
A STUDY ON
TIME/MEMORY TRADE-OFF

CRYPTANALYSIS

Thesis submitted to Indian Statistical Institute

by

Sourav Mukhopadhyay

Applied Statistics Unit

Indian Statistical Institute

March 2006

A Study on Time/Memory Trade-Off
Cryptanalysis

Thesis submitted to Indian Statistical Institute in partial fulfillment

of the requirements for the award of the degree of

Doctor of Philosophy

by

Sourav Mukhopadhyay

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road, Calcutta 700 108, INDIA

under the supervision of

Prof. Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road, Calcutta 700 108, INDIA
e-mail : palash@isical.ac.in

To my Mother

Preface

At the beginning of 2003, I was searching for a suitable area to do my PhD. My respected
guide Prof. Palash Sarkar assigned me to do a survey work on block cipher cryptanalysis. I
found myself very interested in this area. I am very lucky that I joined into a golden group
– Cryptology Research Group of India formed by our beloved teacher Prof. Bimal Roy and
had the opportunity to work with Prof. Palash Sarkar, Dr. Subhomoy Maitra, Prof. Rana
Barua and many others. I have been inspired by many persons during my PhD work.

I would like to begin by thanking my advisor Prof. Palash Sarkar for his unlimited
involvement to proceed with my research work. He always helped and tried to motivate me
in my research. Without his solid and innovative effort, I do not think I would have reached
at my current position. I also remember him as a good teacher for his interactive classes
during my M.Tech course from 1999-2001.

The name of the next person that comes to my mind is Prof. Bimal Roy. He is my teacher
in both of my M.Stat and M.Tech courses. I found him the most student-friendly teacher in
my entire student life. He introduced me to the area of Cryptography and Coding Theory.
He always provided his helping hand in several problems (academic and also non-academic)
during the last couple of years. I feel proud myself that I got an opportunity to do a joint
paper with him.

I convey my thank to Prof. Rana Barua, Dr. Subhomoy Maitra and Dr. Pinakpani Pal
for their inspiration and all kinds of supports to achieve my goal.

During my long journey at ISI, I came in contact with many scientists like Prof. Sankar
Kumar Pal, Prof. Rajeev Karandhikar, Prof. Arijit Choudhary, Dr. Mandar Mitra, Prof.
C. A. Murty and many more. I am grateful to them for their teaching and guidance.

I must thank all anonymous referees of my published papers, whose comments have
always added a new dimension to my works. I would like to convey my hearty thanks to
Prof. Alex Biryukov for his valuable comments and suggestion during my preparation of the
final draft and presentation slide for SAC 2005 to present our joint paper. I am also thankful
to Mr. Michael Wiener for providing me a valuable research paper. I thank Prof. Harald
Niederreiter, Prof. Willi Meier, Prof. Vincent Rijmen and Prof. Amr Youssef for carefully

reading an initial draft of Chapter 5 in this dissertation.

I would like to thank the anonymous reviewer of this thesis for his valuable comments.

I have spent my graduation period at Ramakrishna Mission Vidyamandira, Belur Math,
where I got a fantastic spiritual environment to explore myself in every positive area of life
provided by the Maharajs (Monks). My hostel superintendent Swapan Maharaj showed me
the right direction for higher studies. I am also grateful to Biswarup Maharaj for his spiritual
inspiration. There I got some real knowledgeable and good teachers like Sachin Bakshi, Late
Mohanlal Singharoy, and others.

I am thankful to the faculty and staff of the Applied Statistics Unit for all the help
during my PhD study in ISI. I would also like to express my special thanks to all members of
Cryptology Research Group of ISI and my room mates: Bappa, Jayanta, Anupam, Debasis
and Tarun.

Last, but not the least I must express my thanks to my family. My mother has always
been a great source of strength. My father, brothers, sister and our family friend Radhabinod
Pal are always with me in my journey with their well wishes. Finally, I must thank Ratna
for her inspiration to complete this thesis.

List of Symbols

The following is a list of important symbols used throughout the thesis. In this list, we do
not provide the symbols used in Chapter 7 to describe the hardware architecture. Instead
the corresponding list is given at the start of Chapter 7 itself.

E() : encryption function
f : one way function, f : {0, 1}s → {0, 1}s

y : s-bit string given to the attacker
N : number of all possible keys = 2s

D : number of targets available to the attacker = 2d

r : number of tables
m : number of rows
t : number of columns
T : online time
Tt : number of memory accesses
P : pre-computation time
M : memory
PS : success probability

Contents

1 Introduction 1

1.1 Outline and Main Contribution . 4

2 Definitions and Background Concepts 6

2.1 Introduction . 6

2.2 Preliminaries . 7

2.2.1 Block Cipher . 7

2.2.2 Stream Cipher . 8

2.2.3 One-Way Function . 8

2.2.4 Problem Definition . 10

2.3 Exhaustive Search . 11

2.3.1 Exhaustive Search on DES . 12

3 Time/Memory Trade-Off Methodology 14

3.1 Introduction . 14

3.2 A Historical Perspective of TMTO . 14

3.3 Time/Memory Trade-Off Methodology . 15

3.3.1 Hellman Method . 16

3.3.2 False Alarms . 23

3.3.3 DP Method . 23

3.3.4 Rainbow Method . 26

3.3.5 Fiat-Noar Method . 30

vi

CONTENTS vii

3.4 Time/Memory Trade-Off Cryptanalysis for Stream Ciphers 31

3.4.1 BG Attack . 31

3.4.2 BS Attack . 31

3.4.3 Applying the DP Method in Stream Cipher Cryptanalysis 32

3.5 Applications of TMTO Algorithms . 33

3.5.1 Application to Block Ciphers . 33

3.5.2 Application to Stream Ciphers . 34

3.5.3 Application to Unix Password . 34

3.6 Implementation of TMTO Attack . 35

3.6.1 Software Implementation . 35

3.6.2 Hardware Implementation . 35

4 TMTO With Multiple Data: Analysis and New Single Table Trade-offs 36

4.1 Introduction . 36

4.2 Hellman Attack . 37

4.2.1 Distinguished Point Method . 40

4.3 Single Table Attack . 42

4.4 Rainbow Attack . 44

4.5 Increasing the Coverage Space . 45

5 Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 46

5.1 Introduction . 46

5.2 LFSR Preliminaries . 48

5.2.1 Possible Advantages of LFSRs over Counters 50

5.3 Function Generation . 50

5.3.1 Invertibility . 51

5.3.2 Efficient Function Generation . 51

5.3.3 Long Period . 51

5.3.4 Uniform Modification of Output . 51

5.3.5 Pseudo-randomness . 52

CONTENTS viii

5.4 Introducing LFSRs as Function Generators 52

5.5 LFSR Based Rainbow Method . 53

5.6 Further Analysis . 55

5.7 Parallel Implementation of TMTO Precomputation 56

6 New Hardware Architecture for Generic Inversion of One-way Functions 58

6.1 Introduction . 58

6.2 Notational Convention and Abbreviation . 58

6.3 Precomputation Stage . 60

6.3.1 Chain Computation Phase . 62

6.3.2 Sorting Phase . 67

6.4 Online Search . 68

6.4.1 For Many Data Points . 69

6.4.2 For a Single Data Point . 72

6.5 Finding the Key . 73

6.5.1 Description of a Processor . 74

6.5.2 Analysis . 74

7 On the Effectiveness of TMTO and Exhaustive Search Attacks 76

7.1 Introduction . 76

7.2 Cost Analysis . 77

7.2.1 Approximate Cost Analysis . 80

7.2.2 General Cost Model . 83

7.2.3 Cost of Exhaustive Search . 83

7.2.4 Rainbow Method . 84

7.3 Application to Stream Ciphers with IV . 85

7.3.1 GSM . 85

7.4 TMTO versus Exhaustive Search . 86

8 Concluding Remarks 88

CONTENTS ix

A Other Applications of LFSRs for Parallel Sequence Generation in Crypto-
logic Algorithms 97

A.1 Introduction . 97

A.2 Parallel Sequence Generation . 98

A.3 Application 1: The DES Cracker . 99

A.3.1 LFSR Based Solution . 100

A.3.2 Comparison to the Counter Based Solution 101

A.4 Application 2: Counter Mode of Operation 101

A.4.1 LFSR Based Solution . 102

A.4.2 Salsa20 Stream Cipher . 103

A.4.3 Discussion . 103

Chapter 1

Introduction

Cryptography is the science or art of secret writing. The fundamental objective of cryptog-
raphy is to enable two people to communicate over an insecure channel (a telephone line or a
computer network for example) in such a way that an opponent can not understand what is
being communicated. This privacy is achieved either by using secret key cryptography (also
called symmetric key cryptography), or by adopting public key cryptography (also called
asymmetric key cryptography). We concentrate on discussing only secret key cryptography
for this dissertation.

In secret key cryptography, a plaintext is transformed to a ciphertext by means of an
encryption function and a secret key. The ciphertext is communicated and the receiver
who has the secret key, recovers the plaintext by using a decryption function. Study of
cryptography concentrates on designing secure encryption and decryption function. The
basic mathematical tools used for constructing such functions are algebra, number theory,
combinatorics etc. Block cipher and stream cipher are two basic primitives of secret key
cryptography.

Cryptanalysis (popularly known as code breaking) is the other side of the coin. It is
assumed that ciphertexts and the model for the encryption are known to the attacker. In
addition some plaintexts may be available. There are different ways of modeling the adver-
sary’s behaviour, some of which allow the adversary to be adaptive.

Cryptographic algorithms usually require the use of a secret key to ensure confidentiality
of transmitted messages. The basic goal of a cryptanalytic attack is to recover the secret
key from publicly available information. Very often a successful attack exploits weakness
in the design of the specific algorithm being considered. Two common attacks on secret
key algorithms are linear cryptanalysis [64, 65] and differential cryptanalysis [21]. There are
several variants of differential attacks, namely truncated and higher order differential [61]
attack, impossible differential attack [19], boomerang attack [96]. The literature contains a

2

wide variety of attacks on secret key cryptosystems, some of which are related key attack [18],
algebraic attack [36, 37], slide attack [27], correlation attack [90].

A generic approach to cryptanalysis views the encryption function as a black box, i.e.,
it does not utilize information about how the function is constructed. The simplest generic
attack is to try every possible key until the correct one is found. This is called an exhaustive
search attack. The importance of such an approach arises from the fact that if a crypto-
graphic algorithm is not secure against exhaustive search, then it cannot be considered secure
at all. The effectiveness of exhaustive search depends on the size of the key space and the
following factors:

(a) implementation in software or special purpose hardware,

(b) the number of parallel processors available,

(c) the speed at which each key can be processed,

(d) the cost of each processor and the overall cost of implementing the attack.

In 1998, the Electronics Frontier Foundation [3] built a machine called DES Cracker for
breaking DES at a cost of US $200,000 and which solved a DES problem in 3 and 1/2 days.

The main disadvantage of using exhaustive search is that it has to be repeated separately
for each target. To address this problem, Hellman [56] introduced time/memory trade-
off (TMTO) attack that enables one to perform an exhaustive search once in an offline
precomputation phase. The actual attack, i.e., finding the key corresponding to a target
is done in an online phase with table lookups and is significantly faster than exhaustive
search. Also, one can repeat the attack on different targets without going through the
precomputation each time. A TMTO attack is a generic attack which can be carried out
against any one-way function f . The online target consists of an image y and the goal of
the attacker is to find a x, such that f(x) = y, x being the secret key (preimage) from a key
space of size N corresponding to the target y. In the multiple data version of TMTO, the
adversary is given search targets (also called data) y1, y2, . . . , yD and has to recover at least
one xi, such that, f(xi) = yi.

Since the publication of Hellman’s result, there has been a spurt in research on TMTO.
Hellman’s method can recover a key in time T using memory M with the trade-off curve
TM2 = N2 for 1 ≤ T ≤ N , N being the number of all possible keys. Rivest [39] introduced
the idea of distinguished points (DP) to reduce the number of table lookups in Hellman’s
method. Oechslin [76] proposed the rainbow method to reduce runtime cost to one-half of
the Hellman method. Barkan et al. [14] pointed out that the cost of storage in the rainbow
method is substantially higher than for the Hellman + DP. Oechslin also described in [76] the
implementation of rainbowcrack which is a software implementation of the rainbow method.

3

TMTO was applied to stream ciphers independently by Babbage [12] and Golić [46].
This attack is jointly known as the BG attack. Later, Biryukov and Shamir [25] combined
the Hellman attack and the BG attack to obtain TMTO with multiple data and trade-off
curve TM2D2 = N2, where D is the number of available targets to the attacker. There is an
elegant application of TMTO in [26], which uses a special type of sampling technique called
the BSW sampling.

Hellman’s method assumes certain randomness property of f and it fails for some con-
struction of f . Fiat-Naor [45] proposed a TMTO construction that works for any function
f . Unfortunately, the trade-offs obtained in [45] are worse than the Hellman trade-offs.

In 1988, Amirazizi and Hellman [10] proposed time/memory/processor trade-off where
several processors execute in parallel, sharing a large memory through a switching/sorting
network. They assumed that the cost of the wires is less than n logn and left this as an
open problem for further study. Wiener [98] investigated the problem and proved that if an
algorithm has a very high memory access rate then the wiring cost is the dominating cost for
any switching/sorting network and showed this cost to be Θ(n

3

2) to connect n processors with
n memory blocks. On the other hand, it is shown in [98] that the wiring cost is negligible if
the memory access rate is low.

Quisquater and Standaert [81] provided a generic architecture based on their two previous
works [79, 82]. They suggested a pipelined architecture for implementing a multi-round
function f . This is built on Wiener’s design [99] of implementing DES in his exhaustive
search attack on DES. Mentens et al. [69] proposed a hardware architecture for key search
based on the rainbow method. Bernstein [16] described the precomputation phase of the
rainbow method as well as the Hellman+DP method as parallel brute force search algorithms.

The goal of this thesis is to study the design and analysis of TMTO attacks. We study in
great detail the exhaustive search attack and TMTO attacks and present a survey of these
generic attacks in Chapters 2 and 3. Chapter 2 talks about exhaustive search attack and
Chapter 3 covers TMTO methodology. The effect of multiple data in the Hellman TMTO
was first studied by Biryukov and Shamir (BS) [25]. We continue the analysis of the general
multiple data TMTO started by BS in Chapter 4 and design new single table trade-offs.
In Chapter 5, we introduce the use of LFSR as function generator and parallel start point
generator in TMTO attacks. We investigate in detail other applications of LFSR-based
parallel sequence generation in cryptologic algorithms. These are given in the appendix. In
Chapter 6, we develop a systematic architecture for implementing TMTO attack. Finally,
Chapter 7 discusses the effectiveness of TMTO and exhaustive search attacks. Concluding
remarks are given in Chapter 8.

1.1. Outline and Main Contribution 4

1.1 Outline and Main Contribution

The material that we include in this thesis are based on our six articles [24, 71, 72, 73, 74, 75]
and is organized as follows.

In Chapters 2 and 3, we provide a survey on generic attacks and also a summary of
state of the art on implementation of TMTO and exhaustive search attacks. Chapter 2
covers a survey on exhaustive search attack. In this part we also describe the work done on
special purpose hardware for exhaustive search with special emphasis on DES. We present
an overview of TMTO algorithms and summarize the work done so far on software and
hardware implementations of such algorithms in Chapter 3.

In Chapter 4, we present a unifying framework for the analysis of multiple data trade-
offs. Both Babbage-Golić (BG) and Biryukov-Shamir (BS) can be obtained as special cases
of this framework. Moreover, we identify a new class of single table multiple data trade-
offs which cannot be obtained either as BG or BS trade-off. We consider the analysis of
the rainbow method of Oechslin and show that for multiple data, the TMTO curve of the
rainbow method is inferior to the TMTO curve of the Hellman method. Finally, to increase
the success probability in the presence of multiple data, we apply Kim and Matsumoto [58]
style parametrization.

Chapter 5 is devoted to the study of function generation and start point generation in
TMTO attacks. We suggest the use of LFSR sequences for function generation to be used in
the rainbow TMTO. Properties of LFSR sequences such as long period, pseudo-randomness
properties and efficient forward and backward generation make such sequences useful for
the intended application. The time, memory and success probability of the multiple table
rainbow method is analyzed in detail. All TMTO attacks require efficient generation of start
points. For hardware implementation, we show that parallel generation of LFSR sequences
are well suited as parallel start point generators.

Chapter 6 describes a systematic architecture for implementing TMTO. We break down
the offline and online phases into simpler tasks and identify opportunities for pipelining and
parallelism. This provides a detailed top level architecture.

In Chapter 7, we develop a cost-time-data trade-off model. This model is used to analyze
the effectiveness of the exhaustive search and the TMTO precomputation for s-bit keys
with s ≤ 128. The analysis shows that s ≤ 96 does not afford comfortable security while
s = 128 appear to be secure in the foreseeable future. We apply our trade-off model to
stream ciphers and find that 80-bit stream ciphers do not provide adequate protection against
TMTO attacks. Further, we show that the A5/3 encryption algorithm used in GSM mobile
phone [7] also does not provide adequate security. Finally, we compare the effectiveness of
TMTO and exhaustive search approaches.

1.1. Outline and Main Contribution 5

In Appendix, we describe two other applications of LFSR sequences. The first application
is to improve the design of DES Cracker built by the Electronic Frontier Foundation in
1998 [3]. The second application is to present a variant of the counter mode of operation of
a block cipher. (We thank a reviewer for pointing out an earlier suggestion by McGrew [67]
for using LFSR sequences in the counter mode of operation. Compared to [67], we provide
more details.) In an earlier work, Wiener [99] had presented a careful and detailed design of
a hardware architecture for performing exhaustive search on DES. We do not improve upon
this design.

Chapter 2

Definitions and Background Concepts

2.1 Introduction

The strongest goal of cryptanalysis is to recover the unknown key which has been used
in an encryption process. Weaker goals, such as distinguishing ciphertexts from random bit
strings have also been considered in the literature. It is assumed that the model of encryption
and the ciphertexts are known to the adversary. Such an attack is called ciphertext only
attack. Additionally, the adversary may know (or can choose) some plaintexts and obtain the
corresponding ciphertexts. These attacks are called known (or chosen) plaintext attacks. In
attacking certain types of encryption algorithms, it may be advantageous for the adversary
to choose some ciphertexts and obtain the corresponding plaintexts. This is called a chosen
ciphertext attack.

The above approaches can be combined leading to attacks such as chosen plaintext, chosen
ciphertext attacks. Further, in the chosen plaintext or ciphertext attack, the adversary can
behave adaptively, i.e., it obtains a response before choosing the next input. The weakest
attack is the ciphertext only attack, while the adaptive attacks are considered to be the
strongest attacks.

Block ciphers and stream ciphers are two types of symmetric key cryptosystems. See [22]
for a survey of the state of the art in symmetric key encryption. In block ciphers, a plaintext
is first partitioned into blocks and then each block is encrypted using the same key. Stream
ciphers generate a keystream from the given secret key and use it to encrypt a plaintext
string. See [68] for more details about block ciphers and stream ciphers and their differences.
The literature has a vast discussion on block and stream ciphers [5, 44, 6, 83] and their
cryptanalysis [65, 34, 85, 97]. Very often a successful attack exploits weaknesses in the design
of the specific algorithm being considered. For example, linear and differential attacks try to

6

2.2. Preliminaries 7

find the linear and differential characteristics between the plaintext and the corresponding
ciphertext for a given encryption algorithm.

A generic approach for cryptanalysis views the encryption function as a black box, i.e., it
does not utilize information about how the function is constructed. A simplest generic attack
is to try every possible key until the correct one is found. This is called an exhaustive search
attack. The importance of such an approach arises from the fact that if a cryptographic
algorithm is not secure against exhaustive search, then it cannot be considered secure at all.

2.2 Preliminaries

2.2.1 Block Cipher

In block ciphers, the plaintext is divided into blocks of a fixed length and encrypted into
blocks of ciphertexts using the same key. In Figure 2.1, we show the process of encrypting
the plaintext X0 under a typical r round block cipher to obtain the ciphertext Xr. Here Xi

denotes the intermediate value of the block after i rounds of the encryption, so that Xi =
Fi(Xi−1 , ki), where (k1,k2,,kr) is the list of round keys derived from the secret key using
a publicly known key scheduling algorithm. In modern ciphers, the secret key is between
128 and 256 bits long and for an r round iterated cipher, this is expanded into r round keys.

The Data Encryption Standard (DES) [5] has been the most widely used iterated block
cipher since it was published in 1977. It has now been replaced by the Advanced Encryption
Standard (AES) [6]. AES is a 128-bit block cipher with one of the three different key sizes,
128, 192 or 256 bits.

k k k1 2 r

.....
0 1 2 r rX F F F X

Figure 2.1: A typical r-round block cipher

2.2. Preliminaries 8

2.2.2 Stream Cipher

Rueppel [86] described a key stream generator (see Figure 2.2) as follows: Let S = {0, 1}s

be the set of internal states and st ∈ S be the internal state at time t. The total number of
possible internal states is N = 2s. Let g : S→ S be the function that modifies the internal
state at each clock (time) and h : {0, 1}s → {0, 1}m be the function which takes the internal
state as input and computes an m-bit string at each clock. The method of encryption is also
shown in Figure 2.2.

Modern stream ciphers use a nonce or an initial vector (IV) in addition to the secret
key. A (key, IV) pair is loaded into the internal state of the cipher after which a number of
cipher rounds (initialization algorithm) are executed without producing any output. After
initialization is over, encryption proceeds as in Figure 2.2.

Turing [84], Scream [52], Rabbit [28], Sober [55], Snow [44] etc. are some well known
stream ciphers. For the new stream ciphers one can see eSTREAM, the ECRYPT stream
cipher project (http://www.ecrypt.eu.org/stream).

St

h

g

Keystream (m bits)
 Plaintext

(m bits)
Ciphertext
(m bits)

bitwise Xored

Keystream
generator

Figure 2.2: Keystream generator

2.2.3 One-Way Function

Informally speaking, a one-way function f : A → B satisfies the following two properties
(see Figure 2.3) where A and B are two finite set,

2.2. Preliminaries 9

• f is easy to compute.

• f is hard to invert, i.e., it is difficult to get x from f(x).

See [49] for a formal definition of one-way function.

x
y=f(x)

 Easy

 Hard A B

f

f −1

Figure 2.3: A typical one-way function

Block ciphers and stream ciphers can be viewed as one-way functions.

Block cipher as one-way function: Let Vs = {0, 1}s be the set of all possible bit
strings of length s. We take Vs1

and Vs2
to be the plaintext space and the ciphertext space

respectively. Let V = Vs be the key space (set of all possible keys). Then N = 2s is the
total number of possible keys. An s1-bit block cipher is a function E : Vs1

× V → Vs2
and

cpr = Ex(msg) denotes the ciphertext cpr for plaintext msg under key x. Let ψ : Vs2
→ Vs

be a function from ciphertexts to keys. One way of constructing the function ψ is as follow.
If s2 > s (DES has s1 = s2 = 64 and s = 56) then we remove the first (s2− s) bits. If s2 ≤ s
(AES has s1 = s2 = 128 and there are three allowable key lengths, s = 128, 192 and 256
bits) then we append (s− s2) constant bits.

For a fixed message msg, we define a function f : Vs → Vs as,

f(x) = ψ(Ex(msg)).

To get y = f(x) from x we need to apply the encryption function under the known key x
followed by a function ψ which is easy to compute. But to get x from f(x) is hard as one
has to decrypt the known plaintext msg under the unknown key x which is equivalent to
the chosen plaintext attack to the cipher. Hence the function f can be viewed as a one-way
function.

2.2. Preliminaries 10

There can be other possible ways of constructing f . For example if s = 2s2, i.e., the key
length is twice the length of the ciphertext, then one can define f(x) = Ex(msg)||Ex(Ex(msg)).
The particular construction of f from Ex() can influence the success of a cryptanalytic
method. In this thesis, we do not consider the different possible constructions of f . Our
focus is on generic methods to invert f .

Stream cipher as one-way function: There are two ways of defining a one-way function
from a stream cipher.

(a) State to keystream map. f : S→ {0, 1}s as follow:

state S 7→ first s bits generated by the stream cipher starting from state S.

This f is said to be the state to prefix mapping. The function f is easy to compute
in the forward direction. From a given internal state S to get f(S), we just apply the
keystream generator algorithm repeatedly until s key bits are generated. On the other
hand, if it is possible to compute S from f(S) then the stream cipher is broken. So
for a secure stream cipher, inverting f should be hard. Hence f can be viewed as a
one-way function.

(b) (key, IV) 7→ keystream map. For a k-bit stream cipher using an l-bit IV, the following
(k + l)-bit one-way function f is constructed in [57]:

(k-bit key, l-bit IV) 7→ (k + l)-bit keystream prefix.

To compute f in the forward direction, we first load the key and IV with the given
value (k-bit key, l-bit IV) and then initialization algorithm is applied until the initial
internal state is reached. After reaching the initial internal state, we repeatedly apply
the keystream generator algorithm to get (k + l) key bits. So the function f is easy
to compute in the forward direction. Inverting this one-way function f will provide
the secret key (note that the IV is public). Hence the function f can be viewed as a
one-way function.

2.2.4 Problem Definition

Let f : {0, 1}s → {0, 1}s be the one-way function to be inverted. This function may be
obtained from a block cipher by considering the map from the key space to the cipher space
for a fixed message or from stream ciphers. Thus our problem will be: given a string y, we
will have to find a string x (preimage or key) such that f(x) = y. We will denote V = {0, 1}s

as the search space and N = 2s as the size of the search space. Note that we require the
range and domain of the function f to be the same because we will be computing iterates
of the form f i(x) for i ≥ 1.

2.3. Exhaustive Search 11

2.3 Exhaustive Search

An exhaustive search attack tries out all possible keys one by one until the correct key is
found.

1. l ← 1 to N do
2. X = next(V);
3. if (f(X) = y) return X as a key and stop;
4. end do
5. return failure;

For practical applications, the set V has an ordering such that next(V) returns the first
unused element of V .

Suppose n search units (processors) P1, P2, . . . , Pn are available. The search space V
is partitioned into n equal size disjoint subspaces, i.e., V = V1 ∪ V2 ∪ . . . ∪ Vn such that
Vi1 ∩ Vi2 = φ for i1 6= i2 and |Vi| = ⌊

N
n
⌋ for 1 ≤ i ≤ n. The processor Pi searches through

the key subspace Vi for i = 1, 2, . . . , n. Each processor Pi executes as follows.

Pi :
2. j ← 1 to ⌊N

n
⌋ do

3. Xi = next(Vi);
4. if (f(Xi) = y) return Xi as a key and stop;
6. end do
7. return failure;

The parallel search algorithm can be described as follows.

1. i← 1 to n do in parallel
2. execute Pi;
3. if all Pis return failure then return failure.

The total number of f invocations required for the exhaustive search is N . The number of
parallel rounds is N

n
when n processors are running in parallel. In the above, the subspaces

V1, V2, . . . , Vn are disjoint. Quisquater and Desmedt [80] showed that using random subspaces
corresponds to a loss of a factor 2 in the success probability.

Tabulation attack: Tabulation attack is the other extreme of the generic approach to
invert a one-way function. It has two phases: offline and online. In the offline phase, a table
consisting of all possible pairs (x, y = f(x)) is generated and stored sorted on the second

2.3. Exhaustive Search 12

component. In the online phase, given y, a lookup into the table provides the corresponding
x.

An exhaustive search requires 2s invocations of f in the online phase and constant mem-
ory. On the other hand, a tabulation attack requires to store 2s pairs of elements and
requires negligible time in the online phase. The TMTO methodology described in Chapter
3 attempts to provide a trade-off between the online time and memory requirement.

2.3.1 Exhaustive Search on DES

In 1977, Diffie and Hellman [41] proposed an exhaustive search machine for DES using 106

DES chips. The cost of the machine was estimated to be around 20M USD and it was
expected to find the key in 12 hours. In [40], Desmedt proposed a realistic exhaustive key
search machine which breaks thousands of DES keys in an hour. A collision search technique
was proposed by Quisquater and Delescaille [79] in 1989. Quisquater and Desmedt [80]
demonstrated how to make a simple fault-tolerent exhaustive code-breaking machine using
widely distributed processors.

In 1991, Eberle [43] showed an efficient DES implementation in GaAs hardware. A gate-
level design of DES chip was proposed by Wiener [99] in 1993. Every chip uses 16 pipeline
stages and can be operated at a clock frequency of 50 MHz. A machine consisting of 57600
DES chips was expected to recover the key in 3.5 hours. The total expected cost was 1M
USD. The idea of using parallel LFSR sequence was suggested by Goldberg and Wagner [48]
and was used by them in 1996 for an FPGA-based DES key search engine.

In 1997, a prize for cracking DES was announced at the annual RSA Cryptographic Trade
Show and the prize was claimed in five months. Again in 1998 at the RSA show, the prize
was offered. As a result, DES was broken in 39 days using exhaustive search on a network
of PCs.

DES Cracker: In 1998, EFF (Electronics Frontier Foundation) built a machine for crack-
ing DES [3] in 3.5 days with a total cost of 200,000 USD (80,000 USD for man power +
120,000 USD for production) by exhaustive search. The DES cracker is a ciphertext only
attack where a PC drives many search units as follows. The key space is divided into seg-
ments and each search unit searches through one segment. A search unit takes a key and two
ciphertexts as input, decrypts one ciphertext with the key and checks whether the resulting
plaintext is interesting. If yes then it decrypts the second ciphertext using the same key and
checks if it is also interesting. The search unit (hardware) selects a plaintext to be interesting
if all its 8 bytes are ASCII, if not it ignores the plaintext. If both the plaintexts are found
to be interesting (i.e., all 8 bytes of the plaintext are ASCII) then the (key, plaintext) pair is
passed to PC to take the final decision. Otherwise, the search unit adds one to the key and

2.3. Exhaustive Search 13

Table 2.1: Approximate time required for different architectures converted to the base year 2006 using
Moore’s law.

Architecture Year of Required # 18 months periods Approximate time
proposal time upto 2006 required in 2006

Wiener [99] 1993 3.5 hours ≈ 9 3.5×60×60
29 ≈ 24.6 seconds

EFF [3] 1998 3.5 days ≈ 5 3.5×24
25 ≈ 2.6 hours

Kumar et al. [59] 2006 8.6 days – 8.6 days

goes on searching for interesting plaintexts. After receiving a (key, plaintext) pair, the PC
checks whether the plaintext which looked interesting to the hardware is an actual plaintext.
If not, then PC returns a false positive.

A counter (adder) is used to add one to the key to get the next candidate key. A 32-bit
adder is used so that it can count the bottom 32-bit of the key. Fixing the top 24-bit of
the key, the search unit takes 1717 seconds to search all the possible keys having the same
top 24 bits. At the end of this search the software stops the chip and resets the adder and
places a new value in the top 24 bits and starts the search again. Each search unit is a DES
chip and searches 2.5 million keys per second. A total of 24 search units fit inside a custom
chip and search 60 million keys per second. A large circuit board contains 64 chips which
searches 3.8 billion keys per second and 12 such boards are mounted into a chassis which
searches 46 billion keys per second. Two chassis to search 92 billion keys per second, i.e.,
covering half of the key space in about 3.5 days.

Quisquater and Standaert [81] gave an estimate that 12000 USD search machine could
break DES in 3 and 1/2 days by exhaustive search. This is a TMTO architecture. Kumar
et al. [59] have built an FPGA based exhaustive search machine which has broken DES.
This is a general purpose FPGA based programmable machine supporting a high degree of
parallelism.

Moore’s law: Moore’s law states that for the same cost, the processing power approxi-
mately doubles every 18 months. Using this formulation, we can scale the time of different
architectures to the base year 2006. Table 2.1 provides this comparison.

Chapter 3

Time/Memory Trade-Off
Methodology

3.1 Introduction

Time/memory trade-off (TMTO) is a generic approach which can be carried out to invert any
one-way function. It also appears in many search problems such as knapsack problem [70, 88]
and discrete log problem [78]. TMTO is a trade-off between the exhaustive search attack and
the tabular attack. In this chapter, we describe the various TMTO algorithms and related
works.

3.2 A Historical Perspective of TMTO

The material in this Section is due to Palash Sarkar.

Enigma represents an important and significant step in mechanization of encryption
procedure. A simplified description of the Enigma encryption algorithm can be found in [91].
At a conceptual level, it has two components – a scrambler and a plugboard with different
settings. The total number of keys is the product of the number of possible scrambler
settings and number of possible plugboard settings. This number is fairly large (around 250)
and exhaustive search was not possible in the 1930’s.

Keys were changed on a daily basis. Hence, all Enigma operators got the same Enigma
day Key. Actual encryption of a message is done using a message key. The operator first
encrypts the msg key using the day key and then the actual msg using the msg key. The msg
key is encrypted twice to eliminate transmission errors.

14

3.3. Time/Memory Trade-Off Methodology 15

The double encryption of the msg key proved to be weakness. By observing several
such double encryptions of msg keys, Rejewski was able to construct a permutation of the
Latin alphabet. Rejewski’s main observation was that the cycle structure of the permutation
depends only on the scrambler settings and is independent of the plugboard settings. The
number of scrambler settings is around 100,000 for the early Enigma machines.

Rejewski’s team spent one year in preparing a table of all possible scrambler settings
and the cycle structure of the associated permutations. The table was indexed on the
cycle structure. During the actual attack, the double encrypted msg keys were used to
obtain a cycle structure. Using the precomputed table and the cycle structure the scrambler
settings of the day key was obtained. The plugboard settings were then obtained by a
separate procedure. This attack can be viewed as a TMTO where the table preparation
time corresponds to precomputation; the tables correspond to memory; the processing of
the msg keys and the lookup into the table correspond to the online phase of the attack.

Note that this is not a generic inversion of one-way function. In fact, this early twentieth
century attack combines TMTO ideas with divide-and-conquer technique (of separating the
attack on scrambler settings from that of plugboard settings).

As the design of the Enigma machine changed over the years, the hand calculation of
the tables became infeasible. Instead special purpose electro-mechanical machine called
bombes were built which ran in parallel to perform similar tasks. These ideas were later
significantly developed by Turing during World War-II. In fact, Turing designed significantly
more complex cryptanalytic machines for breaking more sophisticated versions of Enigma.

Another encryption algorithm used by the Germans was called the Lorentz machine.
According to Simon Singh [91], the world’s first general purpose computer was Colossus,
which was actually conceived as a special purpose cryptanalytic machine. In more recent
times, several proposals of special purpose hardware for performing the sieving step of the
number field sieve algorithm were made. See [94] for a compilation of literature on special
purpose cryptanalytic hardware.

3.3 Time/Memory Trade-Off Methodology

TMTO attack has basically two phases: a precomputation phase which is an offline activity
followed by an online phase. In the precomputation phase, a (set of) table(s) is computed
and only a part of the table(s) is stored which incurs a cost in the online phase. This leads
to a trade-off between the memory (storage) and time required in the online phase.

3.3. Time/Memory Trade-Off Methodology 16

3.3.1 Hellman Method

In the Hellman method, a chain of length t generated from a start point x0 is defined as

x0
f
−→ x1

f
−→ x2 → · · · → xt−2

f
−→ xt−1

f
−→ xt

To construct a Hellman table of size m× t, we choose m start points uniformly at random
from the key space and generate the chains of length t each (see Figure 3.1). The ith start
point is xi,0. The start points and the end points of the matrix are stored in the table, sorted
in the increasing order of the end points.

x1,0 x x x xf f f f f
1,1 1,2 1,t−1 1,t

......

x x x x xf f f f f......

x x x x xf f f f f......

x x x x xf f f f f......

2,0 2,1 2,2 2,t−1 2,t

3,0 3,1 3,2 3,t−1 3,t

m,0 m,1 m,2 m,t−1 m,t
.................

.................

.................

.................

.................

 Start Points End Points

Figure 3.1: Single Hellman table with size m × t

If we go on adding more rows to the matrix, then we reach a situation when there will be
some repetition of the points in the matrix. To find the critical value of m, we assume that
the matrix of size m × t contains exactly mt distinct points and another row is likely to
contain exactly t distinct points. By the birthday paradox, these two sets are disjoint as
long as t ×mt ≤ N and thus the critical values of m and t should satisfy mt2 = N . This
is called the matrix stopping rule [25]. One table can cover only a fraction mt

N
= 1

t
of the N

3.3. Time/Memory Trade-Off Methodology 17

points. Hence t different (unrelated) tables are needed to cover all N keys. These are created
as follows. For the t tables, t different functions f1, . . . , ft are used where each fi is a simple
output modification of the function f , i.e., fi(x) = ψi(f(x)) where ψi is the output modi-
fication function. The success probability analysis assumes f1, f2, . . . , ft to be independent
random functions. The total memory requirement is m × t (start point, end point) pairs.
To give the formal algorithm of the Hellman method we will use the following data structures.

Data structures:

• SP[1, 2, . . . , t][1, 2, . . . , m]: The entry SP[i][j] is the jth start point for the ith table. The
entries of SP[][] are random s-bit strings.

• EP[1, 2, . . . , t][1, 2, . . . , m]: The entry EP[i][j] is the jth end point for the ith table.

We now give the formal algorithm to construct the tables.

Algorithm Precomputing Tables
Input: SP[][]
Output: EP[][]
1. i← 1 to t do
2. j ← 1 to m do
3. tmp← fi(SP[i][j])
4. l ← 1 to t− 2 do
5. tmp← fi(tmp)
6. end do
7. EP[i][j]← tmp
8. end do
9. Sort(SP[i],EP[i])
10. end do

The algorithm Sort (in Line 9) is described as follows: Note that SP[i] and EP[i] are
arrays of length m each. We store the jth elements of SP[i] and EP[i], i.e. (SP[i][j],EP[i][j])
into the jth element of an array of ordered tuple for j = 1, 2, . . . , m. Now we sort this
array in increasing order of the second components. After sorting, the first and the second
component of the jth element are respectively copied into SP[i][j] and EP[i][j].

In the online phase, given y, it is required to find x such that y = f(x). The t tables are
searched one after another. The search for x in the ith table is as follows. We repeatedly
apply fi to ψi(y) at most t times and after each application we check whether the output
of fi is in the set of end points of the ith table. The number of table lookups for this is at
most t. If the output is an end point then we come to the corresponding start point and

3.3. Time/Memory Trade-Off Methodology 18

repeatedly apply the function fi until it reaches ψi(y). The previous value it visited is x.
The total runtime for searching in all the tables is t2 + t ≈ t2 invocations of f and t2 table
lookups. Note that finding a match does not necessarily imply that the key is in the table.
This could be a false alarm which we will discuss in Section 3.3.2. Hence after getting x we
need to check whether y = f(x).

Algorithm Search
Input: SP[][], EP[][], y.
Output: x such that f(x) = y, else failure.
1. i← 1 to t do
2. tmp← ψi(y)
3. j ← 0 to t− 1 do
4. q ← Find(EP[i], tmp)
5. if (q 6= NULL) then
6. val← SP[i][q]
7. l ← 1 to t− 1− j do
8. val← fi(val)
9. end do
10. if f(val) = y then return val
11. else raise a false alarm
12. end if
13. tmp← fi(tmp)
14. end do
15. end do
16. return “failure”.

The subroutine Find (which is used in Line 4) does the following: Note that EP[i] is a
sorted array of length m. We apply binary search technique to get the position of tmp and
return the position if it is in the array, otherwise return NULL.

Trade-off curve: Let M and T be respectively the memory required and time required
in the online phase. Then M = mt and T = t2. Also from the matrix stopping rule we
have m× t2 = N . Eliminating m and t, the trade-off curve is obtained as TM2 = N2. The
precomputation time P = N since the total number of elements in all the matrices is N .

Merging Considerations: We define merging between two chains L1 and L2 (two rows
of same or different tables) as follows:

Definition 1 (Merging between two chains L1 and L2): Let us consider the two chains

3.3. Time/Memory Trade-Off Methodology 19

L1 and L2 as
x1,0 −→ x1,1 −→ x1,2 → . . .→ x1,t−2 −→ x1,t−1

x2,0 −→ x2,1 −→ x2,2 → . . .→ x2,t−2 −→ x2,t−1

We say that L1 and L2 merge if there exists i1 and i2 such that x1,i1 = x2,i2 (which is called
a collision) and x1,i1+j = x2,i2+j for all j ≥ 1.

There are two types of collisions possible in the Hellman tables.

• Type 1: Collision within a table, i.e., we have two chains C1 and C2 in a table having
a common value a (say).

. . .→ x1,i−1
f1
−→ a

f1
−→ x1,i+1 → . . .→ x1,t−2

f1
−→ x1,t−1

. . .→ x2,j−1
f1
−→ a

f1
−→ x2,j+1 → . . .→ x2,t−2

f1
−→ x2,t−1

So x1,i+l = x2,j+l for l ≥ 0. This leads to a merge.

• Type 2: Collision between different tables, i.e., we have two chains L1 and L2 in two
different tables having a common value a (say).

. . .→ x1,i−1
f1
−→ a

f1
−→ x1,i+1 → . . .→ x1,t−2

f1
−→ x1,t−1

. . .→ x2,j−1
f2−→ a

f2−→ x2,j+1 → . . .→ x2,t−2
f2−→ x2,t−1

So x1,i+1 is not necessarily equal to x2,j+1. Thus Type 2 collision does not necessarily
lead to a merge.

In the Hellman method, a merge can occur only with the Type 1 collisions. Less merging
means the number of distinct keys covered by the tables is larger which increases the success
probability.

Let us consider a chain with x1,0 as start point as follows.

x1,0 −→ x1,1 −→ x1,2 → . . .→ x1,t−2 −→ x1,t−1 . . .

We say that the chain is a cycling chain if there exists i1 and i2 (> i1) such that x1,i2 =
x1,i1 = x∗ (say), i.e.,

x1,0 −→ x1,1 → . . .→ x1,i1−1 −→ x∗ → . . .→ x1,i2−1 −→ x∗ → . . .→ x∗ . . .

Hence cycling chains in the tables reduce the total number of distinct keys covered by the
tables which in turn reduces the probability of success.

3.3. Time/Memory Trade-Off Methodology 20

Success Probability: Probability that a given unknown key x is in a table is the ratio

number of distinct keys in all the tables

N
.

The numerator depends on the choice of the first column of the table which is random. So the
numerator is a random variable X (say). Hence the success probability PS = E(X

N
) = E(X)

N
.

Hellman [56] suggested to choose the start points uniformly at random from the set of all
possible start points. Hellman also considered the issue of choosing the start points to be
distinct and noted that this situation is difficult to analyse.

The following result and its proof are from [56].

Lemma 2 Assuming that the encryption function is a random function

E(X) ≥
m
∑

i=1

t
∑

j=1

(

1−
it

N

)j

.

Proof : Let the table be

x1,0 x1,1 . . . x1,j . . . x1,t−1

x2,0 x2,1 . . . x2,j . . . x2,t−1
...
xi,0 xi,1 . . . xi,j . . . xi,t−1
...

xm,0 xm,1 . . . xm,j . . . xm,t−1

Let Yi,j be the event that xi,j is new, i.e.,

xi,j 6∈ ({xi1,j1 : i1 = 1, 2, . . . , i− 1, ; j1 = 1, 2, . . . , t} ∪ {xi,j2 : j2 = 1, 2, . . . , j − 1}) .

Let I(Yi,j) be the indicator function of the event Yi,j. Then

E(X) = E
m
∑

i=1

t
∑

j=1

I(Yi,j)

=
m
∑

i=1

t
∑

j=1

Prob(Yi,j).

Now

Prob(Yi,j) ≥ Prob(Yi,1 ∩ Yi,2 ∩ . . . ∩ Yi,j)

= Prob(Yi,1)× Prob(Yi,2|Yi,1)× . . .× Prob(Yi,j|Yi,1 ∩ Yi,2 ∩ . . . ∩ Yi,j−1)

=
N − ni,1

N
×
N − ni,1 − 1

N
×
N − ni,1 − 2

N
× . . .×

N − ni,1 − (j − 1)

N

3.3. Time/Memory Trade-Off Methodology 21

where ni,j is the number of distinct elements covered so far. So ni,1 is the number of keys
covered upto row (i− 1). The total number of elements in (i− 1) rows is (i− 1)t. Thus

ni,1 ≤ (i− 1)t,

i.e, ni,1 + j ≤ it for j ≤ t and Prob(Yi,j) ≥ (N−it
N

)
j
. Hence

E(X) ≥
m
∑

i=1

t
∑

j=1

(1−
it

N
)
j

.

This completes the proof.

Using Lemma 2 we get a lower bound for the success probability

PS =
E(X)

N

≥
1

N

m
∑

i=1

t
∑

j=1

(

1−
it

N

)j

.

Let PSt be the success probability when t Hellman tables are used. Let Ai be the event that
the key is not in the ith table for i = 1, 2, . . . , t. The events Ai are independent since the
functions fi are assumed to be independent random functions. Also Prob(Ai) = 1−PS. Now

PSt = 1− Prob(A1 ∩ A2 ∩ . . . ∩At)

= 1−
t
∏

i=1

Prob(Ai)

= 1− (1− PS)t.

The following analysis is taken from [58, 60, 66]. Consider r Hellman tables of size m × t
each. The success probability is then

Prob(r,m, t) = 1− (1− PS)r

where PS is the success probability for a single table. From Lemma 2, we know

PS ≥
1

N

m
∑

i=1

t
∑

j=1

(

1−
it

N

)j

≈
1

t

m
∑

i=1

1− e
−it2

N

it
N

t

N

≈
1

t

∫ mt
N

0

1− e−tx

x
dx

≈ h(u)
mt

N

3.3. Time/Memory Trade-Off Methodology 22

where h(u) = 1
u

∫ u
0

1−e−x

x
dx and u = mt2

N
. Hence

Prob(r,m, t) = 1− (1− PS)r

≥ 1− (1− h(u)
mt

N
)
r

≈ 1− e−h(u) rmt
N

= 1− e−h(u)×λ

= P(u, λ)(say)

where

λ =
rmt

N
.

Now h(u) = 1
u

∫ u
0

1−e−x

x
dx < 1 for all u > 0. This implies

P(u, λ) < 1− e−λ. (3.1)

For λ = 1 we get
P(u, 1) < 1− e−1 ≈ 0.63.

This shows that we cannot achieve success probability more than 0.63 with λ = 1. To attain
higher success probability we have to use larger values of λ, for example,

P(u, 2) < 0.86; P(u, 3) < 0.95; P(u, 4) < 0.98.

Hence, to increase the success probability we have to increase the value of λ which in turn
increases the size of the search space (r×m× t = λ×N). But to increase the search space
(amount of coverage), we have to increase either the number of tables (r) or the number of
rows (m) or the number of columns (t). This increases the runtime (r × t) or the amount
of memory (2rm) and also the precomputation time (P = r × m × t = λ × N). With
fixed runtime and memory requirement, how to achieve high success probability is discussed
in [58]. They set the amount of memory requirement 2rm = N

a
and the runtime rt = N

b
,

where a and b are constants. Thus

m = λb, t = 2λa, r =
N

2λab
.

Equation (3.1) shows that in order to get the higher success probability, one has to increase
the value of λ, which in turn increases m, t and decreases r. By the matrix stopping rule,
mt× t ≤ N , i.e., 4λ3a2b ≤ N .

3.3. Time/Memory Trade-Off Methodology 23

3.3.2 False Alarms

When we search a table for the key, finding a matching end point does not necessarily imply
that the key is in the table. This is because the key may be a part of a chain that has
the same end point but is not in the table. It is called a false alarm. In [56], Hellman
proved that the expected number of false alarms for an m× t table can be bounded above by
mt(t+1)

2N
. Hellman also pointed out that when a false alarm occurs, at most t invocations of

f are required to rule it out. If mt2 = N then the above bound becomes 1
2
. The number of

false alarms can be as large as half the total number of f invocations required for the online
phase. Hellman makes a worst case analysis of the number of false alarms. As pointed out
by a reviewer of this thesis, the average case analysis of false alarms is an open problem.

3.3.3 DP Method

Rivest [39] introduced the idea of using distinguished points (DP) in time/memory trade-off
cryptanalysis to reduce the number of table lookups.

Definition 3 (DP-property of order p [29]): Let p ∈ {1, 2, . . . , s−1} where V = {0, 1}s

is the key space. Then DP-property of order p is an easily checked property which holds for
2s−p different elements of V .

Definition 4 (Distinguished Point(DP)): Let x ∈ V be a key. Then x is a DP of order
p if the DP-property of order p defined above holds for x.

For example, we may define a DP property on V as follows: a key x ∈ V is a DP if its first
p bits are zero. It is desirable for each chain to end in a DP within at most t iterations
where t is the maximum chain length. This motivates a choice of p to be equal to t. In the
precomputation phase, we generate r tables with maximum chain length t as follows. We
choose r different functions f1, . . . , fr, where each fi is a simple output modification of the
function f , i.e. fi(x) = ψi(f(x)), where ψi is the ith output modification function. For each
table, we choose m start points uniformly at random from the key space. In the ith table, for
each start point we generate a chain by repeatedly applying f until we reach a DP or until
length of the chain is t. If a DP is encountered in the chain, then we store the tuple (start
point, DP point, length of the chain) in the table, otherwise the chain will be discarded. We
sort the tuple in the increasing order of the end points (DP). If the same DP occurs in two
different tuples, then the tuple with maximum chain length will be stored. Sort the tuples
in the increasing order of the end points. To give the formal algorithm of the DP method
we will use the following data structures.

3.3. Time/Memory Trade-Off Methodology 24

Data structures:

• SPD[1, 2, . . . , r][1, 2, . . . , m]: The entry SPD[i][j] is the jth start point for the ith table.
The entries of SPD[][] are random s-bit strings.

• EPD[1, 2, . . . , r][1, 2, . . . , m]: The entry EPD[i][j] is the jth end point for the ith table.
The entries of EPD[][] are initialized by the empty string.

• LEN[1, 2, . . . , r][1, 2, . . . , m]: The entry LEN[i][j] is the jth chain length of the ith table.
The entries of LEN[][] are initialized by zero.

More formally, we have the following algorithm for table construction.

Algorithm Precomputing Tables
Input: SPD[][]
Output: EPD[][] and LEN[][]
1. i← 1 to r do
2. j ← 1 to m do
3. val← fi(SPD[i][j])
4. l ← 1 to t do
5. if val is a DP, then
6. EPD[i][j] = val; LEN[i][j] = l; break
7. val← fi(val)
8. end do
9. end do
10. Sort(SPD[i],EPD[i])

(if several end points are same then the tuple with the largest l is stored)
11. end do

The above algorithm keeps the chain with the longest length. Other variants are possible.

In the search stage: given a ciphertext y = f(x), we need to find the unknown key x,
assuming that x is in one of the constructed tables. To search in the ith table, we first apply
ψi on y. We then repeatedly apply fi until we encounter a DP or until the chain length is
maximum for the table. If we reach a DP then we perform a table lookup to check whether
this DP is in the table or not. If yes we come to the corresponding start point and repeatedly
apply fi (for the ith table) until it reaches ψi(y). Then the previous point it visited is x or
it is a false alarm. For each table the number of table lookups is only 1, whereas for the
Hellman method it is t (number of columns in a Hellman table). Thus the DP method
reduces the memory requirement and substantially reduces the memory access rate. The
search algorithm is formally described below.

3.3. Time/Memory Trade-Off Methodology 25

Algorithm Search
Input: SPD[][], EPD[][], LEN[][] and y.
Output: x such that f(x) = y, else failure.
1. i← 1 to r do
2. tmp← ψi(y)
3. j ← 0 to t− 1 do
4. if tmp is DP break
5. tmp← fi(tmp)
6. end do
7. if tmp is DP then
8. q ← Find(EPD[i], tmp)
9. if (q 6= NULL) then
10. val← SPD[i][q]
11. l ← 1 to LEN[i][q]− j do
12. val← fi(val)
13. end do
14. if f(val) = y then return val
15. else raise a false alarm
16. end if
17. end if
18. end do
19. return “failure”.

Analysis: In both the above algorithms (precomputation and online phases), chains are
computed from a start point until a DP is encountered or until the chain length is maximum.
So the probability that a chain started from a randomly chosen point will reach a DP after
certain steps plays an important role in this method. In the literature, there is no precise
guideline about how to choose the parameters (r, m, t) though some suggestions are made
in [30, 31]. In [92], Standaert et al. provided a theoretical analysis of the DP method and
gave some supporting experimental results. The expected number of chains and length of the
chains play an important role in the memory requirement, runtime and success probability.
Let α and β respectively be the expected number of chains and chain length in a table.
Some empirical values of the parameters are given in [29]. Determining these exactly is a
candidate for further research.

Let us now consider the case when the start points are DPs [31]. In a table the (expected)
number of chains is α. For each table, we store the tuples containing two keys (DP of order
p) which requires 2(s − p) bits storage. So for each table we need 2(s − p)α bits storage.
Hence the total memory requirement is 2r(1− p

s
)α units (1 unit=s bits). For each table, the

expected number of iterations is same as the chain length β, so the total runtime is r × β.

3.3. Time/Memory Trade-Off Methodology 26

Success Probability: Note that for the DP method there is no overlap (no cycling chain
and no merge between two chains) within a single table. So the probability that the key is
in a single table is:

E(the number of points covered by the table)

N
=
α× β

N
.

Hence the success probability for r tables is:

1−

(

1−
αβ

N

)r

≈ 1− e−
rαβ
N .

3.3.4 Rainbow Method

Oechslin [76] proposed a variant of Hellman’s attack called the rainbow method. Rainbow
chains are used in the rainbow tables. To construct a rainbow chain of size t we choose t
functions f0, f1, . . . , ft−1, which are again simple output modifications of f . As in Hellman’s
method, f0, f1, . . . , ft−1 are assumed to be independent random functions. Taking a start
point x1,0, a rainbow chain is generated as follows:

x1,0
f0
−→ x1,1

f1
−→ x1,2 → · · · → x1,t−1

ft−1

−→ x1,t

To construct a rainbow table of size mt× t, we choose mt random points from the key space.
Taking each key as a start point we generate a rainbow chain. So to get the jth column, we
apply fj on each element in the (j − 1)th column, i.e.

xi,j−1
fj
−→ xi,j , for 1 ≤ i ≤ mt.

Similar to Hellman’s method, we store the start and the end points in the rainbow table
sorted in the increasing order of end points. To describe the formal algorithm we will use
the following data structures.

Data structures:

• SPR[1, 2, . . . , mt]: The entry SPR[i] is the ith start point. The elements of SPR are
random s-bit keys.

• EPR[1, 2, . . . , mt]: EPR[i] is the ith end point.

We now give the formal algorithm to construct the tables. The algorithm Sort used in the
following algorithm is the same as that in the Hellman method.

3.3. Time/Memory Trade-Off Methodology 27

Algorithm Precomputing Tables
Input: SPR[]
Output: EPR[]
1. i← 1 to mt do
2. tmp← f0(SPR[i])
3. l ← 1 to t− 1 do
4. tmp← fl(tmp)
5. end do
6. EPR[i]← tmp
7. end do
8. Sort(SPR,EPR)

In the online phase, we will be given y = f(x) and have to find the key x. For 0 ≤ j ≤ t−1,
we apply ψj to y and compute y0 = ft−1(ft−2(. . . (fj+1(ψj(y)) . . .). If y0 is in the last column
of the table then let x0 be the corresponding start point. This gives us the equations:

y0 = ft−1(ft−2(. . . (fj+1(ψj(y)) . . .)
= ft−1(ft−2(. . . (f1(f0(x0)) . . .)
= ft−1(ft−2(. . . (fj+1(fj(x)) . . .)
= ft−1(ft−2(. . . (fj+1(ψj(f(x))) . . .)

(3.2)

where x = fj−1(fj−2(. . . (f1(f0(x0)) . . .). The first equality follows by the online search
condition and the second equality follows from the table construction. From the first and
last row of (3.2) we would like to infer that y = f(x), i.e., x is a preimage of y. Note that
this might not always hold, leading to a false alarm. During the actual attack, this needs to
be verified. The total runtime is t(t−1)+2t

2
≈ t2

2
invocations of f .

We now describe the search algorithm in a more formal way. The algorithm Find used in
this search algorithm is the same as that in the Hellman method.

Algorithm Search
Input: SPR[], EPR[] and y.
Output: x such that f(x) = y, else failure.
1. j ← t− 1 down to 0 do
2. tmp← ψj(y)
3. l ← j − 1 to t− 1 do
4. tmp ← fl(tmp)
5. end do
6. q ← Find(EPR, tmp)
7. if (q 6= NULL) do
8. val← SPR[q]

3.3. Time/Memory Trade-Off Methodology 28

9. l ← 0 to j − 1 do
10. val← fl(val)
11. end do
12. if f(val) = y then return val
13. else raise a false alarm
14. end if
15. end do
16. return “failure”.

The same technique can be applied to multiple rainbow tables, even though this is not
explicitly mentioned in the paper [76] but appears in the implementation [9]. If r tables are
used then the runtime increases to rt2/2 and hence for practical implementation, r will be a
small constant.

Merging consideration: In Figure 3.2, t Hellman tables with size m×t each are replaced
by a single rainbow table of size mt× t. In the rainbow table, having a common value in two
different chains will lead to a merge only if the common value occurs in the same column,
since the same sequence of functions are applied to the common value. Having a common
value in two different columns will not lead to a merge due to the fact that different sequences
of functions are applied to the common value. In the Hellman method, a merge can occur
only for a collision within a table (i.e., within a set of mt points), whereas in a rainbow
table, a merge can occur only with a collision within a column (i.e., again within a set of mt
points). The number of tables in the Hellman method and the number of columns in the
rainbow method are the same. So the merging effects and the success probabilities of both
the methods are the same.

An approximate expression for the success probability of the rainbow method with table
size m1 × t1 is given [76] as follows: Prob =

(

1−
∏t1

i=1(1−
mi

N
)
)

, where mi denotes the

number of distinct points in the ith column of the table. The recursive expression for mi is
mi+1 = N ×

(

1− e−
mi
N

)

, where m1 is the number points (assumed all distinct) in the first
column.

Trade-off curve: In the rainbow table, we store mt pairs of the (start point, end point).
Hence, the amount of memory required M = mt, which is same as the memory required
for the Hellman method. The time required at the online stage is T = t2

2
, which is half of

the online time required for the Hellman method. Total number of points covered by the
rainbow table is mt× t which is equal to N , i.e., mt2 = N . Eliminating m and t, we obtain
the trade-off curve as TM2 = N2.

3.3. Time/Memory Trade-Off Methodology 29

1,1k
1

mt,t−1............f 1 2 t−2f f
k kkmt,1 mt,2

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

.

r

r

. .
 .

. .
 .

k

k

k

 k

k

 2, t−2

 m, t−2

k
 1, t−2

. .
 .

. .
 .

1 1

1

f f f

f f f

f f f

t

1 1

1 1 1

1 1

1 1

1 1

Single Rainbow Table

k
1

k
1 k

1

k
1

k
1

1,t−1

2,1

m,1

2,t−1

m,t−1

.

r

r

. .
 .

. .
 .

k

k

 k

k

 2, t−2

 m, t−2

. .
 .

. .
 .

fff

f f f

kk

k k

2,1 2,t−1

m,1 m,t−1

1,1
t t t t

t
t t

t

t t t

t t t

...

...

............f 1 2 t−2f f
k kk

............f 1 2 t−2f f
k kk

1,1 1,2 1,t−1

2,1 2,2 2,t−1

 1, 2

 2, 2

 m,2

.

r

r

. .
 .

. .
 .

k

k

k

 k

k

 2, t−2

 m, t−2

k
 1, t−2

. .
 .

. .
 .

f f f

fff

f f f

2 2 2

2 2 2

2 2 2

2 2

2 2

2 2

k
2

k
2

k
2

k
2 k

2

1,t−1

2,1 2,t−1

m,1 m,t−1

1,1k
2

 1, 2

 2, 2

 m, 2

 k k
 1, t−2

f f f
k1,t−1k

t tt tt t t
 1, 2

 2, 2

 m, 2

t Hellman Tables

Figure 3.2: t Hellman tables each with size m × t are replaced by a single rainbow table with size mt × t.

Barkan et al. [14] provided rigorous bounds on TMTO attacks. They formalized a general
model of TMTO attack by introducing the new notion of stateful random graphs, where the
evolution of the nodes depends on the hidden state, which is the table number in the Hellman
method and the column number (this is also called color) in the rainbow method. It is pointed
out in [14] that the cost of storage in the rainbow method is substantially higher than the
Hellman + DP method.

Avoine et al. [11] studied the rainbow variant of TMTO attack to reduce the false alarms
which may take 50% of the total attack time. By using “checkpoints”, the probability for
false alarms can be reduced and this reduces the overall complexity of the attack. The
complexity improvement is less than a factor of 2. The main idea is to store intermediate
“checkpoints” and to check the candidate against these, thus reducing the chance of a false
alarm to survive the test.

3.3. Time/Memory Trade-Off Methodology 30

3.3.5 Fiat-Noar Method

The analysis of the Hellman method assumes that the functions f1, f2, . . . , fr are independent
random function. It is not clear how to come up with such functions. Fiat and Naor [45]
examined this requirement carefully and showed that there exist functions f which are poly-
nomial time indistinguishable from a truly random function and for which the Hellman
attack fails with overwhelming probability. They have given the following construction of f
for which the Hellman method fails: consider a function f with the property that a certain
set of N1−δ domain points (δ < 1/3) map to the same image. One can design a cryptographic
scheme so that only N −N1−δ of the keys induce a permutation and the other keys map all
ciphertext values to zero. The Hellman attack fails for such an f . Though the existence of
such a function f is of theoretical interest, it is of little practical consequence since functions
obtained from crypto algorithms are extremely unlikely to be of such forms.

The indegree of a point y is the number of preimages for y under the function f . The
Hellman method fails for the above f since the Hellman table may contain high indegree
points. To avoid the high indegree points in the table, Fiat and Noar [45] proposed a method
as follows.

The precomputation phase consists of the following two stages:

• Build a table A of high indegree points in the graph induced by f . This table is used
to construct functions that bypass these points. Also, this allows a better cover of the
domain by random chains. The table A is used to check if a point y has high indegree,
i.e., if y has high indegree then there is high probability that the pair (x, y = f(x)) will
appear in A. The preimage of y under f is only used to invert y itself but the main
use of the table A is to avoid the high indegree points during the search. The table A
is sorted in the increasing order of the end points.

• Use K-wise independent functions to substitute for the random functions assumed by
the Hellman method, i.e., the output modification functions ψis are chosen to be K-
wise independent functions. Construct the Hellman tables with appropriate choice of
parameters so that there will be no high indegree points in the tables. Then store the
(start point, end point) pairs in the tables with increasing order of the end points.

At the online phase, given y = f(x) we perform the following to get the preimage x:

• check if y ∈ A. If found then an inverse is an x such that 〈x, y〉 is in A.

• Otherwise, perform a variant of the Hellman search technique in the Hellman tables.

Trade-off curve: Fiat-Noar method can invert any one-way function f in time T with the
memory requirement M such that TM3 = N3 with the precomputation time P = N .

3.4. Time/Memory Trade-Off Cryptanalysis for Stream Ciphers 31

3.4 Time/Memory Trade-Off Cryptanalysis for Stream

Ciphers

3.4.1 BG Attack

Babbage [12] and Golić [46] introduced a time/memory trade-off attack on a stream cipher,
which is referred to as the BG attack (B for Babbage; G for Golić). The BG attack consists of
two stages: precomputation and search. In the precomputation stage, we randomly choose
M internal states xi ∈ S, i = 1, 2, . . . ,M , compute yi = f(xi) for i = 1, 2, . . . ,M and store
the pairs (xi, yi) into a table sorted in increasing order of the y values.

In the search stage, we are given a prefix of D+ s−1 generated bits, c1c2c3 cD+s−1.
We generate D possible values y1, y2, . . . , yD as follows: y1 = c1c2 . . . cs, y2 = c2c3 . . . cs+1,
y3 = c3c4 . . . cs+2 and so on. Then we look up the table for each yi; if at least one yi is found
in the table then its corresponding xi is an internal state (or it might be a false alarm). The
runtime is T = D, amount of memory required is M and preprocessing time is P = M . Now
by the birthday paradox, we know that at least one of the yi will be in the table with some
significant probability if DM = N , i.e., if TM = N , which is the condition to get a constant
success probability in the method. This method has been applied on the alleged A5 stream
cipher by Golić in [46].

3.4.2 BS Attack

In 2000, Biryukov and Shamir [25] combined the Hellman method and the BG attack as
follows: since data yi, i = 1, 2, . . . , D can be viewed as unrelated random points, we can
reduce the search space from N to N/D and we still get the same success probability. Hence
the BS attack generates t/D Hellman tables with size m × t each in the precomputation
stage. In the search stage, for each yi, the Hellman search technique is applied to find the
corresponding internal state. The attack is successful if at least one output value is found in
any one of the tables. We take t/D (t ≥ D) tables with size m× t each. Hence the amount
of memory M = mt

D
, runtime T = t

D
× t × D = t2. Then TM2D2 = m2t4 = N2 (by the

matrix stopping rule, i.e., mt2 = N) which is the time/memory/data trade-off curve for this
method. This relationship is valid if t ≥ D (otherwise the number of tables, i.e., t/D < 1)
or T = t2 ≥ D2. We refer to this attack as the BS attack. The number of table lookups for
each yi is t × t

D
= t2

D
, since for each table, t table lookups are required and there are t/D

tables. Hence the total number of table lookups is t2

D
×D = t2.

3.4. Time/Memory Trade-Off Cryptanalysis for Stream Ciphers 32

3.4.3 Applying the DP Method in Stream Cipher Cryptanalysis

In the above methods, for stream cipher cryptanalysis we need to perform t table lookups
for each table. To minimize the number of table lookups, the DP method is used in TMTO
attacks on stream ciphers in [25]. The total number of possible DP states is 2s−p. Let S be
the probability that a random state will be a DP state. Then

S =
total number of possible DP state

N
= 2s−p

2s = 1
2p .

BG attack with DP: In the precomputation stage, to store M DPs, we need to try M
S

random states, which increases the preprocessing time (search space) from P = M to P = M
S

.
In the given data, we have D×S DPs. For each given DP, we perform the search technique
in the actual attack. This reduces the runtime from T = D to T = DS. By the birthday
paradox, we know that there will be a collision (with high probability) between these DS
DP states in the data and the stored M DP states in the tables if M × DS = NS, since
NS is the total number of possible DPs. Thus TP = MD = N for 1 ≤ T ≤ D. Hence, the
trade-off curve (TM = N,P = M, 1 ≤ T ≤ D) in the original BG method turns into two
independent time/preprocessing (TP = N) and memory/data (MD = N) trade-off curves.
This drastically changes the BG trade-off curve. If N ≥ 280 then either M or D will be
> 240 which is on the border line of feasibility. For higher values of N , we can not apply this
method since either M or D become infeasible.

BS attack with DP: In the precomputation table stage, we select random start points
and continue the chain until we reach a DP, so we do not need any trial and error (like in the
BG method) to pick the random points. Hence the search space remains the same as N/D,
the number of tables remains the same as t/D with same size m× t each, which makes the
time/memory/data trade-off curve remain unchanged as TM2D2 = N2 for T ≥ D2. But
the number of table lookups reduces from t to 1 for a single table. So the number of table
lookups required for t/D tables is t/D. Hence the total number table lookups for D data is
t
D
×D = t which makes a significant practical difference.

BSW Sampling: Biryukov, Shamir and Wagner [26] introduced a sampling technique to
improve the BS attack. A state x is said to be a special state if it generates a DP output, i.e,
if f(x) is DP where f is the state to prefix mapping. A state x has a full name which is same
as the original s-bit state and an output name of s bits. We associate a short name of s− p
bits to a special state x, which is used to define this special state by efficient enumeration
procedures and a short output of s− p bits, which is same as the output name f(x) without
the p leading zeros. Then the total space reduces to S1 (say) where each point in S1 can be
viewed as either a short name or a short output and the size of S1 is N1 = N × S = 2s−p. We

3.5. Applications of TMTO Algorithms 33

Table 3.1: Trade-off curve for different methods (T is the runtime, M is the memory requirement, D is
the number of available targets, P is the preprocessing time, S is the sampling resistance, t is the number
of columns and N is the size of search space).

Trade-Off curve Number of table lookups
BG [12, 46] TM = N for 1 ≤ T ≤ D M
BG with DP [25] TP = MD = N for 1 ≤ T ≤ D M
BS [25] TM2D2 = N2 for D2 ≤ T ≤ N t2

BS with DP [25] TM2D2 = N2 for D2 ≤ T ≤ N t

BSW [26] TM2D2 = N2 for (DS)2 ≤ T ≤ N tS

now define a function fs : S1 → S1 as follows: let xs ∈ S1 expand to full name x (say) which
is a special point, then fs(xs) is the last (s− p) bit vector of f(x) obtained by discarding the
leading p zeros from f(x) (since f(x) is a DP). Thus fs(xs) is a short output and inverting fs

is equivalent to inverting f restricted to special points. Then we apply the BS attack with
the DP attack. Thus N and D will be replaced by NS and DS respectively and the trade-off
curve become T ×M2× (DS)2 = (NS)2, i.e., TM2D2 = N2 for T ≥ (DS)2. Hence the curve
remains unchanged, but the lower bound for T is reduced from D2 (which is impractical
for large value of D) to (DS)2 (which is smaller) and also the number of table lookups is
reduced from t to tS, since the search technique is applied only for the DS special points
in the data. It is assumed that the available data contains at least one output as a special
point, i.e., DS ≥ 1. BSW sampling method is used in [26] to attack the stream cipher A5/1.

We compare the above methods in Table 3.1.

3.5 Applications of TMTO Algorithms

3.5.1 Application to Block Ciphers

A general problem of identifying suitable one-way functions in cryptographic algorithms with
possible access to multiple data is addressed by Hong and Sarkar [57] where the possibility
of TMTO application on various block cipher modes of operations are investigated. They
showed that a suitable one-way function can be found for every mode of operations that they
consider, to which chosen plaintext TMTO can be applied under appropriate conditions.
Most interestingly, they showed how nontrivial multiple data TMTO can be applied to both
the CBC and CFB modes of operations. However, Biham [17] pointed out that if CBC with

3.5. Applications of TMTO Algorithms 34

Table 3.2: TMTO attacks on UNIX password scheme.

Passwords attacked State Size (bits) Data Time Memory Preprocessing
Alphanumeric 60 28 234 234 (128 Gb) 252

Alphanumeric 60 210 232 234 250

Full keyboard 63 210 236 235 (256 Gb) 253

a random and secret IV is used, a TMTO attack does not work unless the IV is considered
to be a part of the secret. He also showed that the theoretical strength of ECB mode of
block cipher cannot exceed the square root of the size of the key space.

3.5.2 Application to Stream Ciphers

Babbage [12], Golić [46], and Biryukov-Shamir [25] have considered applications of TMTO
to the one-way function mapping internal state to a keystream segment. A possible coun-
termeasure for resisting TMTO has been to use a state whose size is double that of the key
size as suggested in [46].

Hong and Sarkar [57] revisited TMTO on stream ciphers and showed that a huge state
size does not necessarily guarantee resistance to TMTO attack. Most stream ciphers use
an initialization vector (IV) in addition to the secret key. They found that the function
mapping (key, IV) to a keystream segment of suitable length is a candidate one-way function
for TMTO application. If the IV length is less than the key length, then the cipher can be
attacked using a TMTO algorithm whose online time is less than exhaustive search time.
This will happen irrespective of the size of the internal state.

3.5.3 Application to Unix Password

The BS attack (described in 3.4.2) is used in [23] to analyze Unix password scheme. Suppose,
the attacker has access to a file storing password hashes of a large organization (D = 1000
password hashes). The size of the unknown password is 56-bits and known salt is 12-bits.
Suppose that the attacker knows that passwords are selected from a set of arbitrary 8-
character alphanumeric passwords, including capital letters and two additional symbols like
dot and comma which in total can be encoded in 48-bits. Thus together with a 12-bit salt
the size of the search space is N = 260. Then the following TMTO attack is quite practical.
Preprocessing is done once with P = N/D = 250 parallelizable Unix hash computations. A
memory of M = 234, 8-byte entries (12+48 bits) which take one 128 Gbyte hard disk. This
way we store 234 start point and end point pairs. The attack time is then T = 232 Unix hash

3.6. Implementation of TMTO Attack 35

evaluations which takes about an hour on a fast PC. The attack will recover one password
from about every 1000 new password hashes supplied. Table 3.2 contains some of the TMTO
attacks on UNIX password scheme.

3.6 Implementation of TMTO Attack

3.6.1 Software Implementation

In 2003, Oechslin [76] described the implementation of rainbowcrack which is a software
implementation of rainbow method. Rainbowcrack can attack MS-Windows password hashes
and crack 99.9% of all aphanumerical password hashes (out of 237) in 13.6 seconds using 1.4
GB memory. (The numerical figures are from [76], where exact platform is not mentioned.)

3.6.2 Hardware Implementation

In 1988, Amirazizi and Hellman [10] proposed time/memory/processor trade-off where more
than one processors execute in parallel, sharing a large memory through a switching/sorting
network. This requires n log n switching elements, n being both the number of processors
and the blocks of memory. The emphasis of the work is to minimize the runtime of the
cryptanalytic attacks in time/memory trade-off cryptanalysis by running the processors in
parallel. The cost of the wires (number of wires required) is one of the dominating cost in the
switching/sorting network. Amirazizi and Hellman [10] assumed that the cost of the wires is
less than n log n and left this as an open problem for further study. Wiener [98] investigated
the problem and proved that if an algorithm has a very high memory access rate then the
wiring cost is the dominating cost for any switching/sorting network and showed this cost

to be Θ(n
3

2) to connect n processors with n memory blocks. It is shown that for the DP
method where the memory access rate is low, the wiring cost is negligible. However this is
not always the case for other methods (e.g. Hellman’s method)

Quisquater and Standaert [81] provided a generic architecture based on their two previous
works [79, 82]. They suggested a pipelined architecture for implementing a multi-round
function f . This is built on Wiener’s design [99] for exhaustive search attack on DES.

Mentens et al. [69] proposed a hardware architecture for key search based on the rainbow
method. They have shown that an Virtex-4 FPGA implementation of the machine can
recover an individual password within a few minutes. Their design targets Unix passwords
of length 48 bits (out of 56 bits).

Chapter 4

TMTO With Multiple Data: Analysis
and New Single Table Trade-offs

4.1 Introduction

In this chapter, we continue the analysis of the general multiple data TMTO started in
Biryukov and Shamir (BS). The trade-offs of BG (Babbage and Golić) and BS are obtained
as special cases. Our main contribution is to identify a new class of single table multiple data
trade-offs which cannot be obtained either as BG or BS trade-off (some of these are shown
in Table 4.1). In certain cases, these new trade-offs can provide more desirable parameters
than the BG or the BS methods. We consider the analysis of the rainbow method of Oechslin
and show that for multiple data, the TMTO curve of the rainbow method is inferior to the
TMTO curve of the Hellman method. The material in this chapter is based on Sections 6
to 10 of our paper [24].

36

4.2. Hellman Attack 37

Table 4.1: Some new trade-offs (T is the runtime, M is the memory requirement, D is the
available targets, P is the preprocessing time, N is the size of research space). Note that
since all the trade-offs listed in the table are single table trade-offs, the number of table
lookups in the Hellman + DP is going to be one in all the cases.

N P M D T
264 248 240 216 224

242 240 222 224

280 250 230 230 250

246.6 233.3 233.3 246.6

2100 262.5 237.5 237.5 262.5

258.3 241.6 241.6 258.3

∗ N N
1+d
3 N

2−d
3 N

2−d
3 N

1+d
3

∗ Here d is a constant such that 1
2
< d < 1.

4.2 Hellman Attack

Suppose r tables each of dimension m× t are used and the online data consists of D points.
Then from the Hellman attack we have the following relations.

Tf = r(t− 1)D (# f invocations in the online phase)
Tt = rtD (# table lookups in the online phase)
P = rmt (# f invocations in the precomputation phase)

= N
D

(coverage)
M = rm (memory)
mt2 ≤ N (birthday bound)
Success

probability ≈ 1− exp
(

−h(u) rmtD
N

)

(4.1)

The number of memory access is same as the number of table lookups, i.e. Tt. Later in this
chapter, we will derive the above success probability expression where h(u) = 1

u

∫ u
0

1−e−x

x
dx

and u = mt2

N
.

If t ≫ 1, we can assume t − 1 ≈ t and Tf ≈ rtD = Tt. We will usually make this
assumption except for the analysis of the BG attack where t = 1. Let γ be the ratio of the
time required for performing one table lookup to the time required for one invocation of f ,
i.e.,

γ =
time for one table lookup

time for one invocation of f
. (4.2)

4.2. Hellman Attack 38

We assume that one unit of time corresponds to one invocation of f (i.e., one unit of time
is equal to the time required for completing one invocation of f). The time required for
table lookups is then γrtD. Define T = max(Tf , γTt) = γrtD when γ ≥ t−1

t
≈ 1. The

parameter T is a measure of the time required during the online phase. The actual online
time is proportional to Tf + γTt. However, this is only at most twice the value of T . Thus
we will perform the analysis with T instead of Tf + γTt.

In modern technology, memory is organized in several levels. Depending on the memory
organization γ can change. For an asymptotic analysis, we will assume that γ = 1 (and
T = Tt ≈ Tf), i.e., the cost of one invocation of f is equal to the cost of one table lookup.
The value of γ need not actually be one. Even if it is a small constant (or a negligible
fraction of N), we can assume it to be one and that will not affect the asymptotic analysis.
On the other hand, [25] mentioned that γ may be as large as one million (≈ 220). If N is
only moderately large (like 264 for A5/1), then γ can be a significant proportion of N . In
such a situation, we cannot assume γ = 1 and the cost of table lookup will dominate the
total online cost. This case will be considered later.

Using (4.1) we can solve for r, m and t as follows.

t = N
MD
≥ 1 (number of columns)

m = N
T

(number of rows)
r = MT

N
≥ 1 (number of tables)

mt2 = N3

TM2D2 ≤ N (birthday bound)

(4.3)

Note that all three of r,m and t must be at least 1. Since m = N/T and for a valid attack
we must have N > T , the condition on m is trivially satisfied. The advantage of writing in
the form of (4.3) is that given values for T , M and D satisfying the proper constraints, we
can immediately design a table structure which achieves these values.

Let D = Na for some 0 ≤ a < 1. Since PD = N , we have P = N1−a. The condition on
r shows that MT ≥ N . We write MT = N b for b ≥ 1. Also let M = N c. For a valid attack
we must have 0 ≤ c < 1. Since MT = N b we have T = N b−c and again for a valid attack
we must have 0 ≤ b − c < 1. The available online data D is a lower bound on M and T
and hence we have a ≤ c, b − c. Since the birthday bound tells us that mt2 ≤ N , we write
mt2 = Nd for some d with 0 ≤ d ≤ 1. Substituting in the last equation of (4.3), we obtain
2a+ b+ c+ d = 3. The condition on t shows that MD ≤ N which translates to a + c ≤ 1.
Thus any set of values for a, b, c and d which satisfies the following constraints constitute a
valid attack.

C1: 2a+ b+ c+ d = 3
C2: 0 ≤ a < 1
C3: 0 ≤ c, b− c < 1 ≤ b
C4: a+ c ≤ 1
C5: 0 ≤ d ≤ 1

(4.4)

4.2. Hellman Attack 39

The TMTO curve can be obtained as in the following relations.

TM2D2 = N3−d

PD = N
MD ≤ N ≤ MT
M,D, T < N.

(4.5)

Also we have the following values of r,m and t.

r = N b−1, m = N1−(b−c), t = N1−a−c. (4.6)

Since MT = N b ≥ N we have r = 1 if and only if MT = N . With r = 1 we have only one
table and hence if there are more than one tables then MT is strictly greater than N .

BG Attack [12, 46]: In this case we have r = t = 1. This implies Tf = 0, i.e., the online
phase does not require any invocation of f . The cost in the online phase is T = Tt and we
have MD = N = MT and hence T = D, M = N/D. This corresponds to the conditions
a+ c = 1, b = 1, d = 1− a.

BS Attack [25]: In [25], r = t/D and d = 1 is used. Then T = t2, M = mt/D and hence
r = N−a+(b−c)/2. Since r ≥ 1, we have the restriction 0 ≤ 2a ≤ b − c (i.e., 1 ≤ D2 ≤ T) in
addition to (4.4).

The conditions d = 1 and r = t/D are related (e.g., if r = 1 then t = D and T = t2 = D2).
In the following analysis we will proceed without these two conditions. Later we show the
situation under which making these two assumptions is useful.

Condition P = T : Since both P and T represent time, the case P = T puts equal
emphasis on both the offline and the online times. This can be of theoretical interest and
hence we briefly analyze it. (A reviewer of the thesis pointed out that P = 10T to 100T
is more practical.) The condition P = T implies P = N1−a = T = N b−c and so m =
N1−(b−c) = Na = D. (On the other hand, P = M is possible only if t = 1.) Since PD = N
we have T = N/D and so the curve becomes M2D = N2−d. If P = T then r = M/D. If
further M = D then M = D = N (2−d)/3 and P = T = N (1+d)/3.

Proposition 5 If P = T and M = D in (4.5) then M = D = N (2−d)/3 and P = T =
N (1+d)/3. Further, r = 1, i.e., exactly one table is required.

Proposition 5 gives us a nice way to control the trade-off between time and data/memory re-
quirement by varying d. Choosing d = 1 corresponds to (P,D,M, T) = (N2/3, N1/3, N1/3, N2/3)
and has been observed in [25]. Choosing d = 1/2 corresponds to,
(P,D,M, T) = (N1/2, N1/2, N1/2, N1/2) which is the square root birthday (BG) attack.

4.2. Hellman Attack 40

Condition T = M : The condition T = M was considered by Hellman [56] and we consider
this to be of theoretical interest. Then c = b − c and so c = b/2. Condition C1 becomes
2a+ 3c+ d = 3 and we have

b

2
= c = 1−

2a+ d

3
. (4.7)

Using a + c ≤ 1 we obtain a ≤ d. Also since b ≥ 1, we have c = b/2 ≥ 1/2. This along
with (4.7) gives d ≤ 3/2− 2a. Since we already know d ≤ 1 we obtain

a ≤ d ≤ min(1,
3

2
− 2a). (4.8)

Thus any non-negative solution in a and d to (4.8) gives a valid attack with T = M = N c.

We are interested in minimizing the value of c. From (4.7) we see that the value of
c is minimized by maximizing the value of d. In fact, using (4.8) we can choose d = 1
as long as 1 ≤ 3

2
− 2a, i.e., 2 − (1/2a) ≤ 0 or a ≤ 1/4. Thus for a ≤ 1/4 we obtain

T = M = N b/2 = N (2−2a)/3.

In the case 3/2 − 2a ≤ 1 we have a ≤ d ≤ 3/2 − 2a. For the gap to be non-empty we
must have a ≤ 1/2. For minimizing c, we use the upper bound, i.e., d = 3/2− 2a ≤ 1. Thus
for 1/4 ≤ a ≤ 1/2 we have c = 1/2 and T = M = N1/2. Finally, we obtain the following
result.

Theorem 6 If T = M , then D ≤ N1/2 and the following conditions hold.

1. N1/2 ≤ T = M = N (2−2a)/3 ≤ N2/3, for 1/4 ≥ a ≥ 0.
2. T = M = N1/2, for 1/4 ≤ a ≤ 1/2.

For the first case we have, (a, b, c, d) = (a, 2(2− 2a)/3, (2− 2a)/3, 1) and for the second case
we have (a, b, c, d) = (a, 1, 1/2, 3/2− 2a). The corresponding values of (r,m, t) are
(N (1−4a)/3, N (1+2a)/3, N (1−a)/3) and (1, N1/2, N1/2−a) respectively.

In the second case of Theorem 6, exactly one table is required. However, it is not the
BG attack since the number of columns can be more than one. Also we have T ≤ P ≤ N .
The situation with T < P < N is interesting since the precomputation time is less than
exhaustive search. Even though P is more than T since it is an offline activity, we might
wish to spend more time in the precomputation part than in the online attack.

4.2.1 Distinguished Point Method

We now consider the case where γ ≫ 1. In this case, a direct application of the Hellman
method leads to T = γrtD, i.e., the time required for table lookups dominate the online

4.2. Hellman Attack 41

time. It is useful to consider the distinguished point method of Rivest to reduce the number
of table lookups. See section 3.3.2 for a description of the DP method.

Using the distinguished point method results in reducing the number of table lookups
from rtD to rD, i.e., one table lookup per table per data. Then Tt = rD = Na+b−1. (Note
Tt = Na = D, i.e., only one table lookup is required per data item if and only if b = 1 = r,
i.e., MT = N .)

The total cost of table lookups is γrD whereas the cost of invoking the one-way function
is rtD. In this case, the ratio of the two costs is γ/t. If t ≥ γ, then the ratio is at most one.
Hence we can again ignore the cost of table lookup and perform the analysis by considering
simply the cost of invoking the one-way function. The actual runtime will be at most twice
the runtime obtained by such an analysis.

Suppose t < γ. Then the analysis performed above does not hold. We now investigate
the situation under which t < γ holds. This certainly holds for t = 1 (the BG attack), but in
the BG attack the entire online computation consists of table lookups and hence the general
analysis is not required. Recall that t = N1−(a+c) = 2s(1−(a+c)), D = Na and M = N c.
Suppose γ = 2e. Then t ≥ γ if and only if a + c ≤ 1 − (e/s). The value of e is a constant
whereas s increases. Hence (1− e/s)→ 1 as s grows. Thus we can have a+ c > 1− e/s only
for small values of s. If e ≈ 20 (mentioned in [25]) then 1− e/s ≥ 2/3 for s ≥ 64.

Consider a = c = 1/3 as in the solution (a, b, c, d) = (1/3, 1, 1/3, 1) corresponding to
P = T = N2/3, M = D = N1/3, r = 1 of [25]. If s ≥ 64 then a + c = 2/3 ≤ 1 − e/s
and the time analysis assuming T = rtD = tD holds. On the other hand, for the solution
(a, b, c, d) = (3/8, 1, 3/8, 7/8) corresponding to P = T = N5/8, M = D = N3/8, r = 1
considered in Section 4.3, we have a + c = 3/4. For s = 64, a + c > 1 − e/s and we have
to assume T = γrD = γD, whereas for s = 100, a + c ≤ 1 − e/s and we can assume
T = rtD = tD. Thus for relatively small s we should solve (4.4) with the constraint
a+ c ≤ 1−e/s instead of a+ c ≤ 1. This disallows some of the otherwise possible trade-offs.

There is another issue that needs to be considered. We have to ensure that t is large
enough to ensure the occurrence of a DP in a chain. Let 2−p be the probability of a point
being a DP. Hence we can expect one DP in a random collection of 2p points. Thus if t ≥ 2p

we can expect a DP in a chain of length t. This implies p ≤ log2 t. Any attempt to design the
tables with t < 2p will mean that several trials will be required to obtain a chain terminating
in a DP. This will increase the precomputation time. In fact, [25] has shown that use of
the DP method in the BG attack divides into two different trade-offs leading to unrealistic
requirements on data and memory.

Using (4.6) we have p
s
≤ 1−(a+c). This leads to the condition a+c ≤ 1− p

s
(MD ≤ N1− p

s)
instead of the condition a + c ≤ 1 (resp. MD ≤ N) in (4.4) (resp. (4.5)). For small s, this
condition has to be combined with a + c ≤ 1 − e/s and we should solve (4.4) with the

4.3. Single Table Attack 42

constraint a + c ≤ 1 − 1
s
max(p, e) instead of the constraint a + c ≤ 1. This puts further

restrictions on otherwise allowed trade-offs.

4.3 Single Table Attack

The case N = 2100 has been considered in [25]. It has been mentioned in [25] that the
Hellman attack with D = 1, T = M = N2/3 = 266 requires unrealistic amount of disk
space and the BG attack with T = D = N2/3 = 266, M = N1/3 = 233 requires unrealistic
amount of data. (Note T = M = D = N1/2 = 250 also gives a BG attack but the data
requirement is still unrealistic.) Further, [25] mentioned P = T = 266 and D = M = 233 to
be a (barely) feasible attack. This corresponds to the parameters (a, b, c, d) = (1/3, 1, 1/3, 1)
and (r,m, t) = (1, N1/3, N1/3).

From Proposition 5 if we choose d = 7/8, then we obtain M = D = N3/8 = 237.5 and
P = T = N5/8 = 262.5. The corresponding parameters are (a, b, c, d) = (3/8, 1, 3/8, 7/8) and
(r,m, t) = (1, N3/8, N1/4). This brings down the attack time while keeping the data and
memory within feasible limits. Since t > 1, this cannot be obtained from the BG attack.
Further, choosing d = 7/8 and D2 > T ensures that this attack cannot also be obtained
from the BS attack. We would like to point out that [25] mentioned that choosing d < 1
is “wasteful”. The above example shows that this is not necessarily the case and choosing
d < 1 can lead to more flexible trade-offs. We show below the condition under which choosing
d < 1 is indeed “wasteful”.

The choice of the parameter r = t/D is motivated in [25] by mentioning that this reduces
the number of table lookups. The number of table lookups in the first case (T = D =
N2/3,M = N1/3) is rtD = tD = N2/3 whereas in the second case (M = D = N3/8, P = T =
N5/8), it is rtD = tD = N5/8. Thus the above example shows that the condition r = t/D is
not necessary for reducing the number of table lookups.

As mentioned earlier, we have one table (i.e., r = 1) if and only if MT = N . The reason
for moving to more than one table is when mt2 > N and we begin to have more and more
repetitions within a table.

Proposition 7 There is a solution to (4.5) with r = 1 = b (and hence MT = N = PD) if
and only if 2a + c ≥ 1.

Proof : Suppose r = 1. Then b = 1 and 2a + c + d = 2. So d = 2− (2a + c). Since d ≤ 1,
we have 2a+ c ≥ 1.

On the other hand, assume that 2a+ c ≥ 1. Choose b = 1 and set d = 2− (2a+ c) ≤ 1.
This choice satisfies the conditions of (4.5). Further, since b = 1 we have r = 1.

4.3. Single Table Attack 43

Suppose 2a + c < 1. Then b + d > 2 and b > 2 − d. Since MT = N b, we would like to
minimize b and hence we choose d = 1. We can now modify the suggestion of [25] and say
that it is “wasteful” to choose mt2 < N if there is more than one table. Since b > 1, we have
2a + c < 1 < b and hence 2a < b − c which gives D2 < T and we are back to the situation
described in [25].

Thus the analysis of [25] actually applies to the situation where the data is small enough
to require more than one tables. On the other hand, for the case of one table, the restrictions
of [25] are not required and removing these restrictions provide more flexible trade-offs. We
would like to point out that there are interesting situations where a single table can be used.
Apart from the examples D = M = N1/3 and D = M = N3/8 already considered, other
possible examples are (D = N0.3, M = N0.4), (D = N0.25, M = N0.5) etc.

Going back to the example of N = 2100, both (P,D,M, T) = (N2/3, N1/3, N1/3, N2/3)
of [25] and (P,D,M, T) = (N5/8, N3/8, N3/8, N5/8) described above have r = 1. As men-
tioned above, the second one is better with respect to the number of table lookups. In
conclusion, there are reasonable choices of data and memory requirements which lead to a
single table. In such situations, the trade-off in [25] is not the only possible one. Other
(and perhaps better) trade-offs can be obtained following the approach described here. We
highlight some of the other interesting single table trade-offs that can be obtained.

Condition P = T = N (1+d)/3, M = D = N (2−d)/3: From Proposition 5, we have r = 1,
i.e., all trade-offs attaining this condition use a single table. In the plausible situation,
M = D ≤ P = T , we have 1/2 ≤ d ≤ 1. The case d = 1 can be obtained from the
BS analysis. In the BG analysis, we have d = 1 − a. Since a − (2 − d)/3, this condition
leads to d = 1/2. Thus the range 1/2 < d < 1 for which the condition P = T = N (1+d)/3,
M = D = N (2−d)/3 can be attained was not known earlier.

Condition M = T : In the second case of Theorem 6, we have r = 1 and M = T = N1/2.
The allowed range of a for this case is 1/4 ≤ a ≤ 1/2. The case a = 1/4 can be obtained
from the BS analysis and the case a = 1/2 can be obtained from the BG analysis. However,
the range 1/4 < a < 1/2 for which T = M = N1/2 can be attained, cannot be obtained from
either the BG or the BS analysis and provide previously unknown trade-offs. The advantage
is that the data can be increased (thus lowering offline time) without increasing either time
or memory.

Small N: Consider N = 264 as in A5/1. It is mentioned in [26] that M ≈ 235 and
D ≈ 222 are reasonable choices. We consider two trade-offs corresponding to the second case
of Theorem 6.

4.4. Rainbow Attack 44

Trade-Off 1: (P,D,M, T) = (246, 218, 232, 232): The table parameters are (r,m, t) =
(1, 232, 214).

Trade-Off 2: (P,D,M, T) = (242, 222, 232, 232): The table parameters are (r,m, t) =
(1, 232, 210).

None of the above two trade-offs are obtainable as BG trade-offs, since in both cases t > 1.
Also neither can be considered to be BS trade-offs since D2 > T . For both trade-offs, the
data and memory are within reasonable limits and the online times are the same. The offline
time is lower for the second trade-off and is within doable limits (especially as an offline
one-time activity), while for the first attack it is probably just outside the doable limit.

The total cost of online table lookup for both the attacks is γtD. Since the value of γ is
a significant proportion of N the cost of table lookup dominates the online cost. Use of the
DP method reduces the total cost of table lookups to γD. If γ is around 220 as mentioned
in [25], we have the table lookup costs to be 238 and 242 respectively. This pushes up the
online cost for both the attacks to make them less of a threat. On the other hand, if γ can
be brought down to around 210 by the deployment of special purpose high speed memory,
then the table lookup costs come down to 228 and 232 respectively. This will make both
the attacks serious threats. We note that with γ ≈ 220, the attack of [26] remains the most
efficient one.

4.4 Rainbow Attack

In this section, we analyze the rainbow method in the presence of multiple data. In the
rainbow attack, we use a table of size m × t and suppose there are D online data points.
Then the total number of invocations of the one-way function is t2D/2 while the cost of the
table lookups is tD. Again, we will ignore the factor of two in the runtime since it does not
affect the asymptotic analysis. Then the total number of invocations of f is t2D and the
total number of table lookups is tD. Also we have mt = N/D.

If we assume γ ≈ 1, then the cost of invoking f dominates the online cost and we have
M = m and T = t2D. Assume D = Na and M = N c as in the case of the Hellman analysis.
Then since mt = N/D = N1−a we have t = N1−a−c and T = t2D = N2−a−2c. Also since
t ≥ 1, we must have a+ c ≤ 1. The TMTO curve for the rainbow method in the presence of
multiple data is TM2D = N2 which is inferior to the Hellman TMTO curve when D > 1.

We now compare the rainbow parameters (P,D,M, T) = (N1−a, Na, N c, N2−a−2c) with
the Hellman parameters for same data and memory. For multiple table Hellman, we choose

4.5. Increasing the Coverage Space 45

d = 1 and hence the corresponding Hellman parameters are
(P,D,M, T) = (N1−a, Na, N c, N2−2a−2c). If a > 0 i.e., if multiple data is available then
clearly the Hellman time is less than the rainbow time. Thus, we conclude that in the
presence of multiple data, the Hellman attack is in general better than the rainbow attack.

4.5 Increasing the Coverage Space

The success probability of the Hellman method is constant. It has been observed [58] that
this value is around 60%. To increase the success probability, one can increase the coverage
space of all the tables. The tables together cover a total of rmt points. We assume that
rmt = λ(N/D) for some λ ≥ 1. By choosing λ > 1, it is possible to increase the success
probability. Kim and Matsumoto [58] have described this technique for the basic Hellman
attack with D = 1. Below we show that essentially the same technique also works for D > 1.

Let y1, . . . , yD be the D data points and let x1, . . . , xD be such that f(xi) = yi where
xis are selected uniformly at random. We define the success probability PSucc to be the
probability that at least one of xi is in the tables. Let P1 be the probability that a random
point is covered by the tables. Then PSucc = 1 − (1− P1)

D. To find P1, we proceed as
follows. Let PSsingle be the probability that the randomly chosen point is in a single table.

Then P1 = 1 − (1− PSsingle)
r and PSucc = 1 − (1− P1)

D = 1 − (1− PSsingle)
rD. In [56],

Hellman provided the expression (see Section 3.3.1) PSsingle ≥
1
N

∑m
i=1

∑t
j=1

(

1− it
N

)j
. Later

Kim and Matsumoto [58] made the following simplification, PSsingle ≥ h(u)mt
N

where h(u) =
1
u

∫ u
0

1−e−x

x
dx and u = mt2

N
. This gives, PSucc ≥ 1 − e(−h(u)×λ) where λ = rmtD

N
. Now h(u) =

1
u

∫ u
0

1−e−x

x
dx < 1 for all u > 0. This implies that the success probability increases with the

value of λ.

Chapter 5

Application of LFSRs in
Time/Memory Trade-Off
Cryptanalysis

5.1 Introduction

TMTO attacks require the generation of a sequence of functions which are obtained as minor
modifications of a one-way function to be inverted. In this chapter, we carefully examine
the requirements for such function generation. A counter-based method is used to generate
the functions for the rainbow method. We show that there are functions for which the
counter method fails. This is similar to the example given by Fiat and Naor [45] for the
Hellman TMTO. Our main contribution is to suggest the use of LFSR sequences for function
generation to be used in the rainbow TMTO. Properties of LFSR sequences such as long
period, pseudo-randomness properties and efficient forward and backward generation make
such sequences useful for the intended application. This part is based on material from [72].

We also consider the problem of efficiently generating sequences in hardware for use in
parallel start point generation. The conventional method of doing this is to use a counter.
We show that sequences generated by linear feedback shift registers (LFSRs) can be tailored
to suit the parallel start points generation. For hardware implementation, this reduces both
time and chip area. As a result, we are able to provide an efficient strategy for generating
start points in TMTO attacks. This part is based on Sections 2 and 5 of [73].

One of the reviewers of this thesis has pointed out that LFSR is better than counter in
absolute terms. But LFSR or counter will be implemented as a part of a bigger circuit which
could be an AES block. The AES block will take up much more area in the chip compared

46

5.1. Introduction 47

to an LFSR or a counter. So in this overall context, the savings may not be much when
using LFSR instead of counter. On the other hand, we note that even a small reduction in
the size of a chip can be of use when such chips are mass produced.

TMTO attacks require the generation of a sequence of functions f1, f2, . . . where fis are
obtained from f by a minor modification such as permuting the output bits of f . A crucial
point in TMTO attack is to obtain the different functions fi such that they can be assumed
to be independent random functions.

In case of the rainbow tables, a counter based method is used to generate the rainbow
chains. The function fi(x) is defined as f(x) ⊕ i. If several rainbow tables are used, then
the counter method is used in the following manner: if table one uses index 1 to 1000 (say),
then table two uses index 1001 to 2000, and so on.

We carefully examine the different requirements for defining the functions fi. We show
that the counter method does not ensure uniform modification of the output and an adapta-
tion of Fiat-Naor [45] counter example for the Hellman method also works for rainbow with
counter method .

This leads us to the question of obtaining a method to define the fi’s such that the output
modification is uniform. Our main contribution is to show that sequences produced by linear
feedback shift registers (LFSRs) are a natural choice for such an application. LFSR sequences
are very efficient to generate in the forward and backward directions, they satisfy certain nice
pseudo-randomness properties, it is quite easy to generate very long non-repeating sequences
of bit vectors. All these properties make LFSR sequences very suitable for defining the
functions required in rainbow chains for one or more tables.

Details of an LFSR based multiple table rainbow method are presented and analyzed. It
turns out that for the same precomputation time, the success probability of multiple table
rainbow method is higher than that of Hellman method or the single table rainbow method.
On the other hand, the runtime of the multiple table method is slightly higher. We show
that a Kim-Matsumoto style parametrization is possible for the rainbow method and yields
a higher success probability than the single table rainbow method without changing the
runtime or the memory requirement.

For the parallel implementation of TMTO attack, we require the generation of parallel
independent (pseudo)random sequences of s-bit values in the precomputation phase. Imple-
mentations of this use a counter to generate the required sequences. While this is intuitively
simple, it is not the best possible option for hardware implementation. We show how LFSR
sequences can be tailored for use in the parallel start point generation.

5.2. LFSR Preliminaries 48

5.2 LFSR Preliminaries

A linear feedback shift register (LFSR) [62, 68] of length l consists of l stages 0, 1, 2, . . . , l−1,
each capable of storing one bit. An l-bit LFSR is denoted by (l, p(x)), where p(x) = 1⊕c1x⊕
· · · ⊕ cl−1x

l−1 ⊕ xl is called the connection polynomial [68]. LFSRs can produce sequences
having large periods. If the initial content of stage i is ai ∈ {0, 1}, for 0 ≤ i ≤ l − 1, then
(al−1, al−2, . . . , a0) is called the initial internal state of the LFSR. Let at time t ≥ 0 the
content of the stage i be at

i ∈ {0, 1}, for 0 ≤ i ≤ l − 1, then the internal state of the LFSR
at time t is (at

l−1, a
t
l−2, . . . , a

t
0) . Let {Xt=(at

l−1, . . . , a
t
1, a

t
0)} for t ≥ 0, be a sequence of l-bit

vectors. If p(x) is a primitive polynomial, then each of the 2l − 1 non-zero initial states of
the LFSR (l, p(x)) produces an output sequence with maximum possible period 2l − 1.

Let us consider the kth and (k + 1)th terms of the sequence, i.e., Xk = (ak
l−1, . . . , a

k
1, a

k
0)

and Xk+1 = (ak+1
l−1 , . . . , a

k+1
1 , ak+1

0) respectively, where

ak+1
l−1 = cl−1a

k
l−1 ⊕ cl−2a

k
l−2 ⊕ · · · ⊕ c1a

k
1 ⊕ a

k
0;

ak+1
l−2 = ak

l−1; a
k+1
l−3 = ak

l−2; . . . ; a
k+1
0 = ak

1.

}

(5.1)

From (5.1) we get

ak
0 = ak+1

l−1 ⊕ cl−1a
k+1
l−2 ⊕ cl−2a

k+1
l−3 ⊕ · · · ⊕ c1a

k+1
0 ;

ak
1 = ak+1

0 ; ak
2 = ak+1

1 ; . . . ; ak
l−1 = ak+1

l−2 .

}

(5.2)

Equations (5.1) and (5.2) show that forward and backward generation of LFSR sequences
require at most l XOR operations on bits and can be done very fast in hardware and software
(see for example [33]).

In this thesis we consider binary LFSRs. We note, however, that the techniques de-
scribed in this thesis also hold for LFSRs over larger alphabets and for other linear sequence
generators like cellular automata.

Below we highlight some features of LFSRs which are relevant to our work. See [62, 68]
for more details and theory of LFSR sequences including non-binary LFSRs. Additionally,
we would like to point out that even though we consider only LFSRs in this paper, our ideas
carry over in a straightforward manner to other linear finite state machines like cellular
automata.

Maximal length LFSR: It is well known that if p(x) is a primitive polynomial, then
for any non-zero s-bit vector S0, the sequence S0, S1, S2, . . . , S2s−2 consists of all the 2s − 1
non-zero s-bit vectors. An LFSR which has this property is called a maximal length LFSR.
The number of primitive polynomials of degree s over GF (2) is given by the expression
φ(2s − 1)/s, where φ(i) is the Euler totient function and is defined to be the number of

5.2. LFSR Preliminaries 49

positive integers less than i and co-prime to i. The expression φ(2s− 1)/s is almost as large
as 2s and hence there are a large number of maximal length LFSRs of a certain degree.
Further, maximal length LFSR sequences satisfy certain well defined pseudo-randomness
properties and hence such sequences are used in generating test vectors.

Matrix representation: There is another way to view an LFSR sequence, which will be
useful to us later. The next state St+1 is obtained from the previous state St by a linear
transformation and hence we can write St+1 = StM , where M is an s × s matrix whose
characteristic polynomial is p(x). Extending this we can write St = S0M

t. Thus knowing
M t we can directly jump from S0 to St without going through the intermediate states. For
any fixed value of t < 2s−1, computing the matrix exponentiation M t can be done using the
usual square and multiply method and requires at most 2 log t ≤ 2s matrix multiplications.
Appropriate addition chain heuristics can speed up the computation. Later we will apply
this idea for parallel generation of subsequences of the sequence S0, S1, . . . , S2s−2.

Implementation: Implementing an LFSR in hardware is particularly efficient. Such an
implementation requires s flip-flops and wt(p(x))− 1 2-input XOR gates, where wt(p(x)) is
the number of non-zero coefficients in p(x). With this hardware cost, the next s-bit state is
obtained in one clock. For maximal length LFSR, one requires p(x) to be primitive. It is
usually possible to choose p(x) to be of very low weight, either a trinomial or a pentanomial.
Thus, an s-bit maximal length LFSR provides a fast and low cost hardware based method
for generating the set of all non-zero s-bit vectors. Software generation of an LFSR sequence
is in general not as efficient as in hardware. On a machine which supports w-bit words,
the next s-bit state of an LFSR can be obtained using (wt(p(x)) − 1)s/w XOR operations
(see [33]).

Pseudo-randomness properties: The sequences generated by a maximal length LFSR
satisfy the following properties. The number of 1’s differs from the number of 0’s by at most
1. In every period, half the runs have length 1, 1

4
th have length 2, 1

8
th have length 3, etc.,

as long as the number of runs so indicated exceeds 1. Moreover, for each of these lengths,
there are (almost) equally many runs of 0’s and of 1’s. Frequency test, serial test, poker
test, runs test, auto-correlation test are some basic tests to measure pseudo-randomness of
a sequence. The sequences generated by a maximal length LFSR satisfy all these tests. For
other statistical properties of LFSR based sequences, one can see [68].

5.3. Function Generation 50

5.2.1 Possible Advantages of LFSRs over Counters

Implementing a counter which can count from 0 upto 2s − 1 requires an s-bit register and
an adder. At a top level, an adder circuit is more complicated than an LFSR, since carry
propagation has to be handled. However, use of different techniques can provide efficient
adder designs. In contrast, for LFSR sequences, apart from the s-bit register, we require only
wt(p(x))−1 2-input XOR gates. The main cost of implementing an LFSR is the register and
the interconnections. The number of XOR gates can usually be taken to be either two or four
and can be assumed to be less than ten for all values of s. Thus, the cost of implementing an
LFSR scales linearly with the value of s. Additionally, for some applications, the requirement
is to generate a pseudo-random sequence of non-negative integers. In such cases, one cannot
use a counter.

5.3 Function Generation

In this section, we first consider the requirements on the functions fi’s. The definition of
fi has been suggested by Hellman to be fi(x) = ψi(f(x)). We will call this to be the
output modification approach. One can similarly consider fi(x) = f(ψi(x)), or the input
modification approach.

We first consider the case of input modification and argue that this is actually the same as
output modification. Consider the rainbow method and suppose fi(x) is defined as fi(x) =
f(ψi(x)). Consider the rainbow chain

(ft−1 ◦ ft−2 ◦ · · · ◦ f1 ◦ f0)(x0)

where x0 is a start point and xi = fi−1(xi−1) for i ≥ 1. Expanding the above sequence, we
can write

(f ◦ ψt−1 ◦ f ◦ ψt−2 ◦ · · · ◦ f ◦ ψ1 ◦ f ◦ ψ0)(x0).

Now for 1 ≤ i ≤ t−1, if we define gi(x) = ψi(f(x)), then we get the rainbow chain x′0, . . . , x
′
t−1

where x′0 = ψ0(x0) and x′i = gi(x
′
i−1). This gives a rainbow chain of output modified form of

length one less than the original chain. Also, note that x0 is chosen to be a random point
and hence it does not matter whether we start from x0 or from ψ0(x0). This shows that we
can convert a chain of input modified form into a chain of output modified form. A similar
conversion will also convert a chain of output modified form into a chain of input modified
form. Further, the technique also works for the original Hellman method.

The literature considers only output modification. To the best of our knowledge, the
above argument regarding input modification does not appear in the literature. In view of
this argument, like previous works, we will consider only output modification.

5.3. Function Generation 51

5.3.1 Invertibility

Consider the search technique of the rainbow method. From equation (3.2) of Section 3.3.3,
we assume fj(x) = ψj(y) and infer that f(x) = y. If ψj is invertible, then using fj(x) =
ψj(f(x)) = ψj(y), we have f(x) = y and x is a preimage of y. If ψj is not invertible, then
the relation might not give a preimage of y, leading to a false alarm. The condition ψj being
invertible ensures that there are no false alarms due to the use of ψj . (Note that there may
be false alarms due to f itself or due to the modification to f to make the domain and range
the same.) A similar argument shows that ψj ’s used in the Hellman method should also be
invertible.

5.3.2 Efficient Function Generation

To apply the function fi we need to apply f and the function ψi. For this we need a
description of the function ψi. One approach is to store the description of all the t functions
ψ0, . . . , ψt−1. This requires an additional storage space of order t. Since t = N1/3 in both
the Hellman and the rainbow method, this storage amount can be substantial. One way to
avoid this storage is to generate the functions “on the fly”. Thus, we need an efficient on
the fly method to generate the functions ψis.

5.3.3 Long Period

Consider the on-the-fly method discussed above. This means that we should actually be
capable of generating a sequence of bit vectors and use these to define the functions ψis.
Since we do not want repetition of the functions, the sequence must consist of distinct bit
vectors. In other words, it must be possible to generate a sequence of bit vectors with period
long enough to ensure that all the ψis are distinct.

5.3.4 Uniform Modification of Output

The rainbow method uses a sequence f0, f1, . . . , ft−1 of functions. These are generated using
a counter. We argue that the counter method also suffers from a problem similar to the one
described by Fiat and Naor for the Hellman method. Given a function f , the rainbow method
constructs the modification functions fi by defining fi(x) = f(x)⊕i. Since i ≤ t, this modifies
at most the log t least significant bits of f(x). Now one can construct a function f as follows:
f : {0, 1}s → {0, 1}s with the property that for any x ∈ {0, 1}s, if Firstn1

(x) = (0, 0, . . . , 0)
(s1 bits) then f(x) = (0, 0, . . . , 0) (s bits). Let S1 be the set of all s-bit vectors whose most
significant s1 bits are zero. Then the size of S1 is N1 = 2s−s1. We choose s− log t = s1 <

s
3
.

5.4. Introducing LFSRs as Function Generators 52

Considering such a function, we may construct a cryptographic scheme so that N−N1 of the
keys induce a permutation and other keys map all ciphertext values to zero. For a rainbow
chain

x0
f0
−→ x1

f1
−→ x2 → . . .→ xt−1

ft−1

−→ xt,

if any xi is in S1, then xi+1, xi+2, . . . up to xN1
(if N1 ≤ t) are zeros. This will generate a

huge number of zeros inside a rainbow table, resulting in the failure of the rainbow method
in this case.

5.3.5 Pseudo-randomness

One way to avoid the above problem is to define fi(x) = f(x)⊕Xi, where X0, X2, . . . , Xt−1 is
a pseudo-random sequence of n-bit vectors. This ensures that all output bits are uniformly
modified unlike the counter method where only some least significant bits are modified.
Further, the pseudo-random sequence X0, X2, . . . , Xt−1 should be efficient to generate “on-
the-fly”. The cost of generating the next element of the sequence should be negligible
compared to the cost of one invocation of f .

Choices like fi(x) = f(x) ∗ i in GF (2s) or fi(x) = f(x) + f(i) can also provide uniform
modification of the output. However, these are quite expensive operations, the first one
involves a polynomial multiplication and the second one involves an extra invocation of f .
We would like to define fi such that the cost of one invocation of fi is almost the same as
that of f .

5.4 Introducing LFSRs as Function Generators

If one chooses the output modification functions ψi after f is given, it is not possible to a
priori construct a Fiat-Naor type example. It has perhaps not been observed earlier that
the Fiat-Naor type example can be avoided by the simple trick of choosing the variants of
f randomly after the function f is provided. We discuss the suitability of LFSR in this
context.

In the Hellman method, we can use an LFSR to generate the random variations of f as
follows. For t Hellman tables we generate a sequence X1, X2, · · · , Xt of s-bit vectors using
an LFSR (s, p(x)) (say). Then we construct the fi’s as follows: fi(x) = f(x) ⊕ Xi for
i = 1, 2, . . . t. We require the Xi’s to be distinct. Choosing l = s (recall that f : {0, 1}s →
{0, 1}s) and p(x) to be a primitive polynomial will ensure this. Since the LFSR connection
polynomial and the initial condition are chosen randomly after f is given, it is not possible
to a priori construct a Fiat-Naor type example for the LFSR based Hellman method.

5.5. LFSR Based Rainbow Method 53

We now consider the application of LFSR sequences to the generation of functions for
use in (multiple) rainbow tables. Suppose there are r tables each having t columns. We
choose an LFSR of length l = s having a primitive connection polynomial. Each bit vector
in the sequence is of length s. Let the sequence be X0, . . . , Xrt−1.

Define ψi(x) = x⊕Xi and fi(x) = ψi(f(x)) = f(x)⊕Xi. The first table uses the functions
f0, . . . , ft−1; the second table uses the functions ft, . . . , f2t−1; and so on. The functions
ψi defined using the LFSR sequence satisfy the desirable properties discussed above. We
mention some details.

Invertible: Each ψi is clearly invertible.

Efficient Generation: The function ψi is defined fromXi. Since the sequence X0, . . . , Xrt−1

can be efficiently generated in both the forward and the backward directions, the cor-
responding functions can also be efficiently generated.

Hardware Implementation: A hardware implementation of the rainbow method is ex-
plored in [69] using FPGA platform, where a counter based method is used for func-
tion generation. For hardware implementation, it is preferable to use an LFSR over a
counter.

Long Period: For all the ψi’s to be distinct, we need the Xi’s to be distinct. The period of
the sequence is 2s − 1. For the rainbow method, r is a small constant and t = N1/3 =
2s/3. Thus, we have 2s − 1 > rt and hence all the Xi’s are distinct as required.

Pseudo-randomness: LFSR sequences satisfy some nice pseudo-randomness properties [62].
Using the ψ functions in the rainbow method means that at each stage the output of
f is being XORed with a bit vector from the pseudo-random sequence X0, . . . , Xt−1.
This ensures a uniform modification of all the bits of the output of f .

5.5 LFSR Based Rainbow Method

In this section, we provide the details of the LFSR based implementation of the rainbow
method. This is a modification of the basic rainbow method. The details of the following
algorithm are given in Section 3.3.4. Here we use the data structures from Section 3.3.3.

Suppose r tables each of size m×t are to be constructed in the precomputation phase. Let
p(x) be a primitive polynomial over GF (2) of degree s and 0 6= X1, . . . , Xrt be a sequence of
s-bit vectors produced with an LFSR having connection polynomial p(x) and initial condition
X1. We define ψi,j(x) = x⊕Xit+j and fi,j(x) = ψi,j(f(x)), where i = 1, . . . , r and j = 1, . . . , t.

5.5. LFSR Based Rainbow Method 54

We use the same data structures SPD[][] and EPD[][] for the start points and the
end points respectively, which we have used in Section 3.3.3. for the DP method. In the
precomputation stage, we generate the end points in the following manner. For 1 ≤ i ≤ r
and 1 ≤ j ≤ m,

EPD[i][j]← (fi,t ◦ fi,t−1 ◦ · · · ◦ fi,1)(SPD[i][j]).

For each table we apply the Sort algorithm which is described in Chapter 3 to sort the (start
point, end point) pairs in the increasing order of the end points. For 1 ≤ i ≤ r, define
Y 0

i = Xit and Y 1
i = Xit+t. With the ith table, we associate the pair (Y 0

i , Y
1
i). These two

values mark the start and the end of the LFSR sequence required to generate the fi,j’s used
in the ith table. This completes the description of the table preparation, which requires rmt
invocations of the function f .

Next we describe the online search technique. We will be given y and have to find x such
that f(x) = y. Since there are r tables, we successively search in each of the tables. Hence,
it is sufficient to describe the search method in the ith table. The details of the following
algorithm is a little different from that in Section 3.3.4. This is due to the fact that in
Section 3.3.4, the search algorithm is given for a single table, whereas the algorithm below
is for searching in the ith table among a set of r tables. For the sake of clarity, we present
the details once more.

Algorithm Search in the ith table
Input: SPD[][], EPD[][], Y 0

i , Y 1
i and y.

Output: An s-bit string x such that f(x) = y, else failure
1. Z = Y 1

i

2. for j = t− 1 downto 0 do
3. set tmp = y ⊕ Z, W = Z
4. for l = j + 1 to t− 1 do
5. tmp = f(tmp)⊕W , W = L(W)
6. end do
7. q ← Find(EPD[i], tmp)
8. if (q 6= NULL) do
9. val← SPD[i][q]
10. tmp← EPD[i][q]
11. set W = Y 0

i

12. for l = 0 to j − 1 do
13. val = f(val)⊕W , W = L(W)
14. end do
15. if f(val) = y, then return val
16. else raise a false alarm

5.6. Further Analysis 55

Table 5.1: (r, m, t, PS, M, P, T, Tt) with different N (r is the number of tables, m is the number of rows in
each table, t is the number columns in each table, PS is the success probability, M is the memory requirement,
P is the preprocessing time, T is the run time, Tt is the number of memory access and N is the size of the
search space).

N Hellman+DP multiple rainbow
256 (220, 220, 219, 0.93, 241, 259, 236, 220) (8, 235, 218, 0.94, 239, 256, 238, 221)
264 (223, 222, 222, 0.91, 246, 267, 242, 223) (4, 241, 221, 0.90, 244, 264, 243, 223)
272 (225, 225, 225, 0.92, 251, 275, 248, 225) (8, 246, 223, 0.91, 249, 272, 249, 226)

17. end if
18. Z = L−1(Z)
19. end do
20. return “failure”
end Search

The Find algorithm used in Line 7 is the same as that used in Section 3.3. The algorithm
implements Equation (3.2) of Section (3.3.3). If in Line 15, we have equality, then w is a
preimage of y, otherwise we have a false alarm. The total number of invocations of f made
per table is the same as the rainbow method and is ≈ t2/2. The total number of invocations
of f is ≈ rt2/2. The memory requirement is rm pairs of n-bit strings. Additionally, it is
required to store (Y 0

i , Y
1
i) for i = 1, . . . , r. Since for practical implementation, r will be much

smaller than m, this storage requirement is negligible compared to the storage for the tables.

5.6 Further Analysis

Consider the tuple (# tables, # rows, # columns, PS, memory, preprocessing time, runtime,
number of memory access). We have computed this tuple for each method with different
values of N in Table 5.1. The success probability for multiple rainbow tables is better than
the Hellman + DP method for λ = 1. Taking λ > 1, we achieve the same success probability
with the rainbow method, but with little higher preprocessing time.

To achieve higher success probability with the same runtime and memory requirement
of rainbow method, we can choose the parameters in a way similar to [58] as follows. We
choose three constants a, b and λ such that

• the memory required rm = N
a
,

• the runtime rt2

2
= N

b
,

5.7. Parallel Implementation of TMTO Precomputation 56

• size of the search space rmt = λ×N .

Solving the three equations we get

r =
2N

λ2a2b
, m =

λ2ab

2
and t = λa.

5.7 Parallel Implementation of TMTO Precomputa-

tion

The precomputation phase of TMTO is essentially an exhaustive search which is required to
be done only once. Practical implementations of TMTO attack will use parallel f -invocation
units to perform the precomputation. The problem that we consider is of generating the
start points on chip. We show an LFSR based method for doing this. But before that, we
consider the counter based method proposed in the literature.

Counter Based Start Point Generation: Quisquater and Standaert [81] described a
generic architecture for the hardware implementation of the Hellman + DP method. Mentens
et al. [69] proposed a hardware architecture for key search based on the rainbow method. A
global s-bit counter is used [69] as a start point generator which is connected to each of the
processors. We point out the following issues regarding this approach.

• In the analysis of the success probability of the TMTO method given by Hellman [56],
the start points are assumed to be chosen uniformly at random. Using a counter
does not generate random start points. However, in practice counters work as well as
randomly chosen strings since the success probability of the TMTO algorithms (except
for Fiat-Naor) is heuristic.

• Using a global s-bit counter (adder) to generate the start points for n processors has
the following disadvantage. Some (or all) of the n processors may ask for a start point
at the same time. Then there will be a delay since there is only one global counter to
generate the start points. Here we assume that everything is done in the hardware.
However, the hardware may be connected to a low cost 2 GHz PC which can take
over certain low cost tasks such as the start point generation. We did not explore
this scenario. Using n different counters for the start point generation has not been
suggested in the literature.

5.7. Parallel Implementation of TMTO Precomputation 57

LFSR Based Start Point Generation: To generate r tables of sizem×t each, we require
a total of m × r start points with s-bit each. Suppose we have n processors P1, P2, . . . , Pn

available for the precomputation phase. We may assume n|m since both are usually powers
of two and n < m.

We choose n distinct primitive polynomials p1(x), . . . , pn(x) and set up a local start
point generator (SPG) for processor Pi as follows. The local SPG is an implementation of a
maximal length LFSR Li with connection polynomial pi(x). The initial condition Si for Li

is chosen randomly and loaded into Li during the set up procedure. For preparing a single
table, all the n processors run in parallel. For each table, m chains need to be computed.
This is done by requiring each processor to compute m/n chains. The description of Pi is as
follows.

Pi: Ui denotes the current state of Li

1. Ui ← Si, j ← 1
2. do while (j ≤ m

n
)

3. generate the chain with start point Ui

4. if the chain reaches an end point Ti

5. store (Si, Ti) into Tabi

6. j ← j + 1
7. end if
8. Ui = nexti(Ui)
9. end do

end.

The function nexti() refers to clocking LFSR Li once. In this design, each processor Pi

has its own SPG as opposed to a global SPG for all the Pis. This simplifies the design
considerably while retaining the pseudo-random characteristic of the start points.

Chapter 6

New Hardware Architecture for
Generic Inversion of One-way
Functions

6.1 Introduction

The most feasible implementation of time/memory trade-off (TMTO) is in special purpose
hardware. In this chapter, we describe a systematic architecture for implementing TMTO.
We break down the offline and online phases into simpler tasks and identify opportunities for
pipelining and parallelism. This results in a sufficiently detailed top-level architecture. Many
of our design choices are based on intuition. Simulation studies to verify and/or propose
new design choices is a possible future work. This chapter is based on our article [74].

6.2 Notational Convention and Abbreviation

We provide below the notations used in the architecture and illustrate notational convention
in Figure 6.1.

– SCC: two-bit register used in the table preparation stage

– sgc1 and sgc2 are the completion signals of the chain computation and sorting unit
respectively.

– start signal indicates that the assembly line movement is complete in the Table Preparation
stage.

58

6.2. Notational Convention and Abbreviation 59

– Pi: i = 1, 2, . . . , n are the processors used to generates the (start point, end point) pairs
for the table.

– PMSi :i = 1, 2, . . . , n are the processor memory space for Pi.

– R is n-bit register used to store the completion signal of all the processors.

– SC is sequential circuit with n-bit input to check whether all the input bits are 1.

– L is s-bit LFSR corresponding to a primitive polynomial whose internal stage are used
for output modifications.

– CT : one bit tag to control write blocks and movement of the assembly line.

– T : one bit tag to control the execution of the processor unit, if T = 0 then the unit will
be idle until T = 1.

– SPG: the start point generator.

MUX

A B

S C

: S=0; C=A

 S=1; C=B

Multiplexer

Functional Unit

Register

i

Control bit

Clear bit

Data bus of 1 bitsData bus of i bits

Figure 6.1: Notational convention

– C1 and C3 are both r1 (= log t) bits counter. C2 is r2 (= log t
n
) bits counter.

– SC1 and SC2 are sequential circuits with r1-bit input to check whether all the input bits
are 1.

– Ri: i = 1, 2, 3, 4, 5 are s-bit registers.

– RF i is the ith round function.

6.3. Precomputation Stage 60

– SPRi: i = 1, 2, . . . q are s-bit registers used to store the start points.

– CQR is r1-bit counter to count the number of the start points generated by SPG.

– DB: data block

– R2j : j = 1, 2, . . . q are s-bit intermediate registers to store the output values for different
rounds.

– SPCi : j = 1, 2, . . . q − 1 are r1-bit counters.

– WB: write block, RB: read block and DB: data block.

– CQ: k-bit register.

– SCQ is sequential circuit with k-bit input to check whether all the input bits are 1.

– y : data point

– DP : distinguished point

– SP : start point

– mask:

– OMB : output memory block

– MR and DR are both s-bit registers.

– PC1 is r3-bit (r3 = log z) counter.

– BUF1 and BUF2 are buffer queues.

6.3 Precomputation Stage

The precomputation stage consists of two phases: chain computation and sorting. Figure 6.2
describes architecture of the precomputation stage and the tables are computed one by one.
To generate a table, a fresh memory is used as an input of the chain computation phase.
In the chain computation phase, chains are generated until it reaches a DP and then the
start point and end point pairs are stored into the fresh memory. After storing t of pairs
into the table, the chain computation unit sends a completion signal sgc1 (1 bit value) to

6.3. Precomputation Stage 61

Fresh
Memory

Completed
 Table

 Sorting
Chain

Computation

Unsorted
Table

 Sorted
 Table

SCC

sgc1 sgc2

start
signal

And

Figure 6.2: Table Preparation

the register SCC and terminates execution until the start signal is received. At the sorting
phase, the previous table (unsorted) is to be sorted into increasing order of the end points.
Both the chain computation unit and the sorting unit run in parallel, i.e., while the chain
computation unit computes the ith table, the sorting unit performs sorting on the (i − 1)th

table. After completion of the sorting phase, a completion signal sgc2 is sent to SCC and
the execution is stopped until a start signal is received. The assembly line will shift (i.e.,
the fresh memory, unsorted table and sorted table will be copied into unsorted memory
unit, sorted memory unit and completed table unit respectively) when SCC receives both
the signals sgc1 and sgc2 (i.e., when both the chain computation unit and sorting unit will
report completion). After completion of assembly line movement, start signal will be sent to
both the chain computation unit and the sorting unit and the SCC is set to zero. There are
several issues to be considered.

• The chain computation and the sorting hardware are to be designed so that they
complete simultaneously. In any case, sorting should not take more time than chain
computation. Since we are considering a pipelined design, if sorting takes more time
than the chain computation, the pipeline will have to wait. Under the assumption that
the sorting does not take more time than chain computation, the total time will be r
executions of chain computation + 1 table sorting + r assembly line movements. The
time between two assembly line shifts is the time for the chain computation which is
sufficient time to add fresh memory and to remove the completed table. On the other
hand, the actual shift of the assembly line should take very small time as this is a
factor in determining the completion time of all the tables.

• Parallel sorting: Depending on the design and speed of the chain computation stage, it
is required to determine whether parallel in-place sorting is required. The other issue

6.3. Precomputation Stage 62

is the type of table memory being used and whether random access is supported. In
case parallel sorting is to be used, one can use mesh sort which requires a 2-d table
structure. Then the chain computation phase will be required to access a 2-d memory.

• Both chain computation and sorting phase will require memory writes. For the chain
computation stage, batching can be used to reduce the number of memory accesses.
Also chain computation and memory access can be pipelined to some extent.

• For storing tables, one can use the re-writable DVDs which is a cheap option. But
the DVDs have write stage and a burn stage, so the question is where does the burn
stage fit into the design? Does this stall the pipeline? Alternatively, one can use four
blocks of high speed memory while keeping the actual tables into the DVDs. The
completed table in a high speed memory will be written to a DVD and then the high
speed memory will be cycled back into fresh memory. The time to copy from high
speed memory to DVD will be overlapped with the chain computation and the sorting
phases.

Comments: We consider parallel sorting in hardware. Alternatively, one could consider
harware-software co-design where sorting is done in software.

6.3.1 Chain Computation Phase

Suppose there are n processor units P1, P2, . . . , Pn available at the chain computation phase.
In Figure 6.3, we describe the architecture of the chain computation unit. The given memory
block (fresh memory) is partitioned into n separate Processor Memory Space (PMS) units
PMS1, PMS2, . . . , PMSn. Each processor Pi will store t

n
(start point, end point) pairs into

PMSi through a write block (WB) unit WBi. Each PMSi has t
n

memory locations to store
the pairs and its starting address addi (address of the first memory location) is stored in
WBi. Hence to access jth memory location of PMSi, the offset j is to be added with addi

to get the exact address. Processors execute the chains with different start points which are
coming from start point generator, with each processor having its own start point generator.
After encountering a DP, the processor enables the write block unit by the signal sg1 and
passes the address (offset:O3) of the next free location of the corresponding PMS. Then the
corresponding WB unit goes to the exact address of the free location by adding the offset
with the starting address of the PMS and storing the pair (O1, O2) into the location.

Processors run in parallel and after generating t
n

DPs, the corresponding processor passes
a completion signal (1-bit value) to the n-bit register R and stops the execution until it
receives a start signal sg2 from the CT (see Figure 6.2). L is an s-bit LFSR which is used
as function generator and its internal state value passes to each of the processors to do the

6.3. Precomputation Stage 63

output modification of the function f . SC is a sequential circuit to check whether all the
values R are 1. If yes, then the table has completed and SC sends a signal sg4 to enable L
to generate the next state (for the next table) and sg3 to set CT to 1. Then CT will send
a signal sgc1 to SCC (see Figure 6.2) requesting to move the table, a signal sg5 to disable
write block, a signal sg2 to the processor and clear the contents of R. After the movement
of the assembly line, the start signal (see Figure 6.2) sets the value of CT to zero and the
write blocks will be enabled to write the pairs for the next table.

.

.

.PMS
1

PMSn

WB1
WBn

 P
1

Pn

L
R

SC

CT
tag

2s 2sr
1

2
2s r2

s

r
1

r2s

.

(O , O)1 sg
1O3

sg
2

sg
3

sg
4

5
sg

 2

start
signal

sgc1

Memory

Figure 6.3: Architecture of chain computation phase. i/p : start signal; o/p : sgc1

The following are some of the rationales for our design decisions:

• Utility of having separate memory spaces: Each processor Pi uses separate processor
memory spaces PMSi to store the (start point, end point) pairs. This avoids multiple

6.3. Precomputation Stage 64

access of same memory space and it is possible to use this idea since sorting is done
separately.

• Each processor generates t
n

DPs: Since DPs are generated at different time points
and a processor may have to consider different number of chains, the time taken by
processor will be different (though the expected time will be the same for all processors).
Consequently, it may happen that one processor may complete ahead of others and
hence will be idle for some time. On the other hand allowing each processor to generate
the same number of DPs considerably simplifies the design.

• No overlap of processing between tables: At no point of time, two processors will be
handling chains of different tables. This again simplifies design.

Comments: We assume that there will be no overlap of processing between tables. While
this simplifies the design, it may be more cost effective to allow such overlaps. More analysis
is required to settle this point.

O3

SPG

s

 PUnit

Out2

Out3

In2In1

 C2

 T
SC2

r2

sg1

sg2

Output to R

Input from L

Out4
O1Out1
O2

Figure 6.4: Architecture of a processor Pi. i/p : sg2, function mask; o/p : sg1, O1, O2, O3.

6.3. Precomputation Stage 65

Description of a Processor: Figure 6.4 describes the architecture of a processor. Each
processor takes two inputs, a signal sg2 and s-bit output modification value from L. The
1-bit register T is the control unit of the whole processor unit, the processor will stop if T is
set to be zero and start running if the value of T is 1. C2 is the counter to count the number
of DPs encountered and it is incremented after encountering a DP. SC2 checks whether the
number of DPs encountered reaches t

n
. If yes then the value of T will be set to zero and

the whole processor unit will stop until the signal sg2 resets C2 to zero. A start point is
generated by the start point generator (SPG) unit and passes to the PUnit as the input In1.
Then the PUnit takes other input In2 from L, which is the internal state of L (i.e., function
mask) and starts executing the chain with the start point until it reaches a DP or the chain
length reaches t. If yes then it outputs a signal Out3 to SPG to generate a new start point,
loads into the register R1 and passes to the PUnit as an input (In1) for the next chain. If a
DP is encountered, then PUnit outputs a signal Out2 to increase the counter C2 by 1 and
enables (the signal sg1) the WB unit to load the (start point, end point) pair (O1, O2) and
the offset address O3.
A suggestion for SPG to be implemented using an LFSR where each Pi has its own SPG as
opposed to a global SPG for all the Pis. See Section 5.7 for parallel start points generation
using LFSRs sequences. This simplifies the design considerably while retaining the pseudo-
random characteristic of the start points.

Description of PUnit: Figure 6.5 describes the PUnit where input In1 is a new start
point which is loaded into the register R1 and In2 is stored into R4 for function masking.
The counter C3 is set to zero through the multiplexers when a new start point is loaded into
R2. The function f is applied on R2 and the output is loaded into the register R3 followed
by function masking (xoring R3 and R4). The result is stored into the register R5 to check
for a DP. If a DP is encountered, then the multiplexers select the second line so that a new
start point is loaded into R2 and the counter C2 will set to zero. Otherwise R5 and C1 will
be copied (in a synchronized operation) into R2 and C3 respectively for the next iteration in
the chain. The increment of C3 and copying to C1 will be synchronized with the application
of f on R2 and output to R3. The result of one operation will not be used until the other
one is completed.

Comments: Note that in our design we use chain length counter (i.e., C1) which adds
complexity to the circuit. Removing the chain length counter gives rise to the possibility
that a DP in some chain occurs after a very long time or does not occur at all. This will stall
the operation. While this will be rare event, it cannot be ignored. Counter chain length is
one way of handling this. There may be other ways. Also note that we do not store chain
length in the table. This reduces memory requirement but will increase online search time
for false alarms.

6.3. Precomputation Stage 66

R2

R3 R4

f

MUX MUX

R5

DP?

s

s

s s

s

p s

.

. . .

SC1

MUX MUX

0 0

. .

r1

C1

+1

r
1

1
r

. . . C3

Out1

.
Out4

s

sR1

s s

Out3

Out2

In1
 In 2

Figure 6.5: Architecture of PUnit. i/p : In1, In2; o/p : Out1, Out2, Out3, Out4.

Description of a processor when f is a multi-round function: Let us consider the
case when the function f is a multi-round function, i.e.,

f = RF q ◦RF q−1 ◦ · · · ◦RF 2 ◦RF 1

where q is the number of rounds. For example DES and AES are multi-round block ciphers
and A5/3 [1] is an example of a stream cipher which can be seen as mode of operation of the
block cipher KASUMI [2]. We apply q-stage pipeline strategies to deal with q-different chains
in parallel within a processor as follows (this idea has been earlier used in [81] and [99]). In
the architecture of a processor unit (Figure 6.4), the PUnit is replaced by PUnitRound (the
description of PUnitRound is given below). For each table, the SPG unit generates q start
points initially.

6.3. Precomputation Stage 67

Description of PUnitRound: Figure 6.6 describes the PUnitRound. We use q+1 counters
SPC1, SPC2, . . . , SPCq, C1 of r1-bit each. Initially, the SPG generates q start points. At
each time, the start point in register SPRi will be copied into the next register SPRi+1 to
keep track of it, since after getting a DP, we need to get the corresponding start point to
return. A pipelining strategy is applied in the execution of the round function and whenever
a DP is encountered, the processor outputs the DP and the corresponding start point which
is available at the register SPRq+1. The following are synchronized operations:

• Copying SPCi to SPCi+1, SPRi to SPRi+1 and R2i to R2i+1 for i = 1, 2, . . . , q − 1.

• Copying SPCq to C1, SPRq to SPRq+1 and R2q to R3.

• Copying C1/“0” to SPC1, SPRq+1 to SPR1 and R5 to R21.

6.3.2 Sorting Phase

We do not describe details of sorting hardware but discuss the various issues that need to
be considered. The sorting hardware is designed in such a way that the sorting and the
chain computation should complete simultaneously. In the chain computation phase, for a
table with size m× t, the total f invocations required is mt whereas the sorting phase could
be done in m logm comparison using a single processor and the sorting should be in-place.
If we have t processors available at the chain computation phase, then total number of f
invocations will be reduced from mt to m by running the processors in parallel. But for
significantly large t, t processors may be expensive. Also one f invocation takes more time
than one comparison operation for sorting. So sorting with a single processor will not take
more time than chain computation. But the chain computation requires memory write which
is done in parallel and sorting requires both memory read and write. Hence depending on
the memory speed one may have to perform parallel sorting (including memory read and
write) so that the sorting and the chain computation phase complete simultaneously.
Note that, at the sorting phase if there is a collision (i.e., common DP in different chains),
then we randomly select one chain to store and remove others, but it is desirable to select
the maximum length chain for getting more coverage. In our design we are not storing
the individual chain length in the table, so we cannot take the maximum length chain for
the collision. Also since the sorting phase starts after completion of the chain computation
phase for a table, we may need to remove some of the chains at the sorting phase due to
the collision. Thus to get a constant coverage, more chains need to be computed in the
chain precompuation phase. On the whole, our design is simpler and requires less amount
of memory since we do not take the extra overhead of storing individual chain length.

6.4. Online Search 68

MUXMUX MUXMUXMUXMUX

0 0

RF1

SPC1
s

SPR
 1

R21
s

r
1

DP?

p s

R3 R4

R5

s s

s

SPRq

s
SPR2

RF

s

RF

s

RFq
s

R

R
s

22 s

s

...

s

2

q−1

2q

SPC2

r

s

s

. .
 .

. .
 .

.

.

C1

r
1

SC1

SPC

+1

1

r
1

r1

r
1

. .
 .

. .
 .

. .
 .

.

q

Out1

Out4

Out

Out2

3

s

In1 In2

SPRq+1

ss

Figure 6.6: Architecture of PunitRound. i/p : In1, In2; o/p : Out1, Out2, Out3, Out4.

6.4 Online Search

The online stage consists of two phases – matching and find key. In the matching phase,
table lookup is performed when a DP is encountered during an iteration (execution of the
chain starting with the given value y). If the encountered DP is not in the table, then we
will not be able to find the key by iterating further and can skip the current search in the
rest of this table for that given value y. To search the key in the ith table, we need to execute
the following chain.

y
φi−→ ki+0

f
−→

φi−→ ki+1
f
−→

φi−→ ki+2 → . . .→ ki+t−1
f
−→

φi−→ ki+t.

6.4. Online Search 69

After each iteration (f application + masking (φi)) DP is checked and if found we stop the
chain.

Suppose D points y1, . . . , yD are available at the online stage and we have to find the
preimage of any one of these points where yi, i = 1, 2, . . . , D are viewed as unrelated ran-
dom points. This enables us to perform independent search for different data points. Sup-
pose we have processors P1, P2, . . . , Pn which are dedicated to perform the f invocation
and Q1, Q2, . . .Qk are I/O processors to perform the table lookups. We now describe the
matching phase architecture for the following cases depending on the value of D.

6.4.1 For Many Data Points

Let there be sufficient amount of data available to the attacker. We partition the data points
into n separate data blocks DB1, DB2, . . . , DBn with z data points in each. Then D = z×n.
We apply the search technique for all the data within a single table and after completion of
the search for all data points we move to the next table. Since table load is expensive, we
complete the search on one table before moving onto the next table.

SC

S
C
H
E
D
U
L
E
R

DB1

DBn

RB1

 RBn

P1

Pn

R

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

L

s

s

s

s

new table

Table. .
 .

. .

3s 3s

.

. .
 .

. .
 .

. .

B

move
 table

n

Q 1

1(mask, y’ , DP)

 (mask, y’, SP)

(mask, y’, SP)

Q k

SCHEDULER 2

Output memory block
 (OMB)

Figure 6.7: Architecture for the matching phase for a single table when D is large. i/p : Data points; o/p : OMB.

Figure 6.7 illustrates the architecture to perform the parallel searching for a single table and
for all data points. The processor Pi stores a data point from DBi into its internal register

6.4. Online Search 70

DR and the mask value corresponding to the table (coming from L) in the register MR (see
Figure 6.8 that describes a P -processor). The counters PC1 keeps track of the number of
data points already covered. The P -processors and Q-processors are connected through a
common buffer queue B and a scheduler SCHEDULER1. To search in a table, the processors
P1, P2, . . . Pn are assigned to perform the DP search technique for different data in parallel
where the data coming from its data block through the read block unit. So these processors
are essentially executing n different chains corresponding to n different data in parallel. The
table lookup is needed whenever a DP is encountered during the execution of the chain while
searching the key in a table.

from DB
Input

y/

MR

DR
 PUnit

Out 3

Out
2

 T
SC2

r

PC

3

1

Input from L

signal to RB

Output to R

new table

Out4
Out1

DP
psig

mask

Figure 6.8: Architecture of a p-processor in the matching phase architecture when D is large. i/p : new table signal, y,
function mask; o/p : mask, y′, DP, psig, load signal to RB, completion signal to R.

After encountering a DP during the execution of the chain, the corresponding processor
generates a signal psig. It then passes the tuple (mask, y′, DP) to B and a load signal where
“mask” is generated by LFSR L and y′ = masking(y). The processor also passes a signal to
RB to read the next data point from data block. After this, the processor starts executing

6.4. Online Search 71

the chain for the next data. In this way, each P -processors keeps on executing until it finishes
the search for all z data points. After completion it sends a completion signal to the register
R. The processors wait until it receives the new table signal. The job of the SCHEDULER1

is to check the buffer queue. If there is any tuple in the buffer queue then it searches for
a free I/O processor and if there is any free I/O processor, it assigns the DP into the (the
ordering is Q1, Q2, . . . , Qk circularly) free I/O processor for the table lookups. The queue
size is to be chosen such that it will not be full until there is a free I/O processor.

During the table lookup, if a match occurs then the corresponding Q-processor passes the
tuple (mask, y′, SP) (SP is the start point for the data y) to the SCHEDULER2 to store the
tuple into OMB to get the key. After receiving a completion signal from all P -processors the
SCHEDULER1 checks whether B is empty and all the Q-processors have finished the table
lookups. After completion of all table lookups, a new table will be loaded and the algorithm
continues.

Analysis: Let 2−p be the probability of a point being a DP. Hence, we can expect one DP
in a random collection of 2p points. In our parallel execution, n processors are executing in
parallel and generating n random points each time. Assuming n < 2p, after each ⌊2

p

n
⌋ = t1

(say) iterations we can expect one DP. At each of time T = it1 for i = 1, 2, . . ., we can expect
a DP. The encountered DP will be assigned to the I/O processors for table lookups. Thus at
time T = it1, the corresponding DP will be assigned to the processor Qi for i = 1, 2, . . . , k.
The next DP will be encountered (expected) at time T = (k + 1)t1, but at that time the
I/O processor Q1 may not be free, since the table lookup time (γ) is quite significant. Let
us consider the following cases.
Case 1: When kt1 = γ, i.e., k2p = γn then at time T = (k + 1)t1, the I/O processor
Q1 will be free (since the time difference between the present time and the time when the
processor Q1 was assigned the DP is (k + 1)t1 − t1 = kt1 = γ, the table lookup time). So
the corresponding DP will be assigned to Q1 for table lookup. In this way the next DP will
be assigned to Q2 and so on. So in this case all the processors will remain busy at all the
time. For a table with size m × t, the total number of f invocations will be reduced from
tD to ⌊ tD

n
⌋. Then the total runtime for a single table is tD

n
+ γ. Hence in this case the total

number of f invocations is reduced by a factor of n and the effective number of table lookups
required is only one for a single table.
Case 2: When kt1 < γ, then we need to use the buffer queue. Note that the DPs are coming
at the following expected times:

T = t1, 2t1, 3t1, . . . , kt1, (k + 1)t1, . . .

So upto time kt1, we keep on assigning the DPs into the I/O processors. But after that the
next (circular ordering) I/O processor, i.e., Q1 will be free at time t1 + γ. Thus the next
generated DPs need to be stored into the waiting queue upto time T = (k +)t1, where is

6.4. Online Search 72

the integer such that, (k+ − 1)t1 < γ < (k+)t1. Thus the size of the buffer queue should
be for no delay so that all the processors will remain busy at all the time. Hence in this
case the total number of invocations of f is also reduced by a factor of n and the effective
number of table lookups required is . Hence, total runtime for a single table is tD

n
+ γ.

Case 3: When kt1 > γ, this case is similar to the case 1, except that in this case not all the
k I/O processors will be busy, some of the I/O processors will always be idle which is not
desirable. So this case is not suggested.
In Figure 6.7, k I/O processors are randomly accessing the table (memory block). Hence the
memory block needs to have multiple data and address bus to support this multiple access.
The table lookup time γ = δ logm where δ is the memory access time. Note that in the
above analysis, we have assumed that the Q-processors will have finished their table lookups
in the same ordering which may not be true. More than one match can occur at the same
time for the Q-processors and that is the reason we need to have SCHEDULER2.

P1

Pn

. .
 .

. .

. .
 .

. .

BUF1 BUF2

. .
 .

. .
 q1

qk
. .

 .
. .

. .
 .

. .

. .
 .

. .

 SCHEDULER

(mask, y’, SP)

(mask, y’, DP)

Table 1

Table k

3s

3s

OMB

Figure 6.9: Architecture for matching phase when D = 1.

6.4.2 For a Single Data Point

Suppose the attacker has a single data point at the online stage, i.e., D = 1. We perform
the parallel search strategy by grouping tables GT1 = {Table1, Table2, . . . , Tablen}, GT2 =
{Tablen+1, Tablen+2, . . . , Table2n}, . . . such that each group contains n tables. In Figure 6.9,
we describe the architecture where Pi’s are the processor units running in parallel to search
for DP for n tables from the same group in the increasing order of the table number. After
encountering a DP, the processor passes the quadruple (mask, y′, DP) to BUF1 and waits

6.5. Finding the Key 73

until the other processors finish their DP search for the same group. After completion of DP
search for all the tables in the group, BUF1 will be stored into BUF2 in increasing order
of table numbers and the P -processors start searching the DP for the next group of tables.
The processor Pi is similar to the processor which is used in the many data points case (see
Figure 6.8) expect the following. (1) Register DR will always contains the given data point.
(2) For each group of tables, the LFSR (L) will clock n times to get the corresponding mask
value for the tables and store it to the register MR for each table.

For table lookup, k Q-processors are connected to the first k position of BUF2. Parallel
table lookup is perform for the first k tables in the group and after completion of all these
k tables, we pop the first k tuples and push the next k tuples in the first k places of BUF2.
Then we load next k tables from the same group for table lookup. This technique can also
be used when D is small.

Analysis: We can expect one DP in a random collection of 2p points. In our parallel
execution, n processors are executing in parallel and generating n random points each time.
Hence after 2p time, the expected number of DPs is n which completes the f invocation for
a group of tables. Let T1 = 2p. The time required to complete table lookups for a group =
γn
k

since k Q-processor are running in parallel. Let T2 = γn
k

. Let us consider the following
cases.
Case 1: When T1 = T2, i.e., the total expected time required to complete f invocations is
same as the total time required to complete table lookups for a group. Then the following
will be done simultaneously: (1) ith group of tables, i.e., GTi completes the f invocation
stage and (2) (i− 1)th group of tables, i.e., GTi−1 has completed the table lookup stage.
There are total ⌊ r

n
⌋ group of tables. Hence the expected runtime required to complete the

matching phase in this case = total time required to complete f invocation stage for ⌊ r
n
⌋

group of tables + time required to complete the table lookup step for the last group (GT⌊ r
n
⌋)

of table = ⌊ r
n
⌋ × 2p + γn

k
=
(

⌊ r
n
⌋+ 1

)

2p.
Case 2: When T1 < T2, i.e., table lookup time dominates the total time. The total table
lookup time = r

n
× γn

k
= γt

k
, which is independent of n. Hence in this case we suggest a single

P -processor, i.e., n = 1.
Case 3: T1 > T2. After completion of table lookup for GTi−1, the Q-processor has to wait
until the P -processor completes the f invocation stage for GTi.

6.5 Finding the Key

After a match in table lookup step, we come to the corresponding start point and repeatedly
apply the function (f + masking) until it reaches masking(y). The previous value it visited

6.5. Finding the Key 74

is k or this might be a false alarm. See section 3.3.2 for details about the false alarm. Hence
to get the key from the given (mask, y′, SP), the following chain is executed.

SP
f
−→

masking
−→ k1 → . . .→ ki

f
−→ y

masking
−→ ki+1 → . . .→ ki+t−1

f
−→

masking
−→ DP. (1)

Figure 6.10 describes the architecture for parallel key find strategy where n processors
P1, P2, . . . , Pn are running in parallel taking input tuples from OMB.

S
C
H
E
D
U
L
E
R

STOP

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

RB1

RBn

P
1

P
n

OMB

false alarm

false alarm

Key

Key

(mask, y’, SP)

Figure 6.10: Architecture for parallel key find strategy

6.5.1 Description of a Processor

Figure 6.11 describes the P -processor in the parallel key find architecture. Each processor
takes the input (mask, y, SP) from the OMB and stores mask, y′, SP respectively into the
registers R8, R6 and R1. Then the processor executes chain (1). Every time it checks for
equality with y′ and stops if it finds the match and returns the previous point as the key. If
it finds no match after executing complete chain (length t), it returns a false alarm.

6.5.2 Analysis

Finding the key can require “substantial” time compared to finding a table match due to
false alarms. The number of false alarms can be as large as half the total number of f
required for online phase. However, table match requires memory access, whereas finding
the key does not.

6.5. Finding the Key 75

R2

R3 R4

f

MUX MUX

R5

s

s

s s

s

s

.

. . .

Key

Load

mask s

 R8

MUX MUX

0 0

. .

r1

C1

SC1

 false alarm

input from RB

3s

s s y SP
 R 1R6

s

. . .

+1

r
1

C3

r
1

(mask, y, SP)

signal to RB

key

Figure 6.11: P -processor in the parallel key find architecture

Chapter 7

On the Effectiveness of TMTO and
Exhaustive Search Attacks

7.1 Introduction

This chapter develops a cost model for analyzing the effectiveness of generic attacks. Our
main emphases is to show how such a cost model can be developed. (A general cost model
is given in Section 7.2.2.) The cost model is used to obtain estimates of the resistance of
different key sizes to generic attacks. Such resistance is quantified by two parameters: the
budget the adversary can afford and the duration for which security is required. To a certain
extent these are sensitive to available technology. In obtaining approximate estimates, we
assume the use of certain technology. Use of more advanced technology will change these
estimates. For example, we assume the use of DVDs whereas HD DVD and Blu-Ray (upto
50 Gybtes recordable) are currently arriving on the market. Also, to project the estimates
into the future we need to use Moore’s law to translate the cost model in Section 7.2.2.

Our cost model for a TMTO attack is based on the architecture in Chapter 6. We assume
that each processor is implemented using FPGA. Since the number of processors will be large
it will be more cost effective to use ASIC design. We leave the task of developing an ASIC
design based cost model as future work. Our cost analysis shows that 128-bit keys seem
secure for the possible future. In contrast, key sizes less than 96 bits do not seem to provide
comfortable security margins. The case of 80-bit key sizes can be of concern. The generic
attacks (either exhaustive search or TMTO) on 80-bit keys are within the reach of powerful
organizations. However, if the adversary’s budget is limited to a few ten thousand dollars,
then 80-bit keys may provide limited duration security against generic attacks.

76

7.2. Cost Analysis 77

7.2 Cost Analysis

Let f be the one-way function that we want to invert and N be the size of its domain. We
would like to perform a cost-time analysis of TMTO and exhaustive search attacks. To do
this, we need to identify the dominant components of both the attack time and the costs.
This is relatively easy to do for exhaustive search. The function f has to be applied on
every possible input in the domain. Hence, the dominant component of the time is the time
required to apply f a total of N times. For parallel implementation, this time is scaled down
by the number of processors used. The dominant cost component is the cost of implementing
the parallel f -invocation units (or processors). The cost should also include the manpower
cost, but this is harder to estimate.

A TMTO algorithm is more complex than exhaustive search and deriving an appropriate
cost model is more difficult. The precomputation phase of the TMTO algorithm has several
time components – time required to obtain the (start point, end point) pairs; memory access
time required to store these pairs into the table; and the time required to sort the tables. The
online time has two major components – time to obtain the end points; and the time for table
lookup. Similarly, the cost has several components – the cost of the parallel f -invocation
units; and the cost of storage media.

To a large extent, the appropriate choice of the cost model depends on the underlying
architecture used for the implementation. Below we provide a top level description of the
architecture described in Chapter 6. This top level view makes understanding of the cost
analysis easier.

Precomputation Phase: Let us consider the tasks performed in the precomputation
phase. At a top level this consists of the following two separate tasks for each table.

1. Compute the chains and write the (start point, end point) pairs to the table.

2. Sort the table.

3. Write the table into a DVD.

Let us call the first task, chain-computation, the second task sorting, and third task DVDwrite.
We take the following issues in consideration.

• Chain computation and sorting hardware should be designed so that they complete
simultaneously. In any case, sorting should not take more time than chain computation.

• Both chain computation and sorting phase will require memory writes. For the chain
computation stage, batching can be used to reduce the number of memory accesses.
Also chain computation and memory access can be pipelined to some extent.

7.2. Cost Analysis 78

• We use few blocks of high speed memory while keeping the actual tables into DVDs.
The completed table in a high speed memory will be written to a DVD and then the
high speed memory will be cycled back into fresh memory.

• If the DVD writing time is more than the time required for chain computation for a
table, then we use more than one DVD writers (running in parallel) to synchronize the
chain computation and DVD write.

In the Hellman+DP method, a total of r tables are to be prepared. Let us denote the tables
by T1, . . . , Tr. Consider the following algorithm.

1. Perform chain-computation for T1

2. do in parallel
perform chain-computation for T2

perform sorting for T1

3. for i = 3 to r do in parallel
perform chain-computation for Ti

perform sorting for Ti−1

initiate DVDwrite for Ti−2

4. end do
5. do in parallel

perform sorting for Tr

perform DVDwrite for Tr−1

6. perform DVDwrite for Tr

This algorithm pipelines the chain computation for Ti with the sorting of Ti−1 and DVD
writing for Ti−2. Under the reasonable assumption that the sorting time is at most the
chain computation time, the major time component is at most the time required for chain-
computation of r tables plus the time required to sort a table and write to DVD. The chain-
computation itself has two tasks – parallel f -invocations and writing to high speed memory.
These two tasks can also be pipelined as we discuss below.

Suppose n f -invocation units are available. Each table has a total of m (start point, end
point) pairs. These are divided into m/n blocks B1, . . . , Bm/n, where each block contains n
pairs. The n f -invocation units will be operating in parallel to produce one block.

1. Generate block B1

2. for i = 2 to m/n do in parallel
Generate block Bi

Write block Bi−1 to the table
3. end do
4. Write block Bm/n to the table

7.2. Cost Analysis 79

Producing each block Bi requires n × t f -invocations. We may assume that the time for
nt f -invocations is more than the time to write a block of n pairs to the table. Hence,
the dominant time is the time required to compute all the chains in a table, which is time
required for m× t f invocations.

Let us consider the time required to prepare all the tables. Using the above two algo-
rithms, the total time will essentially be mrt f -invocations done in parallel by n f -invocation
units. The cost has several components–cost of the f -invocation units; cost of input/output
(I/O) units to write the blocks Bi’s to the table; cost of storing r tables; and cost of the
sorting unit. The dominant cost components are the cost of the f -invocation units and the
cost of storage (memory).

On-Line Phase: There is a set of n f -invocation units, which produce DPs and write
them to a buffer. There is another set of q I/O processors, which read from this buffer and
perform lookup into the tables.

At a time, the q I/O processors are connected to q tables. Once lookup on q tables has
been completed, the tables are moved out and a new set of q tables are moved into place.
Thus the system operates as follows: Lookup on T1, . . . Tq are completed, then lookup on
Tq+1, . . . , T2q are completed and so on. Once a table is replaced, it is never loaded again for
this data set. Thus if we have D targets, then the lookup into table Ti for all these targets
are completed before Ti is replaced.

In the above scenario, the following two tasks are performed in parallel.

• Apply f -invocations to the D targets and write the final DPs to the buffer.

• Read from the buffer; perform lookup in the q tables; and then replace the tables.

With a suitable design and choice of the parameters q and n, we can make the assumption
that the above two tasks require approximately the same time. Under this assumption,
the total time required in the online phase can be taken to be the total time for all the f -
invocations. Further, in this architecture, the wiring cost is minimal and the dominant cost
is the cost of implementing the f -invocation units. The task of an I/O processor is relatively
simple and also we will have q to be much less than n. Hence, the cost of implementing q
I/O processors can be ignored with respect to the cost of implementing the n f -invocation
units.

We summarize the above discussion with respect to the cost and time measures.

Precomputation phase:

• Time: time required for rmt f -invocations;

7.2. Cost Analysis 80

• Cost: cost of implementing n parallel f -invocation units and cost of storing r
tables.

Online phase:

• Time: time required for rtD f -invocations;

• Cost: cost of implementing n parallel f -invocation units.

7.2.1 Approximate Cost Analysis

At CHES 2005, Good and Benaissa [50] proposed a new FPGA design for AES using Xylinx
Spartan-III (XC3S2000). The cost of a Xylinx Spartan-III FPGA device is around 12 USD
(see [81]). The speed of encryption of the design in [50] is 25Gbps=0.2 × 232 AES-128
encryption/sec. Under the assumption that the cost and time scale linearly as we move from
one processor to n processors, the total processor cost for n processor units is Hp = 12n USD
and the speed is n × 0.2 × 232 AES-128 encryptions/sec. Let Tsec be the precomputation
time in seconds. In Tsec time, the number of encryptions will be, Tsec × n× 0.2× 232.

For a general s-bit (s ≤ 128) cipher, attacking D = 2d online data points, the number of
encryptions required at the precomputation stage is 2s−d. We assume that for an s-bit cipher
with s ≤ 128, the throughput and chip area will remain the same as for the best AES-128
implementation. Hence, in Tsec time, the number of encryptions will be, Tsec × n× 0.2× 232

and we get,

Tsec × n× 0.2× 232 = 2s−d. (7.1)

Using Hp = 12n, we get TsecHp = 60× 2s−d−32, or

232TsecHpD = 60N. (7.2)

This gives a new type of trade-off involving precomputation time Tsec, processor cost Hp and
data D whereas usual trade-off curve involves online time (number of f invocations), data
and memory.

Memory Cost: We assume that one table will fit into one memory block. This simplifies
the table management and in particular the design of the sorting algorithm. The latest
cheap high density storage is DVD with storage capacity between 4 and 20 Gybtes. In the
near future, SONY will launch the paper disk with capacity of 100 Gybtes. At present, we
consider 4 Gybtes (= 4 × 230 bytes) DVD with cost around 1 USD. Since, for a table we
need 2sm

8
bytes storage, so 2sm

8
≤ 4× 230, or,

sm ≤ 234. (7.3)

7.2. Cost Analysis 81

DVD write time: At present, we consider the writing time for a 4 Gybtes DVD is 1min1

(≈ 26sec). The total number of f -invocations required for a single table is mt and the time
required for this is t1 = mt

n×0.2×232 . Let W1, . . .Wk be the DVD writers which are running in
parallel. At each of time T = it1 for i = 2, . . . r + 1, one table will be ready for DVD write.
At time T = (i+ 1)t1, the table Ti will be assigned to Wi for i = 1, 2, . . . , k. The next table
Tk+1 will be ready for DVD write at time T = (k + 2)t1. If we choose kt1 ≥ 26, then at
time T = (k + 2)t1, W1 will be free (since the time difference between the present time and
the time when W1 was assigned the table is (k + 2)t1 − 2t1 = kt1 ≥ 26 = DVD write time).
So the table Tk+1 will be assigned to W1 for DVD write. In this way the next table will be
assigned to W2 and so on. So in this case all the processors and DVD writers will remain
busy at all the time. Hence from the above discuss we have kt1 ≥ 26, or,

k ×
mt

n× 0.2× 232
≥ 26. (7.4)

or,

k ≥
n236

mt
. (7.5)

Note the there are r tables to be written into r DVDs and each DVD write takes 26 seconds.
The total time required for DVD write is r26

k
while k DVD writers are running in parallel.

This time must be less than or equal to the precomputation time, i.e., r26

k
≤ Tsec, or,

k ≥
r26

Tsec
. (7.6)

We take k = max
(

n236

mt
, r26

Tsec
, 1
)

. Then k satisfies both the inequalities (7.5) and (7.6). At
present, we consider the DVD writer cost is 100 USD each. The total DVD writer cost
is Hw = 100k USD. For r tables, memory cost is Hm = r USD and total hardware cost
C = Hp +Hm +Hw = (12n+ r + 100k) USD. Let us consider the following cases.
Case 1: D = 1 (d = 0). We choose the Hellman table parameters as: r = m = t =
N1/3 = 2s/3. The total number of f invocations required at the online stage = r× t and the
time required for this is τsec = r×t

n×0.2×232 , running n processors in parallel with the speed of
0.2× 232 encryptions/sec. Suppose we want to finish the precomputation within a day, then
Tsec = 216.5 (the number of seconds in one day). From Equation (7.1), we get, n = 5×2s−48.5.
For 1 year precomputation time, i.e., Tsec = 225 (the number of seconds in one year) we need
the number of processors, n = 5× 2s−57. In Table 7.1, we summarize some of the trade-offs
with different values of s. If Table 7.1 is used to asses the strength of a block cipher then
the considered block cipher should be used in CBC mode.

1For example writing speed of Samsung SH-W162 is 21.6MB/sec (16X).

7.2. Cost Analysis 82

Table 7.1: Trade-off for different values of s with D = 1 (r is the number of table, m is the number of rows
in each table, t is the number of columns in each table, Tsec is the preprocessing time in seconds, n is the
number of processors, Hp is the total cost for the processor in USD, Hm is the total memory cost in USD,
k is the number DVD writers, Hw is the total cost for DVD writer in USD and τsec is the runtime) .

s r m t Tsec n Hp Hm k Hw τsec
56 219 219 219 216.5 210 213.6 219 28.5 215 < 1
64 221 221 221 216.5 218 221.6 221 212 218.5 < 1
80 227 227 227 225 225 228.6 227 28 214.5 < 1
86 229 229 229 225 231 234.6 229 210 216.5 < 1
96 232 232 232 238.3 228 232 232 1 26.5 80
128 232 264 232 270.3 228 232 232 1 26.5 80

Case 2: D > 1. The memory cost increases with the number of tables. We consider the
following table parameters as in [25]: r = N1/3

D
= 2

s
3
−d and m = t = N1/3 = 2s/3. The total

number of f invocations required for online search = rtD and the time required for this
is τsec = r×t×D

n×0.2×232 , running n processors in parallel with speed of 0.2 × 232 encryption/sec.

From Equation (7.1) we get, n = 5×2s−d−32

Tsec
. Table 7.2 summarizes some of the trade-offs with

different values of s and d = s
4
. The rows of the tables were calculated by fixing some of the

parameters as mentioned below.

• Table 7.1 (d = 0)

–rows 1 and 2: Fix Tsec to be one day.

–rows 3 and 4: Fix Tsec to be one year.

–rows 5 and 6: Fix Hp = Hm = 232.

• Table 7.2 (d = s/4)

–rows 1, 2 and 3: Fix Tsec to be one day.

–rows 4 and 5: Fix Tsec to be one year.

–row 6: Fix Tsec to be one year and Hm = 232.

–row 7: Fix Hp = Hm = 232.

Discussion: From Tables 7.1 and 7.2, we conclude the following.

• 56-bit and 64-bit fs are completely insecure.

7.2. Cost Analysis 83

• For d = 0, with one year precomputation time and around 500M USD investment it
is possible to crack 80-bit f in online time less than one second. For multiple targets
(data) with d = s/4, attacking 80-bit becomes easier.

• For s = 96, and with a single data point, precomputation time is more than 4000
years. This is at a cost of around 1 billion USD. It is possible to bring down the
precomputation time to a few years by increasing the cost to around 1 trillion dollar.
Another problem is that the size of single table becomes large and barely fits in a single
storage unit (see the bound of Equation (7.3)). In the presence of multiple data of the
order of 224 (d = s/4), the attack becomes reasonable. Hence 96-bit f also does not
provide comfortable security.

• For s = 128, and with a single data point (d = 0), at least one of the parameters among
(Tsec, Hp, Hm) become infeasible. Also even with d = s/4 = 32, one of the above
parameters continues to remain infeasible. Increasing d beyond 32 is not practical.
Hence 128-bit can be considered to provide adequate security margin in the forseeable
future.

7.2.2 General Cost Model

For the general case, let us assume that C1 and C2 are the costs of one search unit and one
storage unit respectively and ρ, δ are the rate of encryption and size of one storage unit in
Gybtes respectively. Then Equation (7.1) becomes

Tsec × n× ρ = 2s−d (7.7)

and, Hp = C1n and Hm = C2r. Using Hp = C1n in Equation (7.7), we get Tsec ×Hp × ρ =
2s−dC1, or ρTsecHpD = C1N . Since for a table we need 2sm

8
bytes storage, so 2sm

8
≤ δ × 230,

or,

sm ≤ δ232. (7.8)

This constraint is required because we are fitting one table into one storage unit. Let ǫ be
the DVD (storage) writing time. Then Equation (7.4) becomes k × mt

n×ρ
≥ ǫ, or, k ≥ n×ρ×ǫ

m×t

and Equation (7.6) becomes k ≥ rǫ
Tsec

. Thus we take k = max
(

n×ρ×ǫ
m×t

, rǫ
Tsec

, 1
)

. Let C3 be the
cost of one DVD writer then Hw = kC3USD.

7.2.3 Cost of Exhaustive Search

Cost analysis of exhaustive search is the same as the cost analysis for TMTO precomputation
except the memory cost and DVD writer cost. Note that the processor cost Hp is required for

7.2. Cost Analysis 84

Table 7.2: Trade-offs for inverting a one-way function f : {0, 1}s → {0, 1}s for different values of s and
d = s

4
. Here r is the number of tables, m is the number of rows in each table, t is the number of columns in

each table, Tsec is the preprocessing time in seconds, n is the number of processors, Hp is the total cost for
the processors in USD, Hm is the total memory cost in USD, k is the number DVD writers, Hw is the total
cost for DVD writer in USD and τsec is the runtime.

s r m = t Tsec n Hp Hm k Hw τsec
80 26.7 226.7 216.5 214 217.6 26.7 1 26.5 845
86 26.7 228.6 216.5 218 221.6 26.7 1 26.5 776
96 28 232 216.5 226 229.6 28 1 26.5 320
96 28 232 225 217 220.6 28 1 26.5 217.3

128 211 243 225 241 244.6 211 1 26.5 215.3

128 232 232 225 241 244.6 232 213 219.5 225.3

128 232 232 238 228 232 232 1 26.5 238.3

both the exhaustive search and the TMTO precomputation. The factor Hm is additionally
required for TMTO. Hence the trade-off for exhaustive search is same as Equation (7.2), i.e.,

232THD = 60N (7.9)

where T denotes the time in seconds required for exhaustive search, H is the total processor
cost and D is the number of data points. The general equation is the following.

ρTHD = C1N. (7.10)

7.2.4 Rainbow Method

The rainbow method replaces t Hellman tables of size m × t each into a single rainbow
table with size m′ × t, where m′ = mt. Let us consider the case when s = 56 (DES). Then
N = 256. Taking m = t = N1/3, we get m′ = 236, i.e. sm′ = 56 × 236 > 236. This violates
the constraint (7.3) (sm′ ≤ 234). Hence a single large rainbow table has to be stored into
more than one memory block (the number of memory block will increase with the value of
s). Then the sorting algorithm becomes much more complicated since it has now to sort
the table which is split into different memory blocks. On the other hand, if we break the
large single rainbow table into several small mutually disjoint rainbow tables, the online
time increases by a factor of r, where r is the number of rainbow tables. In view of this,
the rainbow method is not a good choice for hardware implementation. On the other hand,
a hardware-software co-design approach can be adopted to handle the issue of large tables.
However, it is not clear that such an approach can improve over the Hellman + DP method.

7.3. Application to Stream Ciphers with IV 85

7.3 Application to Stream Ciphers with IV

Application of TMTO to stream ciphers with IV was analyzed in [57]. For an k-bit stream
cipher using an l-bit IV, consider the following (k + l)-bit one-way function f :

(k-bit key, l-bit IV) 7→ (k + l)-bit keystream prefix. (7.11)

As pointed out in [57], inverting this one-way function f will provide the secret key. Since
many IVs are used with the same key, and since IVs are public, one can apply multiple data
TMTO to f , using D publicly available IVs. It has been shown in [57], that if the IV length
is less than the key length, then the online time of TMTO is less than exhaustive key search.
However, the precomputation time becomes 2k+l which is more than exhaustive key search.
On the other hand, the importance of IV in a TMTO attack matters more than its length.
The effective length of IV is also crucial and has been pointed out in [57]. Let us consider
this point in more detail.

The usual requirement on IV is that it should be a nonce, i.e., no value should be
repeated. Thus, for example, one can fix a key and use the numbers 1, 2, . . . as IVs for
different messages. Suppose at most 2λ messages are encrypted before a key change. The
above appears to be a valid protocol for using stream cipher. The problem is that in this
approach, only the last λ bits of the IV ever change. If we put the (arbitrary) restriction
that at most 1000 messages are encrypted before a key change then λ ≈ 10.

Suppose for a particular key we have access to the keystream segment for about 32 = 25

messages. This gives D = 25. Since we know all the IVs, we can apply TMTO to a search
space of size N = 2k+10 with D = 25. The precomputation time is N/D = 2k+10/25 = 2k+5

and the online time then comes to around 22(k+5)/3. If k = 80, then the precomputation can
be completed in one year at a cost of 232 USD and the online time is around a minute.

We interpret this situation as indicating that to resist TMTO, it is not sufficient to have
IV length to be equal to key length. The protocol must ensure that the entire IV length is
actually used. One simple way of doing this can be to choose a random nonce as IV for the
first msg encrypted using a particular key and then use nonce + 1, nonce + 2, . . . as IVs for
subsequent msg.

7.3.1 GSM

Here we consider the security of GSM with respect to generic attack only. (A reviewer of
the thesis has pointed out that GSM has other serious weaknesses.) For the GSM mobile
phones [7], A5/3 stream cipher is used which is based on the iterated block cipher KASUMI.
The cipher A5/3 uses 64-bit key and 22-bit effective IV size (others bits of IV are fixed).

7.4. TMTO versus Exhaustive Search 86

Table 7.3: Trade-off of GSM for different values of D (r is the number of table, m is the number of rows in each table, t is
the number of columns in each table, Tsec is the preprocessing time in seconds, n is the number of processors, Hp is the total
cost for the processors in USD, Hm is the total memory cost in USD, k is the number DVD writers, Hw is the total cost for
DVD writer in USD and τsec is the runtime).

D r m = t Tsec n Hp Hm k Hw τsec
1 229 229 225 231 234.6 229 210 216.5 0.61
28 221 229 225 223 226.6 221 22 28.5 32
216 213 229 216.5 224 227.6 213 23 29.5 16
222 27 229 216.5 218 221.6 27 1 26.5 210

The following one-way function f from 86-bit to 86-bit has been considered in [57]:

(64-bit key, 22-bit effective IV) 7→ 86-bit keystream prefix. (7.12)

The size of the search space for exhaustive search attack is 264. From Table 7.1 (see row 2),
we have the time for exhaustive search attack which is same as the precomputation time for
TMTO to be 216.5 sec = 1 day with a 221 USD investment.

This is certainly doable and hence GSM mobile phone communications cannot be con-
sidered secure for more than a day. However, we can consider such communications to be
secure for a shorter duration such as an hour. For example, a stock order is placed over a
phone and the order is executed within an hour. Once the order is executed there is no need
for secrecy. Thus, it is enough to ensure secrecy from the point of the order being placed and
it being executed, which is at most an hour. If we consider only exhaustive search attacks,
then such communication over GSM phones appears to be secure. However, if we apply
TMTO to the search space of the function f defined in (7.12), then this might not be true.

The size of the search space f is N = 286. From Equation (7.1) we get, n = 5×286−d−32

Tsec

where 2d is the data points availible to the attacker. Table 7.3 summarizes some of the trade-
offs with different values of D where the table parameters are taken as: r = N1/3

D
= 2

s
3
−d

and m = t = N1/3 = 2s/3. From Table 7.3, we conclude that the A5/3 algorithm of GSM
provides inadequate security assurance.

7.4 TMTO versus Exhaustive Search

In this section, we provide a comparison between TMTO and exhaustive search. Note that
the size of the search space is same irrespective of whether we use TMTO or exhaustive
search. The availability of multiple data (targets) bring down both the precomputation and

7.4. TMTO versus Exhaustive Search 87

online time of TMTO. The same is true for exhaustive search which of course does not have
separate online and offline phases.

1. TMTO is a chosen plaintext attack which can be converted to weak known plaintext
or ciphertext only attack (see [56]). On the other hand, exhaustive search can be a
ciphertext only attack [3].

2. The TMTO precomputation phase is also an exhaustive search. However it additionally
requires the following,
– Memory is required to store the table(s).
– Memory access is needed to write the (start point, end point) pairs into the table.
– Sorting is performed on the table(s) to sort the (start point, end point) pairs in the
increasing order of the end points.

Possible advantages of TMTO over exhaustive search. Precomputation of TMTO is
a one-time activity. Once completed, the online stage is much faster than exhaustive search
for target available at different times. In case of exhaustive search, the entire attack has to
be repeated every time.

Rechannelising the memory cost of TMTO into processor cost for exhaustive search does
not significantly reduce the exhaustive search time. To justify this, we consider a TMTO
which can find the key in time τsec with precomputation time Tsec, processor cost Hp and
memory cost Hm. We also consider an exhaustive search attack which can find the key in
time T with the processor cost H = Hp +Hm. Then we will have the following three cases:

Case 1: If Hp > Hm, then H ≈ Hp. Equations (7.2) and (7.9) yield T = Tsec > τsec.

Case 2: If Hp ≈ Hm, then H ≈ 2Hp. Equations (7.2) and (7.9) yield T = 1
2
Tsec > τsec.

Case 3: If Hp < Hm, then H ≈ Hm. This case occurs only when the key size is small. For
instant consider s = 56. Then from Table 7.1, we see that Hp = 213.6 and Hm = 219.
So H ≈ 219 and from Equation (7.9), we get T = 480 sec > 0.31 =τsec

The above three cases show that the exhaustive search time will be more than the online
search time for TMTO. Hence, transferring the cost of memory to the processor and per-
forming only exhaustive search does not bring down search time to make it comparable to
online phase of TMTO.

Chapter 8

Concluding Remarks

Our contribution is in analyzing TMTO attacks, application of LFSRs in TMTO attacks
and hardware design for TMTO attack. This work can be broadly classified into three parts.
The first part (Chapter 4) consists of a unified approach to the analysis of TMTO method
in the presence of multiple data. The article [24] falls in this category. The second part of
the thesis (Chapters 5 and Appendix) is devoted to the application of LFSR sequences in
cryptologic algorithms. This covers our articles [72, 73]. Finally, the third part of the thesis
(Chapters 6 and 7) provides a detailed architecture for implementing TMTO attack and the
effectiveness of TMTO and exhaustive search attacks. We include articles [74, 75] in these
chapters.

Possible Future Work: Chapter 4 identifies new single table attacks. It might be inter-
esting to look for practical situations where such attacks are applicable.

An LFSR based approach to the function generation and the start point generation is
outlined in Chapter 5. The discussion is with respect to the rainbow attack, though it is clear
that the same discussion also holds for the Hellman + DP attack. In fact, the architecture
in Chapter 6 adopts the LFSR based approach.

The main future work is to validate the different hardware architectures through a hard-
ware synthesis tool. Such a simulation will provide estimates of the number of gates, the
clock frequency, routing costs, power consumption, mean time between failures and other
relevant parameters. This may lead to possible alterations of the design as well as provide a
better understanding of different implementation issues. Not having the relevant resources
we have not been able to take up this work. Finally, we would like to say that we will be very
satisfied if, in the future, it is possible to build (either by us or by others) a cryptanalytic
machine based on our ideas.

88

Bibliography

[1] ETSI/SAGE. Specification of the A5/3 Encryption Algorithms for GSM and EDGE, and
the GEA3 Encryption Algorithm for GPRS, Document 1: A5/3 and GEA 3 Specifica-
tions, ETSI/SAGE, May 2002.

[2] 3rd Generation Partnership Program. 3GPP home page. http://www.3gpp.org/

[3] Electronics Frontier Foundation. Cracking DES, O’Reilly and Associates, 1998.

[4] ECRYPT. Call for stream cipher primitives. Version 1.2, Feb. 2004.
http://www.ecrypt.eu.org/stream/

[5] National Bureau of Standards. Data Encryption Standard, U.S. Department of Com-
merce, FIPS pub. 46, 1977.

[6] National Institute of Standards and Technology (2001). Advanced Encryption Standard.
Federal Information Processing Standard, FIPS-197.

[7] 3GPP TS 55.215 V6.2.0 (2003-09), A5/3 and GEA3 Specifications. Available at
http://www.gsmworld.com

[8] Consortium for Efficient Embedded Security. Efficient Embedded Security Standards
(EESS) #1. Version 2.0, June 2003. Available at
http://www.ceesstandards.org/

[9] RainbowCrack: General Propose Implementation of Rainbow Method.
http://www.antsight.com/zsl/rainbowcrack/.

[10] H. R. Amirazizi and M. E. Hellman. “Time-Memory-Processor Trade-offs”. IEEE
Transactions on Information Theory, vol. 34, no. 3, pp. 505-512, 1988.

[11] G. Avoine, P. Junod and P. Oechslin. “Time-Memory Trade-Offs: False Alarm Detection
Using Checkpoints”. Proceedings of Indocrypt 2005, LNCS 3797, pp. 183-196, 2005.

89

BIBLIOGRAPHY 90

[12] S. H. Babbage. “Improved Exhaustive Search Attacks on Stream Ciphers”. European
Convention on Security and Detection, IEE Conference publication, no. 408, pp. 161-166,
IEE, 1995.

[13] E. Barkan, E. Biham and N. Keller. “Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication”. Proceedings of Crypto 2003, LNCS 2729, pp. 600-616, 2003.

[14] E. Barkan, E. Biham and A. Shamir. “Rigorous Bounds on Cryptanalytic Time/Memory
Tradeoffs”. Proceedings of Crypto 2006, LNCS 4117, pp. 1-21 , 2006.

[15] K. Batcher. “Sorting Networks and Their Applications”. Proceedings of SJCC’68, pp.
307-314, 1968.

[16] D. J. Bernstein. “Understanding Brute Force”.
http://cr.yp.to/papers.html#bruteforce, 2005.

[17] E. Biham. “How to Decrypt or Even Substitute DES-Encrypted Messages in 228 Steps”.
Information Processing Letters, vol. 84, pp. 117-124, 2002.

[18] E. Biham. “New Types of Cryptanalytic Attacks Using Related Keys”. Journal of
Cryptology, vol. 7, no. 4, pp. 229-246, 1994.

[19] E. Biham, A. Biryukov, and A. Shamir. “Cryptanalysis of Skipjack Reduced to 31
Rounds using Impossible Differentials”. Proceedings of Eurocrypt 1999, LNCS 1592, pp.
12-23, 1999.

[20] E. Biham, A. Biryukov and A. Shamir. “Miss in the Middle Attacks on IDEA and
Khufu”. Proceedings FSE 1999, LNCS 1636, pp. 124-138, 1999.

[21] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard,
Springer Verlag, 1993.

[22] A. Biryukov. “Block Cipher and Stream Cipher: The State of the Art”. Cryptology
ePrint Archive, Report 2004/207, http://eprint.iacr.org/2005/207, 30 Jun 2004.

[23] A. Biryukov. “Some Thoughts on Time-Memory-Data Tradeoffs”. Cryptology ePrint
Archive, Report 2005/207, http://eprint.iacr.org/2005/207, 30 June, 2005.

[24] A. Biryukov, S. Mukhopadhyay and P. Sarkar. “Improved Time-Memory Trade-offs
with Multiple Data”. Proceedings of SAC 2005, LNCS 3897, pp. 110-127, 2006.

[25] A. Biryukov and A. Shamir. “Cyptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers”. Proceedings of Asiacrypt 2000, LNCS 1976, pp. 1-13, 2000.

BIBLIOGRAPHY 91

[26] A. Biryukov and A. Shamir and D. Wagner. “Real Time Cryptanalsis of A5/1 on a
PC”. Proceedings of FSE 2000, LNCS 1978, pp. 1-18, 2000.

[27] A. Biryukov and D. Wagner. “Slide Attacks”. Proceedings FSE 1999, LNCS 1636, pp.
245-259, 1999.

[28] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen and O. Scavenius. “Rabbit:
A New High-Performance Stream Cipher”. Proceedings of FSE 2003, LNCS 2887, pp.
307-329, 2000.

[29] J. Borst. “Block Ciphers: Design, Analysis and Side-Channel Analysis”. Doctoral
dissertation, K.U.Leuven, September 2001.

[30] J. Borst, B. Preneel and J. Vandewalle. “On the Time-Memory Tradeoffs Between
Exhaustive Key Search and Table Precomputing”. Proceedings of the 19th Symposium
on Information Theory in the Benelux, WIC, pp. 111-118, 1998.

[31] J. Borst, B. Preneel and J. Vandewalle. “A Time-Memory Tradeoff using Distinguished
Points”. Technical report ESAT-COSIC Report 98-1, Department of Electrical Engineer-
ing, Katholieke Universiteit Leuven, 2001.

[32] J. Borst, B. Preneel and J. Vandewalle. “Linear Cryptanalysis of RC5 and RC6”.
Proceedings of FSE 1999, LNCS 1636, pp. 16-30, 1999.

[33] S. Burman and P. Sarkar. “An Efficient Algorithm for Software Generation of Linear Bi-
nary Recurrences”. Applicable Algebra in Engineering, Communication and Computing,
vol. 15, Issue 3/4, December 2004.

[34] S. Contini, R. Rivest, M. Robshaw and Y. Yin. “Improved Analysis of Some Simplified
Variants of RC6”. Proceedings FSE 1999, LNCS 1636, pp. 1-15, 1999.

[35] D. Coppersmith, H. Krawczyk and Y. Mansour. “The Shrinking Generator”. Proceed-
ings of Crypto 1993, LNCS 773, pp. 22-39, 1993.

[36] N. Courtois. “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”. Pro-
ceedings of Crypto 2003, LNCS 2729, pp. 176-194, 2003.

[37] N. Courtois and W. Meier. “Algebraic Attacks on Stream Ciphers with Linear Feed-
back”. Proceedings of Eurocrypt 2003, LNCS 2656, pp. 345-359, 2003.

[38] C. De Cannière, J. Lano, and B. Preneel. “Comment on the Rediscovery of Time
Memory Data Tradeoffs”. Available as a link on the ECRYPT Call for Stream Cipher
Primitives [4] page version 1.3, April 2005.

BIBLIOGRAPHY 92

[39] D. E. Denning. Cryptography and data security. Addison-Wesley, 1982.

[40] Y. Desmedt. “An Exhaustive Key Search Machine Breaking One Million DES Keys”.
Presented at Eurocrypt 1987. See Chapter 9 of [3].

[41] W. Diffie and M. Hellman. “Exhaustive Cryptanalysis of the NBS Data Encryption
Standard”. Computer, vol. 10, no. 6, pp. 74-84, June 1977.

[42] W. Diffie and M. Hellman. “Privacy and Authentication: An Introduction to Cryptog-
raphy”. Proceedings of the IEEE, vol. 67, pp. 397-427, 1979.

[43] H. Eberle. “A High-Speed DES Implementation for Network Applications”. Proceedings
of Crypto 1992, LNCS 740 , pp 527-545, 1993.

[44] P. Ekdahl and T. Johansson. “A New Version of the Stream Cipher SNOW”. Proceed-
ings of SAC 2002, LNCS 2595, pp 47-61, 2002.

[45] A. Fiat and M. Naor. “Rigorous Time/Space Tradeoffs for Inverting Functions”. STOC
1991, pp. 534-541, 1991.

[46] J. Dj. Golić. “Cryptanalysis of Alleged A5 Stream Cipher”. Proceedings of Eurocrypt
1997, LNCS 1233, pp. 239–255, 1997.

[47] H. Gilbert, H. Handschuh, A. Joux and S. Vaudenay. “A Statistical Attack on RC6”.
Proceedings FSE 2000, LNCS 1978, pp. 64-74, 2000.

[48] I. Goldberg and D. Wagner. Architectural Considerations for Cryptanalytic Hardware.
Chapter 10 of [3], also available at
http://citeseer.ist.psu.edu/goldberg96architectural.html.

[49] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge, 2001.

[50] T. Good and M. Benaissa. “AES on FPGA from the Fastest to the Smallest”. Proceed-
ings of CHES 2005, LNCS 3659, pp 427-440, 2005.

[51] Z. Gutterman and D. Malkhi. “Hold your Sessions: An Attack on Java Session-id
Generation”. Proceedings of CT-RSA 2005, LNCS 3376, pp. 44-57, 2005.

[52] S. Halevi, D. Coppersmith and C. S. Jutla. “Scream: A Software-Efficient Stream
Cipher”. Proceedings of FSE 2002, LNCS 2365, pp 195-209, 2002.

[53] I. Hamer and P. Chow. “DES Cracking on the Transmogrifier 2a”. Proceedings of CHES
1999, LNCS 1717, pp 13-24, 1999.

BIBLIOGRAPHY 93

[54] H. Handschuh and H. Gilbert. “χ2 Cryptanalysis of the SEAL Encryption Algorithm”.
Proceedings FSE 1997, LNCS 1267, pp. 1-12, 1997.

[55] P. Hawkes and G. Rose. “Primitive Specification and Supporting Documentation for
SOBER-t32”. First Open NESSIE Workshop, submission to NESSIE, 2000.

[56] M. Hellman. “A Cryptanalytic Time-Memory Trade-off”. IEEE Transactions on Infor-
mation Theory, vol. 26, pp. 401-406, 1980.

[57] J. Hong and P. Sarkar. “New Applications of Time Memory Data Tradeoffs”. Proceed-
ings of Asiacrypt 2005, LNCS 3788, pp. 353-372, 2005.

[58] I.J. Kim and T. Matsumoto. “Achieving Higher Success Probability in Time-Memory
Trade-Off Cryptanalysis without Increasing Memory Size”. TIEICE: IEICE Transactions
on Communications/Electronics/Information and System, pp. 123-129, 1999.

[59] S. Kumar, C. Paar, J. Pelzl, Gerd Pfeiffer and Manfred Schimmler. “Breaking Ciphers
with COPACOBANA - A Cost-Optimized Parallel Code Breaker”. Proceedings of CHES
2006, LNCS 4249, pp. 101-118, 2006.

[60] K. Kusuda and T. Matsumoto. “Optimization of Time-Memory Trade-Off Cryptanalysis
and its Application to DES, FEAL-32 and Skipjack”. IEICE Transactions on Funda-
mentals, vol. E79-A, no. 1, pp. 35-48, 1996.

[61] X. Lai. “Higher Order Derivatives and Differential Cryptanalysis”. Communication and
Cryptography, Kluwer Academic Publishers, pp. 227-233, 1994.

[62] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applications. Cam-
bridge University Press, Cambridge, pp. 189-249, 1994 (revised edition).

[63] H. Lipmaa, P. Rogaway and D. Wagner. “Comments to NIST Concerning AES Modes
of Operations: CTR-Mode Encryption”.

[64] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. Proceedings of Eurocrypt
1993, LNCS 765, pp. 386- 397, 1993.

[65] M. Matsui. “The First Experimental Cryptanalysis of the Data Encryption Standard”.
Proceedings of Crypto 1994, LNCS 839, pp. 1-11, 1994.

[66] T. Matsumoto, I. Kim and T. Hara. “Methods to Reduce Time and Memory in Time-
Memory Trade-Off, FEAL-32 and Skipjack”. IEICE Technical Report, ISEC97-10, May
26, 1997.

BIBLIOGRAPHY 94

[67] D. McGrew. “Segmented Integer Counter Mode: Specification and Rationale”. Sub-
mitted to NIST Modes of Operation Workshop, October, 2000.

[68] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography,
CRC, Boca Raton, 2001.

[69] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. “Cracking Unix passwords
using FPGA platforms”. Proceedings of SHARCS’05, 2005.

[70] R. C. Merkle and M. E. Hellman. “Hiding Information and Signatures in Trapdoor
Function”. IEEE Transaction on Information Theory, no. 24, pp. 525-530, 1978.

[71] S. Mukhopadhyay. “Time/Memory Trade-Off: A Survey”. Journal of the Indian Sta-
tistical Association (JISA), Special Issue on Statistics in Cryptology, Volume 42, No. 2,
ISSN 0537-2585, December, 2004.

[72] S. Mukhopadhyay and P. Sarkar. “Application of LFSRs in Time/Memory Trade-Off
Cryptanalysis”. Proceedings of WISA 2005, LNCS 3786, pp. 25-37, 2006.

[73] S. Mukhopadhyay and P. Sarkar. “Application of LFSRs for Parallel Sequence Genera-
tion in Cryptologic Algorithms”. Proceedings of Applied Cryptography and Information
Security 2006 (ACIS’06) in conjunction with ICCSA 2006, LNCS 3982, pp. 426-435, 2006.

[74] S. Mukhopadhyay and P. Sarkar. “Hardware Architecture and Trade-offs for Generic
Inversion of One-way Functions”. 2006 IEEE International Symposium on Circuits and
Systems (ISCAS 2006), 2006. Full version available as (Indian Statistical Institute Tech-
nical Report No. ASD/2006/2).

[75] S. Mukhopadhyay and P. Sarkar. “On the Effectiveness of TMTO and Exhaustive
Search Attacks”. Proceedings of IWSEC 2006, LNCS 4266 , pp. 337-352, 2006.

[76] P. Oechslin. “Making a Faster Cryptanalytic Time-Memory Trade-Off”. Proceedings
of Crypto 2003, LNCS 2729, pp. 617-630, 2003.

[77] P.C. van Oorschot and M.J. Wiener. “Parallel Collision Search with Cryptanalytic
Applications”. Journal of Cryptology, vol. 12, no. 1, pp. 1-28, Winter 1999.

[78] S. C. Pohlig and M. E. Hellman. “An Improved Algorithm for Computing Logarithms
Over GF(p) and its Cryptographic significance”. IEEE Transactions on Information
Theory, vol. IT-24, pp. 106-110, 1978.

[79] J.J. Quisquater and J.P. Delescaille. “How Easy is Collision Search? Application to
DES”. Proceedings of Eurocrypt 1989, LNCS 434, pp 429-434, 1990.

BIBLIOGRAPHY 95

[80] J.J. Quisquater and Y. Desmedt, “Chinese Lotto as an Exhaustive Code-Breaking
Machine”. in Computer, vol. 24, issue 11 (November 1991), pp. 14-22, 1991.

[81] J.J. Quisquater and F.X. Standaert. “Exhaustive Key Search of the DES: Updates and
Refinements”. Presented at SHARCS’05, 2005.

[82] J.J. Quisquater, F.X. Standaert, G. Rouvroy, J.P. David and J.D. Legat. “A Cryptan-
alytic Time-Memory Tradeoff: First FPGA Implementation”. Proceedings of FPL 2002,
LNCS 2438, pp. 780-789, 2002.

[83] R. L. Rivest, M. J. B. Robshaw and Y. L. Yin. “RC6 as the AES”. AES Candidate
Conference 2000, pp. 337-342, 2000.

[84] G. G. Rose and P. Hawkes. “Turing: A Fast Stream Cipher”. Proceeding of FSE 2003,
LNCS 2887, pp 290-306, 2003.

[85] B. Roy and S. Mukhopadhyay. “Statistical Cryptanalysis On Block Cipher”. Journal
of the Indian Society for Probability and Statistics, Vol. 7, pp. 33-50, 2003.

[86] R. Rueppel. Stream Cipher. Contemporary cryptology: The science of information
integrity, G. Simmons, ed., IEEE Press, pp. 65-134, 1991.

[87] M.-J. O. Saarinen. “A Time-Memory Trade-off Attack Against LILI-128”. Proceedings
of FSE 2002, LNCS 2365, pp. 231-236, 2002.

[88] R. Schroeppel and A. Shamir. “A T = O(2(n/2)), S = O(2(n/4)) Algorithm for Certain
NP-Complete Problems”. SIAM Journal of Computing, vol. 10, no. 3, pp. 456-464, 1981.

[89] T. Shimoyama, M. Takenaka and T. Koshiba. “Multiple Linear Cryptanalysis of a
Reduced Round RC6”. Proceedings of FSE 2002, LNCS 2365, pp. 76-88, 2002.

[90] T. Shimoyama, M. Takeuchi and J. Hayakawa (2000). “Correlation Attack to the Block
Cipher RC5 and Simplified Variants of RC6”. 3rd AES Candidate Conference, 2000.

[91] S. Singh. The Code Book: The Secret History of Codes and Code-Breaking. Fourth
Estate, London, 1999.

[92] F.X. Standaert, G. Rouvroy, J.J. Quisquater and J.D. Legat. “A Time-Memory Tradeoff
Using Distinguished Points: New Analysis & FPGA Results”. Proceedings of CHES 2002,
LNCS 2523, pp. 593-609, 2002.

[93] D. Stinson. Cryptography: Theory and Practice, Second Edition, CRC press company,
2002.

BIBLIOGRAPHY 96

[94] E. Tromer. Special-purpose cryptanalytic devices – an annotated taxonomy,
http://www.wisdom.weizmann.ac.il/∼tromer/

[95] S. Vaudenay. “Decorrelation: A Theory for Block Cipher Security”. Journal of Cryp-
tology, vol. 16, no. 4, pp. 249-286, 2003.

[96] D. Wagner. “The Boomerang Attack”. Proceedings of FSE 1999, LNCS 1636, pp.
156-170, 1999.

[97] D. Watanabe, A. Biryukov and C. De Cannière “A Distinguishing Attack of SNOW 2.0
with Linear Masking Method”. Proceedings of SAC 2003, LNCS 3006, pp 222-233, 2003.

[98] M. J. Wiener. “The Full Cost of Cryptanalytic Attacks”. Journal of Cryptology, vol.
17, no. 2, pp. 105-124, 2004.

[99] M. J. Wiener. “Efficient DES Key Search”. Crypto 1993 (rump session presentation),
Santa Barbara, California, USA, August 1993. Reprint in Practical Cryptography for
Data Internetworks, William Stallings editor, IEEE Computer Society Press, pp. 31-79,
1996.

Appendix A

Other Applications of LFSRs for
Parallel Sequence Generation in
Cryptologic Algorithms

A.1 Introduction

In continuation of Chapter 5, we consider the problem of efficiently generating sequences
in hardware for use in certain other cryptographic algorithms. The conventional method of
doing this is to use a counter. We show that sequences generated by linear feedback shift
registers (LFSRs) can be tailored to suit the appropriate algorithms. As a result, we are
able to suggest improvements to the design of DES Cracker built by the Electronic Frontier
Foundation in 1998 and present an improved parallel hardware implementation of a variant
of the counter mode of operation of a block cipher. The material in this Chapter is based
on Sections 3, 4 and 6 of [73].

The first work to suggest the use of LFSRs in exhaustive key search was by Wiener [99].
In [99], Wiener described a detailed design for a special purpose hardware for cracking
DES. The suggestion for generating candidate keys was to use an LFSR having g(x) =
x56 + x7 + x4 + x2 + 1 as the primitive characteristic polynomial. The generation of keys
starting from a key k was to use the sequence k, kx mod g, kx2 mod g and so on. This idea
is also used in [53]. The idea of using parallel LFSR sequences was suggested by Goldberg
and Wagner [48] and was used by them in 1996 for an FPGA-based DES keysearch engine.

In Section A.4, we consider the possibility of using LFSRs for use in the counter mode
of operation of a block cipher. As pointed out by a reviewer of the thesis, this was earlier
suggested by McGrew [67]. Compared to [67], we provide more details on the possible use

97

A.2. Parallel Sequence Generation 98

of parallelism in this context.

We consider the following cryptologic algorithms which require the generation of a se-
quence of s-bit vectors for parallel implementation.

• Exhaustive search algorithms like the DES Cracker (described in Section 2.3.1) employ
a high degree of parallelism. Hence, the requirement is to generate in parallel a set of
pairwise disjoint sequences of s-bit vectors whose union is the set {0, 1}s.

• Counter Mode of Operation [63] is a mode of operation of a block cipher, which converts
the block cipher into an additive stream cipher. In this mode of operation, one requires
to generate a long non-repeating sequence of s-bit values.

The first one is cryptanalytic algorithm, while the second one is a cryptographic algorithm.
Implementations of the above two algorithms use a counter to generate the required se-
quences.

In this Chapter, we explore the possibility of using sequences obtained from linear feed-
back shift registers (LFSRs) for the hardware implementation of the above algorithms. In
each case, we show how LFSR sequences can be tailored for use in the respective algorithms.
This leads us to suggest changes to the DES Cracker which simplify the design as well as
reduce the time and to describe a variant of the classical counter mode of operation of a
block cipher.

A.2 Parallel Sequence Generation

In this section, we consider the problem for parallel implementation of TMTO attacks.
Suppose there are n processors available at the pre-computation phase. Then it is required
to generate parallel independent pseudo random sequences of s-bit start points in the pre-
computation phase, i.e., the problem is as follows.

• Generate n parallel and pairwise disjoint sequences of s-bit strings such that the union
of these n sequences is the set of all (non-zero) s-bit strings.

We provide a simple LFSR based strategy for solving the above problem. Let L = (s, p(x))
be an s-bit LFSR where p(x) is a primitive polynomial of degree s over GF(2). Let 2s− 1 =
τ × n + r = (τ + 1)r + τ(n − r) where 0 ≤ r < n. Let n1 = n − r, n2 = r and note that
τ = ⌊2

s−1
n
⌋. Let S0 be any nonzero s-bit string and for t ≥ 1, we define St = S0M

t, where M
is the state transition matrix of L. Further, let T0 = Sn1τ and for t ≥ 1, Tt = T0M

t = Tt−1M .

A.3. Application 1: The DES Cracker 99

Also let τ ′ = ⌈2
s−1
n
⌉. Define n sequences as follows.

S0 : S0, S1, . . . , Sτ−1; T0 : T0, T1, . . . , Tτ ′−1;
S1 : Sτ , Sτ+1, . . . , S2τ−1; T1 : Tτ ′, Tτ ′+1, . . . , T2τ ′−1;
...

...
Sn1−1 : S(n1−1)τ , . . . , Sn1×τ−1; Tn2−1 : T(n2−1)τ ′ , . . . , Tn2×τ ′−1.

(A.1)

The S sequences are of length τ , while the T sequences are of length τ ′ ≥ τ . Note that,
Tn2×τ−1 = T0M

n2×τ ′−1 = S0M
n1τMn2×τ ′−1 = S0M

n1τ+n2×τ ′−1 = S0M
2s−2 = S2s−2. Since

p(x) is primitive, the sequence S0, S1, . . . , Sn1×τ−1, T0, T1, . . . , Tn2×τ ′−1 consists of all non-
zero s-bit vectors. This ensures that the sequences S0,S1, . . . ,Sn1−1, T0, T1, . . . , Tn2−1 are
pairwise disjoint. Thus, we obtain a solution to the problem mentioned above. We now
consider the problem of actually generating the sequences in hardware.

Implementation: Let L0, . . . , Ln−1 be n implementations of the LFSR L. Hence, each
Li has p(x) as its connection polynomial. The initial conditions for L0, . . . , Ln1−1 are
S0, Sτ , . . . , S(n1−1)τ respectively and the initial conditions for Ln1

, . . . , Ln−1 are T0, Tτ ′, . . . ,
T(n2−1)τ ′ respectively. At any point of time, the current states of the Li’s provide the cur-
rent values of the S and the T sequences. All the Li’s operate in parallel, i.e., they are all
clocked together and hence the next states of the S and the T sequences are generated in
parallel. The total hardware cost for implementing the n LFSRs consists of n × s flip-flops
and n × (wt(p(x) − 1) 2-input XOR gates. With this minimal hardware cost, the parallel
generation of the S and the T sequences become possible.

Obtaining the initial conditions: We explain how to obtain the initial condition for the
n LFSRs. Let M1 = M τ and M2 = M τ+1 = M ×M1. Then Siτ = S0M

iτ = S(i−1)τ ×M
τ =

S(i−1)τ ×M1. Now T0 = S(n1−1)τ ×M1 and Tjτ ′ = T(j−1)τ ′ ×M2. Once we know M1 and M2

it is easy to find all the Siτ ’s and Tjτ ′’s. Computing M1 requires a matrix exponentiation
which as mentioned before requires 2 log τ ≤ 2s matrix multiplications. Obtaining M2 from
M1 requires one matrix multiplication. After M1 and M2 have been obtained, computing the
initial conditions require a total of n vector-matrix multiplications. These initial conditions
are obtained once for all in an offline phase. These are then pre-loaded into the LFSRs and
do not need to re-computed during the actual generation of the parallel sequences.

A.3 Application 1: The DES Cracker

The DES Cracker is described in Section 2.3.1. Here we briefly mention some of the salient
points. In the design of DES cracker (described in section 2.3.1), a computer drives 216

A.3. Application 1: The DES Cracker 100

search units. The search units are parallel hardware units while the computer provides a
central control software. The key space is divided into segments and each search unit searches
through one segment. For each candidate key, a search unit does the following. Let x be the
current candidate key. A search unit decrypts the first ciphertext using x and checks whether
the resulting plaintext is “interesting”. If yes, then it decrypts the second ciphertext using
x and checks if it is also interesting. (The search unit considers a plaintext to be interesting
if all its 8 bytes are ASCII.) If both the plaintexts are found to be interesting then the (key,
plaintext) pair is passed to a computer to take the final decision. The search unit then adds
one to x to obtain the next candidate key.

Recall that in DES, the message and cipher block size is 64 bits while the key size is 56
bits. In each search unit, a counter (and an adder) generates the candidate keys. A 32-bit
counter is used to count through the bottom 32 bits of the key. The reason for using a 32-bit
adder is that it is cheaper to implement than a 56-bit adder. The top 24 bits of the key are
loaded onto the search unit by the computer. After completing 232 keys with a fixed value
of the 24 bits, a search unit sends a signal to the computer. The computer stops the chip;
resets the key counter; puts a new value in the top 24 bits; and the search starts once more
with this new 24-bit value.

A.3.1 LFSR Based Solution

We describe an alternative LFSR based solution for candidate key generation in the DES
cracker. This solution is based on the parallel sequence generation described in Section A.2.
The number of parallel search units n = 216, while s = 56. Thus, τ = 240 − 1, τ ′ = 240,
n1 = 1 and n2 = 216 − 1.

Choose the LFSR L such that p(x) is the primitive pentanomial (x56 +x22 +x21 +x+1).
Choose S0 to be an arbitrary non-zero 56-bit value and compute the values T0, . . . , Tn2−1

using the method of Section A.2. The total number of 56×56 binary matrix multiplications
required is at most 2 × s + 1 = 113. Additionally, one has to compute a total of 216

multiplications of a 56-bit vector with a 56× 56 binary matrix. Even with a straightforward
software implementation, the entire computation can be completed within a few hours. The
initial condition of the LFSR in the first search unit is set to S0, while the initial conditions
for the LFSRs in the other search units are set to T0, T1, . . . , Tn2−1. Computing the initial
conditions can be considered to be part of the design stage activity.

In our design, each search unit of the DES cracker has its own implementation of L. This
implementation requires n flip-flops and only four 2-input XOR gates. Each search unit now
generates the candidate keys independently of the computer and also independently of each
other. To obtain the next candidate key, it simply clocks its local LFSR once and uses the
state of the LFSR as the candidate key. The first search unit does this for τ = 240− 1 steps

A.4. Application 2: Counter Mode of Operation 101

while the other search units do this for τ ′ = 240 steps. This ensures that all non-zero keys
are considered, with the all-zero key being considered separately.

A.3.2 Comparison to the Counter Based Solution

There are two ways in which the LFSR based solution improves over the counter based
solution.

• There are 216 search units. In the counter based solution, each search unit sends an
interrupt signal to the computer after completing an assigned key segment. Thus, the
computer needs to handle a total of 224 interrupts from all the search units. This may
cause some delay. In the LFSR based solution, candidate key generation is done solely
by the search unit without any involvement from the computer.

• In the counter method, each search unit requires a 32-bit adder for a total of 216 such
adders. In contrast, in the LFSR based solution, the circuitry for generating the next
candidate key consists of only 4 XOR gates per search unit.

A.4 Application 2: Counter Mode of Operation

In 1979, Diffie and Hellman [42] introduced the counter mode (CTR mode) of operation for a
block cipher. This mode actually turns a block cipher into an additive stream cipher. See [63]
for more details about CTR mode. Let Ex() be 2s-bit block cipher. The pseudo-random
sequence is produced as follows:

Ex(nonce||S0)||Ex(nonce||S1)||Ex(nonce||S2)|| . . . ,

where nonce is an s-bit value and S0, S1, . . . is a sequence of s-bit values. The security
requirements are the following.

1. The nonce is changed with each message such that the same (key,nonce) pair is never
repeated.

2. The sequence S0, S1, S2, . . . is a non-repeating sequence.

Usual implementations define Si = bins(i), where bins(i) is the s-bit representation of the
integer i. With this definition, the sequence Si can be implemented using a counter.

Hardware implementation of CTR mode can incorporate a high degree of parallel pro-
cessing. The inherent parallelism is that each 2s-bit block of pseudo-random bits can be

A.4. Application 2: Counter Mode of Operation 102

produced in parallel. Suppose we have n processors P0, P1, . . . , Pn−1 where each proces-
sor is capable of one block cipher encryption. Processor Pi encrypts the values nonce||Si,
nonce||Sn+i, nonce||S2n+i, If Si is defined to be bins(i), then there are two ways of gen-
erating the sequence.

Single adder: With a single adder, the algorithm proceeds as follows. At the start of
the jth round (j ≥ 1), the adder generates the values Sn(j−1), . . . , Snj−1. Then all the
processors operate in parallel and processor Pi encrypts nonce||Sn(j−1)+i.
Problem: The single adder introduces delay which affects the overall performance of
the parallel implementation.

n adders: In this case, each Pi has its own adder. Its local counter is initialized to Si and
after each block cipher invocation, the adder adds n to the local counter.
Problem: In this implementation, the cost of implementing n adders can take up chip
area which is better utilized otherwise.

A.4.1 LFSR Based Solution

Note that the only restriction on the sequence S0, S1, . . . is that it is non-repeating. Thus,
one can use a maximal length LFSR with a primitive connection polynomial to generate the
sequence. Again there are two approaches to the design both of which are better than the
corresponding approach based on using adders.

Single LFSR: In this case, a single LFSR is used which is initialized with a non-zero
s-bit value. For j ≥ 1, before the start of the jth round, the LFSR is clocked n times
to produce the values Sn(j−1), . . . , Snj−1. Pi then encrypts nonce||Sn(j−1)+i as before.
Clocking the LFSR n times introduces a delay of only n clocks into the system.

n LFSRs: We can avoid the delay of n clocks by using n different implementations of the
same LFSR initialized by suitable s-bit values to ensure that the sequences generated
by the implementations are pairwise disjoint. The description of how this can be done
is given in Section A.2. As discussed earlier, the cost of n separate implementations of
the same LFSR scales linearly with the value of n.

Let us consider n AES blocks which are running in parallel. We could use either a single
sequence generator to feed the n blocks or use n sequence generators to feed the n blocks.
In the second approach, n registers will be required, irrespective of whether a sequence
generator is implemented using a counter or an LFSR.

The design must specify the actual LFSR being used, and the required initial condition(s).
Since there are many maximal length LFSRs to choose from, this provides additional flexi-
bility to the designer.

A.4. Application 2: Counter Mode of Operation 103

A.4.2 Salsa20 Stream Cipher

Salsa20 is an additive stream cipher which has been proposed by Dan Bernstien as a can-
didate for the recent Ecrypt call for stream cipher primitives. The core design of Salsa20
consists of a hash function which is used in the counter mode to obtain a stream cipher.
Denote by Salsa20x() the Salsa20 hash function. Then the pseudo-random stream is defined
as follows.

Salsa20x(v, S0), Salsa20x(v, S1), Salsa20x(v, S2), . . .

where v is a 64-bit nonce and Si = bin64(i). For hardware implementation, we can possibly
generate the sequence S0, S1, . . . using an LFSR as described above. This defines a variant
of the Salsa20 stream cipher algorithm. We believe that this modification does not diminish
the security of Salsa20.

A.4.3 Discussion

For certain algorithms replacing counters by LFSRs will not provide substantial improve-
ments. For example, hardware implementation of Salsa20x() will require an adder since
addition operation is required by the Salsa20 algorithm itself. Hence, avoiding the adder
for generating the sequence S0, S1, S2, . . . might not provide substantial improvements. On
the other hand, let us consider AES. No adder is required for hardware implementation of
AES. Hence, using LFSR(s) to produce the sequence S0, S1, S2, . . . will ensure that no adder
is required for hardware implementation of the counter mode of operation. In this case, the
benefits of using LFSRs will be more pronounced.

