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GLOBAL STABILITY IN SPITE OF "LOCAL INSTABILITY" WITH
LEARNING IN GENERAL EQUILIBRUM MODELS

Shurojit Chatterji and Subir Chattopadhyay

ABSTRACT

It is known through earlier work that deterministic temporary equilibrium dynamics with
least squares learning are locally divergent from a steady state whenever the initial parameter
estimates of the agents is high. This paper establishes that the learning dynamics may be globally
stable in spite of displaying "locally unstable" behaviour in realistitc economic models. We
identify a simple property of nonlinear temporary equilibrium maps that guarantees that all
trajectories converge to the steady state under the global dynamics with learning -in particular,
the locally divergent trajectories are also driven back to the steady state. These seemingly
contradictory results can be reconciled by observing that the dynamics with least squares learning
are discontinuous at the steady state. We also identify temporary equilibrium maps for which an

open set of locally divergent trajectories escapes to infinity while another open set returns to the

steady state.

An application of each result to OLG economies is provided.

KEYWORDS: Least Squares Learning; Global Stability; Local Instability.







1. Introduction

Recent studies (Grandmont-Laroque [7], Grandmont [6]) of the stability of deter-
ministic steady states have shown that the steady state is always locally unstable
when agents use least squares regressions on the lagged values of the endogenous
variable to predict deviations from the steady state value.

The local instability obtained in [6] and [7] is attributable to the fact that agents
extrapolate all trends in past data, in particular divergent ones, in deviations from
the steady state. This causes a discontinuity in the learning dynamics at the steady
state. The dynamics are locally divergent for an open cone of initial perturbations
that may be arbitrarily close to the steady state, but generate sufficiently high initial
parameter estimates. The dynamics may be locally convergent for another open cone
of initial conditions that generate sufficiently low initial parameter estimates.?

In this paper we establish that the learning dynamics in general equilibrium
models may be globally stable in spite of displaying local divergence in the sense
described above.® So, local instability is not incompatible with agents eventually
learning their way to a perfect foresight steady state.

We work with temporary equilibrium maps (TEMs) with the property that when
agents form forecasts by simply projecting the last observed value of the state vari-
able, i.e., “naively,” the dynamics are “contracting” and converge to the steady
state, and this “contracting” property is robust. We emphasize that all the TEMs
that we consider exhibit the local divergence phenomenon.

Proposition 1 demonstrates the basic phenomenon by showing the existence of
an open set of initial conditions (arbitrarily close to the steady state) that displays
local divergence but the trajectories eventually return to the steady state under the
global dynamics.

We next impose the restriction that the range of the TEM is bounded below;
such a lower bound is typically a consequence of feasibility considerations.

We prove two global stability results. Theorem 1 proves global stability for
the simplest specification of least squares learning where agents use only the last
two observations of the state variable to form expectations. For this result, we

consider the class of “contracting” TEMs whose range is bounded above for positive

1See [6] for a justification of this formulation in terms of “decentralized” learning behaviour.

2Similar results obtain with Bayesian learning (see [3]). The dynamics with learning are then
differentiable. Here too the dynamics diverge locally whenever the prior mean, or, independently,
the prior variance, is sufficiently large. Local convergence obtains when agents are sufficiently
subjectively certain about low rates of growth.

3This seemingly contradictory phenomenon (of global stability in spite of local divergence) is a
consequence of the discontinuity of the dynamics with learning at the steady state.




values of the independent variable (in addition to the range being bounded below).*
Proposition 2 demonstrates the possibility of inflation for an open set of initial
conditions if the TEM is allowed to be unbounded above for positive values of the
independent variable.

Theorem 2 demonstrates global stability under the simple specification of least
squares referred to above and also under recursive ordinary least squares, provided
that the TEM is “contracting” and attention is restricted to trajectories along which
the state variable remains bounded though, possibly, locally divergent.

The “contracting” property ensures that if the parameter estimate lies in the
vicinity of the set of stationary trends [-1,1], i.e, in an interval of the form [—1—¢,1+4
€], € > 0, then convergence occurs. The assumptions of the theorems ensure that the
parameter estimate eventually get close to the interval [—1,1] and this guarantees
global stability. Theorems 1 and 2 also prove that the parameter estimate converges.

The methods of the paper can be used to evaluate the stability issue in fully
articulated models. Section 5 does so in the simplest specification of overlapping
generations economies. The “contracting” property is satisfied for a class of prefer-
ences that belong to the gross substitutes variety and also for a class of preferences
that lead to backward bending offer curves. It turns out that the critical factor
deciding global stability is the endowment of the old. Global stability occurs for
boundary endowments while with interior endowments, inflationary paths co-exist
with paths that are locally divergent but globally convergent. In the interior endow-
ments case too one can guarantee global stability, but at the cost of a “Projection”
that restricts the forecasts to a compact set. The novel feature of our “Projection”
is that it does allow for locally divergent behaviour.

Some extensions are discussed in Section 6. Proofs are in the Appendix.

2.1 The Model
In this subsection we specify the reduced form model that is used for the analysis
and then present a preliminary lemma.

The primitive of the study is the TEM (Temporary Equilibrium Map) F(:), which
describes the dependence of the current value of the state-variable x;, assumed to
be a real number, on its point expectation for the next period, x¢, ,

2 = F(at,y). 1)
The steady state value of the state variable is 0 which is the fixed point of the map

4The range of the TEM is allowed to be unbounded above for negative values of the independent
variable.




F(-).® D is the domain of the map F'(-) and will be assumed to be unbounded above;
the underlying economic model might require D to be bounded below.® F(-) will be

assumed to be a smooth function around 0.

Assumption F.1: (i) F : D — R, where D = (—o00,+00) or D = (—d,+00),
d > 0, (ii) F(0) = 0, (ili) F(-) is continuous on D and is smooth around 0, (iv)
F(D)cD.

The principal property that we require of the map F'(-) is phrased in terms of
the dynamical system with “naive learning,” which obtains when zf , := z,_; for
every t. With this specification of expectations formation, the dynamical system
with learning is described by the map x, = F(z;_1). Note that |F(z)| < k|z|, for
every x € D, for some k € [0,1), implies that the steady state is globally stable
under the dynamics with “naive learning.” The property that we require is a slight

strengthening of this condition. Formally:

Assumption F.2:® There exist §*° > 1 and k* € [0,1) such that, (i) |F(8*z)| <
k*|z| for every x € F(D), where (ii) if D = (—d,+o0) then 8z € D for every
z € F(D).

F.1 and F.2 will be treated as maintained hypotheses; F.2 (ii) requires that if
D = (—d, +0c0) then, for some Ky > 0, —d < — Ky < F(z¢) for every z¢ € D.%

In fully specified general equilibrium models, feasibility considerations usually
imply that the range of the TEM is bounded below. Hence, we impose:
Assumption F.3: There exists K > 0 such that — K < F(z°) for every z® € D.1°

Under F.1-F.3, the range of the TEM is an interval which is bounded below (no
upper bound has been imposed on the range); furthermore, the map has a unique
fixed point.

5This specification of the TEM corresponds to a situation in which the variable of interest is
denoted by, say X, the agents know the steady state value, say X*, and can use the deviation
z:= X — X* in their computations since X; is observed and X* is known (as in [6], [7], and [8]).

6If the variable is a price then it is non-negative so that the state variable x, being a deviation,
will be bounded below. If the state variable is the deviation of the logarithm of a price from the
logarithm of the steady state value, D will be the entire real line.

7Of course, F(-) is assumed to be nontrivial; otherwise, local instability cannot occur.

8[9] imposes F.2 to analyse the global dynamics with learning in a one good OLG economy with
time invariant differentiable forecasting functions. A local version of F.2 is used in the analysis of
linear models in [8] and [10], and [5], [6], and [7] (who linearize a nonlinear model to get a TEM
of the form z; = axf,, which satisfies F.2 when |a| < 1).

9Note that F(D) C D, F.1 (iv), is a consistency restriction on beliefs; so the requirement
—d < —Kg4 is a slight strengthening of this condition when D is bounded below.

0For D = (—d, 4+o0), F.3 is implied by F 2 (ii) as noted above.




The next assumption requires that the range of the TEM be bounded above for
positive values of x%; since no restriction is imposed for negative values of x¢, the

range may be unbounded above.
Assumption F.4: There exists @) such that F(z?) < @ for every z¢ > 0.

Given F.1, ) must be non-negative.
The last assumption allows for TEMs that are not bounded above for positive
values of z° and imposes a regularity condition by requiring it to have a positive

asymptote (for z¢ > 0) up to translation.

Assumption F.5: There exist X* > 0 and 0 € (0,1) such that
(i) X*+ F(z®) > 0(X* + 2°) for every 2° € D, (i) limge oo X;;:iiie) =0.

To give an idea about the underlying economies which generate TEMs satisfying
these assumptions, we consider OLG economies (the details are presented in Section
5). The state variable is the deviation of the market clearing price from the price in
the monetary steady state; hence, D is bounded below. Figure 1 illustrates. F.1 is
always satisfied. F.2 will be satisfied in the gross substitutes case and also when the
offer curve bends backwards but income effects are not too strong (Figure 1 (a), (b),
and (d)).!' F.3 is implied by the non-negativity of the consumption of the young
(Figure 1 (a)-(d)). F.4 will hold in the case in which the second period endowment
is zero and “money is essential”’—as in Brock and Scheinkman [2] (Figure 1 (d)).

F.5 holds whenever the endowment is interior (Figure 1 (a)-(c)).

We turn to how expectations are formed.

Agents’ beliefs about the dynamics will be assumed to be summarized by a model
of the form (as in [6], [7], and [8])!2

Ter1 = Pxt + €1 (2)
where € is white noise. At time t, agents will be assumed to use information upto

t — 1 (as is standard in the literature) to generate their forecast as follows.

Expectations E.1: Agents’ predictions are given by

iy = Tiyy = ﬁ?—lwt—l if D = (—o00,+00) (3a)

Un particular, if cycles of period two exist in the perfect foresight dynamics, then F.2 will not
hold (Figure 1 (c)).

2These models are appropriate for local analysis around the steady state. Since our interest is
in global dynamics, it would appear that we should consider more general specifications instead
of a “myopic” linear view of the world. Our results indicate that, in spite of the local instability
phenomenon associated with these linear models that has been documented in the literature, the
global dynamics might well behave nicely so that the agent might well want to continue to believe in
a linear world. Nonetheless, further research should consider the case of more general specifications.




The Gross Substitutes Case

FIGURE 1(a)

The Backward Bending Case
FIGURE 1 (b)
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A 2-Period Cycle
FIGURE 1(c)

Boundary Endowments

FIGURE 1(d)
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or D = (—d,+0o0) and 2§, > —6 (3a)
e ~(6+&5,4) . ae
Tep1 = Ti(g_im*m(‘é) + m@%("‘d) if D = (—d,+00) and £f,; < -6, (3b)

where & > 0 satisfies —6 € (—d, 8*' (—Kay)).

Discussion of E1: Notice that (3b) of E.1 is required only if D = (—d, +00) since
in this case the dynamics are not defined if &f,; ¢ D. The existence of ¢ follows
from F.2 (ii). For 4% € [0,4""], and any z > —K,, #° > —& so that (3b) need not
be invoked; consequently, on the set of parameter estimates [0, ﬁ*z], (3b) does not
interfere with the dynamics, given the maintained hypotheses F.1 and F.2.

--6 should be interpreted as the agents’ believed value of the state variable when
the linear law (2) gives way to (3b). Since —6 < —Kj (since § € (8**Ky4,d) and
,6*2 > 1), and since — K} is a lower bound on the realizations of the state variable,
the agents’ beliefs are never contradicted since the state variable never enters the
region where the “linear view of the world” is not valid. (3b) does not artificially
restrict the domain as we have allowed forecasts to go to the boundary of D.

Even with (3b), agents will extrapolate sufficiently high growth rates in all di-
rections so as to produce local instability. Furthurmore, the mechanics producing
global stability or inflation will, in cases where D is bounded below, be the same as
in the case where D is the entire real line (and hence (3b) is not invoked). So E.1
does not act as a “Projection” (used in earlier literature—see Discussion following
E.2 in Section 5) that effectively eliminates certain kinds of divergent behaviour.

We need (3b) merely to get a well defined problem.

To fully specify the system with learning, we need to specify how the parameter
estimates are updated over time. We consider the following two variants of least

squares learning, SL (simple learning) and RL (recursive ordinary least squares):

[SL]| This is the simplest specification of least squares learning-—agents simply ex-

trapolate the most recent adjustment rate in the dynamics of the state variable.

P = ;- (4)

Tp-1'

[RL] In the case where the agents’ memory is unbounded, one obtains the following

recursive formulation of ordinary least squares learning (e.g., [6])
F(ﬁ?_lml—l)

Br = m(we-1T4-1)Be-1 + [1 = m(we1@e1)| =5 — (5)
wi = m(we 1T 1)wi (6)
with m(z) = leg, and subject to the initial conditions w% = —3— and By =

-T 5
1 > L
-
D BT+l
Ty
2:—L$j
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For later reference, we note the following standard representation of RL:
t—

1
B = = (57)
-L %
Initial conditions for the economy are given by (g, 8y) where [y is formed using
Xo, -+, Z-r,x; 7 0 for all 7.
The dynamical system with SL estimation is defined by (1), (3), and (4). The
dynamical system with RL estimation is defined by (1), (3), (5), and (6).

Remark 1: Note that if, along some trajectory, z; = 0 for some ¢, then trivially

z¢ — 0; we do not study such trajectories.
This completes the description of the model.

We end this subsection with a fundamental implication of F.2. Lemma 1 shows
the existence of an invariant set (in the vicinity of the set [—1,1]) for the dynamics
under SL and RL. This set is labelled / and has the property that, for any initial
condition in I, the dynamics of the state variable converge to zero and the param-
eter estimates also converge. The stability results will follow by ensuring that the

parameter estimate enters the set I at some stage.

Lemma 1: Assume F.1 and F.2. Define the set I by I := [—(*, 3*].

(i) Consider (z, ;) under SL.

Be € I implies Bry; € I forall j >0, and x4 ; — 0, Bey; — 0.

(ii) Consider (¢, Bt,w:) under RL.

Bt € I implies Bpyj € I forall >0, and Ty ; — 0, Bry; — B, wiy; — .

2.2 Convergence of an Open Set of Locally Divergent Trajectories

In this subsection we show that under F.1 and F.2, there always exists an open set
of initial conditions arbitrarily close to the steady state displaying local instability
initially but eventually returning to the steady state. The result is proved for the
SL case for TEMs whose range is unbounded above; it holds even if the TEM is a

linear function.

Proposition 1: Assume F.1 and F.2, that F(D) is unbounded above, and consider
the SL case. Consider (—%,%) C F(D) for Z > 0 arbitrarily small, and choose any
zo € F(D) such that o ¢ (—Z,Z) and —zo € F(D) in case F(D) is bounded below.
Then there exists U, an open subset of {(z, )| z € (—%,%), |B] > B*}, in the space
of initial conditions (z,0), and V', an open subset of {(xg,B)| B* > 18] > 1}, and
an integer N, such that in at most N iterates every point in U enters the set V.
Moreover, (xo,Bo) € V implies that z; — 0 and B, — 0.

12




To illustrate the result obtained, we consider a TEM which satisfies F.1, F.2, and
F.5 and, in addition, is monotone increasing. It is more convenient to parametrize
the system in the space (z;_1,x:). Figure 2 illustrates. Ri is an invariant set for
such a TEM since z;_; > 0 implies that x7, , = B% x4 1 > 0, so that z; > 0 due to
the monotonicity of the TEM. So, for zy > 0, ; > 0 and F; := —fi—l > 0 for all £.

The subset of the quadrant below the ray wf—il = [3* is the invariant set [; initial
conditions in this set are driven to the steady state value. Now fix an Z > 0. The
entire open cone (shaded in the figure) can be traced to points in the set labelled
0ZC; that is given any point (z_1,z) in the shaded region, there exists a point
(z_n-1,Z_n) in 0ZC such that the trajectory starting at (x_n_1,2_n) contains the
point (z_q,z). In particular, any open set V in the shaded region can be traced
back to an open set U in a neighbourhood of the origin indicating local instability.
But as remarked earlier, any trajectory that enters /I converges to (0,0). Also, as
Proposition 2 in Section 3 will show, for sufficiently high values of Gy the trajectories
diverge to infinity; in the diagram this correponds to an open set of points in the

set 0ZC for which the induced f values are sufficiently high (labelled W).

3. Global Stability Under SL

In this section we consider a class of TEMs for which global stability holds when
agents use SL to form expectations. Assumptions F.3 and F.4 ensure that at some
stage the ( estimates “jump” into I thereby guaranteeing convergence. It is impor-
tant to note that the range of the TEM is allowed to be unbounded above.

Theorem 1: Assume F.1-F.J, and consider the SL case. For any initial condition
(xo0, Bo) such that zg # 0, 2 — 0, B; — 0.

Proof: It suffices to show that every trajectory must enter the set I of Lemma 1. If
not, then |~%§i| > (3* > 1for all j. But since F.3 imposes a lower bound, z; > — K for
all j, the divergence of |z;| implies that eventually x; exceeds any positive number,
in particular, max{@, K}. Choose J such that z; > max{Q@, K} and note that
z%, 4 := B3z, > 0. Hence, from F.4 we have |z,1] = [F(25,,)| < max{Q, K} < z,.
It follows that, ]w;—jll <1l<p~ n

Remark 2: F.3 and F.4 do not interfere with the argument given in Proposition 1
about the existence of locally divergent trajectories. So Theorem 1 shows that, so
long as the range of the TEM is bounded for positive values of z¢ all of these locally
divergent trajectories must go back to the steady state (under SL).
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FIGURE 2
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F.4 is crucial in ensuring global stability. If we replace F.4 by F.5, which makes
the TEM unbounded for positive values of z¢, we obtain Proposition 2 which shows
that an open set of locally divergent trajectories diverges to infinity. However, by

Proposition 1, not all locally divergent trajectories diverge to infinity.

Proposition 2:* Under F.1, F.2, and F.5 (i) there exists a B > 0 such that if
for some T, xp > B and Br > 1/0, then z, diverges under SL; (i) for any xo > 0,
there exists By such that (i) holds.

4. A General Global Stability Result

In this section we show that, under F.1 and F.2, any trajectory along which the
state variable remains bounded must converge to the steady state under both the
learning schemes introduced in Subsection 2.1. So, one gets global stability and this
in spite of the possiblity of local instability which occurs even if the state variable

remains bounded.

Theorem 2: Assume F.1 and F.2 and restrict attention to trajectories such that
the sequence x; is bounded.
(i) Consider a sequence (x¢, 3;) under SL. Then z, — 0 and f3; — 0.

(i1) Consider a sequence (xy, B, w;) under RL. Then z; — 0,8; — B,w; — @.

For the proof, it suffices to show that parameter estimate [ eventually enters the

set I of Lemma 1. In the SL case, this follows directly from the assumption that z
is bounded. In the RL case, we use the followingl‘ auxilliary result.

Lemma 2:* Consider the sequence q; := %@%ﬂ, L > 0, where z; € R and

-L“j

z; # 0 for some j. Then |q| < cos(3355) <1, L+t 2> 1.

(5’) indicates that ¢; differs from the RL estimator §;, which uses data upto time
t, because of the presence of the additional term z? in the sum in the denominator
of g¢;. The boundedness of the state variable allows one to deduce the limiting
behaviour of f; from that of ¢, thereby showing that 3 eventually enters the set I.

For TEMs whose range is bounded, Theorem 2 implies global stability. For TEMs
whose range is not bounded, Theorem 2 rules out the possibility of obtaining, in
the limit, complicated dynamics restricted to a bounded set. In particular, under
the conditions of Theorem 2, all limit cycles and chaotic attractors with compact,

support can be safely ignored as possible outcomes under the learning dynamics.1®

131t is easy to show that the argument in Proposition 2 can be replicated in the RL case to show
divergence to infinity.

14We thank J. Mora for bringing this result to our attention. The proof is available upon request.

®In [1] complex dynamics are obtained due to the interaction between the stabilizing effect of
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Theorem 2 is tight in the RL case since Proposition 2 continues to apply, showing

that the boundedness condition cannot be dispensed with.

5. OLG Economies
We apply the results of the paper to pure exchange OLG economies with two period
lived agents, one good in each period, and money. For the sake of ease of exposition,
we assume that the economy is stationary with only one type of household in each
generation with a utility function which is additively separable across time.

Let (y¢, 2:) € R? denote the consumption vector of the agent born in period t, let
the function u(y) + v(z), defined on R? represent preferences, and let endowments
be denoted by (w¥,w®) € R2/{(0,0)}. We assume:

Assumption OLG.1: u: R, — R and v: R, — R satisfy

(i) u(-) and v(-) are C?

(i) w'(:) >0,7(:) >0, u'(-) <0,and v"(-) < 0, 0on R,

(iii) limy_ o+ 2/ (y) = 400,

(iv) “,(Zz) < 1for (w¥,w®) € R%,,

(v) liminf, o+ 20'(2) > 0 in case w® = 0 (boundary endowments).

OLG.1 (i)-(iv) are standard assumptions. OLG.1 (v) (see Brock and Scheinkman
[2]) guarantees that there are no perfect foresight equilibria which converge to the
autarchic steady state; it can be interpreted as requiring that “money is essential in
the economy.” OLG.1 (iv) and (v) correspond to the “Samuelson case.”

Let p; denote the money price of the commodity in period ¢t and p§, , the
point expectation of the money price of the commodity in the next period. Given
(pt, p%,1) € R3,, agents’ maximize utility subject to the constraints (y,2z:) € R2,
v < wY, and py(ys — w¥) + p§ (2 — w®) < 0; this generates the money demand
function defined as md(pt,p§+1) = p - (WY —y(pe, P51))-

Define 6 := “&%) for interior endowments (so 8 € (0,1) by OLG.1 (ii) and (iv)),

,Ul(wo

and 0 := 0 for boundary endowments (when w® = 0). On R% | the function m?(-)

is differentiable with the possible exception of (p¢, p§, ) such that p, = 6 - pg, .
There is a fixed supply of money denoted by M > 0. Given pf,,, a temporary

equilibrium obtains if m®(p, p%, ) = M for some p;. The relevant properties of the

equilibrium price are summarized in the following lemma (the proof is routine and

hence omitted).

global nonlinear forces, and the destabilizing effect of local instability. As a referee observed, our
result of global stability in spite of local instability is based on a similar interaction and shows how
learning could be a potential source of complicated fluctuations
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Lemma 3: Under OLG.1, given pg,, > 0,

(i) there exists a unique p; > p > 0 solving m®(ps, p%,,) = M.

(i) (Golden Rule) there exists a unique p* > 0 solving m?(p*,p*) = M.
(i) p. >0 pf,;.

(iv) limpfﬂ_,ooﬁ; =0<1 if (W, ,w) € R% .

(v) if w® =0 then there exists a p such that Pig1 > P = pi<p<4oo.

. dpt y2 ()i
(V) e = G0)—enOn

It can be shown that -2 |p§+1:p* < 1 (this follows from OLG.1 (iv)).

@Pii

Our purpose is to assess the stability of the Golden Rule under learning. Define
Ty := py— p*. x; will be our state variable. The TEM is induced from the temporary
equilibrium price, p, given pg, ;, by subtracting p* from both the variables and has
the following properties:

The domain of the TEM is D = (—p*,+00). The TEM salisfies F.1. Lemma 3
(1) gives a lower bound for market clearing prices; this comes from feasibility. Hence,
the TEM satisfies F.3 with K = Kg := (p* — p). In addition, it satisfies F.4 when
endowments are on the boundary (by Lemma 8 (v)), and F.5 when endowments are
interior (by Lemma 3 (w)).

The next assumption rules out preferences with strong income effects; it includes

the gross substitutes case ((-i—i;L > 0 for all p7,; > 0) as a special case.
t+1

. . [ d
Assumption OLG.2: (i) -1 < @%'P&FI’*"
(if) for ptyy > p, m*(2p* — p§y1,p841) = M only for pf,, =p".

Lemma 4 provides sufficient conditions under which F.2 holds (the proof is te-

dious and is omitted, but see Figure 1).
Lemma 4: Under OLG.1 and OLG.2, F.2 holds.

We now specify expectation formation.

Agents are assumed to know the value p*. They generate their forecasts through
E.l where D = (—p*,+00) and —6 € (—p*, *’ (p — p*)); Discussion E.1 applies.

We turn to the results. With boundary endowments, one gets global stability
under SL.

Corollary 1: Take any economy with boundary endowments satisfying OLG.1-2.
F.1-4 are salisfied. Under E.1, the dynamics are well defined. So, Theorem 1 applies
and all trajectories, including the locally divergent ones, return to the steady state
under SL.

17




Under OLG.1 and OLG.2, there exists an open set of locally divergent trajectories
which return to the steady state under SL. If endowments are interior, then this set

coexists with another open set of trajectories which diverge to infinity.

Corollary 2: Take any economy satisfying OLG.1-2. F.1-3 are satisfied. Assume
in addition that endowments are interior so that F.5 is satisfied. Furthermore,
under E.1, the dynamics are well defined. Proposition 1 applies and there are locally
divergent trajectories which return to the steady state under SL.'

Proposition 2 applies and there are locally divergent trajectories which escape to
infinity under SL and RL.

We note that under perfect foresight, the maximal rate of inflation is %. It can
be shown that if z diverges then necessarily G, > % for all t > T, some T'.

One way to rule out the inflationary paths of Corollary 2 is to introduce a cash-
in-advance constraint on consumption when old which can be invoked to guarantee
that y; < w¥ — €, € > 0, and this bounds the TEM. An alternative is to replace E.1
by a “Projection,” E.2 below. E.2 restricts forecasts to lie in a compact set F” which
satisfies the consistency requirement that if agents constrain their forecasts to lie
in P then the actual realizations of the state variable indeed lie in P. Convergence

now follows as a corollary to Theorem 2.

Expectations E.2: (“Projection”) Agents’ predictions are given b
) g 1% y
e — A€ M HE
@iy, =85, ifEf,eP
e - e 3 e e
Tip1 = Toyin 1f Ty < Thy

e

e _ : e e
mt—!—l - wmax lf xmax < $t+1>

], 28, = —p*+ b for b € (0,p), and zg,,

e e
min> Lmax

where 2%, = 07 21, P =[x

e

is chosen to satisfy +00 > 2.

Z maxmee[mfnin,gl F(me).

Note that z7;, < —p* 4+ p = — K. Also, under the boundary assumption on
preferences, OLG.1 (iii), the maximization determining ¢, is well defined. Under
OLG.1-2, there is a §*? > 1 such that 8*?F(z%,,) < 7%, so that E.2 does not

interfere with the dynamics on the set 1.

Corollary 3: Consider any economy satisfying OLG.1-2. F.1-2 are satisfied. Let
zo € P. Under E.2 the dynamics are well defined and the state variable 1s bounded
under SL and RL (since the TEM is continuous). Hence, Theorem 2 applies and
global stability obtains.

6T here is an exception: if u(z) = v(z) = Inz and w® = 0 then F(D) = {0} Of course, in this
case there are no locally divergent trajectories
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Discussion of E.2: The term “Projection Facility,” as used in the extant literature
refers to restrictions imposed on parameter estimates to guarantee local convergence
to the rational expectations value of the parameter. In stochastic models, even under
a local version of the “contracting” condition F.2, bad realizations of the shocks can
lead the parameter estimate away from the region in which convergence obtains;
hence, a “Projection Facility” is invoked to guarantee local stability.” Evans and
Honkapoja [5] presents an analysis of the role of these “Projection Facilities” in the
case of regression on erogenous variables with noise.'®

However, in the case of regression on lagged values of the endogenous variable,
as in the deterministic models of [6], [7] and this paper, the local instability phe-
nomenon is always present and one cannot dispense with a “Projection Facility”
and get local stability. Though E.2 implicitly restricts the parameter estimates, 1t
does not bind locally (around the steady state); hence, it permits local instability
to occur. It is a “Projection” but of a much weaker form than the earlier versions
of the “Projection Facility” that in effect rule out the local instability phenomenon.
Woodford [10] uses similar bounds and gets global convergence but his model too is
one of regression on ezogenous variables so that the local instability we have in our

framework is absent.

6. Extensions
We mention some extensions.

Theorem 2 can be proved for the case of Bayesian learning studied in [3].

We can consider the case in which there is a predetermined variable so that the
TEM takes the form z; = F(x¢,,,%:1) (as in [3], [6] and [7]). Let forecasts be
formed as postulated in E.1. If we impose the “contracting” condition uniformly for
all values of the predetermined variable, our analysis can be replicated.

The general multidimentional case is cumbersome to handle but it is immediate
that with a linear TEM, our analysis can be replicated.

The case in which the TEM is subject to i.i.d. shocks is of considerable interest.
We do not enter into the complications that noise causes; an extension of Theorem

2 in the case of recursive learning is studied in [4].

17See [8] for an early application of “Projection Facilities;” see [6] and [7] for a criticism.

18The model considered in [5] assesses the stability of stationary sunspot equilibria and periedic
allocations in one good OLG economies using stochastic approximation techniques. They show
that, under a local version of our “contracting” condition F.2, local convergence obtains without
invoking the “Projection Facility” if the support of the shock is sufficiently small.
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APPENDIX

Proof of Lemma 1: By the Discussion following E.1, on the set I, (3b) can be
ignored.

Since F(G2%z) = F(6* - (62/8*") - z), F.2 implies that

|ﬂ§@1=§%-|fﬂ;§g—$|gk*<1fm all 82 <2 z+0. (7)

In the SL case, since f;11 = Z‘Ttl, by (7) |Be+1] < 1. But 8*2 > 1, so that
Bei1 € I := [=p*,5*]. Bey; € I follows by induction.

In the RL case, By, is a convex combination of 3; € I and m;—tl where the latter,
by (7), lies I. Hence, (11 lies in I. Again, f;1; € I follows by induction.

Since x4 # 0 for all j, (7) implies that it obeys |#yj41] < k*|241 ;] and hence
Zyy; — 0 since k* € [0,1). Thus ¢;; — 0 has been proved in both the cases.

We turn to convergence of the parameter in the SL case. The updating rule for
:Bt2+ F(ﬁ?+ 'mH‘j)

g —. Since x4y; # 0 for all j and z; — 0,
tpg Tt

[ can be written as f1j41 =
by L’Hospital’s rule, lim¢ o Eg%%—’—) = F’(0). F.2 implies that —1 < F'(0) < 1.
Moreover (7) implies that |f¢;] < k* < 1 for all j. Hence, for some J large enough,
B obeys |Be 1| < C|Beys], 0 < C < 1, j > J, and hence converges to 0.

Consider the RL case. Since the function m(z) < 1 for all z > 0, w?,; is non-
negative and non-increasing and hence wy,; converges to a finite limit @.

To show convergence of f;y; in the RL case, consider the subset of the equilib-
rium manifold defined as M;= {(0,8,w)|B € I}. As in [6] (Section 4), by a Center
Manifold argument, M, is locally stable. Thus there exists V', an open neighbour-
hood of Mj, such that all trajectories originating in V converge to an element_ of
M;. Since we have already established that z,;; — 0, the dynamics are bound to

enter V and thus the sequence B;,; converges to some f£. "

Proof of Proposition 1: We prove the proposition by showing the existence of
zx_n € (—Z,Z) and f_y, where |S_n| > B*, such that the trajectory which starts
at (z_n,B_n) reaches zo in N iterates. The proof is completed by noting that the
map F'(-) is continuous, so that the dynamical system obtained by iterating SL a
finite number of times is also continuous, with the implication that one can extend
the construction to an open set containing zg.

So given o, consider z° such that F(z°) = x4 (since F'(-) need not be monotone,
there may be more than one candidate value; in such an event any of them can be
chosen for the purpose of the construction). Choose fy as follows: a) if z° - zo > 0
then By > 1 if 2° - 3o < 0 then fy < —1. Now define z_, 1= L. |z_| =[] < |20,
since || > 1, s0 that z_; € F(D) since 2o € I'(D) and —z € F(D), by hypothesis,
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and the range is an interval under F.1. If z° is no less than —§, then 82, := ;”_el I
z® < —6, then 2, is the value of 4% at which the right hand side of (3b) equals z°
(such a value of 32 exists since the right hand side varies continuously in 8% via £°).

By construction, F(82, - ©_1) = 2o and |zo| > |z_1|, so that 82, > B*? > 1 (if

not, F.2 would imply that |F(8%, - z_1)| = |zo| < |z_1]). If z_1 € (—Z,Z) then we

are done. If not, proceed by induction noting that given z_;, |3_;| is also given,
so that looking at the inverse image of z_; we can determine z_; ; (which will be
in F(D) by repeating the argument given above for _; and using F.2), hence the
sign of B_; (hence a specific value), and |3-;_1|. For j > 1, B_; so defined satisfies
37. > *? > 1 (by the argument given in the first step of the induction argument)
so that |x_;_4| < L%‘;L' for j > 1, since z_;_1 := %fj Thus, since 3* > 1, for some
finite N, x_p is driven arbitrarily close to 0, in particular to a point z_y € (—Z,Z).
Finally, the initial §p can be chosen so that |G| € (1, 8*] so that using Lemma 1
one gets convergence to the steady state from the initial condition (zg, ).
As indicated earlier, the proof is completed by noting that the dynamical system
obtained by iterating SL is continuous and this lets us construct the required open

sets around (o, fp) (the set V) and around (z_n,|0_n]|) (the set U). .

Proof of Proposition 2: (i) Using F.2 (for 2 > 0) and F.5 (i), one gets X*+x° >
X* 4+ F(z?) > 0(X*+x°). Note that for §; > 1 and z; > 0 and large, F.5 guarantees
that z,,; > 0; we work with such a pair of f; and z,. So we have 1 > ﬁ—:——ﬁ?ﬁ > 0.
The second inequality can be rewritten as E(—i—*iiv‘-) > Q;t—lX * + (608;)5: where, for
B2z, large, F.5 (ii) implies that the left hand side approaches the right. Restrict
attention to B, > 1. Evidently, Bi41 > 5; if and only if %Jtﬁl > G; > 1. A sufficient
condition for this to happen is that Qw:th *+(06:)6. > B, or dropping the subscript
t, that 8(60 — 1) > (1 — G)XT* Given that 80 > 1, where 8 < 1, the inequality
will be satisfied for x > B, some large B, and consequently (;,1 > ;. But then
B2 1%e1 > Brx, and since for z; large the TEM is monotone increasing (by F.5 (ii))
Tero > Teyr > B and now by an induction argument By ; > B¢, 145 > B. But then
T/ Zerj1 > Pe > 1 for all j > 0, and z; diverges. .

(ii) Given any xy > 0, choose [y(zo) so that it satisfies (a) F—(@%—)—]—%—O) > 2% (b
F([Bo(z0)]?z0) > B, where B is as specified in (i), (¢) Bo(z0)6 > 1. Then f; >
and z; > B so that (21, ;) satisfies the conditions of (1).

~—

n o=

Proof of Theorem 2: It suffices to show that in each of the two specifications

for parameter updating, the dynamics must enter the invariant set [ identified in
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Lemma 1.

Lemma A.1: Consider SL. Let (xo, Bo), such that zg # 0, be any initial condition.
Then there exists J > 0 such that 8; € I := [, 5*].
Proof: If not |8, > * > 1 for all j. Since f§; = fﬁ, one has l%i > (68%).

Therefore, x; must eventually become unbounded. "
Lemma A.2 and Lemma A.3 complete the proof for the RL case.

Lemma A.2: Let q; be as defined in Lemma 2 and consider any bounded sequence

;. Then for the induced sequences q; and [, % — 1.

t-1 o
Proof: Using (5), & = %%I;f%? Consider the sum Z’:_L:v? This sum can either
converge to M > 0 or diverge to infinity. Consider the case in which it converges
so that £2 — 0 necessarily holds. The result follows. Now suppose that the sum

diverges. Since, by hypothesis, x; is bounded, so is 72, and the result follows. n

Lemma A.3: Consider RL. Given 8* > 1, there exists T such that B; € [—(*, 5*]
forallt >T.
Proof: The result follows since the upper bound on |¢;| converges to one from below

(Lemma 2) and the limiting behaviour of §; mimics that of g; (Lemma A.2). =
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