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Preface

Throughout, p denotes a fixed prime number. All groups considered

here are finite.

The elements of order p play a significant role in the classification

of simple groups. If p divides the order of a group G, then Cayley’s

theorem says that there exists a subgroup of G of order p. For a positive

integer k, let Ep
k (G) denote the collection of all elementary abelian p-

subgroups of order at least pk in a group G. The graph with vertex set

Ep
k (G) in which two vertices A and B are adjacent if [A,B] = 1 is called

the commuting graph on Ep
k (G). The determination of the groups G for

which the commuting graph on Ep
k (G) is disconnected for small k plays

a crucial role in the classification of simple groups ([1], Section 46).

Involutions and their centralizers in a simple group also play a very

important role in determining the structure of the group. Many sim-

ple groups have been characterized in terms of the centralizer of an

involution. The Odd Order Theorem [30] of Feit and Thompson says

that every non-abelian simple group G possess an involution t. The

Brauer and Fowler Theorem [4] says that there is only a finite number

of simple groups G0 possessing an involution t0 with CG0(t0) ' CG(t).

From the classification of finite simple groups, with a small number of

exceptions, G is the unique simple group with such a centralizer. Even

in the exceptional cases, at most three simple groups possess the same

centralizer. For example: L5(2), M24 and He (Held-Higman-McKay

group of order 210.33.52.73.17) are the only simple groups possessing an

involution with centralizer L3(2)/D3
8.

Given a set C of involutions in a group G, we can define a point-

line geometry I2(G,C) whose point set is C and the line set consists

of all subsets {x, y, xy} of C, where x and y are distinct commuting

elements in C. If C is the set of all involutions in G, then I2(G,C) is

called the involution geometry of G (see [43], p.111) and denoted by

I2(G). A triangular set [60] in G is a G-invariant (under conjugation)

subspace of I2(G). For any two disjoint triangular sets T1 and T2 of G,

ix
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Shult ([60], Theorem 1) proved that [T1, T2] is a subgroup of the largest

normal subgroup of G of odd order. This result, together with the Odd

Order Theorem of Feit and Thompson, imply that every non-abelian

simple group contains a unique minimal triangular set ([60], Corollary

1). In view of this result of Shult, it seems to be of interest to study

the triangular sets in groups.

For a general prime p, we can consider the point-line geometry

Ip(G, T ) whose point set T is a collection of subgroups of G of order

p. Two distinct points x and y in T are collinear if they generate an

elementary abelian subgroup of G of order p2 and each subgroup of

order p in it is a member of T . The line containing x and y is the set of

p+1 subgroups of order p in 〈x, y〉. We could also consider the simplicial

complex determined by the partially ordered set of singular subspaces

of Ip(G, T ). It seems to be of interest to study the distribution of

conjugacy classes of subgroups of order p of the group in terms of this

point-line geometry. There are two aspects to this study:

(1) Determining the structure of the point-line geometry or the

simplicial complex mentioned above.

(2) Embeddibility of standard point-line geometries in the above

mentioned geometry.

There has been a considerable amount of interest in the first prob-

lem. The uniqueness of the Monster simple group F1 is obtained as

the automorphism group of the collinearity graph of the geometry

I2(F1, C), where C is the set of all conjugates of an involution whose

centralizer is of 2 · F2-type [34]. The uniqueness of the Baby Monster

group F2 and the sporadic group F5 of Harada-Norton is proved by

the same method considering C to be the set of all conjugates of an

involution whose centralizer is isomorphic to 2 · 2E6(2) : 2 [58] and

(2 ·HS) : 2 [59], respectively. In the latter case, F5 is determined as the

commutator subgroup of the automorphism group of the collinearity

graph.

Another important class of examples of Ip(G, T ) are the root group

geometries ([16], p.75), where G is a group of Lie type defined over a

field Fp with p elements and T is the collection of all (long) root sub-

groups of G. An important motivation for the study of these geometries

was the possibility of generating subgroups of the group defined by the

substructures of the geometry. Cooperstein [18] proved that if G is

of type G2 or 3D4, then Ip(G, T ) is a generalized hexagon (see [67]).
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The question of characterizing buildings of spherical type in terms of

point-line geometries with certain properties had been an active topic

of research during the 1980’s. In the spirit of the characterization of

projective spaces in terms of Veblen and Young axioms and the char-

acterization of polar spaces in terms of Buekenhout and Shult axioms,

Cohen and Cooperstein [16] characterized the root group geometries

of type E6, E7 and E8 as some point-line geometries (the so called

parapolar spaces) satisfying certain conditions.

The main thrust of this thesis is on the second problem: that is,

to recognize the standard point-line geometries like projective spaces,

generalized quadrangles, polar spaces, near polygons etc. in groups.

An initial motivation for this work was to initiate the search for new

point-line geometries like generalized quadrangles etc. with p+1 points

per line which are embedded in groups.

For a point-line geometry G = (P,L) with three points per line, the

universal embedding module V (G) of G is a F2-vector space defined as:

V (G) = 〈vx : x ∈ P ; vx + vy + vz = 0, {x, y, z} ∈ L〉. In [39] and [40],

the universal embedding modules for the 2-local parabolic geometries

G(J4), G(F2) and G(F1) were shown to be trivial. Here G(J4) and

G(F2) are the Petersen type geometries of the fourth Janko group J4

and the Baby Monster group F2 respectively, and G(F1) is the tilde

type geometry of the Monster group F1 (see [36] for definitions). This

result played an important role in the proof that none of these three

geometries appear as a residue in a flag-transitive tilde or Petersen type

geometry of a higher rank [41].

The notion of a universal representation group of a geometry was

introduced in [40] to prove the triviality of V (G(F2)). The universal

representation group R(G) of G has the presentation: R(G) = 〈rx : x ∈
P, r2

x = 1, rxryrz = 1, {x, y, z} ∈ L〉. In [38] and [42], Ivanov et al.

studied the structure of R(G) when G is one of the geometries G(J4),

G(F2) and G(F1) and proved that R(G(F2)) ' 2 · F2, R(G(F1)) ' F1

and R(G(J4)) ' J4. The calculation of the universal representation

group R(G(F1)) has been used to identify the Y -group Y555 with the

Bi-Monster (see [36], Section 8.6).

In [37], Ivanov introduced the concept of a representation in groups

of a point-line geometry G = (P,L) with lines of size p+1. His definition

of representation is similar to the definition of the root group geometries

over Fp studied by Cooperstein [18], and Cohen and Cooperstein [16].
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A representation of G is a pair (R, ρ) where R is a (possibly non-abelian)

group and ρ is a mapping from P to the set of subgroups of R of order

p such that R is generated by the image of ρ and for every l ∈ L and

x 6= y in l, ρ(x) and ρ(y) are distinct and the subgroup generated by

ρ(l) has order p2. This definition of representations of geometries led to

a new research area in the theory of groups and geometries [37]. The

knowledge of the representations is crucial for the construction of affine

and c-extensions of geometries and non-split extensions of groups and

modules (see Sections 2.7 and 2.8 of [43]).

In this thesis, we study the representations of finite projective spaces,

generalized quadrangles and non-degenerate polar spaces with lines of

size p + 1 and dense near hexagons with three points per line in the

sense of Ivanov [37].

In Chapter 1, we review some basic results related to generalized

quadrangles, polar spaces, generalized polygons and near polygons that

are needed in the subsequent chapters.

In Chapter 2, we determine the triangular sets in the finite irre-

ducible Coxeter groups.

In Chapter 3, we present the notion of representations of partial

linear spaces introduced by Ivanov [37]. The representation group for

a non-abelian representation of a finite partial linear space with lines

of size p+1 need not be finite (see Example 3.14). We give a sufficient

condition on the partial linear space and on the non-abelian represen-

tation of it to ensure that the representation group is a finite p-group

(Theorem 3.23). We use this result as a basic tool to study non-abelian

representations of finite non-degenerate polar spaces with lines of size

p + 1 and slim dense near hexagons. By definition, every representa-

tion of a projective space is abelian and faithful. So the study of the

representations of a projective space of dimension m over Fp in a group

G is the same thing as the study of elementary abelian p-subgroups

of G of order pm+1. We study elementary abelian p-subgroups of the

symmetric group Sym(I) on a finite set I and describe the maximal

elementary abelian p-groups of Sym(I), up to conjugacy (Theorems

3.28 and 3.33).

In Chapter 4, we study non-abelian representations of finite non-

degenerate polar spaces of rank at least two with p + 1 points per line.

We characterize the finite symplectic polar spaces of rank at least two

with p+1 points per line, p odd, as the only finite non-degenerate polar
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spaces with p+1 points per line admitting non-abelian representations

(Theorems 4.1 and 4.2).

In Chapter 5, we recall some results about (2, t)-GQs. We present

a proof of the finiteness of t. We study complete arcs of (2, t)-GQs in

detail. Every representation of a (2, t)-GQ is necessarily abelian (Theo-

rem 4.1(i)). However, the representation need not be faithful (Example

3.11). We study the faithful representations of these geometries. They

play an important role in the study of non-abelian representations of

slim dense near hexagons.

In Chapter 6, we study slim dense near hexagons. We present the

classification of these geometries due to Brouwer et al. [9]. There are

eleven such geometries, up to isomorphism. We denote them by E1, E2,

E3, G3, DH6(2
2), Q−

6 (2)⊗Q−
6 (2), DW6(2), H3, Q−

6 (2)×L3, W4(2)×L3

and Q+
4 (2)×L3 (see Theorem 6.1). We give a construction for each of

them, though we only need to work with their parameters. We give new

constructions for DW6(2) and H3 (Theorems 6.3 and 6.10). Except E1

and E2, they all admit big quads. We study the structure of the slim

dense near hexagons having big quads relative to a subspace generated

by two of its disjoint big quads.

In Chapter 7, we study non-abelian representations of slim dense

near hexagons. We show that DH6(2
2), E3 and G3 do not admit non-

abelian representations (Theorem 7.1). If S denotes one of the re-

maining eight near hexagons, we show that the representation group

R for a non-abelian representation of S is of order 2β, 1 + n(S) ≤ β ≤
1 + dimV (S), where dimV (S) is the dimension of the universal em-

bedding module of S and n(S) is given as in Theorem 6.1. Further,

if β = 1 + n(S), then R = 2
1+n(S)
ε , where ε = − or + according as

S = Q−
6 (2) ⊗ Q−

6 (2) or not (Theorem 7.2). If S is one of the near

hexagons Q−
6 (2) ⊗ Q−

6 (2), DW6(2), H3, Q−
6 (2) × L3, W4(2) × L3 and

Q+
4 (2)×L3 having big quads, then we show that S admits a non-abelian

representation such that the representation group is extraspecial of or-

der 21+n(S) (Theorem 7.3). There is a Fischer space structure on the

big quads of a slim dense near hexagon ([9], Sections 3 and 4). We use

this structure to give a sufficient condition for a representation of S to

be abelian (Theorem 7.20) and deduce Theorem 7.1 as a consequence of

it. We also use this structure to construct a non-abelian representation

of Q−
6 (2)⊗Q−

6 (2).





CHAPTER 1

Point-Line Geometries

In this chapter we summarize some basic concepts on point-line

geometries and introduce the notation that we shall use later in this

thesis.

1.1. Graphs

By a graph G = (X,≈) we mean a set X together with a symmetric,

anti-reflexive relation ≈, referred to as adjacency . The elements of X

are called vertices. If x and y are adjacent for distinct vertices x, y ∈ X,

then the pair {x, y} is called an edge. If any two distinct vertices are

adjacent, then G is called a clique. A path from x to y, x, y ∈ X,

is a finite sequence of vertices x = x0, x1, · · ·, xn = y where xi−1 is

adjacent to xi for i = 1, · · ·, n. The number n is called the length of

such a path. The graph G is connected if there is a path between any

two of its vertices. A geodesic from x to y is a path from x to y of

minimum length. The distance between two vertices x and y, denoted

by d(x, y), is the length of a geodesic joining x to y, if a geodesic exists,

otherwise d(x, y) = ∞. The diameter of G is sup{d(x, y) : x, y ∈ X}.
A sequences of vertices x0, x1, · · ·, xm is a circuit of length m if m ≥ 2;

x0 = xm; x0, x1, · · ·, xm−1 are pairwise distinct; and {xi−1, xi} is an edge

for i = 1, 2, · · ·,m. The girth of G is the length of a shortest circuit

in G. The graph G is bipartite if the vertex set X can be partitioned

into two non-empty subsets X1 and X2 such that every edge of G has

one vertex in X1 and the other vertex in X2. The complement graph

of G is the graph G ′ = (X,≈′), whose vertex set is X and two distinct

vertices x and y are defined to be adjacent (that is, x ≈′ y) if and only

if they are non-adjacent vertices of G.

1.2. Partial Linear Spaces

A point-line geometry is a pair S = (P, L) consisting of a set P and

a collection L of subsets of P of size at least 2. The elements of P and L

1



2 1. POINT-LINE GEOMETRIES

are called points and lines of S, respectively. If any two distinct points

of S are contained in at most one line, then S is called a partial linear

space. Two distinct points x and y of S are collinear , written as x ∼ y,

if there is a line of S containing them. If x and y are not collinear,

we write x � y. If each pair of distinct points of S is contained in

exactly one line, then S is called a linear space. Important examples of

linear spaces are the projective spaces and affine spaces (as point-line

geometries). For x ∈ P and A ⊆ P , we define

x⊥ = {x} ∪ {y ∈ P : x ∼ y} and A⊥ = ∩
x∈A

x⊥.

If P⊥ is empty, then S is called a non-degenerate point-line geometry.

Let S = (P,L) be a partial linear space. If x and y are two collinear

points of S, then we denote by xy the unique line containing x and y.

In that case, {x, y}⊥ = xy. If P is a finite set, then S is called a finite

partial linear space. A point of S is thick if it is contained in at least

three lines. A line of S is thick if it contains at least three points. If

all points and all lines of S are thick, then S itself is called thick . If

each line of S contains s + 1 points, then S is of order s. Further,

if each point of S is contained in t + 1 lines, then S is said to have

parameters (s, t). If S is of order 2, then S is called a slim partial

linear space. In that case, if x, y ∈ P are collinear, then we define x ∗ y

by xy = {x, y, x ∗ y}.

1.2.1. Collinearity and Incidence graph. With each point-line

geometry S = (P,L), there is associated a graph Γ(P ), called the

collinearity graph of S. The vertices of Γ(P ) are the points of S, and

two distinct vertices are adjacent whenever they are collinear in S. For

x, y ∈ P , the distance d(x, y) between x and y is measured in Γ(P ).

If Γ(P ) is connected, then S is called a connected point-line geometry.

For a non-negative integer i, we define

Γi(x) = {y ∈ P : d(x, y) = i};
Γ≤i(x) = {y ∈ P : d(x, y) ≤ i}.

Thus x⊥ = {x} ∪ Γ1(x) for x ∈ P . For z ∈ P and X, Y ⊆ P , we define

d(z, X) = inf
x∈X

d(z, x); and d(X,Y ) = inf
x∈X,y∈Y

d(x, y). The incidence

graph Γ(S) of S has vertex set P ∪ L, in which two distinct vertices

x and y are adjacent if and only if either x ∈ P, y ∈ L and x ∈ y; or

x ∈ L, y ∈ P and y ∈ x. Clearly, Γ(S) is a bipartite graph.
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1.2.2. Subspaces. Let S = (P,L) be a point-line geometry. A

subset of P is a subspace of S if each line containing at least two of its

points is entirely contained in it. The empty set, singletons and P are

all subspaces of S. If S is a partial linear space, then the lines are also

subspaces. Clearly, intersection of subspaces is again a subspace. For a

subset X of P , the subspace 〈X〉 generated by X is the intersection of all

subspaces of S containing X. It is well defined as P is a subspace of S

containing X. Thus, 〈X〉 is the smallest subspace of S containing X. If

S is a partial linear space and if x, y ∈ P are collinear, then xy = 〈x, y〉,
where 〈x, y〉 is short of 〈{x, y}〉. A subspace of S is singular if each pair

of its points is collinear. Thus, a singular subspace is a subspace which

is also a clique in the collinearity graph. A geometric hyperplane of S is

a subspace of S different from P that meets each line of S non-trivially.

1.2.3. Isomorphisms. Let S = (P, L) and S ′ = (P ′, L′) be two

point-line geometries. A map α : P −→ P ′ is an isomorphism from S

to S ′ if it is a bijection, α(x) ∼ α(y) in S ′ whenever x ∼ y in S and

it induces a bijection from L to L′. In that case, S and S ′ are called

isomorphic and written as S ' S ′. An isomorphism from S onto itself

is called an automorphism of S.

1.2.4. Direct product. Let S1 = (P1, L1) and S2 = (P2, L2) be

two partial linear spaces. Then, their direct product S1 × S2 is the

partial linear space whose point set is P1×P2 and the line set consists

of all subsets of P1×P2 projecting to a single point in Pi and projecting

in Pj onto an element of Lj, where {i, j} = {1, 2}.

1.3. Polar Spaces

A polar space is a point-line geometry S = (P, L) such that the

following ‘one or all’ axiom holds:

For each point-line pair (x, l) ∈ P × L with x /∈ l, x

is collinear with one or all points of l.

We refer to ([66], 7.1, p.102) for the original definition of a polar space.

The above equivalent definition of a polar space is due to Buekenhout

and Shult [11], where there is no restriction on the intersection of two

lines. However, a remarkable discovery of Buekenhout and Shult is the

following.
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Theorem 1.1 ([11], Theorem 3, p.161). A non-degenerate polar

space is a partial linear space.

Rank of a polar space S is the supremum of the lengths m of chains

Q0 ( Q1 ( · · · ( Qm of singular subspaces of S.

Let S = (P, L) be a non-degenerate polar space of finite rank n.

Each singular subspace of S is isomorphic to a projective space. The

dimension of a singular subspace of S is the dimension of the associated

projective space. Each maximal singular subspace of S has dimension

n−1. For singular subspaces X, Y of S with Y ⊂ X, the co-dimension

of Y in X is the dimension of X minus the dimension of Y .

1.3.1. Finite classical polar spaces. We shall use the following

notation for finite classical polar spaces of rank r ≥ 2 over the field Fq

with q elements, where q is a prime power.

• W2r(q) : the points of PG(2r − 1, q) together with the totally

isotropic lines with respect to a symplectic polarity;

• H2r(q
2) : the points together with the lines of a non-singular

Hermitian variety in PG(2r − 1, q2);

• H2r+1(q
2) : the points together with the lines of a non-singular

Hermitian variety in PG(2r, q2);

• Q+
2r(q) : the points together with the lines of a non-singular

hyperbolic quadric in PG(2r − 1, q);

• Q2r+1(q) : the points together with the lines of a non-singular

quadric in PG(2r, q);

• Q−
2r+2(q) : the points together with the lines of a non-singular

elliptic quadric in PG(2r + 1, q).

The study of polar spaces was initiated by Veldkamp [68]. Building

on the work of Veldkamp, Tits [66] classified polar spaces whose rank

is at least three. For polar spaces of possibly infinite rank, see [44].

Tits classification implies

Theorem 1.2. A finite thick non-degenerate polar space of rank

r ≥ 3 is isomorphic to either the symplectic polar space W2r(q); or one

of the orthogonal polar spaces Q+
2r(q), Q2r+1(q) and Q−

2r+2(q); or one

of the unitary polar spaces H2r(q
2) and H2r+1(q

2).
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Theorem 1.3 ([62], Theorem 1, p.330). The number of points of

the finite classical polar spaces are given by the formulae:

|W2r(q)| = (q2r − 1)/(q − 1);

|Q+
2r(q)| = (qr−1 + 1)(qr − 1)/(q − 1);

|Q2r+1(q)| = (q2r − 1)/(q − 1);

|Q−
2r+2(q)| = (qr − 1)(qr+1 + 1)/(q − 1);

|H(2r, q2)| = (q2r − 1)(q2r−1 + 1)/(q2 − 1);

|H(2r + 1, q2)| = (q2r+1 + 1)(q2r − 1)/(q2 − 1).

The following inductive property ([14], Section 6.4, p.90) of the

classical polar spaces is useful for us.

Lemma 1.4. Let S = (P, L) be a classical polar spaces of finite

rank r ≥ 3 and let x, y ∈ P be two non-collinear points of S. Then,

{x, y}⊥ is a polar space of rank r − 1 and is of the same type as S.

1.4. Generalized Polygons

A generalized n-gon, n ≥ 1, is a partial linear space S = (P,L)

satisfying the following:

• The incidence graph Γ(S) of S has girth 2n and diameter n,

• Any two elements of P ∪ L are contained in some circuit in

Γ(S) of length 2n.

The concept of a generalized polygon was introduced by Tits [65]

in his celebrated work on triality. These geometries form spherical

buildings of rank two. For a detailed discussion of these structures, we

refer to [67]. A lot of restrictions are known concerning the integer n

and the parameters (s, t) of a finite generalized n-gon.

Lemma 1.5 ([67], Corollary 1.5.3, p.19). Every thick generalized

n-gon admits parameters (s, t). Further, if n is odd, then s = t.

Finite generalized n-gons with parameters (s, t) which are not or-

dinary polygons exist only for n = 2, 3, 4, 6, 8 and 12. This was proved

by Feit and Higman [29], see Kilmoyer and Solomon [47] for a different

proof. However, their classification is very difficult since, for instance,

projective planes and generalized 3-gons are the same.

Lemma 1.6 ([29]). Finite thick generalized n-gons exist only for

n = 3, 4, 6 and 8.
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For n = 3, 4, 6, 8, generalized n-gons are called generalized trian-

gles , generalized quadrangles , generalized hexagons and generalized oc-

tagons , respectively. In the next section we give another definition of

generalized quadrangles, it can be seen that both the definitions are

equivalent.

Lemma 1.7 ([67], Lemma 1.5.4, p.19). Let S = (P,L) be a finite

generalized n-gon, n ≥ 3, with parameters (s, t). Then,

|P | = (s + 1)

(
(st)n/2 − 1

st− 1

)
; |L| = (t + 1)

(
(st)n/2 − 1

st− 1

)
.

Lemma 1.8 ([67], Theorem 1.7.2, p.24). Let S = (P,L) be a finite

thick generalized n-gon, n ≥ 4, with parameters (s, t). Then, one of

the following holds:

(i) n = 4, s ≤ t2 and t ≤ s2;

(ii) n = 6, s ≤ t3 and t ≤ s3;

(iii) n = 8, s ≤ t2 and t ≤ s2.

The known finite thick generalized quadrangles to date have param-

eters (q−1, q+1), (q+1, q−1), (q, q), (q2, q3), (q3, q2), (q, q2) and (q2, q)

for a prime power q ([50] and [63]). All known finite thick generalized

hexagons have parameters (q, q), (q, q3) and (q3, q) for a prime power q.

All known finite thick generalized octagons have parameters (2a, 22a)

and (22a, 2a), a being odd.

1.5. Generalized Quadrangles

A generalized quadrangle (GQ, for short) is a non-degenerate partial

linear space S = (P, L) satisfying the following ‘exactly one’ axiom:

For each point-line pair (x, l) ∈ P × L with x /∈ l, x

is collinear with exactly one point of l.

Let S = (P, L) be a generalized quadrangle. There is a point-line

geometry SD = (P ′, L′) associated with S, whose point set is P ′ = L

and with every point x ∈ P is associated a line x′ ∈ L′ which is the

collection of all points of P ′ containing x. Then, SD is a generalized

quadrangle, called the dual of S. If S and SD are isomorphic, then S

is said to be self-dual .

The following is an improvement of Lemma 1.5 when n = 4.
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Lemma 1.9 ([14], Theorem 7.1, p.98). Let S = (P, L) be a gener-

alized quadrangle with at least one thick line and one thick point. Then,

S admits parameters (s, t).

The theory of generalized quadrangles is extremely important in the

theory of polar spaces and dense near polygons. Non-degenerate polar

spaces of rank 2 are precisely the generalized quadrangles. The quads

in a dense near polygon are generalized quadrangles. In this section,

we write down those results about generalized quadrangles which we

shall use later in this thesis. We refer to [50], [51] and [67] for several

examples of finite generalized quadrangles.

If S is a generalized quadrangle with parameters (s, t), then we

say that S is a (s, t)-GQ. From Subsection 1.3.1, the finite classical

generalized quadrangles are W4(q), H4(q
2), H5(q

2), Q+
4 (q), Q5(q) and

Q−
6 (q). The parameters of these generalized quadrangles are (q, q),

(q2, q), (q2, q3), (q, 1), (q, q) and (q, q2), respectively.

Finite generalized quadrangles are classified only for s = 2, 3, see

([51], Chapter-6) and ([63], 5.1, p.401). Regarding the finite GQs with

s = p, p a prime, Kantor showed that if a finite thick generalized

quadrangle S of order p admits a rank three automorphism group G

on the point set of S, then one of the following holds ([45], Theorem

1.1):

(i) t = p2 − p− 1 and p3 - |G|;
(ii) G ' PSp(4, p) and S ' W4(p) or G ' PΓU(4, p) and S '

Q+
4 (p);

(iii) p = 2, G = Alt(6) and S ' W4(2).

A question posed by Tits that is still open is whether there exists

a (s, t)-GQ with s > 1 finite and t infinite. It is known that there is

no such generalized quadrangle with s = 2, 3 and 4. This is due to

Cameron [12] for s = 2 , Brouwer [7] for s = 3, and Cherlin [15] for

s = 4.

1.5.1. Regularity and anti-regularity. Let S = (P, L) be a

finite (s, t)-GQ. A triad of points of S is a triple of non-collinear points

of S. For a triad T of points of S, an element of T⊥ is called a center

of T . A pair {x, y} of distinct points of S is regular if x ∼ y; or if x � y

and |{x, y}⊥⊥| = t + 1. A point x is regular if {x, y} is regular for each

y ∈ P \ {x}. A pair {x, y} of non-collinear points of S is anti-regular
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if |z⊥ ∩ {x, y}⊥| ≤ 2 for each z ∈ P \ {x, y}. A point x is anti-regular

if {x, y} is anti-regular for each y ∈ P \ x⊥.

Dually, we define a triad of lines, center of a triad of lines, regularity

and anti-regularity of a line.

Lemma 1.10 ([51], 1.2.4, p.4). Let S = (P, L) be a finite thick

(s, t)-GQ. Then, s2 = t if and only if each triad of points of S has s+1

centers.

Lemma 1.11 ([51], 1.5.2, p.13). Let S = (P,L) be a finite thick

(s, t)-GQ. The following hold:

(i) If S has a regular point x and a regular line l with x /∈ l, then

s = t is even.

(ii) If s = t is odd and if S contains two regular points, then S is

not self-dual.

Lemma 1.12 ([51], 3.2.1, p.43). Q5(q) is isomorphic to the dual of

W4(q). Further, Q5(q) (or W4(q)) is self-dual if and only if q is even.

A triad T = {x, y, z} of S is 3-regular if s2 = t > 1 and |T⊥⊥| =

s + 1. A point x of S is 3-regular if s2 = t > 1 and each triad of S

containing x is 3-regular.

Lemma 1.13 ([51], 3.3.1, p.51). The following hold:

(i) In Q5(q), all lines are regular; all points are regular if an only

if q is even; all points are anti-regular if and only if q is odd.

(ii) In Q−
6 (q), all lines are regular and all points are 3-regular.

Lemma 1.14 ([51], 5.2.1, p.77). A generalized quadrangle with

parameters (q, q) is isomorphic to W4(q) if and only if all its points are

regular.

1.5.2. Ovoids and spreads. Let S = (P, L) be a finite (s, t)-GQ.

A k-arc (of points) of S is a set of k pair-wise non-collinear points of

S. An empty set is a 0-arc or a trivial arc, a 1-arc is just a singleton

and a 3-arc is a triad. A k-arc is complete if it is not contained in a

(k + 1)-arc. A point x of S is called a center of a k-arc of S if x is

collinear with every point of it. An ovoid of S is a k-arc of S that meets

each line of S non-trivially. A spread of S is a set of lines partitioning

the point set P .
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Lemma 1.15 ([51], 1.8.1, p.20). Let S = (P,L) be a finite (s, t)-

GQ. Let O be an ovoid and K be a spread of S. Then, |O| = |K| =

1 + st.

Lemma 1.16 ([51], 3.4.1, p.55). The following hold:

(i) Q5(q) has ovoids. It has spreads if and only if q is even.

(ii) Q−
6 (q) has spreads but no ovoids.

The following result appears in ([20], Theorem 2.2, p.19) which is

proved by induction on r ≥ 3. However, for the case r = 2 which

is needed to start the induction, the authors refer to other papers

available in the literature. We include a proof of it for the sake of

completeness.

Proposition 1.17. Let q = pe be odd and r ≥ 2. Then, W2r(q) is

generated by a set Ar = {ai, bi : 1 ≤ i ≤ r} consisting of 2r points such

that, for distinct u, v ∈ Ar, u � v if and only if {u, v} = {ai, bi} for

some i.

Proof. First, assume that r = 2. Let A2 = {a1, a2, b1, b2} be a

quadrangle in W4(q) with a1 � b1 and a2 � b2. Consider the parallel

lines m0 = a1a2 and m1 = b1b2. Let {m0, m1}⊥ = {l0, l1, · · ·, lq}. Then,
q∪

i=0
li ⊂ 〈A2〉. For a point z, we denote by Lz the set of lines containing

z. Let x be a point not in
q∪

i=0
li. For each line li, there is a unique line

lxi in Lx meeting li. This defines a map δ from {m0,m1}⊥ to Lx. If δ

is not one-one then there exists i 6= j such that lxi = lxj . If lxi ∩ li = {u}
and lxi ∩ lj = {v}, then lxi = uv. Since u, v both are points in 〈A2〉 it

follows that lxi is a line in 〈A2〉. So x ∈ 〈A2〉.
Assume now that δ is one-one. For k ∈ {0, 1}, let x be collinear

with uk in the line mk. Consider the lines li0 and li1 in {m0,m1}⊥,

where lik ∩ mk = {uk}. Let {li0 , li1}⊥ = {m0,m1, · · ·,mq}. Now for

each line mi, there is a unique line mx
i in Lx meeting mi. This defines

a map σ from {li0 , li1}⊥ to Lx. Applying the argument as in the first

paragraph, we may assume that σ is one-one. Then, mx
i = lxj for some

i, j ∈ {0, 1, · · ·, q} \ {i0, i1}. (Note that lxi0 = mx
0 and lxi1 = mx

1 .) Let

mx
i ∩mi = {vi} and mx

i ∩lj = {vj}. Since q is odd, all lines of W4(q) are

anti-regular, by Lemmas 1.12 and 1.13(i). So mi∩lj = Φ. Thus, vi 6= vj

and vivj = mx
i . Since

q∪
i=0

mi ⊂ 〈A2〉, vi and vj both are contained in

〈A2〉 and it follows that mx
i is a line in 〈A2〉. So x ∈ 〈A2〉.
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Now, assume that r ≥ 3. Let ar, br be two non-collinear points

of W2r(q) and set H = {ar, br}⊥. Then, H is a subspace and H '
W2(r−1)(q) (Lemma 1.4). By induction, let H be generated by a set

Ar−1 = {ai, bi : 1 ≤ i ≤ r − 1} satisfying the required property. We

prove that W2r(q) is generated by the set Ar = Ar−1∪{ar, br} and this

would complete the proof.

We have H ⊂ ∪
l∈Lw

l ⊂ 〈Ar〉 for w ∈ {ar, br}. Let z ∈ P \ (Lar ∪Lbr).

For each line l in Lw, there is a unique line in Lz meeting l because

z � w and this defines a bijection τw from Lw onto Lz. Suppose that

z � y for some y ∈ H. Let l ∈ Lar be such that y ∈ l and let m ∈ Lbr

be such that τar(l) = τbr(m). If {z1} = l∩τar(l) and {z2} = m∩τbr(m),

then z1 6= z2 and z1z2 = τar(l). Since z1 and z2 are in 〈Ar〉, so also the

line z1z2. Hence z ∈ 〈Ar〉. Suppose that z is collinear with every point

of H. Fix two non-collinear points x and y in H. Let c be a point in the

line yz different from y and z. Then, c � x because x ∼ z and x � y.

So c ∈ 〈Ar〉 by the above argument. Then, yc is contained in 〈Ar〉, so

z ∈ 〈Ar〉. ¤

1.6. Near Polygons

A near polygon is a connected partial linear space S = (P, L) such

that the following ‘near polygon’ property holds:

For each point-line pair (x, l) ∈ P × L with x /∈ l,

there exists a unique point on l nearest to x.

Let S = (P, L) be a near polygon. If the diameter of S is n, then

S is called a near 2n-gon. The sets Γ≤n−1(x), x ∈ P , are called special

geometric hyperplanes of S. Important examples of near polygons are

the generalized n-gons. A near 0-gon is just a point. A near 2-gon is

a line. Near 2n-gons for n = 2, 3, 4 are called near quadrangles , near

hexagons and near octagons , respectively. Near 2n-gons exist for each

n. In the next section, we give examples of three infinite families of

slim near 2n-gons.

The concept of a near polygon was introduced by Shult and Yanushka

[61] to study system of lines in an Euclidean space. A structure theory

of these geometries was developed by Brouwer and Wilbrink [10]. The

possible ‘line-line’ relations in a near polygon are given in the following.
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Theorem 1.18 ([10], Lemma 1,p.146). Let l and m be two lines

of a near polygon S = (P,L) with at least one thick line. Then, one of

the following posiibilities occurs.

(i) There exists a unique point x ∈ l and a unique point y ∈ m

such that d(u, v) = d(u, x)+d(x, y)+d(y, v) for all points u ∈ l

and v ∈ m.

(ii) There exists a positive integer i such that d(u, m) = d(v, l) = i

for all points u ∈ l and v ∈ m.

The lines l and m satisfying Theorem 1.18(ii) are called parallel

lines .

1.6.1. Quads. Let S = (P, L) be a near polygon. A subspace C

of P is convex if every geodesic in Γ(P ) between two points of C is

entirely contained in the induced subgraph Γ(C) of Γ(P ). A quad of

S is a non-degenerate convex subspace of S of diameter two. Thus a

quad is a generalized quadrangle.

Theorem 1.19 ([61], Proposition 2.5, p.10). Let S = (P, L) be a

near polygon and x1, x2 ∈ P with d(x1, x2) = 2. If x1 and x2 have at

least two common neighbors y1 and y2 such that at least one of the lines

xiyj is thick, then x1 and x2 are contained in a unique quad. This quad

consists of all points of S which have distance at most 2 from each of

x1, x2, y1 and y2.

The unique quad containing x1 and x2 in Theorem 1.19 is denoted

by Q(x1, x2). An immediate consequence of Theorem 1.19 is the fol-

lowing ‘quad-quad’ relation.

Corollary 1.20. Two distinct quads of a near polygon are either

disjoint, or meet in a point or a line.

The possible ‘point-quad’ relations are given in the following.

Theorem 1.21 ([61], Proposition 2.6, p.12). Let S = (P, L) be a

near polygon. Let x ∈ P and Q be a quad of S. Then, either

(i) there is a unique point y ∈ Q closest to x (depending on x)

and d(x, z) = d(x, y) + d(y, z) for all z ∈ Q; or

(ii) the points in Q closest to x form an ovoid Ox of Q.

In the first case, this means that Q is gated with respect to x, in

the sense of [28]. The point-quad pair (x,Q) in Theorem 1.21 is called
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classical in the first case and ovoidal in the second case. A quad Q is

classical if (x,Q) is classical for each x ∈ P . If (x,Q) is not classical

for at least one x ∈ P , then Q is called ovoidal .

1.6.2. Dense near polygons. A near polygon is said to be dense

if each of its line is thick and each pair of points at distance two from

each other have at least two common neighbours. By Theorem 1.19,

any such pair is contained in a unique quad of S. All dense near 2n-

gons with parameters (s, t) are classified for s = 2 and n = 1, 2, 3, 4 (see

[26]). A dense near polygon is classical if each quad of it is classical.

Lemma 1.22 ([10], Theorem 2, p.151). Let S = (P, L) be a dense

near polygon. Let x, y ∈ P with d(x, y) = i and x = x0, x1, · · ·, xi = y be

a geodesic between x and y. Then, there exists a geodesic y = y0, y1, · ·
·, yi = x such that d(xj, yj) = i for 0 ≤ j ≤ i.

As an immediate consequence of Lemma 1.22, we have

Corollary 1.23. Let S = (P,L) be a dense near polygon. Let

x, y ∈ P with d(x, y) = i ≥ 2. Then, for every line l ∈ L containing x,

there exists a line m containing y such that l and m are parallel lines

and d(l, m) = i.

Lemma 1.24 ([10], Lemma 19, p.152). Let S = (P, L) be a finite

dense near polygon. Then, the number of lines containing a point of S

is independent of the point.

Lemma 1.25 ([10], Corollary to Theorem 3, p.156). Let S = (P,L)

be a dense near 2n-gon. Then, the induced subgraph of Γ(P ) on Γn(x)

is connected for each x ∈ P .

The following proposition is an improvement of Lemma 1.25.

Proposition 1.26. Let S = (P, L) be a dense near 2n-gon and H

be a geometric hyperplane of S. Set H ′ = P \H. Then, the subgraph

Γ(H ′) of Γ(P ) is connected.

Proof. Let x, y ∈ H ′ and d(x, y) = k in Γ(P ). We use induction

on k. For any geodesic x = x0, x1, · · ·, xk = y from x to y in Γ(P ), we

may assume that the intermediate points xi (1 ≤ i ≤ k − 1) are in H.

For if xi /∈ H for some i (1 ≤ i ≤ k− 1), then we can connect x and xi

(respectively, xi and y) by a path in Γ(H ′) by induction.

Now, fix a geodesic x = x0, x1, · · ·, xk = y from x to y in Γ(P ).

There exists a geodesic y = y0, y1, · · ·, yk = x from y to x in Γ(P )
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such that d(xi, yi) = k, 0 ≤ i ≤ k (Lemma 1.22). Let a be a point

in the line x0x1 different from x0 and x1. Since d(y0, x0) = k and

d(y0, x1) = k− 1, d(y0, a) = k in Γ(P ). Similarly, d(a, y1) = k in Γ(P ).

So there exists a point b different from y0 and y1 in the line y0y1 such

that d(a, b) = k − 1 in Γ(P ). By our assumption, x1, y1 ∈ H. So

a, b ∈ H ′ because, x0 /∈ H, y0 /∈ H and H is a geometric hyperplane of

S. By induction, a and b are connected by a path a = a1, · · ·, am = b

in Γ(H ′). Then, x, a = a1, · · ·, am = b, y is a path from x to y in Γ(H ′).
This completes the proof. ¤

Proposition 1.26 holds for a generalized polygon also, except in a

few cases, see [8].

1.6.3. Near polygons from dual polar spaces. Let S = (P,L)

be a polar space of rank n ≥ 2. Consider the point-line geometry

DS = (P ′, L′) constructed as follows:

• P ′ is the collection of all maximal singular subspaces of S;

• A line of DS is the collection of all maximal singular sub-

spaces of S containing a specific singular subspace of S of

co-dimension 1.

Then, DS is a partial linear space, called the dual polar space of rank

n associated with S. These geometries are characterized in terms of

points and lines by Cameron [13]. Dual polar spaces of rank n are near

2n-gons.

Lemma 1.27 ([13], Theorem 1,p.75). The dual polar spaces of rank

n are the classical dense near 2n-gons.

Let S and DS be as above. For a ∈ P , define a′ = {X ∈ P ′ : a ∈
X}. Let A be a subset of P and set A′ =

⋃
a∈A

a′. Then, the collinearity

graph Γ(P ′) of DS induces a graph structure on A′. An edge in Γ(A′)
is a pair of elements of A′ sharing a subspace of S of co-dimension 1.

Distance between two points of A′ is the same in Γ(A′) as well as in

Γ(P ′). If A′ is a subspace of DS, then A′ is a near polygon which may

not have quads ([9], p.352).

1.7. Slim Dense Near Polygons

Let S = (P,L) be a slim dense near 2n-gon, n ≥ 1. If n = 1,

then S ' L3, a line of size 3. If n = 2, then S is a (2, t)-GQ. In that

case, P is finite and t = 1, 2 or 4. Further, for each value of t there
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exists a unique (2, t)-GQ, up to isomorphism (see [14], Theorem 7.3,

p.99). Thus, S is isomorphic to the classical generalized quadrangles

Q+
4 (2) ' L3 × L3, W4(2) ' Q5(2) and Q−

6 (2), respectively, for t = 1, 2

and 4. In Chapter 5, we study these generalized quadrangles in detail.

If n = 3, then S is called a slim dense near hexagon.

The dual polar spaces DW2n(2) and DH2n(22) of rank n are slim

dense near 2n-gons (Lemma 1.27). In the rest of this section, we de-

scribe three infinite families of slim dense near 2n-gons Hn,Gn and In,

and three ‘exceptional’ slim dense near hexagons E1,E2 and E3. We

refer to [26] for more on slim dense near polygons.

1.7.1. The near polygon Hn, n ≥ 1. Let X be a set of size

2n + 2, n ≥ 1. Let Hn = (P, L) be the partial linear space, where:

• P is the set of all partitions of X into n + 1 sets of size 2;

• Lines are the collections of partitions sharing n − 1 common

2-subsets.

Then, Hn is a dense near 2n-gon with parameters (s, t) = (2, n(n+1)
2

)

(see [9], p.355). Clearly, H1 ' L3 and H2 ' W4(2). Each quad of

Hn, n ≥ 3, is isomorphic to either L3 × L3 or W4(2).

1.7.2. The near polygon Gn, n ≥ 1. Let F2n
4 denote the 2n-

dimensional vector space over F4, let {e0, · · ·, e2n−1} be a basis of it and

(−,−) be the non-singular hermitian form on it defined by (x, y) =

x0y
2
0 + x1y

2
1 + · · · + x2n−1y

2
2n−1, where x =

∑
xiei and y =

∑
yiei.

Let H denote the corresponding hermitian variety in PG(2n − 1, 22).

The support Sα of a point α = F4x of PG(2n − 1, 22) is the set of all

i ∈ {0, 1, · · ·, 2n− 1} for which (x, ei) 6= 0 and its cardinality is called

the weight of α. A point of PG(2n− 1, 22) belongs to H if and only if

its weight is even. A subspace π of H is said to be good if it is generated

by a set Gπ ⊆ H of points whose supports are pair-wise disjoint. If π

is good, then Gπ is uniquely determined. If Gπ contains k2i points of

weight 2i, i ∈ N \ {0}, then π is said to be of type (2k2 , 4k4 , · · ·). Let

Y (respectively, Y ′) denote the set of all good subspaces of dimension

n−1 (respectively, n−2). Then, every element of Y has type (2n). The

type of an element of Y ′ is either (2n−1) or (2n−1, 41). The subspace

(Y, Y ′) of DH2n(22) is a slim dense near 2n-gon [24], denoted by Gn.

It has parameters (s, t) = (2, 3n2−n−2
2

). The number of points of Gn

equals 3n.(2n)!
2n.n!

. Clearly, G1 ' L3 and G2 ' Q−
6 (2). If n ≥ 3, then all

the three types of quads occur in Gn.
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1.7.3. The near polygon In, n ≥ 2. Consider a non-singular

quadric Q(2n, 2), n ≥ 2, in PG(2n, 2) and a hyperplane Π of PG(2n, 2)

intersecting Q(2n, 2) in a non-singular hyperbolic quadric Q+(2n−1, 2).

Let In be the subspace of the orthogonal dual polar space DQ2n+1(2)

whose points are the maximal subspaces of Q(2n, 2) which are not

contained in Q+(2n − 1, 2). Then, In is a dense near 2n-gon ([9],

p.352). It has parameters (s, t) = (2, 2n − 3). Each quad of In, n ≥ 3

is isomorphic to L3 × L3 or to W4(2). For n = 2, I3 ' Q+
4 (2) and for

n = 3, I3 ' H3.

1.7.4. The near hexagon E1. Let F12
3 denote the 12-dimensional

vector space over F3 and let A denote the following matrix over F3:


0 1 0 0 0 0 0 1 1 1 1 1

−1 0 1 0 0 0 0 0 1 −1 −1 1

−1 0 0 1 0 0 0 1 0 1 −1 −1

−1 0 0 0 1 0 0 −1 1 0 1 −1

−1 0 0 0 0 1 0 −1 −1 1 0 1

−1 0 0 0 0 0 1 1 −1 −1 1 0




Let C be the 6-dimensional subspace of F12
3 generated by the rows of

A. The subspace C is called the extended ternary Golay code (see [17],

p.85). A near hexagon E1 can be constructed from C as follows:

• The points of E1 are the 729 cosets of C in F12
3 ;

• The lines are the triples of the form {v+C, v+ei+C, v−ei+C},
v ∈ F12

3 , i ∈ {1, 2, · · ·, 12}, where ei is the element of F12
3 whose

i-th co-ordinate equals 1 and all other co-ordinates equal 0.

Thus, two cosets are collinear whenever they contain vectors that differ

in only one position, and the line containing them is the line of the affine

space F12
3 /C containing them. The near hexagon E1 is dense and has

parameters (s, t) = (2, 11) ([61], p.30). All quads of E1 are isomorphic

to L3 × L3. Up to isomorphism, there is only one slim dense near

hexagon on 729 points [5].

Here is another description of E1 [27]. Consider again the ma-

trix A above. The columns of A define a set K of twelve points in

PG(5, 3). Any set of five different points generate a four dimensional

subspace containing precisely six points of K (see [21]). This gives a

model for the Witt design S(5, 6, 12). Consider the point-line geometry

T ∗
5 (K) obtained as follows: Embed PG(5, 3) as a hyperplane Π∞ in a

6-dimensional projective space Π. The points of T ∗
5 (K) are the points
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of Π \Π∞ and the lines of T ∗
5 (K) are the lines of Π intersecting Π∞ in

a point of K. It is shown in [27] that E1 is isomorphic to T ∗
5 (K).

1.7.5. The near hexagon E2. First, recall that a Steiner system

S(24, 8, 5) is a set X of size 24 and a family B of 759 subsets of X of

size eight each such that any 5-subset of X is in a unique member of B

(see [17], p.276). It is known this is unique up to isomorphism. Taking

B as the set of points and the collection of triples of members of B

which partition X as the set of lines, we get a dense near hexagon with

parameters (s, t) = (2, 14) ([61], p.40). We denote this near hexagon

by E2. All quads of E2 are isomorphic to W4(2). There is only one slim

dense near hexagon on 759 points, up to isomorphism [6].

1.7.6. The near hexagon E3. A non-empty set X of points of a

partial linear space S is called a hyperoval if every line of S intersects

X in zero or two points. The unitary polar space H6(2
2) has two

isomorphism classes of hyperovals [49]. The hyperovals of one class

contain 126 points and the hyperovals of the other class contain 162

points. Let X be a hyperoval of H6(2
2) of size 126. Each maximal

singular subspace of H6(2
2) has zero or six points in common with X.

The near hexagon E3 is a subspace of the dual polar space DH6(2
2)

consisting of the points (that is, maximal singular subspaces of H6(2
2))

intersecting X in six points (see [26], p.159). E3 is dense, has 567 points

and parameters (s, t) = (2, 14). Each quad of E3 is isomorphic to W4(2)

or to Q−
6 (2).



CHAPTER 2

Triangular Sets

Let G be a finite group and I(G) be the involution geometry of G

(see [43], p.111). That is, I(G) is a partial linear space whose point

set is the set I2(G) of all involutions in G and the line set consists of all

triples {a, b, ab}, where a and b are distinct commuting involution in G.

Here we do not assume that G is generated by I2(G). A triangular set

in G is a G-invariant subspace (under conjugation) of I(G). Clearly,

the empty set and I2(G) are triangular sets in G, called the trivial

triangular sets. If T1 and T2 are two triangular sets in G, then T1 ∩ T2

is a triangular set in G. If T is a triangular set in G and H is a subgroup

of G, then T ∩H is a triangular set in H.

In this chapter, we determine the non-trivial triangular sets in

the finite irreducible Coxeter groups W (An), W (Bn), W (Dn), W (In),

W (H3), W (H4), W (F4) and W (E6), except for W (E7) and W (E8).

The following fundamental lemma is useful for us.

Lemma 2.1 ([48], Proposition 4.6.1, p.132). Let G be a finite group

and N be a normal subgroup of G of index 2. For x ∈ N ,

(i) xG = xN if and only if CN(x) 6= CG(x).

(ii) If CN(x) = CG(x), then xG splits into exactly two conjugacy

classes in N , both of equal cardinality.

Proof. (i) If xG = xN , then CN(x) 6= CG(x), otherwise, [G :

CG(x)] = |xG| = |xN | = [N : CN(x)] which is not possible. Con-

versely, let [x, t] = 1 for some t /∈ N . Let y, z ∈ xG and a, b ∈ G be

such that y = axa−1 and x = bzb−1. Then, we can write:

y = axa−1 = (ab)z(ab)−1, and

y = axa−1 = (at)x(at)−1 = (atb)z(atb)−1.

Since N is normal in G and t /∈ N , (ab)−1(atb) = b−1tb /∈ N . So

(ab)N 6= (atb)N . Since N is of index 2 in G, either (ab)N = N or

(atb)N = N . So ab ∈ N or atb ∈ N . In either case, y and z are

conjugate in N .

17
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(ii) This follows from |xN | = [N : CN(x)] = 1
2
[G : N ][N : CN(x)] =

1
2
[G : CG(x)] = 1

2
|xG|. ¤

2.1. Triangular Sets in W (An), n ≥ 1

The group W (An) is isomorphic to Sym(n + 1) where Sym(n) de-

notes the symmetric group defined on a set of n elements. An involution

in Sym(n) is even (respectively, odd) if it is an even (respectively, odd)

permutation. If n = 1 or 2, then W (An) has only one conjugacy class

of involutions, so it has no non-trivial triangular set.

Proposition 2.2. For n ≥ 3, the set T consisting of all even invo-

lutions of W (An) is the only non-trivial triangular set in W (An).

Proof. The product of two distinct commuting even involutions

is an even involution. So T is a subspace of I2(W (An)). Since T is

W (An)-invariant, it is a triangular set in W (An).

Let T ′ be a triangular set in W (An). First, suppose that each

element of T ′ is an even involution. We show that T = T ′. For this it

is enough to show that T ′ contains an element which is a product of

two disjoint transpositions. Let x ∈ T ′. We write x as a product of

pair-wise disjoint transpositions

(2.1.1) x = (a1, b1) · · · (ar, br)

for some r ≥ 2 even. If r = 2, then we are done. Assume that r ≥ 4.

Let y ∈ W (An) be the involution defined as

(2.1.2) y = (a1, a2)(b1, b2)(a3, b3) · · · (ar, br).

Since x and y are conjugate in W (An), y ∈ T ′. Since [x, y] = 1,

xy = (a1, b2)(a2, b1) ∈ T ′.
Now, suppose that T ′ contains an odd involution. We show that

T ′ = I2(W (An)). For this it is enough to show that T ′ contains a

transposition. Let x ∈ T ′ be an odd involution. We write x as in

(2.1.1) with r ≥ 1 odd. If r = 1, then we are done. Assume that

r ≥ 3. Defining y as in (2.1.2), the above argument yields T ⊂ T ′. Let

z ∈ W (An) be the involution z = (a1, b1) · · · (ar−1, br−1). Since z ∈ T

and [x, z] = 1, it follows that xz = (ar, br) ∈ T ′. ¤

We denote by Alt(n) the alternating group defined on n symbols.

Lemma 2.3. For x ∈ I2(Alt(n)), n ≥ 4, xSym(n) = xAlt(n).
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Proof. We write x as in (2.1.1) for some r ≥ 2 even. Let t =

(a1, b1). Since t ∈ CSym(n)(x) and t /∈ CAlt(n)(x), Lemma 2.1(i) com-

pletes the proof. ¤

Proposition 2.4. Alt(n), n ≥ 4, has no non-trivial triangular set.

Proof. Let T be a non-empty triangular set in Alt(n). We show

that T = I2(Alt(n)). By Lemma 2.3, it is enough to show that T

contains an element which is a product of two disjoint transpositions.

For x ∈ T , we write x as in (2.1.1) for some r ≥ 2 even and take y as in

(2.1.2). Then, by Lemma 2.3, x and y are conjugate in Alt(n). Since

[x, y] = 1, xy = (a1, b2)(a2, b1) ∈ T . ¤

2.2. Triangular Sets in W (Bn), n ≥ 2

The group W (Bn) may be considered as the group of signed per-

mutations on n symbols 1, · · ·, n (see [35], p.5). Define the ith sign

change to be the element of W (Bn) sending i to −i and fixing all other

j. The set of such elements generate a group of order 2n isomorphic

to (Z/2Z)n. Then, W (Bn) is the semidirect product of this group by

Sym(n).

For our purpose, we define W (Bn) as follows: Let Sym(2n), n ≥ 2,

be the symmetric group defined on the 2n symbols ±1, · · ·,±n. Then:

W (Bn) = {x ∈ Sym(2n) : x(i) + x(−i) = 0, for all i ∈ {1, · · ·n}}.
Each element x ∈ W (Bn) is of the form

(2.2.1) x =

(
1 · · · n −n · · · −1

ε1y(1) · · · εny(n) −εny(n) · · · −ε1y(1)

)
,

for unique (ε1, · · ·, εn) ∈ Cn
2 and unique y ∈ Sym(n), where C2 =

{1,−1} is the multiplicative cyclic group of order 2 and Sym(n) is the

symmetric group on the symbols 1, · · ·, n.

Let Sym(n) be the symmetric group defined on I1, · · ·, In, where

Ii = {i,−i}. Then, the map

(2.2.2) φ : W (Bn) −→ Sym(n)

defined by φ(x)(Ii) = Ij, where x ∈ W (Bn) and x(Ii) = {x(i), x(−i)} =

{j,−j} = Ij, is a surjective homomorphism with ker(φ) ' Cn
2 . So,

W (Bn) is an extension of Cn
2 by Sym(n). Since Cn

2 has a complement

in W (Bn) isomorphic to Sym(n), W (Bn) is a semi-direct product of

Cn
2 by Sym(n) and consequently, |W (Bn)| = 2nn!.
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Remark 2.5. If Sym(2n) is the symmetric group defined on the

2n symbols 1, · · ·, 2n, then W (Bn) can be defined as

W (Bn) = {x ∈ Sym(2n) : x(i)+x(2n− i+1) = 2n+1, i ∈ {1 · · ·2n}}.
An element in W (Bn) which is a product of two l-cycles in Sym(2n)

of the form (a1, · · ·, al)(−a1, · · ·,−al) is called a positive l-cycle; and

which is a 2l cycle in Sym(2n) of the form (a1, · · ·, al,−a1, · · ·,−al) is

called a negative l-cycle;

Note that the order of a positive l-cycle is l where as that of a neg-

ative l-cycle is 2l. A positive 2-cycle (a, b)(−a,−b) is called a positive

transposition. A negative 1-cycle (a,−a) is called a negative trans-

position. Every positive (respectively, negative) cycle in W (Bn) is

a product of positive (respectively, negative) transpositions. Positive

transpositions of the form ti = (i, i + 1)(−i,−(i + 1)), 1 ≤ i ≤ n − 1,

generate a subgroup of W (Bn) isomorphic to Sym(n) and the negative

transpositions generate a normal subgroup of W (Bn) isomorphic to Cn
2 .

Lemma 2.6 ([48], Proposition 7.2.1, p.201). Every element of

W (Bn) can be uniquely expressed as a product of disjoint positive and

negative cycles.

Corollary 2.7. An element of W (Bn) is an involution if and only

if it is a product of disjoint positive and negative transpositions.

An element x of W (Bn) is said to be of type (px, nx) if it is a product

of px number of positive cycles and nx number of negative cycles. The

integers px and nx are called the positive and the negative parts of x,

respectively.

Lemma 2.8 ([48], Theorem 7.2.5, p.202). Any two involutions in

W (Bn) of the same type are conjugate in W (Bn).

We next determine the triangular sets in W (Bn). Consider the

following subsets of I2(W (Bn)):

T1 = {(1,−1) · · · (n,−n)};
T2 = {x : px = 0, nx is even};
T3 = {x : px = 0};
T4 = {x : px is even , nx is even};
T5 = {x : nx is even};
T6 = {x : px is even};
T7 = {x : both px and nx have the same parity}.
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Proposition 2.9. Ti, 1 ≤ i ≤ 7, is a triangular set in W (Bn).

Proof. Clearly, T1, T2 and T3 are triangular sets in W (Bn). Now,

T5 is a triangular set in W (Bn) because, it is the intersection of W (Bn)

with the non-trivial triangular set (consisting of all even involutions)

in Sym(2n). Since T5 ∩ T6 = T4, we only need to show that T6 and T7

are triangular sets in W (Bn).

It is clear that T6 and T7 are normal subsets of W (Bn). Consider the

map φ defined in (2.2.2). For every involution z ∈ W (Bn), pz is even if

and only if φ(z) is an even involution in Sym(n). Let x, y ∈ T6, x 6= y,

with [x, y] = 1. Since px and py are even, φ(xy) = φ(x)φ(y) is an even

involution in Sym(n). So pxy is even and T6 is a subspace of I(W (Bn)).

A similar argument, together with the fact that x ∈ W (Bn) is an even

involution in Sym(2n) if and only if nx is even, shows that T7 is a

subspace of I(W (Bn)). So, T6 and T7 are triangular sets in W (Bn). ¤
Lemma 2.10. Let T be a non-empty triangular set in W (Bn) such

that py = 0 for all y ∈ T . Then, T = T1, T2 or T3.

Proof. We may assume that T 6= T1. Let x = (a1,−a1) · · ·
(ar,−ar) ∈ T be such that T1 6= {x}. For b /∈ {±a1, · · ·,±ar}, let

y = (a1,−a1)···(ar−1,−ar−1)(b,−b). Since x and y are of the same type,

they are conjugate in W (Bn). Since [x, y] = 1, xy = (ar,−ar)(b,−b) ∈
T . This implies that T2 ⊆ T . If T 6= T2, then nz is odd for some

z ∈ T . Then, it follows that T contains a negative transposition and

so T = T3. ¤
Notation 2.11. For a positive cycle x = (a1, ···, al)(−a1, ···,−al) in

W (Bn), we write x = x1x1, where x1 = (a1, ···, al), x1 = (−a1, ···,−al).

If x ∈ W (Bn) is of type (px, nx), then we write x as

(2.2.3) x = x1x1 · · · xpxxpxx
′
1 · · · x′nx

,

where x′i are negative cycles.

Lemma 2.12. Let T be a triangular set in W (Bn) such that px 6= 0

for some x ∈ T . Then, T2 ⊆ T . Further, if px ≥ 2, then T4 ⊆ T .

Proof. We first prove that T2 ⊆ T . For this it is enough to show

that T contains an element which is a product of two negative trans-

positions. We write x as in (2.2.3), where xixi = (ai, bi)(−ai,−bi). Let

y be the involution in W (Bn) defined as

(2.2.4) y = y1y1x2x2 · · · xpxxpxx
′
1 · · · x′nx

,
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where y1y1 = (a1,−b1)(−a1, b1). Then, x and y are conjugate in W (Bn)

and [x, y] = 1. So y ∈ T , xy = (a1,−a1)(b1,−b1) ∈ T and T2 ⊂ T .

Now, assume that px ≥ 2. Let z be the involution in W (Bn) defined

as

(2.2.5) z = z1z1z2z2x3x3 · · · xpxxpxx
′
1 · · · x′nx

,

where z1z1 = (a1, a2)(−a1,−a2) and z2z2 = (b1, b2)(−b1,−b2). Since x

and z are conjugate in W (Bn), z ∈ T . Now, [x, z] = 1 implies that

xz = (a1, b2)(−a1,−b2)(a2, b1)(−a2,−b1) ∈ T.

This, together with T2 ⊆ T , implies that T4 ⊆ T . ¤
Theorem 2.13. Ti, 1 ≤ i ≤ 7, are the only non-trivial triangular

sets in W (Bn).

Proof. Let T be a non-empty triangular set in W (Bn). By Lemma

2.10, we assume that px 6= 0 for some x ∈ T . Then, T2 ⊆ T by Lemma

2.12.

First, assume that py is even for all y ∈ T . Then, px ≥ 2 and so

T4 ⊆ T by Lemma 2.12. If T 6= T4, then ny is odd for some y ∈ T .

Since T2 ⊆ T , it follows that T contains all negative transpositions and

so, T = T6.

Now, we may assume that px is odd. By Lemmas 2.10 and 2.12,

we may assume (px, nx) = (1, 0) or (1,1) according as nx is even or

not. If (px, nx) = (1, 0), then it follows that T contains all positive

transpositions. So T5 ⊆ T since T2 ⊂ T . If T5 6= T, then T contains an

element whose negative part is odd. Then, it follows that T contains

all negative transpositions also and so T = I2(W (Bn)).

If (px, nx) = (1, 1), then it follows that T contains all involutions

whose positive and negative parts are either even or odd. So T7 ⊆ T .

If T 6= T7, then there exists y ∈ T such that either py odd and ny even

or py even and ny odd. Then, T contains all positive transpositions in

the first case and all negative transpositions in the latter case. In both

cases, it follows that T contains all positive and negative transpositions

and so, T = I2(W (Bn)). ¤

2.3. Triangular Sets in W (Dn), n ≥ 4

For n ≥ 4, the group W (Dn) is defined to be the subgroup of W (Bn)

given by

W (Dn) = {x ∈ W (Bn) : |{i : x(i) < 0, 1 ≤ i ≤ n}| is even},
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or equivalently,

W (Dn) = {x ∈ W (Bn) : x(1) · · · x(n) > 0}.
Each element x ∈ W (Dn) is of the form (2.2.1) with ε1 · · · εn = 1.

Thus, W (Dn) is a normal subgroup of W (Bn) of index 2. Observe that

if x ∈ W (Bn) is an involution, then x ∈ W (Dn) if and only if nx is

even.

Lemma 2.14 ([48], Theorem 8.2.1, p.222). Let x ∈ W (Dn) be an

involution.

(i) If nx 6= 0 or 4px 6= 2n, then xW (Bn) = xW (Dn).

(ii) If nx = 0 and 4px = 2n, then xW (Bn) splits into a union of two

conjugacy classes in W (Dn).

In particular, if n is odd, then xW (Bn) = xW (Dn).

We next determine the triangular sets in W (Dn). Consider the

following subsets of I2(W (Dn)):

P1 = {(1,−1) · · · (n,−n), n even};
P2 = {x : px = 0};
P3 = {x : px is even}.

Proposition 2.15. P1, P2 and P3 are triangular sets in W (Dn).

Proof. This follows because, P1 = T1 ∩W (Dn) if n is even, P2 =

T2 ∩W (Dn) and P3 = T4 ∩W (Dn) for the triangular sets T1, T2 and T4

in W (Bn) as defined in the previous section. ¤

Lemma 2.16. Let T be a non-empty triangular set in W (Dn) such

that py = 0 for every y ∈ T . Then, T = P2 if n is odd, and T = P1 or

P2 if n is even.

Proof. If n is even, we assume that T 6= P1. Then, using Lemma

2.14, the proposition follows from the proof of Lemma 2.10. ¤

Lemma 2.17. Assume that n ≥ 5. Let T be a non-trivial triangular

set in W (Dn) such that px ≥ 1 for some x ∈ T . Then, T = P3.

Proof. It is enough to show that P3 ⊆ T . We write x as in (2.2.3)

with nx even, where xixi = (ai, bi)(−ai,−bi). First, assume that nx 6= 0

or 4px 6= 2n (this is the case if n is odd). So xW (Bn) = xW (Dn), by

Lemma 2.14. Taking y as in (2.2.4) and applying the argument as

in the proof of Lemma 2.12, it follows that P2 ⊂ T . Then, px ≥ 2,
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otherwise T would contain all positive transpositions also and so, T =

I2(W (Dn)), a contradiction to the non-triviality of T . Now, taking z as

in (2.2.5) and applying again the argument as in the proof of Lemma

2.12, we get xz = (a1, b2)(−a1,−b2)(a2, b1)(−a2,−b1) ∈ T . Now, it

follows that T contains all involutions in W (Dn) which are product

of two disjoint positive transpositions. This, together with P2 ⊂ T ,

implies that P3 ⊆ T .

Now, assume that nx = 0 and 4px = 2n. Then n ≥ 6 is even.

Again, we take z as in (2.2.5). Let w = (a2, b1)(−a2,−b1) ∈ W (Dn).

Then, wxw−1 = z. So x and z are conjugate in W (Dn) and z ∈ T .

The above argument yields that T contains all involutions in W (Dn)

which are product of two disjoint positive transpositions. Now, taking

x = (a1, b1)(−a1,−b1)(a2, b2)(−a2,−b2) ∈ T,

y = (a1,−b1)(−a1, b1)(a2, b2)(−a2,−b2) ∈ T,

the above argument again yields P2 ⊂ T and so, P3 ⊆ T . ¤

Now, let n = 4. We denote by C1 and C2 the two conjugacy

classes of involutions in W (D4) containing elements which are product

of two disjoint positive transpositions. Consider the following subsets

of I2(D4):

P4 = C1 ∪ {(1,−1) · · · (4,−4)}};
P5 = C2 ∪ {(1,−1) · · · (4,−4)}.

Let e denote the identity element in W (D4). For i ∈ {4, 5}, it can be

seen that Pi ∪ {e} is an elementary abelian 2-subgroup of W (D4) of

order 8. So P4 and P5 are triangular sets in W (D4).

Lemma 2.18. Let T be a non-trivial triangular set in W (D4).

Then, T is one of sets P1, P2, P3, P4 and P5.

Proof. If T /∈ {P1, P2, P3, P4, P5}, then px = 1 for some x ∈ T .

We write x = (a, b)(−a,−b)x′1x
′
nx

, where x′i are negative transpositions

with nx = 0 or 2. Take y = (a,−b)(−a, b)x′1x
′
nx

. Then, x and y are

conjugate in C(D4) and [x, y] = 1. So y ∈ T and xy = (a,−a)(b,−b) ∈
T . Now, it follows that T contains all involutions which are product of

two negative transpositions. This implies that T contains all positive

transpositions also and so T = I2(W (D4)), a contradiction to the non-

triviality of T . ¤

We now summarize the above results.
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Theorem 2.19. Let T be a non-trivial triangular set in W (Dn).

Then, one of the following hold:

(i) n ≥ 6 is even and T = P1, P2 or P3.

(ii) n ≥ 5 is odd and T = P2 or P3.

(iii) n = 4 and T = P1, P2, P3, P4 or P5.

2.4. Triangular Sets in the Exceptional Groups

The group W (In), n ≥ 3, is the dihedral group of order 2n. It has

the presentation W (In) = 〈x, y : xn = y2 = 1, xy = x−1〉. An element

of W (In) is of the form xiyj for some i ∈ {0, 1, · · ·, n−1} and j ∈ {0, 1}.
Each element of the form xiy is an involution in W (In).

If n is odd, then W (In) has only one conjugacy class of involutions

(see [1], 45.2, p.242). In that case, W (In) has no non-trivial triangular

set. If n = 2m is even, then Z(W (In)) = {1, xm}. In that case, W (In)

has three conjugacy classes A1, A2 and A3 of involutions, where

A1 = {xm};
A2 = {xiy : i is odd};
A3 = {xiy : i is even}.

Proposition 2.20. Let T be a non-trivial triangular set in W (In).

Then, n = 2m is even and one of the following hold:

(i) m is odd and T = A1, A2 or A3. In particular, T has no lines.

(ii) m is even and T = A1, A1 ∪ A2 or A1 ∪ A3.

Proof. Let m be odd. Then, no two distinct elements in A2 (as well

as in A3) commute. For a = xy ∈ A2 and b = xm+1y ∈ A3, [a, b] = 1

and ab = xm. Since T is a non-trivial triangular set, it follows that

T = A1, A2 or A3.

Let m be even. Then, no element in A2 commute with any element

in A3. For a = xy, b = xm+1y in A2, [a, b] = 1 and ab = xm. Again, for

c = y, d = xmy in A3, [c, d] = 1 and cd = xm. Since T is a non-trivial

triangular set in W (In), it follows that T = A1, A1∪A2 or A1∪A3. ¤

There is no convenient means of representing the group elements for

the other exceptional groups. We calculate the triangular sets in the

finite irreducible Coxeter groups W (E6),W (H3),W (H4) and W (F4)

with the help of the computational discrete algebra package GAP [64].

(The other two exceptional groups of type E7 and E8 are very large

in size. GAP does not support the calculation in these two cases as
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In(n ≥ 3) : t tn

u v

H3 : t t t5

u v w

H4 : t t t t5

u v w x

F4 : t t t t4

u v w x

E6 : t t t t t

t

u v w

x

y z

E7 : t t t t t t

t

u v w

x

y z s

E8 : t t t t t t t

t

u v w

x

y z s t

Figure 1

it limits program’s workspace to 128 MB of memory. So we have not

determined the triangular sets in these two groups.) In each of these

groups there exists a unique element of maximum length, we denote it

by α. This element α is an involution contained in the center of the

group, except in the case W (E6).

The Coxeter graphs of these groups are given in Figure 1. In Table

1, we give a representative for each conjugacy class of involutions in

terms of the generators of the groups as given in their Coxeter graphs.

We denote the conjugacy classes of involutions by C1, C2, · · · and give

the size of each of them. In the last column of the table we make a list

of the non-trivial triangular sets as a union of the conjugacy classes.

In order to determine the triangular sets with the help of GAP in

each of these exceptional groups we use the following steps:
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Table 1. Triangular sets

group conjugacy representative size non-trivial

class triangular sets

C1 α 1

W (H3) C2 u 15 C1, C3

C3 uw 15

C1 α 1

W (H4) C2 u 60 C1, C1 ∪ C4

C3 αu 60

C4 uw 450

C1 α 1

C2 u 12 C1, C1 ∪ C6,

C3 wxw 12 C1 ∪ C6 ∪ C7,

W (F4) C4 αwxw 12 C1 ∪ C3 ∪ C4 ∪ C6,

C5 αu 12 C1 ∪ C2 ∪ C5 ∪ C6

C6 uwxvwvu(wv)2wxw 18

C7 uw 72

C1 u 36

W (E6) C2 α 45 C2 ∪ C3

C3 ux 270

C4 uxz 540

Step 1. Construct the group, say G, as a finitely presented group in

terms of the generators and relations obtained from its Coxeter graph.

Step 2. Get a set ‘reps’ of representatives consisting of exactly

one element from each conjugacy class of involutions in G using the

command:

> reps := Filtered(List(ConjugacyClasses(G),Representative),

> i− >Order(i) = 2);

Step 3. For each representative r in ‘reps’, get the corresponding

conjugacy class in G using the command

> ConjugacyClass(G, r);

Step 4. Consider a set C which is a union of conjugacy classes of

involutions in G and check whether C is a triangular set or not using

the following command:

> ForAll(Combinations(C,2), p− > p[1] ∗ p[2] in C or

> p[1] ∗ p[2] <> p[2] ∗ p[1]);
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If it returns ‘true’, then C is a triangular set otherwise not. We perform

this test for all possible cases of C, that is, for all possible unions of

conjuagcy classes of involutions in G.



CHAPTER 3

Representations of Partial Linear Spaces

The notion of a representation of a finite partial linear space of

prime order was introduced by Ivanov [37] in his investigations of Pe-

tersen and Tilde geometries (motivated in large measure by questions

about the finite simple groups Monster and Baby Monster). In this

chapter, we give a sufficient condition (Theorem 3.23) on the partial lin-

ear space and on the non-abelian representation of it to ensure that the

representation group is a finite p-group. This result is crucial when we

study non-abelian representations of finite non-degenerate polar spaces

in Chapter 4 and that of slim dense near hexagons in Chapter 7. Con-

tents of this chapter (except the last section) appear in ([55], Sections

1 and 2).

3.1. Basic Definitions

Throughout this chapter, p denotes a fixed prime number.

A finite p-group is elementary abelian if it is abelian and each of

its non-trivial elements is of order p. An elementary abelian p-group G

of order pk can be considered as a k-dimensional vector space over the

field Fp with p elements and hence is determined by its order. Further,

the automorphism group of G is isomorphic to GLk(p), the group of

all k × k invertible matrices with entries from Fp.

3.1.1. Hall-commutator formula. For elements x, y in a group,

we write [x, y] = x−1y−1xy and xy = y−1xy. We repeatedly use the

following Hall’s commutator formula ([32], Theorem 2.1, p.18), mostly

without mention.

Lemma 3.1. For elements x, y, z in a group,

(i) [xy, z] = [x, z]y[y, z];

(ii) [x, yz] = [x, z][x, y]z.

29
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3.1.2. Extraspecial p-groups. A finite p-group G is extraspecial

if the Frattini subgroup Φ(G), the commutator subgroup G′ = [G,G]

and the center Z(G) of G coincide and have order p.

Let D8 and Q8, respectively, denote the dihedral and quaternion

groups of order 8. For an odd prime p, we set

E = 〈x, y, z : xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z〉;
F = 〈x, y : xp2

= yp = 1, xy = x1+p〉.
A non-abelian p-group of order p3 is extraspecial and is isomorphic to

one of the groups D8, Q8, E or F ([32], Theorem 5.1, p.203).

Let G be an extraspecial p-group. Then, the quotient group G/Z(G)

is elementary abelian. Set Z = Z(G) = 〈z〉 and V = G/Z. We con-

sider V as a vector space over Fp. The map f : V × V −→ Fp defined

by

(3.1.1) f(xZ, yZ) = i,

where [x, y] = zi (0 ≤ i ≤ p−1), is a non-degenerate symplectic bilinear

form on V ([22], Theorem 20.4, p.78). Write V as an orthogonal direct

sum of m hyperbolic planes Ki, 1 ≤ i ≤ m, in V . Let Hi be the inverse

image of Ki in G under the natural surjective homomorphism from G

to G/Z = V . Then, Hi is generated by two elements xi and yi such

that [xi, yi] = z. Hence, Hi is an extraspecial p-group of order p3 and

[Hi, Hj] = 1. This implies that G is a central product of its subgroups

H1, · · ·, Hm and G is of order p1+2r. These facts are used to prove

the following classification of extraspecial p-groups, see ([22], Theorem

20.5, p.79).

Lemma 3.2. Let G be an extraspecial p-group of order p1+2m.

Then, exactly one of the following four cases arises:

(i) p 6= 2, exponent of G is p, and G is a central product of m

copies of E;

(ii) p 6= 2, exponent of G is p2, and G is a central product of m−1

copies of E and a copy of F ;

(iii) p = 2, exponent of G is 4, and G is a central product of m

copies of D8;

(iv) p = 2, exponent of G is 4, and G is a central product of m− 1

copies of D8 and a copy of Q8.

In particular, if p is odd, then an extraspecial p-group is uniquely de-

termined by its order and exponent. In cases (i), (ii) and (iii), G
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possesses a maximal abelian subgroup of order pm+1 and exponent p;

and in case (iv), each maximal abelian subgroup of G is isomorphic to

Cm−1
2 × C4.

We denote by p1+2m
+ (respectively, p1+2m

− ) an extraspecial p-group of

order p1+2m if (i) and (iii) (respectively, (ii) and (iv)) hold in Lemma

3.2. Note that p1+2
+ is isomorphic to the group of 3×3 upper triangular

matrices with entries from Fp and 1 on the main diagonal. For more

on extraspecial p-groups, see ([32], Chapter 5, Section 5, p.203) and

([33], Section 3, p.127 and Appendix 1, p.141).

Notation 3.3. For a group G, G∗ = G\{1} and Ip(G) denotes the

set of all elements of order p in G.

3.1.3. Embeddings and Representations. Let S = (P, L) be

a connected partial linear space of order p.

Definition 3.4. An embedding of S is a mapping ρ from P into

the point set of a projective space P(V ) associated with a vector space

V over Fp such that the following hold:

(i) V is generated by Im(ρ);

(ii) For each line {x0, x1, · · ·, xp} of S, the set {ρ(x0), ρ(x1), · ·
·, ρ(xp)} is a line of P(V ).

This is well-defined for a prime power also. In the definition of

an embedding, we did not require ρ to be one-one. In [53], Ronan

studied the construction of embeddings using presheaves and geometric

hyperplanes. When p = 2, he proved that if S admits at least one

embedding, then there exists an embedding ρ0 of S such that any other

embedding of S is a composition of ρ0 and a linear mapping. Such

an embedding ρ0 is unique up to an isomorphism of the associated

projective spaces and is called the universal embedding of S. The F2-

vector space V (S) generated by the image of ρ0 is called the universal

embedding module of S. As an abstract group with additive group

operation, V (S) has the presentation:

V (S) = 〈vx : x ∈ P ; 2vx = 0; vx + vy = vy + vx for x, y ∈ P ;

vx + vy + vx∗y = 0 if x ∼ y〉
and ρ0 is defined by ρ0(x) = 〈vx〉 for x ∈ P . We refer to ([46], Theorem

1, p.266) for a sufficient condition on the point-line geometry for the

existence of its universal embeddings in general case.
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Definition 3.5 (Ivanov [37], p.305). A representation of S is a

mapping ψ from the point set P of S into the set of subgroups of order

p of a group R such that the following hold:

(i) R is generated by the subgroups ψ(x), x ∈ P ;

(ii) For each line l ∈ L, the subgroups ψ(x), x ∈ l, are pairwise

distinct and generate an elementary abelian p-subgroup of R

of order p2.

We write (R,ψ) to mean that ψ is a representation of S with repre-

sentation group R and say that (R,ψ) is a representation of S. For each

x ∈ P , we fix a generator rx of ψ(x). We denote by Rψ the union of the

subgroups 〈rx〉 for x ∈ P and by R∗
ψ the set Rψ \ {1}. Note that R∗

ψ is

a subset of Ip(R). The representation (R, ψ) is faithful if ψ is injective.

A representation (R,ψ) of S is abelian or non-abelian according as R is

abelian or not. (Note that, in [37], ‘non-abelian representation’ means

‘the representation group is not necessarily abelian’.)

Lemma 3.6 ([51], 4.2.4, p.68). Let S = (P, L) be a finite thick

(p, t)-GQ. Let (R, ψ) be a faithful abelian representation of S and Hx =

〈ry : y ∈ x⊥〉 for x ∈ P . Then, Hx is a subgroup of index 2 in R for

each x ∈ P .

A representation (R1, ψ1) of S is a cover of a representation (R2, ψ2)

of S if there exist an automorphism β of S and a group homomorphism

ϕ : R1 −→ R2 such that ψ2(β(x)) = ϕ(ψ1(x)) for every x ∈ P . Fur-

ther, if ϕ is an isomorphism, then the two representations (R1, ψ1) and

(R2, ψ2) are said to be equivalent . Given a representation (R, ψ) of S,

there is a universal representation (RU , ψU) covering (R,ψ) such that

if (R1, ψ1) is a representation of S covering (R,ψ), then (RU , ψU) is a

cover of (R1, ψ1) (see [37], p.306).

In general, the universal representation (RU , ψU) depends on the

particular choice of (R, ψ). However, when p = 2, there is a unique uni-

versal representation (R(S), ψS) which is the cover of every other rep-

resentation of S (see [37], p.306). The universal representation group

R(S) of S has the presentation:

R(S) = 〈rx : x ∈ P, r2
x = 1, rxryrz = 1 if {x, y, z} ∈ L〉.

The only difference in the definition of V (S) and that of R(S) is that

in the latter the generating elements rx need not commute. In fact,

Lemma 3.7 ([38], p.525). V (S) = R(S)/[R(S), R(S)].
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Lemma 3.8 ([37], Lemma 3.5, p.310). Let S = (P, L) be a con-

nected slim partial linear space and (R, ψ) be a representation of S.

Assume that, for every point x ∈ P , there are two subsets A(x) and

B(x) of P satisfying the following:

(i) if y ∈ A(x), then [rx, ry] = 1;

(ii) the subgraph Γ(B(x)) of Γ(P ), in which two points of B(x)

are adjacent if they are collinear and the line containing them

contains a point of A(x), is connected;

(iii) if z ∈ B(x), then x ∈ B(z); and

(iv) the graph with vertex set P , in which x is adjacent to the points

in B(x), is connected.

Then, the subgroup 〈[rx, rz] : x ∈ P, z ∈ B(x)〉 of R is of order at most

2 and contained in Z(R). In particular, if P = A(x) ∪ B(x) for every

x ∈ P , then R′ is of order at most 2.

The following is a sufficient condition for the universal representa-

tion group to be infinite.

Lemma 3.9 ([37], Lemma 3.6, p.310). Let S = (P, L) be a con-

nected slim partial linear space. If S contains a geometric hyperplane

H such that the induced subgraph Γ(P \ H) of Γ(P ) has at least two

connected components, then the universal representation group of S is

infinite.

3.2. Examples

We now indicate various possibilities for a representation of a partial

linear space of prime order and the corresponding representation group.

Embeddings of partial linear spaces of order p in projective spaces

over Fp are examples of abelian representations. The representation

group is the underlying vector space considered as an abelian group.

Example 3.10. Let Ω be a set of size 24 on which the Mathieu

group M24 acts 5-fold transitively preserving a family of 8-element sub-

sets called octads which form a Steiner system S of type S(5, 8, 24). For

a, b ∈ Ω, the set-wise stabilizer of {a, b} in Aut(S) ' M24 is isomorphic

to Aut(M22). Consider the point-line system of the rank 3 Petersen type

geometry G(M22) and the rank 3 tilde type geometry G(M24) which are

constructed as follows.

The points of G(M22) are all the 2-element subsets of Ω0 = Ω \
{a, b}. Three points {c, d}, {e, f} and {g, h} form a line whenever
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{a, b, c, d, , e, f, g, h} is an octad. The points of G(M24) are all the sex-

tets of S. Two sextets S = {S1, · · ·, S6} and T = {T1, · · ·, T6} are

collinear whenever |Si∩Tj| is even for all 1 ≤ i, j ≤ 6. If O is an octad

and X, Y are two 4-subsets in O such that |X∩Y | = 2, then the sextets

defined by X and Y are collinear; moreover any pair of collinear sex-

tets appears in this way. If S and T are two distinct collinear sextets

then the third sextet on the line containing S and T is defined by any

4-set which is a symmetric difference of Si and Tj, where Si ∩ Tj is

non-empty.

The universal representation groups of these two geometries are

abelian ([38], Lemmas 3.1 and 3.2, p.528, 529). In particular, they

don’t admit non-abelian representations.

Example 3.10 shows that not all partial linear spaces admit non-

abelian representations. In Chapter 4, we prove that this is the case for

every finite non-degenerate polar space which is not of symplectic type

of odd prime order. The following example shows that representation

of a partial linear space need not be faithful.

Example 3.11. Let S = (P, L) be a (2, 1)-GQ and let P1, P2, P3 be

three triads of S partitioning P . Let R = {1, r1, r2, r3} be the Klein four

group. Define a map ψ from P to the set of subgroups of R of order

two by ψ(x) = 〈ri〉 if x ∈ Pi. Then, (R, ψ) is an abelian representation

of S which is not faithful.

Example 3.12. Let G be a finite group generated by its elements

of order p. Consider the partial linear space ∆p = (P, L), whose points

set P is the collection of all subgroups of G of order p. A line of S

is the set of p + 1 subgroups each of order p in an elementary abelian

p-subgroup of G of order p2. Then, (G, Id), where Id is the identity

map, is a representation of ∆p and G is a representation group of

∆p. When p = 2, the universal representation group of ∆2(Alt(7))

is 3.Alt(7) ([37], Lemma 3.7, p.311) and that of ∆2(M22) is 3.M22

([38], Proposition 4.4, p.531). The universal representation group of

∆2(U4(3)) is 32.U4(3) [52].

Example 3.13. Let G be a finite simple group of Lie type defined

over Fp. Let G = (P, L) be the root group geometry of G. That is,

the point set P is the collection of all (long) root subgroups of G. Two

distinct root subgroups x, y ∈ P are collinear if they generate an ele-

mentary abelian subgroup of G of order p2 and each subgroup of order
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p in it is a member of P . Then, the line xy is the set of p+1 subgroups

of order p in 〈x, y〉. The identity map defines a representation of G in

G and so G is a representation group of G. Note that if G is of type

E6, E7 or E8, then G is a parapolar space ([16], p.75); if it is of type

G2 or 3D4, then G is a generalized hexagon with parameters (p, p) and

(p, p3) respectively (see [18], p.322 and 328 for p odd; and [19], Lemma

2.2, p.2 for p = 2); if it is type F4 or 2E6, then G is a metasymplectic

space ([18], Section 4); and if it is of type 2F4, then G is a generalized

octagon with parameters (2,8) (see [57]).

The following example shows that the universal representation group

of a finite partial linear space could be infinite.

Example 3.14. Let S = (P, L) be a generalized hexagon with pa-

rameters (2, 2). Then, S is isomorphic to either H(2) (the one admit-

ting an embedding in O7(2)) or its dual H(2)∗ (see [63], Theorem 4,

p.402). For each x ∈ P , H(x) = {y ∈ P : d(x, y) < 3} is a geometric

hyperplane of S. The subgraph of Γ(P ) induced on the complement of

H(x) in P is connected if S ' H(2) and has two connected compo-

nents if S ' H(2)∗ (see [31], Section 3). By Lemma 3.9, the universal

representation group of H(2)∗ is infinite.

We refer to [37] (also see [38]) for more examples of non-abelian

representations of partial linear spaces of order p. The representation

theory of a geometry G = (P, L) in a group R tries to understand

the structure of R in terms of the commutative relations on a set of

generators of R. Questions regarding the commutativity of R, finiteness

of R, structure of R etc. in terms of the relations defined by G seems to

be of interest for further investigations. Theorem 3.23 is an example of

the kind of results we have in mind. It is interesting to observe that in

all the examples of non-abelian representations of various geometries,

the representation map is always injective on the set of points.

3.3. A Sufficient Condition

In this section, we give a sufficient condition on the partial linear

space and on the non-abelian representation of it (Theorem 3.23) in

order that the non-abelian representation group be a finite p-group.

Let S = (P, L) be a connected partial linear space. We assume

that with each x ∈ P is associated a geometric hyperplane H(x) of S

containing x such that the following conditions on S hold:
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(C1) If y ∈ H(x), then x ∈ H(y).

(C2) The subgraph Γ(H ′(x)) of Γ(P ) induced on the comple-

ment H ′(x) of H(x) in P is connected.

(C3) If y ∈ H ′(x) then there exist lines l1 and l2 with x ∈ l1
and y ∈ l2 such that for each w ∈ l1, H(w) intersects l2
at exactly one point. Further, this correspondence is a

bijection from l1 onto l2.

(C4) The graph Σ(P ) with vertex set P , in which two points x

and y are adjacent if y ∈ H ′(x), is connected.

We give two examples of partial linear spaces in which the above

four conditions hold.

Example 3.15. Let S = (P, L) be a polar space of rank r ≥ 2.

Then, S is connected. For each x ∈ P , we associate the geometric

hyperplane H(x) = x⊥ of S. Then, (C1), · · ·, (C4) hold.

Example 3.16. Let S = (P, L) be a dense near 2n-gon, n ≥ 2,

with thick lines. By the definition of a near polygon, S is connected.

For each x ∈ P , we associate the special geometric hyperplane H(x) =

Γ≤n−1(x) of S. Clearly (C1) holds. By Lemma 1.25, (C2) holds. Now,

by Corollary 1.23, if d(x, y) = n, x, y ∈ P and l1 is any line containing

x, then there exists a line l2 containing y such that (C3) holds. This

also implies that if u ∼ v, u, v ∈ P , then there exists w ∈ P such

that d(u,w) = d(v, w) = n. So u,w, v is a path in Σ(P ). Then,

connectedness of Σ(P ) follows from that of Γ(P ). Thus C(4) holds.

Remark 3.17. If S = (P, L) is a generalized 2n-gon and H(x), x ∈
P , is as in Example 3.16, then (C2) need not hold (see Example 3.14).

For the rest of this section, we assume that each line of S contains

p + 1 points.

Let (R, ψ) be a representation of S. For x, y ∈ P , we define uxy =

[rx, ry]. We assume that:

uxy = 1 whenever x ∈ P and y ∈ H(x).

Proposition 3.18. Assume that (C1) and (C2) hold in S. Then,

the following hold:

(i) If uvw = 1 for v, w ∈ P with v ∈ H ′(w), then rw ∈ Z(R).

(ii) If a ∈ P and ra ∈ Z(R), then rc ∈ Z(R) for every c ∼ a.
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Proof. (i) Let y ∈ H ′(w), y ∼ v and vy ∩ H(w) = {x}. Then,

uwy = 1 because x /∈ {v, y} and uwx = uvw = 1. Now, connectedness of

Γ(H ′(w)) implies that uwz = 1 for every z ∈ H ′(w). Since uwz = 1 for

z ∈ H(w) also, rw ∈ Z(R).

(ii) By definition, H(a) ( P . Let b ∈ H ′(a). By (C1), a ∈ H ′(b).
By (i), rb ∈ Z(R) because uab = 1. Now, ac∩H(b) is a singleton. Since

each line contains at least 3 points, there exists a point z in ac∩H ′(b)
different from a. Now, b ∈ H ′(z) by (C1) and ubz = 1. So, rz ∈ Z(R)

by (i) again. So the subgroup generated by ψ(ac) is contained in Z(R)

and rc ∈ Z(R). ¤

Corollary 3.19. Assume that (C1) and (C2) hold in S. If R is

non-abelian, then the following hold:

(i) uxy 6= 1 whenever x, y ∈ P and y ∈ H ′(x).

(ii) Rψ ∩ Z(R) = {1}.
(iii) If x ∼ y, then y ∈ H(x).

(iv) If H(x) 6= H(y) for each pair of non-collinear points x and y,

then ψ is faithful.

Proof. (i) follows from Proposition 3.18 and the connectedness of

Γ(P ). (ii) and (iii) follow from (i). We now prove (iv). Suppose

that 〈rx〉 = 〈ry〉 for distinct x, y in P. Then, x � y by Definition

3.5(ii). By (i), u ∈ H(x) if and only if u ∈ H(y). So H(x) = H(y), a

contradiction. ¤

Proposition 3.20. Assume that (C3) holds in S. Then, for x, y ∈
P , [uxy, rx] = [uxy, ry] = 1. If uxy 6= 1, then uxy is of order p and

〈rx, ry〉 = p1+2
+ .

Proof. Let x ∈ P , y ∈ H ′(x) and l1, l2 be lines as in (C3). Let

x, a, u be three pairwise distinct points in l1 and y, b, v be points in

l2 such that y ∈ H(a), b ∈ H(x) and v ∈ H(u). By (C3), y, b, v

are pairwise distinct. Write rx = ri
ar

j
u, ry = rk

vr
m
b for some i, j, k,m,

(1 ≤ i, j, k, m ≤ p− 1). Now,

uxy = [ri
ar

j
u, ry] = [rj

u, ry] = [rj
u, r

k
vr

m
b ] = [rj

u, r
m
b ] = [rxr

−i
a , rm

b ] = [r−i
a , rm

b ].

Since [r−i
a , rm

b ] = [rm
b , ri

a]
r−i
a ,

uxy = [rm
b , ri

a]
r−i
a = [ryr

−k
v , ri

a]
r−i
a = [r−k

v , ri
a]

r−i
a = [r−k

v , r−j
u rx]

r−i
a

= [r−k
v , rx]

r−i
a = [rm

b r−1
y , rx]

r−i
a = [r−1

y , rx]
r−i
a = [r−1

y , rx].
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So uxyr
−1
y = r−1

x r−1
y rx = r−1

y [r−1
y , rx] = r−1

y uxy. Thus [uxy, ry] = 1.

Similarly, uyx = [r−1
x , ry]. This, together with [ry, r

−1
x ] = [r−1

x , ry]
−1 =

u−1
yx = uxy implies that [uxy, rx] = 1. Now, [ri

x, ry] = [rx, ry]
i = ui

xy for

all i ≥ 0. So up
xy = 1 and 〈rx, ry〉 = p1+2

+ . ¤

Proposition 3.21. Assume that (C1), · · ·, (C4) hold in S. Then,

R′ ≤ Z(R) and |R′| ≤ p.

Proof. For x, y ∈ P , let Uxy = 〈uxy〉. Let a, b be adjacent in

Γ(H ′(x)) and ab ∩H(x) = {c}. Now rb = ri
ar

j
c for some i, j, 1 ≤ i, j ≤

p− 1. Since [rx, rc] = 1, we have

uxb = [rx, rb] = [rx, r
i
ar

j
c ] = [rx, r

i
a] = [rx, ra]

i = ui
xa.

So Uxb = Uxa. This, together with (C2), implies that Uxy is independent

of the choice of y in H ′(x). Since uxy = u−1
yx , we have Uxy = Uyx. So,

if x, y ∈ P with y ∈ H ′(x), then Uxy = Uyx. Now, by (C4), Uxy

is independent of the edge {x, y} in Σ(P ). We denote this common

subgroup by U .

We now show that U ≤ Z(R). Let x ∈ P and y ∈ H ′(x). We

show that [uxy, rz] = 1 for each z ∈ P . We may assume that z ∈
H ′(x) ∪ H ′(y). In this case it is clear from Proposition 3.20 because

Uxy = Uxz if z ∈ H ′(x). Similarly, if z ∈ H ′(y).

Now, since R = 〈rx : x ∈ P 〉, uxy ∈ Z(R) and uxy = 1 if y ∈ H(x),

it follows that R′ = 〈uxy : x ∈ P, y ∈ H ′(x)〉 = U and is of order at

most p (Proposition 3.20). ¤

Proposition 3.22. Assume that (C1), · · ··, (C4) hold in S. If R

is non-abelian, then exponent of R is p or 4 according as p is odd or

p = 2. In particular, if P is finite, then R is finite and Φ(R) = R′.

Proof. Let r = r1r2 · · · rn ∈ R, ri ∈ Rψ. We use induction on

n. Let r = hrn, where h = r1r2 · · · rn−1. Since R′ ⊆ Z(R), ri
nh =

hri
n[ri

n, h] = hri
n[rn, h]i. So ri+1 = hi+1ri+1

n [rn, h]1+2+···+i for all i ≥ 0.

Now, the result follows because by induction hp = 1 if p is odd and

h4 = 1 if p = 2. Note that if p = 2, exponent of R can not be 2 as R

is non-abelian.

Now, if P is finite then R/R′ and so R are finite and Φ(R) = R′〈rp :

r ∈ R〉 = R′. For p = 2, the last equality holds because r2 ∈ R′ for

every r ∈ R. ¤

We now summarize the above results of this section.
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Theorem 3.23. Let S = (P, L) be a connected partial linear space

of prime order p. Suppose that for each x ∈ P , there is associated a

geometric hyperplane H(x) containing x such that (C1), · · ·, (C4) hold.

Let (R,ψ) be a non-abelian representation of S such that [ψ(x), ψ(y)] =

1 for all x, y ∈ P with y ∈ H ′(x). Then, the following hold:

(i) [ψ(x), ψ(y)] 6= 1 and 〈ψ(x), ψ(y)〉 = p1+2
+ for x, y ∈ P with

y ∈ H ′(x);

(ii) |R′| = p, R′ ⊆ Z(R), R is a p-group, and exponent of R is p

or 4 according as p is odd or p = 2;

(iii) Rψ ∩ Z(R) = {1};
(iv) ψ is faithful if H(x) 6= H(y) whenever x � y;

(v) R is finite with R′ = Φ(R) if P is finite.

Remark 3.24. For p = 2, Theorem 3.23(ii) is a consequence of

Lemma 3.8 without the assumption of (C3). Our proof of Proposition

3.21 is similar to that of ([38], Lemma 2.2, p.526).

Corollary 3.25. Let S and (R,ψ) be as in Theorem 3.23. If P is

finite, then (R,ψ) is the cover of a representation (R1, ψ1) of S where

R1 is extraspecial, or p = 2 and Z(R1) is cyclic of order 4.

Proof. If Z(R) is elementary abelian (this is the case if p is odd),

write Z(R) = R′T , R′ ∩ T = {1} for some subgroup T of Z(R). Let

R1 = R/T. Then, R1 is extraspecial. Define ψ1 from P to R1 by

ψ1(x) = 〈rxT 〉, x ∈ P. Since rx /∈ Z(R), 〈rxT 〉 is a subgroup of R1 of

order p for each x ∈ P . Then, (R1, ψ1) is a non-abelian representation

of S and (R, ψ) is a cover of (R1, ψ1).

If Z(R) is not elementary abelian, then p = 2. Write Z(R) = 〈a〉K,

〈a〉 ∩K = {1} where K ≤ Z(R) and a is of order 4. Since r2 ∈ R′ for

every r ∈ R, it follows that R′ = 〈a2〉. Now taking R1 = R/K, the

above argument completes the proof. ¤

3.4. Maximal Elementary Abelian Subgroups of Sym(I)

Every representation of a projective space (as a point-line geom-

etry) is necessarily faithful, by condition (ii) of Definition 3.5. The

representation group of a finite projective space of dimension m over

Fp, is an elementary abelian p-group of order pm+1. Thus, the study of

representation of projective spaces of dimension n over Fp in a group

G is the same thing as finding elementary abelian p-subgroups of G of

order pn+1. In this section, we study in detail the maximal elementary
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abelian p-subgroups, up to conjugacy, of the symmetric group Sym(I)

defined on a finite set I.

3.4.1. Conjugacy classes. An element of Sym(I) is regular if it

is the identity element or if it has no fixed points and is the product of

disjoint cycles of the same length. A subgroup H of Sym(I) is regular if

the action of H on I is ‘sharply transitive’ - that is, H acts transitively

on I and no non-trivial element of H fixes any element of I. If M is an

elementary abelian p-subgroup of Sym(I), then the non-trivial cycles

in the cyclic decomposition of each element of M∗ are of length p. So

if M is regular also, then every element of M is regular. The converse

need not be true.

Notation 3.26. For a bijective map α : I −→ J, we denote by

α∗ the isomorphism from Sym(I) to Sym(J) induced by α - that is,

α∗ : Sym(I) −→ Sym(J) is the isomorphism defined by α∗(x)(j) =

αxα−1(j) for x ∈ Sym(I) and j ∈ J .

Proposition 3.27. Let M be an elementary abelian p-subgroup of

Sym(I) acting transitively on I. Then, the following hold:

(a) M is regular.

(b) For distinct i, j ∈ I, there is a unique x ∈ M∗ with x(i) = j. In

particular, M is maximal subject to being elementary abelian.

(c) |I| = |M |.
(d) The permutation group M acting on I with the natural action

is isomorphic to the permutation group M acting on itself by

left translation.

Proof. Since M acts transitively on I, for every x ∈ M∗, x fixes

no element of I, otherwise, the set Kx = {j ∈ I : x(j) = j} would be

a proper M -invariant subset of I. This proves (a). If x(i) = j = y(i)

for some x, y ∈ M∗, then y−1x(i) = i. So y = x by (a). This proves

(b). For i ∈ I, the set I(i) = {x(i) : x ∈ M} is M -invariant and

|I(i)| = |M | by (b). Now, the transitive action of M on I implies

that I(i) = I and so |I| = |M |. This proves (c). We now prove (d).

Let f : M −→ Sym(I) and h : M −→ Sym(M) be the embeddings

where f is the inclusion map and h is defined by hx(y) = xy, x, y ∈ M.

Fix i ∈ I. Define g : M −→ I by g(x) = x(i), x ∈ M. Then, g

is a bijection. Let j ∈ I. There exists y ∈ M such that y(i) = j.

Now g∗(hx)(j) = ghxg
−1(y(i)) = ghx(y) = g(xy) = xy(i) = x(j). So

g∗(hx) = x = f(x) for every x ∈ M . ¤
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Theorem 3.28. Let M be a maximal elementary abelian p-subgroup

of Sym(I). Then, M is maximal subject to being abelian if and only if

at most one element of I is fixed by every element of M .

Proof. We need to prove the ‘if’ part. Let x be an element of

Sym(I) centralizing M . We prove that x ∈ M . Let I = I1 ∪ · · · ∪ Ir

be the orbit decomposition of I under M and Mi be the restriction of

M to Ii. We may assume that |Ii| ≥ p for each i. Since M is maximal

elementary abelian, Mi is a subgroup of M and the action of Mi on Ii

is transitive.

We first show that each Ii is x-invariant. Suppose that x(i) = j

for some i ∈ It and j ∈ Is with t 6= s. Let m ∈ M∗
t and m(i) = l.

Then, l ∈ It and is different from i because Mt acts regularly on It by

Proposition 3.27(a). Now, m(j) = j since Mt acts trivially on Is. So

x(l) = xm(i) = mx(i) = m(j) = j, a contradiction to that i 6= l and

x(i) = j. Thus, each Ii is x-invariant.

Now, we show that x is of order p. Then, the maximality of M

being elementary abelian would complete the proof. Let (i1i2 · ··) be a

nontrivial cycle in the cyclic decomposition of x. Then, i1, i2 ∈ It for

some t, since the M -orbits are x-invariant. There exists m ∈ M∗
t such

that m(i1) = i2 because Mt acts transitively on It. Let c = (i1i2i
′
3 · · · i′p)

be the cycle in the cyclic decomposition of m containing i1 and i2.

Now, c′ = (x(i1)x(i2)x(i′3) · · · x(i′p)) = (i2x(i2)x(i′3) · · · x(i′p)) is a non-

trivial cycle in the cyclic decomposition of xmx−1 = m. Since i2 is

common to both c and c′, we must have c = c′ and x(i2) = i′3, x(i′3) =

i′4, · · ·, x(i′p−1) = i′p, x(i′p) = i1. So, (i1i2i
′
3 · · · i′p) is the cycle in the cyclic

decomposition of x containing i1 and i2 which has length p. Thus, x

has order p. ¤
The following is a partial converse to Proposition 3.27.

Proposition 3.29. Let M be a maximal elementary abelian p-

subgroup of Sym(I) such that |M | = |I|. Then, M acts transitively

on I except when |I| = 4.

Proof. Let I1, ···, Ir be the M -orbits and Mi be the restriction of M

to Ii. By maximality of M , Mi is a subgroup of M acting transitively

on Ii, Mi ∩Mj = {1} for i 6= j and M = M1 · · ·Mr. By Proposition

3.27(c), |Mi| = |Ii| = pki for some integer ki ≥ 0. If some ki = 0, then

the subset J of I consisting of elements which are left fixed by each

element of M is non-empty and p divides |J |. But this is not possible,
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because 0 < |J | < p by the maximality of M . Thus, each ki ≥ 1.

Let |M | = pn for some positive integer n. Now, |M | = |I| implies that

pn = pk1 +···+pkr . Further, M = M1 ···Mr implies that pn = pk1 ···pkr .

So either r = 1 and k1 = n or p = n = r = 2 and k1 = k2 = 1. Thus,

M acts transitively on I if |I| 6= 4. ¤
When |I| = 4, Proposition 3.29 need not hold. To see this, we take

M to be a subgroup of Sym(I) generated by two disjoint transpositions.

Then, M is a maximal elementary abelian 2-subgroup of Sym(I) of

order 4 whose action is not transitive on I.

Proposition 3.30. If |I| = pn for some integer n ≥ 1, then there

exists an elementary abelian p-subgroup M of Sym(I) acting transi-

tively on I.

Proof. We use induction on n. If n = 1, then we take M to be a

cyclic subgroup of Sym(I) generated by a cycle of length p. Assume

the result for n−1. Let I = I1∪· · ·∪ Ip be a partition of I into subsets

of size pn−1. By induction, let Hj be an elementary abelian p-subgroup

of Sym(Ij) of order pn−1 acting transitively on Ij. Let {xjs : 1 ≤ s ≤
n−1} be a basis for Hj (considering Hj as a vector space over Fp) and let

H be the elementary abelian p-subgroup of Sym(I) of order pn−1 with

basis {ys : 1 ≤ s ≤ n− 1}, where ys =
p∏

j=1

xjs. Fix ij ∈ Ij, j = 1, · · ·, p,

and let a ∈ Sym(I) be defined by a =
∏

x∈H

(x(i1), · · ·, x(ip)). Then,

a /∈ H. Note that (x(i1), · · ·, x(ip)) is a p-cycle for every x ∈ H and for

distinct x, y ∈ H, the cycles (x(i1), · · ·, x(ip)) and (y(i1), · · ·, y(ip)) are

disjoint. So a has order p.

Set M = 〈H, a〉. We show that M is an elementary abelian p-

subgroup of Sym(I) acting transitively on I. Let k ∈ I. Then, k ∈ Il

for some l. There exists x ∈ H such that x(il) = k. Now, for each

t (1 ≤ t ≤ n − 1), ayt(k) = aytx(il) = ytx(il+1) = ytax(il) = yta(k).

Thus a commutes with every element of H and so M is elementary

abelian.

Now, we show that M acts transitively on I. Let k, l ∈ I be distinct.

If k, l are in the same It for some t, then some element of H would take

k to l. We assume that k ∈ Is and l ∈ It for some s 6= t. Since H acts

transitively on each Ij, there exists x, y ∈ H such that x(k) = is and

y(it) = l. Also, observe that there exists z ∈ 〈a〉 such that z(is) = it.

Now, yzx(k) = l and so M acts transitively on I. ¤
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Proposition 3.31. Let M1 and M2 be elementary abelian p-subgroups

of Sym(I) acting transitively on I. Then, M1 and M2 are conjugate in

Sym(I).

Proof. Fix s1, s2 ∈ I. Define αi from Mi to I by αi(a) = a(si),

a ∈ Mi. Then, αi is a bijection by Proposition 3.27(b). Let g from

M1 to M2 be a group isomorphism and set τ = α2gα−1
1 . Then, τ is a

bijection of I and so τ ∈ Sym(I).

We show that τM1τ
−1 = M2. Let x ∈ M1, t ∈ I and z ∈ M2

be such that z(s2) = t. Now, for y ∈ M2, a routine calculation

shows that (τxτ−1)y(t) = yzg(x)(s2) = y(τxτ−1)(t). Thus, τxτ−1

commutes with every element of M2. By Proposition 3.27(b), M2 is a

maximal elementary abelian p-subgroup of Sym(I). So, τxτ−1 ∈ M2

and τM1τ
−1 = M2. ¤

Let p be a prime and n be a positive integer and let l = n − pm,

where m is the largest integer such that pm ≤ n. By a p-partition

of n we mean an expression of the form n = pr1 + · · · + prk , where

r1 ≥ · · · ≥ rk, rk−l ≥ 1 and rj = 0 for j ≥ k − l + 1. Every maximal

elementary abelian p-subgroup of Sym(I) gives rise to a p-partition of

|I| via the orbit decomposition of I. We prove that the converse also

holds. Let |I| = pr1+···+prk be a p-partition of |I|. We make a partition

of I into J1 ∪ J2 ∪ · · · ∪ Jk with |Ji| = pri . Let Kt be an elementary

abelian p-subgroup of Sym(Jt) of order prt acting transitively on Jt

(Proposition 3.30).

Proposition 3.32. Let K = K1 · · · Kk. Then, K is a maximal

elementary abelian p-subgroup of Sym(I).

Proof. Clearly, K is an elementary abelian p-subgroup of Sym(I).

We show that if x ∈ Sym(I) centralizes K and is of order p, then

x ∈ K. Let i ∈ Jt with |Jt| 6= 1. Let m ∈ K∗
t and m(i) = j ∈ Jt.

Since m is regular on It, i 6= j and so x(i) 6= x(j). Now, mx(i) =

mxm−1(j) = x(j). So, x(i) ∈ Jt because m acts trivially on Js if s 6= t.

Thus, Jt is x-invariant. Let xt be the restriction of x to Jt. Then, xt

commute with every element of Kt. By Proposition 3.27(b), Kt is a

maximal elementary abelian p-subgroup of Sym(Jt). So xt ∈ Kt.

Now, let J be the set of all elements of I which are left fixed by

elements of K. Then, J is x-invariant and |J | < p (by the definition of

a p-partition). Since x has order p, it follows that x acts trivially on

J . Thus, x ∈ K. ¤
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Theorem 3.33. There is a bijection between the set of conjugacy

classes of maximal elementary abelian p-subgroups of Sym(I) and the

set of p-partitions of |I|.
Proof. We need only to prove that if M and H are maximal el-

ementary abelian p-subgroups of Sym(I) giving rise to the same p-

partition |I| = pr1 + · · · + prk of |I| (via the orbit decomposition of

I), then they are conjugate in Sym(I). Let I = I1 ∪ I2 ∪ · · · ∪ Ik and

I = J1 ∪ J2 ∪ · · · ∪ Jk be the orbit decompositions of I with respect to

M and H respectively, where |Ii| = pri = |Ji|. Let Mi and Hi be the

restrictions of M and H to Ii and Ji respectively.

Fix il ∈ Il and jl ∈ Jl (1 ≤ l ≤ k). Let xl be the map from Ml to Il

taking m to m(il), m ∈ Ml and let yl be the map from Hl to Jl which

takes h to h(jl), h ∈ Hl. Let gl from Ml to Hl be a group isomorphism.

Then, zl = ylglx
−1
l is a bijection from Il to Jl. Let z be the bijection

of I onto itself which coincides with zl on Il.

We show that zMz−1 = H. It is enough to show that zaz−1 cen-

tralizes H for each a ∈ M . Let b ∈ H and s ∈ I. Then, s ∈ Jl for some

l. There exists c ∈ Hl such that c(jl) = s. Now, a simple calculation

shows that (zaz−1)b(s) = bcgl(al)(jl) = b(zaz−1)(s), where al is the

restriction of a to Il. Thus, zaz−1 centralizes H for every a ∈ M . ¤

3.4.2. Structure of the normalizers. Let M be an elementary

abelian p-subgroup of Sym(I) of order pn. We write N = NSym(I)(M)

and C = CSym(I)(M). The map φ from N to Aut(M) taking x to

φx, where φx(m) = xmx−1 for m ∈ M , defines a homomorphism with

Ker(φ) = C. Since Aut(M) is isomorphic to GLn(p), it follows that

N/C is isomorphic to a subgroup of GLn(p). We next prove that if M

acts transitively on I, then these two groups are isomorphic.

Proposition 3.34. Assume that M acts transitively on I. Then,

N/C is isomorphic to GLn(p).

Proof. We need only to show that the map φ defined above is

surjective. Let h ∈ Aut(M). Fix i ∈ I. The map g from M to I

defined by g(m) = m(i), m ∈ M, is a bijection by Proposition 3.27(b).

Then, x = ghg−1 is a bijection of I onto itself and so x ∈ Sym(I).

We show that x ∈ N and φx = h. Let m ∈ M , t ∈ I and y ∈ M be

such that y(i) = t. Now, for every z ∈ M , (xmx−1)z(t) = zh(m)y(i) =

z(xmx−1)(t). So xmx−1 centralizes M . By Proposition 3.27(b), M
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is maximal subject to being elementary abelian and so xmx−1 ∈ M .

This proves that x ∈ N . By a similar calculation as above, φx(m)(t) =

h(m)(t) for all m ∈ M and t ∈ I. Thus, φx = h and N/C is isomorphic

to Aut(M). ¤
We note that Proposition 3.34 is not true if the action of M on I is

not transitive even if it is maximal subject to being elementary abelian.

In the next two propositions, we assume M to be a maximal ele-

mentary abelian p-subgroup of Sym(I). Let I = I1 ∪ · · · ∪ Ir be the

M -orbit decomposition of I and Mi be the restriction of M to Ii. Set

J = {I1, · · ·, Ir} and Ni = NSym(Ii)(Mi) for i = 1, · · ·, r.
Proposition 3.35. Assume that |Ii| = |Ij| for all i, j. Then, N is

an extension of N1 · · ·Nr by Sym(J).

Proof. The map ψ from N to Sym(J) taking g ∈ N to ψg, where

ψg(Ii) = g(Ii), defines a homomorphism with Ker(ψ) = N1 · · ·Nr. We

show that ψ is surjective. Since Sym(J) is generated by transpositions,

we need only to show that for every transposition (IiIj), there exists

x ∈ N such that ψx takes Ii to Ij. For k ∈ {i, j}, fix ak ∈ Ik and

define a bijection fk from Mk to Ik by fk(x) = x(ak). Let β from Mi

to Mj be a group isomorphism. Then, z = fjβf−1
i is a bijection from

Ii to Ij and it induces an element x ∈ Sym(I) of order two defined

by x =
∏
l∈Ii

(l z(l)). Now, observe that x(Ii) = Ij, xMix
−1 = Mj,

xMjx
−1 = Mi and xMkx

−1 = Mk for all k /∈ {i, j}. Thus, x ∈ N and

ψx(Ii) = Ij. ¤
Now, assume that not all orbits are of the same sizes. We make a

partition of I as I = J1 ∪ · · · ∪ Jk, where Jl are formed by taking the

union of all orbits of the same sizes. Let Ki be the restriction of M to

Ji and set Hi = NSym(Ji)(Ki).

Proposition 3.36. N is isomorphic to H1 × · · · ×Hk.

Proof. Note that each Ji is x-invariant for x ∈ N . So, the map

from N to H1 × · · · × Hk taking x to (x1, · · ·, xk), where xi is the

restriction of x to Ji, defines an isomorphism. ¤





CHAPTER 4

Representations of Polar Spaces

Throughout, p denotes a fixed prime number. In this chapter, we

study non-abelian representations of finite non-degenerate polar spaces

of order p and prove the following ([55], Sections 3,4 and 5).

Theorem 4.1. Let S = (P,L) be a finite non-degenerate polar

space of rank r ≥ 2 and of order p. If S admits a non-abelian repre-

sentation (R, ψ), then:

(i) p is odd;

(ii) R = p1+2r
+ ;

(iii) S is isomorphic to W2r(p).

Theorem 4.2. W2r(p), r ≥ 2, admits a non-abelian representation.

Further, any two such representations are equivalent.

4.1. Non-abelian Representation Group

Let S = (P, L) be a non-degenerate polar space of finite rank r ≥ 2

and of order p. Let (R,ψ) be a representation of S. By Definition

3.5(ii), [rx, ry] = 1 for every x, y ∈ P with y ∈ x⊥. By Example 3.15,

all the results of Section 3.3 hold for S and (R, ψ).

First we consider the case when p = 2.

Proposition 4.3. Let S = (P,L) be a (2, t)-GQ and (R, ψ) be a

representation of S. Then, R is an elementary abelian 2-group.

Proof. It is enough to show that R is abelian. Let x, y be two

non-collinear points of S. Let T be a (2, 1)-subGQ of S. Such a T

exists because each line has three points. Let {x, y}⊥ = {a, b} in T .

For u ∼ v, we define u ∗ v ∈ P by uv = {u, v, u ∗ v}. In T , since

[rb, ry] = [rb, rx] = 1 and r(a∗x)∗(b∗y) = r(a∗y)∗(b∗x), it follows that rxry =

ryrx. ¤
Proposition 4.4. Let S = (P,L) be a non-degenerate polar space

of finite rank r ≥ 2 and of order two. Then, every representation of S

is abelian.
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48 4. REPRESENTATIONS OF POLAR SPACES

Proof. Let (R, ψ) be a representation of S. By Lemma 1.4, there

exists a chain of subspaces Q0 = P ) Q1 ) Q2 ) · · · ) Qr−2 such

that Qi is a polar space of rank r − i. Thus Qr−2 is a (2, t)-GQ. By

Proposition 4.3, 〈ψ(Qr−2〉 is abelian. Now, Theorem 3.23(i) completes

the proof. ¤
Now on, let (R, ψ) be a non-abelian representation of S.

By Proposition 4.4, p is an odd prime. Note that if r ≥ 3, then

finiteness of P and that of the rank r of S are equivalent. However, if

S is a generalized quadrangle of order s, s > 1, then finiteness of P is

not known except when s = 2, 3, 4 (see Section 1.5). The rest of this

section is devoted to prove that if P is finite, then R is extraspecial.

Lemma 4.5. ψ is faithful and [rx, ry] 6= 1 if x � y.

Proof. This follows from Theorem 3.23(iv). ¤

Notation 4.6. Given a line l of S and two distinct points a and b

on it, we write:

ψ(l) = {〈ra〉, 〈rb〉, 〈rarb〉, 〈r2
arb〉, · · ·, 〈rp−1

a rb〉}.
Let x, y ∈ P , x � y and u, v ∈ {x, y}⊥, u � v. Then, [rx, ry] 6= 1

and [ru, rv] 6= 1. Let l0 = xu, l1 = vy, m0 = xv and m1 = uy. Consider

the lines l0 and l1. By ‘one or all’ axiom, each point of l0 is collinear with

exactly one point of l1 and vice-versa. Let l0 = {x, u, x1, x2, · · ·, xp−1}
and 〈rxi

〉 = 〈ri
xru〉 for 1 ≤ i ≤ p − 1. Let xi ∼ vi in l1. Then, l1 =

{v, y, v1, v2, · · ·, vp−1}. Replacing the generator rv by rj
v for some j

(2 ≤ j ≤ p − 1), if necessary, we may assume that 〈rv1〉 = 〈rvry〉. So

[rxru, rvry] = 1. Then, [ri
xru, r

i
vry] = 1 for all i ≥ 0 because R′ ⊆ Z(R).

By Lemma 4.5, [ri
xru, r

j
vry] 6= 1 if i 6= j. So 〈rvi

〉 = 〈ri
vry〉. Let mi+1 be

the line such that ψ(mi+1) = 〈ri
xru, r

i
vry〉, 1 ≤ i ≤ p− 1.

Let z ∈ mi\(l0∪l1) and w ∈ mj\(l0∪l1) for i 6= j, 0 ≤ i, j ≤ p. If i =

0, then 〈rz〉 = 〈rk1
x rv〉 and if i > 0 then 〈rz〉 = 〈(ri−1

x ru)
k1(ri−1

v ry)〉 for

some k1, 1 ≤ k1 ≤ p−1. Similarly, 〈rw〉 = 〈rk2
x rv〉 or 〈(rj−1

x ru)
k2(rj−1

v ry)〉
for some k2, 1 ≤ k2 ≤ p − 1, according as j = 0 or j > 0. Now,

from R′ ⊆ Z(R), the identity [rx, ry] = [rv, ru] (a consequence of

[rxru, rvry] = 1) and the fact that each point of mi is collinear with

exactly one point of mj for i 6= j (a consequence of ‘one or all’ axiom),

the following lemma is straight forward.

Lemma 4.7. z ∼ w if and only if k1 + k2 = p.
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Proposition 4.8. If a, d ∈ Rψ, then ad[a, d](p−1)/2 ∈ Rψ.

Proof. Let a, d ∈ R∗
ψ. Let x1, x2 ∈ P be such that 〈rx1〉 = 〈a〉

and 〈rx2〉 = 〈d〉. We may assume that x1 � x2. Then, [a, d] 6= 1

by Lemma 4.5. We show that 〈ad[a, d](p−1)/2〉 is the image of some

element of P . Let y1, y2 ∈ {x1, x2}⊥ be such that y1 � y2, 〈ry1〉 = 〈b〉
and 〈ry2〉 = 〈c〉. Consider the lines l0 = x1y1 and l1 = x2y2. Let

z1 ∈ l0 be such that 〈rz1〉 = 〈ab〉 and let z1 ∼ z2 ∈ l1. Replacing

the generator c by cj for some j, if necessary, we may assume that

〈rz2〉 = 〈cd〉. Let m0 = x1y2 and m1 = z1z2. Let u ∈ m0 be such

that 〈ru〉 = 〈a(p−1)/2c〉. Then, x1 6= u 6= y2. Let u ∼ v in m1. By

Lemma 4.7, 〈rv〉 = 〈(ab)(p+1)/2(cd)〉. If y1 ∼ w in the line uv, then

〈rw〉 = 〈(a(p−1)/2c)k(ab)(p+1)/2(cd)〉 for some k (1 ≤ k ≤ p − 1). Now

[b, (a(p−1)/2c)k(ab)(p+1)/2(cd)] = 1. So, [b, c]k+1 = 1 and k + 1 = p.

The subgroup 〈b(p−1)/2(a(p−1)/2c)p−1(ab)(p+1)/2(cd)〉 is the image of some

point of y1w. But

b(p−1)/2(a(p−1)/2c)p−1(ab)(p+1)/2(cd) = ad[b, c](p+1)/2 = ad[a, d](p−1)/2.

In the last equality we have used [a, d] = [b, c]−1, a consequence of

[ab, cd] = 1. Thus, ad[a, d](p−1)/2 ∈ Rψ. ¤

Proposition 4.9. The set Rψ is a complete set of coset represen-

tatives of R′ in R.

Proof. Let r1R
′ = r2R

′ for some r1,r2 ∈ Rψ. Since R′ ⊆ Z(R),

r1 and r2 are both trivial or are both nontrivial (Theorem 3.23(iii)).

Assume that the latter holds and that r1 = r2w for some w ∈ R′. Let

x1, x2 ∈ P be such that 〈rx1〉 = 〈r1〉 and 〈rx2〉 = 〈r2〉. Since [r1, r2] = 1,

either x1 = x2 or x1 ∼ x2 (Lemma 4.5). If x1 ∼ x2 then w 6= 1 by

Definition 3.5(ii) and 〈w〉 would be the image of some point in the line

x1x2, a contradiction to Theorem 3.23(iii). So x1 = x2 and r1 = ri
2 for

some i (1 ≤ i ≤ p− 1). Then, ri−1
2 = w ∈ R′ ⊆ Z(R). Now, Theorem

3.23(iii) implies that i = 1 and so w = 1 and r1 = r2.

Now, let sR′ ∈ R/R′. Write s = r1r2 · · · rk, ri ∈ Rψ. Let R′ = 〈z〉.
Since R′ ⊆ Z(R), there is some integer j such that r1r2 · · · rkz

j is an

element, say r, of Rψ by Proposition 4.8. Then, sR′ = rR′, completing

the proof of the proposition. ¤

Proposition 4.10. Assume that P is finite. Then, |R| = p(1 +

(p− 1)|P |) and R = p1+2m
+ for some m ≥ 1.
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Proof. Since |R′| = p (Theorem 3.23(ii)), the first assertion follows

from Proposition 4.9. Also, R′ = Z(R) because Rψ ∩ Z(R) = {1} and

R′ ⊆ Z(R). Now, Theorem 3.23(v) completes the proof. ¤

Corollary 4.11. If S is a finite classical polar space of rank r ≥ 2

admitting a non-abelian representation, then S is isomorphic to W2m(p)

or Q2m+1(p).

Proof. By Proposition 4.10, |P | = (p2m−1)/(p−1) for some m > 0.

So the corollary follows from the number of points of the classical polar

spaces (see Theorem 1.3). ¤
By proposition 4.9, S admits an abelian faithful representation with

representation group R/R′. Considering R/R′ as a vector space over

Fp, it has dimension 2m. Since Q2m+1(p) does not possess an abelian

2m-dimensional faithful representation, it follows that the only possi-

bility is S ' W2m(p). In the next section, we prove this fact giving a

geometrical argument involving triads of points of a generalized quad-

rangle.

4.2. Proof of Theorem 4.1

Recall that a triad of lines of a (s, t)-GQ is a triple T of pair-wise

disjoint lines and a line in T⊥ is called a center of T .

Proposition 4.12. Let S = (P,L) be a (p, t)-GQ. If S admits a

triad of lines with at least three centers, then every representation of S

is abelian.

Proof. Let {l1, l2, l3} be a triad of lines in S with centers m1,m2,m3.

Let {xij} = li ∩ mj, 1 ≤ i, j ≤ 3. Consider the lines l1 and l2. Re-

placing rx11 by rk
x11

for some k, if necessary, we may assume that the

point a of l1 with 〈ra〉 = 〈rx11rx12〉 is collinear with the point b with

〈rb〉 = 〈rx21rx22〉. So [rx11rx12 , rx21rx22 ] = 1. Then, [ri
x11

rx12 , r
i
x21

rx22 ] = 1

for 0 ≤ i ≤ p − 1. Let 〈rx13〉 = 〈ri
x11

rx12〉 and 〈rx23〉 = 〈rj
x21

rx22〉
for some i, j, 1 ≤ i, j ≤ p − 1. If i 6= j then R is abelian (Theo-

rem 3.23(i)). So we assume that i = j. Let 〈rx31〉 = 〈rk
x11

rx21〉 and

〈rx33〉 = 〈(ri
x11

rx12)
n(ri

x21
rx22)〉 for some k, n, 1 ≤ k, n ≤ p − 1. If

n 6= p − k, then R is abelian by Lemma 4.7. So, we assume that

〈rx33〉 = 〈(ri
x11

rx12)
p−k(ri

x21
rx22)〉. By a similar argument, we assume

that 〈rx32〉 = 〈rp−k
x21

rx22〉. Now, Lemma 4.7 implies that R is abelian

because x32 ∼ x33 and p− k 6= p− (p− k). ¤
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Corollary 4.13. If S admits a non-abelian representation, then

every line of S is anti-regular and no line of S is regular.

Proposition 4.14. Let S = (P, L) be a finite (p, t)-GQ. If S admits

a non-abelian representation (R,ψ), then t = p and R = p1+4
+ .

Proof. We have |P | = (p + 1)(pt + 1) (Lemma 1.7(i)). So |R| =

p2(t(p2 − 1) + p) (Proposition 4.10). By Corollary 4.13, t ≥ 2. So,

p2(t(p2 − 1) + p) ≥ p4. Now, |R| = p2m+1 for some integer m ≥ 1.

Thus,

t = p(p2(m−2) + p2(m−3) + · · ·+ p2 + 1).

Since t ≤ p2 (Lemma 1.8(i)), m = 2, t = p and R = p1+4
+ . ¤

In Q5(p) all lines are regular (Lemma 1.13(i)). So every represen-

tation of Q5(p) is abelian. On the other hand, since p is odd, W4(p)

is not self-dual and is isomorphic to the dual of Q5(p) (Lemma 1.12).

Since p is odd, no point of Q5(p) is regular (Lemma 1.11(i)). So no line

of W4(p) is regular. Again, all points of Q5(p) are anti-regular (Lemma

1.13(i)), so all lines of W4(p) are anti-regular. We prove

Proposition 4.15. Let S = (P, L) be a (p, p)-GQ. If S admits a

non-abelian representation, then S is isomorphic to W4(p).

Proof. Since W4(p) is characterized by the regularity of all of its

points (Lemma 1.14), it is enough to show that if x, y ∈ P and x � y

then {x, y}⊥⊥ contains {a, b}⊥ for distinct a, b ∈ {x, y}⊥. Let (R, ψ)

be a non-abelian representation of S. Let z ∈ {a, b}⊥ and w ∈ {x, y}⊥.

We claim that z ∼ w. Write H = CR(ra) ∩ CR(rb). Then,

|H| = |CR(ra)||CR(rb)|
|CR(ra)CR(rb)| =

p4p4

p5
= p3.

Let K = 〈rx, ry〉. By Theorem 3.23(i), |K| = p3. So K = H because

K ≤ H. Then, [rw, rz] = 1 because [rw, K] = 1. So z ∼ w again by

Theorem 3.23(i). ¤

Proof of Theorem 4.1. By Proposition 4.4, p is an odd prime.

By Lemma 1.4 and Proposition 4.15, S is isomorphic to W2r(p). Propo-

sition 4.10 implies that R = p1+2r
+ . This completes the proof. ¤
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4.3. Proof of Theorem 4.2

Proposition 1.17 suggests that W2r(p) may admit a non-abelian

representation with representation group p1+2r
+ . We prove Theorem 4.2

in Propositions 4.17 and 4.18 below. In view of Proposition 4.8, we

first prove the following.

Proposition 4.16. Let G = p1+2r
+ . There exists a set T of coset

representatives of Z(G) in G such that t1t2[t1, t2]
(p−1)/2 ∈ T when

t1, t2 ∈ T . Further, T is unique up to conjugacy in G.

Proof. Let Z = Z(G) = 〈z〉 and V = G/Z. We write V as an

orthogonal direct sum of r hyperbolic planes Ki (1 ≤ i ≤ r) in V with

respect to the non-degenerate symplectic bilinear form f defined in

(3.1.1). Let Hi be the inverse image of Ki in G. Then, Hi is generated

by two elements xi1 and xi2 such that [xi1 , xi2 ] = z. Let Aj = 〈xij , 1 ≤
i ≤ r〉, j = 1, 2. Then, Aj is an elementary abelian p-subgroup of G of

order pr, Aj ∩ Z = {1} and A1Z ∩ A2Z = Z. Set

T = {xy[x, y]
p−1
2 : x ∈ A1, y ∈ A2}.

We show that T has the required property. Let α = xy[x, y]
p−1
2 , β =

uv[u, v]
p−1
2 be elements of T where x, u ∈ A1 and y, v ∈ A2. If αZ = βZ,

then u−1xZ = y−1vZ and is equal to Z because A1Z ∩ A2Z = Z.

So x = u and y = v because Aj ∩ Z = {1}. Thus αZ = βZ if

and only if x = u, y = v. So, |T | = p2r and T is a complete set of

coset representatives. Since G′ = Z, a routine calculation shows that

αβ[α, β](p−1)/2 = (xu)(yv)[xu, yv](p−1)/2 ∈ T . Thus, T has the stated

property.

Now we prove the uniqueness part. In fact, we show that the group

of inner automorphisms of G acts regularly on the set X of all sets

of coset representatives of Z in G, each of which is closed under the

binary operation (t1, t2) 7→ t1t2[t1, t2]
(p−1)/2.

Fix an ordered basis {v1Z, · · ·, v2rZ} for V . Each T ∈ X is deter-

mined by the sequence (x1, · · ·, x2r), where T ∩ viZ = {xi}. In fact, if

aZ = xj1
i1
· · · xjn

in
Z ∈ V , where i1 < · · · < in and 1 ≤ jk ≤ p − 1, then

aZ ∩ T = {xj1
i1
· · · xjn

in
zm}, where

zm = [xj1
i1

, xj2
i2

](p−1)/2[xj1
i1

xj2
i2

, xj3
i3

](p−1)/2 · · · [xj1
i1
· · · xjn−1

in−1
, xjn

in
](p−1)/2.

Thus, |X | ≤ p2r. Further, for T ∈ X and g ∈ G, g−1Tg = T implies

g ∈ Z. To see this, let t ∈ T and g−1tg = t′ ∈ T . Then, tZ = g−1tgZ =
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t′Z. Since T contains exactly one element from each coset, it follows

that t = t′ and g ∈ CG(t). Thus, g ∈ CG(T ) = Z. Since |G : Z| = p2r,

|X | = p2r and G acts transitively on X . ¤

Proposition 4.17. W2r(p), r ≥ 2, admits a non-abelian represen-

tation and the representation group is p1+2r
+ .

Proof. Let G = p1+2r
+ and T be as in Proposition 4.16. Consider

the partial linear space S = (P,L), where P = {〈x〉 : 1 6= x ∈ T} and a

line is of the form {〈x〉, 〈y〉, 〈xy〉, · · ·, 〈xp−1y〉} for distinct 〈x〉, 〈y〉 in P

with [x, y] = 1. Note that xiy ∈ T for each i and |P | = (p2r−1)/(p−1).

We show that S is a polar space of rank r.

Since T ∩ Z(G) = {1}, S is non-degenerate. Let 〈x〉 ∈ P , l ∈ L

and 〈x〉 /∈ l. Then, 〈x〉 is collinear with one or all points of l because

CG(x) intersects nontrivially with the subgroup H of G generated by

the points of l. Note that H is a subgroup of order p2 and disjoint from

Z(G). Rank of S is r because singular subspaces in S correspond to

elementary abelian subgroups of G which intersect Z(G) trivially and

pr is the maximum of the orders of such subgroups of G. Thus S is a

polar space of rank r.

Clearly G is a representation group of S. So, S is isomorphic to

W2r(p) (Theorem 4.1(iii)). ¤

Proposition 4.18. Any two representations of W2r(p), r ≥ 2, are

equivalent.

Proof. Let (R1, ψ1) and (R2, ψ2) be two representations of W2r(p).

By Theorem 4.1(ii), we may assume that R1 = R2 = R. Then, Rψi

is a set of coset representatives of Z(R) in R (Proposition 4.9). Let ϕ

be an automorphism of R such that ϕ(Rψ1) = Rψ2 (Proposition 4.16).

Define a map β : P −→ P by β = ψ−1
2 ϕψ1. Now, Lemma 4.5 implies

that β is an automorphism of W2r(p). Then, (R,ψ1) and (R,ψ2) are

equivalent with respect to ϕ and β. ¤





CHAPTER 5

Representations of (2, t)-GQs

In Section 5.1, we recall some results about (2, t)-GQs. We present

a proof of the finiteness of t. In Section 5.2, we study k-arcs of a (2, t)-

GQ in detail. Every representation of a (2, t)-GQ is abelian (Theorem

4.1(i)). However, the representation need not be faithful (Example

3.11). In Section 5.3, we study faithful representations of these geome-

tries. Most of the results are well-known, but a detailed study is helpful

in studying non-abelian representations of slim dense near hexagons in

Chapter 7.

5.1. (2, t)-GQs

We first write a brief summary of the results known for (2, t)-GQs.

Lemma 5.1 ([14], Theorem 7.3, p.99). Let S = (P, L) be a (2, t)-

GQ. Then, t is finite and t = 1, 2 or 4.

We present a proof of Lemma 5.1 later in this section.

Lemma 5.2. There exists a unique (2, t)-GQ, up to isomorphism,

for each value of t ∈ {1, 2, 4}.
For the uniqueness of the (2, 2)-GQ, see ([51], 5.2.3, p.78) and for

that of the (2, 4)-GQ, see ([51], 5.3.2(i), p.90). Thus, S is isomor-

phic to the classical generalized quadrangles Q+
4 (2), W4(2) ' Q5(2)

and Q−
6 (2), respectively, for t = 1, 2 and 4 (see Subsection 1.3.1 for

notation).

A model for a (2, 2)-GQ: Let Ω = {1, 2, 3, 4, 5, 6}. A factor of Ω

is a set of three pair-wise disjoint 2-subsets of Ω. Let E be the set of all

2-subsets of Ω and F be the set of all factors of Ω. Then, |E| = |F| = 15

and the pair (E ,F) is a (2, 2)-GQ ([51], 6.1.1, p.122).

There exists a unique projective plane of order four. We refer to

[3] for a connection between the (2, 2)-GQ and the projective plane of

order four.
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A model for a (2,4)-GQ: Let Ω, E and F be as in the above

model of a (2,2)-GQ. Let Ω′ = {1′, 2′, 3′, 4′, 5′, 6′}. Take

P = E ∪ Ω ∪ Ω′;

L = F ∪ {{i, {i, j}, j′} : 1 ≤ i 6= j ≤ 6}.
Then, |P | = 27, |L| = 45 and the pair (P, L) is a (2, 4)-GQ ([51], 6.1.3,

p.123).

Let S = (P, L) be a (2, t)-GQ. Since each line contains exactly three

points, any two non-collinear points of S are contained in a subspace

of S which is a (2, 1)-subGQ: For x, y ∈ P with x � y, consider a, b ∈
{x, y}⊥ with a 6= b. Let w = (a ∗ x) ∗ (b ∗ y). By ‘exactly one’ axiom,

w ∼ b ∗ x and w ∼ a ∗ y. Since b ∗ x ∼ a ∗ y also, {w, b ∗ x, a ∗ y} is a

line.

Proposition 5.3. Let S = (P, L) be a (2, t)-GQ and K be a (2, 1)-

subGQ of S. Then, for a ∈ P \ K, the subspace 〈K ∪ {a}〉 of S is a

(2, 2)-subGQ.

Proof. Fix x ∈ K such that a ∼ x and let l1 = xa = {a, x, b}.
There are two triads of K, say T1 = {x, y, z} and T2 = {x, u, v},
containing x. If a is collinear with two points of Ti, then it is a center

of Ti and b is a center of Tj, where {i, j} = {1, 2}. We may assume

that a ∈ T⊥
1 and b ∈ T⊥

2 . We get 4 new lines in 〈K ∪ {a}〉; namely,

l2 = {a, y, c}, l3 = {a, z, d}, l4 = {b, u, e}, l5 = {b, v, g}. Consider

the set R = K ∪ {a, b, c, d, e, g} consisting of 15 points, where K =

{x, y, z, u, v, w, p, q, r} with six lines n1 = {y, v, p}, n2 = {y, u, q}, n3 =

{z, u, r}, n4 = {z, v, w}, n5 = {x, p, r}, n6 = {x, q, w}. By ‘exactly one’

axiom, together with the fact that if three points are pair-wise collinear

then they form a line, we get 4 more lines in R; namely, l6 = {q, g, d},
l7 = {w, c, e}, l8 = {p, e, d}, l9 = {r, c, g}. Observe that R together

with these 15 distinct lines is a subspace of S which is a (2, 2)-subGQ.

Since R ⊆ 〈K∪{a}〉, R = 〈K∪{a}〉 by the definition of 〈K∪{a}〉. ¤

Proposition 5.4. Let S = (P, L) be a (2, 2)-GQ and let T =

{x, y, z} be a triad of points of S. Then, the following hold:

(i) |T⊥| = 1 or 3.

(ii) |T⊥| = 1 if and only if T is contained in a unique (2, 1)-subGQ

of S.

(iii) |T⊥| = 3 if and only if T is a complete triad.
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Proof. (ii) Let {x, y}⊥ = {a, b, c} and let T⊥ = {a}. Then, 〈T ∪
{b}〉 is the unique (2, 1)-subGQ of S containing T because, it contains

the point c also. Conversely, if Q is the (2, 1)-subGQ of S containing

T , then Q contains two points of {x, y}⊥ and the other point of {x, y}⊥
is in T⊥.

(i) Clearly |T⊥| ≤ 3. Consider a ∈ {x, y}⊥. If z ∼ a, then T⊥ is

non-empty. If z � a then 〈T ∪ {a}〉 is a (2, 1)-subGQ of S. Then, (ii)

implies that |T⊥| = 1. In particular, T⊥ is non-empty. Now assume

that |T⊥| ≥ 2 and let a, b ∈ T⊥. Let Q be the (2, 1)-subGQ generated

by {a, b, x, y}. Let c be the unique point of Q such that {a, b, c} is a

triad of Q. By (ii), let {a, b, c}⊥ = {α}. Since α ∈ {a, b}⊥ = {x, y, z}
and α /∈ {x, y}, it follows that z = α. Then, both x and y are collinear

with z ∗ c in the line zc. Thus T⊥ = {a, b, z ∗ c} and |T⊥| = 3.

(iii) T is a complete triad if and only if |x⊥ ∪ y⊥ ∪ z⊥| = 15. The

latter holds if and only if |T⊥| = |x⊥ ∩ y⊥ ∩ z⊥| = 3. ¤

Proposition 5.5. Let S = (P,L) be a (2, 2)-GQ. Then, every in-

complete triad of point of S is contained in a unique 5-arc. In partic-

ular, S has an ovoid.

Proof. Let T be an incomplete triad of points of S. Then, T is

contained in a (2, 1)-subGQ of S (Proposition 5.4). Let R = T ∪ {y ∈
P : y ∼ x for some x ∈ T }. Then, |R| = 13. Let P \ R = {a, b} and

O = T ∪ {a, b}. Then, O is a 5-arc because, if a ∼ b, then each point

of T must be collinear with a ∗ b in the line ab and this implies that

there are three more lines (different from ab) containing a ∗ b, which is

not possible because S is a (2, 2)-GQ. ¤

Corollary 5.6. Every 4-arc of a (2, 2)-GQ is incomplete.

Proof. Follows from the proof of Proposition 5.5. ¤
We now prove Lemma 5.1.

Proof of Lemma 5.1. Let K be a fixed (2, 1)-subGQ of S and let

T = {a, b, c} be a fixed triad of points of K. Let {Qi} be the collection

of distinct (2, 2)-subGQs containing K (Proposition 5.3) and let Oi =

T ∪ {xi, yi} be the ovoid of Qi containing T (Proposition 5.5). Let

{pi} = T⊥ in Qi (Proposition 5.4(ii)). Then, pi � xi and pi � yi since

Qi is a (2, 2)-GQ. For i 6= j, we prove that pi ∈ {xj, yj}⊥ in S and each

of xi, yi is collinear with exactly one of xj and yj. Considering the (2, 1)-

subGQ of Qj containing the incomplete triad {a, b, xj} (Proposition
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5.4), it follows that pi ∼ xj because pi ∼ a and pi ∼ b. The same

argument implies pi ∼ yj. Let R be the (2, 1)-subGQ of Qj containing

the incomplete triad {a, xj, yj}. Since xi � a, it follows from R that xi

is not collinear with both xj and yj. Assume that xi � xj. Now xi ∼
a∗pi in the line pia because xi � a and xi � pi. Since pi ∈ {a, xj, yj}⊥,

it follows from the (2, 2)-subGQ generated by R ∪ {pi} that xi ∼ yj.

If t = 3, then P = Q1 ∪ Q2. Consider the line p1x2. We have

p1 ∗ x2 ∈ Q1 or p1 ∗ x2 ∈ Q2. This implies that p1x2 is a line in Q1 or

in Q2 accordingly. But this is not possible since p1 /∈ Q2 and x2 /∈ Q1.

Assume that t ≥ 5. Then, there exists at least four (2, 2)-subGQs

of S containing K, say Q1, Q2, Q3, Q4. We may assume that x2 ∼ x3

between the two pairs {x2, y2} and {x3, y3}. Then, l = {p1, x2, x3} is a

line since p1 ∈ {x2, x3}⊥. Consider the point-line pair (p4, l). We have

p4 ∈ O⊥
1 . So p4 � p1 as p1 ∼ a, p4 � x2 and p4 � x3 as each of x2, x3 is

collinear with one of x1, y1, a contradiction to the ‘exactly one’ axiom.

Thus t = 1, 2 or 4. This completes the proof. ¤
We conclude this section with the following description of the sub-

spaces of a (2, t)-GQ.

Proposition 5.7. let S = (P, L) be a (2, t)-GQ and let K be a

subspace of S. Then, one of the following hold:

(a) K is a k-arc for some k ≥ 0.

(b) K consists of k lines, all through some point x ∈ K, 1 ≤ k ≤
t + 1.

(c) K is a (2, t1)-GQ, 1 ≤ t1 ≤ t.

Proof. Assume that K is not of type (a) or (b). We prove that K

is of type (c). Consider a point x of K and suppose that x is contained

in t1 + 1 lines of K for some t1 ≤ t. We show that t1 + 1 is the number

of lines through every point of K. Since the set of lines of K is non-

empty, t1 ≥ 0. Let y be a point of K such that x � y. Such a point y

exists because K is not of type (b). If y is contained in t2 + 1 lines of

K, then by ‘exactly one’ axiom t1 = t2. Hence t1 + 1 is the number of

lines of K containing any point not collinear with at least one of the

points x or y.

Now, consider a point z of K which is collinear with both x and y.

We claim that t1 ≥ 1. Suppose that t1 = 0. Let l be a line of K different

from the lines xz and yz. Then, x /∈ l and y /∈ l as t1 = 0. By ‘exactly

one’ axiom, there exists a line of K containing x and intersecting l. So
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xz and l intersect at z or x ∗ z. The same argument shows that yz and

l intersect at z or y ∗ z. Hence z ∈ l. Thus every line of K contain z

and K is of type (b), a contradiction. So t1 ≥ 1. Let l be a line of K

containing x and l 6= xz. Then, z /∈ l. There is a point a ∈ l such that

a � y and a � z. Then, the number of lines of K containing z equals

the number of lines of K containing a and that equals the number of

lines of K containing y and hence equals t1 + 1. Thus each point of K

is contained in t1 + 1 lines of K. This completes the proof. ¤

5.2. Complete Arcs

We have studied the complete arcs of a (2, 2)-GQ in the previous

section. In a (2, 1)-GQ, the complete arcs are precisely the triads. Here

we describe the complete arcs of a (2, 4)-GQ.

Let S = (P, L) be a (2, 4)-GQ. Then, S has no ovoid (Lemma

1.16(ii)) and k ≤ 6 for any k-arc of S by ([51], 2.7.1, p.34). Thus, any

6-arc of S is complete.

Proposition 5.8. Every triad of S is contained in a unique (2, 1)-

subGQ of S.

Proof. Uniqueness of the (2, 1)-GQ containing T is clear. Let T =

{a, b, c} be triad of S. Let Q1 be a (2, 1)-subGQ of S containing a and

b. We may assume that c /∈ Q1. Let Q2 be the (2, 2)-subGQ generated

by Q1∪{c} (Proposition 5.3). We assume again that there is no (2, 1)-

subGQ of Q2 containing T . So T is a complete triad in Q2 (Proposition

5.4). Let {x, y} = {a, b}⊥ in Q1 and z be the point in Q1 such that

{x, y, z} is triad. Since T is a complete triad in Q2, c ∈ {x, y, z}⊥. Let

w ∈ {a, b}⊥ \ Q2. Since {a, b, z} is a triad in Q1, it follows from Q1

that w ∼ z and so w � c. Now T is contained in the (2, 1)-subGQ

generated by T ∪ {w}. ¤

Corollary 5.9. Any 4-arc of S is contained in a unique (2, 2)-

subGQ of S. In particular, any 4-arc has at most two centers.

Proof. This follows from Propositions 5.8 and 5.3. ¤

Proposition 5.10. Every triad of S has exactly three centers.

Proof. Let T = {a, b, c} be a triad of S and let Q be the (2, 1)-

subGQ containing T . Then, it follows from Q that x ∼ c for every

x ∈ {a, b}⊥ \Q. ¤
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We note that Proposition 5.10 is a particular case of Lemma 1.10.

The latter is proved by a sophisticated counting method. Here, our

proof is mainly based on the fact that each line contains exactly three

points.

Proposition 5.11. Let O be a 5-arc of S. If O is contained in a

(2, 2)-subGQ of S, then O is complete.

Proof. Let Q be a (2, 2)-subGQ of S containing O. Clearly O is

complete in Q being an ovoid of it. There are three centers in S of any

triad T ⊂ O and Q contains exactly one of them (Proposition 5.4). So

the (2, 1)-subGQ of S containing T , in fact, is contained in Q. Let B

be the set of points of S which are collinear with some point of O. We

show that B = P and this will prove the completeness of O in S. Fix

two points a, b ∈ O. Let l and m be the two lines of S containing a

which are not the lines of Q and let b be collinear with the points x of

l and y of m. Then, c ∼ x and c ∼ y for c ∈ O \ {a, b} because the

(2, 1)-subGQ containing the triad T = {a, b, c} is contained in Q. For

c ∈ O\{a}, let Bc be the (2, 1)-subGQ generated by l∪m∪{c} and let

Ac = {z ∈ Bc : z ∼ c and z � a}. Then, Ac contains exactly two points

which are not points of Q. Also Ac ∩ Ad is empty for c, d ∈ O \ {a}
with c 6= d. So B contains 27 points which is the disjoint union of

B = Q ∪ (l ∪m) \ {a} ∪
c∈O\{a}

Ac. Thus B = P . ¤

Proposition 5.12. Let O be a 5-arc of S. Then, O is contained

in a (2, 2)-subGQ of S if and only if |O⊥| = 2. In particular, O is

complete if |O⊥| = 2.

Proof. Let O = {a, b, c, d, e}. Let Q be a (2, 2)-subGQ of S con-

taining O and let {x, y} = {a, b}⊥ \ Q. We show that O⊥ = {x, y}.
Let z ∈ {x, y} and w ∈ {c, d, e}. Considering the (2, 1)-subGQ of Q

containing the triad {a, b, w}, it follows that z ∼ w. Thus O⊥ = {x, y}
since |O⊥| ≤ 2 by Corollary 5.9.

Now let O⊥ = {x, y}. Let Q be a (2, 2)-subGQ of S containing

the 4-arc {a, b, c, d} (Corollary 5.9). Then, x, y /∈ Q. We show that

e ∈ Q. Assume that e /∈ Q and let w be the point in Q such that

T ∪ {w} is a 5-arc of Q. Considering the (2, 1)-subGQ of Q containing

the triad {a, b, w}, it follows that x ∼ w, y ∼ w. Also e ∼ w because

T ∪ {w} is a complete 5-arc (Proposition 5.11). This implies that

{x, e, w} and {y, e, w} are two lines containing e and w, a contradiction.

Thus e ∈ Q. ¤
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Corollary 5.13. Any 4-arc of S has exactly two centers and is

contained in a unique complete 5-arc.

Proof. This follows from Corollaries 5.6 and 5.9 and Proposition

5.12. ¤

The following result is a converse to Proposition 5.11.

Proposition 5.14. Let O be a 5-arc of S. If O is complete, then

it is contained in a (2, 2)-subGQ of S.

Proof. Let T ⊂ O be a 4-arc and {x} = O \ T . Let Q be the

(2, 2)-subGQ of S containing T (Corollary 5.9). We show that x ∈ Q.

Suppose that x /∈ Q. Let z be the point of Q such that T1 = T ∪{z} is a

complete 5-arc of Q. Let B be the set of points of S which are collinear

with some point of T . Then, |B| = (4× 11)− (6× 5)+ (4× 3)− 2 = 24

and P \ B = {z, a, b}, where a, b /∈ Q and x ∈ {a, b}. By Proposition

5.11, T1 is a complete 5-arc of S. So z ∼ a, z ∼ b. Also a � b, otherwise

{z, a, b} would be a line and w ∼ a or w ∼ b for w ∈ T , which is not

possible. This implies that T ∪ {a, b} is a 6-arc of S containing O, a

contradiction to the completeness of O. ¤

There is an immediate corollary of the proof of Proposition 5.14.

Corollary 5.15. S has 6-arcs. Any 4-arc of S is contained in a

unique 6-arc.

Proposition 5.16. Every incomplete 5-arc of S has exactly one

center.

Proof. Let O = {a, b, c, d, e} be an incomplete 5-arc of S. Let

{x, y} = {a, b, c, d}⊥ (Corollary 5.13). Note that both x and y can not

be in O⊥ (Proposition 5.12). We show that either x ∈ O⊥ or y ∈ O⊥.

Suppose that that x � e and y � e. Let Q be the (2, 1)-subGQ of S

containing the triad {a, b, e}. Since x ∼ a, x ∼ b and x � e, it follows

from Q that x ∈ Q. The same argument implies y ∈ Q. Thus {x, y, e}
is a triad of Q. Since c ∼ x, c ∼ y and c /∈ Q, it follows from Q that

c ∼ e, a contradiction. ¤

We summarize the above results in the following:

Theorem 5.17. Let S = (P,L) be a (2, 4)-GQ and let O be a k-arc

of S. Then, the following hold.
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(a) If k = 3, then O is contained in a unique (2, 1)-subGQ of S

and |O⊥| = 3.

(b) If k = 4, then O is contained in a unique complete 5-arc and

in a unique complete 6-arc of S, and |O⊥| = 2.

(c) If k = 5, then O is complete if and only if it is contained in

a (2, 2)-subGQ of S if and only if |O⊥| = 2. Further, O is

incomplete if and only if |O⊥| = 1.

(d) S has 6-arcs and any such arc is complete.

5.3. Representations

The contents of this section appear in ([56], Section 3). Throughout

this section, let S = (P, L) be a (2, t)-GQ. For t′ = 1, 2, a (2, t′)-subGQ

of S and a point outside it generate a (2, 2t′)-subGQ in S. Further, the

minimum number of points generating S is 4 if t = 1, 5 if t = 2 and 6

if t = 4.

For the rest of this section, let (R, ψ) be a faithful representation

of S. By Proposition 4.3, R is an elementary abelian 2-group. Recall

that R∗
ψ = {rx : x ∈ P} ⊆ I2(R) and Rψ = R∗

ψ ∪ {1}.
Proposition 5.18. The following hold:

(i) |R| = 24 if t = 1;

(ii) |R| = 24 or 25 if t = 2, and both possibilities occur;

(iii) |R| = 26 if t = 4.

Proof. The F2-dimension of R is at most k, since S is generated

by k points where (t, k) ∈ {(1, 4), (2, 5), (4, 6)}. So |R| ≤ 2k.

(i) If t = 1, then |R| ≥ 24 because |P | = 9 and ψ is faithful. So

|R| = 24.

(ii) If t = 2, then |R| ≥ 24 because S contains a (2, 1)-subGQ.

The rest follows from the fact that S has a symplectic embedding in a

F2-vector space of dimension 4 as well as an orthogonal embedding in

a F2-vector space of dimension 5 (see Section 5.1).

To prove (iii), we need Proposition 5.19 below which is a partial

converse to the fact that if x ∼ y, x, y ∈ P , then rxry ∈ R∗
ψ. ¤

Proposition 5.19. Assume that (t, |R|) 6= (2, 24). If rxry ∈ R∗
ψ for

distinct x, y ∈ P , then x ∼ y.

Proof. Let z ∈ P be such that rz = rxry. If x � y, then T =

{x, y, z} is a triad of S because ψ is faithful. There is no (2,1)-subGQ
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of S containing T because the subgroup of R generated by the image of

such a GQ is of order 24 (Proposition 5.18(i)). Every triad of a (2, 4)-

GQ is contained in a unique (2,1)-subGQ (Proposition 5.8). So t = 2

and T is a complete triad. Let Q be a (2,1)-subGQ of S containing

x and y. Then, z /∈ Q and P = 〈Q, z〉. Since rz ∈ 〈ψ(Q)〉, |R| =

|〈ψ(Q)〉| = 24, a contradiction to (t, |R|) 6= (2, 16). ¤

Remark 5.20. If (t, |R|) = (2, 24), then Proposition 5.19 is not

true because in this case R∗ = R∗
ψ, so rxry ∈ R∗

ψ for non-collinear

points x and y.

Proof of Proposition 5.18(iii). If t = 4, then there are 16 points

of S not collinear with a given point x. By Proposition 5.19, |R∗\Rψ| ≥
16. Thus, |R| > 25 and so |R| = 26. ¤

Corollary 5.21. Let t = 4 and Q be a (2,2)-subGQ of S. Then,

〈ψ(Q)〉 is of order 25.

Proof. This follows from Proposition 5.18(iii) and the fact that

P = 〈Q, x〉 for x ∈ P \Q (see Proposition 5.7). ¤

Proposition 5.22. If t = 2, then |R| = 24 if and only if rarbrc = 1

for every complete triad {a, b, c} of points of S.

Proof. Let T = {a, b, c} be a complete triad of points of S and Q

be a (2,1)-subGQ of S containing a and b. Then, c /∈ Q and P = 〈Q, c〉.
If rarbrc = 1, then rc ∈ 〈ψ(Q)〉 and |R| = |〈ψ(Q)〉| = 24. Now,

assume that |R| = 24. Let {x, y} = {a, b}⊥ in Q. Then, x, y ∈ T⊥, since

T is a complete triad. Let z be the point in Q such that {x, y, z} is a

triad in Q. Then, c ∼ z and rz = (rarx)(rbry). Since H = 〈ry : y ∈ x⊥〉
is a maximal subgroup of R (Lemma 3.6), |H| = 23. So rc = rarb or

rarbrx, since ψ is faithful. If the latter holds, then rc∗z = ry. But this is

not possible because, ψ is faithful and y 6= c ∗ z. Hence rc = rarb. ¤

Corollary 5.23. Assume that (t, |R|) = (2, 24). Let a, b, c ∈ P be

such that rarbrc = 1. Then, T = {a, b, c} is a line or a complete triad.

Proof. Assume that T is not a line. Then, T is a triad, since ψ is

faithful. We show that T is complete. Suppose that T is not complete.

Let {a, b, d} be the complete triad of S containing a and b. Then,

rarbrd = 1 (Proposition 5.22) and c 6= d. So rc = rd, contradicting that

ψ is faithful. ¤
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Lemma 5.24. If S contains a triad T = {a, b, c} such that rarbrc ∈
R∗

ψ, then (t, |R|) = (2, 24). In particular, T is incomplete.

Proof. Let x ∈ P be such that rx = rarbrc. Since ψ is faithful,

x /∈ T . Let Q1 be the (2,1)-subGQ of S containing T . If x ∈ Q1, then

〈ψ(Q1)〉 = 〈ra, rb, rc, rx〉 would be of order 23, contradicting Proposition

5.18(i). So x /∈ Q1 and t 6= 1. Let Q2 be the (2,2)-subGQ of S

generated by Q1 and x. Then, |〈ψ(Q2)〉| = 24. By Corollary 5.21,

t 6= 4. So t = 2, P = Q2 and |R| = 24. Now, Proposition 5.22 implies

that T is incomplete. ¤

Lemma 5.25. Let a, b ∈ P with a � b. Set A = {rarx : x � a}
and B = {rbrx : x � b}. Then, |A ∩B| = t + 2.

Proof. It is enough to prove that rarx = rbry for rarx ∈ A, rbry ∈ B

if and only if either x = b and y = a holds or there exists a point c

such that {c, a, y} and {c, b, x} are lines. We need to prove the ‘only

if’ part. Since ψ is faithful, x 6= b if and only if y 6= a. Assume that

x 6= b and y 6= a. For this, we show that y ∼ a and x ∼ b. Then,

ra∗y = rary = rbrx = rb∗x. Since ψ is faithful, it would then follow that

a ∗ y = b ∗ x and this would be our choice of c.

First, assume that (t, |R|) 6= (2, 24). Since a � b, rarb /∈ Rψ by

Proposition 5.19. Since rxry = rarb, Proposition 5.19 again implies

that x � y. Now, rarbry = rx ∈ Rψ. By Lemma 5.24, {a, b, y} is not a

triad. This implies that y ∼ a. By a similar argument, x ∼ b.

Now, assume that (t, |R|) = (2, 24). Suppose that x � b. Then,

T = {a, b, x} is a triad of S. By Proposition 5.24, T is incomplete.

Let Q be the (2, 1)-subGQ in S containing T and let {c, d} = {a, b}⊥
in Q. Then, rx = rarbrcrd = rxryrcrd. So ryrcrd = 1. By Corollary

5.23, {c, d, y} is a complete triad. Since b ∈ {c, d}⊥, it follows that

b ∈ {c, d, y}⊥, a contradiction to that b � y. So x ∼ b. A similar

argument shows that y ∼ a. This completes the proof. ¤

Proposition 5.26. Let K = R \ Rψ. Each element of K is of the

form ryrz for some y � z in P , except when (t, |R|) = (2, 25). In this

case, exactly one element, say α, of K can not be expressed in this way.

Moreover, α = rurvrw for every complete triad {u, v, w} of S.

Proof. Since K is empty when (t, |R|) = (2, 24), we assume that

(t, |R|) = (1, 24), (2, 25) or (4, 26). Fix a, b ∈ P with a � b. Then,

rarb ∈ K (Proposition 5.19). Let A and B be as in Lemma 5.25, and
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set

C = {rarbrx : {a, b, x} is a triad which is incomplete if t = 2}.
By proposition 5.19, A ⊆ K and B ⊆ K and by Lemma 5.24, C ⊆ K.

Each element of C corresponds to a triad which is contained in a (2,1)-

subGQ of S. Let rarbrx ∈ C and Q be the (2,1)-subGQ of S containing

the triad {a, b, x}. If {a, b}⊥ = {p, q} in Q, then ra∗prb∗q = rx implies

that rarbrx = rprq. Thus, every element of C can be expressed in the

required form.

By Proposition 5.19, A∩C and B ∩C are empty. By Lemma 5.25,

|A ∩B| = t + 2. Then, an easy count shows that

|A ∪B ∪ C| =
{

10t− 4 if t = 1 or 4

10t− 5 if t = 2
.

So K = A ∪ B ∪ C if t = 1 or 4, and K \ (A ∪ B ∪ C) is a singleton

if t = 2. This proves the proposition for t = 1, 4 and tells that if

(t, |R|) = (2, 25), then at most one element of K can not be written in

the desired form.

Now, let (t, |R|) = (2, 25) and T = {u, v, w} be a complete triad

of S. By Lemma 5.24, α = rurvrw ∈ K. Suppose that α = rxry for

some x, y ∈ P . Then, x � y by Lemma 5.24 and {x, y} ∩ T = Φ by

Proposition 5.19. Suppose that x ∈ T⊥ and Q be the (2, 1)-subGQ

of S generated by {x, u, v, y}. Since w /∈ Q and rw = rurvrxry, it

follows that |R| = 24, a contradiction. So, x /∈ T⊥. Similarly, y /∈ T⊥.

Thus, each of x and y is collinear with exactly one point of T . Let

x ∼ u. Then, y � x ∗ u, since x ∗ u ∈ T⊥ and α = rxry. Let U be

the (2,1)-subGQ of S generated by {u, x, y, v}. Note that y ∼ u in

U . Let z be the unique point in U such that {u, v, z} is a triad of U .

Then, rz = rxryrurv = rw. Since w 6= z (in fact, w /∈ U), this is a

contradiction to the faithfulness of ψ. Thus, α can not be expressed

as rxry for any x, y in P . This, together with the last sentence of the

previous paragraph, implies that α is independent of the complete triad

T of S. This completes the proof. ¤





CHAPTER 6

Slim Dense Near Hexagons

In Section 6.1, we present the classification of slim dense near

hexagons due to Brouwer, et al. [9] and give a construction for each of

them. In Section 6.2, we give new constructions for the near hexagons

DH6(2
2) and DW6(2). In Section 6.3, we describe the structure of a

slim dense near hexagon having big quads with respect to a subspace

of it generated by two of its big quads.

6.1. Classification Result

Let S = (P, L) be a dense near hexagon with parameters (2, t). Let

t2 + 1 = |Γ1(x) ∩ Γ1(y)| for x, y ∈ P with d(x, y) = 2. Note that t2
depends on the points x and y and t > t2. We say that a quad of S is

of type (2, t2) if it is a (2, t2)-GQ. A quad of S is big if it has distance

at most one from each point of S. Thus, a big quad of S is classical

and vice-versa. The following result is due to Brouwer, et al. [9].

Theorem 6.1 ([9], Theorem 1.1, p.349). Let S = (P,L) be a dense

near hexagon with parameters (2, t). Then, P is finite and S is iso-

morphic to one of the eleven near hexagons with parameters as given

below:
|P | t t2 dimV (S) n(S) a1 a2 a4

E2 759 14 2 23 22 0 35 0

E1 729 11 1 24 24 66 0 0

DH6(2
2) 891 20 4? 22 20 0 0 21

E3 567 14 2, 4? 21 20 0 15 6

G3 405 11 1, 2, 4? 20 20 9 9 3

Q−
6 (2)⊗Q−

6 (2) 243 8 1, 4? 18 18 16 0 2

Q−
6 (2)× L3 81 5 1, 4? 12 12 5 0 1

DW6(2) 135 6 2? 15 8 0 7 0

H3 105 5 1, 2? 14 8 3 4 0

W4(2)× L3 45 3 1, 2? 10 8 3 1 0

Q+
4 (2)× L3 27 2 1? 8 8 3 0 0

67
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Here, L3 denotes a line of size 3, n(S) is the F2-rank of the matrix

A3 : P × P −→ {0, 1} defined by A3(x, y) = 1 if d(x, y) = 3 and zero

otherwise. For each row, the t2 column lists all possible values of t2.

Further, we add a ‘∗’ to this entry if and only if the corresponding

quad is big. The number of quads of type (2, r), r = 1, 2, 4, containing

a point of S is indicated by ar.

We refer to [26] for other classification results about slim dense near

polygons. It is proved that there are 24 slim dense near octagons, up

to isomorphism. The classification is mainly based on the fact that all

slim dense near octagons have a big hex - that is, a convex sub near

hexagon with distance at most 1 from every point of the near octagon.

The near hexagons E1, E2, E3, G3 and H3 are described in Section

1.7. The near hexagons DH6(2
2) and DW6(2) are the unitary and

symplectic dual polar spaces of rank three, respectively. All slim dense

near hexagons having big quads are subspaces of DH6(2
2) (see [9],

p.353). A direct product of near polygons is a near polygon ([10],

Theorem 1, p.146). In that case, the number of points in a line is

independent of that line. The near hexagons Q−
6 (2)×L3, W4(2)×L3 and

Q+
4 (2)×L3 are direct products of a (2, t)-GQ for t = 4, 2, 1, respectively,

with L3.

We now describe Q−
6 (2)⊗Q−

6 (2). The following description of this

near hexagon is taken from [23]. Let S = (P, L) be a (2,4)-GQ, T =

{l1, · · ·, l9} ⊂ L be a spread of S and l be an arbitrary line in T . Let

φj : P −→ lj be the map taking each x ∈ P to the unique point of

lj nearest to x in S. Let G = G(S, T, l) be the graph with vertex set

l × T × T . Two distinct vertices (x, li, lj) and (y, lm, ln) are adjacent

whenever at least one of the following two conditions hold:

(1) j = n and φi(x) and φm(y) are collinear points in S;

(2) i = m and φj(x) and φn(y) are collinear points in S.

Note that if i = m and j = n, then both (1) and (2) are satisfied. Any

two adjacent vertices of G are contained in a unique maximal clique of

size three. The points and the lines of Q−
6 (2)⊗Q−

6 (2) are the vertices

and the maximal cliques of G, respectively.

We present another description of the near hexagon H3 taken from

[25].

Example 6.2 ([25], p.51). Let S = (P, L) be the (2, 2)-GQ. A

partial linear space S ′ = (P ′, L′) can be constructed from S as follows.
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Set P ′ = {(x, y) ∈ P × P : x = y or x ∼ y}. With each l ∈ L, we

associate four types of elements of L′ as follows. Let l = {x, y, z} and

T = {k, m, n} be an incomplete triad of lines of S such that T⊥ = {l}.
We may assume that k ∩ l = {x}, m∩ l = {y} and n∩ l = {z}. Let x′

be an arbitrary point of k \ {x}. Let y′ (respectively, z′) be the unique

point of m \ {y} (respectively, n \ {z}) not collinear with x′. The four

types of elements of L′ are the following:

(I) {(x, x), (y, y), (z, z)},
(II) {(x, x), (x, y), (x, z)},

(III) {(x, y), (y, z), (z, x)}.
(IV ) {(x, x′), (y, y′), (z, z′)}.

The elements of L′ of type (II) and (III) are up to a permutation of

the points of l. Then, S ′ is a slim dense near hexagon isomorphic to

H3 ([25], p.51). It can be seen that {x′, y′, z′} is a complete triad of

points of S.

6.2. New Constructions for H3 and DW6(2)

In this section, we give new constructions for DW6(2) and H3 from

two copies of a (2,2)-GQ. We first construct H3 and then construct

DW6(2) in which H3 appears as a geometric hyperplane. We use these

constructions of DW6(2) and H3 in the proof of the existence of their

non-abelian representations in Chapter 7. The contents of this section

appear in [54].

6.2.1. Construction of H3. Let S = (P,L) and S ′ = (P ′, L′) be

two (2,2)-GQs. Fix an isomorphism from S to S ′ and denote the image

of x ∈ P ∪ L by x′. We define a partial linear space S = (P ,L) as

follows. Take the point set to be

P = {(x, y′) ∈ P × P ′ : y′ ∈ x′⊥},
and the lines to be subsets of P of the form

{(x, u′), (y, v′), (z, w′)},
where T = {x, y, z} is a line or a complete triad of points of S and

T ′⊥ = x′⊥ ∩ y′⊥ ∩ z′⊥ = {u′, v′, w′} in S ′.

Theorem 6.3. S = (P ,L) is a slim dense near hexagon with pa-

rameters (s, t, t2) = (2, 5, {1, 2}).
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We develop some structure before we prove the theorem. Let α =

(x, u′) and β = (y, v′) be two distinct points of S. By the construction

of the lines of S, α ∼ β if and only if x 6= y, u′ 6= v′, u′ ∈ y′⊥ and

v′ ∈ x′⊥. Let α and β be distinct non-collinear points of S. Then, one

of the following possibilities occur:

(A1) x = y, u′ 6= v′;
(A2) x 6= y, u′ = v′;
(A3) x 6= y, u′ 6= v′, u′ /∈ y′⊥ and v′ /∈ x′⊥;

(A4) x 6= y, u′ 6= v′ and either u′ ∈ y′⊥ and v′ /∈ x′⊥ or u′ /∈ y′⊥

and v′ ∈ x′⊥.

Lemma 6.4. Assume that (A1) or (A2) holds. Then, |{α, β}⊥| ≥
2.

Proof. Assume that (A1) holds. Then, x′ ∈ {u′, v′}⊥. If u′ ∼ v′,
we may assume that v′ 6= x′. So x′v′ = u′v′. Then, (v, u′ ∗ v′) and

(x ∗ v, u′ ∗ v′) are in {α, β}⊥. If u′ � v′, let {u′, v′, w′} be the complete

triad of S ′ containing u′ and v′. Then, (a, w′) and (b, w′) are in {α, β}⊥,

where {a′, b′} = {u′, v′}⊥ \ {x′}.
Now assume that (A2) holds. Then, u ∈ {x, y}⊥ in S. If x ∼ y, we

assume that u 6= y. Then, (x∗y, y′) and (x∗y, y′ ∗u′) are in {α, β}⊥. If

x � y, let {x, y, w} be the complete triad of S containing x and y. Let

{x, y}⊥\{u} = {a, b} in S. Then, (w, a′) and (w, b′) are in {α, β}⊥. ¤

Lemma 6.5. Assume that (A3) holds. Then, |{α, β}⊥| ≥ 3.

Proof. If x ∼ y and u′ ∼ v′, then {x′, y′, u′, v′} defines a quadrangle

in S ′. Then, (u, x′), (v, y′) and (u ∗ v, x′ ∗ y′) are in {α, β}⊥.

If x ∼ y and u′ � v′, let T ′ = {u′∗x′, v′∗y′, z′} be the complete triad

of S ′ containing u′ ∗ x′ and v′ ∗ y′. Then, u′, v′ ∈ T ′⊥ and x′ ∗ y′ /∈ T ′.
Now, x′ ∗ y′ ∼ z′, because x′ ∗ y′ � u′ ∗ x′, x′ ∗ y′ � v′ ∗ y′ and T ′ is a

complete triad. Then, (u∗x, x′), (v∗y, y′) and (z, x′∗y′) are in {α, β}⊥.

By a similar argument, if x � y and u′ ∼ v′ then (u, u′∗x′), (v, v′∗y′)
and (u ∗ v, z′) are in {α, β}⊥, where {u′ ∗ x′, v′ ∗ y′, z′} is the complete

triad of S ′ containing u′ ∗ x′ and v′ ∗ y′.
Now, assume that x � y and u′ � v′. If u′ = x′ and v′ = y′, then

(a, a′), (b, b′) and (c, c′) are in {α, β}⊥, where {u′, v′}⊥ = {a′, b′, c′} in

S ′. We may assume that v′ 6= y′. Then, the complete triads {x′, y′}⊥
and {u′, v′}⊥ of S ′ intersect at w′ = v′ ∗ y′. This fact is independent

of whether u′ = x′ or not. Let {x′, y′}⊥ = {a′, b′, w′} and {u′, v′}⊥ =
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{p′, q′, w′} in S ′. Since a′ � w′, b′ � w′ and {p′, q′, w′} is a complete

triad of S ′, each of a′ and b′ is collinear with exactly one of p′ and q′.
Similarly, each of p′ and q′ is collinear with exactly one of a′ and b′.
So, we may assume that a′ ∼ p′ and b′ ∼ q′. Then, (p, a′), (q, b′) and

(w, w′) are contained in {α, β}⊥. ¤

Lemma 6.6. Assume that (A4) holds. Then, d(α, β) = 3.

Proof. We may assume that u′ ∈ y′⊥ and v′ /∈ x′⊥. Suppose that

d(α, β) = 2 and (z, w′) ∈ {α, β}⊥. Then, z /∈ {x, y}, w′ /∈ {u′, v′},
u′, v′ ∈ z′⊥ and w′ ∈ {x′, y′}⊥. Let T ′ = {x′, y′, z′}. Then, T ′ is either a

line or a complete triad of S ′, because x, y and z are pair-wise distinct

and u′, w′ ∈ T ′⊥ with u′ 6= w′. Since v′ ∈ {y′, z′}⊥, it follows that

v′ ∈ T ′⊥ and v′ ∈ x′⊥, a contradiction to our assumption.

So d(α, β) 6= 2. Now, choose w′ ∈ {x′, y′}⊥ with w′ 6= u′. Then,

α ∼ (y, w′) and d((y, w′), β) = 2 by Lemma 6.4. Hence d(α, β) = 3. ¤
As a consequence of the above results, we have

Corollary 6.7. The diameter of S is 3.

We next prove that the near-polygon property (NP ) is satisfied

in S. Let L = {α, β, γ} be a line and θ be a point of S. Note that

any two points of S have only one common neighbour. So if θ has

ditance 1 from two points of L, then it is itself a point of L. Let

α = (x, u′), β = (y, v′), γ = (z, w′) and θ = (p, q′). Then, T = {x, y, z}
is either a line or a complete triad of points of S and T ′⊥ = {u′, v′, w′}.

Proposition 6.8. If θ has distance 2 from two points of L, then it

is collinear with the third point of L.

Proof. Let d(θ, α) = d(θ, β) = 2. We prove θ ∼ γ by showing that

p 6= z, q′ 6= w′, q′ ∈ z′⊥ and w′ ∈ p′⊥.

If p = x and q′ 6= v′ (respectively, p 6= x and q′ = v′), then d(θ, β) =

2 (respectively, d(θ, α) = 2) yields v′ /∈ x′⊥, a contradiction. So p = x

if and only if q′ = v′. Similarly, p = y if and only if q′ = u′. Thus, if

p ∈ {x, y}, then p 6= z, q′ 6= w′, q′ ∈ z′⊥ and w′ ∈ p′⊥.

If p /∈ {x, y}, then the above argument implies that p 6= z and

q′ 6= w′. Also, d(θ, α) = d(θ, β) = 2 yields x′, y′ /∈ q′⊥ and u′, v′ /∈ p′⊥.

This implies that q′ ∈ z′⊥ and w′ ∈ p′⊥. ¤

Proposition 6.9. If θ has distance 3 from two points of L, then it

has distance 2 from the third point of L.
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Proof. Let d(θ, α) = d(θ, β) = 3. We prove d(θ, γ) = 2. By

Lemma 6.4, we may assume that p 6= z and q′ 6= w′. This, together

with d(θ, α) = d(θ, β) = 3, implies that p′ /∈ T ′, q′ /∈ T ′⊥. We show

that q′ /∈ z′⊥ and w′ /∈ p′⊥. This would complete the proof.

Suppose that q′ ∈ z′⊥. Since q′ /∈ T ′⊥, q′ /∈ x′⊥ and q′ /∈ y′⊥.

Then, d(θ, α) = d(θ, β) = 3 yields u′, v′ ∈ p′⊥. This implies that

p′ ∈ {u′, v′}⊥ = T ′, a contradiction. A similar argument shows that if

w′ ∈ p′⊥, then q′ ∈ T ′⊥, a contradiction. ¤
Proof of Theorem 6.3. Propositions 6.8 and 6.9, together with

Corollary 6.7, imply that S is a near hexagon. By Lemmas 6.4 and 6.5,

S is dense. Since |P| = 105, Theorem 6.1 completes the proof. ¤
Thus, quads of S are (2, 1) or (2, 2)-GQs. In fact, it can be shown

that equality holds in Lemmas 6.4 and 6.5.

6.2.2. Construction of DW6(2). Let S = (P,L), S ′ = (P ′, L′)
and S = (P ,L) be as in the construction of H3 in Subsection 6.2.1. We

define a partial linear space S = (P,L) as follows. Take the point set

to be

P = P ∪ P ∪ P ′

and the line set to be

L = L ∪ L1,

where L1 consists of subsets of P of the form {x, (x, u′), u′} for every

point (x, u′) ∈ P .

Theorem 6.10. S = (P,L) is a slim dense near hexagon with

parameters (s, t, t2) = (2, 6, 2).

An immediate consequence of Theorems 6.3 and 6.10 is the follow-

ing.

Corollary 6.11. H3 is a geometric hyperplane of DW6(2).

By the construction of the lines of S, no two points of P , as well as

of P ′, are collinear in S. Further, if x ∈ P and u′ ∈ P ′, then x ∼ u′ if

and only if (x, u′) ∈ P , or equivalently, u′ ∈ x′⊥ in S ′. Let α and β be

two distinct non-collinear points of S with α ∈ P ∪ P ′. Then, one of

the following possibilities occur:

(B1) α = x and β = y for some x, y ∈ P with x 6= y;

(B2) α = u′ and β = v′ for some u′, v′ ∈ P ′ with u′ 6= v′;
(B3) α = x ∈ P and β = u′ ∈ P ′ with u′ /∈ x′⊥;
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(B4) α = x ∈ P and β = (y, v′) ∈ P with x 6= y and v′ ∈ x′⊥

in S ′;
(B5) α = u′ ∈ P ′ and β = (y, v′) ∈ P with u′ 6= v′ and y ∈ u⊥

in S;

(B6) α = x ∈ P and β = (y, v′) ∈ P with x 6= y and v′ /∈ x′⊥

in S ′;
(B7) α = u′ ∈ P ′ and β = (y, v′) ∈ P with u′ 6= v′ and y /∈ u⊥

in S.

Lemma 6.12. Assume that (B1) or (B2) holds. Then, |{α, β}⊥| ≥
3 in S.

Proof. If (B1) holds, then w′ ∈ {x, y}⊥ in S for each w′ ∈ {x′, y′}⊥
in S ′. So |{α, β}⊥| ≥ 3. Similarly, if (B2) holds then |{α, β}⊥| ≥ 3. ¤

Lemma 6.13. Assume that (B3) holds. Then, d(α, β) = 3.

Proof. Clearly d(α, β) ≥ 3 since u′ /∈ x′⊥. Let v′ ∈ {u′, x′}⊥ in S ′.
Then, x, v′, v, u′ is a path of length 3 in Γ(P). So d(α, β) = 3. ¤

Lemma 6.14. Assume that (B4) or (B5) holds. Then, |{α, β}⊥| ≥
3.

Proof. Assume that (B4) holds. If x ∼ y in S, then v′ ∈ x′y′ in

S ′. If v′ = x′, then v′, (x, y′) and (x, v′ ∗ y′) are in {α, β}⊥. We may

assume that v′ 6= x′. Then, v′, (x, x′) and (x, v′ ∗ x′) are in {α, β}⊥. If

x � y in S, let {x′, y′}⊥ = {u′, v′, w′} in S ′. Then, v′, (x, u′) and (x,w′)
are in {α, β}⊥. A similar argument applies if (B5) holds. ¤

Lemma 6.15. Assume that (B6) or (B7) holds. Then, d(α, β) = 3.

Proof. Assume that (B6) holds. Suppose that θ ∈ {α, β}⊥. Then,

θ 6= v′, since v′ /∈ x′⊥ in S ′. So θ = (x,w′) for some w′ ∈ x′⊥. Then,

θ ∼ β implies that v′ ∈ x′⊥ in S ′, a contradiction. So d(α, β) 6= 2.

Now, y ∼ β and d(α, y) = 2 (Lemma 6.12). So d(α, β) = 3. A similar

argument can be applied if (B7) holds. ¤
Note that the embedding of S into S is isometric. As a consequence

of the above results of this subsection, together with Corollary 6.7, we

have

Corollary 6.16. The diameter of S is 3.

Next we prove that property (NP ) is satisfied in S.
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Proposition 6.17. Let L be a line of S of type (L1) and α be a

point of S not contained in L. Then, α is nearest to exactly one point

of L.

Proof. Let L = {x, β, u′} where β = (x, u′) ∈ P . Let α = v′ ∈ P ′.
Then, v′ 6= u′ and d(α, u′) = 2 (Lemma 6.12). Now d(α, β) = 2 or 3

according as x ∈ v⊥ in S or not. In the first case, α ∼ x, and in the

latter case, d(α, x) = 3 (Lemma 6.12). A similar argument holds if

α ∈ P .

Let α = (y, v′) ∈ P . If x = y, then u′ 6= v′ and x ∈ {u, v}⊥
in S. So α ∼ x and d(α, β) = d(α, u′) = 2 (Lemmas 6.4 and 6.14).

Similarly, if u′ = v′ then α ∼ u′ and d(α, β) = d(α, x) = 2 . Assume

that x 6= y and u′ 6= v′. If α ∼ β, then u′ ∈ y′⊥ and v′ ∈ x′⊥ in S ′. So

d(α, x) = d(α, u′) = 2 (Lemma 6.14). If d(α, β) = 2, then u′ /∈ y′⊥ and

v′ /∈ x′⊥ in S ′. By Lemma 6.15, d(α, x) = d(α, u′) = 3. If d(α, β) = 3,

then either u′ ∈ y′⊥ and v′ /∈ x′⊥, or u′ /∈ y′⊥ and v′ ∈ x′⊥ in S ′. Then,

d(α, x) = 3 and d(α, u′) = 2 in the first case, and d(α, x) = 2 and

d(α, u′) = 3 in the latter. ¤

Now, let L = {β, θ, γ} ∈ L be a line of S and α ∈ P ∪ P ′. We take

β = (x, u′), θ = (y, v′) and γ = (z, w′).

Proposition 6.18. If α has distance 2 from two points of L, then

it is collinear with the third point of L.

Proof. Let α = q′ ∈ P ′ and d(α, β) = d(α, θ) = 2. Then, q′ /∈
{u′, v′} and x, y ∈ q⊥ in S. Thus, q′ ∈ {x′, y′}⊥ = {u′, v′, w′} in S ′. So

q′ = w′ and α ∼ γ. A similar argument holds if α ∈ P . ¤

Proposition 6.19. If α has distance 3 from two points of L, then

it has distance 2 from the third point of L.

Proof. Let α = q′ ∈ P ′ and d(α, β) = d(α, θ) = 3. Then, q′ /∈
{u′, v′} and x, y /∈ q⊥ in S. So q′ 6= w′ and q′ ∈ z′⊥ in S ′. The latter

follows from the fact that {x, y, z} is a line or a complete triad of points

of S. Thus, d(α, γ) = 2. A similar argument holds if α ∈ P . ¤

Proof of Theorem 6.10. By the results of this subsection, to-

gether with Theorem 6.3, S is a slim dense near hexagon. Since |P| =
135, Theorem 6.1 completes the proof. ¤
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6.3. Structural Properties

Let S = (P, L) be a slim dense near hexagon. Since a (2,4)-GQ

admits no ovoids, every quad of S of type (2, 4) is big by Theorem

1.21. The following lemma says that all big quads of S are of the same

type.

Lemma 6.20 ([9], p.359). Let Q be a quad of S of type (2, t2).

Then, |P | ≥ |Q|(1 + 2(t − t2)). Equality holds if and only if Q is big.

In particular, if a quad of S of type (2, t2) is big then so are all quads

of S of that type.

Notation 6.21. For a big quad Q of S and a point x ∈ P \Q, we

denote by xQ the unique point of Q collinear with x.

Lemma 6.22 ([10], Lemma 5, p.148). Let Q be a big quad of S

and {a, b, c} be a line of S disjoint from Q. Then, {aQ, bQ, cQ} is a line

of Q.

Lemma 6.23 ([9], Proposition 4.3, p.354). Let Q1 and Q2 be two

disjoint big quads of S. Let τ be the map from Q1 to Q2 defined by

τ(x) = xQ2, x ∈ Q1. Then,

(i) τ is an isomorphism from Q1 to Q2.

(ii) The set Q1 ∗Q2 = {x ∗ xQ2 : x ∈ Q1} is a big quad of S.

Further, Y = Q1 ∪ Q2 ∪ Q1 ∗ Q2 is a subspace of S isomorphic to the

near hexagon Q1 × L3, a direct product of Q1 with L3.

A Fischer space ([2], p.92) is a partial linear space satisfying the

following:

(i) Each line contains exactly three points.

(ii) The subspace generated by any two intersecting lines is iso-

morphic to the dual affine plane of order two, or the affine

plane of order three.

Lemma 6.24 ([9], Corollary 4.4, p.354). Let B be the collection of

all big quads of S and LB be the collection of subsets {Q1, Q2, Q1 ∗Q2}
of B, where Q1 and Q2 are disjoint. Then, (B, LB) is a Fischer space,

called the Fischer space on big quads of S.

Let S = (P, L) be a slim dense near hexagon having big quads.

Fix two disjoint big quads Q1 and Q2 of S. Let Q3 = Q1 ∗ Q2 and

Y = Q1 ∪ Q2 ∪ Q3. By Lemma 6.23, Y is a subspace of S isomorphic
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to the near hexagon Q+
4 (2)× L3, W4(2)× L3 or Q−

6 (2)× L3 according

as Q1 and Q2 are of type (2,1), (2,2) or (2,4). Now, fix a big quad Q

of S disjoint from Y . Let {i, j, k} = {1, 2, 3}. We use the following

notation:

∗ For x ∈ P \ Y , we define xj = xQj
and, for x ∈ Qi, we define

zj
x = xQj

. Thus, for x ∈ Qi, {x, zj
x, z

k
x} is a line of Y meeting

each of Qi, Qj and Qk.

∗ For a line l = {a, b, c} of S, we set lQ = {aQ, bQ, cQ} if l ∩Q is

empty, and lj = {aj, bj, cj} if l ∩Qj is empty.

∗ We denote by τj the isomorphism from Q to Qj defined by

τj(x) = xj, x ∈ Q and by τij the isomorphism from Qi to Qj

defined by τij(x) = zj
x, x ∈ Qi (see Lemma 6.23(i)).

∗ For x ∈ P \ (Y ∪ Q), we denote by xi
Q the point (xQ)i in Qi.

For a line l disjoint from both Y and Q, we denote by liQ the

line (lQ)i in Qi.

Lemma 6.25. Let x ∈ P \ Y . Then:

(i) d(zj
xi , x

j) = 1 and d(xi, xj) = 2.

(ii) {xi, zi
xj , zi

xk} is a line in Qi.

Proof. (i) Since x ∈ Γ1(x
i) ∩ Γ1(x

j), d(xi, xj) = 2. Further,

d(xi, xj) = d(xi, zj
xi) + d(zj

xi , x
j). So d(zj

xi , x
j) = 1.

(ii) By (i), xi ∼ zi
xj and xi ∼ zi

xk . We show that zi
xj ∼ zi

xk . The

quad Q(xj, xk) of Y is of type (2,1) and {xj, xk}⊥ = {zk
xj , z

j
xk} in Y .

Now, from the parallel lines {xj, zi
xj , zk

xj} and {xk, zi
xk , z

j
xk} in Q(xj, xk),

it follows that zi
xj ∼ zi

xk . ¤

Lemma 6.26. Let l = {a, b, c} be a line of S intersecting Y at {c}.
(i) If c ∈ Qi ∪Qj, then d(ai, bj) = 2.

(ii) If c ∈ Qk, then d(ai, bj) = 1. In fact, ai = zi
bj .

Proof. (i) Let c be in, say, Qi. Since ai = bi = c, d(ai, bj) =

d(bi, bj) = 2 by Lemma 6.25(i).

(ii) We have ak = bk = c. Since l is disjoint from Qi, li = {ai, bi, ci =

zi
c} is a line of Qi. By Lemma 6.25(ii), {bi, zi

bj , zi
bk = zi

c} is also a line

of Qi. Since these lines share two points, they are the same and so,

ai = zi
bj and d(ai, bj) = 1. ¤

Lemma 6.27. Let l be a line of S disjoint from Y and x, y ∈ l with

x 6= y.



6.3. STRUCTURAL PROPERTIES 77

(i) If lj = xjzj
xi in Qj, then (yi, yj) = (zi

xj , xj∗zj
xi) or (xi∗zi

xj , z
j
xi).

In other words, the following three statements are equivalent:

li = xizi
xj in Qi; lj = xjzj

xi in Qj; and τij(l
i) = lj.

(ii) d(xi, yj) ≤ 2 if and only if li = xizi
xj in Qi.

Proof. (i) If lj = xjzj
xi , then yj ∈ {zj

xi , x
j ∗ zj

xi}. Assume that

yj = xj ∗ zj
xi . Since τji(x

jzj
xi) = xizi

xj , zi
yj = xi ∗ zi

xj and so yi ∼ xi ∗ zxj

(Lemma 6.25(i)). Since yi ∼ xi also, yi is a point in the line xizi
xj .

Now, d(yi, yj) = 2 implies that yi = zi
xj .

If yj = zj
xi , then applying the above argument to (x ∗ y)j = xj ∗ zj

xi ,

we get (x ∗ y)i = zi
xj and so, yi = xi ∗ zi

xj .

(ii) If li = xizi
xj in Qi, then τij(l

i) = lj by (i) and it follows that

d(xi, yj) ≤ 2. Now, let li 6= xizi
xj in Qi. By (i), lj 6= xjzj

xi in Qj. So

yj � zj
xi , and d(xi, yj) = d(xi, zj

xi) + d(zj
xi , y

j) = 1 + 2 = 3. ¤

Lemma 6.28. For x, y ∈ Q with x � y, {d(zj
xi , z

i
yj), d(zi

xj , z
j
yi)} =

{2, 3}.
Proof. By Lemma 6.23, there exist w ∈ {x, y}⊥ in Q such that

xiwi = xizi
xj . By Proposition 6.27(i), (wi, wj) = (zi

xj , xj ∗ zj
xi) or (xi ∗

zi
xj , z

j
xi). Assume that (wi, wj) = (zi

xj , xj ∗ zj
xi). Then, d(zi

xj , z
j
yi) =

d(wi, zj
yi) = d(wi, zj

wi) + d(zj
wi , z

j
yi) = 2. Now, yj ∼ wj and yj � xj in

Qj implies that xi � zi
yj . So d(xi, zi

yj) = 2 and d(zj
xi , z

i
yj) = d(zj

xi , x
i) +

d(xi, zi
yj) = 3. A similar argument holds if (wi, wj) = (xi ∗ zi

xj , z
j
xi). ¤

Lemma 6.29. For every x ∈ Q, there exists a unique line l in Q

containing x such that τij(l
i) = lj. In particular, li = {xi, zi

xj , zi
xk}.

Proof. Since τi is an isomorphism from Q to Qi, there exists a line

l of Q containing x such that li = xizi
xj . By Lemma 6.27(i), τij(l

i) = lj.

The line l in Q through x such that τij(l
i) = lj is unique because, for

any other line l of Q containing x, τij(l
i
) and l

j
are two disjoint lines in

Qj containing zj
xi and xj, respectively. Now, li = xizi

xj = {xi, zi
xj , zi

xk}
(see Lemma 6.25(ii)). ¤

Notation 6.30. For x ∈ Q, we denote by ζx the unique line l in Q

containing x as in Lemma 6.29 and we write TQ = {ζx : x ∈ Q}.
Corollary 6.31. TQ is a spread of Q.
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Proof. This follows because, ζx = ζy for x ∈ Q and y ∈ ζx, by

Lemma 6.29. ¤
Let l = {a, b, c} be a line of Q. First, let l ∈ TQ. Set T l = li∪ lj ∪ lk

and T l
jk = li ∪ τij(l

i) ∪ τik(l
i). The set T l

jk is a quad of Y of type (2,1)

whose lines are the rows and the columns of the matrix

(6.3.1) T l
jk =




ai zj
ai zk

ai

bi zj
bi zk

bi

ci zj
ci zk

ci


 .

Since l ∈ TQ, Lemma 6.29 implies that the subsets T l and T l
jk of P

coincide. So T l is a quad of Y of type (2, 1) whose lines are the rows

and columns of one of the matrices

(6.3.2)




ai cj bk

bi aj ck

ci bj ak


 ; or




ai bj ck

bi cj ak

ci aj bk


 .

Note that if bk ∼ ai, then the line containing them is {ai, cj, bk}.
Now, let l /∈ TQ. Then, τij(l

i) and lj are disjoint lines in Qj. The

set T l
i = li ∪ τji(l

j)τki(l
k) form a (2, 1)-GQ in Qi. We can write

(6.3.3) T l
i =




ai bi ci

zi
aj zi

bj zi
cj

zi
ak zi

bk zi
ck


 ; T l

j =




zj
ai zj

bi zj
ci

aj bj cj

zj
ak zj

bk zj
ck


 ; and

T l
k =




zk
ai zk

bi zk
ci

zk
aj zk

bj zk
cj

ak bk ck


 .

Each row as well as each column in T l
i (respectively, T l

j , T
l
k) is a line

of Qi (respectively, Qj, Qk). Further, the (m,n)-th entries from T l
i , T

l
j

and T l
k form a line of Y .

As a consequence of the above, we have

Corollary 6.32. Let l be a line of Q. For distinct a, b ∈ l, d(ai, bj) ≤
2 or d(ai, bj) = 3 according as l ∈ TQ or not.



CHAPTER 7

Representations of Slim Dense Near Hexagons

In this chapter, we study non-abelian representations of slim dense

near hexagons. We prove the following.

Theorem 7.1. Let S = (P, L) be one of the slim dense near

hexagons DH6(2
2),E3 and G3. Then, every representation of S is

abelian.

Theorem 7.2. Let S = (P, L) be a slim dense near hexagon differ-

ent from DH6(2
2),E3 and G3. Let (R,ψ) be a non-abelian representa-

tion of S. Then,

(i) R is of order 2β, where 1 + n(S) ≤ β ≤ 1 + dimV (S).

(ii) If β = 1 + n(S), then R = 2
1+n(S)
ε with ε = − or + according

as S is equal to Q−
6 (2)⊗Q−

6 (2) or not.

Theorem 7.3. Let S = (P, L) be one of the slim dense near

hexagons Q−
6 (2) ⊗ Q−

6 (2), Q−
6 (2) × L3, DW6(2), H3, W4(2) × L3 and

Q+
4 (2) × L3. Then, S admits a non-abelian representation in a group

of order 21+n(S).

Theorems 7.1 and 7.3 deals with the question of existence of non-

abelian representations of a slim dense near hexagon having big quads.

The only slim dense near hexagons not admitting big quads are E1 and

E2. For these two geometries it is not known to us whether they admit

non-abelian representations.

7.1. Initial Results

Let S = (P, L) be a slim dense near hexagon and (R, ψ) be a non-

abelian representation of S. For x ∈ P and y ∈ Γ≤2(x), [rx, ry] = 1 :

if d(x, y) = 2, we apply Proposition 4.3 to the restriction of ψ to the

quad Q(x, y). From Example 3.16 and Theorem 3.23 applied to S,

Proposition 7.4. The following hold:

79
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(i) For x, y ∈ P , [rx, ry] 6= 1 if and only if d(x, y) = 3. In that

case, 〈rx, ry〉 ' 21+2
+ , a dihedral group of order 8.

(ii) R is a finite 2-group of exponent 4, |R′| = 2 and R′ = Φ(R) ⊆
Z(R).

(iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful.

We repeatedly use Proposition 7.4(i) and (iii), mostly without men-

tion. Corollary 3.25 implies

Corollary 7.5. (R,ψ) is the cover of a representation (R1, ψ1) of

S, where R1 is extraspecial or Z(R1) is cyclic of order 4.

Throughout this chapter, we write R′ = 〈µ〉.
Since R′ is of order two, Lemma 3.7 implies

Corollary 7.6. |R| ≤ 21+dimV (S).

Proposition 7.7. R = EZ(R), where E is an extraspecial 2-

subgroup of R and E ∩ Z(R) = Z(E).

Proof. We consider V = R/R′ as a vector space over F2. The map

f : V ×V −→ F2 taking (xR′, yR′) to 0 or 1 accordingly [x, y] = 1 or µ,

is a symplectic bilinear form on V (see (3.1.1)). This is non-degenerate

if and only if R′ = Z(R). Let W be a complement in V of the radical

of f and E be its inverse image in R. Then, E is extraspecial and the

proposition follows. ¤
As a consequence of Proposition 7.7, we have

Corollary 7.8. Let M be an abelian subgroup of R of order 2m

intersecting Z(R) trivially. Then, |R| ≥ 22m+1. Further, equality holds

if and only if R is extraspecial and M is a maximal abelian subgroup

of R intersecting Z(R) trivially.

Lemma 7.9. The natural homomorphism from R to R/R′ is one-

one on R∗
ψ.

Proof. Suppose that ruR
′ = rvR

′ for some u, v ∈ P, u 6= v. Then,

ru = rvr for r ∈ R′. Since [ru, rv] = 1, d(u, v) ≤ 2. Now, d(u, v) 6= 1,

otherwise r = ru∗v ∈ Z(R), contradicting Proposition 7.4(iii). Let w ∈
P \Q(u, v) be such that w ∼ v. Then, [rw, ru] = [rw, rvr] = [rw, rv] = 1.

But d(w, u) = 3, a contradiction to Proposition 7.4(i). ¤
The following lemma is useful for us.
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Lemma 7.10. Let x ∈ P and Y ⊆ Γ3(x). Then, [rx, Π
y∈Y

ry] = 1 if

and only if |Y | is even.

Proof. Since R′ ⊆ Z(R), [rx, Π
y∈Y

ry] is well-defined (though Π
y∈Y

ry

depends on the order of multiplication) and [rx, Π
y∈Y

ry] = Π
y∈Y

[rx, ry].

Let y, z ∈ Γ3(x) be distinct. The subgraph of Γ(P ) induced on Γ3(x)

is connected (Lemma 1.25). Let y = y0, y1, · · ·, yk = z be a path in

Γ3(x). Then, ryrz = Πryi∗yi+1
(0 ≤ i ≤ k− 1). Since d(x, yi ∗ yi+1) = 2,

[rx, ry][rx, rz] = [rx, ryrz] = 1. Now, Theorem 7.4(i) completes the

proof. ¤

Notation 7.11. For a quad Q of S, we denote by MQ the sub-

group of R generated by ψ(Q). Note that MQ is elementary abelian by

Proposition 4.3.

Proposition 7.12. Let Q be a quad of S and MQ ∩ Z(R) 6= {1}.
Then, Q is of type (2,2); |M | = 25; and MQ ∩ Z(R) = {1, rarbrc},
where {a, b, c} is any complete triad of points of S.

Proof. Let 1 6= m ∈ MQ ∩ Z(R). Then, m 6= rx for each x ∈ P

(Proposition 7.4(iii)). If Q is of type (2,1) or (2,4), then by Proposition

5.26, m = ryrz for some y, z ∈ Q, y � z. Choose w ∈ P \ Q with

w ∼ y. Then, [rw, rz] = [rw, ryrz] = [rw,m] = 1. But d(w, z) = 3, a

contradiction to Proposition 7.4(i). So Q is a (2,2)-GQ.

Now, |MQ| 6= 24 otherwise, M∗
Q = {rx : x ∈ Q} and m = rx ∈ Z(R)

for some x ∈ Q, contradicting Proposition 7.4(iii). So |MQ| = 25.

Now, either m = rurv for some u, v ∈ Q, u � v or m = rarbrc for every

complete triad {a, b, c} of Q (Proposition 5.26). The above argument in

the first paragraph implies that the first possibility does not occur. ¤

Proposition 7.13. Let Q be a quad of S of type (2, 2). Then, Q

is ovoidal if and only if |MQ| = 25 and MQ ∩ Z(R) = {1}.
Proof. First, assume that Q is ovoidal. Let z ∈ P \Q be such that

the pair (z, Q) is ovoidal. Let Oz = {x1, · · ·, x5} be the ovoid in Q

defined in Theorem 1.21(ii). Let {x1, x2, y} be the complete triad of Q

containing x1 and x2. If |MQ| = 24, then d(y, z) = 3 and rx1rx2ry = 1

(Proposition 5.22). But [rz, ry] = [rz, rx1rx2ry] = 1, a contradiction

to Proposition 7.4(i). So |MQ| = 25. If 1 6= m ∈ MQ ∩ Z(R), then

m = rarbrc for any complete triad {a, b, c} of Q (Proposition 7.12).
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In particular, m = rx1rx2ry. Since m ∈ Z(R), applying the above

argument we get a contradiction. So MQ ∩ Z(R) = {1}.
Now, assume that |MQ| = 25 and MQ ∩ Z(R) = {1}. Suppose that

Q is classical. Let {a, b, c} be a complete triad of Q. Then, rarbrc 6= 1,

by Proposition 5.22. Since (x, Q) is classical for each x ∈ P \Q, either

each of a, b, c is at distance 2 from x or exactly two of them are at

distance 3 from x. In either case, [rx, rarbrc] = 1 (see Lemma 7.10). So

1 6= rarbrc ∈ MQ∩Z(R), a contradiction to that MQ∩Z(R) = {1}. ¤

Proposition 7.14. Let Q and Q′ be two disjoint big quads of S of

type (2, t2). Then, MQ ∩MQ′ = {1} in the following cases:

(i) t2 ∈ {1, 4},
(ii) t2 = 2; and |MQ| = 24 or |MQ′ | = 24.

Further, if t2 = 2 and |MQ| = 25 = |MQ′|, then MQ ∩MQ′ is contained

in Z(R) and is of order at most 2.

Proof. Replacing Z(R) by MQ′ and choosing w in Q′, the argument

in the first paragraph of the proof of Proposition 7.12 implies (i).

Let t2 = 2. If |MQ| = 24, then M∗
Q = {rx : x ∈ Q}. If MQ ∩MQ′ 6=

{1}, then rx ∈ MQ′ for some x ∈ Q. Then, [rx, rz] = 1 for every z ∈ Q′,
since MQ′ is abelian. In particular, [rx, rz] = 1 for every z ∈ Q′ with

d(x, z) = 3, a contradiction to Proposition 7.4(i). This proves (ii).

Now, let |MQ| = 25 = |MQ′|. Let 1 6= m ∈ MQ ∩ MQ′ . By the

second paragraph of the proof of Proposition 7.12 with Z(R) replaced

by MQ′ , it follows that m = rarbrc for every complete triad {a, b, c} of

Q. Since Q is classical, MQ ∩ Z(R) 6= {1} (Proposition 7.13); and so,

MQ ∩ Z(R) = {1, rarbrc} = {1, m} (Proposition 7.12). Thus, MQ ∩
MQ′ ⊆ MQ ∩ Z(R) ⊆ Z(R). Since |MQ ∩ Z(R)| = 2, we get that

MQ ∩MQ′ is of order at most 2. ¤

7.2. Proof of Theorem 7.2

In this section, we prove Theorem 7.2, except for the near hexagon

Q−
6 (2) ⊗ Q−

6 (2). We prove Theorem 7.2 for Q−
6 (2) ⊗ Q−

6 (2) in Section

7.5. Throughout this section, we assume that S = (P, L) is a slim dense

near hexagon different from Q−
6 (2)⊗Q−

6 (2), DH6(2
2), E3 and G3. By

Proposition 7.4(ii), R is a finite 2-group. So |R| = 2β for some β. By

Corollary 7.6, β ≤ 1 + dimV (S). We find an elementary abelian 2-

subgroup of R of order 2ξ, ξ = n(S)
2

, intersecting Z(R) trivially. Then,
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by Corollary 7.8, β ≥ 1 + 2ξ = 1 + n(S) and R = 21+2ξ
+ if equality

holds. This would complete the proof.

7.2.1. The near hexagons Q−
6 (2)× L3, DW6(2),H3,W4(2)× L3

and Q+
4 (2) × L3. Let S be one of the five near hexagons mentioned

above. Let Q be a big quad of S. Set M = MQ. If Q is of type (2, 1) or

(2, 4), then M ∩ Z(R) = {1} (Proposition 7.12). Also, |M | = 24 or 26

according as Q is of type (2,1) or (2,4) (Proposition 5.18). If Q is of type

(2,2), then |M | = 24 or 25. Also, if |M | = 25, then |M∩Z(R)| = 2, since

Q is classical (Propositions 7.12 and 7.13). Thus, R has an elementary

abelian 2-subgroup of order 2ξ intersecting Z(R) trivially.

7.2.2. The near hexagons E1 and E2. Let S = (P,L) be one of

the near hexagons E1 and E2. Fix a ∈ P and b ∈ Γ3(a). Let l1, · · ·, lt+1

be the lines containing a; xi be the point in li with d(b, xi) = 2; and set

A = {xi : 1 ≤ i ≤ t + 1}. For a subset X of A, we set TX = {rx : x ∈
X}; MX = 〈TX〉; and M = 〈rb〉MX . Then, MX and M are elementary

abelian 2-subgroups of R.

Proposition 7.15. Let X be a subset of A such that

(i) MX ∩ Z(R) = {1},
(ii) TX is linearly independent.

Then, |M | = 2|X|+1 and M ∩Z(R) = {1}. In particular, |R| ≥ 22|X|+3.

Proof. By (ii), 2|X| ≤ |M | ≤ 2|X|+1. If |M | = 2|X|, then rb can

be expressed as a product of some of the elements rx, x ∈ X. Since

[ra, rx] = 1 for each x ∈ X, it follows that [ra, rb] = 1, a contradiction

to Proposition 7.4(i). So |M | = 2|X|+1.

Suppose that M ∩ Z(R) 6= {1} and 1 6= z ∈ M ∩ Z(R). Let

z = Π
y∈X∪{b}

r
iy
y , iy ∈ {0, 1}. Since z ∈ Z(R), ib = 0 by the previous

argument. Then, it follows that z ∈ MX , a contradiction to (i). So

M ∩ Z(R) = {1}.
By Corollary 7.8, |R| ≥ 22(|X|+1)+1 = 22|X|+3. ¤

A subset X of A is good if (i) and (ii) of Proposition 7.15 hold.

The next Lemma gives a necessary condition for a subset of A to be

good.
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Lemma 7.16. Let X be a subset of A which is not good, α ∈
MX ∩ Z(R) (possibly α = 1) and

(7.2.1) α = Π
xk∈X

rik
xk

where ik ∈ {0, 1}. Set B = {k : xk ∈ X}, B′ = {k ∈ B : ik = 1} and

Ai,j = {k ∈ B′ : xk ∈ Q(xi, xj)} for 1 ≤ i 6= j ≤ t + 1. Assume that B′

is non-empty when α = 1. Then:

(i) |B′| ≥ 3,

(ii) |B′| is even if and only if |Ai,j| is even.

Proof. (i) |B′| ≥ 2 because rxk
/∈ Z(R) for each k (Proposition

7.4(iii)). If |B′| = 2, then rxry = α for some pair of distinct x, y ∈ X.

Since ψ is faithful and rx, ry are involutions, α 6= 1. For the quad

Q = Q(x, y) of S, 1 6= α ∈ MQ ∩ Z(R). By Proposition 7.12, Q is

a (2, 2)-GQ and rarbrc = α for each complete triad {a, b, c} of Q. In

particular, if {x, y, w} is the complete triad of Q containing x and y,

then rxryrw = α. It follows that rw = 1, a contradiction. So |B′| ≥ 3.

(ii) Let w ∈ Q(xi, xj) and w � a. For each m ∈ B′
i,j = B′ \ Ai,j,

d(w, xm) = 3 because xm ∼ a. Now, [rw, Π
m∈B′i,j

rxm ] = [rw, Π
m∈B′

rxm ] =

[rw, α] = 1. So |B′
i,j| is even by Lemma 7.10. This implies (ii). ¤

In what follows, for any subset X of A which is not good, B′ is

defined relative to an expression as in (7.2.1) for an arbitrary but fixed

element of MX ∩ Z(R).

We now prove Theorem 7.2 for E1 and E2. By Proposition 7.15, it

is enough to find good subsets of A of size (2ξ − 2)/2. In the following

we use the notation of Lemma 7.16.

First, consider the case E1. Let X = {xi : 1 ≤ i ≤ 11}. Then, X

is a good subset of A. Otherwise, for some i, j ∈ B′ with i 6= j (see

Lemma 7.16(i)), Ai,j = {i, j} and Ai,12 = {i} and, by Lemma 7.16(ii),

|B′| would be both even and odd.

Now, consider the case E2. There are 7 quads of S containing the

point x1 ∈ A. This partitions the 14 points ( 6= x1) of A, say

{x2, x3}∪{x4, x5}∪{x6, x7}∪{x8, x9}∪{x10, x11}∪{x12, x13}∪{x14, x15}.
Consider the quad Q(x10, x12). We may assume that Q(x10, x12)∩A =

{x10, x12, x15}. We show that

X = {x2, x3, x4, x5, x6, x7, x8, x10, x12, x14}
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is a good subset of A.

Assume otherwise. Let C1 = {8, 10, 12, 14} and C2 = B \ C1. For

k ∈ C1, Q(x1, xk) ∩ A = {x1, xk, xk+1}. So A1,k ⊆ {k}. By Lemma

7.16(ii), either C1 ⊆ B′ or C1 ∩ B′ is empty. Now, C1 * B′ because,

otherwise, A1,14 = {14} and A10,12 = {10, 12} and, by Lemma 7.16(ii),

|B′| would be both odd and even.

So C1 ∩ B′ is empty. Then, B′ ⊆ C2. Since A1,8 is empty, |B′|
is even. Choose j ∈ B′ (see Lemma 7.16(i)). Note that there exists

k ∈ {8, · · ·, 15} such that Q(xj, xk) ∩ {xi : i ∈ C2} = {xj}. Then,

Aj,k = {j} and |B′| is odd also, a contradiction. So, X is good and

|X| = 10. This completes the proof.

7.3. Proof of Theorem 7.1

Let S = (P, L) be a slim dense near hexagon having big quads of

type (2, 4) and Y be a proper subspace of S isomorphic to the near

hexagon Q−
6 (2)× L3. Big quads of Y are also of type (2,4). There are

three pair-wise disjoint big quads of Y and any two of them generate Y .

Fix two disjoint big quads Q1 and Q2 in Y . Let (R, ψ) be a non-abelian

representation of S. Set M = 〈ψ(Y )〉 and Mi = MQi
for i ∈ {1, 2}.

Then, Mi is elementary abelian of order 26 (Proposition 5.18(iii)); Mi∩
Z(R) = {1} (Proposition 7.12); M1 ∩ M2 = {1} (Proposition 7.14);

and M = 21+12
+ with M = M1M2R

′ (Theorem 7.2 for Q−
6 (2) × L3).

Let N = CR(M). Then, R is a central product of M and N , we write

R = M ◦N . This can be seen considering the orthogonal decomposition

of R/R′ with respect to the bilinear form defined in (3.1.1) which is

non-degenerate if and only if R′ = Z(R). Since M is a central product

of six copies of D8, the centralizer in M2 of a maximal subgroup of M1

is of order two and vise-versa.

Let {i, j} = {1, 2}. In the following, we use the notation of Section

6.3.

Proposition 7.17. For each x ∈ P \ Y , rx has a unique decom-

position as rx = mx
1m

x
2nx, where mx

j = rzj

xi
∈ Mj and nx ∈ N is an

involution not in Z(R). In particular, rx /∈ M .

Proof. We can write rx = mx
1m

x
2nx for some mx

1 ∈ M1, mx
2 ∈ M2

and nx ∈ N . Set Hj = 〈rw : w ∈ Qj ∩ xj⊥〉 ≤ Mj. Then, Hj is

a maximal subgroup of Mj (Lemma 3.6). Since d(x,w) ≤ 2 for each
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w ∈ Qj ∩ xj⊥, rx ∈ CR(H1) ∩ CR(H2). For all h ∈ Hj,

[mx
i , h] = [mx

1m
x
2nx, h] = [rx, h] = 1.

So mx
i ∈ CMi

(Hj). If mx
i = 1, then rx = mx

j nx commutes with every

element of Mj. In particular, [rx, ry] = 1 for every y ∈ Qj ∩ Γ3(x), a

contradiction to Theorem 7.4(i). So, mx
i 6= 1. Further, since CMi

(Hj) =

〈rzi
xj
〉 is of order two, it follows that mx

i = rzi
xj

. Now, [mx
1 ,m

x
2 ] = 1,

since d(z2
x1 , z1

x2) = 2 (Proposition 6.25(i)). Since r2
x = 1, n2

x = 1.

We show that nx 6= 1 and nx /∈ Z(R). The quad Q = Q(x1, x2) is

of type (2,2) or (2,4) because, x1 and x2 have at least three common

neighbours x, z2
x1 and z1

x2 . Let U be the (2, 2)-GQ in Q generated by

{x1, x2, x, z2
x1 , z1

x2}. If Q is of type (2,4), then 〈ψ(U)〉 is of order 25

(Corollary 5.21). If Q is of type (2,2), then U = Q and it is ovoidal

because it is not a big quad. So 〈ψ(U)〉 is of order 25 (Propositions

7.13). In either case, rarbrc 6= 1 for every complete triad {a, b, c} of U

(Proposition 5.22). In particular, nx = rxrz2
x1

rz1
x2
6= 1 for the complete

triad {x, z2
x1 , z1

x2} of U . Now, applying Proposition 7.12 (respectively,

Proposition 7.13) when Q is of type (2,4) (respectively, of type (2,2)),

we conclude that nx /∈ Z(R). The argument clearly yields the unique-

ness of the decomposition. ¤
Proposition 7.18. Let Q be a big quad of S disjoint from Y . Then:

(i) For x, y ∈ Q, [nx, ny] = 1 if and only if x = y or x ∼ y;

(ii) For each x ∈ Q, there is a unique line lx = {x, y, x ∗ y} in

Q containing x such that nx∗y = nxny. For any other line

l = {x, z, x ∗ z} in Q containing x, nx∗z = nxnzµ.

Proof. (i) Let x ∼ y. By Lemma 6.27(ii), [mx
2 ,m

y
1] = [mx

1 ,m
y
2] = 1

or µ . Then, [nx, ny] = [mx
1m

x
2nx,m

y
1m

y
2ny] = [rx, ry] = 1.

Now, let x � y. Lemma 6.28 implies that {[mx
1 ,m

y
2], [m

x
2 ,m

y
1]} =

{1, µ}. Since [rx, ry] = 1, it follows that [nx, ny] = µ.

(ii) Let x ∈ Q and lx be the line in Q containing x whose projection

on Qj is the line xjzj
xi . This is possible by Lemma 6.23. For u, v ∈ lx,

d(zi
uj , z

j
vi) ≤ 2 by Lemma 6.27(ii). So [mu

i ,m
v
j ] = 1. Then, ru∗v =

(mu
1m

v
1)(m

u
2m

v
2)(nunv). So nu∗v = nunv. Let l be a line ( 6= lx) in Q

containing x. For y 6= w in l, [my
2,m

w
1 ] = µ, because d(z2

y1 , z1
w2) = 3

(Lemma 6.27). Then,

ry∗w = ryrw == (my
1m

w
1 )(my

2m
w
2 )nynwµ = my∗w

1 my∗w
2 nynwµ.

So, ny∗w = nynwµ. ¤
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Proposition 7.19. Let Q be a big quad of S disjoint from Y . De-

fine δ from Q to I2(N) by δ(x) = nx. Then:

(i) [δ(x), δ(y)] = 1 if and only if x = y or x ∼ y.

(ii) δ is one-one.

(iii) There exists a spread T of Q such that for x, y ∈ Q with x ∼ y,

δ(x ∗ y) =

{
δ(x)δ(y) if xy ∈ T

δ(x)δ(y)µ if xy /∈ T
.

Proof. (i) and (iii) follows from Proposition 7.18. We prove (ii).

Let δ(x) = δ(y) for x, y ∈ Q. By (i), x = y or x ∼ y. If x ∼ y, then

rx∗y = rxry = (mx
1m

y
1)(m

x
2m

y
2)α ∈ M , where α = [mx

2 ,m
y
1] ∈ R′. But

this is not possible as x ∗ y /∈ Y (Proposition 7.17). So x = y. ¤

Proposition 7.20. Let S = (P,L) be a slim dense near hexagon

having big quads of type (2, 4). Suppose that the Fischer space on big

quads of S contains a subspace H isomorphic to the dual affine plane

of order 2. Then, every representation of S is abelian.

Proof. Let H = {Q1, Q2, Q3, Q, T1, T2} with the four lines {Q1, Q2, Q3},
{Q1, Q, T1}, {T1, T2, Q3} and {Q, T2, Q2}. Then, Y = Q1 ∪ Q2 ∪ Q3 is

isomorphic to Q−
6 (2)× L3 and Q is a big quad of S disjoint from Y .

Suppose that (R,ψ) is a non-abelian representation of S and let

M and N be as in the beginning of this section. For each x ∈ P ,

we can write rx = rz1
x2

rz2
x1

nx, where nx ∈ N \ Z(R) is an involution

(Proposition 7.17). Let l = {a, b, c} be a line of S intersecting T1 at

{a}, T2 at {b} and Q3 at {c}. We show that na = nb, na = naQ
and

nb = nbQ
. Since aQ 6= bQ, naQ

= nbQ
would contradict Lemma 7.19(ii),

thus completing the proof.

For m ∈ {1, 2}, l is disjoint from Qm, so lm = {am, bm, cm = zm
c }

is a line of Qm. By Lemma 6.26(ii), (a1, b1) = (z1
b2 , z

1
a2) and (a2, b2) =

(z2
b1 , z

2
a1). So ra = rz1

a2
rz2

a1
na = rb1rb2na by Lemma 7.17. Similarly, rb =

ra1ra2nb. Now, rarb = (rb1rb2)(ra1ra2)nanb = (rb1ra1)(rb2ra2)nanb =

rc1rc2nanb. The second equality holds, since d(a1, b2) = 1 (Lemma

6.26(ii)). Since c1 = z1
c , c

2 = z2
c and {c, z1

c , z
2
c} is a line of Y , we get

rarb = rcnanb. But rarb = rc by the definition of a representation. So

na = nb.

Now, consider the line la = {a, aQ, a1 = a1
Q} intersecting T1 at

{a}, Q at {aQ} and Q1 at {a1 = a1
Q}. We have raraQ

= ra1 . Since

la is disjoint from Q2, l2a = {a2, a2
Q, z2

a1 = z2
a1

Q
} is a line of Q2. Now,
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raraQ
= rz1

a2
rz2

a1
rz1

a2
Q

rz2
a1

Q

nanaQ
. By Lemma 6.26(i), d(a1, a2

Q) = 2 and

so, [rz2
a1

, rz1
a2

Q

] = 1. Since a1 = a1
Q, we get raraQ

= rz1
a2

rz1
a2

Q

nanaQ
.

Since the line l2a is disjoint from Q1, its projection on Q1 is the line

{a1 = a1
Q, z1

a2 , z1
a2

Q
}. So raraQ

= ra1nanaQ
. Thus, na = naQ

. Similarly,

considering the line lb = {b, bQ, b2 = b2
Q} disjoint from Q1, the above

argument yields that nb = nbQ
. This completes the proof. ¤

Proof of Theorem 7.1. Let S = (P, L) be one of the near hexagons

E3 and G3. Let ∆S be the graph on big quads of S, two distinct

big quads being adjacent when they have non-empty intersection. If

S = G3, then ∆G3 is the 3-coclique extension of the (2,2)-GQ, and if

S = E3, then ∆E3 is locally the collinearity graph of the (2,4)-GQ (see

[9], p.361). In either case, it follows that for two adjacent vertices V1

and V2 of ∆S, there exists a vertex V of ∆S which is adjacent nei-

ther to V1 nor to V2. Consider the Fischer space F on big quads of S

as a slim partial linear space. Then, the subspace H of F generated

by the two intersecting lines {V, V1, V ∗ V1} and {V, V2, V ∗ V2} is iso-

morphic to the dual affine plane of order 2. So, by Proposition 7.20,

every representation of S is abelian. Since S is a subspace of the near

hexagon DH6(2
2), Proposition 7.4(i) implies that every representation

of DH6(2
2) is abelian. This completes the proof. ¤

7.4. Proof of Theorem 7.3

In this section, we construct non-abelian representations for each

of the near hexagons in Theorem 7.3, except for Q−
6 (2)⊗Q−

6 (2). In the

latter case, we construct a non-abelian representation in Section 7.5.

7.4.1. Q−
6 (2) × L3, W4(2) × L3 and Q+

4 (2) × L3. Let R = 21+2k
+ ,

k ∈ {4, 6}, R′ = {1, µ} and V = R/R′. We consider V as a vector space

over F2 and write V as an orthogonal direct sum of k hyperbolic planes

Ki (1 ≤ i ≤ k) in V with respect to the non-degenerate symplectic

bilinear form defined in (3.1.1). Let Hi be the inverse image of Ki in R.

Then, Hi is generated by two elements xi and x1
i such that [xi, x

1
i ] = µ.

Let M = 〈xi : 1 ≤ i ≤ k〉 and M1 = 〈x1
i : 1 ≤ i ≤ k〉. Then, M and

M1 are elementary abelian 2-subgroups of R of order 2k each. Further,

M, M1 and Z(R) pairwise intersect trivially and R = MM1Z(R).

Let F = (Q,B) be a (2, t)-GQ in M with M = 〈Q〉. Then, (k, t) =

(4, 1), (4, 2) or (6,4). Note that if (k, t) = (4, 2), then F is of symplectic
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type. For each m ∈ Q, the subgroup Hm = 〈z ∈ Q : z ∈ m⊥〉 of M is of

index 2 in M (Lemma 3.6). The centralizer of Hm in M1 is a subgroup

〈κ1
m〉 of M1 of order 2. The map m 7→ κ1

m from Q to M1 is one-one.

So, κ1
aκ

1
bκ

1
c = 1 for every line {a, b, c} in B. Let M2 = 〈mκ1

m : m ∈ Q〉.
Then, M2 is an elementary abelian 2-subgroup of R. Since M ∩M1 is

trivial, it follows that M2 is of order 2k. We set

Q1 = {κ1
m ∈ M1 : m ∈ Q},

Q2 = {mκ1
m ∈ M2 : m ∈ Q},

B1 = {{κ1
a, κ

1
b , κ

1
c} : {a, b, c} ∈ B},

B2 = {{aκ1
a, bκ

1
b , cκ

1
c} : {a, b, c} ∈ B}.

Then, M1 = 〈Q1〉; M2 = 〈Q2〉; and F 1 = (Q1, B1) and F 2 = (Q2, B2)

are (2, t)-GQs in M1 and M2, respectively. Now, take

Q = Q ∪Q1 ∪Q2,

B = B ∪B1 ∪B2 ∪ {{m,mκ1
m, κ1

m} : m ∈ Q}.
Then, S = (Q, B) is a partial linear space, isomorphic to Q+

4 (2)× L3 if

(k, t) = (4, 1); W4(2) × L3 if (k, t) = (4, 2); and Q−
6 (2) × L3 if (k, t) =

(6, 4). Note that F, F 1 and F 2 are the only big quads in the last two

cases. Thus we get non-abelian representations for Q−
6 (2)×L3,W4(2)×

L3 and Q+
4 (2)× L3.

7.4.2. H3 and DW6(2). Let R = 21+8
+ . Let F and F 1 be the

symplectic (2,2)-GQs, the case (k, t) = (4, 2) in Subsection 7.4.1. The

map σ : Q −→ Q1 taking m 7→ κ1
m,m ∈ Q, defines an isomorphism

from F to F 1. We set

Q = {mn1 : m ∈ Q,n1 ∈ Q1, [m, n1] = 1}
and define collinearity in Q as follows. For distinct m1n

1
1,m2n

1
2 ∈ Q

with m1,m2 ∈ Q and n1
1, n

1
2 ∈ Q1, we say that m1n

1
1 ∼ m2n

1
2 if and

only if [m1, n
1
2] = [m2, n

1
1] = 1 and (m1m2)(n

1
1n

1
2) ∈ Q. The second

condition implies that m1 6= m2 and n1
1 6= n1

2. The line containing

m1n
1
1 and m2n

1
2 is {m1n

1
1,m2n

1
2, (m1m2)(n

1
1n

1
2)}. [Note that if m1n

1
1

and m2n
1
2 are distinct points of Q with m1, m2 ∈ Q and n1

1, n
1
2 ∈ Q1,

then the following hold in Γ(Q):

(1) d(m1n
1
1,m2n

1
2) = 1 if and only if m1 6= m2, n

1
1 6= n1

2 and

[m1, n
1
2] = [m2, n

1
1] = 1.

(2) d(m1n
1
1,m2n

1
2) = 2 if and only if one of the following occur:

(i) m1 = m2, n
1
1 6= n1

2;

(ii) m1 6= m2, n
1
1 = n1

2;
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(iii) m1 6= m2, n
1
1 6= n1

2 and [m1, n
1
2] = [m2, n

1
1] = µ.

(3) d(m1n
1
1,m2n

1
2) = 3 if and only if m1 6= m2, n

1
1 6= n1

2 and

{[m1, n
1
2], [m2, n

1
1]} = {1, µ}.]

Let B be the set of all such lines in Q. Set

Q = Q ∪Q1 ∪Q and B = B ∪ B1,

where B1 = {{m,mn1, n1} : mn1 ∈ Q}. We show that F = (Q,B) '
H3 and F = (Q,B) ' DW6(2), thus giving non-abelian representation

for H3 and DW6(2).

We first recall the constructions of H3 and DW6(2) given in Section

6.2. Let S = (P, L) and S1 = (P 1, L1) be two (2,2)-GQs and let

π : x 7→ x1, x ∈ P, x1 ∈ P 1, denote an isomorphism from S to S1. Let

P = {(x, y1) ∈ P × P 1 : y1 ∈ x1⊥};
L = {{(x, u1), (y, v1), (z, w1)} : {x, y, z} is a line or a complete triad

of points of S and {x1, y1, z1}⊥ = {u1, v1, w1} in S1};
P = P ∪ P ∪ P 1;

L = L ∪ L1, where L1 = {{x, (x, u1), u1} : (x, u1) ∈ P}.
Then, S = (P ,L) ' H3 and S = (P,L) ' DW6(2) (see Theorems 6.3

and 6.10).

Now, let α : P −→ Q be an isomorphism from S to F and β :

P 1 −→ Q1 be the isomorphism from F 1 to Q1 such that the following

diagram commute:

P
π−→ P 1

α ↓ ↓ β

Q −→
σ

Q1.

Thus, β(u1) = σαπ−1(u1), u1 ∈ P 1. We show that, if x ∈ P and

u1 ∈ P 1, then (x, u1) ∈ P if and only if α(x)β(u1) ∈ Q. First, assume

that (x, u1) ∈ P and u ∈ P be such that π(u) = u1. Since (x, u1) ∈
P , x ∈ u⊥ and α(x) ∈ α(u)⊥. This implies that [α(x), σ(α(u))] =

1, since κ1
α(u) = σ(α(u)). But [α(x), σ(α(u))] = [α(x), σαπ−1(u1)] =

[α(x), β(u1)]. So α(x)β(u1) ∈ Q. Reversing the argument we conclude

that (x, u1) ∈ P when α(x)β(u1) ∈ Q.

Let the map ρ : P −→ Q be equal to α on P , β on P 1 and

ρ((x, u1)) = α(x)β(u1) for (x, u1) ∈ P . Then, ρ induces a bijection

from L to B and from L1 to B1. For the injectivity on L, we use the

fact that if {u, v, w} is either a line or a complete triad in Q or Q1, then
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uvw = 1 (see Proposition 5.22). So S ' F. Further, the restriction of

ρ to P is an isomorphism from S to F .

7.5. Proof of Theorems 7.2 and 7.3 for Q−
6 (2)⊗Q−

6 (2)

Let S = (P,L) be the near hexagon Q−
6 (2) ⊗ Q−

6 (2). We refer to

([9], p.363) for the following description of the Fischer space on the set

of the 18 big quads of S. This set partitions into two families F1 and

F2 of size 9 each such that each Fi defines a partition of the point set

P of S. Let Ui, i = 1, 2, be the linear space whose points are the big

quads of Fi. If Q1 and Q2 are two distinct points of Ui, then the line

containing them is {Q1, Q2, Q3}, where Q3 = Q1∗Q2 (Lemma 6.23(ii)).

Then, Ui is an affine plane of order 3.

Consider the affine plane U1. Fix an affine line {Q1, Q2, Q3} in U1.

Then, Y = Q1 ∪ Q2 ∪ Q3 is isomorphic to Q−
6 (2) × L3. Fix an affine

point Q in U1 such that Q ∩ Y is empty.

Proof of Theorem 7.2. Let the subgroups M and N of R be

as in the beginning of Section 7.3. Then, |N | ≤ 27 because, |R| ≤
21+dimV (S) = 219 (Corollary 7.6). We show that N = 21+6

− . This would

prove Theorem 7.2 for Q−
6 (2)⊗Q−

6 (2).

Let {a1, a2, b1, b2} be a quadrangle in Q, where a1 � a2 and b1 �
b2. Let the map δ be as in Corollary 7.19. Then, the subgroup

〈δ(a1), δ(a2), δ(b1), δ(b2)〉 of R is isomorphic to a central product H =

〈δ(a1), δ(a2)〉 ◦ 〈δ(b1), δ(b2)〉. We can write N as a central product

N = H ◦ K, where K = CN(H). Then, |K| ≤ 23. There are three

more common neighbours, say w1, w2, w3, of a1 and a2 in Q different

from b1 and b2. We can write

δ(wm) = δ(a1)
i1δ(a2)

i2δ(b1)
j1δ(b2)

j2km

for some km ∈ K, where i1, i2, j1, j2 ∈ {0, 1}. Now, by Corollary 7.19(i),

[δ(wm), δ(ar)] = 1 and [δ(wm), δ(br)] 6= 1 for r = 1, 2. This implies

that i1 = i2 = 0 and j1 = j2 = 1; that is, δ(wm) = δ(b1)δ(b2)km.

In particular, km is of order 4. Since [δ(wm), δ(wn] 6= 1 for m 6= n

(Corollary 7.19(i)), it follows that [km, kn] 6= 1. Thus, K is non-abelian

and is of order 8; and k1, k2 and k3 are three pair-wise distinct elements

of order 4 in K. So, K is isomorphic to Q8 and N = 21+6
− . This

completes the proof. ¤
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The rest of this section is devoted to prove Theorem 7.3 for Q−
6 (2)⊗

Q−
6 (2). Taking {i, j, k} = {1, 2, 3}, we make use of the notation and

the results of Section 6.3.

Let l = {a, b, c} be a line of S not contained in Y . If l meets Y

at some point c, say, and is disjoint from Q, then exactly one of the

lines aaQ and bbQ meet Y . If l meets Q at some point and is disjoint

from Y , then l corresponds to the affine line of U1 containing Q and

parallel to {Q1, Q2, Q3}. Further, if x ∈ l \ (l ∩ Q), then the line xxi

is disjoint from Q. Now, let l be disjoint from both Y and Q. Then l

is contained in a point of U1 different from Q and Qi, i ∈ {1, 2, 3}; or

it corresponds to the affine line of U1 not containing Q and parallel to

{Q1, Q2, Q3}. So, the lines aaQ, bbQ and ccQ either meet Y or all have

empty intersection with Y . In the first case, if xxQ∩Y = {xY } for x ∈ l

and lY = {xY : x ∈ l}, then lY is a line of Qi for some i ∈ {1, 2, 3}; or

|lY ∩ Qi| = 1 for each i ∈ {1, 2, 3} (and lY need not be a line in this

case).

For the rest of the section, recall the definition of the spread TQ of

Q from Corollary 6.31.

Lemma 7.21. Let l = {a, b, c} be a line of S disjoint from Y ∪Q.

Assume that, for each x ∈ l, the line xxQ meets Y at a point, say xY .

Let m,n ∈ {1, 2, 3} with m 6= n. Then, the following hold:

(i) If l is contained in a point of U1, then d(am, bn) ≤ 2 or d(am, bn) =

3 according as lQ ∈ TQ or not.

(ii) If l corresponds to the affine line of U1 not containing Q and

parallel to {Q1, Q2, Q3}, then lQ /∈ TQ and d(am, bn) = 3.

Proof. (i) Let lY = {aY , bY , cY }. Then, lY is a line of Qi, Qj or Qk,

say Qi. (If K is the affine point of U1 containing l, then Qi = K ∗Q.)

Let x ∈ l. Then xi = xi
Q = xY ∈ Qi, so li = liQ. The line lx =

{x, xQ, xY } is disjoint from Qj and Qk. So ljx = {xj, xj
Q, zj

xY
= zj

xi
Q
}

and lkx = {xk, xk
Q, zk

xY
= zk

xi
Q
} are lines of Qj and Qk, respectively.

If lQ ∈ TQ, then ljQ = {xj
Q, zj

xi
Q
, zj

xk
Q
} by Lemma 6.29. Since |ljQ∩ljx| ≥

2, we get ljQ = ljx. Thus xj ∈ ljQ for each x ∈ l and so, lj = ljQ. Similarly,

lk = lkQ. Now, Corollary 6.32 completes the proof of (i) in this case.

If lQ /∈ TQ, then consider (6.3.3) for the line lQ and the lines ljx and

lkx above. Then, ljx and lkx are the lines corresponding to the x-column
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in T
lQ
j and T

lQ
k , respectively. So zj

xk
Q

= xj and zk
xj

Q

= xk and (i) in this

case follows from Corollary 6.32.

(ii) Here lY meets each of Qi, Qj and Qk. We may assume that

aY ∈ Qi, bY ∈ Qj and cY ∈ Qk. Then ai = ai
Q = aY , bj = bj

Q = bY and

ck = ck
Q = cY . Suppose that lQ ∈ TQ. Since τik(l

i
Q) = lkQ (Lemma 6.29),

we may assume that bk
Q ∼ ai

Q (see (6.3.2)). Then, zj

ai
Q

= cj
Q. The line

la = {a, aQ, aY = ai
Q} is disjoint from Qj. So lja = {aj, aj

Q, zj

ai
Q

= cj
Q} is

a line in Qj. But ljQ = {aj
Q, bj = bj

Q, cj
Q} is a line in Qj, and so aj = bj,

a contradiction to the fact that {aj, bj, cj} is a line in Qj. So lQ /∈ TQ.

Since ai = ai
Q, bj = bj

Q, ck = ck
Q, (6.3.3) applied to the line lQ together

with Corollary 6.32 implies (ii). ¤
Lemma 7.22. Let x be a point in P \(Y ∪Q) such that the line xxQ

is disjoint from Y . Let ζxQ
= {xQ, ax, bx} ∈ TQ and xxQ = {x, xQ, y}.

Then {(x1, x2, x3), (y1, y2, y3)} = {(a1
x, a

2
x, a

3
x), (b

1
x, b

2
x, b

3
x)}.

Proof. Let l = xxQ. If xi ∈ ζ i
xQ

, then ζ i
xQ

= li. By the definition

of ζxQ
and Lemma 6.29, τij(ζ

i
xQ

) = ζj
xQ

. So zj
xi ∈ ζj

xQ
. Since xj ∼ zj

xi

and xj ∼ xj
Q in the line ζj

xQ
, it follows that xj ∈ ζj

xQ
. So li = xizi

xj .

Then, τij(l
i) = lj (Lemma 6.27(i)). So lj = ζj

xQ
and the result follows

(see (6.3.2)). Thus, it is enough we show that xi ∈ ζ i
xQ

.

Suppose that xi /∈ ζ i
xQ

. Let l = {x, xi, w} be the line xxi of S.

Then, l is disjoint from Q. Consider the line lQ = {xQ, (xi)Q, wQ} of

Q. Since (xi)Q /∈ ζxQ
, lQ 6= ζxQ

and ζxQ
∩ lQ = {xQ}. The line wwQ

meets either Qj or Qk, say Qk. Since l is disjoint from both Qj and

Qk, l
j

= {xj, zj
xi , w

j} and l
k

= {xk, zk
xi , wk = wk

Q} are lines of Qj and

Qk, respectively. Applying Lemma 6.26(ii) to l, we get wj ∼ xk and

wk ∼ xj.

Now, d(xk, xQ) = d(xk, x)+d(x, xQ) = 2 and d(xk, wQ) = d(xk, wk)+

d(wk, wQ) = 2. So, d(xk, (xi)Q) = 1. Again, d(xj, xQ) = d(xj, x) +

d(x, xQ) = 2 and d(xj, wQ) = d(xj, wk)+d(wk, wQ) = 2 (since wk ∼ xj).

So, d(xj, (xi)Q) = 1. Let c = (xi)Q. Then, cj = xj and ck = xk. Now,

l
k

Q = ckwk
Q = ckwk = ckzk

xj = ckzk
cj . Applying Lemma 6.27(i) to lQ, we

get τkj(l
k

Q) = l
j

Q. So lQ ∈ TQ (see Lemma 6.29). But ζxQ
∈ TQ and

ζxQ
∩ lQ = {xQ}. This leads to a contradiction to the fact that TQ is a

spread of Q (Corollary 6.31). So xi ∈ ζ i
xQ

. ¤
In view of Proposition 7.19, we now prove
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Lemma 7.23. Let N = 21+6
− with N ′ = {1, µ} and let I2(N) be

the set of involutions in N . There exists a map δ from Q to I2(N)

satisfying the following:

(i) δ is one-one.

(ii) For x, y ∈ Q, [δ(x), δ(y)] = 1 if and only if either x = y or

x ∼ y.

(iii) If x, y ∈ Q and x ∼ y, then

δ(x ∗ y) =

{
δ(x)δ(y) if xy ∈ TQ

δ(x)δ(y)µ if xy /∈ TQ
.

Proof. First, recall the model for Q given in Section 5.1. Let Ω =

{1, 2, 3, 4, 5, 6} and Ω′ = {1′, 2′, 3′, 4′, 5′, 6′}. Let E be the set of all 2-

subsets of Ω and F be the set of all factors of Ω. Then, the point set

of Q is E ∪Ω∪Ω′ and the line set is F ∪{{i, {i, j}, j′} : 1 ≤ i 6= j ≤ 6}.
We may assume that the spread TQ of Q consists of the following

lines:

l1 = {{1, 2}, {3, 4}, {5, 6}}; l2 = {{1, 4}, 1, 4′}; l3 = {{2, 6}, 2, 6′};
l4 = {{1, 6}, {2, 4}, {3, 5}}; l5 = {{1, 5}, 1′, 5}; l6 = {{2, 3}, 2′, 3};
l7 = {{1, 3}, {2, 5}, {4, 6}}; l8 = {{3, 6}, 3′, 6}; l9 = {{4, 5}, 4, 5′}.
We write N as a central product N = 〈x1, y1〉 ◦ 〈x2, y2〉 ◦ Q8, where

xi, yi are involutions, 〈xi, yi〉 is isomorphic to the dihedral group D8

of order 8, and Q8 is the quaternion group of order 8. Let Q8 =

{1, µ, i, j, k, i3, j3, k3}, where i2 = j2 = k2 = µ; ij = k; and ji = k3 =

kµ. We define δ : Q −→ I2(N) as follows:

δ(l1) = {x1, x2, x1x2};
δ(l2) = {x1y1y2i, x2y2j, x1x2y1kµ};
δ(l3) = {x1y1iµ, x1x2y2k, x2y1y2jµ};
δ(l4) = {y1, y1y2, y2};
δ(l5) = {x1x2y1i, x2y2kµ, x1y1y2j};
δ(l6) = {x2y1y2iµ, x1x2y2jµ, x1y1k};
δ(l7) = {x1x2y1y2µ, x2y1µ, x1y2µ};
δ(l8) = {x1x2y2iµ, x1y1jµ, x2y1y2k};
δ(l9) = {x2y2i, x1x2y1j, x1y1y2kµ}.

Here, if li = {a, b, c}, then δ(li) denotes {δ(a), δ(b), δ(c)} preserving the

order. It can be verified that δ satisfies the conditions (i), (ii) and (iii)

of the lemma. ¤
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Consider the map δ : Q −→ I2(N) in Lemma 7.23. We now extend

δ to P \ Y . For x ∈ P \ (Y ∪ Q), let ζxQ
= {xQ, ax, bx} ∈ TQ. If the

line xxQ intersects Y , then we define δ(x) = δ(xQ). If xxQ is disjoint

from Y , let (b1
x, b

2
x, b

3
x) = (x1, x2, x3) (see Lemma 7.22). In that case,

we define δ(x) = δ(ax). That is; for x ∈ P \ (Y ∪Q),

δ(x) =

{
δ(xQ) if xxQ intersects Y

δ(ax) if xxQ ∩ Y is empty and (x1, x2, x3) = (b1
x, b

2
x, b

3
x)

.

We now construct a non-abelian representation of S. Let R = 21+18
−

with R′ = {1, µ}. We write R as a central product R = M ◦N , where

M = 21+12
+ and N1+6

− . Let (M,λ) be a non-abelian representation of Y

(see Subsection 7.4.1). Define a map β : P −→ R as follows:

β(x) =

{
λ(x) if x ∈ Y

λ(z1
x2)λ(z2

x1)δ(x) if x ∈ P \ Y
.

For x ∈ P \ Y , Lemma 6.25(i) implies that d(z2
x1 , z1

x2) = 2. So

[λ(z1
x2), λ(z2

x1)] = 1 and β(x) is an involution.

Proposition 7.24. (R, β) is a non-abelian representation of S.

Proof. Only condition (ii) of Definition 3.5 needs to be verified.

Let l = {u, v, w} be a line of S. We assume that l is not contained in Y

and that l∩Y = {w} if l intersects Y . We show that β(u)β(v) = β(w).

We have

(7.5.1) β(u)β(v) = λ(z1
u2)λ(z1

v2)λ(z2
u1)λ(z2

v1)δ(u)δ(v)r′,

where r′ = [λ(z2
u1), λ(z1

v2)] ∈ R′.
Case (I) l intersects Y at w: In this case, Lemma 6.26 yields that

r′ = 1. If w ∈ Q1, then u1 = v1 = w and β(u)β(v) = λ(z1
u2)λ(z1

v2)δ(u)δ(v) =

λ(w)δ(u)δ(v). The last equality holds because {z1
u2 , z1

v2 , w} is a line of

Q1. Similarly, β(u)β(v) = λ(w)δ(u)δ(v) if w ∈ Q2. If w ∈ Q3, then

{z1
u2 , z1

v2 , z1
w} and {z2

u1 , z2
v1 , z2

w} are lines of Q1 and Q2 respectively. So,

β(u)β(v) = λ(z1
w)λ(z2

w)δ(u)δ(v) = λ(w)δ(u)δ(v). The last equality

holds because {z1
w, z2

w, w} is a line of Y . Since β(w) = λ(w), we get

β(u)β(v) = β(w)δ(u)δ(v). Thus, we need to prove that δ(u) = δ(v).

If l intersects Q, say l ∩Q = {v}, then uQ = v and so, δ(u) = δ(v).

Let l ∩ Q be empty. Exactly one of the lines uuQ and vvQ, say uuQ,

meets Y . So δ(u) = δ(uQ). Let lvQ
= {vQ, av, bv}. By Lemma 7.22,

we assume that (v1, v2, v3) = (b1
v, b

2
v, b

3
v). Then δ(v) = δ(av). Since
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w ∈ {v1, v2, v3}, it follows that bv ∼ w. So wQ = bv and uQ = av.

Thus, δ(u) = δ(uQ) = δ(av) = δ(v).

Case (II) l disjoint from Y : Since
{
z1

u2 , z1
v2 , z1

w2

}
and

{
z2

u1 , z2
v1 , z2

w1

}
are lines of Q1 and Q2 respectively, β(u)β(v) = λ(z1

w2)λ(z2
w1)δ(u)δ(v)r′.

To complete the proof, we show that either r′ = 1 and δ(u)δ(v) = δ(w)

or r′ = µ and δ(u)δ(v) = δ(w)µ. This follows from Corollary 6.32 and

Lemma 7.23(iii) if l ⊂ Q.

Assume that l intersects Q at a point, say w. Let ζw = {w, a, b} ∈
TQ. Applying Lemma 7.22, we get ζj

w = lj in Qj and {δ(u), δ(v)} =

{δ(a), δ(b)}. This, together with ζw ∈ TQ, yields that δ(u)δ(v) = δ(w)

(Lemma 7.23(iii)) and r′ = 1 (Corollary 6.32).

Now, assume that l ∩ Q is empty. If the lines uuQ, vvQ and wwQ

meet Y , then Lemmas 7.21 and 7.23(iii) complete the proof. So, we

may assume that none of uuQ, vvQ and wwQ meet Y . First, let lQ ∈ TQ.

Then lQ = ζuQ
= ζvQ

= ζwQ
. Applying Lemma 7.22 to the lines

xxQ, x ∈ l, it follows that ljQ = lj in Qj and (δ(u), δ(v), δ(w)) =

(δ(wQ), δ(uQ), δ(vQ)) or (δ(vQ), δ(wQ), δ(uQ)). Then, it follows that

δ(u)δ(v) = δ(w) (Lemma 7.23(iii)) and r′ = 1 (Corollary 6.32).

Now, let lQ /∈ TQ. For x ∈ l, let ζxQ
= {xQ, ax, bx}. We may assume,

by Lemma 7.22, that (x1, x2, x3) = (a1
x, a

2
x, a

3
x) . So, δ(x) = δ(bx). For

distinct x, y ∈ l, ai
x = xi ∼ yi = ai

y in Qi. Thus, la = {au, av, aw} and

lb = {bu, bv, bw} are lines of Q. Since lb /∈ TQ, δ(u)δ(v) = δ(bu)δ(bv) =

δ(bw)µ = δ(w)µ. Again, la /∈ TQ implies that d(u1, v2) = d(a1
u, a

2
v) = 3

(Corollary 6.32) and so, r′ = µ. This completes the proof. ¤
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Γi(x),Γ≤i(x), 2
k-arc, 8
p-partition, 43
x ∗ y, 2
x⊥, 2
‘exactly one’ axiom, 6
‘near polygon’ property, 10
‘one or all’ axiom, 3
3-regular, 8

abelian representation, 32
adjacency, 1
anti-regular, 8
anti-regular point, 7
automorphism, 3

big hex, 68
big quad, 67
bipartite, 1

center, 7, 8
circuit, 1
classical near polygon, 12
classical point-quad pair, 12
classical quad, 12
clique, 1
co-dimension of a singular space, 4
collinear, 2

collinearity graph, 2
commuting graph, ix
complement graph, 1
complete arc, 8
connected, 1, 2
convex, 11
cover of a representation, 32

dense, 12
diameter, 1
dihedral group, 30
dimension of a singular space, 4
direct product, 3
distance, 1, 2
dual, 6
dual polar space of rank n, 13

edge, 1
elementary abelian, 29
embedding, 31
equivalent representations, 32
even involution, 18
extended ternary Golay code, 15
extraspecial p-group, 30

faithful representation, 32
finite partial linear space, 2
Fischer space, 75

gated, 11
generalized n-gon, 5
generalized hexagon, 6
generalized octagon, 6
generalized quadrangle, 6
generalized triangle, 6
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geodesic, 1
geometric hyperplane, 3
girth, 1
good subspace, 14
graph, 1

Hall-commutator formula, 29
hyperoval, 16

incidence graph, 2
involution geometry, ix, 17
isomorphic, 3
isomorphism, 3

length, 1
line-line relation, 10
linear space, 2

model for (2,2)-GQ, 55
model for (2,4)-GQ, 56

near 2n-gon, 10
near hexagon, 10
near octagon, 10
near polygon, 10
near quadrangles, 10
negative l-cycle, 20
negative part, 20
negative transposition, 20
non-abelin representation, 32
non-degenerate, 2

octads, 33
odd involution, 18
order, 2
ovoid, 8
ovoidal point-quad pair, 12
ovoidal quad, 12

parallel lines, 11
parameters, 2
partial linear space, 2
path, 1
point-line geometry, 1
point-quad relation, 11
polar space, 3

positive l-cycle, 20
positive part, 20
positive transposition, 20

quad, 11
quad-quad relation, 11
quaternion group, 30

rank, 4
regular, 7
regular element, 40
regular point, 7
regular subgroup, 40
representation, xii, 32
representation group, 32
root group geometry, x

self-dual, 6
sign change, 19
singular subspace, 3
slim, 2
slim dense near hexagon, 14
special geometric hyperplane, 10
spread, 8
Steiner system S(24, 8, 5), 16
subspace, 3
subspace generate by, 3
support of a point, 14

thick line, 2
thick partial liner space, 2
thick point, 2
triad, 7
triangular set, ix, 17
trivial triangular set, 17
type of a quad, 67
type of an element, 20

universal embedding, 31
universal embedding module, xi, 31
universal representation, 32
universal representation group, xi, 32

vertex, 1

weight of a point, 14


