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Abstract

We study broadeasting of entanglement where we use universal
quantum cloners (in general less optimal) to perform local cloning op-
erations . We show that there & a lower bound on the fidelity of the
universal quantum cloners that can be wsed for broadeasting. We prove
that an entanplement is optimally broadeast only when optimal quan-
tum cloners are used for local copying. We also show that broadeasting
of entanglement into more than two entangled pairs is forbidden using
only local operations.
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1 Introduction

Broadcasting quantum inseparability i.e. nonlocal correlations of quantum
states was first shown to be possible by Buzek et al [1). The entanglement
originally shared by a single pair is transferred into two less entangled pairs
using only local operations. Suppose two distant parties a; and as share an
entangled two qubit state

W) = al00) g0, + B111)5,4, (1)
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where o + 32 = 1 and o, 3 are real.

The first qubit belongs to a; and the second belongs to as. Each of the two
parties now performs local cloning operations on their own qubit. It turns
out that for some values of o,

{a) non local output states are inseparable, and
(b) local output states are separable

hold simultaneously. Buzek et al. [1] used optimal quantum cloners [3,4.5.6]
for local copying of the subsystems and showed that the nonlocal outputs
are inseparable if
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Considering the potential applicability of copying quantum inseparability in
the field of quantum communications the range of o? becomes crucial since
it defines which entangled states are accessible for broadcasting.

This paper is organised as follows. First we use universal quantium clmmn—‘.ﬂ
(in general less optimal) for local copying of the qubits to obtain the non-
local output state as a function of cloning machine reduction factor and .
The range of a” is then provided as a function of the reduction factor from
which it follows that the range defined by (2) is indeed the largest possible
attainable using only local operations. We also show that only those uni-
versal gquantum cloners for which the fidelity exceeds some threshold value
are useful in the sense that the nonlocal output state becomes inseparable
for some values of . Lastly we investigate the possibilty of broadcasting
entanglement into three pairs using only local operations.

? The quantum cloners that we refer are 1 — 2 type unless otherwise stated ( Sec. 3).



2 Broadcasting of entanglement using universal quantum
cloner for local copying

Possibly the most prominent feature that distinguishes between classical
and quantum information theory is the “no cloning theorem” [2] which
prevents in producing perfect copies of an arbitrary quantum mechanical
state. The question “ how well then one can replicate a quantum mechan-
ical state 7 7 lead to the concept of quantum cloning machine or simply
quantum cloner. Buzek and Hillary [3] were the first to construct an uni-
versal guantum cloner which was later shown to be optimal by Brufl et al
4. A 1 — 2 universal quantum cloner is defined as a quantum mechan-
ical device which takes a given qubit together with a blank one as input
to produce two qubits at the output. If the given unknown input state is
[i)(or , pin = |¥){1]) then each output state is given by the reduced density
Operator pae = 17 |10) (1] + % {(1—n) 1. Since one can always write the den-
sity operator of the input state in the form |¢¥) (¢)|= %{I + §.7), therefare
the output state can also be written as poe = _% (I +75.7), where [ is the
2 x 2 identity matrix 7 represents the set of Pauli spin matrices and 1 is the
reduction factor of the original Bloch vector F. The measure of the quality
of clones is defined by the fidelity F = (1| p |/} = 1 (14 5). Its clear that
the maximal value of 5 corresponds to the optimal quantum cloner which
therefore produces the best possible replicas. The symmetry and isotropy
conditions than an universal guantum cloner satisfies have been discnssed
in details in Ref. [4].

We first use the following universal cloning transformation for local copy-
ing to broadcast entanglement. This is the simplest less optimal cloning
transformation requiring two maore ancilla qubits, defined by

U10) ) |Q) = a |00} |4) + b(|01) + [10)) | B) (3)

UL ) |Q) = a|11) [4) + b(j01) + [10))[B) (4)

where |)denotes the blank qubit supplied to the ciﬂfﬂr,i@} denotes the initial
state of the quantum copier (ancilla), |4}, |B),|A4).|B) are the normalized
ancilla output states. The coeflicients @ and b are in general complex. The
following conditions hold from unitarity, isotropy and symmetry require-
ments for an universal quantum cloner [4]

la? +2b]2 =1 (5)
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(B| B)=(A| B) = (A|B) =0 (6)

The fidelity of the above universal quantum cloner defined by the transfor-
mations (3) and (4) along with the conditions (5) and (6), is given by

= é{l +1) (7)

where the reduction factor # is given by

—— e

n=|a]* = Re (h"a{ﬁl A) + a*h{A| B}) (8)

s

Choosing, (B |A4) = E:E| B) = 1 one obtains the optimal quantum cloner [4]
for which 7 = 2/3. Thus a less optimal quantum cloner but nevertheless
universal (isotropic) can be constructed by varying the scalar product of the
ancilla output states.

Now consider two distant parties ayand as share a pair of particles prepared
in the state

|¥) = a00) + 8]11) 9)

where a, /3 are real and a? + 32 = 1. The first qubit belongs to a; and the
second qubit belongs to as. Now the two systems a;(i = 1,2) are locally
copied according to the cloning transformations (3) and (4) to produce out-
put two systems bi(i = 1,2). The local output state of a copier is given by
the density operator

i

A = a?n|00) (00] + 820 | |LL) (11] + (1 — ) |+) (+] (10)

The nonlocal output is described by the density operator

azh;

5 — [o2 4 {?}?] 100} (00] + [3*n + (?}2] ) {11

l;n_}(lm} (01] + [10) (101} + afn*([00) (11| + [11) {00]) i #j (11)

Yl = 2 (01} + [10))

|




}

It follows from the Peres-Horodecki theorem [7.8] that ﬁi‘::: is inseparable
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The requirement that [% - %)—] has to be positive otherwise the domain

of o would be meaningless leads to the lower bound of 1,

n> \/g (13)

The upper bound is of course 2/3 corresponding to the optimal guantum
cloner.

. . § § iy . : [t}
Again applying the Peres-Horodecki theorem it is easy to obtain that g

is separable if

- | (1_:;}2}”2{{12£1+{1_{1_-;;}?}1,-2 (14)

2 11~ A = 4 Ap?

b

As one can observe comparing (12) and (14) that ﬁi‘:::}

is inseparable.

The range of o defined by (12) is a decreasing function of 7, maximum
for n = 2/3(as given by (2)) and reduces to point set for = 1/v/3. For
n=1/ v'3 the only entangled state for which broadeasting is possible is the
maximally entangled one. Thus the choice of an optimal gquantum cloner
is the best for local cloning of the individual subsystems becanse maximum
number of entangled states are then available for broadeasting. We also note
from (13) that not all universal quantum cloners are suitable for local cloning
of entanglement. Only those universal quantum cloners whose fidelity is

is separable if ﬁf;::;}

greater than %(l - ffii} are suitable becanse only then the nonlocal output
states becomes inseparable for some values of .

Though it may seem that the range of o given by (2) is the largest still the
possibilty of obtaining a larger range is not excluded because we haven't so
far considered the use of most general universal cloning transformation to
carry out local copying.

We now consider the following most general universal cloning transformation
satisfying the symmetry and isotropy requirements. The coefficients are in
general complex. The transformation is defined as,

U10) 1) 1Q) = al00) [4) +b(01) + [10)) [B) + c[11)[C)  (15)
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U 1) [) 1Q) = a|11) [A) + b(j01) + [10))| B) + ¢[00} |C) (16)

along with the constraints following from unitarity, symmetry and isotropy
conditions [4],

laf* +26)% + Je]* = 1 (17)
a*c{A| C) + 2|6 (B]| B) + ac* (C [A) =0 (18)
laf? — ef* = Re (b°a(B]| A) + a"b{A| B)) (19)
Im (ba(B| 4) +a’b (4] B)) = 0 (20)
b°c(B|C) +¢'b{C |B) =0 (21)

ab* (B| A) +be" (C | B) =0 (22)

ab* (B|A) + be* (C|B) =0 (23)

ca(C |A) = a’c(4]| C) (24)

The reduction factor i of this universal gquantum cloner is {|a|? - |{'.‘|2}, given
by (19).

Alengthy but straightforward caleulation shows that when the above defined
universal quanum cloner is used for local copying to broadeast entanglement
the nonlocal output state obtained is the same as given by (11). Hence we
find that the nonlocal output density operator retaining the same form even
though the most general universal cloning transformation is used for local
cloning of the subsystems. What we mean is that i happens to be present in
the density operator in the same way as in (11). The only difference is that
in the later case the reduction factor is given by |.—1|? - |f.'|? whereas in the
former one it is just |a |? but in both cases, the reduction factor is a function
of scalar products of the ancilla output states.

That only those iniversal gquantum cloners whose reduction factor is greater



than or equal to V,L,_i can be used for local copying for the purpose of broad-

casting entanglemént is evident when we write the output density operator
(11} in the scaled form. Note that iff the original entangled state is maxi-
mally entangled then only the output state can be expressed in a scaled form.

Thus for n = 4= ﬁ the output state density operator can be expressed as,

P = 1) (] + (L (25)

where s = °.

s is the scaling parameter which goes as square of the reduction factor. We
know that Werner states have the same form as (25) and are separable if
s < 1/3[8]. Thus the output state described by (25) is separable when
n<1/+/3 (s = -:;?].

From inequality (14) it is obvious that applying local cloning on subsys-
tems cannot broadcast a pure entangled state if it cannot do the same for
maximally entangled states. Thus we can conclude that when 5 < 1/ v3 no
broadeasting is possible for any pure entangled input state.

3 Broadcasting entanglement into three pairs

We have seen that its possible in general to broadcast entanglement into
two pairs and an optimal broadeasting results by using an optimal quantium
cloner to carry out local copying. So the next guestion is whether one can
optimally broadeast the original entanglement shared by a single pair into
more than two pairs. The simplest possible case is the 1 — 3 entanglement
broadeasting, which we consider here. The procedure is essentially same as
the I — 2 case. Ounly in this case one has to use an optimal 1 — 3 quantum
cloner [5] for local copying.

The necessary cloning transformation is defined as follows [5],

if the initial state to be cloned is |¢) = a |0) + 3|1}, we have

Ulle) ® ) I}) = al¢r) + 8 ¢a) (26)

where

i=2

1) =U10) ) =D ai|As) @ [{0,3 — i}, {1,d}) (27)

i=l)

i=2
) =U ) ) I =D ai | A2—s) @ [{0,4},{1,3 - i}) (28)

i={)

=]



and a; = -*g—"
Here |A;) are the orthogonal normalized output states of the ancilla and
1{0.3 — i}, {1.4}) denotes the symmetric and normalized states of three qubits

where (3 — i) of them are in state |0)and i are in state |1).

The original entangled state shared by a single pair is given by

|'t"b>a1a2 =0 H—ﬂ}aia} + -ﬁ “ l)aia} (2@}

We now apply this cloner for local copying each qubit a; and as . Thus we
get a compound system consisting of six spin 1/2 particles. The objective
is to find whether the nonlocal output states are inseparable simultaneously
for some values of & for which the local output states are separable. We first
test the inseparability of the nonlocal output states.

We therefore write the nonlocal output state described by the density oper-
ator

a2
(45“ * 45100y (00] + {“‘Z—H} 11 (11

|4

23 (jo0) (1] + J11) (00])  (30)

14
+ g7 (101) {01 + 10} (10) +

Applying the Peres-Horodecki theorem [7,8] we find that the above state is
separable. In fact this can also be seen if one writes the density operator in
the scaled form. For a = 3 = 1/4/2

ot =s ) (v

(31)

where s = o> = 25/81, n = 5/9 is the reduction factor corresponding to
the 1 — 3 optimal quantum cloner defined by the transformations (19) and
{20). Separability requires that s < 1/3 which is satisfied as can be easily
SEL1L

4 Comparison with nonlocal cloning of entanglement

Recently it has been shown that guantum inseparability can be copied better
{(in the sense much larger range of o can be achieved) by using a nonlocal
copier [9] than when two local copiers are used [1]. The range of a? in the
case of nonlocal cloning of entanglement is given by [9]
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which is much wider than the range given by (2).

Here it is also worth comparing local cloning and nonlocal cloning of entan-
glement. It will be interesting to see maximum how many copies of entan-
glement can be made by nonlocal cloning. For 1 — M nonlocal cloning of
entanglement the output that can always be written in a scaled form [10] is
given by

it
j'? = Snl

. (%j I (33)

) (v

{ subscript n! stands for nonlocal)

where the scaling parameter s,y = '—,ﬂ#, M being the mumber of copies of
entanglement. For the output state to be separable for all entangled pure
states |¢7), we require that s;; < 1/3 which is satisfied for M = 7. Thus
a nonlocal cloning of entanglement despite being difficult to implement in
practice can produce a maximum of six copies of entanglement whereas lo-
cal cloning of entanglement can produce only two. Intuitively one can also
understand the above result. We know that local operations (if not unitary)
inevitably results in loss of entanglement but there are no such restrictions
on nonlocal operations. What happens in nonlocal case is that the entan-
glement of the system is actually being copied. But in local cloning of
entanglement cloning operations are applied on the individual subsystems
and entanglement of the nonlocal output comes as a biproduct. Therefore,
in nonlocal cloning, the bipartite system as a whole gets entangled with a
single cloning machine , whereas in local cloning each individual subsystem
separately gets entangled with a cloning machine. Thus the entanglement
transfer to the machine is larger in the local cloning case. So its not sur-
prising that nonlocal cloning will produce more copies of entanglement than
the local cloning.

5 Conclusion

We have discussed the role of an universal quantum cloner (in general less
optimal) used for local copying the subsystems in broadcasting of entan-
glement. In particnlar we have shown that quantum inseparability is best
copied when one uses optimal quantum cloner. We also pointed out that
only those universal quantum cloners are useful for local copyving whose fi-
delity exceeds a threshold value to broadeast entanglement. We also showed



that broadcasting of entanglement into more than two pairs is forbidden
using only local operations.
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