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Abstract. This paper studies a two-dimensional system that arises in
plankton allelopathy involving discrete time delays and environmental
Auctuations. The environmental parameters are assumed to be pertur-
bed by white noise characterized by a Gaussian distribution with mean
zero and unit spectral density. The dynamic behaviour of the stochastic
system 1s studied and the Auctuations in population are measured both
analytically and numerically by computer simulation.
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1. Introduction

Fluctuations in size and density of many phytoplankton communities
depend on several factors, some physical, others involving variation of
necessary nutrients, or a combination of these. Several workers have
noted that the increased population of one species of phytoplankton
might affect the growth of one or several other species by the produc-
tion of allelopathic toxins or stimulators, influencing bloom, pulses
and seasonal succession. For detailed literature studies on allelopathic
interactions in the phytoplanktonic world, see the elegant review of
Hellebust (1974) and the book by Rice (1984).

Maynard Smith (1974) incorporated the effect of toxic substances
in a two species Lotka—Volterra competitive system by assuming that
each species produces a substance toxic to the other, but only when
the other is present. Chattopadhyay (1996) investigated the stability
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properties of the above system and Mukhopadhyay et al. (1998) sug-
gested that a species needs some time to mature before producing
a substance which will be toxic (or stimulatory) to the other, 1e., the
production of an allelopathic substance by the competing species will
not be instantaneous, but will occur after some time lag required for
matunty of the species.

Environmental fluctuation is an important component in an eco-
system. Most natural phenomena do not follow strictly deterministic
laws, but rather oscillate randomly about some average so that the
deterministic equilibrium is not an absolutely fixed state; instead it
15 a “fuzzy”™ value around which the biological system fluctuates
(Renshaw, 1995). The environmental parameters are time dependent
randomly varying, and should be taken as stochastic. From this view-
point, we have modified our deterministic work (Mukopadhyay et al.,
1998) by incorporating a white noise which fluctuates with the environ-
mental carrving capacity in the growth regulating terms. In this
paper we study the plankton ecology with the help of a logistic model
with delaved allelopathic inhibition effect in a random fluctuating
environment.

2. The mathematical model

Maynard Smith (1974) modified the Lotka-Volterra two species com-
petition model by considering that each species produces a substance
toxic to the other, but only when the other is present. The modified
system can be written as:

dN
Trl — JNI]_[K]_ o I]J“\'I]_ = ﬁ]lh‘ll — ':,'11"';11'\!'1]..
(2.1)
dN
d!‘l = No[K, — N, — 3Ny —7.N N, ..

where N, (f). Na(t) are the population densities (number of cells per
litre) of two competing species; K ;, K- are the rates of cell proliferation
per hour; %, %, are the rates of intra-specific competition of the first
and second species respectively; [, 2, 2, are the rates of inter-specific
competition of the first and second species respectively and £ (i = 1, 2)
are environmental carryving capacities (representing the number of cells
per litre). The units of =,. x5, 1,5 and [#,, are per hour per cell, and the
unit of time is in hours. v, and 7, are the respective rates of toxic
inhibition of the first species by the second and vice versa.
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It also seems reasonable to assume that the production of the toxic
substance allelopathic to the competing species, simply termed “allelo-
chemic”, will not be instantaneous, but delaved by different discrete
time lags required for the maturity of both species. The system of
equations (2.1) is then reduced to

f”v
d!‘1 == NJ[Kl — Ny — .ﬁllﬁ"l — 71N Nt — Tﬂl
(2.2)
dN
-5 = Na[Kz — ;N2 — 2Ny = 72Na(t — 1) Nal,

where 7, = 0,i = 1. 2 are the times (in hours) required to produce the
respective allelopathic inhibition effect of the first species on the sec-
ond, and vice versa (Mukopadhyay et al., 1998).

Generalizing the result in Mukopadhyay et al. (1998) it can be
shown that if ;' > rrm:'r.l[::{;~ ::} the system (2.2) has a unique positive
equilibrium E* which 1s always locally asymptotically stable for all
7, = 0. Hence it is evident that the allelopathic determinmistic delay
system does not undergo Hopf bifurcation and cannot evolve into
a limit cycle exhibiting bloom, pulses and seasonal succession in the
phytoplankton population.

We then consider the growth of the phytoplankton community in
a stochastic environment incorporating a white noise in each of the
equations the system (2.2). We investigate whether random fluctuation
in the environment can drive the system into quasi-cyvclic equilibrium
as a result of non-zero constant fluctuation in the abundance of this
aquatic population.

3. Basic equations

To take into account the influence of a random environment, we
modify the delay system (2.2) to the form

dN @
fh‘l = Ni[K, + &ilt) — Ny — 12Nz — i NNt — 12)],
(3.1)
dh‘ll -
T = Ni[K: + Ealt) — 2aNs — f2 Ny — 72Nyt — 11)N 2],

where the environmental parameters have been perturbed by standard
white noise characterized by

(=0 and &) =0,0(t—1) ij=12  (32)
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The overbar in equation (3.2) denotes the ensemble average due to the
effect of the randomly fluctuating environment, 4;; is the Kronecker
delta (representing the spectral density of the white noise) and & 1s the
Dirac delta function with ¢ and ¢" being distinct times.

Substituting N,(t) = expix,(¢)), the system (3.1) reduces to the form

i3
% = [K — o exp(x(f)) — fi2exp(xa(f))
— yrexplxi(th explxalt — 72))] + &i(0),
| (3.3)
{rﬁl = [K; — 2y exp(x,(t)) — ) exp(x,(1))

— 72explx(t — 1y))exple(t)] + &y(0).

To analyze the behaviour of the system around the non-zero steady
state solution (NT, N¥) = (exp(xT), exp(x¥)) of (2.2) we substitute

x(t) = xF + n,(t) (3.4)
in (3.3}, reducing the equations to the form

i
{di = [&4(1) — (zrexp(xT) + 71 explxT + X3 (1) — frz expl(xT)nal)

— yyexp(xy + xIhyalt — 1)),
diya

F = [£a(t) — Bayexp(xThy(1) — (xaexp(x3) + yaexp(xy + x3nal0)

— yexp(x¥ + x3init — 1)), (3.5)

(to a first order approximation).
Hence the lineanzed system without delays around the interior
equilibrium (N7, N3) = (exp(xT), exp(x3)) reduces to the equations

1 i
DL~ A, + By, +£,(0),
dt
(3.6
{h‘]‘a 0 5, D {
W o Dns e
where
A=—{x; + ,le}(p{hn'ﬂlp{'ﬁ}
B=— (12 + 7 exp(xexp(x3),
(3.7

C = — (a1 + 72 explx3))exp(x7),
D= —(xz + y2exp(xt) exp(x¥).
Mote that A, B, C, D are all negativeas 3, = 0.i = 1, 2.
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The corresponding characteristic equation of the system (3.6) with-
out environmental Auctuation 1s given by
A(A) =12 — (A + D)L + (AD — BC) =0, (3.8)

and the comesponding characteristic roots are

i=1{{44 D)+ /(4 + Dy —(AD — BC)}. (3.9)

Here (A + D) <0 and (4 + DY — (4D — BC) > 0. Since AD — BC >0,
which is a requisite condition for existence of the non zero interior
equilibrium, there exist two negative real values of A for which the
system 15 locally asymptotically stable.

3.1. The system without time delays

Consider the system (3.1) when t; = 0, i = 1., 2 and write the Langevin
equations (3.6) in the matrix form

X(t) = PX(t) + L&(t), (3.10)

where X(¢) represents the derivative with respect to time ¢, I is the unit

matrix and
3:{:(""’)~ P=(A C). 5:(?:,1{”). (.11)
N2 B D ¢ 2lt)

The solution of the above equation, with the initial condition describ-
ing a sharp value X, at ¢t = 0, is given by

X(H)=e"X, + J e™ O dt'. (3.12)
0

Here we have assumed that the system started off at the sharp (corre-
sponding to the delta function initial condition in the associated
Fokker-Plank equation) phase point

Xo = X(0) = (i1(0), 20D, (3.13)
and e"™ from the matrix equation (3.12) is given by
e"=L7 (s -P) ', (3.14)

with L{ f{1)} = jﬁ e “f(1) dt as the Laplace transform of (1), I as the
identity matrix and L™ as the inverse Laplace transform (Coffey et al.,

1997). Now,
§— A B
{.&I—P}-( C s—ﬂ)‘
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and
det (s1 — P) = A(s) = 5> — (A + D)s + (AD — BC).

Let 4y, A: (assuming that 4, = A.) be the roots (3.8), then

Als) =52 — (A1 + A2)s + 4142 = A (say) and

1{s— 0 —B
SA-P) == ; 3.15
MNow.
L~ 1(%) = pllé +;'._.:_.l1::cush{}~1 : As) ¢
A=) nisa o B—i
ﬁe[r"‘ J”'-"-"“sll1l'1l[—x1 3 42) t,
F-t (5 _A A) _ Er“'1+;"':';1“{105h{21 ; ﬁzlr
(3.16)
4= el +"'-"-"1”sinh{}‘1 — 42)
G — b
- = B AN 2 {21—21}
1 - _ fdy + A2
L ( A )— {EI—EE}E t-.lnh—2 £
L~ — ¢ - _ c E”""J“"'-"-"z”sinh{}‘l = 21}!‘.
A (41 — 42) 2

So, on simplification, we have

E|l] e L—l{‘sl _ P}—l o ({II:-'FIEWI j--l‘ ﬂ'l‘l-:!: } Iﬂ.!-{le 'r1 — e-_'l }I ).. {3.1?}
pa{ef.-, — pt } {-plef.-, +F1Ef._. }

where

(3.18)
B — B
3= y
-
a = g
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Therefore, we may write

(rfl): ({‘plef:.-ll' il plle}._.:} p_%{ef:qr _E.'I._-I}I )(rh{ﬂ'])
iTZ pd{‘ef.-,r Ty E.ﬂ._.]’} {Jﬂzemr + plef._.r} nl{{}}

(preht + paei) pileht — ek slfr'y) ,
i S : : U N (319
J;l (pd{ef.-l]'_ef._.f} {‘plef.-ll' +ple.‘._.f}) (‘;1{!.} { }

Taking the averages over the stochastic variable &(f) and noting
from (3.2) that S(t)=0.i = 1, 2 we obtain

X(t) = e"X,. (3.20)
Using the fact that C,(t')¢(t") = 8,;0(t" — ") we have
m(0) = [pre™" + pae™ ) n(0) + pale™* — e a0

+ 2[{ple.".1f i plef'._.]'}?r]{‘ﬂ_} -I-;'.P_;{E;"I _E}.:r}ﬂzfﬂn

b = 4 v 3 T
z J[(ﬂ (€47 4 p BTN E (f) + pyfet T — TN Ee )] dY
0
d 2 "
+ Jﬂ[{plef.-,[r—r'] + plef._.l'r—r'l}‘:l{rf}

— I " "
+ pj{ef'qr:—r': i ef‘._.r:—:':}él{rrndrr’[‘ [{plf!"‘"_”
0

+ plﬂ"l"'”_r-:}!:]_{r”} s pj{‘eﬁ.-ll'r—.l"l Py E.ﬂ'._-[f—l"]}‘;;l{r"}]d!'n

— [{Plﬂ;": +pzef'._.f}i?1{ﬂ_} -|-ﬂ'_;{f!;": _Ef'._.:}nl{.m}l

T
+J J[{{pleim—r'l +pzef'._.rr—:':}}{{Jolef.,rr—:': _I_pze;._.r:—:':}}
0o

+ {jﬂ‘_;{f!’l" ft—ey __ E.“._-“_I':I}} {pj{ef'qrr—r:_ Ef‘._.r:—p;}}:tﬁ{r.- . !‘"]{I?'d?”..

= [(p,e™" + pe* ) (0) + pafe™ — e*)n,(0)]*

2
i j 2 £
= [Iﬂl {‘l e E}_,a_.lj'} e P12 {I — e[.ﬂ.-, +.ﬂ._.:II:'

244 (A1 + 42)
P_i 2iy 3 L 2 2 (A, +Age
+221{l—e }+p_;{221{l—e }—{21+21}{I—e )

1 2 A1
+ 221{1 —e 1” (3.21)
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by using the properties of the Dirac delta function 1.e., j‘;f{r}r'i{r — a)dt =
fla,p=a-<gqg.

Similarly,

ﬁ = [P.;{E;"I - E;"'I}r.fl{ﬂ'} + {P1Ei1r + Ple;"'r}”z{ﬂ}}l

3 ” 2p1p2 ,
_ {;T—“ _ e_f.-ll'} + 12 “ r;1+; :u} + “ .‘_J:'
-1

(41 + 4a)
1 : 2 s
21 = | - 2a0y | — pl#tda
+“"{221{ L T S
.. u_eb'--r;H. (:22)
24‘.1

So the population vanances are given by
gy, = n1(t) — (7, (O

= [ {‘I ‘.U-,I}_I_ 2}':"11‘7— {l f!1+."._-]f}+ .Iﬂ— {I el,‘__lj-}
2/1

(41 + 42) 245
1 ; 2 i
o 2a0y 1 — gl téeh
+m{2 1'[ e) O+ 72) (1—e )
1 23
ho il —E"‘-‘I}}} (3.23a)
2/.1

62 = n3lt) — (i2(0)

3 = 2 5
S [Vp— {‘] _e_mr} + Puﬂ‘}_ {l r,1+, :u} + pl {] _E_f._-I}

24, (41 + 42)
| 2 _
_ plda —_— _ aldat At
+p4{2*‘1“ Bl (41 +f-11“ ¢ )
1 Ny
+ - {] — e_.‘._‘f}}} 3 {323'3}
2/.1

Each population variance is an increasing function of t, reaching
a steady state value as t —+ 4+ oo given by

3 pi 2pp, I 1 2 |
" _|:2}‘1 +{21+}‘3} +2x. +p%{2f1 (44 + 43) +2}.2 |

(3.24a)
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s | m 2p1p1 pi L[ 1 2 |
T = {2}.] A (g ""‘{2}.1 G+ Tl
(3.24b)
Substituting py(i = 1 ---4) from (3.18) in (3.24) gives
., [B*+D*+(AD — BC) e
%__[HA+NMH—HH} (3239)
, | A* 4 C* +(4D — BC)
6m__[HA+JmAD—Bﬂ } (3.25b)

in terms of the original parameters. Details of the calculations involved
are available to interested readers.

3.2, The svstem with time delays

When time delays are present in the system, e, 1, = 0.i = 1, 2, it is not
possible to obtain explicit expressions of the variances by the above
method. Instead, we proceed to obtain the spectral density of each
population by Fourier transform methods.

3.2.1 Fourier transforms: spectral density

Let us consider a continuous function Y(r), known over the interval
— T/2 =t = T/2, and define another function Y(w) which is related to
it by

T/2
ﬁm:f_?m{“m. (3.26)

— T

As Y{m) is the Fourier transform of Y(t), we know that

Y(t) = —I r Yim) e dm. (3.27)
L A

Equation (3.27) implies that 5.Y(w) is the amplitude density of the
components of ¥(¢) in the angular frequency interval o to m + dom.
Thus 5= Y(m) deo is a crude estimate of the amplitude of the component
of Y(t) with angular frequency m (Nisbet and Gurney, 1982).

So, the Fourier transforms of the system equations (3.5) can be
written as

El(m) = ryyijlw) + ryaffa(o),
{3.28)

Ez{fl}} = 101 (@) + raa0 (),
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where

JH Edt — n)expl — imt)dt = exp( — i{UT;]Eg{{U] i=12, (3.29)

-

rip=— A 4+ im,

ri2 = — B + (exp( — iwt,) — 1)y, exp(x} + x3),

(3.30)
ray = — C + (exp( — iwt,) — 1)y, exp(x] + x3),
Faz= — D+ im,

and A, B, C, D are as in (3.7). The system equations (3.28) can be
written in the matrix form

(3.31)

el

Rij =

(= %) =) =) em
Fap Faz 2 Gz

and # and ¢ are the Fourer transforms of # and & respectively.

where

Let
R-J::(“” ””); (3.33)
Kap Kaz
then
ﬁ:-: E K,'_,:E_,: i=12 {334]

If the function ¥(t) has zero mean value then the fluctuation intensity
(variance) of the components in the frequency band m and @ + do s
Sylom)dm where the spectral density Sy(wo) 1s formally defined, as in
Misbet and Gurney (1982), by

1¥(ew)|?
-

Sylo)dm = _jllirn

Hence,

|E(eo)|?

Si(w)der = lim
T—a

X

| (T2 (T2
= lim —J J B SN &tV expliolt’ — t)) dedt’. (3.35)

T+ I | 153

Therefore, from (3.34) and (3.35), we have

S, (@) =Y |k Sy(@) i=1,2, (3.36)
J=1



Effects of environmental fuctuation on plankton allelopathy 449

because é,_{r} =0 and (1) E4t') = a0t — t'). Therefore the fluctuation
intensity (vanance) in #; is given by Nisbet and Gurney (1982) as

f'}'i = % J‘_. S, () den

||M|,..

J |;c,-1-|1.5‘§|{{u}dru

L
on

||M|,..

| & ;
2— J |Kr-_|:|1ff{t}.. =12, (3.37)
because §; (w) = 1.
Proceeding as above, after some tedious calculations, the population
Auctuation intensity (variance) in #; is given by

1 [ P

2 = fn,i= 1,2, 338
n 21 | - M{m) e (3:38)

where
Piw)=ow?+ D*+{— B+ y,exp(x? + x3) (coswr, — 1)}?
+ {7, exp(x? + x3)sinwr, %,
Pi(w) = w® + A* + { — C + ys exp(xT + x3)(coswr; — 1)}
+ {p2exp(x} + x3)sinewr, }?,
M(m)=[— @* +(AD — BC) + 7, exp(xT + x5 Clcoswts — 1)
+ v exp(x¥ + x¥) Blcos wr, — 1) + y,y,e208
x {cosent, + 1,) — cos w1, — coswr, + 1}]°
+ [@(A + D) + 7, exp(x] + x3) Csinwr,
+ yaexp(x] 4+ x3)Bsinwr; 4 y1y2e2 e
x {sino(t; + 12) — sinwt; — sinwra}]% (3.39)
When 7, = 1, =0, we have
P (w) = o® + B? + D2,
Piw) = w® + A% + C?,
M(w) =[— @* + (AD — BC))? + (A + D)’w?
=[— @*+i(4d + D)w + (AD — BC)]
x[ —@* —i(4 + D)o + (AD — BC)]. (3.40)
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Following Gradshteyn and Ryzhik (1980), the general integral encoun-
tered in calculations of Auctuation is of the type

S o el
s J‘—-J he) hd — @) (3.41)

where
gle) = bow®™ 2 + bi®" 4 + oo + by,
(3.42)
him) = apm® + a1 4+ -0 4 a,.
When n = 2 the integral is given by
I;= w‘ (3.43)

iy ila

Thus we identify gafto) with Pyl (i = 1. 2) and hafw) ha{ — @) with
M) to obtain

g =—1, a;=A+ D, a: = AD — BC,
ho(1) = 1, h«(1) = B* + D?, (3.44)
hol2) = 1, hi(2)= A%+ C~

Hence,
, | B*+D?+(AD — BC) ,
T = [ 2(4 + D)(AD — BC) } (3452)
» _ [A?+C? +(AD — BC)
£ { 24 + D)(AD — BO) J (3438)

This result agrees with the previous one obtained by elementary means
in Sect. 3.1. Explicit values of the spectral densities of the populations
when 1; = 0 are difficult to obtain, as evaluation of the integrals (3.38) is
a formidable task. But we can show numerically that increasing the
time delays t. i = 1, 2, in the system increases the intensity of luctu-
ation of the populations (Fig. 1{a}-(b)).

4. Artificial realization

To gain a broad understanding of the dynamic behaviour of the
allelopathic system we construct a number of individual realizations of
the birth and death type process described by equation (3.1), using the
following procedure (Nisbet and Gumey, 1982).

(1) An imitial population size N,(0) is chosen;
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Fig. la. Variation of spectral densities of the populations with t, when ©, =10
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{2y = 00015, 3, = 0008, 1, = 0005 which satisfy the criteria for the existence of
unigque nonzero equilibrium.
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Fig. lb. Variation of spectral densities of the populations with t; when ©, =0
Parameter values are same as in Fig. la.
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(i1) A time increment dt is chosen such that the birth rate B,(N ) dt < 1
and the death rate DJ(N,, N,)dt <1 over the entire range of
population;

(i) A random number generator is used to generate two sets of
a sequence of random numbers from a normal distribution with
zero mean and variance equal to j (representing a white noise of
unit spectral density);

{iv) At each time, obtain the next random number (R;) from the
sequence and perform the following operations:

{a) If R; = By(N)dt, change N;— N; + 1,

(b) f R; =1 — DNy, Na)dt, change N; - N; — 1,

fc) If BiN)dt = R, =1 — Dy(N,. Na) dt, do not change N;;
(v) Proceed from ¢ to t + dt and repeat step (iv).

In our case,

B,(N) = KN,
and
Dy(N1, N3) = N{ouN + BN + 3NNyt — 1)} ij=1,2(i %))

Then proceeding as above, we obtain the results of the realization
as depicted in Figs. 2-4. These show the combined effects of

Ly
(]

b

10| ‘ "
|

= A

[:I i 1
0 000 2004 3000 4000 5000

Lo )

Fig. 2. Realization of the allelopathic inhibitory (AI) system exhibiting a statistically
stationary state implying persistence of both the species for 1, = t; = (, with param-
eter values as in Fig. la.
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Fig. 3a. Stochastic realization of the Al model showing coexistence of the two species
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Fig. 3b. Stochastic realization of the Al model showing extinction of the second
species (N ) at the bifurcation value of t, {t, = 1345 hours, Le., approx. 37 days) when
t; = (. Parameter values are same as in the previous figures.
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Fig. 4a. Stochastic realization of the Al model showing persistence of both the species
(coexistence) upto the maximum value of 12 (12 = 2451 hours), when t, = 0. Parameter

values are as in Fig. 1a.
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Fig. 4b. Solution (by realization) of the Al model bifurcating from stability to instabil-
ity leading to extinction of the species N, at r; = 2452 hours (Le., approx. 103 days)
when 1, = (. Parameter values are as in previous figures.
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Fig. 5 Solution of the analogous deterministic Al model approaching a stable station-
ary state for r, = t; = (. Similar type of stable solutions for large ¢ have been obtained
for all 1; = 0. Parameter values are same as in Fig. la.

environmental Auctuation and of t; = 0 on the persistence of the two
species, for the parameter values K, =02, K.=0.1, «; = 0007,
a2 = 0008, B2 =0003 fi.; =00015 7, =0008, and v, = 0.005.
A discussion of the appropriateness of parameter values in plankton
allelopathy follows in Sect. 5. Figure 5 shows the dynamic behaviour of
the analogous deterministic system(2.2), in which the coexistence of the
species (Le. the stability of the non-zero equilibrium) is shown to
remain unaffected for all pairs of values of t,, as was also observed
analytically in the local stability analysis.

When 7; = 0, environmental fluctuation contributes to fluctuation
in the density of populations only, but cannot produce any drastic
change in the steady-state dynamic properties of the allelopathic sys-
tem as regards to the coexistence of the species. That is to say, the
unique non-zero equilibrium, if it exists, is always asvmptotically stable
in the global sense as depicted by Fig. 2, as it was in the analogous
deterministic system. On the other hand, it is observed (Figs. 3-4)
that for each 0 = 1, = M,, there exists a bifurcation point 1; = m,
(i.i=1,2:i=j) at which the non-zero equilibrium becomes unstable,
leading to extinction of the ' species in the stochastic system, contrary
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to the analogous deterministic case. For example, from Figs. 3b, 4b, we
see that(z,, 7.) = (1345, 0)and (t,, t2) = (0, 2452} are two such pairs of
bifurcation points (axial points on the (1., . )}-plain) where one of the
species becomes extinct.

5. Discussion

Deterministic models in ecology do not usually incorporate environ-
mental fluctuation; they are often justified by the implicit assumption
that in large populations, stochastic deviations are small enough to be
ignored. Unfortunately one cannot ascertain, except by a parallel
simulation experiments, the ultimate size of the population at or above
which the deterministic approximations are reasonable. A stochastic
model provides a more realistic picture of a natural system than its
deterministic counterpart. Deterministic models will prove ecologically
useful only if the dynamical patterns they reveal are still in evidence
when stochastic effects are introduced.

Random variation will cause stochastic fluctuations in the solu-
tions with constant variations. This superimposed noise will destroy
the fine structure of the deterministic solutions. In reality, random
Auctuations are alwavs present, hence the use of deterministic models
exhibiting substantially different dynamical behaviour from their
stochastic counterparts is not appropriate.

Our study models the stochastic behaviour of a system with dis-
crete time lags in its allelopathic effect in a random fluctuating environ-
ment characterized by white noise. The system in a random environ-
ment develops significant fluctuations, and the stochastic system per-
sists with the coexistence of both the species when the allelopathic
effect is instantaneous, that is 7, = 7. = 0 (Fig. 2); in this behaviour
it follows its deterministic analogue (Fig. 5). The steady state of the
stochastic system in this case is not absolutely fixed., but rather
a “fuzzy™ value around which the population Auctuates.

On the other hand, unlike its deterministic counterpart where
a unique non-zero equilibrium is observed to be stable (implying
persistence of both the species for all r; = 0 (Fig. 5)). the stochastic
system with environmental Auctuation shows instability of the unique
non-zero equilibrium (implying extinction of the i™ species at some
1, 2 m; corresponding toeach 0 = ¢, = M. (i = 1, 2)).

Spectral density, denoting the intensity of Huctuation of each
population as studied in this paper, has also been observed to be an
increasing function of each time lag 7,(i = 1. 2) (Fig. I{a)-b)). This
shows that Auctuation in the density of each population increases



Effects of environmental fuctuation on plankton allelopathy 37

as the maturity time of the allelochemics increases, this increasing
Auctuation drives the ith species to extinction at and above some
threshold value of r; = m, called the bifurcation point, when there is an
environmental Auctuation in the allelopathic inhibitory system (2.2).

For the numerical analysis, the values of the growth terms K, and
K, are set to 0.2 and 0.1 respectively. This means that the growth term
has been assumed to be respectively 2 and 1 cell division over a 10 hour
period, for the carrying capacity ** = 30 and ’z‘ = 12.5 respectively.
These values represent appruximatély 14,000 and 6,000 cells per litre,
which are the respective theoretical maximum densities of the two
species. Other parameters such as crowding (intra-species competition)
coeflicients, inter-species competition coeflicients. allelopathic (in-
hibiting) coefficients ., i, 7:(i,j = 1. 2,1 % j), respectively, have been
chosen appropriately. The values of these parameters can be estimated
from experimental observations and data collection of cell counts over
a long period. The numerical analysis and artificial realization present-
ed here are based on a purely hypothetical set of parameters. The aim
of the study is to investigate the effect of environmental fluctuation
introduced in a two-species allelopathically inhibiting system in the
form of a white noise, characterized by a Gaussian distribution with
zero mean and unit spectral density. It is observed that environmental
Auctuation cannot change the dynamics of the analogous deterministic
system appreciably in the absence of both the time delays 1. (i = 1, 2),
to maturity of the allelochemics. Hence deterministic models are quite
valid in this case for describing the approximate dynamic behaviour of
the system.

On the other hand, for certain values of t; = (0, the time-delay
environmentally Auctuating stochastic allelopathic system exhibits an
altogether different dynamical picture from its deterministic counter-
part: the species becomes extinct as t — oo, Hence, deterministic
models in the latter case are not quite appropriate, and may ultimately
be misleading.

The model would be more realistic if seasonal wvariation of
the fAuctuating environment were considered by replacing K, by
K[l 4+ K/ cost/6 + Ei1)], where K regulates the amplitude of the
annual oscillation, t measures time in months and Z;(¢) introduces the
stochastic element as a white noise in the frequency term. Although
introducing this modification in the allelopathic model (2.2) would
make the analytic study of the model a formidable task, numerical
studies using the method discussed in Sect. 4 are worth pursuing.
However, the simple stochastic model (3.1) studied as an analogous
counterpart of the deterministic model (2.2) already reveals the effect of
environmental fluctuation on an allelopathic inhibiting system.
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