooperative freezing (or order) of the spin orientations in
the presence of the constrained disorder of the interactions or spin locations. It is
thus “order in the presence of disorder”. On the other hand, “frustration” refers to
conflicts between interactions and the spin-ordering forces, and not all can be obeyed
simultaneously. Frustration arises when pairs of spins get different ordering instruc-
tions through the various paths which link them, either directly or via intermediate
spins. The relevance of frustration is that it leads to degeneracy or multiplicity of
compromises forcing the system to have several ground states.

Keeping these two in mind, in 1975, S. F. Edwards and P. W. Anderson [21] pro-
duced a paper, which in the words of Sherrington [37], at one fell swoop recognized
the importance of the combination of frustration and quenched disorder as funda-
mental ingredients, introduced a more convenient model, a new and novel method
of analysis, new types of order parameters, a new mean field theory, new approxi-
mation techniques and the prediction of a new type of phase transition apparently
explaining the observed susceptibility cusp. This paper was a watershed. Edwards
and Anderson’s new approach was beautifully minimal, fascinating and attractive but
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also their analysis was highly novel and sophisticated, involving radically new con-
cepts and methods but also unusual and unproven ansätze, as well as several different
approaches. In their model, two spins interact if they are neighbour to each other.
The same year Sherrington and Kirkpatrick [38] proposed their model with mean field
interaction. In this model all spins interact with each other. In both the cases the
interaction among the spins were random and driven by Gaussian random variables.
Due to rich and complicated correlation structure among the energy over the configu-
ration space of the spins, initially the models were not easy to study analytically. To
get some insight into these models, in 1980, B. Derrida [15] proposed a system without
any correlation structure over the configuration space. He proposed a solvable model
called Random Energy Model (REM) for spin glass theory. In REM, all the random
variables are independent and identically distributed but the distribution depends on
the number of particles. Like Edwards-Anderson model and SK-model, he considered
these random variables to be Gaussian. But this is a toy model since the energy of the
system does not depend on the configuration. Amazingly he could show that though
this is a very simple model, it exhibits phase transition.

REM has no correlations at all. But the correlation structure in the Edwards-
Anderson model and SK-model were very complicated. So the next idea is to study a
system which exhibits correlations, but their structure is simple enough to explicitly
solve the model. B. Derrida [17] proposed another model for spin glass theory in 1985,
by bringing correlations through a tree structure. The tree structure comes from the
configuration space. Simply put, he identifies the configuration space as the branches
of a tree. This is called Generalized Random Energy Model (GREM), a generalization
of the REM. Here also the driving distributions were Gaussian. In this project we
will focus ourselves on REM and GREM and some related models.

0.2 Setup and Summary

For an N particle system with classical spins +1 or −1, a sequence of +1 and -1
of length N gives a configuration of the system. A typical configuration is denoted
by σ(N) or by σ when N is understood. That is, σ is a sequence of +1 and -1 of
length N . The space of all possible configurations σ of a system is called configuration
space and denoted by ΣN or simply by 2N since ΣN is nothing but {+1,−1}N . Now
depending on the configuration, the system possesses some energy called Hamiltonian.
For a configuration σ, it is denoted by HN(σ). The model is defined through the
Hamiltonian. So different models have different Hamiltonian structures. In spin glass
theory, the Hamiltonian is considered to be random.

When the system is cooled, it settles down at a configuration where the Hamil-
tonian is minimized. Hence it is very essential to get information about the con-
figurations where the infimum of the the Hamiltonian is attained and its value. In
statistical physics one analyzes this problem via the partition function of the system.
The partition function, denoted by ZN(β), is defined as follows:
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ZN(β) =
∑

σ∈ΣN

e−βHN (σ).

Here β ≥ 0 is a parameter, represents the inverse temperature. Sometimes when the
Hamiltonian depends on an external field h, we will denote the partition function as
ZN(β, h). Now note that among all the summands in the above sum if one takes large
β, only that summand will contribute where the Hamiltonian attains the minimum
among all possible configurations. On the other hand, if the focus is on maximum,
then instead of −β one has to consider β in the exponent.

But the information in partition function about the minimum energy is in expo-
nential scale. So it is customary to study the logarithm of the partition function.
Also the energy of the system depends on the number of particles in the system and
becomes large when N is large. To get some asymptotic result on logZN(β), one
has to normalize it properly. In this case, 1

N
is the correct normalization (in some

sense). According to statistical physics, − 1
βN

logZN(β) is called the free energy of
the system. Since one is interested in the asymptotic of the free energy, that is, in
− 1

β
lim

N→∞
1
N

logZN(β), for mathematical purpose we can forget about the − 1
β

term in

the definition of free energy. And from now on, we will call lim
N→∞

1
N

logZN(β) as the

free energy of the system.
In statistical physics, there is another important concept called Gibbs’ distribution.

This is a distribution on the configuration space. According to this, the probability
of a configuration σ is proportional to e−βHN (σ). In particular, if GN(σ) denotes the
Gibbs’ probability for a configuration σ ∈ ΣN , then

GN (σ) =
e−βHN (σ)

ZN(β)
.

It is worth noting that, since HN(σ)’s are random, the Gibbs’ distribution is also
random. Note that, Gibbs’ distribution is so defined as to give maximum weight
to that configuration which has minimum energy. We shall not deal with Gibbs’
distributions in this thesis.

Generalized random energy model (GREM) is one model in this theory proposed
by B. Derrida [17] in 1985. To describe a version of this fix an integer n ≥ 1. For N
particle system, consider a partition of N into integers k(i, N) ≥ 0 for 1 ≤ i ≤ n so
that

∑
i

k(i, N) = N . The configuration space 2N , naturally splits into the product,
∏

2k(i,N) and σ ∈ 2N can be written as σ1σ2 · · ·σn with σi ∈ 2k(i,N). An obvious
n-level tree structure can be brought in the configuration space. Consider an n level
tree with 2k(1,N) many edges at the first level. These edges are denoted by σ1, with
σ1 ∈ 2k(1,N). In general, below a typical edge σ1σ2 · · ·σi−1 of the (i− 1)-th level there
are 2k(i,N) edges at the i-th level denoted by σ1σ2 · · ·σi−1σi for σi ∈ 2k(i,N). Thus
a typical branch of the tree reads like σ1σ2 · · ·σn making a one one correspondence
with 2N , the configuration space. For each i, 1 ≤ i ≤ n and edge σ1 · · ·σi, associate
a random variables ξ(σ1 · · ·σi). All these random variables are i.i.d. N (0, N). One
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non random weight, ai > 0 for each level is fixed. In GREM, Hamiltonian for a
configuration σ = σ1 · · ·σn is defined as

HN(σ) =

n∑

i=1

aiξ(σ1σ2 · · ·σi). (0.2.1)

When n = 1, GREM reduces to REM, another model proposed as a solvable model
by B. Derrida [15] in 1980. If a1 = 1 then Hamiltonians of REM are nothing but 2N

many i.i.d. N (0, N) random variables.
Though it was just a toy model, with correct but heuristic arguments Derrida [16]

showed phase transition occurs in REM and in the low temperature the system got
completely frozen. In 1986, B. Derrida and E. Gardner [18] gave the solution for the
averaged free energy for GREM and in 1987, Capocaccia et al [8] gave a rigorous
mathematical justification. Indeed, the convergence holds almost surely as well as
in Lp for 1 ≤ p < ∞. In 1989, Galves et al [24] studied the detailed fluctuation
of free energy for both the models and further analysis was carried out in 2002 for
REM and other models by Bovier et al [7]. In a different direction, Dorlas and
Wedagedera [20], in 2001 used the large deviation principle (LDP) [14, 44] to study
the free energy for REM. In the next year, Dorlas and Dukes [19] extended this
technique to GREM. Though GREM is a little complicated than REM, it is not a
realistic model for spin glasses. More realistic models were proposed earlier in 1975 by
Edwards and Anderson [21] (EA-model) through nearest neighbour interaction and
another by Sherrington and Kirkpatrick [38] (SK-model) by mean field correction in
the same year. These are the most complicated models in this theory. Though several
heuristic arguments and conjectures [33] were made and several rigorous results were
proved [1, 23, 25, 39, 40, 41], it was only in 2002, Guerra and Toninelli [26] showed
the almost sure existence of the free energy via interpolation technique and convexity
argument. A discussion of the SK-model using stochastic calculus was initiated by
Comets and Neveu [12] continued in [11,2]. For EA-model very little has been known
till know. In 2003, the idea of Guerra and Toninelli has been generalized to the GREM
cases by Contucci et al [13]. We thank these authors for clarifying their setup.

Note that all this analysis was done with Gaussian driving distributions. In 2004,
Carmona and Hu [9] considered non-Gaussian distributions and showed that the free
energy of the SK-model does not depend on the driving distribution. Rather, under
some moment condition on the driving distributions the free energy of SK-model is
universal (see also [10]). It should be noted that earlier already in 1983, Eisele [22]
considered a class of distributions with exponentially decaying tails for the REM. He
is the first to identify the relevance of LDP to study free energy for REM. He studied
completely different types of phase transitions – some kind of iterated large deviation
phenomena. For the analysis to go through, he assumed the existence of exponential
moments of all orders for the driving distributions. The last two articles are the
starting point for this thesis. Now the natural question to ask is, whether there is any
universality of free energy in REM as well as in GREM? Moreover, is the existence of
exponential moments of all orders necessary?

To answer the above questions our first successful attempt [28] via LDP argu-



Chapter 0: Introduction 6

ment was with double exponential driving distributions. In [28], we provided negative
answer to the above questions. First of all, considering HN to be i.i.d. double expo-
nential driving distribution with parameter 1, we show that the nontrivial free energy
is different from that of the Gaussian REM. Though the Hamiltonian does not depend
on N , it is interesting, the system exhibits phase transition. Secondly, note that in
this case EetHN does not exists for t ≥ 1. Here in the first chapter, we extract the
essence of the argument in [28] and state as

Theorem 0.2.1. Let {λN} satisfies LDP with a strictly quasi-convex rate function

I(x). For a.e. ω, the sequence of empirical measure {µN(ω)} of 2N i.i.d. random

variables having law λN satisfies LDP with rate function J given by,

J (x) =





I(x) if I(x) ≤ log 2

∞ if I(x) > log 2.

We apply this theorem to the known Gaussian case [16,20,34], as well as to double
exponential case and further to Weibull type exponentially decaying tail distributions.
We also show that the energy in REM is not distribution specific rather rate specific.
In the compact distribution section we give some partial results when there is no
non-trivial rate function for the driving distributions. In the concluding section, we
apply the above theorem to discrete distributions – Poisson and Binomial. There we
show that even the existence of phase transition depends on the parameter of the
underlying distributions. For example, if the Hamiltonian HN(σ) is Binomial with
parameter N and p, phase transition takes place only when p > 1

2
.

For GREM, once again our first attempt [29] was with the double exponential
driving distributions along with the LDP arguments [19]. The original formulation
of GREM in the literature is slightly different from the formulation we mentioned
above. In the second chapter, we start with a discussion of this reformulation. Then
we bring a general tree structure in GREM and prove a basic fact which is used in
the analysis of this chapter as well as for several other models considered in the next
chapter. The details are in chapter 2. Briefly, we consider trees all of whose branches
extend up to n-th level. Let BiN be the total number of edges at the i-th level and
BN be the number of leaves of the tree. Let s2

iN be the sum of the squares of the
numbers of leaves at the n-th level below each edges at the ith level. If ξ denotes a
random variable having the common distribution of the ξ(σ1σ2 · · ·σi), then we have
the following.

Theorem 0.2.2. Let △ = △1 × · · · × △n ⊂ Rn. Denote qiN = P (ξ ∈ △i) for

1 ≤ i ≤ n.
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a) If
∑

N≥n

BiNq1N · · · qiN <∞, for some i, 1 ≤ i ≤ n then a.s. eventually,

µN(△) = 0.

b) If for all i = 1, · · · , n, ∑
N≥n

s2
iN

B2
N q1N ···qiN

<∞, then for any ǫ > 0 a.s. eventually,

(1 − ǫ)EµN(△) ≤ µN(△) ≤ (1 + ǫ)EµN(△).

In section 2.4, we use this result for GREM with a general family of driving
distributions. For fixed γ > 0, we consider the driving distributions of ξ(σ1 · · ·σi)
having density

φN,γ(x) =
1

2Γ( 1
γ
)

( γ
N

) γ−1
γ

e
− |x|γ

γNγ−1 −∞ < x <∞. (0.2.2)

Note that when γ = 2, this is the Gaussian case. We discuss this case systematically
in section 2.5 and bring out the essence of this model. Here it is.

For each j, 1 ≤ j ≤ n, we have a sequence of probabilities {λj
N , N ≥ 1} on R

satisfying LDP with a good, strictly quasi convex rate function Ij and ξ(σ1 · · ·σi) ∼
λj

N . Define for each ω, µN(ω) to be the empirical measure on Rn, namely,

µN(ω) =
1

2N

∑

σ

δ 〈ξ(σ1, ω), ξ(σ1σ2, ω), · · · , ξ(σ1 · · ·σn, ω)〉

where δ 〈x〉 denotes the point mass at x ∈ Rn.

Theorem 0.2.3. Suppose k(j,N)
N

→ pj > 0 for 1 ≤ j ≤ n. Then for a.e. ω, the

sequence {µN(ω), N ≥ 1} satisfies LDP with rate function J given as follows:

Supp(J ) = {(x1, · · · , xn) :
j∑

k=1

Ik(xk) ≤
j∑

k=1

pk log 2 for 1 ≤ j ≤ n}
and

J (x) =





n∑
k=1

Ik(xk) if x ∈ Supp(J )

∞ otherwise.

This result, with the help of Varadhan’s Integral lemma [43,14], reduces the prob-
lem of free energy to merely calculation of certain infimum. In section 2.6, we solve
this variational problem for general n and produce the explicit energy expression in
the case of γ > 1 and γ = 1 by different arguments. Further, for γ ≥ 1, we characterize
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the energy function for GREM and show that the energy function is continuous in γ.
For 0 < γ < 1, we only give the energy expression for n = 2. The beauty of the above
theorem (Theorem 0.2.3) is that, it allows us to consider different distributions at
different levels of the under lying tree. This we considered in [30] and here in section
2.7. Even the simple case, n = 2 the model exhibits a lot of interesting phenomena.
For example, consider a 2 level GREM with exponential driving distribution at the
first level and Gaussian in the second, and give equal weights at the two levels, that
is, a1 = a2. Then even if p2 = 0.00001 (very small) the system reduces to a Gaussian
REM. On the other hand, if we consider a 2 level GREM with Gaussian driving dis-
tribution at the first level and exponential in the second, the system will never reduce
to a Gaussian REM. Moreover, in either case, the system will never reduce to that of
an exponential REM.

In the third chapter, we randomize the underlying trees. To keep the same num-
ber of furcations for all edges at given level, for fixed N , we take one Poisson random
variable at each level to determine the number of furcations. We called this model
as regular Poisson GREM. On the other hand, it is possible to keep the number of
furcations depend on the edge. In other words, for each edge we can associate a Pois-
son random variable to determine the number of furcations for this edge. This we
called Poisson GREM. We discussed multinomial variation also using results from [27].
These are all different methods to randomize the tree. Note that the configuration
space is no longer 2N . These models are interesting and Theorem 0.2.2 above is power-
ful enough to handle these models. However, in all these cases the free energy remains
same as in the usual GREM. Whether there are other interesting tree structures that
exhibit peculiar phenomena is not clear to us. As far as our knowledge goes, the
GREM with randomized (or even nonrandomized but general) trees is not discussed
in the literature.

In 2006 Bolthausen and Kistler [3] proposed a model (BK-GREM) bypassing the
ultrametricity in the configuration space. Even in this model, they have shown that
the energy of the system is again a suitable GREM energy. In section 3.4, we provide
a proof via LDP arguments. Then in section 3.5, we construct n! many GREMs,
one corresponding to each permutation of the set {1, 2, · · · , n} by manipulating the
weights from BK-GREM. We characterize a class of permutations so that (1) the
corresponding GREM energy will be the same for all the permutations in that class,
(2) this energy is the minimum over all possible n! many GREMs and (3) this is the
energy of the BK-GREM. Bolthausen and Kistler [3], have shown that the energy of
BK-GREM is the infimum over GREM energies corresponding to all possible chains.
Our analysis shows that instead of considering all chains, one needs to consider n!
many GREMs. This is still a large number. We conclude this chapter, by defining
one model, called block tree GREM, where the free energy is maximum of all possible
n! many n level GREMs, rather than minimum as in the BK-GREM.

In the last chapter, we introduce a new model, word GREM. This brings out the
crucial role played by LDP in all the earlier models. Here we start with a distribution
having finite mean and λN denotes the law of the sample mean (of size N). Then
Cramer’s theorem [14] suggests that the sequence {λN} satisfies LDP with a convex
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rate function given in terms of the Fenchel-Legendre transformation of the starting
distribution. We consider a set of n symbols I = {ς1, ς2, · · · , ςn} and take S to be any
collection of finite number of words formed by these n symbols. As earlier, we consider
k(i, N) ≥ 0, 1 ≤ i ≤ n as a partition of N so that the configuration space 2N splits
as
∏n

i=1 2k(i,N). For s = ςi1ςi2 · · · ςil ∈ S and a configuration σ = 〈σ1, · · · , σn〉 where
σi ∈ 2k(i,N), we denote σ(s) = 〈σi1 , σi2 , · · · , σil〉. For s ∈ S, let λs be a probability
on R having finite mean. Let λs

N denote the distribution of the mean of the first
N random variables of an i.i.d. sequence with common law λs. For the N particle
system, we have the following. For each s ∈ S and each σ ∈ 2N , we have a random
variable ξ(s, σ(s)). These are independent random variables. For fixed s, they are
identically distributed and the common distribution is λs

N . Then for a configuration
σ = 〈σ1, · · · , σN 〉 ∈ 2N , we define the Hamiltonian in word GREM as

HN(σ) = Nf(ξ(σ)) + h
N∑

i=1

σi, (0.2.3)

where f : RS → R is a continuous function, ξ(σ) = (ξ(s, σ(s)))s∈S and h ≥ 0 is the
intensity of the external field.

We present a large deviation proof for the existence of the free energy for this
model and apply the analysis to known [16] REM with external field.

This model includes REM, GREM and BK-GREM and may perhaps include mod-
els truly more general than these. Further, it allows external field. Moreover, different
driving distributions can be used at different words in the collection.

In this project, we did not consider the analysis of Gibbs’ distribution. With Gaus-
sian driving distribution, there are several results for REM [42,4] and for GREM [5,6].
See also [35,31,32,36]. For exponential driving distribution we verified that for REM,
in the high temperature regime, Gibbs’s distribution converges to the uniform distribu-
tion [28] where as in the low temperature regime it converges to the Poisson-Dirichlet
distribution. This is similar to that of Gaussian REM. So is it true for any other
distributions considered in this thesis? Since we do not have anything substantial to
say regarding this issue, we have not considered.

0.3 Large Deviation Terminology

Recall that
ZN(β) =

∑

σ

e−βHN (σ) = 2NEσe
−βHN (σ)

where Eσ is expectation w.r.t uniform probability on 2N space. And hence,

1

N
logZN(β) = log 2 +

1

N
logEσe

−Nβ
HN (σ)

N .
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The last term in the above equation is well known expression in the Laplace’s
principle. It is indeed

1

N
log

∫
e−NfdµN ,

where µN is the uniform probability on the space 2N . The only trouble is µN are
on different spaces. If we transport µN to R by the map σ 7→ HN (σ)

N
, then we will

arrive at exactly the Laplace type situation, where Varadhan’s integral lemma comes
to rescue. Since HN depends on ω, the transported probability will be random. So
the application of LDP needs careful attention.

Since there are several terminologies (using ǫ or using N etc) for large deviations,
we fix our terminology now and recall some known facts. Let X be a Polish space.

Definition 0.3.1. A function I : X → R is called a lower semicontinuous function if

for any a ∈ R, the set {x : I(x) ≤ a} is a closed set. It will be called good if the set

{x : I(x) ≤ a} is a compact set.

The following two properties of lower semicontinuous function are worth mention-
ing.

Proposition 0.3.1. Let f be a lower semicontinuous function. Then for any x,

sup
G:neighbourhood of x

inf
y∈G

f(y) = f(x).

Proposition 0.3.2. Let f be a good function and {Fn}n be a sequence of closed sets

so that Fn+1 ⊆ Fn for every n and ∩nFn = {x0}. Then

f(x0) = lim
n

inf
y∈Fn

f(y).

Definition 0.3.2. Let {µN} be a sequence of probabilities on X. {µN} is said to

satisfy large deviation principle with rate function I if

1. I : X → [0,∞] is a lower semicontinuous function,

2. for any Borel set B,

− inf
x∈B0

I(x) ≤ lim inf
N

1

N
logµN(B) ≤ lim sup

N

1

N
logµN(B) ≤ − inf

x∈B
I(x).
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Further, if for 0 ≤ a <∞, the set {x : I(x) ≤ a} is a compact set, then I is called a

good rate function.

A sufficient condition for the existence of LDP is the following:

Proposition 0.3.3. Let X be a Polish space. Let A be an open base for X. Let {µN} be

a sequence of probabilities on X. For each A ∈ A, let L∗(A) = − lim infN
1
N

logµN(A)

and L∗(A) = − lim supN
1
N

log µN(A). Suppose for every x ∈ X,

sup
x∈A∈A

L∗(A) = sup
x∈A∈A

L∗(A) = I(x) (say).

Assume moreover that either {µN} is eventually supported on a compact set or the

sequence is exponentially tight, that is, given any α < ∞, there is a compact set K

such that lim supN
1
N

logµN(Kc) < −α.

Then the sequence {µN} satisfies LDP with rate function I.

The next proposition is a variation of well-known Varadhan’s integral lemma,
which will suggest that only we have to calculate some infimum to get the free energy
limit.

Proposition 0.3.4. Suppose the sequence of probabilities {µN} on a Polish space X

satisfies LDP with rate function I and, moreover, µN are eventually supported on a

compact set C. Then for any continuous function f : X → R,

lim
N→∞

1

N
log

∫
e−NfdµN = − inf

x∈C
{f(x) + I(x)}.

We need the following known as Cramer’s Theorem.

Theorem 0.3.5. Let X1, X2, · · · be i.i.d. real valued random variables with EX1 <∞
and λN be the law of their sample mean. Then the sequence of probabilities {λN}
satisfies LDP with a convex rate function I given by

I(x) = sup
D

{θx− logEeθX1}, (0.3.1)

where D = {θ : logEeθX1 <∞} ⊆ R.
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The following is also true.

Lemma 0.3.6. Let I be as in the above theorem. If DI = {x : I(x) < ∞} and

x = EX1 <∞, then

1. I(x) = 0,

2. I is strictly decreasing on {x ≤ x} ∩ DI,

3. I is strictly increasing on {x ≤ x} ∩ DI.



Chapter 1

The Random Energy Model

In this chapter we discuss a toy model of spin glass theory, called Random Energy
Model (REM). In the literature [16, 42], this is driven with Gaussian distributions.
In [22], Eisele discussed the model with more general distributions, particularly with
regularly varying distributions and the relevance of large deviation methods in this
context. We study the model with other types of distributions. For instance, the
driving distributions could be exponential or more generally Weibull. Or they could
be compactly supported etc. Our discussion mainly relies on the idea of Dorlas and
Wedagedera. In [20], they first used the large deviation techniques to get the asymp-
totics of the free energy.

After defining the model in the first section, we give a general large deviation
result in the section 1.2 and apply the results in REM with diverse distributions in
section 1.3. In section 1.4, we give partial results with compact distributions where
we could not use the large deviation results. We conclude this chapter by considering
the model driven by some discrete distributions.

1.1 Setup

In this model, proposed originally by B. Derrida [15], for each N , the Hamiltonian
HN(σ) are independent over σ ∈ ΣN . Derrida considered them to be centered Gaus-
sian with variance N . In spite of the simplicity of this model, in [16], he showed the
existence of phase transition. Using the entropy energy equation, he evaluated the
limiting annealed free energy limN

1
N
E logZN(β) and showed that for low tempera-

ture, that is, for β large, free energy becomes linear in β. It is known that, in fact,
1
N

logZN(β) converges a.s. [20].

13
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1.2 Main Results

Let us consider a sequence of probabilities (λN , N ≥ 1) on Rn. Assume that {λN}
satisfies large deviation principle (LDP) with a strictly quasi-convex good rate function
I(x). An extended real valued function f , which may take the value +∞ but not −∞,
defined on a convex set will be called a strictly quasi-convex function if for any two
distinct x1 and x2 in {f(x) <∞} and for each θ ∈ (0, 1) we have f(θx1 +(1−θ)x2) <
max{f(x1), f(x2)}. For every N , let ξi, 1 ≤ i ≤ 2N be i.i.d. random variables (Rn

valued) with distribution λN . These random variables, of course, depend on N but to
ease the notation we are suppressing their dependence onN . For every sample point ω,
we define µN(ω) to be the empirical measure on Rn, namely µN(ω) = 1

2N

∑
δ 〈ξi(ω)〉.

Here δ 〈x〉 denote the point mass at x. Now we are ready to state our first theorem.

Theorem 1.2.1. For a.e. ω the sequence {µN(ω)} is supported on a compact set and

satisfies LDP with rate function J given by,

J (x) =





I(x) if I(x) ≤ log 2

∞ if I(x) > log 2.

Proof. Step 1: Let △ be an open subset of Rn. If
∑

2NλN(△) < ∞, then almost

surely eventually µN(△) = 0.

Indeed, using P for the probability on the space where the random variables are

defined,

P (µN(△) > 0) = P (ξi ∈ △ for some i) ≤ 2NλN(△).

Now Borel - Cantelli completes the proof.

Step 2: Let △ be an open subset of Rn. If
∑

1
2N λN (△)

< ∞, then for any ǫ > 0,

almost surely eventually

(1 − ǫ)λN(△) ≤ µN(△) ≤ (1 + ǫ)λN (△).

Indeed,

Var µN(△) = E

(
1

2N

∑
1△(ξ)

)2

− λ2
N(△) ≤ 1

2N
λN(△).
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Now Chebyshev yields

P {|µN(△) − λN(△)| > ǫλN (△)} ≤ 1

ǫ22NλN(△)

and Borel-Cantelli completes the proof.

Since I is strictly quasi-convex, the set {I(x) = log 2} does not contain any line

segment, we can choose a countable open base B such that for every △ ∈ B either

△∩{I(x) ≤ log 2} = ∅ or △∩{I(x) < log 2} 6= ∅. For instance, we could choose B

to be the collection all open boxes such that (i) I value at a corner point is different

from log 2; (ii) each co-ordinate of a corner point is either rational or ±∞.

Step 3: Let I(x) > log 2. Then almost surely, sup
x∈△∈B

{− lim inf 1
N

logµN(△)} as

well as sup
x∈△∈B

{− lim sup 1
N

logµN(△)} are ∞.

Since I(x) > log 2, pick △0 ∈ B such that x ∈ △0 and △0 ∩ {I(x) ≤ log 2} = ∅.

Then lim sup 1
N

log λN(△0) ≤ − inf
y∈△0

I(y) = −L < − log 2. Fix α > 0 such that

−L < − log 2 − α. Then for sufficiently large N , 1
N

log λN(△0) ≤ − log 2 − α, that

is, λN (△0) ≤ 2−Ne−Nα. In other words, 2NλN(△0) ≤ e−Nα for all large N . Thus by

Step 1, a.s. eventually µN(△0) = 0 and hence the claim.

Incidentally, this also shows the following. If K is the compact set {x : I(x) ≤
log 2} then consider a bounded open box △ ∈ B such that K ⊂ △. Clearly, △c

is

union of 2n many boxed from B. The above argument shows that µN is a.s. even-

tually zero for each of these 2n boxes. This shows that the sequence {µN} is a.s.

eventually supported on a compact set, namely, △.

Step 4: Let I(x) ≤ log 2. Then almost surely, sup
x∈△∈B

{− lim inf 1
N

logµN(△)} as

well as sup
x∈△∈B

{− lim sup 1
N

logµN(△)} are I(x).

Fix △ ∈ B such that x ∈ △. Then lim inf 1
N

log λN(△) ≥ − inf
y∈△

I(y) = −L >

− log 2, where the last inequality is a consequence of the strict quasi-convexity of I.
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Fix α > 0 so that −L > − log 2 + α. So for large N , 1
N

log λN(△) > − log 2 + α,

that is, λN(△) > 2−NeNα. In other words, 2NλN(△) > eNα. Now use Step 2, for any

ǫ ∈ (0, 1), eventually

(1 − ǫ)λN(△) ≤ µN(△) ≤ (1 + ǫ)λN (△).

Hence by definition of LDP, we have eventually

−I(△) ≤ lim inf
N→∞

1

N
logµN(△) ≤ lim sup

N→∞

1

N
log µN(△) ≤ −I(△), (1.2.1)

where as usual I(A) = inf
x∈A

I(x).

From the first part of the above inequality we have,

sup
△∈B:x∈△

{− lim inf
N

1

N
log µN(△)} ≤ sup

△∈B:x∈△
I(△) ≤ I(x). (1.2.2)

Moreover, for every △ ∈ B such that x ∈ △ using the right side inequality of

(1.2.1), we have

lim sup
N

1

N
log µN(△) ≤ −I(△).

Let Bx = {△k ∈ B : k ≥ 1} be a subclass of B so that △k+1 ⊂ △k for every k

and ∩k△k = {x}. Then

sup
△∈B:x∈△

{− lim sup
N

1

N
log µN(△)} ≥ sup

△∈B:x∈△
I(△)

≥ sup
△∈Bx

I(△)

= lim
k

I(△k)

= I(x). (1.2.3)

The last equality follows as I is a good lower semicontinuous function (see Proposition

0.3.2).
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From (1.2.2) and (1.2.3), it follows that

sup
△∈B:x∈△

{− lim inf
N

1

N
logµN(△)} = sup

△∈B:x∈△
{− lim sup

N

1

N
log µN(△)} = I(x).

Now proof of Theorem 1.2.1 is completed by appealing to Proposition 0.3.3 and

observing that {µN} is eventually supported on a compact set.

Remark 1.2.1. The fact that I is a good rate function is essential in the above theorem

to conclude that almost surely eventually the sequence {µN(ω)} is supported on a

compact subset of Rn.

Remark 1.2.2. Observe that the strict quasi-convexity of the rate function in the above

theorem is a technical assumption. On real line that assumption can be replaced by

the assumption: I is strictly monotone on {x : I(x) ∈ (0,∞)} or by the assumption

that {x : I(x) = log 2} is a nowhere dense set. Such a condition is needed only to

ensure that there exists a countable base as mentioned in the above proof.

The implication of the above theorem in REM is amazing. To see this, let us
assume that {λN} is a sequence of probabilities on R and satisfies large deviation
principle with a good rate function I. Let us assume also that I be strictly quasi-
convex or satisfies any one of the conditions in remark 1.2.2. For fixed N , let us
consider 2N i.i.d. random variables ξ(σ), 1 ≤ σ ≤ 2N distributed like λN . We can
identify these 2N many σ with the elements of ΣN = {+1,−1}. Let us define the
Hamiltonian for σ ∈ ΣN to be

HN(σ) = Nξ(σ).

Now note that the partition function can be written as

ZN(β) = 2NEσe
−βHN (σ),

where Eσ is the expectation with respect to uniform probability on the ΣN space.
Hence

lim
N

1

N
logZN(β) = log 2 + lim

N

1

N
log

∫
e−NβxdµN(x).

By Theorem 1.2.1, the induced probabilities {µN} are a.s. eventually supported
on a compact set. That is, for almost every ω, there is a compact set Kω such that
{µN(ω), N ≥ 1} are all supported on Kω. Moreover, by previous theorem they satisfy
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LDP with a good rate function a.s. Hence to find the existence of limN
1
N

logZN(β),
we can use Varadhan’s integral lemma with any continuous function, in particular,
f(x) = βx on R. This will lead to the following:

Theorem 1.2.2. If the sequence of probabilities {λN} satisfies LDP with strictly

quasi-convex good rate function I, then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{I(x)≤log 2}
(βx+ I(x)) . (1.2.4)

Thus in the REM, the existence of limiting free energy is just a corollary of large
deviation principle. To get the the expression of the free energy one has to solve the
variational formula. Hence the calculation of asymptotics of free energy reduces to
calculation of the above infimum.

Remark 1.2.3. In the literature [16,20,42], for REM, the HamiltonianHN(σ) is defined

as
√
Nξ(σ), with ξ(σ) ∼ N (0, N). In our case with the Gaussian driving distribution

it is same as Nξ(σ) where ξ(σ) ∼ N (0, 1
N

). But the large deviation technique allows

us to consider HN to be any continuous function of ξ(σ). In other words, if f(x) is

a continuous function on R then one can define the random Hamiltonian HN(σ) =

Nf(ξ(σ)) where ξ(σ) ∼ λN . In that case, the above theorem will reduce to

Theorem 1.2.3. If a sequence of probabilities {λN} on R satisfies LDP with strictly

quasi-convex good rate function I and HN(σ) = Nf(ξ(σ)) where ξ(σ) ∼ λN and f is

a continuous function on R, then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{I(x)≤log 2}
(βf(x) + I(x)) . (1.2.5)

Of course, the appearance of f above makes it more general, but this could be
obtained from (1.2.4) by contraction principle of large deviation techniques. Different
choices of functions f allows us to consider the Hamiltonian driven by other distribu-
tion which can be obtained as a function of known distributions. For instance, if we
consider f(x) = x2 then we can get the information of the model when its Hamiltonian
is an appropriate χ2 if λN as N (0, 1

N
). Also we can consider several other functions,

for which we do not know the corresponding closed form expression of the distribution
of the Hamiltonian. For example, f(x) = x cos(1000π|x||x|) etc.

Remark 1.2.4. A close look at inf
{I(x)≤log 2}

(βf(x) + I(x)) suggests the following: If we
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consider the Hamiltonian of an N -particle system to be an odd function f of random

variables ξ(σ) ∼ λN and if the sequence {λN} satisfies LDP with a quasi-convex

good rate function taking value 0 at the origin, then the contribution for the limiting

free energy lim
N→∞

1
N

logZN(β) comes from only that part where the function f(x) is

negative. More precisely, f being an odd function f(0) = 0. Since I(0) = 0, infimum

in (1.2.5) is non-positive. So only points x where f(x) ≤ 0 need to be considered

while calculating the infimum. Thus, we have, almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{I(x)≤log 2}−
(I(x) + βf(x)) ,

where {I(x) ≤ log 2}− = {I(x) ≤ log 2} ∩ {f(x) ≤ 0}. For example, when f(x) = x

we have the following

Corollary 1.2.4. If f(x) = x and I(0) = 0, then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{I(x)≤log 2}−
(I(x) + βx) .

One can see that the contribution to the free energy is only from the negative values

of the random variable. This can be made precise as follows: Let {λN} and {νN} be

two sequences of probabilities satisfying LDP with a good strictly quasi-convex rate

functions I1 and I2 respectively so that I1(0) = I2(0) = 0 and I1(x) = I2(x) for

x ≤ 0. Then consideration of ξN ∼ λN or ξN ∼ νN will lead to the same limiting free

energy. In other words, symmetry of the random variables does not play any role in

the evaluation of limiting free energy. To illustrate, if we consider the density of λN

given by,

φN(x) =





1
2

√
N
2π
e−

1
2
Nx2

for x ≥ 0

N
2
eNx for x < 0

, (1.2.6)

then from the discussion of our next section, it will be clear that this sequence {λN}
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satisfies LDP with rate function

I(x) =





x2

2
for x ≥ 0,

−x for x < 0

and hence {I(x) ≤ log 2} = [− log 2,
√

2 log 2]. Here the distribution of λN is of

Gaussian form in the positive part of the real line whereas on the negative part it

is of exponential nature. If ξN ∼ λN , then as inf
{0<x≤

√
2 log 2}

(
1
2
x2 + βx

)
≥ 0 the above

corollary will reduce to

Corollary 1.2.5. If λN has density φN given by (1.2.6), then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{− log 2≤x≤0}
(−x+ βx) .

Hence the Gaussian part of the random variables does not contribute to the lim-

iting free energy. Similarly, if we consider the density of λN to be

φN(x) =





N
2
e−Nx for x ≥ 0

1
2

√
N
2π
e−

1
2
Nx2

for x < 0

, (1.2.7)

then the rate function will be

I(x) =





x for x ≥ 0

1
2
x2 for x < 0.

In this case Corollary 1.2.4 will reduce to

Corollary 1.2.6. If λN has density φN given by (1.2.7), then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

{−
√

2 log 2≤x≤0}

(
1

2
x2 + βx

)
.

Here the exponential nature of the random variable on the positive side does not
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play any role.

Remark 1.2.5. Suppose that the sequence of probabilities {λN} is supported on [0,∞)

and satisfies LDP with a quasi-convex rate function I with I(0) = 0. For example,

fix a number γ > 0 and put I(x) = xγ for x ≥ 0 and ∞ for x < 0 is such a rate

function. It follows from Corollary 1.2.4 that, when f(x) = x, then almost surely

lim
N→∞

1

N
logZN(β) = log 2 − inf

{I(x)≤log 2}−
(I(x) + βx) .

As the sequence {λN} is supported on non-negative real line, I(x) = ∞ for x < 0.

Hence {I(x) ≤ log 2}− = {I(x) ≤ log 2} ∩ {f(x) ≤ 0} = {0} and

lim
N→∞

1

N
logZN(β) = log 2

almost surely. In this case, the system will not show phase transition.

The examples given above are rather artificial. Of course, there are natural ex-
amples of random variables ξ(σ) whose distributions satisfy large deviation principle
with a good convex rate function. In the following sections, we discuss some examples.

1.3 Distribution with exponentially decaying Tail

In this section, we consider the driving sequence of distributions (λN) such that for
x > 0, λN [−x, x]c ∼ e−Nxγ

for some γ > 0.

1.3.1 Gaussian Distribution

Our first natural example is the Gaussian distribution well studied in the literature [16,
34, 20, 42]. Let λN be the centered Gaussian probability with variance 1

N
. That is,

having density
√

N
2π
e−N x2

2 , for −∞ < x < ∞. It is obvious that λN ⇒ 0 as N → ∞.

The following is well known. It can also be obtained from Cramer’s theorem 0.3.5.
Since the proof is simple, we give it.

Proposition 1.3.1. The sequence {λN} satisfies LDP with rate function I = x2

2
on

R.
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Proof. Let △ ⊂ R be an open interval. Let m = inf
x∈△

|x|, M = sup
x∈△

|x|, and qN =

λN(△). With this notation, note that, we have

qN ≤ 2

√
N

2π

∫ M

m

e−N x2

2 dx <

∫ √
NM

√
Nm

e−
x2

2 dx <

∫ ∞

√
Nm

e−
x2

2 dx ≤ 1√
Nm

e−
Nm2

2 , (1.3.1)

with the understanding that when mi = 0, the last expression is 1
2

and

qN ≥ 1√
2π

∫ √
NM

√
Nm

e−
x2

2 dx >
1

2

∫ √
N(m+δ)

√
Nm

e−
x2

2 dx >

√
Nδ

2
e−

N
2

(m+δ)2 , (1.3.2)

for any 0 < δ < M −m.

From above two inequalities, we can conclude that for any open interval △, the

limit, lim
N→∞

1
N

log λN(△) = −m2

2
. Once again, Proposition 0.3.3 completes the proof.

Remark 1.3.1. Note that, here I(x) = x2

2
is a continuous function with compact level

sets. Not only that, it is a convex function and hence quasi-convex.

As a consequence of Theorem 1.2.3, if for σ ∈ ΣN the random variables ξ(σ) ∼ λN

and the Hamiltonian HN(σ) = Nf(ξ(σ)) with any continuous function f on R, we
get the following:

Corollary 1.3.2. If λN ∼ N (0, 1
N

), then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

x2≤2 log 2

(
βf(x) +

x2

2

)
.

Taking f(x) = x, we will get the classical case where the Hamiltonian for
N -particle system HN is Gaussian with mean 0 and variance N . Note that,

inf
x2≤2 log 2

(
βx+ x2

2

)
= inf

0≤x≤
√

2 log 2

(
x2

2
− βx

)
. Let us denote the function g(x) = x2

2
−βx

so that g′(x) = x − β and g′′(x) = 1 > 0. Therefore, at x = β the function g at-

tains its infimum. So as long as β ≤ √
2 log 2, the inf

0≤x≤
√

2 log 2

(
x2

2
− βx

)
is attained

at x = β. Moreover, as g is a decreasing function on [0, β], for β >
√

2 log 2 the

inf
0≤x≤

√
2 log 2

(
x2

2
− βx

)
is attained at x =

√
2 log 2. Hence we get the following
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Theorem 1.3.3. If HN(σ) are independent N (0, N), then almost surely,

lim
N

1
N

logZN(β) = log 2 + β2

2
if β <

√
2 log 2

= β
√

2 log 2 if β ≥ √
2 log 2.

As we mentioned at the beginning, this is classical.

1.3.2 Exponential Distribution

Another simple but interesting example is the exponential distribution. Let λN be
two sided exponential probability with scale parameter 1

N
. That is, having density

1
2
Ne−N |x|, for −∞ < x <∞. Once again, it is obvious that λN ⇒ 0 as N → ∞. Now

we show the following

Proposition 1.3.4. The sequence {λN} satisfies LDP with rate function I = |x| on

R.

Proof. Let △ ⊂ R be an interval. Let m = inf{|x| : x ∈ △}, M = sup{|x| : x ∈ △},
and qN = λN(△). With this notation, we have

qN =
N

2

∫

△
e−N |x|dx <

∫ ∞

√
Nm

e−xdx ≥ e−Nm,

and

qN ≥
∫ NM

Nm

e−xdx >

∫ N(m+δ)

Nm

e−xdx > Nδe−N(m+δ),

for any 0 < δ < M −m.

From above two inequalities, we can conclude that for any interval △, the limit,

lim
N→∞

1
N

log λN(△) = −m. Once again, Proposition 0.3.3 completes the proof.

Remark 1.3.2. As in the Gaussian case, here also, note that, I(x) = |x| is a convex

continuous function with compact level sets.

Corollary 1.3.5. If ξN(σ) are independent (over σ) two sided exponential variables

with scale parameter 1
N

, f is a continuous function on R and HN(σ) = Nf(ξ(σ)) then
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almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

|x|≤2 log 2
(βf(x) + |x|) .

If we take f(x) = x, the Hamiltonian for N -particle system HN is, of course,
two sided exponential random variables with scale parameter 1, that is have density
1
2
e−|x| on R. In that case, for the limiting free energy, we only need to calculate
inf

|x|≤2 log 2
(|x| + βx), that is, inf

0≤x≤2 log 2
x(1−β). A simple calculation yields the following

Theorem 1.3.6. If HN(σ) are independent two sided exponential random variables

with scale parameter 1, then almost surely,

lim
N

1
N

logZN(β) = log 2 if β < 1

= β log 2 if β ≥ 1.

Remark 1.3.3. Interesting observation in this analysis is that, the random Hamilto-

nian, for N -particle system being exponential random variables with scale parameter

1, does not depend on the number of particles. Even then, the system shows a phase

transition.

1.3.3 Weibull Distribution

A more general class that can be considered are the Weibull distributions. Let λN be
the probabilities on R having density

φN,γ(x) =
N

2
|x|γ−1e−N |x|γ

γ , −∞ < x <∞. (1.3.3)

This is known as Weibull distribution with shape parameter γ > 0 and scale parameter(
γ
N

) 1
γ . Clearly, φN,1 is the usual two sided exponential density, considered in the

previous subsection. We show that,

Proposition 1.3.7. If λN has density φN,γ, then {λN} satisfy LDP with rate function

I = |x|γ
γ

on R.

Proof. Let △ ⊂ R be an interval. Let m = inf{|x| : x ∈ △}, M = sup{|x| : x ∈ △},



25 Distribution with exponentially decaying Tail

and qN = λN(△). With this notation, we have

qN =

∫

△

N

2
|x|γ−1e−N |x|γ

γ dx ≤
∫ N Mγ

γ

N mγ

γ

e−xdx <

∫ ∞

N mγ

γ

e−x = e−N mγ

γ dx, (1.3.4)

and

qN ≥ 1

2

∫ N Mγ

γ

N mγ

γ

e−xdx >
1

2

∫ N (m+δ)γ

γ

N mγ

γ

e−xdx >
δ

2
N(m+ θδ)γ−1e−N

(m+δ)γ

γ , (1.3.5)

for any 0 < δ < M −m and some θ, 0 < θ < 1. Mean value theorem is used here.

The above two inequalities imply that for any interval △ ⊂ R, lim
N→∞

1
N

log λN(△) =

−mγ

γ
. Thus Proposition 0.3.3 completes the proof.

Remark 1.3.4. In this case, rate function I(x) = |x|γ
γ

is a continuous function with

compact level sets. But I(x) is convex, only when γ ≥ 1. Note that, for 0 < γ < 1,

I(x) is not convex but clearly quasi-convex and hence Theorem 1.2.2 is applicable.

Corollary 1.3.8. If ξN(σ) are independent (over σ) having density φN,γ, f is a con-

tinuous function on R and HN(σ) = Nf(ξN(σ)) then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

|x|γ≤γ log 2

(
βf(x) +

|x|γ
γ

)
.

As earlier, if we take, f(x) = x, the Hamiltonian for N -particle system HN

is a two sided Weibull distribution with shape parameter γ and scale parameter

γ
1
γN

γ−1
γ . In this case the problem of limiting free energy reduces to the calculation

of inf
|x|γ≤log 2

(
|x|γ
γ

+ βx
)
, that is, inf

0≤x≤(γ log 2)
1
γ

(
xγ

γ
− βx

)
.

For γ > 1, to calculate the above infimum, we imitate the Gaussian case. Let us
denote g(x) = xγ

γ
− βx so that g′(x) = xγ−1 − β and g′′(x) = (γ − 1)xγ−2 ≥ 0 on

[0, (γ log 2)
1
γ ]. So g being twice differentiable convex function, the infimum of g will

attain where g′ = 0. But g′ will be 0 on [0, (γ log 2)
1
γ ] only when β ≤ (γ log 2)

1
γ . In

that case, the infimum will occur at x = β
1

γ−1 . When β > (γ log 2)
1
γ , then g′ < 0 on

[0, (γ log 2)
1
γ ] and hence infimum occur at x = (γ log 2)

1
γ .

For γ ≤ 1, the function g(x) = xγ

γ
− βx = xγ

(
1
γ
− βx1−γ

)
is a product of two

functions. Here xγ is a positive increasing function on [0, (γ log 2)
1
γ ]. On the other
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hand, 1
γ
− βx1−γ is a decreasing function taking the value 1

γ
at 0. If this function

always remains positive then clearly the minimum of g is 0 attained at x = 0. On the

other hand, if this function takes negative value in [0, (γ log 2)
1
γ ] then the infimum of

g is attained at (γ log 2)
1
γ . This situation occurs only when 1

γ
− βx1−γ = 0 for some x

in [0, (γ log 2)
1
γ ]. This happens only when β ≥ γ−

1
γ (log 2)−

1−γ
γ . Hence the infimum of

g on [0, (γ log 2)
1
γ ] is attained at x = 0 for β < γ−

1
γ (log 2)−

1−γ
γ and at x = (γ log 2)

1
γ

for β ≥ γ−
1
γ (log 2)−

1−γ
γ .

We can combine the above arguments as

Theorem 1.3.9. If {HN(σ), σ ∈ ΣN} are independent having two sided Weibull

distribution with shape parameter γ > 0 and scale parameter γ
1
γN

γ−1
γ , then almost

surely,

lim
N

1

N
logZN(β) =






log 2 + γ−1
γ
β

γ
γ−1 if β < (γ log 2)

1
γ ,

(γ log 2)
1
γ β if β ≥ (γ log 2)

1
γ

if γ > 1

and

lim
N

1

N
logZN(β) =






log 2 if β < γ−
1
γ (log 2)−

1−γ
γ ,

(γ log 2)
1
γβ if β ≥ γ−

1
γ (log 2)−

1−γ
γ

if γ ≤ 1.

Remark 1.3.5. It is easy to verify that, if λN has density,

φN,γ(x) = Const.e−N |x|γ

γ −∞ < x <∞,

more precisely,

φN,γ(x) =
1

2Γ( 1
γ
)
γ

γ−1
γ N

1
γ e−N |x|γ

γ −∞ < x <∞

then {λN} satisfies LDP with rate function I(x) = 1
γ
|x|γ. Note that here γ = 2 is

the Gaussian distribution. Hence in REM, if we consider HN to N (0, N) or two sided

Weibull distribution with shape parameter γ = 2 and scale parameter
√

2N , they
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will produce the same limiting free energy. So the limiting free energy of REM is not

entirely distribution specific, but it is ’rate-specific’.

1.4 Compact Distributions

In the previous section we observed that, for the existence and evaluation of free
energy, we concentrated our attention on the set {x : I(x) ≤ log 2}. That is, the
entire support of the random variables are not contributing to the system. To do that,
we used a variant of Varadhan’s lemma. In general Varadhan’s lemma is applicable
to the class of bounded continuous functions. In our case the functions used in the
previous section are rather unbounded. As suggested by Proposition 0.3.4, if the
underlying sequence of probabilities are eventually supported on a compact set, we
can overcome this little technicality. Our assumption that the rate function I is a good
rate function will ensure that the sequences of induced probabilities are almost surely
eventually supported on a compact set. Since I is a good rate function {I(x) ≤ α}
is a compact set for every α ∈ R. In particular, {I(x) ≤ log 2} is a compact set. For
example, if {λN} is a sequence of probabilities satisfying LDP with rate function I so
that I(x) ≤ log 2 for all x ∈ R, then we may not be able to apply Varadhan’s lemma
to get the free energy of the system. In particular, if I(x) = 0 for all x ∈ R, we
can not infer anything about the existence of the free energy of the system by large
deviation techniques.

To start with, let us note that, if I takes two value 0 and ∞ so that {I(x) = 0}
is a compact set, say C. In this case, in view of Remark 1.2.2, we can apply Theorem
1.2.3 with f(x) = βx. This will ensure the almost sure existence of the limiting free
energy and is equal to log 2 − inf

C
βx = log 2 − βx0, where x0 = inf{x : x ∈ C}. Note

that, if C ⊂ [0,∞) then clearly the limiting free energy becomes negative for large β
if 0 /∈ C whereas if 0 ∈ C then it will be just a constant, log 2. So we will not get any
phase transition here.

Though we do not have a clear picture when I is identically 0, we have some
partial results. First of all, note that I(x) = 0 for all x ∈ R iff lim

N→∞
1
N

log λN(△) = 0

for every open subset △ of R. This follows from definition of LDP.
Now let us consider the case, when the Hamiltonian is supported on a compact set.

For each N , let λN be a compactly supported symmetric probability with density φN

and {ξN(σ) : σ ∈ ΣN} be independent random variables having density φN . Consider
the Hamiltonian

HN(σ) = NξN (σ).

Let [−αN , αN ] be the support of φN . Let us assume that αN → α as N → ∞. Here we
allow the possibility that α = ∞. For s ≥ 0, denote aN(s) = P{ξN(σ) ≥ s}. Note that
in this setup if {λN} satisfy LDP with rate function I(x) = 0, then 1

N
log aN(s) → 0

as N → ∞ for 0 ≤ s < α.
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The following theorem suggests that if the tail probability does not decay expo-
nentially fast over N , then we can not expect any annealed phase transition.

Theorem 1.4.1. Let [−αN , αN ] be the support of ξN and for s ≥ 0, denote aN(s) =

P{ξN(σ) ≥ s}. If αN → α and 1
N

log aN (s) → 0 as N → ∞ for 0 ≤ s < α, then

lim
N→∞

1

N
E logZN(β) = log 2 + αβ.

Proof. As

2Ne−βNαN ≤ ZN(β) ≤ 2NeβNαN ,

the proof for α = 0 is immediate. Moreover, in this case, for every sample point

lim
N→∞

1

N
logZN (β) = log 2.

So let α > 0 (may be α = ∞). Since log is concave, by Jensen’s inequality

E logZN(β) ≤ logEZN(β). (1.4.1)

As HN are bounded by NαN ,

EZN(β) = 2NEeβHN < 2NeβNαN .

Hence, by assumption and (1.4.1),

lim sup
N→∞

1

N
E logZN(β) ≤ log 2 + αβ. (1.4.2)

Now we show,

lim inf
N→∞

1

N
E logZN(β) ≥ log 2 + αβ. (1.4.3)

For that, with arbitrary but fixed 0 ≤ s < α, let XN = #{σ : HN(σ) ≥ sN}. Then
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EXN = 2NaN(s) and EX2
N = 2N(2N − 1)a2

N(s) + 2NaN (s). Hence

E(XN − EXN)2 = EX2
N − (EXN)2 ≤ 2NaN (s). (1.4.4)

If XN ≤ 2N−1aN(s) then EXN − XN ≥ 2N−1aN(s) so that (XN − EXN)2 ≥
22N−2a2

N(s). Let AN = {XN ≤ 2N−1aN (s)}. So AN ⊂ {(XN −EXN )2 ≥ 22N−2a2
N (s)}.

Hence, by Markov inequality and ( 1.4.4),

P (AN) ≤ E(XN −EXN)2

22N−2a2
N(s)

≤ 4

2NaN(s)
.

i.e., P (Ac
N) ≥ 1 − 4

2N aN (s)
. But on Ac

N ,

ZN(β) ≥ XNe
βsN ≥ 2N−1aN(s)eβsN ,

and hence

E
[
logZN(β)1Ac

N

]
≥ [(N − 1) log 2 + log aN(s) + βsN ]

(
1 − 4

2NaN(s)

)
. (1.4.5)

Now AN = {XN = 0} ∪ {1 ≤ XN ≤ 2N−1an(s)}. Since ZN(β) ≥ 2Ne−βNαN and

PP (XN = 0) = (1 − aN(s))2N

we have

E
[
logZN(β)1{XN=0}

]
≥ (N log 2 − βNαN )(1 − aN (s))2N

. (1.4.6)

On {1 ≤ XN ≤ 2N−1aN(s)}, logZN(β) ≥ βmax
σ

HN(σ) ≥ βsN > 0 and hence

E
[
logZN(β)1{1≤XN≤2N−1aN (s)}

]
≥ 0. (1.4.7)
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Thus from (1.4.5), (1.4.6) and (1.4.7) we have

1
N
E logZN(β) ≥

[
N−1

N
log 2 + log aN (s)

N
+ βs

](
1 − 4

2N aN (s)

)

+ [log 2 − βαN ] (1 − aN(s))2N

.

By assumption, 1
N

log aN(s) → 0 so that 2NaN(s) → ∞ and hence (1−aN (s))2N →
0 as N → ∞. Thus, under the assumption,

lim inf
N→∞

1

N
E logZN(β) ≥ log 2 + βs.

Since 0 ≤ s < α is arbitrary, we have

lim inf
N→∞

1

N
E logZN(β) ≥ log 2 + αβ

which remain true even when α = ∞ with the understanding that the right side of

the above inequality is ∞.

This completes the proof.

Since ξN has density φN with support [−αN , αN ] and HN = NξN , the support of
HN will be [−TN , TN ] where TN = NαN . If we assume, ϕN be the density of HN with
support [−TN , TN ], then we can apply the above theorem with αN = TN

N
.

The following examples will illustrate the applications of the above theorem.

Example 1.4.1 (Uniform Distribution). Let ϕN(x) = 1
2TN

1[−TN ,TN ]. If TN

N
→ α > 0,

then aN (s) → α−s
2α

> 0 for all 0 ≤ s < α. So utilizing the above theorem we get,

a) if TN =
√
N then lim

N→∞

1

N
logZN(β) = log 2 for every sample point,

b) if TN = N then lim
N→∞

1

N
E logZN(β) = log 2 + β,

c) if TN = N2 then lim
N→∞

1

N
E logZN(β) = ∞.

Similar remarks follows for the other examples also.

Example 1.4.2. Let δ > 0 be fixed and

ϕN(x) =
δ + 1

2T δ+1
N

(TN − |x|)δ, −TN ≤ x ≤ TN .
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If TN

N
→ α > 0, then aN(s) → 1

2

(
α−s
α

)δ+1
> 0 for all 0 ≤ s < α.

Example 1.4.3. Let

ϕN(x) =
1

2TN

cos
x

TN

, −πTN

2
≤ x ≤ πTN

2
.

If TN

N
→ α > 0, then aN(s) → 1

2

(
1 − sin s

α

)
> 0 for all 0 ≤ s < απ

2
.

Example 1.4.4. Let

ϕN(x) =
N

2(eNTN − 1)
eN |x|1[−TN ,TN ].

If TN

N
→ α > 0, then aN(s) → 1

2
as N → ∞ for all 0 ≤ s < α.

In the following examples, above theorem is not applicable.

Example 1.4.5 (Truncated Double Exponential). Let

ϕN(x) =
1

2(1 − e−TN )
e−|x|1[−TN ,TN ].

Let TN

N
→ α(> 0) as N → ∞. Then aN(s) = eTN−sN−1

2(eTN −1)
. Hence log aN (s)

N
→ −s 6= 0

as N → ∞ for all s with 0 < s < α. Thus we can not apply the Theorem 1.4.1 any

more. However, if HN(σ) has density ϕN(x) and λN is the law of 1
N
HN(σ) then if

TN

N
→ α(> 0), by analysis of subsection 1.3.2, we can easily see that the sequence

{λN} satisfies large deviation principle with rate function I given by,

I(x) =





|x| for |x| ≤ α

∞ otherwise.

Hence we can use Theorem 1.2.3 to conclude that the free energy will be same as that

of exponential REM as long as α ≥ log 2. Where as if α < log 2 then almost surely,

lim
N

1

N
logZN(β) =






log 2 for 0 ≤ β ≤ 1

log 2 − α + βα for β ≥ 1.
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Example 1.4.6 (Truncated Gaussian). Let

ϕN(x) =
1

CN

e−
x2

2N 1[−TN ,TN ].

Let TN

N
→ α(> 0) as N → ∞. Then log aN (s)

N
→ −1

2
s2 6= 0 as N → ∞ for all s with

0 < 1
2
s2 < α. Thus we can not apply the Theorem 1.4.1 once again. However, if

HN(σ) has density ϕN (x) and λN is the law of 1
N
HN(σ) then if TN

N
→ α(> 0), by

analysis of subsection 1.3.1, we can easily see that the sequence {λN} satisfy large

deviation principle with rate function I given by,

I(x) =






1
2
x2 for 1

2
x2 ≤ α

∞ otherwise.

Hence we can use Theorem 1.2.3 to conclude that the free energy will be same as that

of Gaussian REM as long as α ≥ log 2. Where as if α < log 2 then almost surely,

lim
N

1

N
logZN(β) =






log 2 + 1
2
β2 for 0 ≤ β ≤

√
2α

log 2 − α+ β
√

2α for β ≥
√

2α.

1.5 Discrete Distributions

We conclude this chapter by considering the REM driven by some discrete distribu-
tions.

1.5.1 Poisson Distribution

Let us consider the Hamiltonian for the N particle system HN(σ) ∼ P (Nθ) where
P (Nθ) is the Poisson distribution with parameter Nθ. Let λN be the law 1

N
P (Nθ).

We also can think of λN as the law of the sample mean for a sample of size N from
P (θ). Then by Cramer’s theorem (Theorem 0.3.5), {λN} satisfies LDP with convex
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good rate function I given by

I(x) =

{
θ − x+ x log x

θ
for x ≥ 0

∞ otherwise
. (1.5.1)

Hence by Theorem 1.2.3, if for σ ∈ ΣN the random variables ξ(σ) is distributed like
λN and the Hamiltonian HN(σ) = Nf(ξ(σ)) with any continuous function f on R,
we have the following:

Corollary 1.5.1. If λN ∼ 1
N
P (Nθ), then almost surely,

lim
N→∞

1

N
logZN(β) = log 2 − inf

I(x)≤log 2
(βf(x) + I(x)) .

Notation: Note that here I is a convex continuous function on [0,∞) so that I(0) = θ;
I(θ) = 0 and I(x) → ∞ as x → ∞. So the set {x : I(x) = log 2} contains only one
point when θ < log 2; contains zero and one non-zero-point for θ = log 2; contains two
positive points for θ > log 2. As a consequence, the set {I(x) ≤ log 2} is an interval
[x1, x2]; x1 = 0 in case of θ ≤ log 2 where as x1 > 0 in case of θ > log 2. In any case,
θ ∈ (x1, x2).

Hence when f(x) = x the above corollary implies that

lim
N

1
N

logZN(β) = log 2 − inf
[x1,x2]

{
βx+ θ − x+ x log x

θ

}

= log 2 − θ − inf
[x1,x2]

{
(β − 1)x+ x log x

θ

}
.

To calculate the above infimum, let g(x) = (β − 1)x+ x log x
θ

on [0,∞). Clearly, g is
a convex function. g′(x) = β + log x

θ
, so that g′(x) = 0 implies x = θe−β . Hence g at-

tains its infimum at x = θe−β. We consider two cases, namely, θ ≤ log 2 and θ > log 2.

θ ≤ log 2

For β ≥ 0, 0 < θe−β ≤ θ < x2. That is, the point x = θe−β, where
g attains minimum, belongs to ∈ [x1, x2] for every β ≥ 0. Hence inf

[x1,x2]
g(x) =

(β − 1)θe−β − θe−β log e−β = −θe−β

θ > log 2

As β increases from 0 to ∞, θe−β decreases from θ to 0. Since 0 < x1 < θ, there
exists β0 > 0 such that

θe−β0 = x1.

Clearly, for β ≤ β0, θe
−β ∈ [x1, x2] so that inf

[x1,x2]
g(x) = −θe−β . Since g attains
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its infimum at x = θe−β, g is increasing (by convexity) on (x,∞). For β > β0,
x = θe−β < θe−β0 = x1. Thus g is increasing on [x1, x2]. As a consequence, when
β > β0, we have inf

[x1,x2]
g(x) = g(x1) = βx1 + I(x1) − θ = βx1 + log 2 − θ.

All this leads to

Theorem 1.5.2. Consider REM where the Hamiltonian HN(σ) is Poisson with pa-

rameter Nθ.

a) For θ ≤ log 2, almost surely,

lim
1

N
logZN = log 2 − θ + θe−β for β ≥ 0.

b) For θ > log 2; let x1 be the least positive solution of x(log x
θ
− 1) = θ − log 2,

and β0 = log θ
x1

= θ−log 2
x1

− 1. Then almost surely,

lim 1
N

logZN = log 2 − θ + θe−β for β ≤ β0

= βx1 for β > β0.

Now if we take f(x) = −x, then by Corollary 1.5.1, almost surely, the limiting
free energy is given by

lim
N

1

N
logZN(β) = log 2 − inf

I(x)≤log 2
{I(x) − βx}

= log 2 − θ − inf
I(x)≤log 2

{
x log

x

θ
− (β + 1)x

}
.

To calculate the above infimum, let g(x) = x log x
θ
− (β + 1)x on [0,∞) so that

g′(x) = log x
θ
−β and g′′(x) = 1

x
> 0 on (0,∞). Hence g attains its infimum at x = θeβ.

Note that, x = θ for β = 0 and x → ∞ as β → ∞. So there exist β1 > 0 such that
I(θeβ1) = log 2, that is, θeβ1 = x2. So the infimum inf

I(x)≤log 2

{
x log x

θ
− (β + 1)x

}

occurs at θeβ for β ≤ β1 and at x2 for θ > β1 leading to the following

Theorem 1.5.3. In REM, if the Hamiltonian HN(σ) negative of Poisson with pa-

rameter Nθ, then almost surely

lim 1
N

logZN = log 2 − θ + θeβ for β ≤ β1

= βx2 for β > β1.



35 Discrete Distributions

1.5.2 Binomial Distribution

Let XN ∼ B(N, p) where B(N, p) is the Binomial distribution with parameter p (0 <
p < 1). Put ξN = XN

N
. Observe that when p = 0 or 1, then the Hamiltonian is

deterministic one and uninteresting. Let λN be the law of ξN . Thus ξN is nothing but
the proportion of heads in N tosses of a coin (with chance of heads p). By Cramer’s
theorem (Theorem 0.3.5), {λN} satisfies LDP with convex good rate function I given
by

I(x) =

{
x log x

p
+ (1 − x) log 1−x

1−p
for x ∈ [0, 1]

∞ otherwise.
(1.5.2)

Note that here I is a strictly convex continuous function. Now fix a continuous
function f on R. Consider N particle system with Hamiltonian HN = Nf(ξN(σ)).
By Theorem 1.2.3, to calculate the limiting free energy we only have to solve the
optimization problem

inf
I(x)≤log 2

(βf(x) + I(x)) .

Note that here I(0) = − log(1 − p); I(p) = 0 and I(1) = − log p. So the set
{x : I(x) = log 2} = {0, 1} when p = 1

2
otherwise the set {x : I(x) = log 2} is a

singleton. Let us denote the set {I(x) ≤ log 2} as [x1, x2] where 0 < x1 < p < x2 = 1
for p > 1

2
; 0 = x1 < p < x2 < 1 for p < 1

2
and 0 = x1 < p < x2 = 1 for p = 1

2
.

When f(x) = x, by Theorem 1.2.3, we have almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

[x1,x2]

{
βx+ x log

x

p
+ (1 − x) log

1 − x

1 − p

}
.

To calculate the above infimum, let g(x) = βx + x log x
p

+ (1 − x) log 1−x
1−p

on [0, 1].

Clearly g is a convex function and g′(x) = β + log x(1−p)
(1−x)p

. So g attains its infimum at

x(β) given by x(β) =
p

p+ (1 + p)eβ
. We now consider two cases.

p ≤ 1

2

As [x1, x2] = [0, x2] where x2 > p and x(β) ≤ p
2p+1

< p for every β ≥ 0, we have

x(β) ∈ [x1, x2] = [0, x2]. Hence on [x1, x2], g attains its infimum at x(β) and by routine
algebraic manipulations, we get, inf

[x1,x2]
g(x) = βx(β)+I(x(β)) = β− log(p+(1−p)eβ).

p > 1

2

Since x(β) decreases from p
2p+1

< p to 0 as β increases from 0 to ∞ and 0 < x1 < p,
there exists β0 > 0 such that

x(β0) = x1.

Hence as x(β) ∈ [x1, x2] for β ≤ β0, g attains its infimum at x(β) on [x1, x2] and we
get inf

[x1,x2]
g(x) = β−log(p+(1−p)eβ). On the other hand, for β > β0, g being a convex
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function and attains it infimum at x < x1, g is increasing for x > x. Hence g attains
its infimum on [x1, x2] at x1 leading to inf

[x1,x2]
g(x) = g(x1) = βx1 +I(x1) = βx1 +log 2.

All this leads to

Theorem 1.5.4. In REM, if the Hamiltonian HN(σ) is Binomial with parameter N

and p, then almost surely,

a) for p ≤ 1
2
,

lim
1

N
logZN = log 2 − β + log(p+ (1 − p)eβ) for β ≤ 0.

b)for p > 1
2
,

lim 1
N

logZN = log 2 − β + log(p+ (1 − p)eβ) for β ≤ β0

= −βx1 for β > β0.

On the other hand, if we take f(x) = −x, then by Theorem 1.2.3, almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

I(x)≤log 2
{I(x) − βx}

= log 2 − inf
[x1,x2]

{
x log

x

p
+ (1 − x) log

1 − x

1 − p
− βx

}
,

where we use the same notation for x1, x2 as in the case for f(x) = x.
To calculate the above infimum, let h(x) = x log x

p
+ (1 − x) log 1−x

1−p
− βx on [0, 1]

so that h′(x) = log x(1−p)
(1−x)p

− β and g′′(x) = 1
x(1−x)

> 0 on (0, 1). Hence g attains its

infimum at x(β) =
p

p+ (1 − p)e−β
. Note that, x(0) = p and x(β) → 1 as β → ∞. So

the infimum inf
[x1,x2]

h(x) is attained at x(β) for every β > 0 for p ≥ 1
2

and for β ≤ β1

for p < 1
2
, where β1 > 0 is such that I(x(β1)) = log 2, that is, x(β1) = x2. For p < 1

2

and β > β1 the infimum inf
[x1,x2]

h(x) is attained at at x2. To be more precise, we get

the following:

Theorem 1.5.5. In REM, if the Hamiltonian HN(σ) is negative Binomial random

variable with parameter N and p, then almost surely
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a) for p ≥ 1
2
,

lim
1

N
logZN = log 2 + β + log(p+ (1 − p)e−β) for β ≥ 0.

b)for p < 1
2
,

lim 1
N

logZN = log 2 + β + log(p+ (1 − p)e−β) for β ≤ β1

= βx2 for β > β1.
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Chapter 2

The Generalized Random Energy

Model

In the random energy model (REM) [15, 16] of Derrida, the Hamiltonians in dis-
tinct configurations are independent. The idea in generalized random energy model
(GREM) is to bring an amount of dependence in the Hamiltonians through the struc-
ture of configurations. Of course, very little can be achieved by assuming an arbitrary
covariance matrix. To introduce hierarchy, an n-level tree structure was suggested by
Derrida [17], where the branches of the tree are in correspondence with the configu-
ration space. In this chapter we discuss this model with some modifications. There
are two essential differences from what is usually considered in the literature. First,
we provide a general framework of trees. However, they will be considered in the
next chapter. Second, we split the number of particles N into n groups rather than
splitting the number of spins (or ‘factorizing’ 2 as is customary in the literature). This
allows us to introduce a further randomization at the tree level, like Poisson trees and
multinomial trees. These will be consider in chapter 3.

In this chapter, we specialize to the driving distributions having exponentially
decaying tails. The basic inequalities lead to the large deviation principle (LDP) for
the random probabilities as in the case of REM considered in the previous chapter.
This leads to an explicit formula for the free energy. For the exponential GREM,
the driving distribution does not depend on the number of particles. This does not
make it less interesting. In fact, the Gaussian case is no more complicated than the
exponential case. The present treatment clearly brings out the similarities between
the two cases. There are dissimilarities too. As expected, for small values of β (inverse
temperature), the energy function in the exponential case does not depend on β where
as for the Gaussian it is quadratic in β. In the Gaussian case, all the weights associated
with all the levels of the tree participate in the expression for free energy, where as in
the exponential case it is not always so.

Even though for any finite number of particles, we have a truly n level tree, in

39
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the limit, it may collapse to a lower level tree – it may even correspond to REM
(see remarks 2.6.1 and 2.6.5). This leads to the notion of reduced GREM. For such
models, the energy function determines all the parameters of the model. It is also
possible to characterize the energy functions. It is interesting to note that in the
SK-model, subject to certain moment conditions of the underlying distribution, the
energy function is universal [9], while it is not true here.

2.1 Derrida’s Model

Let us first describe the model in detail. As a generalization to his REM [16], in
GREM [17] Derrida introduced a tree-like structure in the energy levels. This is
what we now explain. Fix a positive integer n ≥ 1. This n will be the level of the
tree. For each level i = 1, 2, · · · , n of the tree, fix number αi so that αi ∈ (1, 2) and∏n

i=1 αi = 2. For fixed N , in the tree, there will be αN
1 many nodes at the first level.

Below each of the first level nodes, there will be αN
2 many nodes in the 2nd level.

Hence, there will be a total of (α1α2)
N many nodes at the 2nd level. In general, at

the ith level, there will be αN
i many nodes below each of the (i − 1)th level nodes

giving a total (α1α2 · · ·αi)
N many nodes in the ith level. So at the n-th, that is,

last level there will be (α1α2 · · ·αn)N = 2N many nodes (leaves). Derrida associates
the configuration space ΣN with the all possible branches from root to leaves of the
above tree. Since there are 2N many configurations, he assumes

∏n
i=1 αi = 2. To

define the Hamiltonian, he associates an independent random variable to each edge
of the tree. For i = 1, 2, · · · , n there are (α1α2 · · ·αi)

N independent Gaussian mean

zero random variables ξ
(i)
j with variance aiN associated to each of the ith level edges.

Here a1, a2, · · · , an are positive numbers so that
∑n

i=1 ai = 1. The Hamiltonian for
a configuration, that is, for a branch from root to a leaf is the sum of the n random
variables associated with the edges constituting the branch. So the partition function,
in this model, reduces to

ZN(β) =

αN
1∑

i1=1

i1αN
2∑

i2=(i1−1)αN
2 +1

· · ·
in−1αN

n∑

i2=(in−1−1)αN
n +1

e
−β
“Pn

k=1 ξ
(k)
ik

”

.

In the entire explanation above, we pretended that each αN
i is an integer. But is

this possible? – No. One way out is to consider [αN
i ]. Being the number of edges,

each αN
i has to be an integer which divides 2N because (α1α2 · · ·αn)N = 2N . By the

fundamental theorem of arithmetics, αN
i = 2k(i,N) for some positive integer k(i, N).

Moreover, k(i, N) for i = 1, · · · , n is such that k(1, N)+k(2, N)+· · ·+k(n,N) = N . In
other words: given any tree with 2N leaves the construction allows only for furcations
in powers of 2 at each layer. This was also noted in [13]. To eliminate the confusion
regarding whether αN

i is an integer or not, we made the natural modification to the
model in the next section.
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2.2 A Reformulation

We formulate GREM as follows. As above, fix an integer n ≥ 1. Let N ≥ n be
the number of particles, each of which can have two states/spins +1,−1; so that
the configuration space is 2N . Consider a partition of N , into integers k(i, N) for
1 ≤ i ≤ n with each k(i, N) ≥ 1 and

∑
i

k(i, N) = N . The configuration space 2N ,

naturally splits into product,
∏

2k(i,N) and σ ∈ 2N can be written as σ1σ2 · · ·σn with
σi ∈ 2k(i,N). An obvious tree structure can be brought in the configuration space.
As earlier imagine an n-level tree. There are 2k(1,N) nodes at the first level. These
will be denoted as σ1, with σ1 ∈ 2k(1,N). Below each of the first level nodes there are
2k(2,N) nodes at the second level. The second level nodes below σ1 of the first level
will be denoted by σ1σ2 with σ2 ∈ 2k(2,N). In general, below a node σ1σ2 · · ·σi−1 of
the (i− 1)-th level there are 2k(i,N) nodes at the i-th level denoted by σ1σ2 · · ·σi−1σi

for σi ∈ 2k(i,N). Thus a typical branch of the tree reads like σ1σ2 · · ·σn. Obviously the
branches are in one one correspondence with 2N , the configuration space. At the node
σ1 · · ·σi, we place a random variables ξ(σ1 · · ·σi). We assume that all these random
variables are i.i.d. with a symmetric distribution. We associate one weight for each
level, say weight ai > 0 for the i-th level. These are not random. In a configuration
σ = σ1 · · ·σn the Hamiltonian is

HN(σ) =

n∑

i=1

aiξ(σ1 · · ·σi). (2.2.1)

For β > 0 the partition function is

ZN(β) =
∑

σ

e−βHN (σ) = 2NEσe
−βHN (σ). (2.2.2)

Here Eσ stands for expectation with respect to σ when the configuration space 2N

has uniform distribution. In other words, Eσ is simply the usual average over σ.
Since ξ’s are random variables bothHN and ZN are random variables. We suppress

the parameter ω. As usual 1
N

logZN(β) is the free energy of the N -particle system.
This is the object of study. As N changes, the common distribution of the ξ’s would
in general change and so in HN .

2.3 Tree Formulation

We now reformulate the setup as a general tree structure. Though most of the trees
that we consider later are regular −− in the sense that the number of furcations
of a node depend only on its level, and not on the particular node −− the present
formulation is general. It allows randomization of the tree, which we do consider later
in the next chapter.
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Let n ≥ 1 be fixed integer as earlier. For each N ≥ n, let TN be a tree of height n
with each branch extending up to the n-th level. σ1 denotes a typical node at the first
level and in general below a node σ1σ2 · · ·σi−1 of the (i− 1)-th level, σ1σ2 · · ·σi−1σi is
a typical node at the i-th level. We shall now define some useful quantities associated
with the tree. Let ΣN be the set of all branches σ1σ2 · · ·σn of the tree TN . Let BiN

denote the number of nodes at the i-th level. In particular, BnN is the total number
of branches of the tree, which will simply be denoted by BN . For a node σ1σ2 · · ·σi of
the i-th level, let e(σ1σ2 · · ·σi) denote the number of nodes at the n-th level below the
node σ1σ2 · · ·σi. Equivalently, e(σ1σ2 · · ·σi) is the total number of branches extending
σ1σ2 · · ·σi. Clearly,

∑
σ1,··· ,σi

e(σ1 · · ·σi) = BN for any i. Let s2
iN =

∑
σ1,··· ,σi

e2(σ1 · · ·σi).

Assume that ξ(σ1 · · ·σi) is a symmetric random variable associated with node
σ1σ2 · · ·σi. We assume that these random variables are i.i.d. Strictly speaking we
should be using superscript N for the nodes, random variables etc. But for ease in
reading we suppress the superscript. This should be borne in mind. We do assume
that all our random variables are defined on one probability space. Consider the map
ΣN → Rn defined by

σ 7→ ξσ = (ξ(σ1), ξ(σ1σ2), · · · , ξ(σ1 · · ·σn)).

Let µN be the induced probability on Rn when ΣN has uniform distribution, that
is, each σ ∈ ΣN has probability 1

BN
. In other words, for any Borel set A ⊂ Rn,

µN(A) =
1

BN
#{σ : ξσ ∈ A}.

In particular, if A is a box, say △ = △1 × · · · × △n, with each △i ⊆ R, then

µN(△) =
1

BN

∑

<σ1···σn>

n∏

i=1

1△i
(ξ(σ1σ2 · · ·σi)).

Denote qiN = P (ξ ∈ △i) for 1 ≤ i ≤ n. Since all the ξ(σ1 · · ·σi) (for fixed N)
are i.i.d., we did not use suffix for ξ in defining qiN . However since the common
distribution will in general change with N , qiN would in general depend on N . Then

EµN(△) = q1Nq2N · · · qnN . (2.3.1)

Here now is the basic result.

Theorem 2.3.1. Let △ = △1 × · · · × △n ⊂ Rn. Denote qiN = P (ξ ∈ △i) for

1 ≤ i ≤ n.
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a) If
∑

N≥n

BiNq1N · · · qiN <∞, for some i, 1 ≤ i ≤ n then a.s. eventually,

µN(△) = 0.

b) If for all i = 1, · · · , n, ∑
N≥n

s2
iN

B2
N q1N ···qiN

<∞, then for any ǫ > 0 a.s. eventually,

(1 − ǫ)EµN(△) ≤ µN(△) ≤ (1 + ǫ)EµN(△).

In proving the first part of the theorem we will use the idea of Dorlas and Dukes
[19], where as for the last part, we follow Capocaccia et al [8].

Proof. a) Let j0 be such that
∑

N≥1

Bj0Nq1N · · · qj0N <∞. Then

µN(△) =
1

BN

∑
σ1···σn

n∏
i=1

1△i
(ξ(σ1 · · ·σi))

≤ 1

BN

∑
σ1···σj0

j0∏
i=1

1△i
(ξ(σ1 · · ·σi))e(σ1 · · ·σj0)

= GN , (say).

Let AN be the event {GN = 0}. Observe that

Ac
N =




∑

σ1···σj0

j0∏

i=1

1△i
(ξ(σ1 · · ·σi)) ≥ 1



 .

Now by Chebyshev’s inequality,

P(Ac
N) ≤ E

∑

σ1···σj0

j0∏

i=1

1△i
(ξ(σ1 · · ·σi)) = Bj0Nq1N · · · qj0N .

Thus by assumption and Borel-Cantelli, AN will occur a.s. eventually. i.e. GN = 0

and hence µN(△) = 0.
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b) We first get an estimate for the variance of µN(△).

var(µN(△))

= E(µN(△))2 − (EµN(△))2

=
1

B2
N

∑
σ1···σn
τ1···τn

[
E

n∏
i=1

1△i
(ξ(σ1 · · ·σi))1△i

(ξ(τ1 · · · τi)) − q2
1N · · · q2

nN

]

≤ 1

B2
N

n∑
j=1

∑
σ1···σj

∑
σj+1···σn
τj+1···τn

σj+1 6=τj+1

E
j∏

i=1

1△i
(ξ(σ1 · · ·σi))

n∏
i=j+1

1△i
(ξ(σ1 · · ·σi))1△i

(ξ(τ1 · · · τi))

≤ 1

B2
N

n∑
j=1

q1N · · · qjNq2
(j+1)N · · · q2

nN

∑
σ1···σj

e2(σ1 · · ·σj)

=
1

B2
N

n∑
j=1

q1N · · · qjNq2
(j+1)N · · · q2

nNs
2
jN

Hence for any ǫ > 0, by Chebyshev’s inequality and (2.3.1)

P(|µN(△) − EµN(△)| > ǫEµN(△)) <
1

ǫ2B2
N

n∑

j=1

s2
jN

q1N · · · qjN
.

But, in view of the assumption, the sum over N of the right side is finite. So by

Borel-Cantelli lemma, a.s. eventually,

(1 − ǫ)EµN(△) ≤ µN(△) ≤ (1 + ǫ)EµN(△).

For GREM type regular trees the condition above will simplify as follows. This
result is in [19] though not explicitly stated.

Corollary 2.3.2. Let k(i, N), 1 ≤ i ≤ n be positive integers with
∑
i

k(i, N) = N .

Suppose that the tree has 2k(i,N) nodes of the i-th level below each node of the (i-1)-th

level.

a) If
∑

N≥n

2k(1,N)+···+k(i,N)q1N · · · qiN <∞, for some i, 1 ≤ i ≤ n, then a.s. eventu-

ally, µN(△) = 0.

b) If
∑

N≥n

2−(k(1,N)+···+k(i,N))q−1
1N · · · q−1

iN < ∞, for each i = 1, · · · , n, then for any
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ǫ > 0, a.s. eventually,

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

2.4 Exponentially Decaying Driving Distributions

We fix a number γ > 0. In this section we consider an n level GREM where for the N
particle system the random variables ξ(σ1 · · ·σi) are i.i.d. having probability density

φN,γ(x) = Const.e
− |x|γ

γNγ−1 −∞ < x <∞,

More precisely,

φN,γ(x) =
1

2Γ( 1
γ
)

( γ
N

) γ−1
γ

e
− |x|γ

γNγ−1 −∞ < x <∞. (2.4.1)

Note that φN,1 is independent of N and is two sided exponential density with
parameter 1. On the other hand, φN,2 is Gaussian density with mean 0 and variance
N . Of course, γ can be larger than 2 as well.

If we define the map ΣN =
∏

i 2
k(i,N) → Rn by

σ 7→
(
ξ(σ1, ω)

N
,
ξ(σ1σ2, ω)

N
, · · · , ξ(σ1 · · ·σn, ω)

N

)

and transport the uniform probability of Σ to Rn, we get a probability µN(ω) on Rn.
In evaluating the free energy, we will be applying Varadhan’s lemma (Proposition
0.3.4). This explains the factor 1

N
in the above map, which was not present in the

general framework of Theorem 2.3.1.
Let △ = △1 × · · · × △n be a non-empty open rectangle of Rn. For such △

and 1 ≤ i ≤ n define mi = inf
x∈△i

|x| and Mi = sup
x∈△i

|x|. Clearly, mi < ∞ for all i.

Observe that in case mi > 0 then △i ⊆ (−Mi,−mi) ∪ (mi,Mi) and in case mi = 0
then △i ⊆ (−Mi,Mi). In any case △i ⊆ (−Mi,−mi] ∪ [mi,Mi) for each i. Let
m̃ = (m1, · · · , mn). Also define qiN = P ( ξ

N
∈ △i), for 1 ≤ i ≤ n.

First let us assume that γ ≥ 1. Let J ⊂ R be an interval. Denote m = inf
x∈J

|x| and

M = sup
x∈J

|x|. Denote qN = P ( ξ
N

∈ J). With these notations, we have the following
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two observations:

qN = P

(
ξ

N
∈ J

)
≤ 1

Γ( 1
γ
)

( γ
N

)γ−1
γ

∫ NM

Nm

e
− xγ

γNγ−1 dx

<
1

Γ( 1
γ
)

∫ ∞

N mγ

γ

x−
γ−1

γ e−xdx

≤ γ
γ−1

γ

Γ( 1
γ
)(Nmγ)

γ−1
γ

∫ ∞

N mγ

γ

e−xdx

=
γ

γ−1
γ

Γ( 1
γ
)(Nmγ)

γ−1
γ

e−N mγ

γ ,

(2.4.2)

with the understanding that when m = 0, the last expression is 1 and

qN = P

(
ξ

N
∈ J

)
≥ 1

2Γ( 1
γ
)

( γ
N

) γ−1
γ

∫ NM

Nm

e
− xγ

γNγ−1 dx

>
1

2Γ( 1
γ
)

∫ N mγ

γ
+δ

N mγ

γ

x−
γ−1

γ e−xdx

>
δ

2Γ( 1
γ
)(N mγ

γ
+ δ)

γ−1
γ

e−(N mγ

γ
+δ),

(2.4.3)

for any 0 < δ < 1
γ
(Mγ −mγ).

Now let γ < 1. J,m,M as above except that J is now assumed to be bounded
interval of R so that 0 ≤ m < M <∞. With qN as earlier, we have

qN = P

(
ξ

N
∈ J

)
≤ 1

Γ( 1
γ
)

( γ
N

)γ−1
γ

∫ NM

Nm

e
− xγ

γNγ−1 dx

=
1

Γ( 1
γ
)

∫ N Mγ

γ

N mγ

γ

x−
γ−1

γ e−xdx

≤ γ
γ−1

γ

Γ( 1
γ
)(NMγ)

γ−1
γ

∫ ∞

N mγ

γ

e−xdx

=
γ

γ−1
γ

Γ( 1
γ
)(NMγ)

γ−1
γ

e−N mγ

γ ,

(2.4.4)

with the understanding that when m = 0, the last expression is 1. The difference
between (2.4.4) and (2.4.2) is just that in the penultimate inequality the lower bound
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of the integral appeared in (2.4.2) where as in (2.4.4), the upper bound of the integral
appeared.

qN = P

(
ξ

N
∈ J

)
≥ 1

2Γ( 1
γ
)

( γ
N

)γ−1
γ

∫ NM

Nm

e
− xγ

γNγ−1 dx

>
1

2Γ( 1
γ
)

∫ N mγ

γ
+δ

N mγ

γ

x−
γ−1

γ e−xdx

>
δγ

γ−1
γ

2Γ( 1
γ
)(Nmγ)

γ−1
γ

e−(N mγ

γ
+δ),

(2.4.5)

for any 0 < δ < 1
γ
(Mγ − mγ). The difference between (2.4.5) and (2.4.3) is just

that in the penultimate inequality the upper limit of the integral appeared in (2.4.3)
where as in (2.4.5), the upper limit of the integral to bound e−x and lower limit to

bound x−
γ−1

γ is used. Moreover, when m = 0 the lower bound for qN can be given by

1
2Γ( 1

γ
)

∫ δ2

δ1

x−
γ−1

γ e−xdx for 0 < δ1 < δ2 <
Mγ

γ
. As earlier, this bound does not depend

on N .
From now on we assume that k(i,N)

N
→ pi for 1 ≤ i ≤ n with p1 > 0. Clearly,∑

pi = 1. Let

Ψ = {x̃ ∈ Rn :

k∑

i=1

|xi|γ
γ

≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n}. (2.4.6)

Proposition 2.4.1. µN ⇒ δ0 a.s. as N → ∞.

Proof. For any ǫ > 0, define △(ǫ) = [−ǫ, ǫ]×· · ·× [−ǫ, ǫ] ⊆ Rn. By Markov inequality,

P(µN(△c(ǫ)) > ǫ) <
1

ǫ
EµN(△c(ǫ)) <

n

ǫ
P(|ξ| > ǫN) <

2n

ǫ
P(ξ > ǫN) <

2n

ǫ
CNe

−N ǫγ

γ ,

where CN can be obtained from (2.4.2) for γ ≥ 1 and from (2.4.4) for 0 < γ < 1. Since

1
N

logCN → 0 as N → ∞, the proposition follows from the Borel-Cantelli lemma.

Proposition 2.4.2. If △̄ ∩ Ψ = φ, then a.s. eventually µN(△) = 0. Moreover, the

sequence {µN} is supported on a compact set.

Proof. △̄ ∩ Ψ = φ implies m̃ /∈ Ψ. This is seen as follows. By definition of mi, either

mi or −mi is in △̄i. Thus for each i, there is an ǫi = ±1 such that ǫimi ∈ △̄i. Thus
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the vector (ǫ1m1, · · · , ǫnmn) ∈ △̄ and hence /∈ Ψ. By the symmetry of Ψ, m̃ /∈ Ψ as

well. As a consequence, for some j, 1 ≤ j ≤ n,

j∑

i=1

mγ
i

γ
>

j∑

i=1

pi log 2. (2.4.7)

For γ ≥ 1 using (2.4.2) and for 0 < γ < 1 using (2.4.4) we can say that qiN <

CiNe
−N

m
γ
i

γ where 1
N

logCiN → 0 as N → ∞ for 1 ≤ i ≤ j. Hence as a consequence of

(2.4.7) and the fact k(i,N)
N

→ pi, we have

∑

N≥1

2k(1,N)+···+k(j,N)q1N · · · qjN <
∑

N≥1

e
−N

jP
i=1

„
m

γ
i

γ
− k(i,N)

N
log 2− 1

N
log CiN

«

<∞.

Thus by Corollary 2.3.2, a.s. eventually µN(△) = 0.

To see the last statement of the Proposition, fix any δ > 0. Let J be the compact

set [− log 2 − δ,+ log 2 + δ]n. Since the complement of this set is union of 2n open

rectangles of Rn, each of whose closures are disjoint with Ψ, the earlier part implies

that eventually µN(J) = 1.

Proposition 2.4.3. If (△̄ ∩ Ψ)0 6= φ, then for any ǫ > 0 a.s. eventually

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

Proof. The assumption (△̄ ∩ Ψ)0 6= φ implies m̃ ∈ Ψ0. Indeed, since (△̄ ∩ Ψ)0 6= φ,

pick (x1, · · · , xn) ∈ (△̄ ∩ Ψ)0. By symmetry of Ψ, (|x1|, · · · , |xn|) ∈ Ψ0 as well, and

now 0 ≤ mi ≤ |xi| for all i yields (m1, · · · , mn) ∈ Ψ0.

We are going to show that the hypothesis of Corollary 2.3.2(b) holds. Fix i,

1 ≤ i ≤ n. Using (2.4.3) for γ ≥ 1 and using (2.4.5) for γ < 1, we can say that

qjN > CjNe
−N

m
γ
j

γ
+δ for 1 ≤ j ≤ n with sufficiently small δ > 0. Thus

2−(k(1,N)+···+k(i,N))q−1
1N · · · q−1

iN < e
−N

"
iP

j=1

„
k(j,N)

N
log 2−

m
γ
j

γ
+ 1

N
log CiN

«
−iδ

#

.
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Since m̃ is an interior point of Ψ, there is an α > 0 such that
i∑

j=1

pj log 2 −
i∑

j=1

mγ
j

γ
>

α. Now use the fact that k(j,N)
N

→ pj and 1
N

logCjN → 0 as N → ∞ to deduce

that eventually
i∑

j=1

(
k(j,N)

N
log 2 − mγ

j

γ
+ 1

N
logCiN

)
> α. Making δ > 0 smaller, if

necessary, assume that eventually
i∑

j=1

(
k(j,N)

N
log 2 − mγ

j

γ
+ 1

N
logCiN

)
−iδ > α. Hence,

eventually e
−N

"
iP

j=1

„
k(j,N)

N
log 2−

m
γ
j

γ
+ 1

N
log CiN

«
−iδ

#

< e−Nα. As a consequence,

∑

N≥1

2−(k(1,N)+···+k(i,N))q−1
1N · · · q−1

iN <∞.

Hence by Corollary 2.3.2, the proposition follows.

Remark 2.4.1. (△̄ ∩ Ψ)0 6= φ implies in particular, that p1 > 0. In fact, Ψ0 6= φ iff

p1 > 0.

Now, we have the following,

Proposition 2.4.4. For a.e. sample point ω,

lim
N→∞

1

N
log µN(△) = −

n∑
i=1

mγ
i

γ
if (△̄ ∩ Ψ)0 6= φ

= −∞ if △̄ ∩ Ψ = φ.

Proof. When △̄ ∩ Ψ = φ, the result is immediate from Proposition 2.4.2.

Assume that (△̄∩Ψ)0 6= φ. Fix any ǫ, 0 < ǫ < 1. Let γ ≥ 1. By (2.4.2), 1
N

log qiN <

1
N

logCiN − mγ
i

γ
where 1

N
logCiN → 0 as N → ∞. Hence lim sup 1

N
log qiN ≤ mγ

i

γ
.

Similarly, by using (2.4.3) we get lim inf 1
N

log qiN ≥ mγ
i

γ
. Thus lim 1

N
log qiN exists and

equals to
mγ

i

γ
for each i. The same holds even if 0 < γ < 1, where we need to use

(2.4.4) and (2.4.5). Then by proposition 2.4.3 we have a.s eventually, a.s. eventually

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

So by taking logarithms and using lim
N→∞

1

N
log qiN = −m

γ
i

γ
, for each i we get the

proposition.
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Let us consider the map I : Rn → R, defined as follows,

I(x̃) = 1
γ

n∑
i=1

|xi|γ if x̃ ∈ Ψ

= ∞ otherwise.
(2.4.8)

Theorem 2.4.5. Almost surely, the sequence {µN} satisfies LDP with the rate func-

tion I.

Proof. Let A be the collection of all rectangles △ = △1 × · · · × △n ⊆ Rn such that

each △i is a bounded interval with rational endpoints and either △̄ ∩ Ψ = φ or

(△̄ ∩ Ψ)0 6= φ.

It is easy to check that A forms a base for the usual topology of Rn. For △ ∈ A,

by Proposition 2.4.4, the limit, − lim
N→∞

1

N
logµN(△) exists almost surely. Denote this

limit by L△. Since A is a countable family, out side a null set, these limits are well

defined for all △ ∈ A.

In view of Proposition 0.3.3, to complete the proof, we show that for x̃ ∈ Rn,

I(x̃) = sup
x̃∈△∈A

L△. (2.4.9)

If x̃ /∈ Ψ, clearly sup
x̃∈△∈A

L△ = ∞ = I(x̃).

Now consider, x̃ = (x1, · · · , xn) ∈ Ψ. Suppose x̃ ∈ △ ∈ A. If △ = △1 × · · · × △n

with mi = inf
y∈△i

|y|, then mi ≤ |xi| and hence
mγ

i

γ
≤ |xi|γ

γ
. Therefore, by Proposition

2.4.4, L△ =
n∑

i=1

mγ
i

γ
≤

n∑
i=1

|xi|γ
γ

. Thus

sup
x̃∈△∈A

L△ ≤ I(x̃). (2.4.10)

On the other hand, consider ǫ > 0 so that ǫ < |xi| for any i with xi 6= 0. Let △ be

the box with sides △i = (xi − ǫ, xi + ǫ). By choice of ǫ, mi = inf
y∈△i

|y| equals |xi ± ǫ|
depending on the sign of xi. Of course, if xi = 0 then mi = 0. Thus for the △ so

constructed, we have, L△ =
∑

{i:xi 6=0}

|xi±ǫ|γ
γ

. This being true for all sufficiently small ǫ,
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we conclude that

sup
x̃∈△∈A

L△ ≥
n∑

i=1

|xi|γ
γ

= I(x̃) (2.4.11)

(2.4.10) and (2.4.11) complete the proof of (2.4.9) thus completing the proof of the

theorem.

We shall now proceed towards an expression for the free energy. Denoting f(x̃) =
n∑

i=1

βaixi,

lim
N

1
N

logZN(β) = log 2 + lim
N

1
N

log ENe
−Nf

= log 2 − inf
x̃∈Ψ

{
n∑

i=1

βaixi +
n∑

i=1

|xi|γ
γ

}.

by Proposition 0.3.4. This last infimum equals inf
x̃∈Ψ

n∑
i=1

(
|xi|γ

γ
− βaixi

)
. Since β > 0,

ai > 0 it is easy to see that the above infimum is attained when all the xi are negative.
In other words, by symmetry of Ψ, the infimum is attained at a point −x̃ for some
x̃ ∈ Ψ+ = Ψ ∩ {x̃ : xi ≥ 0 for 1 ≤ i ≤ n}. Thus

lim
N

1

N
logZN(β) = log 2 − inf

x̃∈Ψ+

n∑

i=1

(
xγ

i

γ
− βaixi

)
.

In this way, for the above mentioned class of driving distributions, the free energy
exists almost surely and is a constant. Not only that, finding an explicit formula for
the free energy reduces to calculating the above infimum.

Remark 2.4.2. It is also worth noting that the LDP holds good even when the driving

distributions at various levels are different. To be more specific, let us fix n numbers

γ1, · · · , γn; each greater than zero and consider an n level GREM where the driving

distribution at the i-th level is φN,γi
. More precisely, for any node σ1 · · ·σi at the i-th

level ξ(σ1 · · ·σi) has density φN,γi
. Of course, all the random variables are independent.

Define as earlier, the map ΣN → Rn by

σ 7→
(
ξ(σ1)

N
,
ξ(σ1σ2)

N
, · · · , ξ(σ1 · · ·σn)

N

)
.

Let µN be the induced probability on Rn when ΣN is equipped with uniform proba-

bility. The same arguments as above, with qiN = P
(

ξ(σ1···σi)
N

∈ △i

)
, will show that
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almost surely, the sequence of probabilities {µN , N ≥ n} on Rn satisfies LDP. In this

case, with rate function I will be given by

I(x̃) =
n∑

i=1

|xi|γi

γi
if x̃ ∈ Ψ

= ∞ otherwise,
(2.4.12)

where

Ψ = {x̃ ∈ Rn :

k∑

i=1

|xi|γi

γi
≤

k∑

i=1

pi log 2, 1 ≤ k ≤ n}, (2.4.13)

with pi = lim
N→∞

k(i,N)
N

. Let, as earlier, Ψ+ be the part of Ψ in the positive orthant of

Rn. As a consequence of all this, we have the following:

Theorem 2.4.6. If the driving distribution has density φN,γi
at the i-th level, we have

almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

ex∈Ψ+

{
n∑

i=1

(
xγi

i

γi

− βaixi

)}
.

2.5 Inside Out

A close observation of the above discussion reveals the following cute idea. Though
the identification, at first glance, will look like very simple, its implication in GREM
will be understood through the rest of this chapter.

Let for each j, 1 ≤ j ≤ n, we have a sequence of probabilities {λj
N , N ≥ n} on R

which obey LDP with a strictly quasi-convex continuous good rate function Ij. That
is, Ij has compact level sets and for any two distinct points x and y in {0 < Ij <∞}
we have Ij(θx + (1 − θ)y) < max{Ij(x), Ij(y)} for any θ with 0 < θ < 1. For the
sake of simplicity, we will also assume that Ij(0) = 0. The assumption of strict
quasi-convexity is purely a technical assumption and this can be replaced by similar
other conditions also. For example, one can replace this by requiring that the set
{x : Ij(x) = α} is a nowhere dense set for every α > 0. We mentioned this condition
in Remark 1.2.2, but there we demanded this only for α = log 2. Now, let us denote
{+1,−1}N by ΣN . For each N , let k(1, N), . . . , k(n,N) be non-negative integers
adding to N and put ΣjN = {+1,−1}k(j,N). Clearly, ΣN = Σ1N ×Σ2N ×· · ·×ΣnN and
we express σ ∈ ΣN as σ1σ2 · · ·σn with σi ∈ ΣiN , in an obvious way. Suppose for fixed
N , we have a bunch of independent random variables as follows: {ξ(σ1) : σ1 ∈ Σ1N}
having distributions λ1

N , {ξ(σ1σ2) : σ2 ∈ Σ2N , σ1 ∈ Σ1N} having distributions λ2
N and

in general {ξ(σ1σ2 · · ·σj−1σj) : σj ∈ ΣjN , · · · , σ1 ∈ Σ1N} having distribution λj
N .
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Define for each ω, µN(ω) to be the empirical measure on Rn, namely,

µN(ω) =
1

2N

∑

σ

δ 〈ξ(σ1, ω), ξ(σ1σ2, ω), · · · , ξ(σ1 · · ·σn, ω)〉

where δ 〈x〉 denotes the point mass at x ∈ Rn.

Theorem 2.5.1. Suppose k(j,N)
N

→ pj > 0 for 1 ≤ j ≤ n. Then for a.e. ω, the

sequence {µN(ω), N ≥ n} satisfies LDP with rate function J given as follows:

Supp(J ) = {(x1, · · · , xn) :
j∑

k=1

Ik(xk) ≤
j∑

k=1

pk log 2 for 1 ≤ j ≤ n}
and

J (x) =
n∑

k=1

Ik(xk) if x ∈ Supp(J )

= ∞ otherwise.

Proof. In what follows △ denotes a box in Rn with sides △j; 1 ≤ j ≤ n where each

△j is an interval. The proof consists of the following steps. The steps are executed

one by one as in Propositions 2.4.2 to 2.4.4, so will not be repeated here.

Step 1: If △̄ ∩ Supp(J ) = φ, then a.s. eventually µN(△) = 0.

Step 2: If (△̄ ∩ Supp(J ))0 6= φ, then for any ǫ > 0 a.s. eventually

(1 − ǫ)

n∏

i=1

λi
N(△i) ≤ µN(△) ≤ (1 + ǫ)

n∏

i=1

λi
N(△i).

Step 3: For a.e. sample point ω,

lim
N→∞

1

N
logµN(△) = −

n∑
i=1

Ii(△i) if (△̄ ∩ Supp(J ))0 6= φ

= −∞ if △̄ ∩ Supp(J ) = φ,

where Ii(△i) = inf{I(x) : x ∈ △i}.
To conclude the proof we use the idea of Theorem 2.4.5.

We note that continuity of the rate functions Ij is not necessary, but then one
needs to go through lim sup and lim inf of 1

N
logµN(△) an in Theorem 1.2.1, instead
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of limits which we used above.
The implications of the above theorem for GREM [17] are clear. For fixed N , and

σ ∈ ΣN one defines the Hamiltonian

HN(σ) = N

n∑

i=1

aiξ(σ1 · · ·σi).

Here ai, 1 ≤ i ≤ n are positive numbers called weights. In the Gaussian case, it is
customary to take

∑
a2

i = 1, though it is not a mathematical necessity. As earlier,
ZN(β) =

∑
σ e

−βHN (σ). Special choices of λi
N lead to all the known models consid-

ered. Centered Gaussian were consider in [17, 8, 19, 29]. More general distributions
as well as the cases when some pj are zero were considered in [29]. Moreover one
could take different distributions for different values of j, see §2.7 for some interesting
consequences. Thus the main problem of GREM is reduced to a variational problem.
Note that, if n = 1, GREM reduces to REM.

2.6 The Variational Problem

In this section, we derive explicit formulae for the free energy. We return back to the
driving distribution given by (2.4.1), namely, having density

φN,γ(x) =
1

2Γ( 1
γ
)

( γ
N

) γ−1
γ

e
− |x|γ

γNγ−1 −∞ < x <∞. (2.6.1)

We now consider the model with same driving distributions at different levels. In this
setup, we need to calculate the infimum

inf
x̃∈Ψ+

n∑

i=1

(
xγ

i

γ
− βaixi

)
(2.6.2)

in order to get an explicit formula for the limiting free energy. Note that, putting
γi = γ got all i in (2.4.13) we get

Ψ = {x̃ ∈ Rn :

k∑

i=1

|xi|γ ≤
k∑

i=1

γpi log 2, 1 ≤ k ≤ n} (2.6.3)

and as usual Ψ+ is the part of Ψ in the positive orthant of Rn.
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2.6.1 γ > 1

First let us assume γ > 1. To evaluate the infimum let us put, for 1 ≤ j ≤ k ≤ n,

B(j, k) =


(pj + · · · + pk)γ log 2

a
γ

γ−1

j + · · ·+ a
γ

γ−1

k




γ−1
γ

. (2.6.4)

Set r0 = 0 and for l ≥ 0 (integer),

βl+1 = min
k>rl

B(rl + 1, k) rl+1 = max{i > rl : B(rl + 1, i) = βl+1}. (2.6.5)

Clearly, for some K with 1 ≤ K ≤ n, we have rK = n. Put β0 = 0 and βK+1 = ∞,
so that 0 = β0 < β1 < β2 · · · < βK < βK+1 = ∞.

Fix j ≤ K and let β ∈ (βj, βj+1]. Define x̃ ∈ Ψ+ as follows:

xi = (βlai)
1

γ−1 if i ∈ {rl−1 + 1, · · · , rl} for some l, 1 ≤ l ≤ j

= (βai)
1

γ−1 if i ≥ rj + 1.
(2.6.6)

Claim: inf
ex∈Ψ+

n∑

i=1

(
xγ

i

γ
− βaixi

)
occurs at x̃.

In order to prove the claim, fix any x̃ ∈ Ψ+. For k ≤ j (recall that j ≤ K was
fixed above), first note that, by Holder’s inequality,

rk∑

i=1

xix
γ−1
i ≤

(
rk∑

i=1

xγ
i

) 1
γ
(

rk∑

i=1

xγ
i

) γ−1
γ

≤
rk∑

i=1

xγ
i .

where the last inequality follows from the facts x̃ ∈ Ψ+ and
rk∑
i=1

xγ
i =

rk∑
i=1

γpi log 2 so

that
rk∑
i=1

xγ
i ≤

rk∑
i=1

γpi log 2 =
rk∑
i=1

xγ
i .

Hence,
rk∑
i=1

xγ−1
i (xi − xi) ≥ 0.

Since β > βj, we have ( β
βl
− 1) > 0 for 1 ≤ l ≤ j. Moreover since βl are increasing

with l, these number ( β
βl
− 1) are decreasing. It follows that,

j∑

l=1

(
β

βl
− 1

) rl∑

i=rl−1+1

xγ−1
i (xi − xi) ≥ 0
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In other words, using the definition of xi,

rj∑

i=1

βai(xi − xi) ≥
rj∑

i=1

xγ−1
i (xi − xi). (2.6.7)

Now,

rj∑

i=1

(
xγ

i

γ
− βaixi

)
−

rj∑

i=1

(
xγ

i

γ
− βaixi

)

=

rj∑

i=1

(
xγ

i

γ
+ βai(xi − xi) −

xγ
i

γ

)

≥
rj∑

i=1

(
xγ

i

γ
+ xγ−1

i (xi − xi) −
xγ

i

γ

)
by (2.6.7)

=

rj∑

i=1

(
xγ

i

γ
+
γ − 1

γ
xγ

i − xix
γ−1
i

)

≥0.

(2.6.8)

where in the last inequality we used xix
γ−1
i ≤ 1

γ
xγ

i + γ−1
γ
xγ

i .

On the other hand, utilizing the definition of xi and the inequality βaixi ≤ xγ
i

γ
+

γ−1
γ

(βai)
γ

γ−1 we have,

n∑

i=rj+1

(
xγ

i

γ
− βaixi

)
−

n∑

i=rj+1

(
xγ

i

γ
− βaixi

)

=
n∑

i=rj+1

(
xγ

i

γ
+
γ − 1

γ
(βai)

γ
γ−1 − βaixi

)

≥0.

(2.6.9)

Clearly, (2.6.8) and (2.6.9) complete proof of the claim. This argument is in fact a
generalization of Dorlas & Dukes [19], Capocaccia et. al. [8].

All this leads to the following explicit formula for the free energy.

Theorem 2.6.1. For GREM with driving distribution having density φN,γ as defined
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in (2.6.1), almost surely,

lim
N

1

N
logZN(β) =

n∑
i=rj+1

pi log 2 + γ−1
γ

n∑
i=rj+1

(βai)
γ

γ−1 + β
j∑

l=1

β
1

γ−1

l

rl∑
i=rl−1+1

a
γ

γ−1

i

if βj < β ≤ βj+1, 0 ≤ j ≤ K − 1

= β
K∑

l=1

β
1

γ−1

l

rl∑
i=rl−1+1

a
γ

γ−1

i if β > βK

Observe that for γ = 2, that is when the driving distribution is Normal, with
proper identification of parameters this is essentially the same formula as in [8, 19].
In defining the βi, Capocaccia et. al. use a variant in [8] (§3.2). In defining ri,
Dorlas and Dukes [19] consider the least index, where as recall that, we define rl+1 as
max{i > rl : B(rl + 1, i) = βl+1}. This makes no difference because ‘nothing happens’
in between these two indices. This follows from the fact that if ai > 0, bi > 0 for
i = 1, 2, 3 and b1

a1
= b1+b2+b3

a1+a2+a3
< b1+b2

a1+a2
, then this will imply that b1

a1
= b2+b3

a2+a3
< b2

a2
. So

defining rl+1 as min{i > rl : B(rl + 1, i) = βl+1}, when {i > rl : B(rl + 1, i) = βl+1}
is not a singleton set, βl+2 will be same as βl+1. And this will continue until the
maximum index of the set {i > rl : B(rl + 1, i) = βl+1} is attained.

Moreover, the weights ai in Dorlas and Dukes [19] are incorporated in the density,
there was no need to assume

∑
ai = 1, their parameter J can be incorporated in the

weights. In fact, there is one benefit of putting the weights in the density. The large
deviation technique will easily allow us to consider variable weights aiN depending
on N at the i-th level instead of a constant weights ai. For instance, let aiN > 0 for
all 1 ≤ i ≤ n and N ≥ 1 be the weights of the i-th level for the N particle system
with aiN → ai as N → ∞. When the weights ai did not depend on N , they were not
brought in the large deviation argument. The free energy was

log 2 − inf
x̃∈Ψ+

n∑

i=1

(
x2

i

2
− βaixi

)
, (2.6.10)

where

Ψ+ = {x̃ ∈ Rn :
k∑

i=1

1

2
x2

i ≤
k∑

i=1

pi log 2} ∩ {x̃ ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}.

If we consider variable weights aiN as above then they must enter in the large deviation
arguments. If ξ(i, N) ∼ N (0, 1

N
), then it is not hard to show that the distribution of

aiNξ(i, N) satisfies LDP with rate function x2

2a2
i

. Accordingly, we get the limiting free
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energy as

log 2 − inf
x̃∈Υ+

n∑

i=1

(
x2

i

2a2
i

− βxi

)
, (2.6.11)

where

Υ+ = {x̃ ∈ Rn :

k∑

i=1

1

2a2
i

x2
i ≤

k∑

i=1

pi log 2} ∩ {x̃ ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}.

Though we seem to have two different optimization problems in (2.6.10) and (2.6.11),
they produce the same result as the former can be transform to the later using affine
transforms yi = xi

ai
. So this will lead to the expected result that the limiting free

energy of the Gaussian GREM is continuous with respect to its weights. Not only in
the Gaussian case this can be made precise in all the models (γ > 1) discussed in this
subsection by the same way and for other models with some extra efforts.

In the Gaussian case, that is when γ = 2, two simple cases are worth mentioning.
The numbers βj mentioned below are same as the above, in these particular cases.

Corollary 2.6.2. (Gaussian Case)

i) Let 0 < p1

a2
1
< p2

a2
2
< · · · < pn

a2
n
. Put βj =

√
2pj log 2

aj
for j = 1, · · · , n. Then a.s.

lim
N

1
N

logZN(β) = log 2 + β2

2

n∑
1

a2
i if β < β1,

=
n∑

j+1

pi log 2 +
j∑
1

βai

√
2pi log 2 + β2

2

n∑
j+1

a2
i

if βj ≤ β < βj+1 for 1 ≤ j < n,

= β
n∑
1

ai

√
2pi log 2 if β ≥ βn.

ii) Let p1

a2
1

= p2

a2
2

= · · · = pn

a2
n
> 0. Then a.s.

lim
N

1
N

logZN(β) = log 2 + β2

2

n∑
1

a2
i if β <

√
2 log 2P

a2
i

= β
√

2 log 2
∑
a2

i if β ≥
√

2 log 2P
a2

i

.

Remark 2.6.1. We say that an n level GREM with some particular driving distribution

is in reduced form, if the limiting free energy of the model can not be obtained from

any k level GREM with same driving distribution where k < n.

For a Gaussian n-level GREM, as the above analysis shows, if it can not be ob-
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tained as a k-level GREM then βis are defined for 1 ≤ i ≤ n. On the other hand if it

can be obtained as the energy function of a k-level Gaussian GREM for some k < n,

then the βis of the construction are only for 1 ≤ i ≤ k.

If a GREM is in reduced form, according to this definition, we do not know whether

its energy function can be obtain as that of a k-level GREM for some k < n with,

of course, different driving distributions. Along with the setup of the model in this

subsection, we are lucky enough to get the explicit expression of the limiting free

energy. Moreover we know the explicit expression of the βis where the expression of

the free energy are changing. We observed in this case that there may be at most n

many βis. But we do not know, whether this the intrinsic property of the model or

there are some driving distributions so that for an n-level GREM, we can get more

than n many βis.

Remark 2.6.2. It can be shown that the energy function determines the parameters of

the model for every γ > 1 and one could characterize functions those arise as energy

functions for GREM. As observed in in the above Corollary, an n level GREM may

reduce to a k level GREM for some k < n or even to a REM. In such a case, some

weights ai occur in groups and get added up. Of course, in such a case when the model

is not in reduced form, clearly it is not possible to recover the weights from the formula

for energy. But it is interesting to note that when the GREM is in reduced form, we

can recover the parameters from the energy function. To make the statement precise

first of all note that, in this set up, GREM is in reduced from if and only if all the

pi, ai are non zero and
p

γ−1
γ

1

a1
<

p
γ−1

γ
2

a2
< · · · < p

γ−1
γ

n

an
, let us assume this to be the case.

This is similar to that of the Gaussian case. Note that, in this case βi = (γpi log 2)
γ−1

γ

ai

for 1 ≤ i ≤ n. From Theorem 2.6.1, it follows that the limiting free energy E(β) is a
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continuous function with E(0) = log 2. It has a continuous derivative E ′(β) with

E ′(β) =





0 if β = 0

β
1

γ−1

n∑
i=k+1

a
γ

γ−1

i +
k∑

i=1

β
1

γ−1

i a
γ

γ−1

i if βk < β ≤ βk+1, 0 ≤ k ≤ n− 1

n∑
i=1

β
1

γ−1

i a
γ

γ−1

i if β > βn.

Further,

E ′′(β) =





1
γ−1

β
2−γ
γ−1

n∑
1

a
γ

γ−1

i , for 0 < β < β1

1
γ−1

β
2−γ
γ−1

n∑
k+1

a
γ

γ−1

i , for βk < β < βk+1, for 1 ≤ k < n

0, for β > βn.

The energy function can be characterized in this case. To start with, observe that

the above energy function has the following properties:

i) E(0) = log 2 and E ′(0) = 0,

ii) E is a continuously differentiable function,

iii) denote xk = (γpk log 2)
γ−1

γ

ak
; ck = 1

γ−1
β

2−γ
γ−1

n∑
k

a
γ

γ−1

i and θ = 2−γ
γ−1

then 0 ≡ x0 <

x1 < · · · < xn < xn+1 ≡ ∞; c1 > c2 > · · · > cn > cn+1 ≡ 0 and θ > −1 with

E ′′(β) = (1 + θ)ciβ
θ in (xi−1, xi) for 1 ≤ i ≤ n + 1.

Conversely, let f be a function on [0,∞) such that

i)f(0) = log 2 and f ′(0) = 0,

ii) f has continuous first derivative,

iii) there are finitely many points 0 < x1 < · · · < xn and c1 > · · · > cn > cn+1 = 0

so that the left and right derivatives of f ′ are unequal at xi for 1 ≤ i ≤ n and

f ′′(x) = xθci in (xi−1, xi) for 1 ≤ i ≤ n + 1 with x0 = 0 and xn+1 = ∞. Then f is

the energy function for γ-GREM with driving distribution having parameter γ = θ+2
θ+1

,
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pi = θ+1
(θ+2) log 2

(xi(ci − ci+1))
θ+2 and ai = (ci − ci+1)

1
θ+2 for 1 ≤ i ≤ n if

n∑

i=1

xθ+2
i (ci − ci+1) =

θ + 2

θ + 1
log 2. (2.6.12)

In particular for a Gaussian GREM, it is in reduced from if and only if all the pi, ai

are non zero and p1

a2
1
< p2

a2
2
< · · · < pn

a2
n
. When that is the case, from Theorem 2.6.1 with

γ = 2, it follows that the limiting free energy E(β) is piecewise quadratic continuous

function with E(0) = log 2. It has a continuous derivative E ′(β) with E ′(0) = 0 and

E ′′(β) =






n∑
1

a2
i , in (0,

√
2p1 log 2

a1
),

n∑
k+1

a2
i , in (

√
2pk log 2

ak
,

√
2pk+1 log 2

ak+1
), for 1 ≤ k ≤ n− 1,

0, if β >
√

2pn log 2
an

.

Moreover, if f is a C1 function on [0,∞) with f(0) = log 2 and f ′(0) = 0 so that

there are finitely many points 0 < x1 < · · · < xn where the left and right derivatives

of f ′ are unequal and f ′′ is a positive constant, say, ci in (xi−1, xi) with x0 = 0 and

xn+1 = ∞. Then f is the energy function for some Gaussian GREM iff

c1 > · · · > cn > cn+1 = 0 and

n∑

i=1

x2
i (ci − ci+1) = 2 log 2. (2.6.13)

2.6.2 γ = 1

Now, let us assume γ = 1. Note that γ = 1 represents the two sided exponential
distribution with mean 0 and parameter 1. In this case, we can not use the above
argument directly as the ratios B(j, k) defined in (2.6.4), the constants ai appear
with exponent γ

γ−1
. However, to get the expression for the free energy, we can directly

proceed to evaluate

inf
x̃∈Ψ+

n∑

i=1

(1 − βai)xi,
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where

Ψ+ =

{
x̃ ∈ Rn :

k∑

i=1

|xi| ≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n

}
∩ {x̃ : xi ≥ 0 for 1 ≤ i ≤ n}.

This is what we will do now. To calculate the infimum, let us set r0 = 0 and for
k = 1, 2, · · · , let us define βk, rk as follows:

β1 = min{ 1

ai
: 1 ≤ i ≤ n}

r1 = max{i :
1

ai
= β1}

and in general, for k > 1,

βk = min{ 1

ai
: rk−1 < i ≤ n}

rk = max{i : rk−1 < i ≤ n,
1

ai
= βk}.

Obviously this process stops at a finite stage say at K, so that βK = 1
an

and rK = n.

We put βK+1 = ∞. For example, if a1 > a2 > · · · > an then βk = 1
ak

, rk = k for

k = 1, 2, · · · , n, and K = n. On the other hand if a1 < a2 < · · · < an then β1 = 1
an

,
r1 = n and K = 1.

Clearly, 0 = β0 < β1 < β2 · · · < βK < βK+1 = ∞.

Remark 2.6.3. The case γ = 1 can also be recovered as a limiting case from the

previous section. We can proceed by defining βk as done in the last subsection. But

now we have to take limit limγ↓1

(
(pj+···+pk)γ log 2

a
γ

γ−1
j +···+a

γ
γ−1
k

) γ−1
γ

to define B(j, k). A simple

calculation shows that, B(j, k) = 1
maxj≤i≤k ai

. Hence the βks defined in the earlier

subsection lead to the same formula as above when β ↓ 1.

Now, fix j ≤ K and let β ∈ [βj , βj+1). Define x̃ ∈ Ψ+ as follows:

xi =
rl∑

j=r(l−1)+1

pj log 2 if i = rl for some l, 1 ≤ l ≤ j

= 0 otherwise.

(2.6.14)



63 The Variational Problem

Claim: inf
ex∈Ψ+

n∑

i=1

(1 − βai)xi occurs at x̃.

In case j = 0 that is βj = β0 = 0, the claim is obvious. Indeed, for β < β1,
(1 − βai) is positive for all i, the infimum occurs at x̃ with xi = 0 for all i. So let
us assume that j ≥ 1. First note that, since β ≥ βj, we have β ≥ βl for 1 ≤ l ≤ j
and (1 − β

βl
) = (1 − βarl

) ≤ 0 . Moreover since βl are strictly increasing with l, the
numbers arl

are strictly decreasing, that is, ar1 > ar2 > · · · > arK
. Now to prove the

claim, fix any x̃ ∈ Ψ+.

n∑

i=1

(1 − βai)xi −
n∑

i=1

(1 − βai)xi

≥
rj∑

i=1

(1 − βai)xi −
rj∑

i=1

(1 − βai)xi

(Since (1 − βai) ≥ 0 and xi = 0 for i > rj)

=

j∑

l=1




rl∑

i=r(l−1)+1

(1 − βai)xi − (1 − βarl
)xrl




(By definition of xi)

≥
j∑

l=1

(1 − βarl
)




rl∑

i=r(l−1)+1

xi − xrl




(Since by definition arl
≥ ai for r(l−1) + 1 ≤ i ≤ rl)

=(1 − βarj
)

(
rj∑

1

xi −
j∑

1

xrl

)
+

j−1∑

l=1

β(ar(l+1)
− arl

)

(
rl∑

1

xi −
l∑

1

xri

)

=(1 − βarj
)

rj∑

1

(xi − pi log 2) +

j−1∑

l=1

β(ar(l+1)
− arl

)

rl∑

1

(xi − pi log 2)

≥0

The last inequality follows from the facts that (i) by definition
rl∑
1

(xi−pi log 2) ≤ 0,

(ii) (ar(l+1)
− arl

) < 0 for 1 ≤ l ≤ j and (iii) (1 − βarj
) ≤ 0. Hence, the proof of the



Chapter 2: The Generalized Random Energy Model 64

claim.
Here then is the formula for the free energy.

Theorem 2.6.3. For two sided exponential GREM, almost surely,

lim
N

1

N
logZN(β) =





log 2 if β < β1

log 2 +
j∑

l=1

(βarl
− 1)

rl∑
rl−1+1

pi log 2 if βj ≤ β < βj+1.

Remark 2.6.4. Once again, the free energy for the case γ = 1 can be recovered from

that of γ > 1 as a limiting case. It is quite easy to check that with notation of βl

and rl as in subsection 2.6.1, limγ↓1(βlai)
1

γ−1 = 1
k

rl∑
j=r(l−1)+1

pj log 2 where k = #{i :

ai = maxr(l−1)+1≤i≤rl
ai & r(l−1) + 1 ≤ i ≤ rl}. Moreover, for βai < 1, we have

limγ↓1(βai)
1

γ−1 = 0. So yi = limγ↓1 xi(γ), where xi as given by (2.6.6), may not give

xi as defined in (2.6.14). The only difference will be that xi = 0 for r(l−1) +1 ≤ i < rl

and xrl
=

rl∑
j=r(l−1)+1

pj log 2 whereas, with the same notation of k as above, yi =

1
k

rl∑
j=r(l−1)+1

pj log 2 for those i where r(l−1) + 1 ≤ i ≤ rl and ai = maxr(l−1)+1≤i≤rl
ai.

But it is easy to see that if inf
ex∈Ψ+

n∑

i=1

(1 − βai)xi occurs at x̃, then it will occur also at

ỹ = (yi). Thus the limiting free energy in the case of γ = 1 is nothing but the limiting

(γ → 1) case of the limiting free energy of the GREM where γ > 1.

Thus Remarks 2.6.3 and 2.6.4 will lead to the following

Theorem 2.6.4. If Eγ(β) and E(β) denote the limiting free energy as given by The-

orems 2.6.1 and 2.6.3 respectively, then for all β ≥ 0, almost surely,

lim
γ↓1

Eγ(β) = E(β).

As in the case of γ = 2, for the case γ = 1 also two special situations are worth
mentioning
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Corollary 2.6.5. i) Let a1 > a2 > · · · > an. Then a.s.

lim
N→∞

1

N
logZN(β) =





log 2 if β < 1
a1

log 2 +
k∑

i=1

(βai − 1)pi log 2 if 1
ak

≤ β < 1
ak+1

β
n∑

i=1

aipi log 2 if β ≥ 1
an

.

ii) Let a1 ≤ a2 ≤ · · · ≤ an. Then a.s.

lim
N→∞

1

N
logZN(β) =





log 2 if β < 1
an

βan log 2 if β ≥ 1
an

.

Remark 2.6.5. Returning to Theorem 2.6.3, it is interesting to note that exponential

GREM with parameters (p1, · · · , pn, a1, · · · , an) is equivalent to GREM with param-

eters (p′1, · · · , p′K , a′1, · · · , a′K) where p′1 =
r1∑
1

pj, p
′
2 =

r2∑
r1+1

pj, · · · , p′K =
n∑

r(K−1)+1

pj and

a′1 = ar1 , a
′
2 = ar2 , · · · , a′K = arK

. This is evident from Theorem 2.6.3. Here ‘equiv-

alent’ is used in the sense that for every β, both systems have the same free energy.

Thus, in order that an n-level GREM does not collapse to a lower level GREM it is

necessary and sufficient that the weights ai be strictly decreasing. One should keep

in mind that we are using the same distribution at all levels of the GREM.

The purpose of the following remark is to show that the energy function determines
the parameters of the model. One could characterize functions that arise as energy
functions for exponential GREM.

Remark 2.6.6. As observed in the previous Remark, an n level GREM may reduce to

a K level GREM for some K < n. In the exponential GREM, some weights ai do

not appear in the formula for free energy. When such a thing happens it is clearly

not possible to recover the weights from the formula for energy. It is interesting to

note that when the GREM is in reduced form, we can recover the parameters from

the energy function. Here is the precise statement.

Since an exponential GREM is in reduced form if and only if a1 > · · · > an > 0
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and pi 6= 0 for 1 ≤ i ≤ n, let us assume this to be the case. Let E(β) be the

energy function, that is E(β) = lim
N

1
N

logZN(β). From Theorem 2.6.3, it is easy to

see that E(β) is a piecewise linear continuous function of β taking value log 2 near

zero. Further, its derivative E ′(β) =
k∑

i=1

aipi log 2 in ( 1
ak
, 1

ak+1
). These properties are

good enough to show the following: E(β) uniquely determines all the quantities pi

and ai. In other words, the energy function identifies the parameters.

If 0 < x1 < · · · < xn be the points where the left and right derivatives of E(β)

are unequal, then ai = 1
xi

. Further, if E ′(β) = ci in (xi, xi+1) then pi = xi(ci−ci−1)
log 2

for

1 ≤ i ≤ n. Here x0 = 0 and xn+1 = ∞.

In fact the above considerations lead to a characterization of energy functions for

exponential GREM. Suppose f is a continuous function on [0,∞) with f(0) = log 2.

Further suppose that there are finitely many points 0 < x1 < · · · < xn where the

left and right derivatives are unequal and f ′ is a constant, say, ci in (xi, xi+1). Here

x0 = 0 and xn+1 = ∞. Then f is the energy function for some exponential GREM iff

0 = c0 < c1 < · · · < cn and
n∑

i=1

xi(ci − ci−1) = log 2. (2.6.15)

2.6.3 0 < γ < 1

Now we come to the case γ < 1. Unlike in the above two subsections, here we
have not been able to derive the closed form expression of the free energy for general

n level trees. For γ < 1, the function
n∑

i=1

(
xγ

i

γ
− βaixi

)
is not a convex function,

rather a concave function. Moreover the domain Ψ = {x̃ ∈ Rn :
∑k

i=1 |xi|γ ≤∑k
i=1 γpi log 2, 1 ≤ k ≤ n} is also a non-convex set. Hence in order to calculate

inf
x̃∈Ψ+

n∑

i=1

(
xγ

i

γ
− βaixi

)
(2.6.16)

with

Ψ+ = {x̃ ∈ Rn :
k∑

i=1

|xi|γ ≤
k∑

i=1

γpi log 2,& xk ≥ 0 for 1 ≤ k ≤ n}, (2.6.17)
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we can not use the convex analysis, as we did for the case γ > 1. However, by change
of variables, the problem can be brought back to optimizing a convex function over a
convex set. Now we specialize to the case n = 2. We shall calculate

inf
x̃∈Ψ+

{
(
1

γ
xγ

1 − βa1x1) + (
1

γ
xγ

2 − βa2x2)

}
(2.6.18)

with

Ψ+ = {(x1, x2) ≥ 0 : xγ
1 ≤ γp1 log 2, xγ

1 + xγ
2 ≤ γ(p1 + p2) log 2}. (2.6.19)

To do so, we transform the problem by denoting 1
γ
xγ

1 = x, 1
γ
xγ

2 = y, a1γ
1
γ = a,

a2γ
1
γ = b, p1 log 2 = c, p2 log 2 = d and α = 1

γ
so that, α > 1 and we need to calculate

− sup
x̃∈Ψ+

{(βaxα − x) + (βbyα − y)} (2.6.20)

with
Ψ+ = {(x, y) ≥ 0 : x ≤ c, x+ y ≤ c+ d}. (2.6.21)

Let f(x, y) = (βaxα − x) + (βbyα − y). Since f(x, y) is a convex function and we
are looking for supremum over a convex set, the supremum occurs at the boundary
points. Note that Ψ+ is a polygon. Where as for any ǫ ∈ R, the set {f(x, y) = ǫ} is
either empty set or a smooth curve. Hence the above supremum occurs at one of the
corner points, A ≡ (0, 0), B ≡ (c, 0), C ≡ (c, d) and D ≡ (0, c+ d), of Ψ+. Now

f(A) T f(B) iff β S 1

acα−1
, (2.6.22)

f(A) T f(C) iff β S c+ d

acα + bdα
, (2.6.23)

f(A) T f(D) iff β S 1

b(c + d)α−1
, (2.6.24)

f(B) T f(C) iff β S 1

bdα−1
, (2.6.25)

f(B) T f(D) iff b(c + d)α > acα and β S d

b(c + d)α − acα
, (2.6.26)

f(B) > f(D) if b(c+ d)α ≤ acα, (2.6.27)

f(C) T f(D) iff acα + bdα T b(c + d)α. (2.6.28)

Note that the last two relations do not depend on β. Now comparing all the possibil-
ities, we obtain the following three scenarios:
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b(c + d)α ≤ acα + bdα

Let us assume b(c+ d)α ≤ acα + bdα. Then it is easy to see that

b(c+ d)α ≤ acα + bdα ⇒
{
f(C) ≥ f(D),

c+d
acα+bdα ≤ 1

b(c+d)α−1 <
1

bdα−1 .

Now
c+ d

acα + bdα
<

1

bdα−1
⇒ 1

acα−1
<

1

bdα−1
,

and
1

acα−1
S c+ d

acα + bdα
⇔ 1

acα−1
S 1

bdα−1

implies
1

acα−1
<

c+ d

acα + bdα
≤ 1

b(c + d)α−1
<

1

bdα−1
.

Hence we get

sup
Ψ+

f(x, y) =





f(A) if 0 ≤ β ≤ 1
acα−1

f(B) if 1
acα−1 ≤ β ≤ 1

bdα−1

f(C) if β ≥ 1
bdα−1 .

(2.6.29)

b(c + d)α > acα + bdα & b(c + d)α−1 ≤ acα−1

Let us assume b(c+ d)α > acα + bdα & b(c+ d)α−1 ≤ acα−1. Then it is easy to see
that

b(c + d)α > acα + bdα ⇒





f(D) > f(C),
1

b(c+d)α−1 <
c+d

acα+bdα ,
d

b(c+d)α−acα <
1

bdα−1 .

Moreover,

b(c + d)α−1 ≤ acα−1 ⇒ 1

acα−1
≤ 1

b(c + d)α−1
≤ d

b(c + d)α − acα
.

Thus
1

acα−1
≤ 1

b(c+ d)α−1
≤ d

b(c + d)α − acα
<

1

bdα−1
.
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Hence we get

sup
Ψ+

f(x, y) =





f(A) if 0 ≤ β ≤ 1
acα−1

f(B) if 1
acα−1 ≤ β ≤ d

b(c+d)α−acα

f(D) if β ≥ d
b(c+d)α−acα .

(2.6.30)

b(c + d)α > acα + bdα & b(c + d)α−1 > acα−1

Let us assume b(c+ d)α > acα + bdα & b(c+ d)α−1 > acα−1. Then it is easy to see
that

b(c + d)α > acα + bdα ⇒
{
f(D) > f(C),

1
b(c+d)α−1 <

c+d
acα+bdα .

Moreover,

b(c+ d)α−1 > acα−1 ⇒ 1

acα−1
>

1

b(c+ d)α−1
>

d

b(c+ d)α − acα
.

Thus
d

b(c + d)α − acα
<

1

b(c+ d)α−1
<

c + d

acα + bdα
.

Hence we get

sup
Ψ+

f(x, y) =

{
f(A) if 0 ≤ β ≤ 1

b(c+d)α−1

f(D) if β ≥ 1
b(c+d)α−1 .

(2.6.31)

We can conclude the above three cases in the following:

Theorem 2.6.6. For two level GREM with driving distribution having density φN,γ

as defined in (2.6.1) with 0 < γ < 1, we have, almost surely,

1. if a2 ≤ a1(p1 log 2)
1
γ + a2(p2 log 2)

1
γ , then the limiting free energy is





log 2 for 0 ≤ β ≤ 1

a1γ
1
γ (p1 log 2)

1−γ
γ

,

p2 log 2 + βa1(γp1 log 2)
1
γ for 1

a1γ
1
γ (p1 log 2)

1−γ
γ

≤ β ≤ 1

a2γ
1
γ (p2 log 2)

1−γ
γ

,

β(a1(γp1 log 2)
1
γ + a2(γp2 log 2)

1
γ ) for β ≥ 1

a2γ
1
γ (p2 log 2)

1−γ
γ

.

2. if a2 > a1(p1 log 2)
1
γ + a2(p2 log 2)

1
γ and a2 ≤ a1(p1 log 2)

1−γ
γ , then the limiting

free energy is
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



log 2 for 0 ≤ β ≤ 1

a1γ
1
γ (p1 log 2)

1−γ
γ

,

p2 log 2 + βa1(γp1 log 2)
1
γ for 1

a1γ
1
γ (p1 log 2)

1−γ
γ

≤ β ≤ p2 log 2

a2(γ log 2)
1
γ −a1(γp1 log 2)

1
γ
,

βa2(γ log 2)
1
γ ) for β ≥ p2 log 2

a2(γ log 2)
1
γ −a1(γp1 log 2)

1
γ
.

3. if a2 > a1(p1 log 2)
1
γ + a2(p2 log 2)

1
γ and a2 > a1(p1 log 2)

1−γ
γ , then the limiting

free energy is




log 2 for 0 ≤ β ≤ 1

a2γ
1
γ (log 2)

1−γ
γ

,

βa2(γ log 2)
1
γ ) for β ≥ 1

a2γ
1
γ (log 2)

1−γ
γ

.

Remark 2.6.7. Note that in a 2 level double exponential GREM (in the earlier subsec-

tion) with weights a1 and a2, we had at most two cases, namely, 1
a1

≤ 1
a2

and 1
a1
> 1

a2
.

Where as for γ < 1, we have three cases.

Though there are three cases, we can think of them as two cases like the double

exponential GREM, namely, 1

a1(p1 log 2)
1−γ

γ

≤ 1

a2(log 2)
1−γ

γ

and 1

a1(p1 log 2)
1−γ

γ

> 1

a2(log 2)
1−γ

γ

,

where the first case has two more subcases, namely, 1

a2(p2 log 2)
1−γ

γ

≤ p2 log 2

a2(log 2)
1
γ −a1(p1 log 2)

1
γ

and 1

a2(p2 log 2)
1−γ

γ

> p2 log 2

a2(log 2)
1
γ −a1(p1 log 2)

1
γ
.

2.7 Level-dependant Distributions

We already mentioned that the LDP holds good even when the driving distributions
at various levels are different. To be precise, fix numbers γ1, · · · , γn; each greater
than 0. Consider an n level GREM with the driving distribution at the i-th level
being φN,γi

given by (2.6.1). That is, at the first level for each edge σ1 the associated
random variable ξ(σ1) has density φN,γ1 . In general, for any edge σ1 · · ·σi at the i-th
level, the associated random variables ξ(σ1 · · ·σi) has density φN,γi

. Then the map
ΣN → Rn by

σ 7→
(
ξ(σ1, ω)

N
,
ξ(σ1σ2, ω)

N
, · · · , ξ(σ1 · · ·σn, ω)

N

)

induce random probability µN(ω) on Rn by transporting the uniform probability on
ΣN . Theorem 2.4.6 suggest that in this case the free energy of the system will be

lim
N

1

N
logZN(β) = log 2 − inf

ex∈Ψ+

{
n∑

i=1

(
xγi

i

γi

− βaixi

)}
, (2.7.1)
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where Ψ+ is the intersection of

Ψ = {x̃ ∈ Rn :

k∑

i=1

|xi|γi

γi
≤

k∑

i=1

pi log 2, 1 ≤ k ≤ n},

with the positive orthant of Rn and pi = lim
N→∞

k(i,N)
N

.

In its generality, it is very difficult to have a closed form expression for the above
infimum. May be there is no general closed form expression, for the infimum and
hence for the free energy of the system. To make a beginning and to see what one can
expect, we now specialize to the case n = 2. The limiting frequencies lim

N

k(i,N)
N

are

pi for i = 1, 2. The weights for the two level are a1 and a2 respectively. We assume
p1, p2, a1, a2 are strictly positive.

2.7.1 Exponential - Gaussian GREM

In this case we consider the distributions at the first level to be φN,1 and at the second
level to be φN,2 — that is, exponential and Gaussian respectively. So from (2.7.1),
the expression for the free energy for this case will read as follows:

E(β) = lim
N

1

N
logZN(β)

= log 2 − inf{f(x, y) : x, y ≥ 0; x ≤ p1 log 2; x+
1

2
y2 ≤ log 2} (2.7.2)

where

f(x, y) = x(1 − βa1) +
1

2
y2 − βa2y. (2.7.3)

To calculate E(β) explicitly we proceed as follows. First we discuss the case β ≤ 1
a1

.

Then we discuss β > 1
a1

. This later case leads to three subcases. In each subcase com-

bining the conclusion along with the case β ≤ 1
a1

, we give a full picture of E(β) for all
values of β.

I. β ≤ 1

a1

On the interval [0,∞), the function 1
2
y2 − βa2y decreases up to βa2 and then in-

creases. So when β ≤ 1
a1

, that is when 1 − βa1 ≥ 0, the above function attains its

minimum at the point, (0, βa2 ∧
√

2 log 2).
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II. β > 1

a1

If β > 1
a1

, here is how to calculate the infimum. The function g(y) = inf
x
f(x, y) is

given by

g(y) =

{
p1(1 − βa1) log 2 + 1

2
y2 − βa2y for 0 ≤ y ≤ √

2p2 log 2

(1 − βa1) log 2 + 1
2
βa1y

2 − βa2y for
√

2p2 log 2 ≤ y ≤ √
2 log 2.

This is because, when 0 ≤ y ≤ √
2p2 log 2, inf

x
f(x, y) is attained at x = p1 log 2,

whereas in the other case the infimum is attained at x = log 2 − 1
2
y2.

Since the required infimum of f is just the infimum of g(y), one has to calculate
inf

0≤y≤
√

2 log 2
g(y) by analyzing g in the two intervals separately. This is what we do

below. First note that the function g is continuous. Now we have the following three
scenarios.

A1: a2

a1

<
√

2p2 log 2

Let us assume a2

a1
<

√
2p2 log 2. First let us consider β such that 1

a1
< β ≤

√
2p2 log 2

a2
.

In particular, βa2 ≤
√

2p2 log 2 where as a2

a1
<

√
2p2 log 2. So the function 1

2
y2 − βa2y

is decreasing up to βa2 in [0,
√

2p2 log 2] and then increasing. Thus in [0,
√

2p2 log 2],
g attains its minimum at βa2. On [

√
2p2 log 2,

√
2 log 2] the function 1

2
βa1y

2 −βa2y =
βa1(

1
2
y2 − a2

a1
y) is increasing. Hence, g being continuous, for the values of β under

consideration, the infimum will occur at y = βa2.
Now β be such that β >

√
2p2 log 2

a2
so that βa2 >

√
2p2 log 2. Since a2

a1
<

√
2p2 log 2

the function 1
2
βa1y

2 − βa2y is increasing on [
√

2p2 log 2,
√

2 log 2]. The function
1
2
y2 − βa2y is decreasing on [0,

√
2p2 log 2] attaining infimum at y =

√
2p2 log 2. As a

consequence, for β >
√

2p2 log 2
a2

, the infimum of g(y) is occurs at
√

2p2 log 2.

Thus combining I. and above para we conclude that if a2

a1
<

√
2p2 log 2 then phase

transitions take place at β = 1
a1

and β =
√

2p2 log 2
a2

. So, substituting this corresponding
arguments where minimum is attained in (2.7.3), we have the following

Theorem 2.7.1. In the Exponential-Gaussian GREM, if a2

a1
<

√
2p2 log 2 then almost

surely,

lim
N→∞

1

N
logZN(β) =






log 2 + 1
2
β2a2

2 if β ≤ 1
a1

p2 log 2 + 1
2
β2a2

2 + βp1a1 log 2 if 1
a1
< β ≤

√
2p2 log 2

a2

β(a2

√
2p2 log 2 + a1p1 log 2) if β >

√
2p2 log 2

a2
.
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We can picture the value of E(β) against β as given below. The values of β are
given under the line and values of E(β) are given above the line. The phase transitions
occur at the dark lines.

Subcase A1

0

E(β) →

β →

1
2
β2a2

2 + log 2

√
2p2 log 2

a2

β(a2

√
2p2 log 2 + a1p1 log 2)

1
a1

1
2
β2a2

2 + (βp1a1 + p2) log 2

√
2 log 2
a2

This case seems rather peculiar. This is indeed a sum of two REMs, as fol-
lows. Imagine placing exponential random variables ξσ1 at the first level and one
i.i.d bunch {ξσ1σ2} is placed below each first level node. In other words, consider
{ησ2 : σ2 ∈ 2k(2,N)} i.i.d N (0, N) and set ξσ1σ2 = ησ2 for all σ1, σ2. Consider the
corresponding Hamiltonian HN(σ) = a1ξσ1 + a2ξσ1σ2 = a1ξσ1 + a2ησ2 . Let us set
Z1

N =
∑
σ1

eβa1ξσ1 , the partition function for the k(1, N)-particles system consisting of

exponential Hamiltonian with weight a1. Let Z2
N =

∑
σ2

ea2ησ2 , the partition function

for k(2, N) particle system consisting of Gaussian, N (0, N) Hamiltonian with weight
a2. Clearly, ZN = Z1

N · Z2
N . If, for i = 1, 2; Ei = lim

N

1
N

logZ i
N then the exponential

REM formula [28, 29] yields, a.s.,

E1(β) =

{
p1 log 2 if β ≤ 1

a1

βp1a1 log 2 if β > 1
a1

.
(2.7.4)

The Gaussian REM formula (keeping in mind that for N fixed, the k(2, N) particle
system has N (0, N) Hamiltonians as opposed to N (0, k(2, N)) yields, a.s,

E2(β) =

{
p2 log 2 + 1

2
a2

2β
2 if β ≤

√
2p2 log 2

a2

βa2

√
2p2 log 2 if β >

√
2p2 log 2

a2
.

(2.7.5)

One can now verify that, a.s.

E(β) = E1(β) + E2(β).

In other words the GREM behaves like sum of two independent REMs, one exponen-
tial and other Gaussian. The word independent is used here in the sense that there
is no interaction between these two REMs – that is, there is no interaction between
the k(1, N) particles and the k(2, N) particles, as if there is a barrier between these
two sets of particles. Of course, this is so as long as a2

a1
<

√
2p2 log 2.
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A2:
√

2p2 log 2 ≤ a2

a1

<
√

2 log 2

Let us assume
√

2p2 log 2 ≤ a2

a1
<

√
2 log 2. Then β > 1

a1
means βa2 > a2

a1
≥√

2p2 log 2 where as a2

a1
<

√
2 log 2. So the function 1

2
y2 − βa2y is decreasing on

[0,
√

2p2 log 2] and the other function 1
2
βa1y

2 − βa2y = βa1(
1
2
y2 − a2

a1
y) is decreasing

up to a2

a1
in [

√
2p2 log 2,≤ √

2 log 2] and then increasing. Hence, as g is continuous,

the infimum will occur at y = a2

a1
. Thus, the phase transition takes place at β = 1

a1
.

So we have the following

Theorem 2.7.2. In the Exponential-Gaussian GREM, if
√

2p2 log 2 ≤ a2

a1
<

√
2 log 2

then almost surely,

lim
N→∞

1

N
logZN(β) =





log 2 + 1
2
β2a2

2 if β ≤ 1
a1

β
(

1
2

a2
2

a1
+ a1 log 2

)
if β > 1

a1

As earlier, we can picture the value of E(β) against β as given below. The values
of β are given under the line and values of E(β) are given above the line. The phase
transitions occur at the dark lines.

Subcase A2

0

E(β) →

β →

1
2
β2a2

2 + log 2

1
a1

β(1
2

a2
2

a1
+ a1 log 2)

√
2 log 2
a2

√
2p2 log 2

a2

In this case, we observe that the free energy for inverse temperature up to 1
a1

is

given by log 2 + 1
2
β2a2

2. This can be thought of as the Gaussian REM energy but not

going all the way up to β ≤
√

2 log 2
a2

but cut short at 1
a1

. This can also be thought
of as the sum of the two energies E1 and E2 as in (2.7.4) and (2.7.5), but then the

Gaussian effect is prolonged up to β ≤ 1
a1

instead of stopping at
√

2p2 log 2
a2

. We do

not know which is the correct interpretation. For β > 1
a1

, the system exhibits a new
phenomenon which we are unable to explain. The term βa1 log 2 is reminiscent of the

exponential REM energy. The other term 1
2
β

a2
2

a1
appears to be new.

A3:
√

2 log 2 ≤ a2

a1

Let us assume
√

2 log 2 ≤ a2

a1
. Then β > 1

a1
means βa2 > a2

a1
≤ √

2 log 2. So

both the functions 1
2
y2 −βa2y and 1

2
βa1y

2 −βa2y = βa1(
1
2
y2 − a2

a1
y) are decreasing on
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[0,
√

2p2 log 2] and [
√

2p2 log 2,≤ √
2 log 2] respectively. Hence the infimum will occur

at y =
√

2 log 2. Being βa2 >
√

2 log 2, the phase transition takes place at β =
√

2 log 2
a2

.
Hence we have the following

Theorem 2.7.3. In the Exponential-Gaussian GREM, if a2

a1
≥ √

2 log 2 then almost

surely,

lim
N→∞

1

N
logZN(β) =





log 2 + 1
2
β2a2

2 if β ≤
√

2 log 2
a2

βa2

√
2 log 2 if β >

√
2 log 2
a2

As earlier, we can picture the value of E(β) against β as given below. The values
of β are given under the line and values of E(β) are given above the line. The phase
transitions occur at the dark lines.

Subcase A3

1
2
β2a2

2 + log 2

0

E(β) →

β →
√

2 log 2
a2

1
a1

βa2

√
2 log 2

Thus in subcase A3, the system behaves like a REM with Gaussian distribu-
tions [16] having weight a2, that is, as if HN(σ) are i.i.d centered Gaussian with
variance a2

2N . For example, when a1 = a2 then this is just the standard Gaussian
REM. It does not depend on the quantities p1 and p2. Even when p2 = 0.0001 (very
small) the first level exponentials do not show up in the limit. Further the GREM
reduces to a REM. Of course, this is so as long as

√
2 log 2 < a2

a1
. This should be con-

trasted with subcase A1 where the entire system behaves like sum of two independent
REM, one Gaussian and other exponential.

2.7.2 Gaussian - Exponential GREM

Let us consider the situation where the driving distributions at the first level are
Gaussian, φN,2 and at the second level they are exponential, φN,1. Moreover, as
earlier a1 and a2 are the weights at the first and second level respectively. We will use
the same notation for k(1, N), k(2, N) and for p1, p2. In this case the general formula
of Theorem 2.4.6 reduces to the following:

lim
N

1

N
logZN(β) = log 2 − inf{f̃(x, y) : x, y ≥ 0; x ≤

√
2p1 log 2;

1

2
x2 + y ≤ log 2}
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almost surely, where

f̃(x, y) =
1

2
x2 − βa1x+ y(1 − βa2).

In this case to calculate the infimum we proceed as follows. Put g(x) = inf
y
f̃(x, y).

Since (1βa2) ≥ 0 for β ≤ 1
a2

, we have

g(x) =
1

2
x2 − βa1x if β ≤ 1

a2

=
1

2
x2 − βa1x+ (1 − βa2)(log 2 − 1

2
x2) if β >

1

a2

that is

g(x) =
1

2
x2 − βa1x if β ≤ 1

a2

= βa2

(
1

2
x2 − a1

a2

x

)
+ (1 − βa2) log 2 if β >

1

a2

.

Since infimum of f(x, y) is same as that of infimum of g over x, one has to calculate
inf

0≤x≤
√

2p1 log 2
g(x). Here, we will have the following two scenarios.

B1: a1

a2

≤ √
2p1 log 2

Let us assume a1

a2
≤ √

2p1 log 2. If β ≤ 1
a2

, then βa1 ≤ √
2p1 log 2. The function

1
2
x2 − βa1x decreases up to βa1 an then increases. Hence when β ≤ 1

a2
the infimum

occurs at x = βa1. For β > 1
a2

as a1

a2
≤ √

2p1 log 2, the infimum will occur at x = a1

a2
.

So we have the following

Theorem 2.7.4. In the Gaussian-Exponential GREM, if a1

a2
≤ √

2p1 log 2 then almost

surely,

lim
N→∞

1

N
logZN(β) =





log 2 + 1
2
β2a2

1 if β ≤ 1
a2

β
(

1
2

a2
1

a2
+ a2 log 2

)
if β > 1

a2

As earlier, we can picture the value of E(β) against β as given below. The values
of β are given under the line and values of E(β) are given above the line. The phase
transitions occur at the dark lines.
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Subcase B1

0

E(β) →

β →

1
2
β2a2

1 + log 2

1
a2

β(1
2

a2
1

a2
+ a2 log 2)

√
2p1 log 2

a1

B2:
√

2p1 log 2 < a1

a2

Let us assume a1

a2
>

√
2p1 log 2. If β ≤ 1

a2
we have βa1 ≤ a1

a2
. So the quantity βa1

will be in [0,
√

2p1 log 2] as long as β ≤
√

2p1 log 2
a1

. As the function 1
2
x2−βa1x decreases

up to βa1 an then increases, for β ≤
√

2p1 log 2
a1

the infimum occurs at x = βa1. But for

and for
√

2p1 log 2
a1

< β ≤ 1
a2

, the infimum occurs at x =
√

2p1 log 2. For β > 1
a2

consider

the function 1
2
x2− a1

a2
x which decreases up to a1

a2
and then increases. As a1

a2
>

√
2p1 log 2,

the infimum will occur at x =
√

2p1 log 2. Thus we have the following

Theorem 2.7.5. In the Gaussian-Exponential GREM, if a1

a2
>

√
2p1 log 2 then almost

surely,

lim
N→∞

1

N
logZN(β) =





log 2 + 1
2
β2a2

1 if β ≤
√

2p1 log 2
a2

p2 log 2 + βa1

√
2p1 log 2 if

√
2p1 log 2

a2
< β ≤ 1

a2

β
(
a1

√
2p1 log 2 + a2p2 log 2

)
if β > 1

a2

As earlier, we can picture the value of E(β) against β as given below. The values
of β are given under the line and values of E(β) are given above the line. The phase
transitions occur at the dark lines.

Subcase B2

0

E(β) →

β →

1
2
β2a2

1 + log 2

1
a2

β(a1

√
2p1 log 2 + a2p2 log 2)

√
2p1 log 2

a1

βa1

√
2p1 log 2 + p2 log 2

√
2 log 2
a1

Remarks similar to Exponential-Gaussian GREM apply here as well. Subcase B1

is similar to subcase A2. Here also the term 1
2
β

a2
1

a2
is not reminiscent of anything we

know.
Subcase B2 is similar to that of subcase A1. That is in subcase B2, the limiting

free energy is sum of two REM free energies – one is of Gaussian REM and other is
of exponential REM. To be precise, the Gaussian REM limiting free energy (keeping
in mind that for N fixed, the k(1, N) particle system has N (0, a2N) Hamiltonian as
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opposed to N (0, a2k(1, N)) yields, a.s,

Ẽ1(β) =

{
p1 log 2 + 1

2
a2

1β
2 if β ≤

√
2p1 log 2

a1

βa1

√
2p1 log 2 if β >

√
2p1 log 2

a1
.

(2.7.6)

On the other hand, for fixed N , if we have configurations 2k(1,N) then the exponential
REM limiting free energy, with Hamiltonian as a2 times double exponential random
variable yields, a.s.,

Ẽ2(β) =

{
p2 log 2 if β ≤ 1

a2

βp2a2 log 2 if β > 1
a2

.
(2.7.7)

Now it is easy verify that, in subcase B2, a.s.

E(β) = Ẽ1(β) + Ẽ2(β).

The reader should note that to compare subcase B2 with subcase A1, we interchange
a2 with a1 and p2 with p1 (to maintain the same weights and proportions for the
exponential and Gaussian levels).

The last interesting note is that in Gaussian-Exponential GREM, the system never
reduces completely to a Gaussian REM as happened in subcase A3.

Thus the large deviation technique allows the use of different distributions at differ-
ent levels leading to some interesting phenomenons. The conclusions of Exponential-
Gaussian GREM differ from those of Exponential-Gaussian. The system may reduce
to a Gaussian REM even with a very small weight is associated to that level. Even
the system may appear as a system of two independent REMs separated by a big wall
preventing them to interact between each other. Moreover, there are situations where
we could not explain the terms present in the expression for energy.



Chapter 3

More Tree Structures including

Randomness

In this chapter, we will consider several models similar to that of Generalized Random
Energy Model. In the previous chapter, we formulated GREM in general tree set up
with out giving any examples of general tree structures. The set up also allows us
to randomize the tree structure. First we consider regular trees but the trees are
random, driven by Poisson random variables. Then we consider non-regular random
trees again driven by Poisson random variables. We prove that in both the cases
the free energy exists for almost every tree sequences and they are same as that of
usual deterministic tree GREMs for almost every sample point. Also we consider
Multinomial trees. These will be explained later.

The usual GREM has hierarchical structure, and it is so in all the above mentioned
models. In 2006, Bolthausen and Kistler [3] defined a model which is a generalization
of the GREM where the model is no longer hierarchical. They called the model as
non-hierarchical version of GREM and prove the existence of the free energy by using
second moment method. Surprisingly, the energy expression is again the same as
that of the usual GREM. So the non-hierarchy does not play a role in the limiting
free energy. We produce an alternative proof of their result through large deviation
techniques and show that the free energy of this model is minimum of certain hidden
GREMs. Then we introduce another model, block tree GREM where the energy
is maximum over certain GREM energies. We present further generalization in a
model, in the next chapter, through which we can get all the models REM, GREM,
Bolthausen-Kistler model and their versions with the external field.

79
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3.1 Regular Poisson GREM

In generalized random energy model, we have randomness coming from the driving
distributions. The reformulation of GREM in general tree structure allows us to
introduce another randomness at the tree level which is independent of the randomness
of the Hamiltonians. As usual for N particles system, let {k(i, N), 1 ≤ i ≤ n}
be a partition of N into n (the level of the tree) positive integers. Consider, for
each N , independent random variables L1N , · · · , LnN where LiN ∼ P (2k(i,N)), i.e. a
Poisson random variable with parameter 2k(i,N) for 1 ≤ i ≤ n. Let us construct
a random tree with (1 + LiN ) nodes at the i-th level below each node of the (i-
1)-th level. That is, at the first level there will be 1 + L1N many edges and at
the second level there will be total (1 + L1N )(1 + L2N ) many edges. Here we are
considering 1 + LiN instead of LiN itself, to take care of the situation LiN = 0 so
that each branch in the tree is of length n. Once again we denote the edges at the
first level by σ1 and the second level edges below σ1 as σ1σ2 and so on. The weight
of the i-th level is ai > 0. Similarly we will associate independent random variable
ξ(σ1 · · ·σi) with the edge σ1 · · ·σi. In this case for N particle system, instead of 2N

configurations we will have (1 +L1N )(1 +L2N ) · · · (1 +LnN) many configurations. Of
course this is also a regular tree, but random, and could be called regular Poisson
tree. The corresponding GREM model, where the Hamiltonian for the configuration

σ = (σ1, · · · , σn) is defined as
n∑

i=1

aiξ(σ1 · · ·σi), can be called a regular Poisson tree

GREM with parameter k̃ = (k(1, N), · · · , k(n,N)). The next result says that if the
same conditions as in Corollary 2.3.2 hold then even with randomization of tree, the
conclusion holds for almost every tree sequence.

Proposition 3.1.1. Consider a regular Poisson tree GREM with parameter k̃. The

following is true:

a) If
∑

N≥1

2k(1,N)+···+k(i,N)q1N · · · qiN < ∞, for some i, 1 ≤ i ≤ n then for a.e. tree

sequence, a.s. eventually, µN(△) = 0.

b) If
∑

N≥1

2−(k(1,N)+···+k(i,N))q−1
1N · · · q−1

iN < ∞, for each i = 1, · · · , n, then for a.e.

tree sequence the following is true: for any ǫ > 0, a.s. eventually,

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

Proof. a) It suffices to verify the hypothesis of Theorem 2.3.1(a) holds for almost

every tree sequence, that is,
∑

N≥n

BiNq1N · · · qiN < ∞ for some i. Recall that BiN is

the number of branches at the i-th level.
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But we could prove a stronger statement, namely, if for some i with 1 ≤ i ≤
n,

∑
N≥n

2k(1,N)+···+k(i,N)q1N · · · qiN < ∞, then ET

∑
N≥n

BiNq1N · · · qiN < ∞ for that i

where ET is the tree expectation. Since the tree randomness is independent of the

Hamiltonian randomness, in view of the hypothesis, it suffices to show

ETBiN ≤ 2k(1,N)+···+k(i,N)+i. (3.1.1)

Using independence of the random variables (LjN , 1 ≤ j ≤ i), we get

ETBiN = E
i∏

j=1

(1 + LjN) =
i∏

j=1

E(1 + LjN) =
i∏

j=1

(1 + 2k(j,N)) ≤ 2i
i∏

j=1

2k(j,N). (3.1.2)

b) It is enough to show that for fixed ǫ > 0, almost every tree sequence satisfies

the stated conclusion. This is achieved by verifying that the hypothesis of Theorem

2.3.1(b) holds for almost every tree sequence, that is,
∑

N≥n

s2
iN

B2
N q1N ···qiN

< ∞. Recall

that, s2
iN =

∑
σ1,··· ,σi

e2(σ1, · · · , σi) where e(σ1σ2 · · ·σi) denotes the number of nodes at

the n-th level below the node σ1σ2 · · ·σi and BN is the number of leaves or the the

total number of branches in the tree.

Here also we prove a stronger statement, namely, ET

∑
N≥n

s2
iN

B2
Nq1N ···qiN

<∞ for each

i where ET is the tree expectation. Again, since the tree randomness is independent

of the Hamiltonian randomness, in view of the hypothesis, it suffices to show

ET

(
s2

iN

B2
N

)
≤ 2−(k(1,N)+···+k(i,N)). (3.1.3)

But due to regularity of the tree s2
iN =

i∏
j=1

(1 + LjN)
n∏

j=i+1

(1 + LjN)2 and B2
N =

n∏
j=1

(1 + LjN)2. Hence

s2
iN

B2
N

=
i∏

j=1

1

1 + LjN

.
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Thus using the independence of the random variables (LjN , 1 ≤ j ≤ n), we get

ET

(
s2

iN

B2
N

)
=

i∏

j=1

E

(
1

1 + LjN

)
. (3.1.4)

Since for a Poisson random variables X with parameter λ, E 1
1+X

= 1
λ

(
1 − e−λ

)

and since LjN ∼ P (2k(i,N)) we have,

E

(
1

1 + LjN

)
= 2−k(j,N)

(
1 − e−2k(j,N)

)
≤ 2−k(j,N). (3.1.5)

Substituting (3.1.5) in (3.1.4) we get (3.1.3).

Now further if we assume that k(i,N)
N

→ pi (> 0) for 1 ≤ i ≤ n and the random
variables ξ(σ1 · · ·σi) are distributed like φN,γi

as defined in (2.4.1), the rest of the
proof for existence of the free energy is the same as that of Theorem 2.4.6. Thus if

the sequence
{

ξ(σ1···σi)
N

}
satisfies LDP with good rate function Ii for each i with scale

parameter N , then we have the following.

Theorem 3.1.2. Assume the setup as in the above paragraph. For regular Poisson

tree GREM, for almost every tree sequences, almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

ex∈Ψ

{
n∑

i=1

(Ii(xi) − βaixi)

}
,

where

Ψ =

{
x̃ ∈ Rn :

k∑

i=1

Ii(xi) ≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n

}
.

Thus, though we have another randomness in the setup of the model, the limiting
free energy remains the same. That is why, in the original setup of GREM by Derrida,
though (αN

i ) may not be an integer, with out any loss of generality one can consider
the number of branches at the i-th level to be [αN

i ]. We make this more precise in
Remark 3.3.1.

We also note that, in this model the number of configurations in the configuration
space may not be of the form αN , where α ia a natural number. Instead, it is of the
form l1l2 · · · ln.

In the above model, there are n random variables controlling the number of nodes
at the n level of the GREM. Since n is fixed and N → ∞, one may get the impression
that this extra randomness is not showing up in the final conclusion, namely, in the
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expression for the free energy. The next model shows that such an impression is not
correct.

3.2 Poisson GREM

In the above model we randomized the tree sequences so that the underlying trees
once again remain regular. But the general formulation allow us to consider a non-
regular tree sequence. In the previous model, for each N , we randomized the tree
using n many Poisson random variables corresponding to the levels of the tree. But it
is conceivable to use independent Poisson variables at each of the nodes to construct
the tree as well as the configuration space. This is what we do now. As in the previous
model, let {k(1, N), · · · , k(n,N)} be a partition of N . Unlike in that model, now let
us consider an n-level tree with P (2k(i,N))+1, many nodes below each of the nodes at
the (i− 1)-th level for 1 ≤ i ≤ n. Here P (2k(i,N)) denotes a Poisson random variable
with parameter 2k(i,N). In other words, instead of fixing one random variable and
taking so many nodes below each of the (i−1)-th level nodes, we now fix one random
variable for each node of the (i− 1)-th level and take so many nodes below that. Let
us assume all these Poisson random variables are independent. As in the previous
model, we denote a typical edge at the i-th level by σ1 · · ·σi below the edge σ1 · · ·σi−1

and we associate independent random variables ξ(σ1 · · ·σi) to it. We assume that this
family {ξ(σ1 · · ·σi)} is independent of the above Poisson family. For 1 ≤ i ≤ n, we
have a positive number ai denoting the weights for the i-th level of the tree. Now we
define the Hamiltonian for the configuration σ = (σ1, · · · , σn) as

HN(σ) =
n∑

i=1

aiξ(σ1 · · ·σi).

This model can be called a true Poisson tree GREM with parameter k̃ =
(k(1, N), · · · , k(n,N)). Here we randomize, rather Poissonize, the tree in its full
form. Even in this case also the model behaves the same way and we get the same
conclusions as that of the above model, that is, (a) and (b) of Proposition 3.1.1 remain
true. This is the content of the next proposition.

Proposition 3.2.1. Consider a Poisson tree GREM with parameter k̃. The following

is true:

a) If
∑

N≥1

2k(1,N)+···+k(i,N)q1N · · · qiN < ∞, for some i, 1 ≤ i ≤ n then for a.e. tree

sequence, a.s. eventually, µN(△) = 0.

b) If
∑

N≥1

2−(k(1,N)+···+k(i,N))q−1
1N · · · q−1

iN < ∞, for each i = 1, · · · , n, then for a.e.
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tree sequence the following is true: for any ǫ > 0, a.s. eventually,

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

We need the following two inequalities to prove the proposition.

Let a ≥ 1, b ≥ 1 and λ > 0. Suppose that X ∼ P (aλ) and Y ∼ P (bλ) are

independent random variables. Then

E

(
X + a

X + Y + a+ b

)2

≤ 2

(
a

a+ b

)2

, (3.2.1)

and

E
X + a

(X + Y + a+ b)2
≤ a

(a+ b)2

1

λ
. (3.2.2)

Both these rely on conditioning. Since X and Y are independent Poisson random
variables, given X + Y = l, the conditional distribution of X is binomial

(
l, a

a+b

)
. So

E

(
X + a

X + Y + a + b

)2

=E

{
1

(X + Y + a+ b)2
E
[
(X + a)2 | X + Y

]}

=E

{
1

(X + Y + a+ b)2

a2(X + Y + a+ b)2 + (X + Y )ab

(a+ b)2

}

≤ a2

(a+ b)2
since a ≥ 1,

and

E

(
X + a

(X + Y + a + b)2

)

=E

{
1

(X + Y + a+ b)2
E[(X + a) | X + Y ]

}

=E

{
1

(X + Y + a+ b)2

a(X + Y + a + b)

(a + b)

}

=
a

(a+ b)
E

1

(X + Y + a+ b)
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<
a

(a+ b)
E

1

(X + Y + 1)
since a+ b > 1

<
a

λ(a+ b)2
.

Proof of Proposition 3.2.1. The proof is routine but involves rather cumbersome no-

tation. To describe the random tree for the N -particle system, let L0 ∼ P (2k(1,N)),

the number of edges at the first level. For 1 ≤ σ1 ≤ L0 + 1, let Lσ1 ∼ P (2k(2,N)),

the number of edges at the second level below the first level edge σ1. In general, for

σ1σ2 · · ·σi, with 1 ≤ σ1 ≤ L0 + 1, 1 ≤ σ2 ≤ Lσ1 + 1, · · · , 1 ≤ σi ≤ Lσ1···σi−1
+ 1,

let Lσ1···σi
∼ P (2k(i+1,N)), the number of edges at the (i + 1)-th level below the edge

σ1 · · ·σi−1 at the i-th level.

To prove part (a), it suffices to show, as in Proposition 3.1.1, that

ETBiN ≤ 2k(1,N)+···+k(i,N)+i.

Since, in this model

BiN =
∑

σ1

· · ·
∑

σi−1

(Lσ1···σi−1
+ 1),

the proof is immediate.

To prove (b), as in Proposition 3.1.1, it suffices to show that for each i,

ET

(
s2

iN

B2
N

)
≤ 2n2−(k(1,N)+···+k(i,N)).

But in this model,

s2
iN

B2
N

=
∑

σ1

· · ·
∑

σi

(∑
σi+1

· · ·∑σn−1
(Lσ1···σn−1 + 1)

∑
σ1
· · ·∑σn−1

(Lσ1···σn−1 + 1)

)2

.

To calculate the expectation we proceed as follows. Let Fo be the σ-field generated

by L0, F1 be the σ-field generated by {L0, Lσ1 : 1 ≤ σ1 ≤ L0 + 1} and in general



Chapter 3: More Tree Structures including Randomness 86

Fi be the σ-field generated by {L0, Lσ1 , · · · , Lσ1···σi
: 1 ≤ σ1 ≤ L0 + 1, 1 ≤ σ2 ≤

Lσ1 + 1, · · · , 1 ≤ σi ≤ Lσ1,··· ,σi−1
} for i = 0, · · · , n − 2. Let Ei be the conditional

expectation given Fi. Then (3.2.1) suggests that,

En−2

(
s2

iN

B2
N

)
= En−2

∑
σ1

· · ·∑
σi

(∑
σi+1

· · ·∑σn−1
Lσ1···σn−1 +

∑
σi+1

· · ·∑σn−1
1

∑
σ1
· · ·∑σn−1

Lσ1···σn−1 +
∑

σ1
· · ·∑σn−1

1

)2

≤ 2
∑
σ1

· · ·∑
σi

(∑
σi+1

· · ·∑σn−2
(Lσ1···σn−2 + 1)

∑
σ1
· · ·∑σn−2

(Lσ1···σn−2 + 1)

)2

.

Similarly,

En−3En−2

(
s2

iN

B2
N

)
≤ 22

∑

σ1

· · ·
∑

σi

(∑
σi+1

· · ·∑σn−3
(Lσ1···σn−3 + 1)

∑
σ1
· · ·∑σn−3

(Lσ1···σn−3 + 1)

)2

,

and thus

Ei · · ·En−2

(
s2

iN

B2
N

)
≤ 2n−i−1

∑

σ1

· · ·
∑

σi

(
1∑

σ1
· · ·∑σi

(Lσ1···σi
+ 1)

)2

.

Now we can use (3.2.2) to calculate further conditional expectations so that

Ei−1Ei · · ·En−2

(
s2

iN

B2
N

)
≤ 2n−i−1 1

2k(i,N)

∑

σ1

· · ·
∑

σi−1

(
1∑

σ1
· · ·∑σi

(Lσ1···σi−1
+ 1)

)2

,

and so on to get

E0E1 · · ·En−2

(
s2

iN

B2
N

)
≤ 2n−i−1 1

2k(i,N)+···+k(1,N)
.

Since ET

(
s2
iN

B2
N

)
= E0E1 · · ·En−2

(
s2
iN

B2
N

)
, the proof is complete.

Once again to verify the existence of limiting free energy, one has to verify all the
steps involved in section 2.4. To be precise, if we assume that k(i,N)

N
→ pi (> 0) for

1 ≤ i ≤ n, the sequence
{

ξ(σ1···σi)
N

}
satisfies LDP with good rate function Ii for each

i, then we get
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Theorem 3.2.2. For almost every tree sequences, almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

ex∈Ψ

{
n∑

i=1

(Ii(xi) − βaixi)

}
,

where

Ψ =

{
x̃ ∈ Rn :

k∑

i=1

Ii(xi) ≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n

}
.

Remark 3.2.1. Recall that a tree is regular if for any i, the number of nodes below a

(i− 1)-th level node depends only on i and not on the specific nodes. We say that a

tree sequence is regular if after some stage each tree in the sequence is regular. Under

suitable conditions −− for instance, when
∑
N

e−k(i,N) <∞ for some i −− it is possible

to show that almost every tree sequence ceases to be regular. Though in this case the

probability that the tree sequence will consist of regular trees is very small, we did

not get any further new result except that, now the limiting free energy is constant

for almost every tree sequences as well as almost every sample points.

3.3 Multinomial tree GREM

In the above two models, we randomized the number of nodes at each level keeping
the average fixed. It is also possible to randomize the vector k̃ suitably. To do that,

we fix pi > 0 for 1 ≤ i ≤ n with
n∑
1

pi = 1. Now consider an n-faced die with pi being

the chance of face i appearing in a throw. Now we can consider two experiments with
this die. Firstly, we can consider an indefinite throws of the die and for N particle
system let K(i, N) be the number of times face i appears in first N throws. In the
second, experiment for N particle system we will throw the die independently N times
and observe the outcomes. With the same notation, let K(i, N) be the number of

times face i appears. Clearly, in both the cases K(i, N) ≥ 0 and
n∑

i=1

K(i, N) = N . We

can consider GREM with parameter K̃, that is where the under lying tree has 2K(i,N)

many edges below each of the (i − 1) level node. These can be called multinomial
tree GREM of first kind and multinomial tree GREM of second kind with parameter
p̃ = (p1, · · · , pn) respectively. With the same notation as in section 2.3, in this case



Chapter 3: More Tree Structures including Randomness 88

we have

ETBiN = E
i∏

j=1

2K(j,N) =
N∑

k=0

2k

(
N
k

)( i∑

1

pj

)k(
1 −

i∑

1

pj

)N−k

=

(
1 +

i∑

1

pj

)N

.

But for any x, as (1 + x)N ≤ eNx, we have

ETBiN ≤ e
N

iP
1

pj

= 2
N

log 2
(p1+···+pi). (3.3.1)

On the other hand, in this case, s2
iN = 2K(1,N)+···+K(i,N)22(K((i+1),N)+···+K(n,N)) and

B2
N = 2

2
nP

j=1
K(j,N)

so that
(

s2
iN

B2
N

)
= 2

−
iP
1

K(j,N)
. Once again using the fact that

i∑
1

K(j, N) is binomial with parameters N and
i∑
1

pj, we see that

E2
−

iP
1

K(j,N)
=

(
1 − 1

2

i∑

1

pj

)N

.

Hence by same inequality as earlier, we have

E2
−

iP
1

K(j,N)
≤ e

−N
2

iP
1

pj

= 2
− N

2 log 2

iP
1

pj

. (3.3.2)

Combining the above observations (3.3.1) and (3.3.2), we have the following

Corollary 3.3.1. Consider a multinomial tree GREM either of first kind or of second

kind with parameter p̃. Let △ = △1 ×· · ·×△n be a box in Rn and qiN = P ( ξ(σ1···σi

N
) ∈

△i.

a) If
∑

N≥1

2
N

log 2
(p1+···+pi)q1N · · · qiN < ∞, for some i, 1 ≤ i ≤ n then for a.e. tree

sequence, a.s. eventually, µN(△) = 0.

b) If
∑

N≥1

2−
N

2 log 2
(p1+···+pi)q−1

1N · · · q−1
iN < ∞, for each i = 1, · · · , n, then for a.e. tree

sequence the following is true: for any ǫ > 0, a.s. eventually,

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

Notice the difference in the hypothesis of (a) and (b) in the above corollary. More
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specifically, there is a factor 1
2

extra in the exponent of 2 in part (b). This difference
will not help us to obtain the exact support of the empirical measure µN . For the
variational problem this support is very essential. But, of course, we have strong law
of large number in our hand. By SLLN, almost surely, 1

N
(K(1, N), · · · , K(n,N)) →

(p1, · · · , pn) in both the models, first or second kind. In the first case, we use SLLN
for a sequence of i. i. d. random variables and in the second case we use SLLN for
array of rowwise independent random variables [27]. According to Hu et al in [27]: If
{Xnk} be an array of rowwise independent random variables such that EXnk = 0 and
there exists a random variable X with EX2 < ∞ so that for all n and k and for all

t > 0, P (|Xnk| > t) ≤ P (|X| > t), then 1
n

n∑
k=1

Xnk → 0 almost surely. Since we can

write K(i, N) as
N∑

k=1

X
(i)
Nk where X

(i)
Nk are Bernoulli with success probability pi, the

above result is applicable for the second kind model. Thus, in either of the cases, for
every ǫ > 0 almost every tree sequences after some stage

N(p1 + · · ·+ pi − ǫ) < K(1, N) + · · ·+K(i, N) < N(p1 + · · ·+ pi + ǫ)

for i = 1, · · · , n. That is for almost every tree sequences and for any arbitrary ǫ > 0,

BiN ≤ 2N(p1+···+pi+ǫ) and
s2
iN

B2
N

< 2−N(p1+···+pi−ǫ) for i = 1, · · · , n. As a consequence, we

can restate Theorem 2.3.1 as follows

Corollary 3.3.2. Consider a multinomial tree GREM with parameter p̃. Let △ =

△1 × · · · × △n be a box in Rn and qiN = P ( ξ(σ1···σi

N
) ∈ △i. Let ǫ > 0.

a) If
∑

N≥1

2Nǫ2N(p1+···+pi)q1N · · · qiN < ∞, for some i, 1 ≤ i ≤ n then for a.e. tree

sequence, a.s. eventually, µN(△) = 0.

b) If
∑

N≥1

2Nǫ2−N(p1+···+pi)q−1
1N · · · q−1

iN <∞, for each i = 1, · · · , n, then for a.e. tree

sequence the following is true: a.s. eventually,

(1 − ǫ)q1N · · · qnN ≤ µN(△) ≤ (1 + ǫ)q1N · · · qnN .

Now the proof of existence of the asymptotic free energy for this model is routine
and for almost every tree sequence the expression for free energy will be same as that
of the deterministic tree model where k(i,N)

N
→ pi for 1 ≤ i ≤ n. To state precisely,

let us we assume that the sequence
{

ξ(σ1···σi)
N

}
satisfies LDP with good rate function

Ii for each i, then we have the following.

Theorem 3.3.3. With the setup as in the above paragraph, for almost every tree
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sequence, almost surely,

lim
N

1

N
logZN(β) = log 2 − inf

ex∈Ψ

{
n∑

i=1

(Ii(xi) − βaixi)

}
,

where

Ψ =

{
x̃ ∈ Rn :

k∑

i=1

Ii(xi) ≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n

}
.

Remark 3.3.1. Going back to Theorem 2.3.1, let (TN) and (T̃N) be two sequences of

trees. Suppose there are numbers C > c > 0 such that for each i, c ≤ s̃iN

siN
≤ C and

c ≤ B̃iN

BiN
≤ C. Then it is easy to see that, hypothesis of Theorem 2.3.1(b) holds for

(TN ) iff it holds for (T̃N ). Accordingly, the conclusion of Theorem 2.3.1(b) holds for

(TN ) iff it holds for (T̃N ). Same remark applies for Theorem 2.3.1(a).

3.4 Bolthausen - Kistler GREM

In 2006, Bolthausen and Kistler proposed a model where they tried to go beyond the
natural ultrametricity of the GREM model. To recall, a metric d is ultrametric if in the
metric property one replaces the triangle inequality by d(x, z) ≤ max(d(x, y), d(y, z)).
In all of the above GREM model one can define a metric on the configuration space
ΣN of the N particle system through the covariance structure of the Hamiltonian. To
be precise for two configurations σ and τ in ΣN ,

d(σ, τ) =
√
E(HN(σ) −HN(τ))2. (3.4.1)

Here as usual, HN(σ) =
n∑

i=1

aiξ(σ1 · · ·σi) with the usual GREM notation. Let σ =

(σ1, · · · , σn) and τ = (τ1, · · · , τn). If σ = τ then d(σ, τ) = 0. If σi = τi for 1 ≤ i ≤

k < n but σ(k+1) 6= τ(k+1) then d(σ, τ) =

√
2

n∑
i=k+1

a2
iEξ(σ1 · · ·σi)2, assuming that the

ξ’s are symmetric with finite variance. The distance between any two configuration
will be maximum, when they differ at the first level of the tree. The longer the initial
segment of σ and τ coincide, the closer they are. Also it is quite easy to verify that
this metric indeed is an ultrametric. To see this, it is enough to see the level of
difference among the configurations. Suppose, we have any three configurations σ, τ
and η in ΣN . Let ki, k2 and k3 be the maximum non-negative integers so that σi = τi
for 1 ≤ i ≤ k1; σi = ηi for 1 ≤ i ≤ k2 and τi = ηi for 1 ≤ i ≤ k3 respectively.
To show d(σ, τ) ≤ max(d(σ, η), d(η, τ)), we only need to show that k1 ≥ min(k2, k3).
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Without loss of generality if we assume k2 ≤ k3 then σ = η1 · · · ηk2σk2+1 · · ·σn and
τ = η1 · · · ηk3τk3+1 · · · τn. If k1 < k2, then σk1+1 = ηk1+1 = τk1+1 will contradict the
maximality of k1.

We will denote the model of Bolthausen and Kistler as BK-GREM. The set up
in the BK-GREM is the following: For a fixed number n ∈ N, they consider the
set I = {1, 2, · · · , n} and a collection of non-negative real numbers {aJ}J⊂I such
that

∑
J⊂I

aJ = 1 with a∅ = 0. There may be subsets J of I for which aJ = 0,

so they consider PI as that collection of subsets J of I for which aJ > 0 that is,
PI = {J : aJ > 0}. Like in the usual GREM, they fix n positive real numbers γi

for i ∈ I so that
n∑

i=1

γi = 1 and split the configurations space ΣN = {−1, 1}N in to

products Σγ1N × Σγ2N × · · · × ΣγnN with ΣγiN = {−1, 1}γiN for each i. Since γiN
may not be an integer one needs to use [γiN ] instead of γiN , and

∏n
i=1 Σ[γiN ] as

the configuration space etc. Since we shall soon reformulate this model we do not
elaborate on these points. So a configuration σ can be written as (σ1, · · · , σn). For

J = {j1, · · · , jk} ⊂ I, denote ΣJ,N for
k∏

l=1

Σγjl
N and σJ for the projected configuration

(σj)j∈J ∈ ΣJ,N . In this setup, the random Hamiltonian is defined as

HN(σ) =
∑

J∈PI

ξJ(σJ),

where for J ∈ PI and σJ ∈ ΣJ,N the random variables ξJ(σJ) are independent centered
Gaussian random variables with variance aJN . It is quite easy to verify that, in this
model if we define the metric on the configurations space by the same formula as
in (3.4.1) then the metric will not be always an ultrametric. But yet they have
shown that the limiting free energy is again a GREM free energy. To be precise,
define a chain (A0, A1, · · · , Ak) to be an increasing sequence of subsets of I with
∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = I. What they have shown is that for any BK-GREM
there exists a chain (A0, A1, · · · , Ak) and positive constants ãi for 1 ≤ i ≤ k with
k∑

i=1

ãi = 1 such that the following holds: the free energy of this BK-GREM is same as

that of a Gaussian k level GREM energy where random variables at the i-th level have
variance ãiN . This means, once again the limiting free energy does not go beyond the
GREM one. We will present here an alternative and elegant proof of this thanks to
large deviation results. To do that we will reformulate the model in the next section.

3.4.1 Reformulation

We formulate BK-GREM as follows. Fix a set I = {1, 2, · · · , n} with n ≥ 1 . Let
N ≥ n be the number of particles, each of which can have two states/spins +1,−1;
so that the configuration space is ΣN = 2N . Consider a partition of N into integers
k(i, N), 1 ≤ i ≤ n with each k(i, N) ≥ 1 and

∑
i

k(i, N) = N . We will as usual think
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of 2N as
∏

i∈I 2k(i,N) and σ ∈ 2N is σ1 · · ·σn where σi ∈ 2k(i,N). Let S be the collection

of non-empty subset of I. For each element s in S we denote 2KsN =
∏

i∈s

2k(i,N). With

this notation 2N = 2KIN . The map σ ∈ 2KIN → σ(s) ∈ 2KsN is the projection map
via s. For s = {i1, i2, · · · , ik} ∈ S where i1 < i2 < · · · < ik and σ = σ1 · · ·σn ∈ 2KIN ,
we denote σ(s) = σi1σi2 · · ·σik ∈ 2KsN , the projection of σ via s. Now for fixed N , we
have a bunch of independent random variables ξ(s, σ(s)) as s varies over S and σ(s)
varies over 2KsN .

For each σ ∈ 2N one can think of a lattice isomorphic to the lattice of power set of I
where σ(s) corresponds to the edge of the lattice joining the nodes s = {i1, i2, · · · , ik}
and {i1, i2, · · · , ik−1}. Now for each σ associate random variables ξ(s, σ(s)) to each of
the lattice edge σ(s). We associate weights as ≥ 0 to each edges σ(s). These are not
random. In a configuration σ = σ1 · · ·σn the Hamiltonian is defined as

HN(σ) = N
∑

s∈S

asξ(s, σ(s)).

For β > 0 the partition function is

ZN(β) = 2NEσe
−βHN (σ).

Here Eσ stands for expectation with respect to σ when 2N has uniform distribution.
In other words, Eσ is simply the usual average over σ.

Since ξ’s are random variables bothHN and ZN are random variables. We suppress
the parameter ω that comes with the random variables ξ. As usual 1

N
logZN(β) is

the free energy of the N -particle system. As N changes, the distribution of the ξ’s
would in general depends on N . So strictly speaking we should be using superscript
N for the random variables. But for ease in reading we suppress the superscript. This
should be borne in mind. We assume that all our random variables are defined on
one probability space.

3.4.2 LDP Approach

In this subsection, we outline how large deviation principle can be used. Since we
will prove a more general result in the next chapter (see section 4.3), we refrain from
giving complete details. Let us consider the map ΣN → RS (recall S is the collection
of non-empty subsets of I) defined by

σ 7→ ξσ = (ξ(s, σ(s)))s∈S.

Let µN be the induced probability on RS when ΣN has uniform distribution, that
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is, each σ ∈ ΣN has probability 1
2N . In other words, for any Borel set A ⊂ RS,

µN(A) =
1

2N
#{σ : ξσ ∈ A}.

In particular, if A is a box, say △ =
∏

s∈S △s, with each △s ⊆ R, then

µN(△) =
1

2N

∑

σ

∏

s∈S

1△s(ξ(s, σ(s))).

Here now is the basic observation similar to that of Theorem 2.3.1.

Theorem 3.4.1. Let △ =
∏

s∈S △s ⊂ RS. Denote qsN = P (ξ(s, σ(s)) ∈ △s) for

s ∈ S. For t ∈ S we denote
∏

s⊆t qsN by QtN and
∏

i∈t k(i, N) by KtN .

a) If
∑

N≥1

2KtNQtN <∞, for some t ∈ S then a.s. eventually, µN(△) = 0.

b) If for all t ∈ S,
∑

N≥1

2−KtNQ−1
tN <∞, then for any ǫ > 0 a.s. eventually,

(1 − ǫ)EµN(△) ≤ µN(△) ≤ (1 + ǫ)EµN(△).

There is no new idea, we need to verify that arguments of the previous chapter go
through.

Proof. a) Let t be such that
∑

N≥1

2KtNQtN <∞. Then

µN(△) =
1

2N

∑
σ

∏
s∈S

1△s(ξ(s, σ(s)))

≤ 2N−KtN

2N

∑
σ(t)

∏
s⊆t

1△s(ξ(s, σ(s)))

=
1

2KtN

∑
σ(t)

∏
s⊆t

1△s(ξ(s, σ(s))) = GN , (say).

Let AN = {GN = 0}. Observe that

Ac
N =




∑

σ(t)

∏

s⊆t

1△s(ξ(s, σ(s))) ≥ 1



 .
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Now by Chebyshev’s inequality,

P(Ac
N) < E

∑

σ(t)

∏

s⊆t

1△s(ξ(s, σ(s))) = 2KtNQtN .

Thus by assumption and Borel-Cantelli, AN will occur a.s. eventually. i.e. GN = 0

and hence µN(△) = 0.

b)

Var(µN(△))

=E(µN(△))2 − (EµN(△))2

=
1

22N

∑

σ,τ

[
E
∏

s∈S

1△s(ξ(s, σ(s)))1△s(ξ(s, τ(s))) −Q2
IN

]

=
1

22N

∑

t∈S

∑

σ(t)=τ(t)
σi 6=τi, ∀i∈tc


E
∏

s⊆t

1△s(ξ(s, σ(s)))
∏

s*t

1△s(ξ(s, σ(s)))1△s(ξ(s, τ(s))) −Q2
IN




≤ 1

22N

∑

t∈S

∏

s⊆t

qsN
∏

s*t

q2
sN

∑

σ(t)=τ(t)
σi 6=τi,∀i∈tc

1

≤ 1

22N

∑

t∈S

Q2
IN

QtN

2KtN 22(N−KtN )

=
∑

t∈S

Q2
IN

2KtNQtN
.

Hence for any ǫ > 0, by Chebyshev’s inequality

P(|µN(△) −EµN(△)| > ǫEµN(△)) <
1

ǫ2

∑

t∈S

1

2KtNQtN
.

But, in view of the assumption, the sum over N of the right side is finite. So by

Borel-Cantelli lemma, a.s. eventually,

(1 − ǫ)EµN(△) ≤ µN(△) ≤ (1 + ǫ)EµN(△).
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Suppose that for each element s ∈ S, we have a sequence of probabilities {λs
N :

N ≥ n} obeying LDP with a good convex rate function Is(x). We now consider
reformulated BK-model where each ξ(s, σ(s)) has distribution λs

N . Thus for fixed N ,
we have a bunch of independent random variables ξ(s, σ(s)) as s and σ(s) vary. For
example, for the N particle system, one can consider for each s ∈ S; ξ(s, σ(s)) to be
i.i.d. having density

φ(x) =
1

2Γ( 1
γs

)

(γs

N

) γs−1
γs

e−N |x|γs

γs −∞ < x <∞. (3.4.2)

Let us denote

Ψ = {x̃ ∈ RS :
∑

s⊆t

Is(xs) ≤
∑

i∈t

pi log 2, ∀t ∈ S} (3.4.3)

and the map J : RS → R, defined by,

J (x̃) =
∑
s∈S

Is(xs) if x̃ ∈ Ψ

= ∞ otherwise.

Then with the help of Theorem 3.4.1, one can mimic the steps in Theorem 2.5.1
to get

Theorem 3.4.2. In the reformulated BK-GREM, let k(i,N)
N

→ pi > 0 as N → ∞ for

1 ≤ i ≤ n. Then almost surely, the sequence {µN , N ≥ 1} satisfies LDP with rate

function J defined above.

In this way, once again Varadhan’s lemma will ensure the existence of the limit-
ing free energy in this case also. Thus though we don’t have ultrametricity on the
configuration space, the simple LDP technique works.

Theorem 3.4.3. In reformulated BK-GREM, almost surely

lim
N→∞

1

N
logZN(β) = log 2 − inf

ex∈Ψ

∑

s∈S

(βasxs + Is(xs)) .

Remark 3.4.1. One may feel that the reformulation of BK-GREM is not exactly similar

to the original version of Bolthausen and Kistler. They consider only those subsets s



Chapter 3: More Tree Structures including Randomness 96

of I for which as 6= 0 whereas in the above reformulation all the non-empty subsets

are considered. But from the above theorem it is easy to check that in calculating

infimum, Is being non-negative and Is(0) = 0, the terms corresponding to those s ∈ S

for which as = 0 will not contribute.

In [3], Bolthausen and Kistler identified the free energy of this model as minimum
of several GREMs associated with, what they call, chains. We shall show that there
are n! many n level usual GREMs hidden in the above model. The method used above
also identifies the free energy of the BK-GREM as the minimum of the free energies
of these n! GREMs. This is what we do in the next section.

3.5 Hidden Tree GREMs

In this section, we consider the BK-GREM, that is, we take S to be the set of all
increasing sequences of elements of I with the Gaussian driving distributions. As
mentioned earlier, this is nothing but the Bolthausen-Kistler’s model since such se-
quences correspond to non-empty subsets of I. Suppose now for s ∈ S the associated
weight is as. Here we evaluate the explicit expression for the limiting free energy of
BK-GREM. Though it is possible to consider different driving distributions for each
s ∈ S, a general closed form expression appears to be difficult. Of course, we could
also start with some more general driving distributions than Gaussian, like distribu-
tion having density φ as in (3.4.2) with γ > 1 at all the levels. Since in that case,
there is no new idea needed, we restrict ourselves to Gaussian case for notational
simplicity. It is worth mentioning here that, in [3], Bolthausen and Kistler evaluate
the expression of the limiting free energy in two steps. In the first step, they define
a chain as a sequence of strictly increasing sequences of subsets (A0, A1, · · · , AK) of
I so that ∅ = A0 ⊂ A1 ⊂ · · · ⊂ AK = I. For such a chain they associated a K level
GREM with appropriate weights calculated from the weights of the original model.
Then by second moment estimates, they have shown that the limiting free energy of
each such GREM associated to a chain is an almost sure upper bound for the limiting
free energy of their model. In the second step, they constructed a chain in which the
free energy of the BK-GREM is attained.

Here we get the expression for the limiting free energy by calculating

inf
ex∈Ψ

∑

s∈S

(
βasxs +

1

2
x2

s

)
, (3.5.1)

where
Ψ = {x̃ ∈ RS :

∑

t⊆s

x2
t ≤

∑

i∈s

2pi log 2, ∀s ∈ S}.

Note that Ψ is same as that of (3.4.3) with Is(xs) = 1
2
x2

s. As earlier, the above
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infimum is same as

inf
ex∈Ψ+

∑

s∈S

(
1

2
x2

s − βasxs

)
, (3.5.2)

where
Ψ+ = {x̃ ∈ RS :

∑

t⊆s

x2
t ≤

∑

i∈s

2pi log 2 & xs ≥ 0, ∀s ∈ S}. (3.5.3)

To evaluate (3.5.2), we start with some notations. Here the ideas are very much similar
to that of Bolthausen and Kistler. A new idea is the introduction of permutations of
{1, 2, · · · , n} justifying the title of this section. For A ⊆ I, let us define

pA =
∑

i∈A

pi

and
w2

A =
∑

s⊆A
s∈S

a2
s,

with w2
∅ = 0. Let P0 = PI denote the set of permutations of I. With this notation,

for π ∈ PI and 0 ≤ i < j ≤ n, denote

Bπ
ij =

√
2(pπ(i+1) + · · ·+ pπ(j)) log 2

w2
{π(1),··· ,π(j)} − w2

{π(1),··· ,π(i)}
, (3.5.4)

where, for i = 0 the set {π(1), · · · , π(i)} that appears in the denominator is treated
as the empty set.

Note that earlier to evaluate the explicit energy expression for γ-GREM with
γ > 1, in subsection 2.6.1, we consider only one triangular array of numbers defined
as B(j, k) in (2.6.4) for 1 ≤ j ≤ k ≤ n. Now here we are considering n! many
triangular arrays corresponding to each permutation π.

Now let,
β1 = min

π∈PI

min
0<j≤n

Bπ
0j = min

(π,j)
Bπ

0j . (3.5.5)

Also note that, in subsection 2.6.1, we define β1 in (2.6.5) as the minimum over
all the entries in the first row of the triangular array B(j, k) in (2.6.4). Here we are
defining β1 as the minimum over all the entries in the first rows of all the n! triangular
arrays.

It may be further noted that in subsection 2.6.1, to define β1 if the minimum
occurred at two places, we had taken the maximum index (see (2.6.4) for the definition
of rl). We now implement the same plan in the present setting also. Since the
minimum may be attained in the first lines of two different triangular arrays, one
needs to know what is meant by maximum index. This will be done now.

Suppose the minimum occurs at two places, say at (θ, k) and (̺, l), that is, β1 =
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Bθ
0k = B̺

0l. Let G = {θ(1), · · · , θ(k)}; H = {̺(1), · · · , ̺(l)}. Let |G∪H| = m and let
P1 denote the class of all permutations of I for which {π(1), · · · , π(m)} = G∪H . So
P1 ⊂ PI .

Claim: Bπ
0m =

√
2pG∪H log 2

w2
G∪H

= β1, for every π ∈ P1.

To justify the claim, first of all note that

w2
G∪H ≥ w2

G + w2
H − w2

G∩H ,

whereas,
pG∪H = pG + pH − pG∩H .

Then for π ∈ P1,

2pG∪H log 2 − β2
1w

2
G∪H

≤ 2(pG + pH − pG∩H) log 2 − β2
1

(
w2

G + w2
H − w2

G∩H

)

=
(
2pG log 2 − β2

1w
2
G

)
+
(
2pH log 2 − β2

1w
2
H

)
+
(
β2

1w
2
G∩H − pG∩H

)

as β1 = Bθ
0k = B̺

0l, first two terms are zero,

= β2
1w

2
G∩H − pG∩H

≤ 0.

The last inequality follows from the fact that β1 is obtained by taking the minimum
over all possible choice of (π, j). This shows β2

1 ≥ 2pG∪H log 2
w2

G∪H

.

Once again β1 being the minimum over all possible choice of (π, j), we conclude
that β2

1 actually equals 2pG∪H log 2
w2

G∪H

proving the claim.

If the minimum in (3.5.5) occurs at more than two places, we can use induction to
conclude that there exists a unique maximal set, say, G1 ⊆ I such that the following
holds. Let |G1| = l1 and P1 = all permutations that map {1, 2, · · · l1} on to G1.
Then for any π ∈ P1, B

π
0l1

= β1.
It may happen that G1 = I, then we will stop. Otherwise, let us define

β2 = min
π∈P1

min
l1<j≤n

Bπ
l1j = min

(π,j)
Bπ

l1j .

Of course, the last minimum is only over π ∈ P1.
Once again going back to subsection 2.6.1, to define β2 in (2.6.5), we look only the

entries from the r1 + 1-th row of the triangular array B(j, k) in (2.6.4). Here, we are
looking the entries of l1 + 1-th rows (as 0 corresponds the first row) of the triangular
arrays corresponding to each π ∈ P1.
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If possible, suppose the minimum occurs at two places, say, at (θ, k) and at (̺, l).
So θ, ̺ ∈ P1; l1 < k, l ≤ n and β2 = Bθ

l1k = B̺
l1l. Let G = {θ(1), · · · , θ(k)};

H = {̺(1), · · · , ̺(l)} and G2 = G ∪ H . Let |G2| = l2 and denote by P2, the class
of all permutations of P1 for which {π(1), · · · , π(l2)} = G2. Since π in P1 already
maps {1, 2, · · · , l1} onto G1, this extra condition only means that π moreover maps
{l1 + 1, · · · , l2} onto G2 −G1. Clearly, P2 ⊂ P1.

Claim: Bπ
l1l2

=

√
2pG2−G1 log 2

w2
G2

− w2
G1

= β2, for every π ∈ P2.

The justification of this claim is similar to that of the earlier one. Once again note
that,

w2
G2

≥ w2
G + w2

H − w2
G∩H ,

but
pG2−G1 = pG−G1 + pH−G1 − pG∩H−G1 .

So for π ∈ P2, we have

2pG2−G1 log 2 − β2
2

(
w2

G2
− w2

G1

)

≤ 2 (pG−G1 + pH−G1 − pG∩H−G1) log 2 − β2
2

(
w2

G + w2
H − w2

G∩H − w2
G1

)

= 2 (pG−G1 + pH−G1 − pG∩H−G1) log 2−
β2

2

(
w2

G − w2
G1

+ w2
H − w2

G1
− w2

G∩H + w2
G1

)

=
(
2pG−G1 log 2 − β2

2

(
w2

G − w2
G1

))
+
(
2pH−G1 log 2 − β2

2

(
w2

H − w2
G1

))
+

(
β2

2

(
w2

G∩H − w2
G1

)
− 2pG∩H−G1 log 2

)

= β2
2

(
w2

G∩H − w2
G1

)
− 2pG∩H−G1 log 2

≤ 0.

Hence β2
2 ≥ 2pG2−G1 log 2

w2
G2

− w2
G1

and once again β2 being the minimum over all possible

choice of π ∈ P1 and l1 < j ≤ n, the only possibility left is the equality. That is

β2
2 =

2pG2−G1 log 2

w2
G2

− w2
G1

and hence the claim is proved.

If the minimum occurs at more than two places, we can use induction to conclude
that there exists a unique maximal set, say, G2, such that G1 ⊂ G2 ⊆ I and the
following holds. Let |G2| = l2 and P2 be all permutations of PI that map {l1 +
1, · · · , l2} onto G2 − G1. Then Bπ

l1l2
(G1) = β2 for all π ∈ P2. Of course, all the

quantity l2, β2 depend on G1.
Proceeding by induction can summarize:
There is a (unique) integer K with 1 ≤ K ≤ n and for every i with 1 ≤ i ≤ K

there are βi, li, Gi and Pi satisfying the following:

1. ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = I with |Gi| = li so that 1 ≤ l1 < l2 < · · · < lK = n.
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2. Pi is the set of permutations π of I that maps {1, 2, · · · , lj} onto Gj for each
j ≤ i so that P1 ⊃ P2 ⊃ · · · ⊃ PK .

3. βi = Bπ
l1l2

for every π ∈ Pi and this common value is also same as
min

π∈Pi−1

min
li−1<j≤n

Bπ
li−1j .

So note that for any π ∈ PK , we can trace out the βi for 1 ≤ i ≤ K, as

βi =

√
2(pπ(li−1+1) + · · · + pπ(li)) log 2

w2
{π(1),··· ,π(li)} − w2

{π(1),··· ,π(li−1)}
. (3.5.6)

Moreover, the infimum in (3.5.2) reduces to the following:

inf
ex∈Ψ

∑

s∈S

(
1

2
x2

s − βasxs

)
, (3.5.7)

and
Ψ =

{
x̃ : X2

C ≤ 2pC log 2, ∀(∅ 6=)C ⊆ I
}

(3.5.8)

where we used the notation

X2
C =

∑

s⊆C,s∈S

x2
s and pC =

∑

i∈C

pi.

Now we prove that, if βj ≤ β < βj+1, the above infimum is attained at x̃∗ =
(x∗s; s ∈ S) ∈ RS given by

x∗s =






β1as if s ⊆ G1

β2as if s ⊆ G2, s * G1

...

βjas if s ⊆ Gj, s * Gj−1

βas if s * Gj.

First of all note that x̃∗ ∈ Ψ. For, C ⊆ I implies

X∗
C

2

=
∑

s⊆C,s∈S

x∗s
2
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=

(j+1)∧K∑

i=1

∑

s⊆Gi,s*Gi−1

s⊆C,s∈S

x∗s
2

=

j∑

i=1

∑

s⊆Gi,s*Gi−1

s⊆C,s∈S

β2
i a

2
s + 1{j+1≤K}

∑

s*Gj

s⊆C,s∈S

β2a2
s

≤
j∑

i=1

∑

s⊆Gi,s*Gi−1

s⊆C,s∈S

β2
i a

2
s + 1{j+1≤K}

∑

s*Gj

s⊆C,s∈S

β2
j+1a

2
s

=

j∑

i=1

∑

s⊆Gi,s*Gi−1

s⊆C,s∈S

2pGi−Gi−1
log 2

w2
Gi

− w2
Gi−1

a2
s + 1{j+1≤K}

∑

s*Gj

s⊆C,s∈S

2pGj+1−Gj
log 2

w2
Gj+1

− w2
Gj

a2
s

≤
j∑

i=1

∑

s⊆Gi,s*Gi−1

s⊆C,s∈S

2p(C∪Gi−1)−Gi−1
log 2

w2
C∪Gi−1

− w2
Gi−1

a2
s + 1{j+1≤K}

∑

s*Gj

s⊆C,s∈S

2p(C∪Gj)−Gj
log 2

w2
C∪Gj

− w2
Gj

a2
s

≤
j∑

i=1

2p(C∪Gi−1)−Gi−1
log 2 + 1{j+1≤K}2p(C∪Gj)−Gj

log 2

= 2pC log 2.

Secondly, note that for any x̃ ∈ Ψ, we have

j∑

i=1

∑

s⊆Gi,s*Gi−1

βas(x
∗
s − xs) ≥

j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗s(x
∗
s − xs).

For, by Holder’s inequality we have

j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗sxs ≤

√√√√√
j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗s
2

√√√√√
j∑

i=1

∑

s⊆Gi,s*Gi−1

x2
s ≤

j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗s
2,

where the last inequality follows from the fact that x̃ ∈ Ψ. Hence

j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗s(x
∗
s − xs) ≥ 0.
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Since β > βj , we have
(

β
βi
− 1
)
> 0 for 1 ≤ i ≤ j. Moreover βi being increasing in i,

these numbers
(

β
βi
− 1
)

are decreasing and hence we get,

j∑

i=1

(
β

βi
− 1

) ∑

s⊆Gi,s*Gi−1

x∗s(x
∗
s − xs) ≥ 0.

In other words using the definition of x∗s we get the observation

j∑

i=1

∑

s⊆Gi,s*Gi−1

βas(x
∗
s − xs) ≥

j∑

i=1

∑

s⊆Gi,s*Gi−1

x∗s(x
∗
s − xs).

Now by using the above inequality, we have

∑
s⊆Gj

(
1
2
x2

s − βasxs

)
− ∑

s⊆Gj

(
1
2
x∗s

2 − βasx
∗
s

)

=
∑

s⊆Gj

(
1
2
x2

s − βas(xs − x∗s) − 1
2
x2

s

)

≥ ∑
s⊆Gj

(
1
2
x2

s − x∗s(xs − x∗s) − 1
2
x2

s

)

= 1
2

∑
s⊆Gj

(xs − x∗s)
2 ≥ 0.

Moreover, using the definition of x∗s for s * Gj, we have

∑
s*Gj

(
1
2
x2

s − βasxs

)
− ∑

s*Gj

(
1
2
x∗s

2 − βasx
∗
s

)

=
∑

s*Gj

(
1
2
x2

s − βasxs + 1
2
β2a2

s

)

= 1
2

∑
s*Gj

(xs − βxs)
2 ≥ 0.

Thus combining the above two inequality,

∑

s∈S

(
1

2
x2

s − βasxs

)
−
∑

s∈S

(
1

2
x∗s

2 − βasx
∗
s

)
≥ 0

and hence the infimum occurs at x̃∗.
Denote β0 = 0 and βK+1 = ∞. Suppose 1 ≤ j ≤ K and β ∈ [βj , βj+1) then the
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infimum in (3.5.7) becomes

j∑
i=1

∑
s⊆Gi,s*Gi−1

(
1
2
β2

i a
2
s − ββia

2
s

)
+
∑

s*Gj

(
1
2
β2a2

s − β2a2
s

)

=
j∑

i=1

1
2
β2

i

∑
s⊆Gi,s*Gi−1

a2
s − β

j∑
i=1

βi

∑
s⊆Gi,s*Gi−1

a2
s − 1

2
β2
∑

s*Gj

a2
s

= pGj
log 2 − β

j∑
i=1

βi

∑
s⊆Gi,s*Gi−1

a2
s − 1

2
β2
∑

s*Gj

a2
s

We can summarize the above discussion in the following

Theorem 3.5.1. In the Gaussian BK-GREM, almost surely,

lim
N

1

N
logZN(β) =

∑

i/∈Gj

pi log 2 + β

j∑

i=1

βi

∑

s⊆Gi,s*Gi−1

a2
s +

1

2
β2
∑

s*Gj

a2
s,

if β ∈ [βj , βj+1) for 0 ≤ j ≤ K.

We shall now describe for each π ∈ PI an n level GREM. In what follows π ∈ PI is
fixed. For the N particle system there are 2k(π(i),N) furcations at the ith level, below
each node of the (i−1)th level. The weights at the i-th level in this GREM are w(π, i)
which are defined by w(π, 1) = aπ(1), and in general, for 1 ≤ i ≤ n

w2(π, i) =
∑

s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

a2
s. (3.5.9)

Let E(π, β) be the almost sure limiting free energy of this GREM. This exists by
Theorem 2.4.6. As done in subsection 2.6.1, we set rπ

0 = 0 and let

βπ
i = min

k>ri−1

Bπ
rπ
i−1,k

with rπ
i = max{l > ri−l : B(rπ

i−1, l) = βi} for 1 ≤ i ≤ Kπ with rKπ = n. Also denote
βπ

0 = 0 and βπ
Kπ+1 = ∞. Then by Theorem 2.6.1, we have for β ∈

[
βπ

j , β
π
j+1

)
with

0 ≤ j ≤ Kπ,

E(π, β) =

n∑

i=rπ
j +1

pπ(i) log 2 +
1

2
β2

n∑

i=rπ
j +1

w2(π, i) + β

rπ
j∑

i=1

βπ
i w

2(π, i). (3.5.10)

Now let us consider π ∈ PK . Then note that li = rπ
i for all 1 ≤ i ≤ K and by
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definition βπ
i is same as βi . Hence

n∑
i=rπ

j +1

pπ(i) =
∑

i/∈Gj

pi;
∑

s⊆Gi,s*Gi−1

a2
s = w2(π, i) and

∑
s*Gj

a2
s =

n∑
i=rπ

j +1

w2(π, i), so that E(β) = E(π, β).

Thus for every π ∈ PK , the GREM associated in the above paragraph has the
same energy, namely, E(β), the energy of the BK-GREM.

We now go on to show that if π is any permutation then the energy of the GREM
associated with π, namely E(π, β), is larger than E(β). So fix a permutation π.

Denote Hπ
i = {s : s ⊆ {π(1), · · · , π(i)}&s * {π(1), · · · , π(i − 1)}}, that is, Hπ

i

consists of all subsets of {π(1), · · · , π(i)} that include π(i). Then

∑

s∈S

(
1

2
x2

s − βasxs

)

=

n∑

i=1

∑

s∈S,s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

(
1

2
x2

s − βasxs

)

≥
n∑

i=1




∑

s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

1

2
x2

s − β




∑

s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

a2
s




1
2



∑

s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

x2
s




1
2




since for C ⊆ I,
∑

s∈S,s⊆C

asxs ≤
(

∑
s∈S,s⊆C

a2
s

) 1
2
(

∑
s∈S,s⊆C

x2
s

) 1
2

= wCXC ,

=

n∑

i=1

(
1

2
X2

Hπ
i
− βw(π, i)XHπ

i

)
.

Moreover, for π ∈ PI , let us denote

Ψπ =
{
X2

{π(1),··· ,π(i)} ≤ 2p{π(1),··· ,π(i)} log 2, 1 ≤ i ≤ n
}

=

{
k∑

i=1

X2
Hπ

i
≤

k∑
i=1

2pπ(i) log 2, ∀1 ≤ k ≤ n

}
⊂ RS.

Then Ψ ⊆ Ψπ for every π ∈ PI . Hence for every π ∈ PI , we have

inf
Ψ

∑

s∈S

(
1

2
x2

s − βasxs

)
≥ inf

Ψπ

n∑

i=1

(
1

2
X2

Hπ
i
− βw(π, i)XHπ

i

)
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and hence

E(β) = log 2 − inf
Ψ

∑
s∈S

(
1
2
x2

s − βasxs

)

≤ log 2 − inf
Ψπ

n∑
i=1

1
2
X2

Hπ
i
− ββw(π, i)XHπ

i
= E(π, β).

Thus we have proved the following.

Theorem 3.5.2. Almost surely,

E(β) = inf
π
E(β, π).

That is, the free energy of the Gaussian BK-GREM represents the free energy of
an n level tree GREM. In fact, it represents the minimum out of all possible n! many
n-level Gaussian tree GREM energies with appropriately defined weights.

Remark 3.5.1. A closer look of the definition of Bπ
ij reveals that if as = 0 for

some s ∈ S then such an s plays no role in the definition of βis. Moreover, since
∑

s∈S

(
1
2
x2

s − βasxs

)
=
∑

s∈S,as 6=0

(
1
2
x2

s − βasxs

)
+
∑

s∈S,as=0
1
2
x2

s, in calculating infi-

mum of
∑

s∈S

(
1
2
x2

s − βasxs

)
on ψ we will be quite justified to put xs = 0 for all

those s ∈ S for which as = 0. This will lead to the calculation of infimum of
∑

s∈S,as 6=0

(
1
2
x2

s − βasxs

)
on Ψ. In other words, we could consider S to be the col-

lection of all those increasing sequences s for which as 6= 0, instead of all sequences.

This is the setup of the original Bolthausen-Kistler model.

Bolthausen and Kistler have shown that the free energy is the minimum among

the free energies of the tree GREMs associated with the all possible increasing chains

of subsets of I. What the above argument shows is that one need not consider all

chains. It is enough to consider n! many n level GREMs. Can we reduce n!? Perhaps

not in general. Incidentally, the argument also identifies all these n level GREMs

which attains the minimum. In fact, the number of such n level GREM is precisely

|PK |, cardinality of PK .

Remark 3.5.2. Though the BK-model is not a hierarchial model, yet when the driving

distribution is Gaussian we are not able to get out of the tree GREM. That is, the
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tree GREM is in some way hidden in this model.

Now one can raise the question whether going out of Gaussian driving distributions

leads to a BK-GREM that is not usual tree GREM (in the sense of energy). In this

regard, it is worth mentioning, that if we consider that the driving distributions {µs
N}N

satisfying LDP with rate function Is(xs) = 1
γ
xγ

s for some γ ≥ 1 and every s ∈ S then

Theorem 3.5.2 remains true. To see this we follow the same line of proof as above

with the appropriate changes as done in section 2.6.

Remark 3.5.3. Large deviation approach allows us to consider different driving distri-

butions for different s ∈ S. This can be done with BK-GREM also and one can prove

the existence of free energy. But it is not easy to obtain explicit formula.

3.6 Block Tree GREM

In the previous section we have shown that in the Gaussian BK-Model the limiting free
energy is the minimum over all possible n! many n-level tree GREMs with appropriate
weights. Now we will conclude this chapter by exhibiting one model which includes
again n! many n-level GREMs and where the free energy is maximum over all those
GREMs. To define the model we will use the notation n,N, σ = σ1 · · ·σn with the
same interpretation as that of the earlier section. Let a1, · · · , an be given non-negative
weights. For any sequence s = 〈j1, · · · , ji〉 of distinct elements from I = {1, 2, · · · , n}
and for any σ(s) = 〈σj1 , · · · , σji

〉 ∈ 2k(j1,N) × · · · × 2k(ji,N). We have random variables
ξs
σ(s) and these are independent N (0, N). Now depending on π, a permutation of I

and σ ∈ 2N , we define the Hamiltonian as

HN(σ, π) =
n∑

i=1

aπ(i)ξ
π(1)π(2)···π(i)
σπ(1)σπ(2)···σπ(i)

. (3.6.1)

Note that here the configuration space has n! × 2N many points instead of usual
2N many. We call this model as Block tree GREM. We define the partition function
corresponding to inverse temperature β > 0 as

ZN(β) =
∑

π∈PI

∑

σ∈ΣN

e−βHN (σ,π),

and the definition of free energy is 1
N

logZN(β).
So for n = 3 the model will look like as in Figure 3.1.
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2
k(1,N)

2
k(1,N)

2
k(1,N)
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2 2

2 2 2 2

2 2 2 2

k(2,N)
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Figure 3.1: Block Tree GREM

Now for each π ∈ PI , let us denote

Zπ
N(β) =

∑

σ∈ΣN

e−βHN (σ,π).

Note that for each π, Zπ
N denote the partition function for the n-level tree GREM

with 2k(π(i),N) furcations below each of node at the (i−1)-th level of the tree and with
the associated weight in the i-th level being aπ(i). So we can write

ZN(β) =
∑

π∈PI

Zπ
N(β).

Hence 1
N

logZN(β) = 1
N

log
∑

π∈PI
Zπ

N(β) = 1
N

log max
π

Zπ
N(β)+ 1

N
log
∑

π∈PI

Zπ
N (β)

max
π

Zπ
N

(β)
.

Since limiting free energy exists almost surely corresponding to every π, let us
denote Eπ(β) = limN

1
N

logZπ
N(β). Hence

lim
N

1

N
logZN(β) = lim

N

1

N
log max

π
Zπ

N(β).

Now log being increasing function we can bring the max out side log and the range
of π being finite we can push the limit after max so that

lim
N

1

N
logZN(β) = max

π
lim
N

1

N
logZπ

N(β) = max
π

Eπ(β).

Thus we have the following
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Theorem 3.6.1. In the block tree GREM, the limiting free energy E(β) exists almost

surely and

E(β) = max
π

Eπ(β).

Remark 3.6.1. In the definition of weights, we fixed numbers a1, · · · , an and weighted

ξ
π(1)π(2)···π(i)
σπ(1)σπ(2)···σπ(i)

with aπ(i). Instead one could fix for each s, a sequence of distinct

elements of I, a number as and then ξ
π(1)π(2)···π(i)
σπ(1)σπ(2)···σπ(i)

could be weighted with a{π(1),··· ,π(i)}.

Different driving distributions for different s can also be considered. Then also the

above theorem remains true.

Remark 3.6.2. We now consider the weights (as, s ⊆ I) as mentioned in the above re-

mark. Using the notation of previous section, consider BK-GREM with these weights.

Consider the GREM associated with π ∈ PI in the BK-GREM and denotes its energy

by E(π, β).

On the other hand, consider block tree GREM as mentioned in the above theorem

with weights ã{π(1),··· ,π(i)}, where

ã2
{π(1),··· ,π(i)} =

∑

s⊆{π(1),··· ,π(i)}
s*{π(1),··· ,π(i−1)}

a2
s.

By (3.5.9), we observe that for each π ∈ PI , ã{π(1),··· ,π(i)} = w(π, i) for 1 ≤ i ≤ n.

Moreover, for a fixed π ∈ PI , in both the associated GREM model have 2k(π(i),N) many

edges at the i-th level below each node of the (i− 1)-th level. Hence Eπ(β) = E(π, β)

for each π ∈ PI . Thus the limiting free energy of this block tree GREM is larger than

that of the BK-GREM.



Chapter 4

Word GREM with External Field

In this concluding chapter we discuss a more general version of random energy models,
called Word GREM. This model includes Derrida’s REM and GREM, also the model
of Bolthausen and Kistler. Moreover the model is considered with external field. We
apply this analysis to analyze the free energy of REM with external field.

4.1 Word GREM

In the previous chapters we have shown that the almost sure existence of the limiting
free energy is assured through the simple LDP of certain empirical measures. This
techniques is quite simple and neat. In this section, we present a general setup which
includes all the models mentioned above. However, it is not just the generalization
that should be noted. More importantly, we use the same large deviation technique
which allows us to introduce external field in the model. To our knowledge these
models are so far not discussed with external field except the REM by Derrida in
[16]. Not only that, as already mentioned in the previous chapter this method allows
consideration of different driving distributions. This in turn leads to diverse covariance
structures for the Hamiltonian.

4.2 The Model

Let I = {ς1, ς2, · · · , ςn} be a set of n symbols where n ≥ 1 is a positive integer. Let
S(I) be the set of all words formed by these n symbols. Let S be a finite subset of
S(I). So a typical word s ∈ S of length l will look like s = ςi1ςi2 · · · ςil where each
ςij ∈ I. Occasionally we will use the symbol s ∈ S as a word as well as a subset of
I consisting of all the symbols in s. Since symbols may be repeated in a word, it is
possible that two different words may correspond to the same subset of I. Moreover,

109
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without loss of generality we assume that each symbol appears in at least one word
of S, that is

⋃
s∈S

s = I.

For N ≥ n, the N particle system has configuration space, as usual, ΣN =
{+1,−1}N consisting of sequence of length N with entries +1 and −1. For 1 ≤ i ≤ n,

let k(i, N) ≥ 1 be integers with
n∑

i=1

k(i, N) = N and k(i,N)
N

→ pi > 0 as N → ∞.

Clearly,
∑n

1 pi = 1.
For σ = 〈σ1, · · · , σN〉 ∈ ΣN , we denote σ1 = 〈σi : i ≤ k(1, N)〉 , σ2 =

〈σi : k(1, N) + 1 ≤ i ≤ k(1, N) + k(2, N)〉, etc. Thus σ can also be written as σ =
〈σ1, · · · , σn〉. For each s = ςi1ςi2 · · · ςil ∈ S and σ = 〈σ1, · · · , σn〉, we put,

σ(s) = 〈σi1 , σi2, · · · , σil〉, k(s,N) =
n∑

i=1

k(i, N)1{ςi∈s}.

For each s ∈ S and σ ∈ ΣN we have a random variables ξ(s, σ(s)). These are
assumed to be independent random variables(distributions in general depend on N .)
To make it more precise, denote ΣiN = {+1,−1}k(i,N), for 1 ≤ i ≤ n. For each
s = ςi1ςi2 · · · ςil ∈ S and σ(s) = 〈σi1 , · · · , σil〉 ∈ Σi1N ×· · ·×ΣilN , we have one random
variable ξ(s, σ(s)). All these

∑
s∈S

2k(s,N) random variables are independent. Let us

assume, for s ∈ S, all the ξ(s, σ(s)) have distribution λs
N on R, that is, the distribution

of ξ(s, σ(s)) depends on s but not on σ(s). Let f : RS → R be a continuous function.
For the configuration σ = 〈σ1, σ2, · · · , σN〉, the Hamiltonian of the system is defined
as

HN(σ, h) = Nf(ξ(σ)) + h

N∑

i=1

σi, (4.2.1)

where ξ(σ) = (ξ(s, σ(s)))s∈S and h ≥ 0 is a number representing the intensity of the
external field. The partition function of the system is

ZN =
∑

σ

e−βHN (σ,h),

with β > 0 being the inverse temperature. Once again the limiting free energy is
lim
N

1
N

logZN(β).

Remark 4.2.1. Observe that if S = S1 consists of only one word ς1ς2 · · · ςn, and

if f(x) = x then this is just the REM. If S = Sn consists of the n words

{ς1, ς1ς2, · · · , ς1ς2 · · · ςn}, and if f((xs)s) =
∑
s∈S

asxs then this is just GREM. On

the other hand, if S = S2n consists of all the words ςi1ςi2 · · · ςil with out repeti-

tion of symbols then S can clearly be identified as the collection of non-empty sub-

sets of S. If moreover, f((xs)s) =
∑
s∈S

asxs then this will lead to the BK-GREM.

Of course, one could also take S = Sn! consisting of all the n!.n many words
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{ςπ(1)ςπ(2) · · · ςπ(l) : 1 ≤ l ≤ n& π a permutation of {1, 2, · · · , n}}.
Let σi denote the sum of the k(i, N) many +1 and −1 appearing in σi. In other

words, if σ = 〈σ1, σ2, · · · , σN 〉 then σi is the sum of all σj where j satisfies k(1, N) +
· · · + k(i− 1, N) + 1 ≤ j ≤ k(1, N) + · · · k(i, N). Then, note from (4.2.1) that

HN(σ, h)

N
= f(ξ(σ)) +

h

N

n∑

i=1

σi, (4.2.2)

and
ZN(β, h) = 2NEσe

−Nβ
HN (σ,h)

N , (4.2.3)

where Eσ is the expectation with respect to the uniform probability on the configu-
ration space.

Under certain assumptions we shall show that the limit lim
N

1
N

logZN(β) exists

almost surely and is a non-random quantity. The essential assumptions are the fol-
lowing: Firstly the distributions of ξ should have exponential decay and secondly
k(i,N)

N
converges.

Notations

We start with some notations which we will use in the rest of the chapter. A typical
points in RS ×Rn will be denoted by ((xs, s ∈ S), (yi, i ≤ n)) or simply as (x

S
, y

I
). In

what follows, � =
∏

s∈S △s ×
∏n

i=1 ▽i is a box in RS × Rn where △s for each s ∈ S
and ▽i for i ≤ n are open subintervals of R.

For A ⊆ I, let SA = {s ∈ S : s ⊆ A}. So note that SI = S. We will denote
QAN =

∏
s∈SA

qsN where qsN = λs
N(△s). If SA is empty for some A, we put QAN = 1.

Also we will denote QsN with the same understanding as above considering s as a
subset of I. Strictly speaking we should denote QAN and qsN as QAN (�) and qsN(△s)
respectively, but for ease of writing we are not doing so. If A = {ςi1 , ςi2 , · · · , ςim},
then sometimes we need only the indices {i1, i2, · · · , im} and we will denote them by

[A]. For A ⊆ I, we denote k(A,N) =
n∑

i=1

k(i, N)1{ςi∈A} =
∑

i∈[A]

k(i, N) and αAN =

1
2k(A,N)

∑
〈σi: i∈[A]〉

∏
i∈[A]

1▽i
(σi

N
). We want to point out once again that time to time we will

consider s ∈ S as a subset of I. For example, if s = ςi1ςi2 · · · ςil ∈ S, we will use the

notation αsN = 1
2k(s,N)

∑
σ(s)

∏l
j=1 1▽ij

(
σ

ij

N

)
.

4.3 A large deviation principle

For each s ∈ S, let us consider a probability λs on R. If X is distributed like λs, let
us denote Λs(ρ) = logEeρX and DΛs = {ρ : Λs(ρ) < ∞}. Note that 0 ∈ DΛs, but
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we want that 0 ∈ D0
Λs

. So from now on we will focus our attention on those λs for
which 0 is an interior point in DΛs. As 0 ∈ D0

λs, the mean xs =
∫
xdλs(dx) exists

and is finite quantity for each s ∈ S. Now if Xs
1 , X

s
2 , · · · are i.i.d. random variables

having distribution λs, we will consider λs
N to be the law of 1

N
(Xs

1 +Xs
2 + · · ·+Xs

N).
Now by Cramer’s theorem (Theorem 0.3.5) the sequence {λs

N} satisfies large deviation
principle with a good, convex rate function Is given by Is(x) = sup

ρ∈R
{ρx−Λs(ρ)}. Note

that this is a convex, good, non-negative lower semicontinuous function. Moreover, by
property of good rate function, Is(xs) = 0 for every s ∈ S so that the set Is(x) < α
is non-empty for every α > 0. We also want to point out that the functions Is are
increasing on [xs,∞) and decreasing on (−∞, xs].

Once again by Cramer’s theorem, the arithmetic averages of i.i.d. mean zero,
±1 valued random variables satisfy LDP with rate function I0 where I0(y) = ∞ for
|y| > 1; I0(±1) = log 2 and for −1 < y < 1,

I0(y) = y tanh−1 y − log cosh(tanh−1 y)

= 1+y
2

log(1 + y) + 1−y
2

log(1 − y).
(4.3.1)

Let us define the map from ΣN → RS × Rn as follows:

σ =
(
σ1, σ2, · · · , σn

)
7→
(

(ξ(s, σ(s)), s ∈ S) ,

(
σi

N
, 1 ≤ i ≤ n

))
,

where σi is the sum of the entries of σi.
Thus for each ω (sample point of the random variables ξ, which is suppressed so

far), this map transports the uniform probability on ΣN to RS × Rn. Denote this
induced random probability by µN . Hence from (4.2.3), we have,

1

N
logZN(β, h) = log 2 − 1

N
log

∫

RS×Rn

e
−Nβ

„
f(xS)+h

nP
i=1

yi

«

dµN(xS, yI). (4.3.2)

Proposition 4.3.1. If for some A ⊆ I,
∑

N≥n 2k(A,N)QANαAN < ∞ then almost

surely eventually µN(�) = 0.
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Proof. Let A be such that
∑

N≥n 2k(A,N)QANαAN <∞. Then

µN(�) =
1

2N

∑

σ

∏

s∈S

1△s (ξ(s, σ(s)))
∏

i≤n

1▽i

(
σi

N

)

≤ 1

2N

∑

σ

∏

s∈SA

1△s (ξ(s, σ(s)))
∏

i∈[A]

1▽i

(
σi

N

)

=
1

2k(A,N)

∑

σi:i∈[A]

∏

s∈SA

1△s (ξ(s, σ(s)))
∏

i∈[A]

1▽i

(
σi

N

)

As a consequence,

P (µN(�) > 0) = P




∑

σi:i∈[A]

∏

s∈SA

1△s (ξ(s, σ(s)))
∏

i∈[A]

1▽i

(
σi

N

)
≥ 1





≤ QAN

∑

σi:i∈[A]

∏

i∈[A]

1▽i

(
σi

N

)

= 2k(A,N)QANαAN .

The hypothesis and Borel-Cantelli lemma completes the proof.

Let us note that, EµN(�) = QINαIN .

Proposition 4.3.2. If for all non-empty A ⊆ I,
∑

N≥n 2−k(A,N)Q−1
ANα

−1
AN < ∞ then

for all ǫ > o, almost surely eventually,

(1 − ǫ)QINαIN ≤ µN(�) ≤ (1 + ǫ)QINαIN .

That is

(1 − ǫ)EµN (�) ≤ µN(�) ≤ (1 + ǫ)EµN(�).
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Proof. Note that

Var(µN(�))

=
1

22N

∑

σ

∑

τ

E

(
∏

s∈S

1△s (ξ(s, σ(s))) 1△s (ξ(s, τ(s)))

)
∏

i≤n

1▽i

(
σi

N

)
1▽i

(
τ i

N

)

−Q2
INα

2
IN

≤ 1

22N

∑

A⊆I
A 6=φ

∑

σ

∑

τi=σi,∀i∈[A]
τi 6=σi,∀i∈[Ac]

E

(
∏

s∈S

1△s (ξ(s, σ(s))) 1△s (ξ(s, τ(s)))

)
×

∏

i≤n

1▽i

(
σi

N

)
1▽i

(
τ i

N

)

(since Q2
INα

2
IN cancels the terms corresponding to σi 6= τi, ∀i ∈ [I])

=
1

22N

∑

A⊆I
A 6=φ

Q2
IN

QAN

∑

σ

∑

τi=σi,∀i∈[A]
τi 6=σi,∀i∈[Ac]

∏

i∈[A]

1▽i

(
σi

N

) ∏

i∈[Ac]

1▽i

(
σi

N

)
1▽i

(
τ i

N

)

(by definition of QAN , A ⊆ I)

=
∑

A⊆I
A 6=φ

Q2
IN

QAN

1

2k(A,N)

α2
IN

αAN

.

Now by Chebyshev’s inequality for any ǫ > 0

P (|µN(�) − EµN(�)| > ǫEµN(�)) <
1

ǫ2

∑

A⊆I

1

2k(A,N)QANαAN
.

Once again Borel-Cantelli lemma and the hypothesis yield that a.s. eventually,

(1 − ǫ)EµN (�) ≤ µN(�) ≤ (1 + ǫ)EµN(�).

Hence the proof.
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Theorem 4.3.3. For a.e. ω, the sequence {µN(ω), N ≥ n} satisfies LDP with rate

function J given as follows:

DJ =

{
(x

S
, y

I
) : ∀A ⊆ I,

∑
t∈SA

It(xt) +
∑

i∈[A]

piI0

(
yi

pi

)
≤ ∑

k∈[A]

pk log 2

}

and

J (x
S
, y

I
) =

∑
s∈S

Is(xs) +
∑
i∈[I]

piI0

(
yi

pi

)
if (x

S
, y

I
) ∈ DJ

= ∞ otherwise

Proof. In what follows, A denotes a non empty subset of I.

First of all note that, as I0 and Is for s ∈ S are convex, good rate functions, DJ

is a convex compact set.

Now let � =
∏

s∈S △s ×
∏n

i=1 ▽i be an open box in RS × Rn where △s for each

s ∈ S and ▽i for i ≤ n are subintervals of R with rational end points.

Step 1 Suppose that closure of � is disjoint with DJ , that is DJ ∩� = φ. In other

words, for every (xS, yI) ∈ �, there exists an A ⊆ I(depending on (xS, yI)) so that
∑

t∈SA

It(xt) +
∑

i∈[A]

piI0

(
yi

pi

)
>
∑

k∈[A]

pk log 2. We shall show, almost surely eventually

µN(�) = 0.

Note that as I0 and Is are lower semicontinuous functions for every s ∈ S and ▽i

and △s are compact sets, we can get (x0
S, y

0
I) ∈ � so that I(y0

i ) = I0(▽i) for 1 ≤ i ≤ n

and I(x0
s) = Is(△s) for every s ∈ S.

For this point (x0
S , y

0
I) ∈ � there exists an A ⊆ I so that

∑
t∈SA

It(x
0
t ) +

∑
i∈[A]

piI0

(
y0

i

pi

)
>
∑

k∈[A]

pk log 2. We will prove that for this A the hypothesis of Proposi-

tion 4.3.1 is satisfied and hence for this � almost surely eventually µN(�) = 0 leading

to lim
N→∞

1
N

logµN(�) = −∞.

Since {λs
N}N satisfies LDP with rate function Is, we have

lim sup
1

N
log λs

N (△s) ≤ −Is(△s).
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Let ǫ > 0, to be chosen later. For all large N ,

1

N
log λs

N(△s) < −Is(△s) + ǫ = −Is(x
0
s) + ǫ,

that is qsN = λs
N(△s) < e−N(Is(x0

s)−ǫ) eventually. And this is true for every s ∈ SA. So

eventually

QAN < e
−N

P
s∈SA

(Is(x0
s)−ǫ)

.

Similarly, the law of σi

N
satisfies LDP with rate piI0(

yi

pi
) and hence we will have

eventually

αAN < e
−N

P
i∈[A]

(piI0(
y0
i

pi
)−ǫ)

.

Thus

2k(A,N)QANαAN < e
−N

"
P

s∈SA

(Is(x0
s)−ǫ)+

P
i∈[A]

„
piI0(

y0
i

pi
)−ǫ− k(i,N)

N
log 2

«#

.

Now as k(i,N)
N

→ pi and we have strict inequality in
∑

t∈SA

It(x
0
t ) +

∑
i∈[A]

piI0

(
y0

i

pi

)
>

∑
i∈[A]

pi log 2, we can choose an ǫ so that

∑

N≥n

2k(A,N)QANαAN <∞.

Hence by Proposition 4.3.1 we have, almost surely µN(�) = 0. It is not difficult to

see now that almost surely µN is eventually supported on a compact set.

Step 2 Let us now consider a � which has non-empty intersection with DJ . We

show that for this �, almost surely,
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−
[
∑

s∈S

Is(△s) +
∑

1≤i≤n

piI0(
1

pi

▽i)

]
≤ lim inf

N→∞

1

N
logµN(�)

≤ lim sup
N→∞

1

N
log µN(�) (4.3.3)

≤ −
[
∑

s∈S

Is(△s) +
∑

1≤i≤n

piI0(
1

pi

▽i)

]
.

Using LDP, we have

lim inf
N

1

N
log λs

N(△s) ≥ −Is(△s).

Hence for ǫ > 0 eventually,

1

N
log λs

N (△s) > −Is(△s) − ǫ (4.3.4)

for every s ∈ S. Moreover, eventually,

1

N
logP

(
σi

N
∈ ▽i

)
> −piI0

(▽i

pi

)
− ǫ (4.3.5)

for every i ≤ n. Hence for every A ⊆ I,

2−K(A,N)Q−1
ANα

−1
AN = e

−N

 
P

i∈[A]

k(i,N)
N

log 2+
P

s∈SA

1
N

log λs
N (△s)+

P
i∈[A]

1
N

log P (σi

N
∈▽i)

!

< e
−N

"
P

i∈[A]

k(i,N)
N

log 2− P
s∈SA

(Is(△s)+ǫ)− P
i∈[A]

“
piI0

“
▽i
pi

”
+ǫ
”#

,

by (4.3.4) and (4.3.5).

As DJ is a convex set and � is an non-empty open set, there exists at least one
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(x0
S, y

0
I ) in D−

J ∩ �, where

D−
J =




(x
S
, y

I
) : ∀A ⊆ I,

∑

t∈SA

It(xt) +
∑

i∈[A]

piI0

(
yi

pi

)
<
∑

k∈[A]

pk log 2




 .

Being a point in D−
J , for every A ⊆ I, we have

∑

s∈SA

Is(x
0
s) +

∑

i≤n

piI0

(
y0

i

pi

)
<
∑

i∈A

pi log 2.

That is
∑

s∈SA

Is(△s) +
∑

i≤n

piI0

(▽i

pi

)
<
∑

i∈A

pi log 2.

The above being a strict inequality, we can choose ǫ depending on � so that for every

A ⊆ I the quantity

2−K(A,N)Q−1
ANα

−1
AN

is summable over N . Now Proposition 4.3.2 yields (4.3.3). This completes step 2.

Towards step 3, let A be the collection of all open boxes � with rational corner

points satisfying either � ∩ DJ = ∅ or � ∩ D−
J 6= ∅. This collection is so rich that

they form a base for the topology of RS ×RI . Note that A being a countable family,

out side a grand null set, for every � in A conclusions of Step 1 and Step 2 hold. In

the next two steps, we show

J (xS, yI) = sup
�:(xS ,yI)∈�

{− lim inf
N

1

N
log µN(�)} (4.3.6)

= sup
�:(xS ,yI)∈�

{− lim sup
N

1

N
log µN(�)}. (4.3.7)

Step 3 Let (xS, yI) /∈ DJ . Then DJ being a closed set we can find a � ∈ A
containing (xS, yI) so that � does not intersect with DJ . By Step 1, µN(�) = 0

eventually so that lim
N

1
N

log µN(�) = ∞. Also by definition of J , we have J (xS, yI) =

∞. Hence the above equalities hold when (xS, yI) /∈ DJ .
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Step 4 Now let (x0
S, y

0
I ) ∈ DJ and A(x0

S ,y0
I ) = {� ∈ A : (x0

S, y
0
I) ∈ �}. Then, as

observed in Step 2, for every � ∈ A(x0
S ,y0

I ) we have eventually

−
[
∑

s∈S

Is(△s) +
∑

1≤i≤n

piI0(
1

pi
▽i)

]
≤ lim inf

N→∞

1

N
logµN(�)

≤ lim sup
N→∞

1

N
log µN(�) (4.3.8)

≤ −
[
∑

s∈S

Is(△s) +
∑

1≤i≤n

piI0(
1

pi
▽i)

]
.

From the first part of the above inequality we have,

lim inf
N

1

N
logµN(�) ≥ −J (�).

And hence

sup
�∈A

(x0
S

,y0
I
)

{− lim inf
N

1

N
log µN(�)} ≤ sup

�∈A
(x0

S
,y0

I
)

J (�) ≤ J (x0
S, y

0
I ). (4.3.9)

On the other hand, for every � ∈ A(x0
S ,y0

I ) using the right side inequality of (4.3.8),

we have

lim sup
N

1

N
log µN(�) ≤ −J (�).

Let A′
(x0

S
,y0

I
)
= {�k ∈ A : k ≥ 1} be a subclass of A so that �k+1 ⊂ �k for every

k and ∩k�k = {(x0
S, y

0
I)}. Then

sup
�∈A

(x0
S

,y0
I
)

{− lim sup
N

1

N
log µN(�)} ≥ sup

�∈A
(x0

S
,y0

I
)

J (�)

≥ sup
�∈A′

(x0
S

,y0
I
)

J (�)

= lim
k

J (�k)

= J (x0
S, y

0
I ). (4.3.10)
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The last equality follows as J is a good lower semicontinuous function (see Proposition

0.3.2).

Thus Step 3 and Step 4 complete the proof of (4.3.6) and (4.3.7).

Now proof of Theorem 4.3.3 is completed by appealing to Proposition 0.3.3 and

observing that {µN} is eventually supported on a compact set.

Remark 4.3.1. A closer look at the above proof shows that the convexity of the rate

functions Is is not an essential condition. Good rate functions on real line whose

graph look like ‘U‘ will suffice. That is we could take those non-negative functions

I for which we will get at most two points x ≤ x so that I is zero on [x, x]; strictly

decreasing on (−∞, x]∩{I ∈ (0,∞)} and strictly increasing on [x,∞)∩{I ∈ (0,∞)}.
With these conditions we can find (x0

S, y
0
I) as stated in Step 1 and Step 2 for the proof

to go through keeping all other Steps as it is.

For each s, we started with a distribution λs and appealed to Cramer’s theorem

(see the first paragraph of this section). Instead, we could start with (λs
N , N ≥ n) and

assume that {λs
N} satisfies LDP with rate function Is having the properties mentioned

in the above paragraph.

Since almost every sequence of probabilities µN is eventually supported on a com-
pact set, we could use Varadhan’s lemma with any continuous function. This will lead
to the following (see equation (4.3.2)):

Theorem 4.3.4. In the word GREM, almost surely

lim
N

1

N
logZN(β, h) = log 2 − inf

DJ

{
βf(xS) + βh

n∑

i=1

yi + J (xS, yI)

}
.

Though we have taken any real valued continuous function f on RS, it is cus-
tomary to consider f(xS) =

∑
s∈S

asxS so that the Hamiltonian becomes HN(σ) =

N
∑
s∈S

asξ(s, σ(s)) + hσ where as, s ∈ S are non-negative weights and h > 0 is the

strength of the external field. It is also customary to consider Gaussian driving dis-
tribution. In this setup if λs is standard normal, the above theorem will be applicable
and will reduce to the following
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Corollary 4.3.5. In the Gaussian word GREM with external field, almost surely, the

limiting free energy is

log 2 − inf
DJ

{∑
s∈S

(
1
2
x2

s + βasxs

)
+

n∑
i=1

(
pi+yi

2
log pi+yi

pi
+ pi−yi

2
log pi−yi

pi
+ βhyi

)}
,

where DJ is the set consisting of (x
S
, y

I
) ∈ RS × Rn such that ∀A ⊆ I,

∑
s∈SA

1
2
x2

s +
∑

i∈[A]

(
pi+yi

2
log pi+yi

pi
+ pi−yi

2
log pi−yi

pi

)
≤ ∑

k∈[A]

pk log 2.

Hence the use of large deviation techniques not only ensures the almost sure exis-
tence of the limiting free energy, the calculation of free energy of the system is then
reduced to that of an optimization problem. Of course, it is not always possible to
solve this optimization problem to arrive at a closed form expression when the exter-
nal field is present or different driving distributions are considered for different s ∈ S.
Even for n = 2 with Gaussian driving distribution it is difficult to obtain a closed
form expression. The only case where we will get some ’closed’ form expression is the
case for n = 1 - that is the case of REM with external fields. This we will consider
in the next section. But with no external field the situation is not that worse. In
some of the cases, the method of calculation of the infimum will just reduce to what
we did in section 3.5. In that case, though the model, to start with, was not an n
level tree GREM, it reduced (as far as the free energy is concerned) to an n level tree
GREM with appropriate weights [see §3.5]. It is quite conceivable that the present
complicated model may always be equivalent to a tree GREM. We do not think so.

4.4 REM with external field

As mentioned in the last section, there is no general technique of obtaining a formula
for the word GREM as well as tree GREM energy with external field. We will discuss
here the simple REM with external field. Let us consider the word GREM where
S consists of only one word, that is, S consists of the word ς1ς2 · · · ςn where I =
{ς1, ς2, · · · , ςn} (see beginning of the previous section). In such a case the word GREM
reduces exactly to the usual REM with external field. Thus the Hamiltonian is

HN(σ) = aNξσ + h
N∑

i=1

σi

where ξσ are i.i.d. random variables (for each fixed N) and h, a are positive constants.
Moreover for the Gaussian REM, ξσ are N (0, 1

N
). Then by Corollary 4.3.5, the limiting
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free energy for the REM with external field exists almost surely and is given by

E(β, h) = log 2 − inf
DJ

{
x2

2
+ 1+y

2
log(1 + y) + 1−y

2
log(1 − y) + β(ax+ hy)

}

= log 2 − inf
DJ

{
x2

2
+ I0(y) + β(ax+ hy)

}
,

where I0 is given by (4.3.1) and

DJ = {(x, y) : x2

2
+ 1+y

2
log(1 + y) + 1−y

2
log(1 − y) ≤ log 2}

= {(x, y) : x2

2
+ I0(y) ≤ log 2}.

In other words,
E(β, h) = log 2 − inf

D+
J

f(x, y),

where f(x, y) =
{

x2

2
+ I0(y) − β(ax+ hy)

}
and D+

J equals all points of DJ with both

coordinates non-negative.
To calculate the above infimum, first fix β, h and y with 0 ≤ y ≤ 1. Then the

range of x is 0 ≤ x ≤
√

2[log 2 − I0(y)]. It is easy to see that if I0(y) ≤ log 2− 1
2
β2a2

then the inf
x
f(x, y) is attained for x = βa and if I0(y) > log 2 − 1

2
β2a2 then the

infimum is attained for x =
√

2[log 2 − I0(y)]. Since I0 is a non-negative function,
the set {I0(y) ≤ log 2 − 1

2
β2a2} will be non-empty only when β ≤ 1

a

√
2 log 2. For

β > 1
a

√
2 log 2, we always have I0(y) > log 2 − 1

2
β2a2 so that the infimum is attained

for x =
√

2[log 2 − I0(y)]. Substituting these values of x in f(x, y) we obtain the
following expression for the infimum of f(x, y) over x. First we need a notation. For
β ≤ 1

a

√
2 log 2, let cβ be the solution of

I0(cβ) = log 2 − 1

2
β2a2. (4.4.1)

Then

ϕ(y) = inf
0≤x≤

√
2[log 2−I0(y)]

f(x, y) =





g1(y) if β ≤ 1
a

√
2 log 2 and y ≤ cβ,

g2(y) if β ≤ 1
a

√
2 log 2 and y > cβ,

g2(y) if β > 1
a

√
2 log 2,

(4.4.2)

where

g1(y) = −1

2
β2a2 + I0(y) − βhy

and
g2(y) = log 2 − βa

√
2[log 2 − I0(y)] − βhy.
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Since
g′1(y) = tanh−1(y) − βh,

we have g′1(0) = −βh and

g′1(y) S 0 ⇔ y S tanh(βh).

On the other hand, as

g′2(y) =
βa tanh−1(y)√
2[log 2 − I0(y)]

− βh,

we have g′2(0) = −βh and by (4.4.1), g′2(cβ) = −βh+ tanh−1(cβ). Thus g′2(cβ) ≤ 0 iff
cβ ≤ tanh(βh). Moreover,

g′2(y) S 0 ⇔ a tanh−1(y)√
2[log 2 − I0(y)]

S h.

Let y0 be the non-negative solution of

a tanh−1(y)√
2[log 2 − I0(y)]

= h. (4.4.3)

Such a solution always exists since log 2 − I0(y) → 0 as y → 1.
Since I0 is a strictly increasing function of [0, 1], from equations (4.4.1) and (4.4.3),

we note that
tanh(βh) S y0 ⇔ y0 S cβ.

Now if β ≤ 1
a

√
2 log 2 and y0 ≤ cβ then tanh(βh) ≤ y0 ≤ cβ and the function ϕ

in (4.4.2) is decreasing up to y = tanh(βh) and then increasing. In such case, the
inf

0≤y≤1
ϕ(y) will occur at y = tanh(βh) so that

inf
0≤y≤1

ϕ(y) = −1

2
β2a2 − log cosh(βh).

On the other hand, if β ≤ 1
a

√
2 log 2 and y0 > cβ then cβ < y0 < tanh(βh) and the

function ϕ is decreasing up to y = y0 and then increasing. In such case, the inf
0≤y≤1

ϕ(y)

will occur at y = y0 so that

inf
0≤y≤1

ϕ(y) = log 2 − βax0 − βhy0,
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where x0 =
√

2[log 2 − I0(y)] = a tanh−1 y0

h
.

Finally, if β > 1
a

√
2 log 2 then the function ϕ is decreasing up to y = y0 and then

increasing. Hence in this case, the inf
0≤y≤1

ϕ(y) will occur at y = y0 so that

inf
0≤y≤1

ϕ(y) = log 2 − βax0 − βhy0,

where x0 =
√

2[log 2 − I0(y)] = a tanh−1 y0

h
.

We can summarize the above discussion in the following:

Theorem 4.4.1. In the Gaussian REM with external field, the limiting free energy

exists almost surely and given by

E(β, h) =





log 2 + β2a2

2
+ log cosh(βh) if β ≤ 1

a

√
2 log 2 and y0 ≤ cβ

β (ax0 + hy0) otherwise,

where y0 be the non-negative solution of a tanh−1(y)√
2[log 2−I0(y)]

= h, I0(y) = y tanh−1 y −
log cosh(tanh−1 y), cβ is the solution of I0(cβ) = log 2 − 1

2
β2a2 and x0 = a tanh−1 y0

h
.

Note that the case ‘otherwise’ in the theorem above consists of β ≤ 1
a

√
2 log 2 and

y0 > cβ or if β > 1
a

√
2 log 2.

Theorem 4.4.1 provides yet another justification for the phase diagram (FIG. 3)
in [16] of Derrida.
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