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1. Introduction

After the seminal models of Vito Volterra and Alfred James Lotka i the mid 19205
for predator-prey interactions, mutualist and competitive mechanisms have been studied
extensively in the recent years by rescarchers. There are so many references in this
context, we have just cited here some books (eg. see, [14, 16-18, 7] and the refer-
ences therein). Similarly, after the pioneering work of Kermack—MceKendrick on S1RS
{ susceptible-infective-removal-susceptible) epidemiological models have also received
much attention from scientists. Relevant references i this context are also vast and
we shall again mention here some books (see [1, 2, 4], to mention a few). But little
attention has been paid so far to merge these two important areas of research (see
[7.21]). In this paper, we shall put emphasis in such an eco-epidemiological system.

We consider a three species eco-epidemiological system, namely, sound prey (suscep-
tible), infected prey (infective ) and predator. We consider the case when the predator
mainly eats the mnfected prey. This is in accordance with a previous model by Hadeler
and Freedman [7] which desenbes a predator-prey model where the prey is infected
by a pamasite, and the prey in tum infects the predator with that parasite. The infec-
tion weakens the prey and increases its susceptibility to predation, while no predator
impairing effect 1s accounted for. While the paper is mainly theoretical and does not
address any specific siwanon, the reader may find several examples in [7]. We de-
rive persistence and extinetion conditions of the populations and we also determine
conditions for which the system enters a Hopl-type bifurcation. Moreover, we observe
that the bifurcated branches are supercritical in some parametde region space in a
special case when the predator response function is a Holling-type 1 function.
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The organization of the paper 15 as follows: Section 2 deals with some basic results,
e.g. positivity, uniqueness, boundedness of the solutions. Using these properties and also
making an assumption on the intinsic growth rate of susceptible population, we convert
our three-dimensional system to a two-dimensional one. A seemingly awkward fact
about our model is that positivity 15 not preserved in the whole positive octant. In fact,
it holds only if the total prey population is not too much above its carrying capacity (see
Section 2.3). This reflects a resolute choice for this study: the demographic dynamies
of the prey is supposed o be fast, compared to the other two processes, the epidemics
and the demogrphic dynamics of the predator. Our main result for the prey-predator
dynamics (Theorem 19) assumes that the parameter v, which is the growth mie of the
prey, is large enough. So, oscillations around the carrying capacity of the prey are not
significant m this work. And, the main practical conclusion of our study s that the
asymptotic behaviour of the system s very close to the one of the wo-dimensional
system we just mentioned, to which it reduces when r = 400, The study when the
prey population is near to a constant is a distinetive feature of our model, compared
to previous models by Hadeler and Freedman [7], and Venturino [21]. Section 3 is
devoted to studying the dynamical behaviour of the linearized two-dimensional system
around each of the equilibria. In Section 4, we present conditions for supercritical Hopl
bifurcation. We remark without a proofl that the Hopf bifurcation 15 suberitical in some
parameter range. Finally, in Section 5, we show, by using a Poincaré map, that our
analysis for the two-dimensional system is also valid for the three-dimensional system,
for » large. Mathematically, this result belongs o the category of smgular perturbations
results. The paper ends with a discussion on the model and the assumptions.

Part of the mathematical analysis will sound familiar to readers experienced in the
study of two-dimensional systems. This s particulady true for Sections 3 and 4 de-
voted to the study of the asymptotic behaviour of the solutions and the onset of Hopf
bifurcation. By now, there are many references of extensive treatments of Hopl bifur-
cation in o.d.e, a small selection of which are the following books: [13, 10,8, ?]. So,
we are not claiming here the least novelty in the methods we used. Novelty lies in the
ecological framework upon which the model is built. With regards reference sources
for the computations entailed by Hopf bifurcation, to ow knowledge or possibly 1o
our taste, none of the presentations of the Hopf bifurcaton theory can be considered
the casiest book of recipes in the world, which by its simplicity would outclass all
the others. As Hassard ef al [10] put it “the question, what 1s the “best™ technigue
{when analysing a Hopl bifurcation), has no single answer™ (p.92) In fact, system
{5) with a Holling-type-1l nonlinearity (given in Eq. (3)) was studied some years
ago by Freedman and Waltman [3] and Kararinoff and Van Den Driessche [10]. The
method used in [10] was developed by Hassard and Wan [8]. The estimates given in
Theorem 15 are based on computations made by Talibi in [20]. Our choice of the
method developed in [20] is justified first of all by the fact that our familianty to
it 5 greater. We want also to stress that the bifurcation analysis established in [10]
corresponds to the near-linecar Holling-type function, while the sensititve paraemter in
our work is the conversion rate & of the diseased prey mto new predators. Investigating
the formula stated in [10] in that situation would have cost probably as much work as
the direct computation performed here.
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2. The mathematical model
2.1, The basic ecological assumpiions

We shall consider an eco-epidemiological system consisting of three species, namely,
the sound prey (which is susceptible), the infected prey (which becomes mnfective by
some viruses) and the predator population.

For simplicity, we assume that the sound prey population grows according to a lo-
gistic law involving the whole prey population (sound and infected), which is best
regarded as a purely descnptive equation. The transmission rate among the sound prey
populations and the infected prey populations follows the simple law of mass action.
The disease is spread among the prey population only and that disease is not genetically
inherited. The infected populations do not recover or become immune. The predator
population predates mostly the mfective prey and the functional response ( rophic func-
tion) is of Holling-type 11 (Michaclis—Menten kinetics).

2.2 The basic differential equations

From the above assumptions we can now write the {ollowing differential equations:

ds ) 5+i ) )
T =5 +f1(1 - T) — bsi — (s,
. (1)
j; =bhsi —p(i)y — ci,
dy .
P =(ep(i)+ neri(s)—d)y
System (1) has to be analysed with the following imtial conditions:
(0= 0i(0) =0 w(0) =1, (2)

where, s 15 the number of sound prey, i the number of infected prey population, v the
number of predator population, r the intnnsic growth rate of sound population, & the
ecosystem support or environmental camying capacity, b the rate of transmission from
sound prey populations to infected prey populations, ¢ the natural death mte of infected
preyinot due to predation), & the death rmte of predator population, & the conversion
rate, and (i) and gy(s) the predator response functions.

Remark 1. It is to be noted here that we assume that $(0) and 71(s) are dereasing
and bounded functions of § and s. Ay an example, we shall consider these response
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Junctions as of Holling tvpe I given by

mi
a+i

i) (3)

pils) = —, (4)

Remark 2. m and m| are the search vates and a and ay arve the search rates multiplied
by handling times (see, [15])

Remark 3. In the subsequent part of thiv paper we shall consider the case n =0, that
is to say, we assume that the predator eats only the infected prev. The case when
the predator eats alvo a small fraction (n=0, small) of the sound prey will be briefly
discussed in Remark 20,

2.3, Some basic results

We first observe that the right-hand side of Eq. (1) is a smooth function of the
variables (5,4, v) and the parmameters, as long as these quantities are non-negative, so
local existence and uniqueness properties hold in the positive octant.

From the third equation of Eq. (1), it follows that v=10 is an invanant subset, that
15, v=0 1 and only if w(1)=0 for some . Thus, w(r)=0 for all £ if w(0)=0. The
same argument follows for the second equation (1) 1f we assume /(0) =0,

So, either i =0 in which case the first equation of Eq. (1) reduces to a pure logistic
law verified by s, and v 15 going to zero asymptotically; or, i) =0 for all ¢ Summing
up the first two equations of system (1), one obtains

s+
k

d , e
a;{.\-i—f}—r‘{.\-i—?](l— )—p{f}_m ol

from which one can see that
(s+iNg)=k = (s+i)i)=<k Toreizg

and (s +1)¢) 15 asymptotically < k.

We should notice that positivity of 5 15 not guaranteed and, in fact, if we assume
that s(0) =0 and #(0) =k then we have s(f) <0 for =0 small. This madequacy is of
course entailed by the assumed dependence of the logistice part of the equation upon
s+ i. There is no problem, however, if s+ i< k. One can also comrecet the problem by
putting (1 — (s + i)/k)" instead of (1 — (s + i)/k). This means that the logistic part of
the equation is just counting births and there 5 no birth if the total population exceeds
the carrying capacity.

Throughout the paper, we will assume that

s(0)+ i(0) < k.
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We can also relax the above condinon and allow s(0) +i(0) to exceed k£, that is,

SOV + A0 <k + <, H0)<k

b

With these latter conditions on the mtial values, we have

s(0) + i) <k + ;—J i<k, V=0,

In this case, we first show that: #(¢)< & % =0, In fact, if this were not true, and for
some f =0, we have (i) =4k, we will have at the same time s(ty) < /b, therefore,
di/dify )< 0. By standard argument on invariant subsets, we conclude that i(¢) cannot
exceed £, Now, this in turn implies that s(r) =0 for all ¢ =0, because, at cach point
where s(i) =10, we have

i(f)

ds
—_—— = Ty _:'1 H . {' { L
T rilt ‘,I(l )_ﬂ,, since 0 <i(f) <k

So, we can allow s+ o exceed £ provided that it does not exceed
"
k+ - and i<k
B =

We have 0< s i< £ It remains to show that y is utimately bounded too.
Adding together the second equation and 1/ times the third equation of system (1),
we obtain

d 1 d 3 ; s
% — 5 — PR T o . . o
57 (} + 1) (hs —c )i = <= hi mm{c,,d](z + H}),

which implics that
.2

b
f{_f} + - W:_.f:] < IMAax ( a;]‘{"{l d

E

(e w;{}})

This also implies that

2
if) + %_v{f} = ﬁ for all t =0,

if 1t s true Tor =0, and

lim i)+ wm bt

1 -] i —1- e

f—p 1P min{e,d )

for solutions defined up to 400, as long as the solution 15 defined on positive axis.
We summarize the above results in the next proposition.

Proposition 4. Every solution initiating in the positive octant and such that s(0) +
(0 =k sadisfies the same properfies for all t =0 ay long ax it exists. Morveover, the
Jollowing ieguality holds:

2

. 1

i)+ l_»{f}f_: max(
i
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As a consequence, every solution with initial value in B verifying, in addition the
condition (s 4+ D)0 <k can be extended wp to +oo.

Remark 5. In spstem (1), the number v represenis the growth rate of the population.
The greater v, the faster the population reaches its carrying capacity. For v = oo, one
can consider that s+ i =k and system (1) reduces to the following two dimensional
systent: Using s+ i=k, in (1), we obtain:

ﬁ =hilk —i)— i)y —ci,

di

dv (3]
= =(epi)—d)y

The relatonship between systems (1) and (3) will be examined in detail in Section 5.

The next section 5 devoted o the study of sytem (3).We shall determine the bio-
logically feasible equilibna and shall cary out the local stability { mstability ) properties
of the lineanzed system (5) around each of the equilibria.

3. Equilibria and local stability

In this section we are dealing with a two-dimensional system obtained by taking
¥ = +oo. We first consider the equilibria of system (3 ), and discuss their local stability
properties in tenms of the linearization of system (5) near each equilibrium. Next, we
consider global asymptotic properties for the solutions of system ( 3), namely, we will
show that apart from the solutions lying on the boundary of the positive quadrmant —
each solution mitiating from the interior of the positive quadrant approaches the orbit
of a pernodic solution. Finally, we will show that for some values of the parameters
some of the periodic solutons are asymptotically stable. The latter result which is
obtained as an application of the Hopfl bifurcation theorem is preparatory to a result
established in Section 3 of existence of a perodic solution for the complete system,
for » large enough.

The model equation (3) has the following nomegative equilibria, namely,

Ey: (0,0),

Ei:(k - 3.0)
and

£, (% 5%),
where

e i¥)=d
and

& ((bk — ) — bi*)
e p _

JE
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The boundary equilibrium £, exists if

i
k= - 6
}b ()
and the existence condition for the positive equilibrium £, is
bk — ¢ d
4 5
e W

Remark 6. From Eq (5), it iv clear that k=c/b is necessary for the existence of
component of i of the positive equilibrivm. 1t iy to be alvo noted here that this
condition implies the existence of E. Hence, we can conclude that the existence
of £, implies the existence of E|, but the reverse iv not true. It iy also interesting
to observe that the equilibrium £\ arises from Ey for the value of the parameter k
equal to o/b and persisis for all k=c/b while E, avises from E| when & reaches the
value e/b + 7 '(d/e) and persists beyond this vale.

Now, we shall present the existence condition of the equilibna taking into consider-
ation the predator response function as defined n Eq. (3). It is to be noted here that
the existence conditions for zero and boundary equilibria are the same as in the general
case. The only variation 15 in the computation of i and v*. In this patticular case,
and yv* should be read as

~ el
Cem—d
and
. aetblf(em —d) — ad) — clem —d)}
g g (8)
: {em —d)?
It 15 clear that the existence condition for this 1s
Frad
i =l .
am=d + T

The local stability analysis can be performed by computing the variational matrices
corresponding to each of the equilibria.
Let Ky be the variational matrix corresponding to Ey. 1 15 given by

F bk—c 0 9
L6 &)

and, consequently, the cigenvalues are
Ap=—d(d=0) and iy=5hk—c

Now, we can state the following lemma:

Lemma 7. Ey is locally asymptotically stable (LAS) if k=<c/b and iy wunstable if
k =cfb. Moreover, when Ey iv LAS v is in fuct globally asympiotically stable (GAS).
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Remark 8. bk < ¢ means that the maximal renewal rate of infected is less than their
natwral mortality vate. Therefore, i — 0 and y — 0.

Remark 9. It is to be noted here that when Ey is LAS, then the other two equilibria
Ey and E_ do not exist.

Now, we shall discuss the dynamical behaviour of system (3) around £,.
Let Ky be the variational matrix corresponding to the equilibrium £,.1 is given by

— bk =i
Fio (c W) ) (10
0 epi")—d

and, consequently, the eigenvalues are
ip=c—bht and Ay=ep(it)—d.

Now, we can state the following lemma.

Lemma 10. £, ivx LAS if both
(i) k=3¢

and
(i) ep(i*) —d =0

hodd true. And E is unstable i one of the above-mentioned conditions iv violated

Remark 11. The point is that condition (1) of the above lemma is necessary for the
existence of £y as a feasible equilibrium, that &, a point in the positive guadrant and
hence only violation of condition (1) gives rise fo dsiability of the system around
Ey B is also to be noted here that condition (1) contradicis the exivience criteria
Jor the stricdy positive equilibrium. Hence, we finally conclude that if' £, is LAS
then E, does not exist. These facis are in accordance with the observations made
in Remark 6 about the appearance of E) and E.: the curve constituted by the pairs
(kE) in (R x R?) branches off the curve B = {Ey} as k crosses the value ¢fb, where
a simple bifurcation occurs. At this point, Ey loses ity stability which passes to the
new eguilibrivem. Thiv is the phenomenon known as an “exchange of stability” through
hifurcation (see [19]). The same phenomenon takes place af the cross point of the
bhranches determined by E) and E, respeciively.

3.1 Bivlogical interpretation

If £y is LAS then the predator population will not persist, but on the other hand,
the mfected population will survive. Necessary and sufficient conditions for this sort
of phenomenon are the following:

The environmental camying capacity should have an upper threshold value deter-
mined by the ratio of the death mte of infected populations and the transmission coef-
ficient of susceptible and infected individuals.

Now, if we consider the predator response function (3), then £, s LAS if both
(1) k=c/b

and
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(i) em=<d + bad/bk — ¢
hold true. And it 1s unstable 1 one of the above-mentioned conditons 15 violated.
That is, in this case, em, the product of the conversion rate and the search mte
must have to attain a lower threshold value.
Now, we shall investigate the local stability properties of system (5) around the
stetly positive equilibrium £, .
Let 5 be the vanational matax corresponding to the equilibrium £, ¥ 15 given by

o —bit+ B Gyt i)
The characteristic equation of Eq. (11) is
e (_"'{"jj'v N —;~‘4;;"}_v") + (i) %)yt =0, (12)

From above, it is clear that if (p(i*)y*/i* — bi* — ¢(i*)y*) =0, then the positive
equilibrium 1s unstable and if it is less than zero then the system around the positive
equilibnum s stable. Hopf bifurcation occurs when 1t 15 equal to zero.

Now, 1 we consider the predator response function (3), then the characteristic equa-
tion of system (5) around the positive equilibrivm can be written as

=0. (13)

% 2w
my ) £ Vi

.2 ok _
AT+ Al (b @t @t iy

Substituting the value of v* from Eq. (8) in to (13), we obtain

amai® (bk — bi* —c)

. . hi* : .
a1 (a4 T2 k) + = 0. (14)
a+i* h {a +i*)?
A Hopf bifurcation takes place at
k=a+ ;‘, + 2 (15)

and we shall denote this value by k.

Thus, we find a value ky, below which the system is stable and above which it is
unstable.

In the next section, we shall show that the bifurcation branches are supercatical in
some parametric region space Tor this particular situation and from which one can draw
the bifurcation diagram with respect to k.

Proposition 12. If' kh=c and ek — o/b)=d then for any (g, wy) i the positive
guadrant with yo =0, e, yo)N{EpE} =0

Proof. First, we shall prove that £, € e i, vy ). Assuming the contrary, for some (ig, vy )
one can determine a double sequence £,.q, : £, — 20.g, — o0 and § =0 such that i(t, ) —
k—eofb W, )—0and it, +g,)= —d+ &k —c/b. Now, (k —e/b)=ilt, +g)= —d+
k—c/b. 0= g=g,. Therefore, we can build a solution (7, %) such that {{0) =k —c/h— 4



756 L Chanopadhvay, O Arina | Nonlinear Analysis 36 § 1000 ) 747 766

and £ —ebh =itV =k —c/b— 4, ¥i<0and =0 as small as we wish. Choose d=0
so small as to make ep(k —c/h—4) =d. This implies W) = 0% < 0 (otherwise ¥ will
be unbounded).

Moy

]

d; 3 = 52 -
¥ i (b —c)i—hi~=10

= H1)=i0) Yr=0

= Hr)<k— ;‘, _5, Yr<O.

Combined with the fact that (1) =k — /b — 8. ¥ =0, we conclude that i{r)=k —
/b — d, Wi=20. Substituting this value for i in the above differential equation, we
obtain di /dt = dbi =0, ¢ <0, which yickds a contradiction and, therefore E| & o(ig. vy ).
This proves our first case.

Now, we shall prove £ & elig, vg). As in the previous case, assuming it 15 not
true, one can determine a double sequence £, g, @ty — 20, g, — 00, it L vt ) — 0L it +
gu) =05 or ¥(t,+g,) =5 and (i, yNt, +g) €, 0<g<g, and Q=[0,5] x [0,8). From
this, we deduce (i, 7) such that (i(0),7(0)) € 2Q and (i(£). 7)) €. ¥t <0. For =0
small enough, we can conclude that ¥ =0, and (1) —& — ¢/b as t — —o0 and this
implies that £, € ey, vg). We have already established that it 15 impossible. Henee
Ey & exfig, vy ) and this completes our proof. [

Now, we shall present the followmng remark:

Remark 13. As both eigenvalues of E. have a real part greater than zero, each
solution stays away from a neighbourhood of E..

MNow, we are in a position o deserbe the asymptotic behaviour of solutions in the
case when £, 15 unstable.

Theorem 14. If the strictly positive steady state is wisiable, then every strictly posi-
tive solution of system (3) tends fo g non-constant periodic solution.

Proof. We have already established the fact that the system is bounded and also £, 1s
unstable. We have also proved in the above proposition and the Remark 13 that none
of the equilibria £, £, nor E, is i the omega limit set of such solutions. Thus, as
a result of the Poincaré Bendixson theorem, the omega limit set of any ininal value
(i, vy ) in the interior of the positive quadrant is made of a single closed orbit of a
periodic solution, that is, any such solution approaches asymptotically the orbit of a
single periodic solution-this ascertains our claim. [

In the next section, we shall find out the direction of the Hopf bifurcation branch.
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4. Direction of Hopf bifurcation
We consider the Holling-type-11 predator response function.

Theorem 15. If em, the product of the conversion and the search rate, satisfies the
Jollowing nequalities:

d+

ab/ag +d — 3:?&’),

< £ <2 M d
£ <0 mim N
1—5h

bk — ¢
where oy ='abd. then the bifurcation branches are supercritical.
Proof. To prove this result we shall follow the approach of Talibi [20, Ch. 7] We

shall normalize system (5) by the following change of variables (time scale). We keep
the same notation i, v and ¢ for the new variable.

o i ——1
o)) “*”’
with
e ‘L.ffmmii_:b;’ —¢) _ g
we obtain
d. £ *,'gd {bitk — i) — WYy —ei} Fili. ¥)
dr (.v)=( = {(eni) — d)y} )=(.fzii.‘f‘l) ' v

Lincanzing the above sytem around the positive equilibium £, we obtain the eigen-
values which are purely imagmary with the imaginary part equal o 1.
Let &(n) be the value of the bifurcating parameter. 1T we wilte,

k(n) =k + nky + 1k + o(n)
and using the main theorem of Talibi [20], we obtain that &) =0 and k> is given by
k2o + 1 4+ =10, (18)

where

d .
r= RCH{L{;{;}]L

f= z{}qqu"' + 3g,qur’ + 3e.qun’ + 3e.q0” ¥

J=5Z

= { By puzagpuz - £|pu’ja| Pur — £ puuE pL‘E +f.'gpu‘233pul,‘ }
2 k]

2 a
+ & puvey prT — B2 pUTE pv‘z

g=2u”, 2%, (19)
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and the derivatives
p=Dflky.E.),  g=Dflke. E.).

Here, u+iv is the vector associated with the eigenvalue 1 of the characteristic equation
obtained from the linearized equation and u* + iv* is the row vector in C7 such that

uwn= ,,l =—(r"v)
and
wo=v"uw=10

A few computations yield the following expression (see the appendix):

em fem —d’ am—d
by = — —3ad +d —=& b+ 2hd
= ( — ) [ ad + em + \/ogak + ( o )
2 ST A
_Er.im d (am d) ] (20)
Sy aam

The direction of the bifurcation branch is given by the signature of the value of ks
and after a little algebraie caleulation we can conclude that the bifurcation branches

are supercritical if the sufficient condition as stated in the theorem holds. 71

Remark 16. [f the product of the conversion and the search rate has a lower threshold
value determined by em > max(d + bad /(b — e).d/(1 — Blaby/oy +d — 3ad). then
the bifurcation branches are suberitical. In this case the striclly positive eguilibrium
is not GAS

5. Relation between the two-dimensional and the three-dimensional system

1t is important for the three-dimensional case o show that s+7 is ultimately bounded
below by &—Ch/r, Tor some C =10, and that C can be chosen so that if s{0)+i/(0) & [k—
Chir, k).i(0) + (1/2)w(0) < bk / min{e, d), then this holds true for all = 0.

In view of Proposition 4, we just have to show that s(f) + i(t) = & — Cl/r holds
for all ¢=0. This will be concluded by finding C so that (d/df)(s + i) =0 when
s+i=k —Cklr

%{.«- Fi)=r(s+1) (1 el ;”) W)y —ei
and
Ck
srimke —
I
Zives

idﬂ;{.v +f]=(.’f - %) C— i)y —ci,
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0, we have,
d — CY . p(+o0)ebk’ ;
a;{.\ +f]2.‘. (1 = 'r) E = --thlch_]“ = (ﬂ.
Now, it 15 sufficient to show that the right-hand side of the above expression is
greater than zero, which can be achieved by choosing C in the following way:

CrEC<C,
where
. (1=VA) . {(1++A)
O =———r, Ch=—-—r
2 2
with
e (;if_c':??_ffz% +c.) _
ro\ min(e.d)
MNote that with & bk ¢, 1/e, 1/d bounded above, we have
400 Jebk .
12 e, gy, (C MITe
while
C— oo,

50 that there exist ry =0 and Gy =0, such that (d/de Ws+i) = 0,10 s4+i =k —kCy /v, r = 1y
We summarize the above results in the following proposition.

Proposition 17. It v assumed here that E, exivis and is wnsiable. Then there exist
rp=0, Co=0 such that for each v = vy every solution of Eg (1) verifving i(0) =0,
y{0) =0 and {0)+ (1/2)7(0) < bk?/ min(e,d) and k — kCo/r < s(0)+ i 0) < k, is such
that k—kCyfr < s(t)+i(t) < &, for all 1= 0. We will denote J, the subset of B, defined
s

]

kC 1 bi*
,L.={{.v,,r'._, Visiy=0; k — T“ <s i<k i+ E-VEM} :
Remark 18. The above proposition can be rephrased as J,. being positively invariant
Jor ¥ =y

Now, consider an orbit ¥ of a periodic solution of Eq. (5), in the positive quadrant,
assumed o be orbitally asymptotically stable. We will show the following result:

Theorem 19. There exisis vy = ry so that for every v = vy, system (1) has a periodic
sodution in the neighbourhood of the set [k — Gy k] = Y. Moreover, one can de-
termine a neighbourhood U of ¥V in the plane such that the set [k — kCyfr k] = U s
positively invariant with respect to the sysiem.
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Before proving the theorem, let us draw its consequence for the systems we are
considering. In Section 4, we have established the fact that the bifurcation branches of
system (3) are supereritical in a cerain parameter region space. When this is true, we
can take for ¥ the orbit of any of the periodic solutions which are on the branch of
bifurcation. The main condition of Theorem 19 s satisfied, so the theorem applies to
this situation.

Proof. Choose a point 4 on Y./ 15 a straight lme nonmal to ¥ oat 4. We will represent
[ as the set

{{i,y)e R 1 A{i,y) = {ig. (L. ¥)) + C, =0}

where Ay is 5 0 and tangent to ¥ at 4.

The assumption on orbital asymptotic stability implies that the Pomecart map P
defined on [, in the usual way, satisfies the condition |[P(4) < L.

The periodic orbit associated with Eq. (5) verifies the condition i(1)+(1/2)%(1) <bk*/
Hmin{c,d)) for all 1. This m particular 15 true for 4. Choosing an interval small enough
about A, we have i+ (1/2)/y < bk /4(min{c. d)).

Now, restricting our attention to solutions in ., for such a solution the last two
equations of system (1) can be wrntten as

di o . . . .
P =blk—i)i —pWi)yv—ci+bs+i—Fk),
dv (21)
d—': ={ep(i) —d )y
We shall treat Eg. (21) as a perturbation of system (3.
We shall build a Poincaré map on a two-dimensional convex subset of [, that is

c
(s+Liy)e [If - —“,If] w0
5
More precisely, we will restret the map to a product
&C
I = [JL— = —",L—] x [V, ¥] (22)
¥
for some V=0, small enough. The interval [—F, V] corresponds to a subinterval of
the line [/, denoted the same way. 0 corresponds to the point 4. Fist of all, ¥ has to
be taken so small as to have (s + i, v)e I, = (5,4, v) €J.. The possibility of such a
choice is ascertained by the above observation that 4 €.,
In view of Proposition 17, we already know that solutions of system (1) with initial
value in . satisfy

kC:
s() +i(ne [A— = T“A] for all 1> 0.

It remains to show that the (i, v) component takes its values in a certain subinterval
[—F, ¥] of the line [ Restrictng V' further if necessary, the vector field associated
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with Eq. (5) at each point of [—F,F] 15 close to its value at 4. Therefore, it can be
made transverse o [ umfomnly in [—F, F]. This can be made more precise:

bk —)i—plily—oiy
(ot 7))

for some d=0 and all (i, v)e [V, F]
Now, take two time values f,6 (f <0=<g), where @ is the minimal period of the
periodic solution of Eq. (3), and, & — 1, will be chosen suitably small. Now, we have

=620

AR, ) AE (), Wi ) ) =0

for every (. ) E[—F. F]

This implies that (i(¢), v(£)) hits the line [ at a ume ¢ )i, 6] and this tme is
unique, since the vector field is transverse to [,

By continuous dependence, the same property holds for the perturbed system (21).
S0 we can determine a Poincaré map for system (1),

Finally, we shall show that the Poincaré map takes its values in I,

From now on, we consider an initial value (s, ig, vo) € Lo (s(00,(6(8), w(1))) 1s the
solution of system (1) associated with (sy. i, vg). The Poincaré map for system (1) is
the map @, defined by

(50,00, ¥o ) = (s(£).(2(£), ¥(£))). 1= t{Sp.00. ¥o)s

from I, o [k —&Cy/r k] = [, where ¢ 15 the first positive time when the solution hits
the plane I', close to [k — kCy/r.k] = {A}: t is determined by the equation

(i) w0, 4 =0
We shall have to show that for that value of r, we have
(i(t). W) e[V V]

This will be done by evaluating the distance from (it ), v(1)) to 4. For this evaluation,
we introduce an auxiliary point denoted (#(¢). %1)), the value at time ¢ of the solution
of Eq. (5) starting from (i ve). We denote 7 the first positive time when (. 7)) hits
the line ! close to (i vg).

Now, recall the assumption |[P0)| <1, then there exists & € [0, 1], so that for ¥ =0
small enough and z € [—F, F], we have

|Pz| < i2]. =)

If instead of Eq. (3), we consider a perturbation of system (3), of magnitude not
larger than Cy/r, then provided we possibly restrict the [—F, F] further, for some M =0
and for each iy, wy)E[—F. F]. fE[f.1:], we have

G 3(0)) = G().TO)] < ”}—‘:“
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Provided we choose 2 — 1 < 1/r, and in view of the fact that solutions of system
(3) starting from [—F, F] have a unifornnly bounded derivative on any bounded time
interval, one obtains the following estimate:

[(#(1).3(6)) — (1) 71| = ”7
where M = M'(h c.d, 27). Finally, using inequality (23), we have

[ ). 7)) — A| < k¥
We are now in a position to conclude the proof of the theorem. Summing up the
right-hand sides of the three above inequalities yields

MO M’
IGi(e), H()) — A] € — + — + &¥.
o ¥

If we choose » large enough, then O, 2, — I'.. For this |, it is enough that

MCy + M’
L +kVF <V,

which gives

. MO+ M'
rern=max|{ —————.rp|.
{1 —K)¥

Therelore, for each v = #, (O, has a fixed point m [} which corresponds to a periodic
solution of Eg. (1). Moreover, [, is positively invariant: this result corresponds to a
weak form of stability. This completes the proofl of the theorem. [

Remark 20. One can now exiend owr analysis fo the case when n & 0, that i, one
may assume that the predator predates also the sound population. Assuming n=0
small enough, for example, so that gey (k) <d, one obiaing an wltimate bound for
i+ vie, similar fo the one derived in Proposition 4. Then, one can determine a
positively invariant subset like the set J. given in Proposition 17. Finally, one can
determine V =0 and a value v such that for v=ra, U, CJyoand Q.21 — I Thus,
the conclusion of the theorem can be extended to the case when n=0 small enough.

6. Conclision

Here, we proposed and analysed a model of a three species eco-cpidemiological
system, namely, sound prey, infected prey and predator. We considered the predator
response function as an increasing and bounded one. In particular, we assumed that
this function s of Holling-type 11, as an example.

Using the boundedness property and making an assumption on the intrinsic growth
rate of the susceptible population, we reduced our three dimensional system to a two
dimensional system. And then we observed the following mam results:

(1) equilibdum £, arises from £y for the value of the pammeter & equal to ¢/b and
persists for all & =¢/b, while the stnetly posiive equilibrium £, arises from £
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when & reaches the value /b + 77 d/e) and persists beyond this value. That
is to say, we are able to relate the persistence (or the extinetion) conditions in
terms of environmental camying capacity which is an essential observation from
the biological point of view.

{2} We observed that when the maximal renewal rate of the mfected populaton is less
than its natural mortality rte then both populations (the infected and the predator
ones) go o exunction.

{3) We also pointed out the well-known phenomenon of “exchange of stability™ through
simple bifurcation at the crossing point of £y to £ as well as at the crossing point
of £ o £,.

{4) We observed that under certam parametric conditions the strictly positive equi-
librium enters a Hopftype bifurcation. Moreover, considering a Holling-type-11
predator response functon we found that the bifurcated branches are supereritical
in some pamametric region space which confirmed us the local asymptotic stability
of the bifurcated orbat.

{3) Finally, by using a Poincar¢ map we observed the connection between the reduced
and the original system. It was also pointed out that our analysis for the reduced
system 15 valid for the original system.

All these and more results were interpreted in tenms of biological parameters in the
text either in the subheading of remark or in the subheading of biological interpretation.

Now, we discuss the contact process. We considered in our system that the contact
rate between mfectives and susceptbles follows the “law of mass action™. The contact
process s admittedly debatable. Some authors argue that the proportional mixing rate
is more appropriate than that of simple mass action law. The data of the Greenwood
experiment suggest that there is no change in qualitative properties upon the contact
process whether it follows the law of mass action or it follows the proportional mixing
rate (see [3]). Heesterbeek and Mete [11] suggest that a Holling-type function is more
approprate to descrbe the contact process. For a detailed review on contact processes,
see [6]. To conclude on this point, let us point out that, for » large, the prey population
is near to constant, and hence the two contact processes are roughly equivalent o each
other.

Finally, we mention some future directions of work extending the present paper:

(1) One can consider the case in which the disease also affects the predator population
in contact with the infected population.

{2) One can consider the case of a portion of infected population recovenng and
coming back to the susceptible population.

{3) The spatial spread of the disease is also an important phenomenon to study.

{4) The delay effect meurred in contacts between susceptible and infected populations
is an important characteristic to be considered.
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Appendix

Recall that in Talibi [20], to compute the Hopl bifurcation elements E(y), cx(n) and
k(n) one considers Taylor expansions

Eq)=E.+nE\+fEs+---,

ofn) = 2n + nen + pfwz A
and

kn) =ko+nki + ks +---,

where c(n) 1s the penod of the solution E(n) of system (17) for the value of the pa-
rameter k(x) and by using equalization according to powers of #, one deduces formulae
for E;, ey and &, for § = 1,2,

Let us now give the details of application of formula (18) w system (17).

If £= {1] and [ = {g], we obtain

& 0o
e H|ﬁf|+t|r1—yf|
Df(E) e 2 a s
: W+ v fa,
i oy

& & 2
Hluzﬁ_ﬂ + (120 +H|L‘_='lmf| R

2
gy £y

D f(E - : .
() () - [ -

=3 2
itz — f2 + (e Fwn)—fr+ viva—— f3
e gic'y oy

3 =3
i i
wiatts =5 fi 4+ (w20 +wvus ;) == )
~3 "3.

& i 5
wita iy — f2 4+ ((w2or + ey +woes )5 f
i ity
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and
& g
(vrogs + (imn +ai0a )0 ) oo fi 01000 ﬁf'

X |
t ; :
(oo + (w2t + s }E”r"_ﬁ‘»& J2 ey FI%) ¥E

As u= {flr:]* 0= {“:],, u* ={21,,'D}l, o = {ﬂ._,ﬁ}, with o = — 2 /g, we get

Ao 5 i

E_ﬁ =z|qu3,, o P 1‘3"f| = F|QHL‘2
» , &
i

ﬁfz = aquu’, —J_,f}_ agr’,

where g and £ are defined in Eq. (19).
Thus,

O LA ﬂf+ f
= o g — B o
2@ T Far ! T 5

Similarly, we get

¥ i i g el
g — = B PUD = S gpr = o —s
1P =afi. & r__m},fh P 7y A,

-

i i
Hzﬁlfz=§\?f2¢ g puw = o fz».. zzpv2=12@-fz
and
a1l i & P i 14
J==
2 {13"2‘““2"{ “Q‘fl Ffrxf F“ f' "’-fl JF‘:zﬁf‘zf"}ﬁ
a2 2
+P—I2F,;_f_—3 m}zn z_ﬂ}

For £=E{ky)= E,.. we obtain

T am—d Y
k) = v’Tf_a ( i ) {3ab —d +em}
and
mmad [ em—d\ am—d am—d I
Shky)= — 2h =3 o
(ko) g4/ ( s ) ( sam ) a( s ) WA J“dm
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