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Abstract. This paper is concerned with two-dimensional scattering of a normally incident surface wave train on
an obstacle in the form of a thick vertical barrier of rectangular cross section in water of uniform finite depth.
Four different geometrical configurations of the barrier are considered. The barrier may be surface-piercing and
partially immersed, or bottom-standing and submerged, or in the form of a submerged rectangular block not
extending down to the bottom, or in the form of a thick vertical wall with a submerged gap. Appropriate multi-
term Galerkin approximations invelving ultraspherical Gegenbaver polynomials are used For solving the integral
equations arising in the mathematical analysis. Very accurate numerical estimates for the reflection coefficient
for esch configuration of the barrier are then obtained. The reflection coefficient is depicted graphically against
the wave number for each configuration. It is observed that the reflection coefficient depends significantly on the
thickness for a wide range of values of the wave number, and as such, thickness plays a significant role in the
modelling of efficient breakwaters.
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1. Introduction

Breakwaters are constructed to protect a sheltered area by reflecting back the incident waves
into the rough sea. The problems of water wave scattering by breakwaters modelled as thin
vertical barrers of various configurations have been studied extensively in the literature under
the assumption of linear theory during the last fifty yvears. The four basic confi gurations such
as a surface-piercing partially immersed barrier, a submerged bottom-standing barner, a sub-
merged plate of finite vertical height and a wall with submerged gap or gaps have been used
as basic models of breakwaters in the literature because of their simplicity in the engineering
design and most importantly due to the ability to solve the associated water wave scattering
problems expicitly for nommally incident surface water waves in infinitely deep water. For
these problems the velocity potential describing the resulting fluid motion can be obtained
in closed form and the physical quantities of interest, such as the reflection and transmission
coefficients, can also be obtained in terms of known functions or definite integrals (see e.g.
[1-8]). A variety of mathematical techniques have been used to obtain the explicit solutions
to these problems. The reason for the existence of explicit solutions is the fact that each of
these problems is equivalent to solving the two-dimensional Laplace equation in a half plane
with the condition of zero normal derivative of the function being sought for and the mixed
condition on the free surface. By the use of complex variable theory, each problem can be
reduced to finding a complex function satisfying certain conditions and having certain sin-
oularities, and this is somewhat straightforward in principle to obtain (see [9]). For obliquely
incident waves, the complex-variable theory isnot applicable and as such the explicit solutions
to these problems are perhaps no longer possible to obtain. The same conclusion also applies
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it the water is of uniform finite depth, while the waves are incident normally or obliquely
on a barrier. In these cases, the associated water-wave scattering problems must be tackled
mathematically by some approximate methods in order to obtain numerical estimates for the
reflection and transmission coefficients.

For obliquely incident waves on a surface-piercing thin vertical barrier partially immersed
in deep water, Evans and Morris [10] obtainined good complementary bounds for the re-
flection coefficient by using single-term Galerkin approximations for solving two integral
equations, one for the horizontal velocity across the gap below the barrier and the other for the
ditference of velocity potential across the barner. The single-term approximations are chosen
in terms of the explicit results of Ursell [1]. The bounds involve some definite integrals, and
when computed numerically, coincide up to one or two decimal places, and as such their aver-
ages produce fairly good numerical estimates for the reflection coefficient. Again, for oblique
incidence on athin vertical plate or a wall with a gap submerzed in deep water Mandal and Das
[11] and Das [12] e al. used this technique successfully to obtain fairly good estimates for the
reflection coetficient in each case. In fact, any water-wave scattering problem involving a thin
vertical barner with gaps above or below or in between, in deep or uniform finite depth water,
can be tackled by this technique in principle, wherein the single-term approximations involve
the corresponding exact solutions for normal incidence and deep water. However, there is no
ouarantee that the technique would result in good complementary bounds for any scattering
problem involving a vertical barrier. For example, when surface waves are obliquely incident
on a thin vertical barrier submerged in deep water, Evans and Morris [ 10] reported that the
bounds are not very close and as such the single-term approximation technique is not suitable
for this case.

In water of uniform finite depth, Losada [13] ef al. investigated two oblique wave scattering
problems involving a thin vertical barrier with gaps by a method in which each problem is re-
duced to finding the solution of a dual series relation. Using the principle of least squares, they
reduced the dual-series relation to an infinite linear system which was then solved numerically
after tmancation, and this solution was utilized to obtain the reflection and transmission coeffi-
cients numerically. The case of normal incidence could be tackled by the same method. Later
Mandal and Dolai [14] utilized the single-term Galerkin approximation technique involving
the corresponding known exact solutions for normally incident waves in deep water to obtain
very accurate bounds for the reflection coefficients for four water-wave scattering problems
involving thin vertical barriers with gaps in finite depth water.

Several scattering problems involving two symmetrical thin vertical barriers with gaps
have also been tackled by the single-term Galerkin approximation technique. By virtue the
geometrical symmetry, each problem was replaced by two separate problems, each involving
a single barrier, which was then tackled by this technique. For the case of infinitely deep
water, Evans and Morris [135] earlier used this technique to handle the problem of water-wave
scattering by two thin vertical parallel bariers immersed to a given depth below the free
surface. Recently, Kanoria and Mandal [16], Banerjea [I7] er al. investigated a number of
oblique wave-scattering problems involving two symmetrical thin vertical barriers with gaps
in uniform finite depth water by using this technique. It may be noted that the numerical
estimates for the reflection coefficients in each of these problems are accurate mostly up to
one or two decimal places depending on the wave number of the incident wave field and the
ceometry of the barriers.

As mentioned earlier, the single-term Galerkin approximation technique does not always
lead to even moderately accurate bounds for the reflection coefficients in a number of wave-
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scattering problems involving thin vertical barners either in deep water or in water of uniform
finite depth. Thus, the technique needs to be modified. An obvious modification is perhaps
the use of multi-term Galerkin approximations. For single-term approximations, the exact
solutions for deep water and nomal incidence of the waves involving the barrier have been
utilized. However, for mulii-term approximations, we need to find appropriate basis functions
in terms of which multi-term expansions can be made. Although, in principle, any set of
independent functions would serve the purpose, in practice, the basis functions are to be
chosen suitably such that very accurate numerical estimates for the reflection and transmission
coefficients are obtained with minimum effort. For a number of scattering problems involving
thin vertical barriers, Porter and Evans [9] showed how appropriate basis functions in terms of
Chebyshev polynomials can be chosen to produce extremely accurate numerical results with
minimum effort. Banerjea [17] er al. and Das [18] er al. utilized the multi-term Galerkin ap-
proximation technique successtully for a number of water-wave scattering problems involving
two symmetric thin vertical barriers with gaps in finite-depth water.

For a thin wall with a submerged narrow gap, the method of matched asymptotic expansion
has been utilized with great success to study the related water wave scattering problems. Tuck
[ 19] first used this method to obtain an approximate expression for the transmission coefficient
when a surface wave train is normally incident on a thin vertical wall with a narrow gap
submerged in deep water. Although the explicit solution to this problem, when the gap is not
necessarily narrow, was obtained by Porter [7] shortly afterwards, Tuck [20] later mentioned
the usefulness of the approximate result for the transmission coetficient for a narrow gap over
Porter’s [7] result which is limited to sharp edged gaps in plane walls of zero thickness. Pack-
ham and Williams [21] generalised Tuck’s [ 19] narrow-gap problem in deep water to water of
uniform finite depth and used an integral-equation formulation based on application of Green's
integral theorem in the fluid region to tackle the problem. They solved the integral equation
approximately by exploiting the concept of narrowness of the gap and used this solution to
obtain an expression of the transmission coefficeint, which reduces to Tuck’s [19] result as the
depth of water is made to tend to infinity. Also, Mandal [22] reinvestigated Tuck’s [ 19] narrow-
gap problem by using an integral-equation formulation based on Havelock’s [23] expansion
of water-wave potential. These authors solved the integral equation approximately by using
the method of Packham and Williams [21] and then Tuck’s [19] approximate expression for
the transmission coefficient was derived.

Guiney [24] er al. extended the work of Tuck [19] to include the effect of thickness in
a vertical wall of rectangular cross section while Owen and Bhatt [253] considered the case
of a narrow gap in a thick bamier of arbitrary cross section. Tuck [20] also discussed the
role of matched-asymptotic-expansion technique in some detail in tackling problems of flow
through small holes in an expository article. Liu and Wu ([26], [27]) used Tuck’s [19] method
of matched asymptotic expansions to investigate oblique wave scattering by a thick wall
with a submerged narrow gap in finite-depth water and also in deep water. However, their
investigation was actually limited to the long-wave case only, since they approximated the
modified Helmholtz equation in two dimensions by the Laplace equation for obtaining the
inner solution. It may be noted that the method of matched asymptotic expansions is not
suitable for narrow gaps.

When the breakwaters are modelled as thick vertical barriers with rectangular cross sec-
tions in water of uniform finite depth, the corresponding water-wave scattering problems for
normal incidence of a surface wave train were investigated by Mei and Black [258] for surface-
piercing and bottom-standing barriers. They used a variational formulation to obtain numerical
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estimates for the reflection coefficient with an accuracy within one percent and presented
araphically the numerical results.

In this paper we consider two-dimensional scattering of a train of surface water waves nor-
mally incident on a thick vertical barrier of rectangular cross section in water of uniform finite
depth. The barrier has four different geometrical configurations designated by type I, type
11, type 111 and type IV depending on whether it is surface piercing and partially immersed,
bottom standing and submerged, in the form of a submerged rectangular block not extending
down to the bottom, or in the form of a thick vertical wall with a submerged gap. In the
latter configuration, the gap is not necessarily narrow. By use of the geometrical symmetry
of a barrier about its center line, the scattering problem for each type of barriers is split
into two separate problems involving the symmetric and anti-symmetric potential functions
describing the resulting motion in the fluid. Appropriate eigenfunction expansions for each
of these potential functions in different regions followed by a matching process produce an
integral equation for the corresponding unknown horizontal component of velocity across the
vertical line through the corner points in the gap or gaps above or below the barrier. Also, for
each case of the symmetric and antisymmetric potential functions, a real quantity related to the
reflection coefficient is defined. This is expressed in terms of an integral expression involving
the aforesaid unknown velocity. Thus, once the integral equations are solved, the reflection
coefficient can be obtained. The two integral equations for each configuration of the barrier are
solved here by suitable multi-term Galerkin approximations involving ultraspherical Gegen-
bauer polynomials. This idea of multi-term approximation involving Gegenbauer polynomials
is due to Porter (¢f. Evans and Fernyhough [29]) in connection with the mathematical study of
a water wave problem concerning edge waves travelling along a periodic coast line consisting
of a straight and vertical cliff face from which protrudes an infinite number of rectangular
barriers.

We obtain the numerical results for the reflection coefficient for each thick-barrier con-
figuration with a six-figure accuracy by choosing only four terms in the multi-term Galerkin
approximations, and these are also depicted graphically against the wave number. For type |
barriers, the resutls are compared with Mei and Black’s [28] results and good agreement is
achieved. For type Il bamiers, zeros of the reflection coefficient occur for a number of values
of the wave number. This is consistent with the observations of Mei and Black [28]. For
large horizontal length of type Il bamiers, the number of zeros of the reflection coetficient
as a function of the wave number increases. which is also consistent with the observation of
Newman [30] for long bottom obstacles. The resulis for type 111 barriers reduce to those for
type II barriers if we take the lower end very near to the bottom, while the resulis for type
IV barriers reduce to these for type I barriers if we make the height of the lower part very
small. These results provide some checks on the comectness of the numerical method utilized
here. Also, the results for type IV barriers are compared with narrow gap results of Packman
and Williams [21] for thin barriers. Agreement in the qualitative behaviour of the reflection
coefficient as a function of the wave number is seen to have been achieved.

2. Formulation of the problem

We consider a thick barrier of width 24 present in water of uniform finite depth £, and choose
the v-axis vertically downwards along the line of symmetry of the thick barrier so that the
wetted part of the barrier occupies the region —b < x < b,y € L= L;(j = 1,2,3,4).
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Here I, = (0,a), L = (c,h), Li = {a,c)and Ly = (0, a) +{c. ) (0 = a = ¢ = k)
corresponding to type 1, type 11 and type III and type IV barrier configurations respectively.
These configurations are described in Figure 1.
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Figure 1. Definition sketch of the thick barriers,

Under the assumption of the linearised theory of water waves, a train of surface waves repres-
ented by the velocity potential Re{¢™ (x, v) e™'"} is nomally incident on a thick barrier of a
particular configuration from a large distance on its right, ¢'"™{x, v) being given by

2cosh kg(h — y) e Holx—0)

inc X V)= 2.1

wn cosh koh &l
where £y is the unique real positive root of the transcendental equation

ktanhkh = K i2.2)

with K = o”/g, o being the circular frequency of the incoming wave train, g being the
acceleration due to gravity. Let the resulting motion in the fluid be described by the velocity
potential Re{¢(x, vie'?'), then ¢r(x, v) satisfies

V'@ =0 in the fluid region, (2.3)

lx] = b for type 1, I'V barrier,
K+, =0 ony=1, (2.4)
' |x] = oo for type I1, IIT barrier,

$d =0 onx==+b, ve L; fortype j barrier (j = 1,2, 3, 4), (2.5)

¥V is bounded as r — 0, (2.6)
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where r is the distance from a submerged edge of the thick barrier,
¢, =0 ony=Il;, x| = b fortype j barrier (j = 1,2, 3,4), (2.7

|x] = o< for type L I1I barrier,
¢, =0o0ny=h, (2.8)
b |x] = b for type I, IV barrier

and finally,

™ (x, ) + R™(—x,y) asx — oo,
Blx,y) ~ l 2.9)

T¢™(x,y) asx — —oo,
where R and T are the reflection and transmission coefficients (complex) and are to be de-

termined for each barrier configuration. In Equation (2.7), f}, = a; [ = ¢; [1 = a,¢ and
l4 = a, ¢ corresponding to type 1, I, 11T and I'V barrier configurations depicted in Figure 1.

3. The method of solution

Due to geometrical symmetry of the thick barmrier about x = (), it is convenient to split ¢ (x, v)
into a symmetric and antisymmetric parts ¢°(x, v) and ¢“(x, v), respectively, so that

dlx, v) =" (x, v) + " (x, ¥), (3.1)
where
¢'(—x,y) = ¢'(x, ¥), ¢ (—x,¥) = —d"(x, ¥). (3.2)

Thus, we may restrict our analysis to the region x = 0 only. Now ¢"“{x, v) satisfy Equations
(2.3) to (2.8) together with

@:(0,y) =0, ¢’0, =0, O=<y<h. (3.3)
Let the behaviour of ¢ (x, v) for large x be represented by

coshkp(ht — ) { e-ikalx—b) | ps.a ea'iu[.r—h]} S R B (3.4)

(p.f.n'{x‘ _\’:] ot

cosh kpht

where R and R" are unknown constants. By using Equations (2.9) we find that, these con-
stants are related to R and T by the equations

R, T = L(R* £ R?) e kb, (3.5)
Now the eigenfunction expressions of ¢"*(x, v) satisfying Equations (2.3) to (2.5}, (2.7),

(2.8), (3.3) and (2.4) (for {x = b)) in the different regions for each barrier configuration are
oiven below.
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Regionl{x = b, 0=y = h):

(i).-u-_g.'{x‘ _\'_:I — cosh -k:.:.::f ; _\!] {e_;kul.l;_b] i b ] e"ku[.r_b]}
COSN Ky

fau)
+) AL cosky(h — y) e, (3.6)

n=I

where &, (n = 1,2, ...} are the real positive roots of the equation

ktankh + K = 0. (3.7)
Regionll (0 <x<b, y € L=L;=(0,h)—L;, j=1234)

For v € L, = (a, h), ¢*(x, v) and ¢“(x, v) are given by

(b.‘-(x‘ _.,‘,] 0 " i .H;r cosh E'E'E'ﬁ l”?r{}l A ﬂ:] 3.8)
= i - Fid mq e z
d)fr{x‘ ¥) B;;.I' : ﬂ"" sinh ﬁ h—a

r=1

A nonzero constant term in the expansion of ¢"(x, v) is omitted here as its presence does
not affect the calculation of the reflection coefficient by the present method. This is explained
in detail in Appendix IV. However, there is no reason to believe that this constant is zero in
oeneral. If its value is requirad (for example, to determine the vertical force on a barrier) then
it may be calculated by the method given in Appendix I'V.

For v € Li=(0,¢), ¢ (x, v) and ¢“ (x, ) are given by

¢'(x, ¥\ Cyeosaox \ cosag(c — y)
@(x,¥) Cj sinapx cosh age

i ( C? cosh a,x

+2,

n=I

)msa,r{f— v, (3.9)

C, sinha,x
where foy, +ie, (n= 1,2, ...) are the roots of the equation

ctanhec = K. (3.10

For v € Ly = (0,a) + (e, h), ¢*9(x, v) will have two types of expansions depending on
whether 0 = v = gore = v < h.For 0 = v = a, the expansions of ¢*“{x, v) ar
similar to (3.9) with C;“ replaced by D}, a, replaced by 8, (n =0, 1, 2, ...) and ¢ replaced

by a, where £ 8;, £if, (n = 1,2, ...} are the roots of the equation
ftanh fa = K. (3.11)

For e = v = h, the expansions of ¢*“(x, v) are similar to (3.8) with B} replaced by E (n =
1,2,...), B; replaced by E; (n =0, 1,2,...) and a replaced by c.

For v € Ly = (a,c),the expansions of ¢"“(x, v) are the same as given by Equation (3.8)
with B, replaced by H; (n = 1,2,...), B) replaced H'(n = 0,1,2,...) and h replaced

by c.

194831 .tesc; 6/05/1999; 13:03; p.v
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Let us now define

b +0,y) ="y, O0<y<h (3.12)
Then

=0 forye L=1L, (3.13)
and

b -0,y = f*(y) foryeL=(0h)—L. (3.14)

Also, due to the edge condition described by (2.6), we must have the requirement that
A =0y =177 asy -1 (3.15)

where [ = [; for barrier of type j{j = 1. 2, 3, 4).
Use of the expansion (3.6) for ¢"“(x, v} in Equation (3.12) followed by Havelock’s [19]
inversion formula, produces, after noting the condition (3.13),

 dicoshkoh [ .
J i S D B M f 4 (y) cosh ky(h — v) dy (3.16)
& [
with
; . 4 :
8y = 2kph 4 sinh 2kph, At ——f F(yycos k,(h — v)dy
i

with

By gk +sin ek (n=1, 2000 (3.17)

Substituting the expansions (3.8) for ¢*“(x, ¥) in Equation (3.14) and using Fourier cosine
inversion, we find that f*(v) for type [ barrier satisfies the condition

i

f friy)dy =0, (3.18)
i

and the constants By, B)" (n = 1,2, ...) are obtained as

Byi= I fh fAvdy (3.19)
S —al yiay, 3.
LA 2 LA H‘_‘?‘[{\l s fl‘:]

HJr = H .‘s'll'ih nmwh * h nwh # f “I T R d}I' (32{}1

The constants C;“ (n = 0, 1,2, ...) appearing in Equations (3.9) are related to f*“(y) for
type II barrier by the following expressions obtained by using Havelock's inversion formula
in Equation (3.14) for 0 < v = ¢
4 cosh aye ( I

L sinegh  cos m]b

= ) f A (y)ycoshag(c — yidy (3.21)

194831 .tesc; 6/05/1999; 13:03; p.g
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with

= 2eepe + sinh 2o,

C:r'.n' — i ( I ! ) f f“."r{_\'] cos o, (e — v)dy
b/ Jy

¥u \sinha,b cosha,
with
¥ = e +5in 20, m=1,2,...) (3.22)

For type I1I barrier, we derive expressions for D) from C'* by replacing «, by g, and y,

&y = 2f8pa + sinh 28pa, €y =2fa+sinh28,a (n=172 .. (3.23)

and E; is derived from B (n = 1,2,...); we derive E from Bi(n = 0,1,2,...) by
replacing a by ¢ and in this case f*{y) (c = v < h) must satisfy

I
f Fivdy = 0. (3.24)

For type IV barrier, H, is derived from By (n = 1,2,...) and we derive H,' from B} (n =
0,1,2,...) by replacing /i by ¢ and in this case f*(v) {(a = v = ¢) must satisfy

f PR, (3.25)

It may be noted that the condition (3.18) or (3.24) or (3.25) for f*(y) corresponding to
type I or type 11l or type IV barrier, may be regarded as the compatibility condition for the
existence of solution in the region |x| < b, v € L, or (¢, h) or L,. This condition plays an
important role in the choice of the basis functions for f*(y) (v £ L, or (¢, h) or L) (see
Appendix I1).

Now matching of ¢ (x, v) across the line x = b through the right corner points of the
oap, or gaps, gives rise to the relations

d}.&'.ﬂ{h + {1 },] - d)-\'-f" {b i ﬂ1 _1":'1 }I = E1 (3.2"5]

which ultimately produce the integral equations

cosh kgl — v) —
F"'H{H:]M'LH{}', u]du b, SR }. IS L (3.27]
L Cﬂﬁ'hknh
where
dcosh” kot -
F.'u.:n'{}lj o 08 :]1' jr.'u.:n'f}ll }, {_: L, (3.23]

Bo(1+ R*4)

ar .Li{-"-"{_v,u] (v.u £ L) are real and symmetric in v and u, and their expressions for
L=L;(j=123,4)are given in Appendix L.

194831 tesc; 6/05/1999; 13:03; p.9
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If we now define the constants C*“ by

s
=ik : &4 ﬁ& a’ E3_29)

L

then, by using the relations (3.16) and (3.28), we find that

_ shikplh — v
f F'LH{_\-':] cos l]{ }:] d_\' = 7 (3.3{])
T cosh kph

It is important to note that F*“(y) and C** are all real quantities. Thus, if the integral Equa-
tions (3.27) are solved, then these solutions can be utilized to obtain C* from the relation
(3.30), and these in turn produce the actual reflection and transmission coefficients |R| and
| T|, respectively, from the relations

|| &+ F C‘t-’l |C"' o C:rl
Rl=—Fp— |Tl=—F5—

12

= {1 + (C*)* +(C%)* + (C°C")*}" (3.31)

which are obtained from Equations (3.29) and (3.5).
To solve the integral Equations (3.27), we adopt a Galerkin approach. The functions F*“(v)
are approximated as

F.-u'.:f{},J = j:—f.\'.:n'{}ll A= E (3.32)

where F74(y) have multi-term Galerkin expanqlcm in terms of suitable basis functions. We
note that L, L», L, are single intervals while L consists of two disjoint intervals. For the
single interval L (j= 124, F““(y) are expressed as

j:-.-.'lg.'{v Zﬂ\ AR H{\' ye E_.l' {} =12, 4] |:3.33]

n=i

and, for the double interval 1_3 = (0,a) + (c, h), F*(v) are expressed as

Za},”p‘ o 0<y<a,
S ni={)
Fhiy) = 3 (3.34)
Zb:r 9. (y), c=y<h,
n=ll

where the basis functions f“(y) fory EJ.— (j=L24)and pj*(y)for0 <y <= a, gy
for ¢ < v < h are given in Appendix II, and a;“, b are unknown constants to be found
separately for each type of barrier as described below.

194831 . tene; 6/05/1993; 13:03; p.10
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When L = _-{j = 2, 4), we substitute the expansion (3.33) in Equations (3.27),
multiply by appropriate f; ‘“{vj and integrate over L to obtain the linear systems

Za‘ k=4 m=0,12...,N, (3.35)
ne={)
where
K,L;’=ffnu“*n W) fEy)dudy, m,n=0,12,...,N, (3.36)
pa f cosh ko(h — }’Jf, a(y)d 0.1.2 N (3.37)
=) ——— vidy, m=0,1,2,...,N. :
i r coshkph ™

For each EJ.- (j = 1,2,4), the integrals in the relations ({3.36) and (3.37) can be evaluated
explicitly, and these are given in Appendix II. Thus the constants a;“ (n = 0,1,... N) are
now obtained by solving the linear Equations (3.33) for each of type I, type Il and type IV
barrier. The relations (3.30) produce

N
Che — Z a:.r'.n'd:r'.n" (3.35)

n=ll

s0 that C** are now found for each of the type I, type I and type IV barrier.

When L = E_; = {0, a) + (¢, f), we substitute the expansions (3.34) in Equations (3.27)
for L = L;, multiply first by p5# (¥} {0 =< v < a) and then by ¢}*{v){c = ¥y < h) and
integrate over (0, a) and (¢, f1), respectively, to obtain the linear systems

N (G5 N Hea d[ 1ig
Zﬂ;.u it n Z h;,g.' i - i e (440
P Qn.n’ d.[l]_,_n,
=i mi =l i 1

where

i I
{-:M:: - f ) f M"."f{}r‘ H];}:r.t’n'{uj du] ;}::!n'{}_nj d}l1

1] 1]

I 1]
His = f 1f My, ujqﬁ”{u]du]pﬁ“’{x]dx
- (3.40)

h
Pon = f *f My, ulp”“{u.‘ldu]rif;‘rj"{yld_v.
ho[ ph
:u:: = f ‘f My, ujij‘nﬁfﬂ du]qmﬁ{\' Jdy,
50 that
P»-'l W7 H'l W

i L

194831 .tene; 6/05/1993; 13:03; p.1l
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and

* gosh kg(h — v)
die = [ LRECZD) o) gy,
0 cosh .k':]h

" coshkoth — v)

dll];d — - q‘l:‘l:f{}lj d_\'_ ':3_4”

" cosh kyh

The integrals in the relations (3.40) and (3.4 1) can be evaluated explicitly and these are given
in Appendix III. Thus for type III barrier, a;“ and &,“ (n = 0, 1, ... N') in the relations (3.34)
are obtained by solving the linear systems (3.39) and C* are approximated as

N
e = Z{ﬂ;.”d}r”"d + h:;'”tﬂ[rl]m.l- (3.42)
n={

4. Numerical results

Since |R|* + |T* = 1, we mostly confine our attention to the reflection coefficient |R| only.
Multi-term Galerkin approximations are used to obtain a numerical estimate for |R|. For each
barrier configuration we have to compute infinite series of the form K% These series are
computed numerically by truncation. A six-figure accuracy is achieved by taking 200 terms
in each series. However, the accuracy can be further increased by following a numerical pro-
cedure suggested by Porter and Evans [9] in the computation of series of this type. This is not
pursued here.

We display a representative set of numerical estimates for |R| for the four type of bamriers
in Table I, taking N = 0,1,2,3,4 and 5 in the (N + 1)-term Galerkin approximations and
some particular values of the different parameters and the wave number. It is observed from
this table that the computed results for | R| converge very rapidly with N, and for N = 3
an accuracy of almost six decimal places is achieved. It appears that the present numerical
procedure for the numerical computation of | R | is quite efficient.

10 e e o S s
»Ture ot R ol i I
W - L -
X v z,i"ff - r/
nE ) ¥ / A
i . e /
i o s
06 | : ¥ 0.6 /
— ] i s — !
i ‘: ,J'r. ;g: o Il,lrw
0.4 ! 7 Ao ne
¢ /
P -"'/ lu'll
i
Lrd e / 02| f
:III ||'|l
i
Ul'. R 0= 1 ~
IR g &5 1 1.5
. kh A
Figire 2a. Reflection coefficient for type 1 barrier, Figure 26 Reflection coefficient vs kgea for type |
afh =12 barrier, a/h = 0.5,
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Table I. Reflection coefficient | R|.

Kh N=0D N=1 N=2 N=3 N=4 N=35
Type | Barrier a/h =02, b/h =035
0.2 OT7E3TSL OTTRILT O OT7R024 0 OTT7ROIY OTTRO1Y OTTROLY
10 0968121 0967934 09657934 0967934 0967934 (.0967934
1.8 0993855 0092526 04992543 (992543 0092543 (.902543
Type Il Barrier ¢/t =05, b/ =05
0.2 Dd4ni81 0441869 0441811 0441808 0441808 0441808
10 0007353 0006603 0006675 0006679 0006679 0006679
1.8 0364916 0361848 0361618 0361602 0361602 0361602
Type Il Barrier a/h =02, ¢/h =04, b/h =05
0.2 048346 0638165 0637977 0637966 0637965 (637965
14 0924199 0925042 04925058 0925058 0925058 0925058
1.8 0865962 0866637 0860616 0866610 0860616 O-B66616
Type IV Barrier a/h =02, ¢/h =04, b/ =05
02 0981698 04981676 04981676 04981676 04981676 04981676
14 0996937 0996358 0996358 OU96358 04996358 (996358
I8 OOUB4R4 OOUE31Y OO9E31Y DOUR3 1Y DOUR3 1Y (UO9R3 1Y

373

For a surface-piercing thick barrier (type 1 barrier), the computed results for | 8| are plotted
in Figure 2(a) against the wave number Kh fora/h = 0-2and b/h = 001, 0-1, 10 It is
observed from this figure that, for a fixed value of the wave number Kh, |R| increases with
the thickness of the barrier. Also, |R| increases asymptotically to unity as the wave number
becomes large, which is plausible, since, for laree wave number, the incident wave train is
confined within a thin layer below the free surface and as such most of the incident wave
energy is reflected back by the surface-piercing barrier. Also, when the thickness is equal to
water depth, |R| becomes near unity for moderately large values of the wave number. In order
to compare our results with those of Mei and Black [28], in Figure 2(b) we have drawn |R|
against kpa for b/ = 0-53, a/h = 0-3. This curve almost coincides with the corresponding
curve given in Figure 6 of Mei and Black [28].

For a borrom-standing thick barrier (type 11 barrier), |R| is depicted in Figure 3 against
Khtforc/h = 05and b/h = 0-01, 1-0, 2.0 and 5-0. It is observed that, when the barrier is
comparatively thin {6/ = 0-01), |R| first increases and then decreases asymptotically to zero
with the increase of the wave number. This is the usual behaviour of the reflection coefficient
for an infinitely thin barrier. However, as the thickness increases, |R| starts fluctuating and
the fluctuations become rapid as the thickness of the barrier further increases. For very large
wave number | R| becomes zero asymptotically, which is obvious, since the incident wave train
then does not penetrate enough below the free surface to feel the presence of the submerged
barrier. The oscillatory behaviour of | R is due to interaction between the two ends of the thick
barrier. Also, |R| assumes zero values for a number of frequencies of the incident wave train.
This type of behaviour of | R| is consistent with the study of Mei and Black [28] for bottom-
standing barriers. The curve of | R| for &/ i = 3-0 (large horzontal breadth) may be identified
with the curve given by Newman [30] for a long rectangular obstacle in which case the depth
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is infinite, except at the obstacle. Except for the low-frequency region, the qualitative nature
of the curves is similar. As the frequency parameter tends to zero, |R| tends to unity for deep
water (Newman's figure), while in the case of water of finite depth, |R| tends to zero (Figure

3 here). This is the so-called low-frequency paradox mentioned by Tuck [20].

0.6 G 1 i —
MRy gaated . oty o bir -1
i e it . ”
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AT LT e e e—a & 2 w ok
I..II__.:_I i iy |I S \.I . Ly Hae) -I""— _Ii._ |I T
AL T e T A i s s ¥ Tet
';.I _TII I ! | Ir I. . (R S 5 = ,{ 2 ! 'I| v R e
e Ve L LT A - e TR R T
& i :"h'""' hl i AN B e v ;o
! I||I o o 5 ',:_,/' I. \% - ST il I. I _:' 3 ;'-_ i '
T3 LI R R I I B b vy G
T | R S L N B EE " b ' i :
}'ll b et I R oz :l ) L o !
(| B e | P A T g ' E o ,
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Rl e g o A . ’
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L oh 1 15 2 2h 3 5 HE 1 i.h ¢ 25 3
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Figure 3. Reflection coefficient for type 11 barrier,
c/h =035,

Figure 4. Reflection coefficient for type 111 barrier,
a/h =02, ¢/h =04,

For a submerged thick rectangular block (type 111 barrier), |R| is plotted against K# in
Figure 4 fora/h = 0-2, ¢/h = 0-4 and b/ & = 001, 1-0 and 2-0. Here also the thickness of
the bamrier affects | R| significantly. For small thickness (&/# = (0-01), as in the case of a type
IT barrier, | R| first increases and then decreases to zero asymptotically as the wave number
increases. As the thickness increases, |R| starts oscillating and the occurrence of a number of
zeros of |R] is observed. The number of oscillations increases with the increase of thickness
as in the case of type Il barrier. By looking at Figures 3 and 4, we also observe that there is
some similarity in the qualitative behaviour of | R| against the wave number for barriers of
type Il and type III. In fact, if the gap between the lower end of a type I barrier and the
bottom is made very small, then this would behave almost like a bottom-standing barrier (type
IT) although there will still be some transmission through the very small gap. In Figure 5 for a
type III barrier, we depicte |R |, against Khtaking b/ h = 0-01, 1.0, a/h = 0-5, ¢/ h = (0-999,
50 that the gap between the barrier and the bottom becomes very small. Also for a type 11
barrier, we depicte |R|, in the same figure taking b/ f = 0-01, 10, ¢/ h = 0-5. It is observed
that the curve of |R| for type III barrier with b/ = (0-01 lies slightly below the curve of |R|
tor type 11 barrier with &/ # = 0-01. The small difference in the two curves is due to some
small transmission of the incident wave energy below the type 111 barrier as there is still some
gap, although very narrow, between its lower end and the bottom. However for b/ h = 10,
the two curves practically coincide. This is due to considerable increase in the thickness of the
barriers.
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Figure 5. Reflection coefficient vs wave number. Figure 6. Reflection coefficient for type 1V barrier,

a/h =02, ¢/h =04,

Finally, for a rhick vertical wall with a submerged gap (type IV barrier), |R| is depicted
graphically against K in Figure 6 for a/h = 0-2, ¢/ =04 and b/ h = 001, 0-1, 1-0. It
i5 observed from this figure that | R| steadily increases as the wave number K/ increases and
asymptotically becomes unity for large Kh. Also, for a fixed wave number, | B| increases as
the thickness increases. It is interesting to observe that, when thickness is equal to the water
depth (b/h = 10}, |R| very quickly becomes near unity for even moderate values of the wave
number. A similar behaviour of |R| is also observed for type 1 barrier, although in that case
the wave number is moderately large. Again, from the Figures 2{a) and 6 it is observed that
there is some similarity in the qualitative behaviour of | B| for the type [ and type I'V barriers.
In both cases |R| increases asymptotically to unity and there is no oscillation in |R). This is
due to the fact that both barners are surface piercing. In fact, if we confine the lower part of
the type IV barrier near the bottom by making ¢/ f nearly unity, then it assumes the form of a
type I barrier and thus we expect that the curves of | R| for the two types of barrier in that case
should be very near to each other. In Figure 7, for a type IV barrier, |R| is plotted against Kh
fora/h =02, b/h =01, c/h = 0999 and | R| for a type [ barrier is plotted for the same
values of a/h and b/} . The two curves almost coincide. Finally, to compare our results for
a tvpe IV barrier with the results of Packham and Williams [21] for a submerged narrow gap
in an infinitely thin wall, for a type IV barrier, we plot |T|* = | — |R|* in Figure 8 against
KH(H = (a+c)/2), taking ¢/ h = 0-86,a/h = 074 and b/h = 001, 0001, so that the
thickness of the barrier is small and the gap is narrow. The qualitative behaviour of the two
curves depicting |T|1 against K H is observed to be very similar to the curve for |T|? ithe
upper most curve in Figure | of [21]) given by Packham and Williams [21] for an infinitely
thin barrier. It may be noted that for deep water |[T|*> — 0 as KH — 0, while for water of
finite depth |T|* — 1 as K H — 0 and the latter is observed in Figure 8. This is the so called
low-frequency paradox mentioned earlier.
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Figure 7. Reflection coefficient vs wave number, Figure & Type IV barrier, transmission coefficient vs
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For all the four types of thick rectangular vertical barriers it is observed that the long-
wave limit of the reflection coefficient |R| is zero as is evident from the Figures 2-7. Martin
and Dalrymple [31] and McIver [32] confirmed, by using the method of matched asymptotic
expansions, that the long-wave limit of | R| for any obstacle is zero. This provides a partial
check on the correctness of the numerical method utilized here.

5. Conclusion

The method of multi-term Galerkin approximations in terms of ultraspherical Gegenbauer
polynomials has been utilized here to obtain very accurate numerical estimates for the reflec-
tion coefficient in the water wave scattering problems involving thick rectangular barners of
tour different geometrical configurations in water of uniform finite depth. By choosing only
four terms in the Galerkin approximations, we achieve almost six-figure accuracy in the nu-
merical estimate for the reflection coefficient. The numerical results are illustrated graphically,
and some results are compared with known results available in the literature, for which good
agreement is achieved. The thickness of a barrier atfects the reflection coetficient considerably
and thus the thickness plays a significant role in the modelling of breakwaters.
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Appendix I. Expressions for M™ (y,u)
(1) For v, u £ El = (a,h), we find that M*{ v, u) is given by
M (v, u)

3 [ = { cos ky(h — v) cos k, (it — u)

. III:C!.‘s.'!'i2 k:]h En
l nmh nw(y —a) nriu —a)
-I—2 oc:thh COs P Cos P (Al.l)
NI —da — i —d

The expression for M“( v, u) is obtained by replacing ‘coth’ by ‘tanh’in the relation (Al.1)
and inserting an extra term b /4(/ — a) inside the square bracket.
(i) Fory, u € L = (0, c), we find that M"(v, u) 15 given by

3
My ) = ———
cosh” .k.;]f:l'

i { cosk,(h — vycosk, (h — u)
E"
=1

coth ¢, beose,{c — vicosa,(c — u)
¥

— cot ﬁ'ﬂb

(AL.2)

coscplc — yicosapl(c — u)
¥o -

The expression for M (v, u) is obtained by replacing ‘coth’ by “tanh’ and *— cot’ by ‘tan’ in
the relation (Al1.2).

(iii) For v,u € Lz = (0, a) + (c, h).

For v,u = {0, a), M*{y, u) is obtained from the relation (A1.2) by replacing ¢ by a and
similarly for M“(v, u). For v, u € (c, ). M*(v, u) is obtained from the relation (AL.1) by
replacing a by ¢ and similarly for M“(v,u). For v € (0,a),u € (¢, i) and v € (¢, k), u £
{0, a),

od

: cosk,(h — v)cos k,(h — uj
My, 1) = My, u Al3
L ] {- ] CG‘\'h ﬂ:]ﬁ‘ Z En E j

=

iiv) For v, u € Li=(a,c), M v, 1) is obtained from the relation (Al.1) by replacing #
by ¢, and similarly for M“(v, u).

Appendix II.  The basis functions

The basis functions are to be chosen such that they satisty the appropriate physical require-
ments and the final forms of various expressions occuming in the analysis become as simple
as possible [29]. Since the horizontal velocity of the fluid near the corner point (b, I) of a thick
barrier has a cubic-root singularity, derived by a simple conformal mapping argument for the
flow of an ideal fluid around a corner, we expect that a basis function f;“(v) must satisfy

ey ~o(y=i""? asy—L (A2.1)
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Porter (¢f. Evans and Fernyhough [29]) suggested that a basis function which satisfies the
requirement { A2.1), can be chosen in terms of ultraspherical Gegenbauer polynomials of order
1/6 with suitable weights. We give below the forms of the basis functions in various intervals
along with the reasons for choosing such forms.

i)y e L, = (a,h).
In this case, the velocities F*(y) satisfy

F&'.:f{}!] - {}! o {'.‘:]_”3 as }, —a _l_{}_ EH.ZB

Since ¢0" = Oon y = h, ¢** and hence F**(y) oo ¢Z“(b, v) can be continued as an even
function of v across ¥y = h ie. it is an even function of & — v. Thus, the even continuous
function {{h — ay =ik - }']lj_l'JlF"""{_\'] can be expanded in (a, &) in terms of even ultra-
spherical Gegenbauer polynomials Cl'aﬁ{h — v/ h — a). However, F*(y) has to satisfy the

"2

additional requirement that (see Equation (3. 18))
it
f Fi{vidy = 0. (AZ2.3)
[

Noting the results

fﬁ I cus(B=Y)y
o A —a) — (h — )2} 3 — ayt3 " (h—ﬂ) d

0 form =10

! ;
= _f ey B lmar= (A2.4)
2.4 form = (0,

we observe that the basis functions for F*({v) are to be chosen starting from a function which
involves CZI 4 However, for F(v) the basis functions start from l:',,lj’f ® Thus we choose the

basis functions for F*(v) and F*(v) in the present case as

o) =gl (mm=0,12,...,

(A2.5)
o) = 8P m=0,1,2,...,
where
27,-"‘-‘]“{' j{mj{’Zm]" L /6 (h —y )
(D vy = . \ ’j
&n" (V) al (2m + %]{h —a)V3}(h —a)® — (h— }Ijijlflcz‘" h—al’ (A2.6)

(ii) v € L, = (0, ).

In this case we have to consider the free-surface condition and the behaviour F*9(y) ~
(¢ — v)~"? as y — ¢ — 0 derived by considering the flow field near the corner point (b, ¢).
Thus F*“(y) = F(v) in this case satisfies

KF(W+Fiy=0 y=0, (A2.T)

Fiy)~(c—v)""? asy—=e—0. (A2.8)
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If we introduce F(y) defined by

F(y) = F(y) — Kf Fadu, 0<y<c (A2.9)
then,

F(yy=0 v=0, (A2.10)

F)~@—n" asy—se—o. (A2.11)

The condition (A2.10) shows that !?{}rj can be continged as an even function of v into (—c, 0).
Thus, because of the condition (A2.11), (¢” — }FI] /3 F(v) can be expanded in {0, ¢) as a com-
plete set of even ultraspherical Gegenbauer polynomials C';’Lﬁ{y,n’c]_ Thus the basis functions
for F¥<(v) in this case are found to be

FaO = fal) = fu(y) = —dd [e“-" f eXe T,,(rjdril , O<y<e (A2.12)
X ¥

where f,(v) is chosen as

- 26T (1/6)(2m)! w6 f ¥
fu(y) = T — %]L:lf's"-‘{cl 5 b (-) O<y<ec. (A2.13)

(i) ye L3 = (0,a) + (c, h).

In this case we have to choose two sets of basis functions, pi;“(v) for ) = v = a and
grf(v) forc = v < h. The choice for pi;“(y) is the same as that given by the expression
in the relation (A2.12) (along with {AZ.13)) with ¢ replaced by a, and similarly, g;,(v) for
¢ < vy < fr is the same as the expression given in the relation (A2.5) with a replaced by ¢

il

while g (¥) for ¢ < ¥ < h is the same as the expression given in the relation (A2.6) with a

replaced by c.
(iv)ye Ly=(a,c)
In this case we have to consider only the behaviour F*“(y) ~ (y —a) " asy = a+ 0

and F**(v) ~ (¢ — }'J_”J’ as v — ¢ — 0. Also F'(v) satisfies the additional requirement (see
Equation (3.25))

f F(y)dy = 0. (A2.14)

MNoting again the result

f* I Cle (E_v—a—c)dl
. {%]';"3{{}' —t'.‘::l{{' [ },”I.n'_'!. " c—i ¥

1
=f (1-HBcnde =0 forn>0, (A2.15)
-1
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we observe that the basis functions for F*(v){a < v =< ¢) are given by
o= gm I{vj =12 (A2.16)

while the basis functions for F9(v){a < v < ¢) are given by

ffm=g@m, m=012..., (A2.17)
where
21T (1/6)m! i (m a—c
gy = — !
" alim + 1/ (VP (y —a)e — )P " c—a )
R —— (A2.18)

Appendix I1I.  Expressions for KI5, d," etc
(i) For L = L, = (a. h) , we find that

i L[ ymn i { 4haye k. —a) yyaelk, (h — a))

[T thzk‘]h = ar{_;w{h — ‘-l.”l,-'l
2 rmh J r )t FIT
+_ mth 41376 T W 3136 (F7T) (A3
i (rm)ls3

where J's are Bessel functions of first kind, and

. I lweqyslko(h — a))
" coshkoh  {ko(h —a))'/®

(A3.2)

where ['s are modified Bessel functions of first kind. The expression for K, is obtained
from K| , =, with ‘coth’ replaced by ‘tanh’ and inserting an extra term (127b/h — a)/
(2'3/{T(1/3)}") 8uudom inside the square bracket, where &y, = 1 forn = 0 and &, = 0 for
n = 1. We also note that

‘IJ'!' — d.\

m—1-

(A3.3)

(i) For L = L, = (0, ¢) , we find that

K o= —Eﬂ 41y i { o S 16 (K€ T s 116 (K )
" cosh?koh ~| 3 (k,c)173
cotha,b cos® ¢ Jas16) (0t €)1 16 (2 €)
¥r ()13
_ cotagh i Frsin e oege ) T s e (o) 1 (A3.4)
Yo (ctnc)?
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a2 _ Tz si16 (koc)
(koe) /o

and the expression for K7 is obtained from K in the relation (A3.4) by replacing ‘coth’ by

‘tanh’ and *— cot’ by "tan’.
{iii) For L = L3 = (0,a) + (c, #), we find that ¢°  is obained from K in the relation

(A3.5)

i LN
{A3.4) by replacing ¢ by a while @}, is obtained from K in the relation (A3.1) by replacing
a by ¢. Again, H,, is given by
A(—1yrtntlg . cos kb Jonpriaralke (= €3 o e (K@)
H;m - — 0 Z ¥ 2 [H-.-'ﬁI] ¥ — — ’_Jlm [Il:';'ﬁ] i (A3.6)
cosh ﬂ:]fﬁ‘ o Er {AJ{h f” {Arﬂ]

and P}, is given by

Po=H (A3.T)

L LI

We obtain the expression for ¢ from K in the relation (A3 .4) by replacing ¢ by a, ‘coth’

i R

by ‘tanh’ and ‘cot” by ‘tan’, while we have the relations:

H:l{r:ll.lr = H:l:.l n—=11 U\jﬂ]
ﬁﬁ:r = E:;—I,Jr' l:z‘!'ijg]
J:.ur = Q:M—l.n—l' (ﬁ},]{]}
Doty ”. f.']
(1, _ “am IRELE AT ]
< R (A3.11)
. | Tysrmmdbo(h — )}
= e (A3.12)
cosh fq]ﬁ‘ {A:]”I‘ & ”
B 1,
dy =d)", (A3.13)
g =g, (A3.14)
(iv) L = Li = (a,c).
K - % i 4 (If—lll”‘”2 cosk, (h — £52)
" cosh?koh | | 8k (S5)VA N (1) sink, (h — 59)
( (1" cosky (h — %)
* i
(— 1" sink, (h — 5<)
c—a c—a
g S T (-kr B ) J:m—['.';'ﬁ] (Rr B )
+( ) )4.-'3 i roh ({_”Jr-—lﬂmgg )
M C A -
FT c—a\ (=1)?sin%d
4 ri
b JJr--[T;'ﬁ] (?) JJrJ—:[T.-'ﬁ] (?) . (A3.15)
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where the upper terms are for odd n, odd m while the lower ones are for even n, even m.

4 — et Y FEB — [t fF —il
{_ ”m Ie’lll["'" (et /20) +e Ko (h— (et /200 -'!Jrl—[?'-'ﬁ]{-kt]:?:j

I = ' = A3l6
€ 2 cosh koh (ko =5*) 1% : j

K, is obtained from K |, | with ‘coth’ replaced by ‘tanh’ and by insertion of the extra

e

term (127 hjc — aj(2'-";’{]"{3_‘1_54J3;1.r3;1w inside the square bracket. Finally,

dy = d

i m—1-

(A3.1T)

Appendix IV. Effect of the introduction of a constant in the solution of
pp A
¢'(x,¥)(0<x<b,yeL;, j=1,3.4)

We prove here that, in the present method of calculation of the reflection coefficient, th-:
introduction of the constant term in the solution of ¢*{x, ¥v) in the regicm 0 <x <by
L {j = 1,3,4), does not have any effect. We consider the case v Ej only. The cases
¥ € Lior ¥y E L, can be dealt with similarly.

Let us include a constant B to the expression for ¢*(x, y) given in the relation (3.8), i.e
@' (x, v) 1s now expressed as

; HITX n(y —a)
o (x,y) HH-I—ZB,,mqh — e ———, O<x<ba<y<h, (Ad.1)

n=1

where B)(n = 1) is given by the relation (3.20).
To find By, we use the integral law of action and reaction (cf. Driemer er al. [33]) to the
section a < v = fr at x = b, so that

i i
f ¢'(b—0)dy = f &' (b +0)dy. (A4.2)

In the Equation (A4.2), we evaluate the left side by using the expression of ¢"(x, v) given in
(A4.1) and the right side by using the expression of ¢ (x, ¥v) given in Equation (3.6). Thus,
we find that

1 1 + R* sinhky(h —a >~ sink,(h—a
Ht\] = t]{ j e ZAL .Ii'{ j 1 l:ﬁ-r-l?]
h — cosh .k:]h .k:] k:r

=1
where A (n = 1) is given in the relation (3.17).

Agzun we find that M* (v, u) for this case is changed to M (v, 1) where M( v, u) is given
by

My (v, 1) = M (v, u) —

Z cosk, {h —u)sink,(h—a) (Ad.4)

;"J{h - f”
In Equation {A4.4), the expression for M (v, u) is given by Equation (Al.l), and the

second term arises due to the introduction of By in ¢*(x, v). We note that this second term
does not involve the variable v.
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Thus, Equation {3.27) for this case is changed to

h ¥
. . sinh kgl —
f F*(u) M (v, 1) du = ol gy RO =) (Ad.5)
A ) cosh &gh : kolh — a)
where the second term in the right side arises due to the presence of By, in ¢" (x, v).
The Equation (3.35) for this case is changed to
Zﬂ" mn =Dy, m=0,12..N (A4.6)
=l
where

] ]
Lo f f Moy, 1) £ () £ () du dy

= K dg o sin &, (h—a)
= By cosh koh e Sk, (h—a) [,

it it
cosk,.{h—ujjﬂ:'(ujduf Ful¥idy, (A4T)

and
B gt = S0 ) f F (y)dy, (A4.8)
" kgth — a) coshkoh s
K. being given by Equation (A3.1) and & being given by Equation (A3.2). By using

i

Equations (A2.5), (A2.6) and (A2.4), we find that

I}
ff,;:n-nd_v=f e 0)dy =0, m=01.2.....N. AT

Using the result (A4.9) in Equation (A4.7) and (A4 8), we find that
L =K' and D' =d

L i R il

s0 that Equation (A4.6) reduces to Equation (3.35). Thus, the introduction of a constant in the
solution of ¢ for the case of type I barrier does not affect the final results.

We have also checked that for type Il and IV barriers, the introduction of a constant does
not affect Equation (3.35). Thus, the introduction of a constant term in the solution of ¢ (x| v)
inthe region 0 = x < b, v& L_j{j = 1, 3, 4), does not affect the calculation of the reflection
coefficient by the present method, but it may affect the calculation of other hydrodynamic
quantities associated with the problem. This, howewver, has not been demonstrated here.
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