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Abstract

Key pre-distribution is an important area of research in Distributed Sensor Networks
(DSN). Some improved techniques over the existing schemes (employing combinatorial de-
signs) have been proposed in this thesis and detailed mathematical analysis of the schemes
has been presented.

At first, combinatorial design followed by randomized merging strategy is applied to key
pre-distribution in sensor nodes. Our main target is to get more than one pair of common
keys between any pair of nodes to provide a robust network in terms of security under
adversarial conditions where some nodes may get compromised. A transversal design is used
to construct a (v, b, r, k) configuration and then randomly selected blocks are merged to form
the sensor nodes. We have given detailed mathematical analysis of the number of nodes,
number of keys per node and the probability that a link gets affected if certain number
of nodes are compromised with supporting experimental data. The technique is tunable to
user requirements and it also compares favourably with state of the art design strategies. An
important feature of our design is the presence of a higher number of common keys between
any two nodes. Further we study the situation where properly chosen blocks are merged
to form sensor nodes such that there is no intra-node common key. We present a basic
heuristic for this approach and show that it provides slight improvement in terms of certain
parameters than our basic random merging strategy. Our idea presents a departure from the
usual combinatorial design in the sense that the designs are readily obtained according to
user requirements. Our merging strategy results into schemes that are not directly available
from combinatorial designs.

Next we studied the largest cliques of a DSN based on transversal designs and the prob-
abilistic extension of it (through merging). It is important to analyse the largest subset
of nodes in a DSN where each node is connected to every other node in that subset (i.e.,
the largest clique). This parameter (largest clique size) is important in terms of resiliency
and capability towards efficient distributed computing in a DSN. We concentrate on the
schemes where the key pre-distribution strategies are based on transversal design and study
the largest clique sizes. We show that merging of blocks to construct a node provides larger
clique sizes than considering a block itself as a node in a transversal design. We consider the
DSNs where the key pre-distribution mechanism evolves from combinatorial design. Such
schemes provide the advantage of very low complexity key exchange facility (only inverse
calculation in finite fields).





Next, we have proposed a general framework using combinatorial designs which will en-
able the participating devices to communicate securely among themselves with little memory
and power overhead. The scheme caters for different kinds of user requirements and allows
the designer to choose different combinatorial designs for different parts or levels of the net-
work. This general framework will find application in all wireless radio technologies, typically
WPANs (Wireless Personal Area Networks) and WLANs (Wireless Local Area Networks).
This is a hitherto unexplored technique in wireless technologies. Our proposal is perfectly
general and fits into networks of any size. Suppose there are several levels depending on
the user requirements. The root of the hierarchy tree is assumed to be a central server, S.
At the next level, x special nodes S1, S2, · · · , Sx are placed. The leaf level comprises of the
sub-networks NW1, NW2, · · · , NWx. One has the freedom to choose different combinatorial
designs for different parts of the network. Again, that depends on the specific requirements
of the user. For example, if the sub networks are required to form a totally connected net-
work graph, one can choose projective planes. If the sub-networks are very large in size and
total connectivity is not a requirement (i.e., if single/multi-hop connectivity is permissible),
transversal designs might be a reasonable choice.

Then we study the implementation of a distributed sensor network on a two dimensional
grid, where the communication is considered to be secured under the assumption that the
position of all the sensor nodes are fixed and the nodes are placed at the grid intersection
points. The combinatorial structure used for this purpose is the well known transversal
design. In this scenario, the number of keys in each node, the size of the area to be monitored,
the sensing/RF (Radio Frequency) radius and the robustness of the network are inter-related
and one can consider several design choices based on specific requirements. We present the
key pre-distribution strategy and the connectivity analysis of the network.

Next we discuss a novel technique for increasing the number of common keys between the
nodes of a sensor network deterministically with the help of combinatorial designs. A general
protocol is described for the key agreement. Elegant methods are described to achieve the
key agreement by calculating the common key(s) between two nodes when the underlying
combinatorial structures are generated from Difference Sets. The extension of this scheme
is also presented when the Kronecker Product Design is used.

Finally we pose some open problems and conclude the thesis.
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Chapter 1

Introduction

A wireless sensor network consists of a number of inexpensive sensor devices spread across
a geographical area. Each sensor is capable of wireless communication using the RF (Radio
Frequency). The sensor nodes also have some limited computing capability.

A few applications of sensor networks are as follows:

1. Military networks to detect and gain information about enemy movements, explosions
and other phenomena of interest.

2. Networks to detect and characterize Chemical, Biological, Radiological, Nuclear and
Explosive (CBRNE) attacks and material.

3. Networks to detect and monitor environmental changes in plains, forests, oceans, etc.

4. Wireless traffic networks to monitor vehicle traffic on highways or in congested parts
of a city.

5. Wireless surveillance networks for providing security in shopping malls, parking garages
and other facilities.

6. Wireless parking lot networks to determine which spots are occupied and which are
free.

The above list suggests that wireless sensor networks offer certain capabilities and en-
hancements in operational efficiency in civilian applications as well as assist in the national
effort to increase alertness to potential terrorist threats.

Two ways to classify wireless ad hoc sensor networks are whether or not the nodes are
individually addressable and whether the data in the network is aggregated. The sensor nodes
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in a parking lot network should be individually addressable, so that one can determine the
locations of all the free spaces. This application shows that it may be necessary to broadcast
a message to all the nodes in the network. If one wants to determine the temperature in
a corner of a room, then addressability may not be so important. Any node in the given
region can respond. The ability of the sensor network to aggregate the data collected can
greatly reduce the number of messages that need to be transmitted across the network. This
function of data fusion is discussed more below.

The basic goals of a wireless ad hoc sensor network generally depend upon the application,
but the following tasks are common to many networks:

1. Determine the value of some parameter at a given location: In an environmen-
tal network, one might want to know the temperature, atmospheric pressure, amount
of sunlight and the relative humidity at a number of locations. This example shows
that a given sensor node may be connected to different types of sensors, each with a
different sampling rate and range of allowed values.

2. Detect the occurrence of events of interest and estimate parameters of the
detected event or events: In the traffic sensor network, one would like to detect
a vehicle moving through an intersection and estimate the speed and direction of the
vehicle.

3. Classify a detected object: Is a vehicle in a traffic sensor network a car, a mini-van,
a light truck, a bus, etc.

4. Track an object: In a military sensor network, track an enemy tank as it moves
through the geographic area covered by the network.

In these four tasks, an important requirement of the sensor network is that the required
data be disseminated to the proper end users. In some cases, there are fairly strict time
requirements on this communication. For example, the detection of an intruder in a surveil-
lance network should be immediately communicated to the police so that action can be
taken.

Wireless ad hoc sensor network requirements include the following:

1. Large number of (mostly stationary) sensors: Aside from the deployment of
sensors on the ocean surface or the use of mobile, unmanned, robotic sensors in military
operations, most nodes in a smart sensor network are stationary. Networks of 10,000
or even 100,000 nodes are envisioned, so scalability is a major issue.
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2. Low energy use: Since in many applications the sensor nodes will be placed in a
remote area, service of a node may not be possible. In this case, the lifetime of a node
may be determined by the battery life, thereby requiring the minimization of energy
expenditure.

3. Network self-organization: Given the large number of nodes and their potential
placement in hostile locations, it is essential that the network be able to self-organize;
manual configuration is not feasible. Moreover, nodes may fail (either from lack of
energy or from physical destruction) and new nodes may join the network. Therefore,
the network must be able to periodically reconfigure itself so that it can continue to
function. Individual nodes may become disconnected from the rest of the network, but
a high degree of connectivity must be maintained.

4. Collaborative signal processing: Yet another factor that distinguishes these net-
works from MANETs is that the end goal is detection/estimation of some events of
interest and not just communications. To improve the detection/estimation perfor-
mance, it is often quite useful to fuse data from multiple sensors. This data fusion
requires the transmission of data and control messages and so it may put constraints
on the network architecture.

5. Querying ability: A user may want to query an individual node or a group of
nodes for information collected in the region. Depending on the amount of data fusion
performed, it may not be feasible to transmit a large amount of the data across the
network. Instead, various local sink nodes will collect the data from a given area and
create summary messages. A query may be directed to the sink node nearest to the
desired location.

Sensor types and system architecture: With the coming availability of low cost, short
range radios along with advances in wireless networking, it is expected that wireless sensor
networks will become commonly deployed. In these networks, each node may be equipped
with a variety of sensors, such as acoustic, seismic, infrared, still/motion video-camera, etc.
These nodes may be organized in clusters such that a locally occurring event can be detected
by most of, if not all, the nodes in a cluster. Each node may have sufficient processing power
to make a decision and it will be able to broadcast this decision to the other nodes in the
cluster. One node may act as the cluster master and it may also contain a longer range radio
using a protocol such as IEEE 802.11 or Bluetooth.
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1.1 Sensor Network and Secure Communication

The question of secure communication among the sensor nodes has become very important
nowadays. This is a non-trivial task since the sensor devices are severely constrained by
their computation and communication capabilities. As a result, public key algorithms are
usually not applicable in sensor networks. To minimise the amount of computation and
communication during the key agreement phase, one popular approach is to pre-distribute
the keys among the sensor nodes so that any two nodes willing to communicate with each
other may share one or more common keys. The subsequent communication may take place
through some fast stream cipher. Combinatorial design techniques help a lot in the pre-
distribution of keys. This thesis is an endeavour in that direction.

1.2 Thesis Plan

This thesis includes the work done in six papers [16, 17, 18, 19, 20, 21]. The contribution of
the thesis is discussed in the following subsection. A summary of the chapters appearing in
this thesis is presented in the next subsection.

1.2.1 Contribution

In this thesis, one of the objectives is to improve the key pre-distribution in a sensor network
with respect to two metrics, viz., the key sharing probability and resilience against node
capture, keeping all the other metrics unaltered. This is achieved by the use of combinatorial
designs. This will be found in chapters 4 and 8. The other objective is the development of
different design strategies of a sensor network. This is done in chapters 6 and 7. As another
important parameter of a sensor network, a study on largest clique size is also included in
the thesis (chapter 5).

In chapter 4, some hybrid techniques (probabilistic extension of combinatorial schemes)
are introduced which yielded better results in comparison with that of [65]. Key sharing
probability and resilience against node capture are shown to be better at the expense of
storing more number of keys per node. In chapter 5, the largest clique size resulting from
the network of [65] is calculated. This is a new idea altogether and as far as our knowledge
goes, this aspect has not been considered so far in the literature. Next, we discussed methods
of increasing the largest clique size of a network by our improved design strategy introduced
in the previous chapter. In the next chapter (chapter 6), we introduced the idea of designing a
hierarchical sensor network using different combinatorial designs tailored to the requirement
of the user. The application of different combinatorial designs in network planning is also a
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new idea and not available in the literature. This application facilitates key sharing between
different parts of the hierarchical network. In the next chapter (chapter 7), we study the
connectivity and coverage properties of a sensor network when the deployment is known
and a transversal design is used as a tool to construct the key pre-distribution scheme.
Detailed theoretical study has been made on the connectivity and coverage properties and
experimental results have been included. A design procedure of a sensor network satisfying
certain parameters is also discussed. This study may be useful in any practical application of
the sensor network. Though some studies on sensor networks with deployment knowledge was
made earlier, it is important to note that the cumulative effect of applying a combinatorial
design on a specific deployment configuration is one of its kind and is taken up over here. In
chapter 8, we have established a number of results. We have given key agreement protocols
when BIBDs are used as the underlying combinatorial design of the key pre-distribution
scheme. Next, “Kronecker Product” designs are used to blow up the design and it has been
observed that one obtains a (at most) three associate class PBIBD by taking the “Kronecker
Product” of two BIBDs. The application of this result is significant since it allows us to
create a very large network with desirable parameters. A clever protocol for key agreement
in this case is also devised. This kind of application of combinatorial designs is new and gives
deterministic way of designing large sensor networks with several common keys between any
two nodes and reasonably high resilience.

1.2.2 Summary

A summary of the chapters appearing in this thesis is given here.

Chapter 1 contains a brief introduction to sensor networks. Chapter 2 gives a detailed
survey on the existing works on sensor networks and key predistribution. Chapter 3 is on
the introduction and mathematical preliminaries and provides the background of the rest of
the thesis. Chapters 4, 5, 6, 7 and 8 contain the original contribution and finally chapter 9
outlines the open problems and the future works.

Chapter 4 is based on the papers [17, 18, 21]. In chapter 4, combinatorial design followed by
randomized merging strategy is applied to key pre-distribution in sensor nodes. A transversal
design is used to construct a (v, b, r, k) configuration and then randomly selected blocks are
merged to form the sensor nodes. We present detailed mathematical analysis of the number
of nodes, number of keys per node and the probability that a link gets affected if certain
number of nodes are compromised. The technique is tunable to user requirements and it
also compares favourably with state of the art design strategies. An important feature of our
design is the presence of more number of common keys between any two nodes. Further we
study the situation when properly chosen blocks are merged to form sensor nodes such that
there is no intra-node common key. We present a basic heuristic for this approach and show
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that it provides slight improvement in terms of certain parameters than our basic random
merging strategy.

Chapter 5 is based on the papers [16, 19]. It discusses the largest clique size of a sensor
network based on transversal designs and develops constructions to increase the clique size.
It is important to analyse the largest subset of nodes in a DSN (Distributed Sensor Network)
where each node is connected to every other node in that subset (i.e., the largest clique).
This parameter (largest clique size) is important in terms of resiliency and capability towards
efficient distributed computing in a DSN (Distributed Sensor Network). In this chapter, we
concentrate on the schemes where the key pre-distribution strategies are based on transversal
design and study the largest clique sizes. We show that merging of blocks to construct a
node provides larger clique sizes than considering a block itself as a node in a transversal
design.

Chapter 6 is based on the paper [20]. In chapter 6, we have proposed a general framework
using combinatorial designs which will enable the participating devices to communicate se-
curely among themselves with little memory and power overhead. The scheme caters for
different kinds of user requirements and allows the designer to choose different combinato-
rial designs for different parts or levels of the network. This general framework will find
application in all wireless radio technologies, typically WPANs and WLANs. This is a hith-
erto unexplored technique in wireless technologies. For example, if the sub networks are
required to form a totally connected network graph, one can choose projective planes. This
may be applicable in case of a smart home. If the subnetworks are very large in size and
total connectivity is not a requirement (i.e., if single/multi-hop connectivity is permissible),
transversal designs might be a reasonable choice.

In chapter 7, we study the implementation of a distributed sensor network on a two
dimensional grid, where the communication is considered to be secured. The combinatorial
structure used for this purpose is the well known transversal design. In this scenario, the
number of keys in each node, the size of the area to be monitored, the sensing/RF radius
and the robustness of the network are inter-related and one can consider several design
choices based on specific requirements. We present the key predistribution strategy and the
connectivity analysis of the network. Further we study the robustness of the network when
certain number of nodes are compromised by an adversary.

Chapter 8 discusses a novel technique for increasing the number of common keys between any
two nodes of a sensor network deterministically with the help of combinatorial designs. It is
also shown how to calculate the common key(s) between any two nodes when the underlying
combinatorial structures are generated from Difference Sets. The key agreement protocols
(based on this computation) are presented. The extension of this scheme is also presented
when the Kronecker Product Design is used.

Chapter 9 poses some open problems and concludes the thesis.
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Chapter 2

Sensor Networks and Key
Pre-distribution: A Survey

2.1 Introduction

Sensor network is a part of a family of networks called “ad hoc networks.” There is no rigid
definition of the terminology “ad hoc networks.” The two most popularly cited examples
of ad hoc networks are mobile ad hoc networks (MANETs) and sensor networks. Still it
is pointed out in [1] that sensor networks call for special attention because of the following
reasons:

1. The number of nodes in a sensor network is much more compared to an ad hoc network.

2. The deployment is dense.

3. The nodes are more likely to fail frequently.

4. The network topology keeps on changing.

5. Usually the nodes use a broadcast approach whereas the ad hoc networks use point-
to-point approach.

6. The nodes have constraints on power, memory and computational capacity.

7. Since the nodes are many in number, they often do not have global identification (ID).
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2.1.1 Communication in Sensor Networks

In a sensor network, the links are usually formed by radio, infrared or optical media, though
most of the current hardware is based on radio frequency. See [89] for an example of µAMPS
wireless sensor node. Two other examples of similar kind are described in [80, 101].

Since infrared communication is license-free and resistant to interference from electrical
devices, transceivers using infrared technology are cheaper.

Smart Dust motes [53] is an example of autonomous sensing, computing and communi-
cation system using the optical medium for transmission.

It may be noted that a “line of sight” between the sender and receiver is a requirement
for both infrared and optical technologies.

2.1.2 Network Models

There are usually two different kinds of Wireless Sensor Networks(WSN) viz., Hierarchical
Wireless Sensor Networks (HWSN) and Distributed Wireless Sensor Network (DWSN).

In a HWSN, the nodes are of three types: base stations, cluster heads and sensor nodes.
In fact, this is the hierarchical ordering among the nodes. Base stations are usually more
powerful, have more computational and memory capacity and serve as gateways to other
networks. Sometimes they are assumed to be tamper resistant, trusted and act as key
distribution centres. Sensor nodes are deployed around single or multiple hop neighbourhood
of the base stations. The cluster heads are special nodes, whose job is to collect and merge
the data obtained from the sensor nodes and forward it to base stations. The base station
has enough transmission power to reach all the nodes, but the converse is not true in general.
The data flow in a HWSN may be

1. network-wise (broadcast) from base stations to sensor nodes.

2. pair-wise (unicast) among sensor nodes.

3. group-wise (multicast) within a cluster of sensor nodes.

In a DWSN, there is no fixed infrastructure and network topology is not known prior to
deployment. Sensor nodes are usually randomly scattered all over the target area. Once they
are deployed, each sensor node scans its radio coverage area and finds out its neighbours.
Data flow in DWSN is similar to that of HWSN, with the difference that every node can
broadcast.
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2.2 Protocols and Restrictions

The protocol stack used by the sink and sensor nodes consists of the following: physical
layer, data link layer, network layer, transport layer and application layer. In this section,
we shall talk about some of the existing work in different layers of the protocol stack which
may serve as a summary of the current knowledge base of present day technologies.

We begin with some examples of data link layer applications/protocols. In contrast to
Bluetooth and MANETs, the transmission power and radio range of a sensor node is much
less. Node mobility and failure give rise to frequent changes in network topologies. The
bottom line is that the sensor networks must conserve power in order to have a prolonged
operational duration. That is why the existing MAC(Medium Access Control) protocols can
not be used without modifications.

Two versions of MACs have been proposed so far, viz., fixed allocation and random access
[92, 101].

In fact, SMACS protocol and EAR algorithm are discussed in [92].

In [101], a MAC scheme based on carrier sense multiple access (CSMA) is introduced
and in [89], a hybrid TDMA/FDMA-based centrally controlled MAC scheme is presented.

In [90], a dynamic power management scheme is proposed for wireless sensor networks
with five power-saving nodes. This is an example of a work on power saving modes of
operation.

In [89], an error control of transmission data is done using FEC (Forward Error Correc-
tion). They assumed frequency non selective, slow Rayleigh fading channel and convolutional
codes for FEC.

Next we mention some network layer protocols/applications. Routing in a sensor network
may be based on several approaches. Among them there are energy efficient routing like
maximum power available (PA) route, minimum energy (ME) route, minimum hop (MH)
route, maximum minimum PA node route etc. There may be data-centric routing also.
Interest dissemination is performed to assign the sensing tasks to the sensor nodes. Interest
dissemination may be done in two ways. In [52], the sinks broadcast the interest and in [45],
the sensor nodes broadcast an advertisement for the available data and wait for a request
from the interested nodes. This kind of routing calls for attribute-based naming as given in
[87]. [45] also discusses data aggregation calling it “data fusion.” In [44], data aggregation is
defined as a set of automated methods of combining the data that comes from many sensor
nodes into a set of meaningful information. A protocol is developed in [82] to compute
an energy-efficient sub-network called MECN(minimum energy communication network). A
new algorithm called SMECN (small MECN) is proposed in [66]. SMECN creates a sub-
graph of the sensor network that contains the minimum energy path. Both the protocols

9



follow the minimum-energy property.

Flooding is an example of an old technique used for routing in sensor networks. It
broadcasts data to all neighbour nodes regardless of whether they have received it previously
or not. It has several limitations such as [45]. Among them, implosion, overlap and resource
blindness are a few important ones.

A variant of flooding is called gossiping as discussed in [43]. A sensor node randomly
selects one of its neighbours to send the data and this process is repeated until the data
reaches the destination. Obviously it may incur a long propagation time.

In [45], the deficiency of classic flooding is overcome by negotiation and resource adap-
tation. In fact, they propose a family of adaptive protocols called Sensor Protocols for
Information via Negotiation (SPIN). It sends data to sensor nodes only if they are inter-
ested.

In [92], a set of algorithms that perform organisation, management and mobility manage-
ment operations in sensor networks are proposed. It is called sequential assignment routing.
It creates multiple trees where the root of each tree is one hop neighbour from the sink. It
selects a tree for data to be routed back to the sink according to the energy resources and
additive QoS metric.

Low-Energy Adaptive Clustering Hierarchy (LEACH) is a clustering-based protocol that
minimises energy dissipation in sensor networks [44].

The direct diffusion data dissemination paradigm is proposed in [52]. It sets up gradients
for data to flow from source to sink during interest dissemination.

In [87], three possible application layer protocols have been discussed, viz., Sensor Man-
agement Protocol (SMP), Task Advertisement and Data Advertisement Protocol (TADAP)
and Sensor Query and Data Dissemination Protocol (SQDDP). The descriptions of some of
the tasks that are expected to be performed by SMP are described in [87]. Also Sensor query
and tasking language (SQTL) is proposed in [87].

2.3 Security Consideration in Sensor Networks

Let us point out the fundamental difficulties in providing security to a sensor network.

1. One can not take the advantage of asymmetric cryptography since the sensor de-
vices have constraints in terms of computation, communication, memory and energy
resources. RSA algorithm or Diffie-Hellman key agreement protocol are difficult to
implement whereas the symmetric solutions like AES block cipher and HMAC-SHA-1
message authentication code are faster and easier to compute for the sensor nodes.
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2. The nodes may be physically captured. Usually one should not assume that the hard-
ware in each node is tamper-resistant. Compromised nodes may behave arbitrarily,
possibly in collusion with other compromised nodes.

3. Since communication is wireless in sensor networks, eavesdropping and injection of
malicious messages is easy.

4. The sensor network security protocols should be amenable to scalability. Usually the
network is often required to be scaled up to cater to several sensor nodes.

5. Lack of fixed infrastructure.

6. Unknown network topology prior to deployment.

2.4 Attack Models

2.4.1 Outsider Attacks

If the attacker is not an authorised participant of the network, it is called an outsider attack.
For example, a passive eavesdropper, packet spoofer or signal jammer may launch an outsider
attack. Also physical destruction of nodes (may be intentional, climatic or resulting from
depletion of energy sources) is a form of outsider attack. Benign node failure is to be
considered as a security problem since it is indistinguishable from an attack resulting into
disabling of a node.

2.4.2 Insider Attacks

Essentially an insider attack means the compromise of a sensor node. A compromised node
may run some malicious node to steal some secret from the network and/or disrupt the
normal functioning of the sensor network. To communicate with the sensor network, it has
a compatible radio. Moreover, it is an authorised participant of the network. If standard
encryption and authentication protocols are implemented in the network, the compromised
node has to have some valid secret keys (which enable it to join the secret and authenticated
communications). In the worst possible scenario, if the compromised node behaves in a
totally arbitrary manner, it is said to follow the Byzantine model [62].
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2.4.3 Central Trusted Authority in the Form of a Base Station

If the base station is assumed to be a trusted server that is never compromised, the problem of
key distribution finds a ready solution. The base station serves as the trusted intermediary
and distributes a key to each pair of nodes that need to communicate. However, for a
network of very large size, the nodes in the immediate vicinity of the base station will have
to continuously relay the key set up messages and very soon deplete the energy source. Also
the base station will have to set up n(n−1)

2
keys in the worst case and becomes inefficient in

case of large n.

2.5 Desiderata of a Secure Sensor Network Protocol

2.5.1 General Consideration

The basic idea is to make the network resistant to outsider attacks and resilient to insider
attacks (while maintaining a realistic notion of security).

The former may be achieved by standard cryptographic primitives and maintain some
redundancy in the network. The network protocols should be capable of identifying the
failed nodes in real time and update themselves according to the updated topology.

For the later, the ideal situation would have been to detect the compromised node and
revoke the keys contained therein. It is not always possible and perhaps the way out is to
design protocols resilient to node capture so that the performance of the network gracefully
degrades with the compromise of a small fraction of nodes.

Depending on the application and sensitivity of the collected data, the security level may
be relaxed or beefed up.

2.5.2 Specific Requirements

1. Authentication: It is usually in two forms namely source authentication and data
authentication. The verification of the origin of a message/packet is known as source
authentication and the condition that the data is unchanged during the transmission
is known as data authentication. Though authentication prevents outsider attacks like
injecting/spoofing of packets, but a compromised node can authenticate itself to the
network since it is in possession of valid secret keys.

2. Secrecy: Using standard cryptographic techniques like AES and shared secret keys
between the communicating nodes is not sufficient to maintain secrecy because an
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eavesdropper may analyse the network traffic and obtain some sensitive meta data.
Access control has to be exercised in order to protect the privacy of the collected
data. An insider attack may defeat this purpose since the data may be revealed or the
communication between two nodes may be eavesdropped by a compromised node.

3. Availability: Availability means the functioning of the devices for the entire lifetime.
Denial of Service (DoS) attacks result in a loss of availability. Both outsider and insider
attacks may cause non-availability.

4. Integrity of Service: In the application layer, the protocols may be required to provide
service integrity in the face of malfunctioning (compromised) nodes. As an example, the
data aggregation service should be able to filter out the erroneous readings provided by
the compromised nodes. The other example may be the time synchronisation protocol.
The implementation of this protocol in a trusted environment is provided in [33].

2.6 Solutions

1. Secrecy and authentication may be protected from outsider attacks (like packet spoof-
ing/modification and eavesdropping) using standard cryptographic techniques. Key
establishment and management and broadcast/multicast authentication are two such
solutions.

(a) Two sensor nodes can set up a secret and authenticated link though a shared
secret key. The problem of setting up the secret key between a pair of nodes is
known as the key establishment problem. There are various solutions available to
this problem. Among them, the most naive one is to use a single master key for the
entire network. The moment a single node is compromised, the entire network
goes haywire. At the other extreme, if one uses different keys for each pair of
nodes, it will be extremely secure. This scheme is not viable because each node
has to store several keys, which is not permissible in sensor nodes. This solution
does not scale well with the increase in the size of the network. The other solution
may be obtained using public key cryptography, though being computationally
intensive, it is not suitable for sensor networks even with today’s technology.
The public key solution is also susceptible to DoS attacks. The probabilistic key
pre-distribution has been discussed in [22, 31, 34, 67]. Other techniques of key
pre-distribution will be discussed in detail in the later part of this chapter.

(b) Many sensor network protocols use broadcast and multicast, one can not use
digital signatures for the verification of the messages since public key cryptog-
raphy is difficult in sensor networks. As a possible solution, in [76], the µTesla
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protocol has been proposed. A notion of asymmetry is introduced into symmet-
ric key cryptography by the use of one-way function key chains and delayed key
disclosures.

2. Availability may be disrupted through DoS attacks [102] and may take place in different
parts of the protocol stack.

(a) At the physical layer, jamming may be tried by propagating interfering RF sig-
nals. The other form of jamming may be by injection of irrelevant data or wastage
of battery power at the reception node. The solution to this problem is discussed
in [78], where frequency hopping and spread spectrum communication have been
suggested. The jamming may also take place in the link layer by inducing mali-
cious collisions or obtaining an unfair share of the radio resource. It is nothing
but a weakness of the MAC protocols and the solution is to design secure MAC
protocols as described in [102]. If the jamming is attempted at the networking
layer through the injection of malicious data packets, one can use authentication
to detect such packets and nonces to detect replayed packets.

(b) There is another kind of attack called the Sybil attack [29, 74]. In this case, a ma-
licious node claims multiple identities. The affected node can claim a major part
of the radio resource. The attacker will succeed in achieving selective forwarding
and in creating a sinkhole so that the affected node can capture a large amount
of data [55]. The defence mechanisms have been detailed in [74] leveraging the
key distribution.

(c) There may be different other kind of attacks such as denying a message to the
intended recipient, dropping of packets and selective forwarding [55]. Multipath
routing solves this problem [25, 36]. In [55], some other attacks such as spreading
bogus routing information, creating sinkholes or wormholes and Hello flooding
have been described.

3. Service integrity may be at stake if the attacker launches a stealthy attack in order to
make the network accept a false data value. It may be achieved in different ways such
as compromising an aggregator node, a Sybil attack by a compromised node to affect
the data value, a DoS attack to legitimate nodes to stop them reporting to the base
station etc. In [81], the stealthy attack in data aggregation context and SIA (Secure
Information Aggregation) Protocol have been proposed.
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2.7 Key Distribution Mechanisms: An Overview of

Key Pre-distribution Schemes

In this section, we shall have a look at the existing works on key pre-distribution
schemes.

2.7.1 Metrics to Evaluate a Key Distribution Mechanism

(a) Scalability: It is the ability to support larger networks (even after deployment).

(b) Efficiency:

i. Memory: Amount of memory required to store security credentials.

ii. Computation: Number of processor cycles required to establish a key.

iii. Communication: Number of messages exchanged during a key generation
process.

(c) Key connectivity (probability of key-share): Probability that two (or more)
sensor nodes store the same key or keying material.

(d) Resilience: Resistance against node capture.

In general, one can not increase all the above metrics at the same time. Trade-off
among these metrics is inevitable and it depends on the specific application scenario.

2.8 Key Distribution in DWSN

Key distribution problem in DWSN is solved in three ways viz.,

(a) Probabilistic: Key chains are randomly selected from a key pool and distributed
to sensor nodes.

(b) Deterministic: Deterministic algorithms are used to design the key-pools and
key-chains to provide better connectivity.

(c) Hybrid: These are probabilistic extension of deterministic solutions to improve
scalability and resilience.
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2.8.1 Pair-wise Key Distribution Schemes

Schemes under this category have three phases in general:

(a) key setup prior to deployment

(b) shared-key discovery after deployment

(c) path-key establishment (if two communicating nodes do not have a key in com-
mon).

Pair-wise Key Distribution Solutions

Two obvious solutions should be discussed at the outset. One is to put a single master
key in all the nodes. This solution is not at all resilient since the compromise of a
single node will compromise the security of the entire network. The other one is to
store n−1 keys in each sensor node for a network of size n, i.e., a different key for each
pair of nodes. The very good resilience notwithstanding, this solution does not scale
well with the increase in the size of the network.

In [22], a random pair-wise key scheme is introduced. This scheme does not require
much storage but gives good resilience. It is based on Erdos and Renyi’s work. Every
pair of node is connected with probability p and each node stores a random set of
Np pair-wise keys. At key setup phase, each node identity is matched with Np other
randomly selected node IDs. A pair-wise key is generated for each ID-pairs and is
stored in both nodes’ key- chain along with the ID of the other node. Thus each
node uses 2Np amount of memory locations to store its key-chain. At shared-key
discovery phase, each node broadcasts its ID, i.e., sends one message and receives one
message from each of its neighbours within radio coverage. Neighbour nodes can find
out if they share a common . This scheme has very good key resilience, but low key
sharing probability. In other words, there is a clear trade-off between storage and key
connectivity.

In [68], a closest (location-based) pair-wise key pre-distribution scheme is discussed.
It utilises the deployment knowledge to improve the key sharing probability. It is
assumed that the sensors are deployed in a two-dimensional plane and the location
of the sensor nodes are predictable. Each node is made to share keys with c nearest
neighbours. In key setup phase, for each node SA, a unique key KA and c nearest
neighbours SB1 , · · · , SBc are selected. For each pair (SA, SBi

), a pair-wise key KABi

= f(KBi
|IDA) is generated where f is a pseudo random function. Node SA stores

all pair-wise keys, whereas node SB only stores the key KBi
and the pseudo random

function. To store the key chain, only 2c+1 memory locations are used. So new nodes
may be added to the network very easily since the new node may be pre-loaded with
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the pair-wise keys for c sensor nodes in its expected location. This scheme does not
use much memory and gives good key-sharing probability between two nodes provided
deployment errors are low. A sensor either uses its CPU to search for a key or generates
it with a pseudo random function. Similar to [22], this solution is also resilient and
scalable.

In another work [64], ID based one way function scheme (IOS) is introduced. It assumes
a connected r−regular graph G with edge decomposition into star-like sub-graphs.
Pair-wise keys are distributed according to these sub-graphs. A sensor node SA receives
a secret key KA and secret keys Hash(KBi

|IDA) if SA is in the star-like graph centred
around node SB. Node SB can always generate the secret key Hash(KBi

|IDA) by
using its secret KB and public ID(A). In an r−regular graph G, each sensor node can
be the centre of one and leaf of r

2
star-like sub-graphs. Thus each sensor uses r + 1

memory locations to store keys and key IDs. It has very good resilience and two nodes
share a key almost certainly in at most two hops.

In [64] itself, the authors proposed multiple IOS to improve scalability of IOS. Every
node in graph G corresponds to l nodes SA = SA1 , · · · , SAl

. Thus sensor nodes SAi

store a common key KA and a secret hash Hash(KB|IDAi
). Every node SBj

in the class
of node SB, can use common key KB to generate the secret hash Hash(KB|IDAi

) for
node SAi

. Multiple IOS decreases memory usage by a factor of l. It has less resilience
since compromise of a class key is equivalent to compromise of the links of l sensor
nodes.

Master Key Based Key Pre-distribution Solutions

Broadcast Key Negotiation Protocol (BROSK) [60] is based on a single master key
pre-loaded in all the nodes. A pair of sensor nodes (Si, Sj) exchanges random nonce
values and use the master key Km to establish session key Kij = f(Km|RNi|RNj).
Only one memory location is used to store the master key. The compromise of the
master key results into the compromise of all the link keys, since they are known once
the master key is known. Hence the resilience of this scheme is very low.

The Lightweight Key Management System [32] has slightly better resilience. It uses
more than one master key. It assumes a deployment of sensor nodes in generations
of size θ. Each node stores a group authentication key bk1 and a key generation
key bk2. Two nodes of the same generation SA and SB authenticate each other by
the authentication key bk1. They exchange random nonce values RNA and RNB to
generate the session key KA,B = f(bk2|RNA|RNB). If the nodes SA and SB belong
to two different generations i and j respectively, the authentication is done as follows:
Let i be the older generation. SA stores a random nonce RNA and a secret SAj for
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each new generation j. Secret SAj is used to authenticate sensor nodes from new
generation j. Node SB of new generation j can authenticate itself by generating the
secret SAj = f(gkj|RNA) given RNA where f is a pseudo random function. Secret
gkj is only known to nodes of new generation j. Once authenticated, both parties
use SAj

as the key generation key to generate the pair-wise key KAB. If there are g
such generations, each sensor needs at most 2g +4 memory locations to store the keys.
However, if the secrets bk1, bk2 and gkj of generation g are revealed, all the links of
nodes in generation j are revealed. Hence the resilience of the scheme is low. Also
the attacker may log the messages for future processing when the network is totally
compromised.

Random Key-chain Based Key Pre-distribution Solutions

The basic scheme is given in [34] and is known as Basic probabilistic key pre-distribution
scheme. It relies on probabilistic key sharing among the nodes of a random graph.
In key setup phase, a large key-pool of KP keys and their identities are generated.
For each sensor, k keys are randomly drawn from the key-pool without replacement.
These k keys and their identities form the key-chain for a sensor node. Thus key-

sharing probability between two sensor nodes becomes p = ((KP−k)!)2

((KP−2k)!KP !)
. In shared-key

discovery phase, two neighbour nodes exchange and compare list of identities of keys in
their key-chains. Each sensor node broadcasts one message and receives one message
from each node within its radio range where messages carry key ID list of size k.

Cluster key grouping scheme [51] proposes to divide key-chains into c clusters where
each cluster has a start key ID. Remaining key IDs within the cluster are implicitly
known from the start key ID. Only start key IDs for clusters are broadcast during
shared-key discovery phase and messages carry key ID list of size c instead of k. There
is another scheme called Pair-wise key establishment protocol [103]. Every node is
assigned a unique ID which is used as a seed to a pseudo random function. Key
IDs for the keys in the key-chain of node SA are generated by f(IDA) where f is a
pseudo random function. Thus, broadcast messages carry only one key ID. Storage
requirement decreases drastically but a sensor node has to compute f(IDA) for each
broadcast message received from a neighbour.

Transmission Range Adjustment Scheme [51] proposes sensor nodes to increase their
transmission ranges during shared-key discovery phase. Once the keys are discovered,
the nodes return to their original optimal transmission range. The objective is to
decrease communication burden in path-key establishment phase and to save energy
while still providing a good key connectivity. The key identities may be protected
during shared-key discovery using Merkle Puzzle [73]. Solving of this puzzle increases
processing and communication load. The node pairs unable to discover a common key
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apply path-key establishment phase to communicate securely through other nodes.
Use of larger key pools lead to improved scalability and resilience, but it may also
deteriorate the key sharing probability since key chain size may not increase due to
storage limitations. Probability that a link is compromised, when a single node is
compromised is k

KP
which is very high for small key-pools and indicates low resilience.

There are many key reinforcement proposals as well. Their purpose is to enhance the
security of the established keys and improve resilience. If a unique link or path key is
generated using established keys, the key is not compromised when one/more nodes
are captured. It may be done by increasing the number of overlapped keys in the
shared-key discovery phase. This is done in Q-composite random key pre-distribution
scheme [22]. It requires q common keys to establish a link key. The link key KAB

between the nodes SA and SB is calculated as follows: KAB = Hash(K1||K2|| · · · ||Kq).

The probability that a link is compromised because of the capture of a node is
(k

q)
(KP

q )
.

This is less than k
KP

and hence resilience improves. At the same time, the key sharing
probability decreases since two nodes have to share q keys instead of one. The other way
to do it is to reinforce the established link key. In [22], Multi-path key reinforcement
scheme is also discussed. Node SA generates j random key updates rki and sends
them through j disjoint secure paths. SB can generate the reinforced link key Kr

AB =
KAB ⊕ rk1 ⊕ · · · ⊕ rkj upon receiving all key updates. This approach requires SA and
SB to send and receive j messages, each carrying a key update. Also each node on the j
disjoint paths has to send and receive an extra message. Similar mechanism is proposed
by Pair-wise Key Establishment Protocol [103]. It uses threshold secret sharing for key
reinforcement. SA generates a secret key Kr

AB and j − 1 random shares ski and skj =
Kr

AB⊕sk1⊕· · ·⊕skj−1. SA sends the shares through j disjoint secure paths and SB can
recover Kr

AB upon receiving all the shares. In Co-operative pair-wise key establishment
protocol [79], SA first chooses a set C = c1, c2, · · · , cm of co-operative nodes. A co-
operative node provides a hash HMAC(Kc1,B, IDA) and the reinforced key is defined
as Kr

AB = KAB ⊕ (⊕c∈CHMAC(Kc,B, IDA)) where KAB and Kc,B are the established
link keys. Node SA shares set C with node SB and thus SB can generate the same key.
In this case, SA and SB need to send and receive c more messages and co-operative
nodes have to send and receive two extra messages. Apart from the communication
overhead, each co-operative node has to calculate HMAC function twice for SA and
SB. In this approach, both computation and communication complexity increase but
the compromise of the key chain does not directly affect the security of any links in the
network. Thus resilience is improved. However, the adversary can recover the initial
link keys and subsequently the reinforced link keys from the multi-path reinforcement
messages.

Practically nodes located far apart do not need to have any key in common. Similar to
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[68], location information is also used in [30]. The sensor nodes are divided into t× n
groups Gij and deploys them around (xi, yj) for 1 ≤ i ≤ t and 1 ≤ j ≤ n where the
points are arranged in a two dimensional grid. The location of the node follows the
two dimensional Gaussian distribution with pdf f i,j

m (x, y|m ∈ Gi,j) = f(x− xi, y− yj).
In key setup phase, key pool KP is divided into t × n key pools KPij of size ωij and
this pool is used for the group Gij. Given ωij and overlapping factors α and β, the
key-pool is divided into subsets where

(a) two horizontally and vertically neighbouring key-pools have α× ωij keys in com-
mon.

(b) two diagonally neighbouring key-pools have β × ωij keys in common.

(c) non-neighbouring key-pools do not share a key.

Basic probabilistic key pre-distribution scheme is applied within each group but how
to decide α, β and ωij is still an open question.

Combinatorial Design Based Solutions

In [12], key pre-distribution techniques based on combinatorial design theory has been
introduced. Symmetric and generalised quadrangle design techniques are used and
the scheme uses finite projective plane of order n, where n is a prime power. It is a
symmetric BIBD with parameters (n2 + n + 1, n2 + n + 1, n + 1, n + 1, 1). A network
of size n2 + n + 1 may be accommodated using this design. The number of keys is
also n2 + n + 1. Every pair of nodes have a single key in common. So key sharing
probability is 1. Each key occurs in n + 1 nodes and each node contains n + 1 keys.
Probability of compromise of a link following the capture of a node is 1

n+1
. n being a

prime power, all the network sizes can not be supported unless sufficient redundancy is
allowed. Generalised quadrangles (GQ) provide more scalable solutions. In GQ, even if
two nodes do not have a key in common, there exists a node having a key common with
both. Thus the nodes are connected by at most a two-hop path. [12] has examples of
different GQs to support networks of order O(n3), O(n5) and O(n4) with key-sharing
probabilities ≈ 1

n
, 1

n2 and 1
n1.5 respectively. Even GQs need n to be a prime power. [12]

also proposes a probabilistic extension to the core combinatorial design. It improves
scalability and resilience at the cost of decreased key sharing probability. Very similar
approach based on transversal designs is proposed in [65]. The key sharing probability
is k

r+1
for a transversal design TD(k, r) and the probability of compromise of a link

consequent upon the failure of s nodes is fail(s) = 1−
(
1− r−2

r2−2

)s
.
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Matrix Based Dynamic Solutions

Consider a network of size N . All possible keys may be represented by a N×N matrix.
If it were possible for each pair of nodes to calculate the corresponding entry of the
matrix, they may use it as the secret key for communication. In [4], a public (λ+1)×N
matrix G and a private N × (λ + 1) matrix D over Fq. If no more than λ nodes are
compromised, this scheme is secure and is known as λ secure. For that, G must have
(λ + 1) linearly independent columns. The key matrix K is defined as K = (D.G)T .G.
Each sensor node Si stores the i-th column of G of size (λ + 1) as public information
and i-th row of (D.G)T as private information. A pair of communicating nodes (Si, Sj)
first exchange their publicly available i-th and j-th columns. The key is then calculated
as Kij = i-th row ×j-th column and Kji = j-th row ×i-th column. The bottleneck of
the scheme is the multiplication of two vectors of size (λ + 1), where the elements of
the vectors are of the size of the corresponding cryptographic keys. Each node receives
and broadcasts one message from each node within its radio coverage where messages
carry a vector of size (λ + 1).

Multiple space key pre-distribution scheme [31] suggests an improvement of the re-
silience of citeBlom using a public matrix G and a set of ω private matrices D. These
matrices form ω spaces (Di, G) for i = 1, · · · , ω. For each node, a set of τ spaces are
selected at random from these ω spaces. Similar to Blom’s scheme, the keying mate-
rials for each selected space are stored in the nodes and thus each node stores τ + 1
vectors, each of size λ + 1. In shared-key discovery phase, a pair of nodes first agree
upon a common space by exchanging an extra message containing τ space IDs. If they
do not have a space in common, they use path-key establishment phase to establish a
key through intermediate nodes.

Scalability improvement is achieved in Multiple Space Blom’s Scheme (MBS) [64]. The
nodes are divided into two sets U and V to form a bipartite key connectivity graph.
So every pair of nodes do not have a key in common. Also the private matrix D of
Blom’s scheme need not be symmetric in this case. Secret information (u-th column)T

of D is assigned to each node Su ∈ U and (v-th column) of D is assigned to each
node Sv ∈ V . The nodes Su and Sv also store public information u-th column and
v-th column respectively. They can exchange their public information to calculate
the secret key (u-th column)T D(v-th column). [64] has also proposed Deterministic
Multiple Space Blom’s Scheme (DMBS) for supporting larger networks by the use of l
copies of strongly regular graphs R of degree r. Each vertex of R has been considered
as a class of l nodes Su = Su1 , · · · , Sul

. An arbitrary direction is assigned to every
edge in R and every edge e has a random private matrix De which is not necessarily
symmetric. Each node Sui

receives its public column vector u-th column of size λ + 1.
For a directed edge (Sui

, Svj
) ∈ R, source node Sui

receives secret information (u-th
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column)T Duv of size λ + 1 and destination node Svj
receives secret information Duv(v-

th column) of size λ + 1. Thus each node stores vectors of size r(λ + 1). Nodes Sui

and Svj
can then generate the link key as Kuivj

= (u-th column)T Duv(v-th column).
This scheme increases scalability at the cost of decreased resilience since capture of one
node results into compromise of the credentials of l − 1 other nodes.

Polynomial Based Dynamic Solutions

Polynomial based key pre-distribution scheme [5] distributes a polynomial share or
partially evaluated polynomial to each node such that each pair of node can generate
a key. A polynomial P (x, y) symmetric in x and y, i.e., P (x, y) = P (y, x) of degree
λ is used. The coefficients of the polynomial P are chosen from a large field Fq.
Each node stores a polynomial with λ + 1 coefficients. The node Si receives its share
fi(y) = P (i, y).Si. and obtain the key as Kij = P (i, j) by evaluating the shares
fi(y) and fj(y). This solution is also λ-secure, i.e., the coalition of less than λ + 1
sensor nodes can not calculate the keys of others. Another scheme of this type [67]
is based on the fact that all pairs of nodes do not need to have a key in common. It
is a combination of the polynomial based scheme [5] and key pool based schemes like
[22, 34] aiming at increasing scalability and resilience. In the key setup phase, a set
of λ degree polynomials over Fq is generated. Let us denote it by F . Each node Si

receives a subset Fi of the polynomial set F where Fi ⊆ F . There are many options
for selecting polynomial subsets for sensor nodes. The nodes may store list of IDs of
the other nodes with which it shares the polynomial. Grid based key pre-distribution

may also be used. Let m =
⌈√

N
⌉
. Consider a m × m grid with a set of 2 × m

column and row polynomials {f c
i (x, y), f r

i (x, y)} for i = 0, · · · , m − 1 are generated.
Each row i in grid is associated with a polynomial f r

i (x, y) and each column i with
a polynomial f c

i (x, y). Each sensor is assigned a co-ordinate (i, j) on the grid and
receives polynomials {f c

i (x, y), f r
i (x, y)}. A pair of nodes only need to check whether

their column or row addresses overlap. In shared-key discovery phase, if two sensor
nodes have the same polynomial, they can establish a key.

In yet another scheme [68], bivariate polynomials have been used for location based
pair-wise keys. The deployment area is divided into R rows and C columns. It is
based on [5] scheme. For each cell at cth column and rth row, a unique polynomial
fcr(x, y) is generated. Each node stores the polynomial shares of its own cell and
the four neighbouring cells. Two nodes exchange their cell co-ordinates to agree on a
polynomial share. In [49], the deployment area is divided into cells over which groups
of sensor nodes are uniformly distributed.
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2.8.2 Group-wise Key Distribution Schemes

The direct approach is to use the existing pair-wise keys to establish group-wise keys.
In [32] a lightweight key management system is considered. Group of sensor nodes are
deployed in different phases. The proposal is to distribute group-wise keys through the
links secured with pair-wise keys. Polynomial based key pre-distribution scheme may
also be used to distribute the shares among the group members, who can generate a
common group key. In [5], two models have been proposed. One is an interactive
model. Initially a polynomial P (x, y) of degree λ + t − 2 is selected. Each user Si

receives a share Pi(y) = P (i, y). Users Sj1 , · · · , Sjt can calculate the conference key
Kj1··· ,jt as follows:

(a) Sjt selects a random key K.

(b) Sjt calculates Kjtjl
= Pjt(jl) = P (jt, jl) for each l = 1, · · · , t− 1.

(c) Sjt sends χl = Kjtjl
⊕K to each Sjl

for each l = 1, · · · , t− 1.

(d) Each Sjl
generates Kjljt = Pjl

(jt) and derives the secret K = χl ⊕Kjljt .

Thus Sjt performs t− 1 polynomial evaluations and sends t− 1 messages which carry
a single χ value to establish a group-wise key.

The other is a non-interactive model. A random symmetric polynomial P (x1, · · · , xt)
in t variables of degree λ is selected (over Fq, where q is large enough to accommo-
date the key length of the crypto-system under consideration). Each user Si receives
share Pi(x2, · · · , xt) = P (i, x2, · · · , xt). Users Sj1 , · · · , Sjt can generate the confer-
ence key Kj1,··· ,jt by evaluating their polynomial shares. Each user Sji

can evaluate
Pji

(j1, · · · , ji−1, ji+1, · · · , jt).

2.9 Key Distribution in HWSN

In HWSN, there are one or more powerful nodes called base stations and they often
act as key distribution centres. Base stations may share pair-wise keys with all the
nodes which may be subsequently used to establish the other keys. This may be also
be divided into three categories as follows:

2.9.1 Pair-wise Schemes

IN HWSNs, the communication between base station and sensor node require pair-
wise keys. This is easy if the base station shares pair-wise keys with each of the
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sensor nodes. This kind of solutions have been proposed in Perimeter Protection
Scenario [98], Base Station Authentication Protocols [23, 26, 27] and LEAP [103]. The
base station can act as an intermediary to establish the pair-wise key between any
two sensor nodes. In ESA [63], a scenario is described where the nodes are divided
into domains and each domain is supervised by a base station. In SNEP [76], it
is proposed that each pair of communicating nodes SA and SB will share a master
secret key χAB and a pseudo random function f . SA and SB then generate the keys
KAB = f(χAB, 1) and KBA = f(χAB, 3) and MAC keys K ′

AB = f(χAB, 2) and K ′
BA =

f(χAB, 4). LEAP [103] proposes that each node can establish pair-wise keys with its
immediate neighbours. In the key setup phase, nodes receive a general key KI . A node
Su can use KI and one-way hash function H to generate its master key Ku = HKI

(IDu).
In shared key discovery phase, node Su broadcasts IDu, RNu and a neighbour Sv

responds with (IDv, MACKv(RNu|IDv)). Node Su can then generate the key Kv =
HKI

(IDv) and both nodes Su and Sv can generate the session key Kuv = HKv(IDu).
To reach the cluster heads, multi-hop pair-wise keys may be required. In that case,
node Su generates secret Ku,c and finds m intermediate nodes. It divides the secrets
into shares Kuc = sk1⊕· · ·⊕skm and sends each share through a separate intermediate
node Svi

where 1 ≤ i ≤ m. This solution has high communication cost since Su sends
m messages through m intermediate nodes to increase resilience. Security of the system
depends on KI , which may be revealed by the compromise of a sensor node. Once KI

is compromised, all the session keys may also be compromised.

2.9.2 Group-wise Schemes

This kind of schemes are necessary to secure multicast communications. A secure
but costly solution is asymmetric cryptography. There are works based on Diffie-
Hellman group key transport protocol, like Burmester-Desmedt [11] and IKA2 [94].
Further improvement is made in ID-STAR algorithm [15], which uses identity based
cryptography [8, 86], i.e., the public keys of the nodes are derived from their identities.
Pair-wise keys can also be used to establish group-wise keys. The base station may
act as an intermediary to establish pair-wise keys between any pair of nodes provided
the base station shares keys with all the nodes. In LEAP [103], a mechanism is given
to generate group-wise keys which follows LEAP pair-wise key establishment phase. If
Su wants to establish a group key with its neighbours Sv1 , · · · , Svm , it first generates
a unique group key Kg

u and then sends it to the neighbours Svi
by encrypting it with

Kuvi
. The security of this scheme is dependent on the security of the pair-wise keys

(and it has very low resilience).
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2.9.3 Network-wise Schemes

Master Key Based Solutions

In HWSN, base station to sensor node broadcast traffic is secured with network-wise
keys. The obvious insecure approach is to pre-distribute a single network-wise key to
all sensor nodes. A better approach is proposed by Multi-tiered security solution [91].
The data items are protected to a degree consistent with their value. Three types of
data in a WSN are considered: mobile code, locations of sensor nodes and application
data. It assumes that sensor nodes are initially loaded with a list of m master keys, a
pseudo random function and a seed. They use the pseudo random function with the
seed to obtain an index within the list of master keys. The selected key is called active
master key and is used to secure communication. RC6 is used as encryption algorithm.
Three different security levels are defined. In level I, a strong encryption algorithm
and active master key is used to secure mobile codes. In level II, sensors are divided
into cells. A common location security key is generated within each cell and is used to
secure location information. Finally in level III, MD5 hash of the active master key is
used to secure application data. The drawback of the scheme is that the master key
list, the pseudo random function and the seed may be compromised.

TESLA Based Solutions

TESLA stands for Timed Efficient Stream Loss-tolerant Authentication [77]. It is a
multicast stream authentication protocol. It uses delayed key disclosure mechanism
where the key used to authenticate the ith message is disclosed along with (i + 1)-
th message. SPINS [76] uses µ-TESLA, an adoption of TESLA for HWSNs. SPINS
uses base stations as key distribution centres. µ-TESLA provides authentication for
data broadcasts and requires that base station and sensor nodes be loosely time syn-
chronised. . Basically, the base station randomly selects the last key Kn of a chain
and applies one-way public function H to generate the rest of the chain K0, · · · , Kn−1

as Ki = H(Ki+1). Given Ki, every node can generate the sequence K0, · · · , Ki−1,
but given Ki, one can not generate Ki+1. At ith time slot, the base station sends
authenticated message MACKi

(Message). Sensor nodes store the message until the
base station discloses the verification key in (i + 1)th time slot. The nodes can ver-
ify the disclosed verification key Ki+1by using the previous key Ki as Ki = H(Ki+1).
In µTESLA, nodes are required to store a message until the authentication key is
disclosed. This operation may create storage problems and encourages DoS types of
attacks. An adversary may jam key disclosure messages to saturate storages of sensor
nodes. µTESLA requires the sensor nodes to bootstrap from the base station, i.e., the

25



nodes receive the first key of the chain (called the key chain commitment). Bootstrap-
ping requires unicast communication and can be secured with pair-wise keys. Also
µTESLA is used in [23, 26, 27]to authenticate message broadcasts from base station,
in [93] to authenticate route update broadcasts and in LEAP [103] to update pre-
deployed network-wise keys in case of a node compromise. Another variant of TESLA
is TESLA Certificate [6], where a base station is used as a certificate authority(CA).
In this scheme, CA generates certificate Cert(IDA, ti+d, · · · , MACKi

(· · · )) for sensor
node SA at time ti. It discloses the TESLA key Ki at time ti+d when the certificate
expires.

Bootstrapping of key chain commitments in µTESLA causes high volume of packets
flowing in WSN and creates scalability problems. µTESLA extensions [69, 70] propose
five extensions to address scalability issues. In predetermined key chain commitment,
commitment is pre-distributed to sensors before the deployment. In this solution, key
chain must cover lifetime of sensor nodes to prevent bootstrapping requirements. This
can be achieved by either using long chains or large time intervals. A new node has
to generate the whole key chain from the beginning to authenticate recently disclosed
key. Thus, long key chain means excessive processing for sensor nodes joining later.
Large time interval means increased number of messages to store because sensor nodes
have to store incoming messages until the authentication key is disclosed. Two-level
key chain scheme tries to address these problems. There is a high level key chain with
long enough time interval to cover the life time of sensor nodes and multiple low-level
key chains with short enough time intervals. High level key chain is used to distribute
and authenticate randomly generated commitments of low-level key chains. The nodes
are initialised with the commitment of high-level chain, time intervals of high-level
and low-level key chains and one way functions of high and low-level chains. Low-
level keys are not chained together and loss of a low level key disclosure can only be
recovered with a key which is disclosed later within the same interval. Loss of a low
level key commitment may also mean loss of entire interval. An adversary may take
advantage of this and may jam disclosure of low-level key commitments. Fault tolerant
two level key chains scheme is proposed to address these issues. In this scheme, the
commitments of low level key chains are not randomly generated, but obtained from
high-level keys by using another one way function. The low level key commitments
are periodically broadcast; however, an adversary may still recover the commitment
period and can jam disclosure of low level key commitments. Fault tolerant two level
key chains with random commitments scheme uses a random process to broadcast
the low-level commitments. Finally multi-level chains scheme is proposed to provide
smaller time intervals and shorter key chains.
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2.10 Ongoing Research Areas

Handling compromised nodes is one of the most difficult problems in the security of
sensor networks.

(a) The memory content of a compromised node is bound to be different from that on
a legitimate node and thus code attestation through hardware or software solves
this problem. Though there are examples of hardware solutions, little research
has been done so far in software attestation techniques.

(b) Detection of secure misbehaviour detection and node revocation is another im-
portant area of research. In [22], this is implemented through a voting scheme.

(c) Examples of secure routing is given in [46, 52, 56], though [46] discusses the routing
protocols for ad hoc networks. These protocols may not always be suitable for
sensor networks and more specific research is needed in this area.

(d) Secure localisation becomes important because of two reasons: a node should be
able to determine its own location and a malicious nose should not be able to
claim a false position. The first part is studied in [13] and the second part is
discussed in [14, 83]. This is helpful in preventing Sybil attack and wormhole
attack [47].

(e) Cryptographic techniques have been discussed in [54, 76]. Use of asymmetric
cryptography is discussed in [40].

(f) In secure multi-party communication systems, group key is required and members
join in and leave from party frequently. So group key materials of all members of
the network must be updated. An efficient group key distribution method using
M-ary coding for a key message without using FEC (Forward Error Correction)
and an ARQ (Automatic Repeat reQuest) and transmitting this in parallel with
the non-key message is discussed in [75].
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Chapter 3

Preliminaries

3.1 Basics of Combinatorial Design

In this section, we give explicit definitions of some of the designs we will use in this thesis.
For more detailed account of difference sets and combinatorial designs, please refer to [9, 10,
24, 28, 96, 97].

Let B be a finite set of subsets (also known as blocks) of a finite set X.

Definition 1 A set system or design is a pair (X, B).

Definition 2 The degree of a point x ∈ X is the number of subsets containing the point x.

If all subsets/blocks have the same size k, then (X, B) is said to be uniform of rank k. If
all points have the same degree r, (X, B) is said to be regular of degree r.

Definition 3 A regular and uniform set system is called a (v, b, r, k)-1 design, where |X| =
v, |B| = b, r is the degree and k is the rank.

Definition 4 A (v, b, r, k)-1 design is called a (v, b, r, k) configuration if any two distinct
blocks intersect in zero or one point.

Definition 5 A (v, b, r, k, λ) BIBD is a (v, b, r, k)-2 design in which every pair of points
occurs in exactly λ many blocks. We note that bk = vr and λ(v − 1) = r(k − 1).

Definition 6 A BIBD(v, b, r, k, λ) where v = b and r = k is called an SBIBD(v, v, k, k, λ)-
2 design or simply an SBIBD(v, k, λ) design. We note that λ(v − 1) = k(k − 1).
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Definition 7 A pairwise balanced design (PBD) is a design in which each pair of points
occurs in λ blocks, for some constant λ, called the index of the design.

Definition 8 A linked design is a design in which each pair of blocks intersect in µ points,
for some constant µ, sometimes called the linkage of the design.

Definition 9 A variety and a block are said to be incident if the variety belongs to the block.
One convenient way to represent a design is by means of an incidence matrix. For a design
(X,B) with v varieties and b blocks, the incidence matrix is a v × b matrix, A = [aij], such
that

aij = 1 if variety i belongs to block j,
= 0 otherwise.

Definition 10 Starter blocks and developed blocks

Let v be an integer and consider the set of integers modulo v, i.e., Zv = {0, 1, 2, · · · , v−1},
whose addition and multiplication are denoted by the usual symbols + and · respectively. Let
B = {i1, i2, · · · , ik} be a subset of Zv consisting of k integers. For each integer j ∈ Zv, we
define B + j = {i1 + j, i2 + j, · · · , ik + j} to be the subset of Zv by adding mod v the integer
j to each of the integers in B. The v sets B = B +0, B +1, B +2, · · · , B + v− 1 so obtained
are called the blocks developed from the block B and B is called the starter block.

Definition 11 Difference set mod v

Let B be a subset of k integers in Zv. Then B is called a difference set mod v, provided
each non-zero integer in Zv occurs the same number of times among the k(k− 1) differences
among distinct elements of B (in both order): x− y where x, y ∈ B; x 6= y.

Since there are v − 1 non-zero integers in Zv, each non-zero integer in Zv must occur
λ = k(k−1)

v−1
times as a difference in a difference set.

Theorem 1 Let B be a subset of k < v elements of Zv which forms a difference set mod v.
Then the blocks developed from B as a starter block form a SBIBD with index λ = k(k−1)

v−1
.

Definition 12 An association scheme with m associate classes on a v-set X is a family of
m-many symmetric, anti-reflexive binary relations on X such that:

1. any two distinct elements of X are i-th associates for exactly one value of i, where
1 ≤ i ≤ m.
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2. each element of X has ni i-th associates, 1 ≤ i ≤ m.

3. for each i, 1 ≤ i ≤ m, if x and y are i-th associates, then there are pi
jl elements of X

which are both j-th associates of x and l-th associates of y.

The numbers v, ni (1 ≤ i ≤ m) and pi
jl (1 ≤ i, j, l ≤ m) are called the parameters of the

association scheme. We see that pi
jl = pi

lj.

Definition 13 A partially balanced incomplete block design with m associate classes
(PBIBD(m)) is a design based on a v-set X, with b blocks, each of size k and with replication
number r, such that there is an association scheme with m classes defined on X, where, if
elements x and y are i-th associates, 1 ≤ i ≤ m, then they occur together in precisely λi

blocks. The numbers v, b, r, k, λi(1 ≤ i ≤ m) are called the parameters of the PBIBD(m).
We denote such a design by PB[k, λ1, · · · , λm; v].

Definition 14 Let X be a set of v varieties such that

X =
m⋃

i=1

Gi, |Gi| = n for 1 ≤ i ≤ m,Gi

⋂
Gj = φ for i 6= j.

The Gi’s are called groups (though they are not groups in the usual algebraic sense) and an
association scheme defined on X is said to be group divisible if the varieties in the same
group are first associates and those in different groups are second associates.
Designs in which the underlying association scheme is group divisible are called group divisible
(GD) designs.

Definition 15 A transversal design with k groups of size n and index λ, denoted by
T [k, λ; n], is a triple (X,H,A) where:

1. X is a set of kn varieties;

2. H = {H1, H2, · · · , Hk} is a family of k n-sets (or groups) which form a partition of X.

3. A is a family of k-sets (or blocks) of varieties such that each k-set in A intersects each
group Hi in precisely one variety and any pair of varieties which belong to different
groups occur together in precisely λ blocks in A.

Remark 1 It may be noted that the transversal designs are group divisible designs with
λ1 = 0 and λ2 = λ.
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If λ = 1, we simply denote the transversal design by TD(k, n).

Let us now describe the construction of a transversal design [65].

Construction 1 Let p be a prime and 2 ≤ k ≤ p.

1. Define X = Zk × Zp.

2. For 0 ≤ x ≤ k − 1, define Hx = {x} × Zp and H = {Hx : 0 ≤ x ≤ k − 1}.

3. For every ordered pair (i, j) ∈ Zp ×Zp, define a block Ai,j = {(x, (ix + j) mod p) : 0 ≤
x ≤ k − 1} and A = {Ai,j : (i, j) ∈ Zp × Zp}.

It can be shown that (X,H,A) is a TD(k, p).

We shall present a detailed example of the aforesaid construction, which will be subse-
quently used in chapter 4.

Example 1 Let k = 3 and p = 5.

1. Here, X = Z3 × Z5 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4),
(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)}.

2. H0 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)},
H1 = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)} and
H2 = {(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)}.
Also, H = {H0, H1, H2}.

3.
A0,0 = {(0, 0), (1, 0), (2, 0)}

A0,1 = {(0, 1), (1, 1), (2, 1)}

A0,2 = {(0, 2), (1, 2), (2, 2)}

A0,3 = {(0, 3), (1, 3), (2, 3)}

A0,4 = {(0, 4), (1, 4), (2, 4)}

A1,0 = {(0, 0), (1, 1), (2, 2)}

A1,1 = {(0, 1), (1, 2), (2, 3)}

A1,2 = {(0, 2), (1, 3), (2, 4)}
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A1,3 = {(0, 3), (1, 4), (2, 0)}
A1,4 = {(0, 4), (1, 0), (2, 1)}

A2,0 = {(0, 0), (1, 2), (2, 4)}
A2,1 = {(0, 1), (1, 3), (2, 0)}
A2,2 = {(0, 2), (1, 4), (2, 1)}
A2,3 = {(0, 3), (1, 0), (2, 2)}
A2,4 = {(0, 4), (1, 1), (2, 3)}

A3,0 = {(0, 0), (1, 3), (2, 1)}
A3,1 = {(0, 1), (1, 4), (2, 2)}
A3,2 = {(0, 2), (1, 0), (2, 3)}
A3,3 = {(0, 3), (1, 1), (2, 4)}
A3,4 = {(0, 4), (1, 2), (2, 0)}

A4,0 = {(0, 0), (1, 4), (2, 3)}
A4,1 = {(0, 1), (1, 0), (2, 4)}
A4,2 = {(0, 2), (1, 1), (2, 0)}
A4,3 = {(0, 3), (1, 2), (2, 1)}
A4,4 = {(0, 4), (1, 3), (2, 2)}

Let us relabel the elements of the blocks as shown in table 3.1.

Finally,
A0,0 = {K0, K1, K2}
A0,1 = {K3, K4, K5}
A0,2 = {K6, K7, K8}

A0,3 = {K9, K10, K11}
A0,4 = {K12, K13, K14}

A1,0 = {K0, K4, K8}
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Actual value Label
(0, 0) K0

(1, 0) K1

(2, 0) K2

(0, 1) K3

(1, 1) K4

(2, 1) K5

(0, 2) K6

(1, 2) K7

(2, 2) K8

(0, 3) K9

(1, 3) K10

(2, 3) K11

(0, 4) K12

(1, 4) K13

(2, 4) K14

Table 3.1: Labels

A1,1 = {K3, K7, K11}

A1,2 = {K6, K10, K14}

A1,3 = {K9, K13, K2}

A1,4 = {K12, K1, K5}

A2,0 = {K0, K7, K14}

A2,1 = {K3, K10, K2}

A2,2 = {K6, K13, K5}

A2,3 = {K9, K1, K8}

A2,4 = {K12, K4, K11}

A3,0 = {K0, K10, K5}

A3,1 = {K3, K13, K8}

A3,2 = {K6, K1, K11}

A3,3 = {K9, K4, K14}
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A3,4 = {K12, K7, K2}

A4,0 = {K0, K13, K11}

A4,1 = {K3, K1, K14}

A4,2 = {K6, K4, K2}

A4,3 = {K9, K7, K5}

A4,4 = {K12, K10, K8}

Now let us relate a (v = kr, b = r2, r, k) configuration (resulting from the TD(k, r)) with
sensor nodes and keys. This will also be useful as a background for section 3.4. X is the
set of v = kr number of keys distributed among b = r2 number of sensor nodes. The nodes
are indexed by (i, j) ∈ Zr × Zr and the keys are indexed by (i, j) ∈ Zk × Zr. Consider a
particular block Aα,β. It will contain k keys {(x, (xα + β) mod r) : 0 ≤ x ≤ k − 1}. Here
|X| = kr = v, |Hx| = r, the number of blocks in which the key (x, y) appears for y ∈ Zr,
|Ai,j| = k, the number of keys in a block.

Note that if r is a prime power, we will not get an inverse of x ∈ Zr when gcd(x, r) > 1.
This is required for key exchange protocol (see Section 4.4). So basically we should consider
the field GF (r) instead of the ring Zr. However, there is no problem when r is a prime by
itself. In this chapter, we generally use Zr since in our examples we consider r to be prime.

Definition 16 A projective plane consists of a set of lines and a set of points, and a relation
between points and lines called incidence, having the following properties:

1. Given any two distinct points, there is exactly one line incident with both of them.

2. Given any two distinct lines, there is exactly one point incident with both of them.

3. There are four points such that no line is incident with more than two of them.

The second condition means that there are no parallel lines. The last condition simply
excludes some degenerate cases.

A projective plane is therefore a symmetric (n2 + n + 1, n + 1, 1) block design or
SBIBD(n2 + n + 1, n + 1, 1).

A finite projective plane exists when the order n is a power of a prime, i.e., for n =
pa, a ≥ 1. It is conjectured that these are the only possible projective planes, but proving
this remains one of the most important unsolved problems in combinatorics.
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The smallest finite projective plane is of order n = 2 and consists of the configuration
known as the Fano plane. The remarkable Bruck-Ryser-Chowla theorem [97] says that if a
projective plane of order n exists and n = 1 (mod 4) or 2 (mod 4), then n is the sum of two
squares. This rules out n = 6. Lam [61] showed, using massive computer calculations on
top of some mathematics, that there are no finite projective planes of order 10. The status
of the order 12 projective plane remains open.

The projective plane of order 2 is denoted by PG(2, 2). It has incidence matrix

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0


Every row and column contains three 1s and any pair of rows/columns has a single 1 in
common.

3.2 Incidence Matrix of a Sensor Network

We propose to model our sensor network using a (0,1) incidence matrix, N , called the
incidence matrix of a sensor network.

Definition 17 The incidence matrix of a sensor network
Let N = (Nij) be a v× b matrix with entries 0 or 1 where the v rows denote the sensor nodes
in a sensor network and the b blocks denote the keys in the sensor network. nij = 1 if key
“j” is in sensor “i” and 0 otherwise, that is, (i, j) = 1 denotes that node “i” contains key
“j”. N will have ri elements 1 in row “i” and kj elements 1 in column “j”.

Lemma 1 The incidence matrix of a sensor network with v keys and b sensors contains

v∑
i=1

ri =
b∑

j=1

kj

ones.

We note some general properties we would like to have for a sensor network as indicated
by the incidence matrix N :
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1. v, the number of nodes should be large. We should be able to enlarge v to easily allow
scalability.

2. b, the number of keys should not be too large to enable manageability.

3. Since each node/sensor has limited power and space resources, max
i

ri should be as

small as possible.

4. Since we wish to have as much resilience as possible we would like each key to be
widely distributed so the compromise of a node does not adversely affect the reliability
of the network. At the same time we want to limit the distribution of each key so that
if a key is compromised the network will still be able to function. Thus if key “i” is
compromised in all nodes/sensors which contain it, then min

i
ki gives a lower bound on

the number of sensors compromised in the network. Note this is not the minimum for
the whole network.

5. (i1, j) = (i2, j) means key j is in both sensors/nodes i1 and i2.

6. (i, j1) = (i, j2) means keys j1 and j2 are both in node i. If key j1 is compromised, the
network will continue to function as is, provided removal of column j1 from N leaves
the network connected. (A rank argument on the matrix N at any stage allows us to
determine connectivity).

7. In (v, b, r, k) configurations (as traditionally used by combinatorialists), λ or λj, the
number of common keys between a pair of nodes, or pair property, is extensively studied.
This is studied by the inner product of any pair of rows of N . Early sensor network
studies using (v, b, r, k) configurations implicitly used λ or λj as 0 or 1. In this thesis
we will not impose that restriction.

8. In sensor networks, the number of common keys that occur between different pairs of
nodes, is equivalent to the linkage property, which is studied by considering the inner
product of the rows of N , has received far less study. We will use µ or µj to denote
the linkage of N . The linkage parameter gives us a metric for determining the number
of nodes/sensors that might be compromised if a node is compromised.

Remark 2 We note that an SBIBD has both the pair property and the linkage property.
A BIBD(v, b, r, k, λ) configuration has the pair property while its transpose, a (b, v, k, r)
configuration has the linkage property. Hence we shall prefer to consider the rows of the
incidence matrix as the sensor nodes and the columns as the keys.
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3.3 Hopping Between Levels in an HWSN

If two sensor nodes share a common key, they are able to communicate directly with each
other. We call it a single-hop communication or direct communication.

Similarly one can think of communication between two sensor nodes as a sequence of
several single-hop communications. We call it multi-hop communication.

When the incidence matrix of a SBIBD(v, k, 1) is used as the incidence matrix of the
sensor network, any two sensor nodes can communicate in a single hop. This direct commu-
nication takes place between any two sensor nodes at the expense of storing large number of
keys in each sensor node.

When the incidence matrix of a complete transversal design, with λ = 1 or 0 is used as
the incidence matrix of the sensor network, every sensor node can reach every other sensor
node in at most two hops with almost certainty.

Example 2 As shown in example 1, the sensor nodes A0,0 = {K0, K1, K2} and A1,2 =
{K6, K10, K14} do not share a common key. However, A0,0 can reach A1,2 via A2,0 =
{K0, K7, K14}, or A3,0 = {K0, K10, K5}.

3.4 Lee-Stinson Approach [65]

Consider a (v, b, r, k) configuration (which is in fact a (rk, r2, r, k) configuration). There are
b = r2 many sensor nodes, each containing k distinct keys. Each key is repeated in r many
nodes. Also v gives the total number of distinct keys in the design. One should note that
bk = vr and v − 1 > r(k − 1). The design provides 0 or 1 common key between two nodes.
The design (v = 1470, b = 2401, r = 49, k = 30) has been used as an example in [65]. The
important parameters of the design are as follows:

1. Expected number of common keys between two nodes: This value is p1 =
k(r−1)

b−1
= k

r+1
. In the given example, p1 = 30

49+1
= 0.6.

2. Consider an intermediate node: There is a good proportion of pairs (40%) with
no common key and two such nodes will communicate through an intermediate node.
Assuming a random geometric deployment, the example shows that the expected pro-
portion such that two nodes are able to communicate either directly or through an
intermediate node is as high as 0.99995.

3. Resiliency: Under adversarial situation, one or more sensor nodes may get compro-
mised. In that case, all the keys present in those nodes cannot be used for secret
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communication any longer, i.e., given the number of compromised nodes, one needs to
calculate the proportion of links that cannot be used further. The expression for this
proportion is

fail(s) = 1−
(

1− r − 2

b− 2

)s

,

where s is the number of nodes compromised. In this particular example, fail(10) ≈
0.17951. That is, given a large network comprising as many as 2401 nodes, even if only
10 nodes are compromised, almost 18% of the links become unusable.
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Chapter 4

Key Pre-distribution Schemes for
Wireless Sensor Networks: Merging
Blocks in Combinatorial Designs

4.1 Introduction

Recently secure communication among sensor nodes has become an active area of research
[12, 22, 31, 34, 64, 65, 67]. One may refer to [53] for broader perspective in the area of sensor
networks. Based on the architectural consideration, wireless sensor networks may be broadly
classified into two categories viz. (i) Hierarchical Wireless Sensor Networks (HWSN) and
(ii) Distributed Wireless Sensor Networks (DWSN).

In HWSN, there is a pre-defined hierarchy among the participating nodes. There are
three types of nodes in the descending order of capabilities: (a) base stations, (b) cluster
heads and (c) sensor nodes.

The sensor nodes are usually placed in the neighbourhood of the base station. Sometimes
the network traffic (data) is collected by the cluster heads which in turn forward the traffic to
the base station. There may be three different modes of data flow as follows: Unicast (sensor
to sensor), multicast (group wise), broadcast (base station to sensor). However, it may be
pointed out that the HWSN is best suited for applications where the network topology is
known prior to deployment. On the other hand, there is no fixed infrastructure in the case
of a DWSN and the network topology is unknown before the deployment. Once the nodes
are scattered over the target area, the nodes scan their radio coverage area and find out
their neighbours. In this case also, the data flow may be divided into three categories (as
discussed above) with the only difference that the broadcast might take place between any
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two nodes. Unless mentioned otherwise, we shall always talk about DWSNs. Hence all the
nodes are equal in their capabilities.

Consider a scenario where N number of sensor nodes are dropped from an airplane in
the battlefield. Thus the geographical positioning of the nodes cannot be decided a priori.
However, any two nodes in radio frequency range are expected to be able to communicate
securely. One option is to maintain different secret keys for each of the pairs. Then each of
the nodes needs to store N − 1 keys. Given (i) the large number of sensor nodes generally
deployed, (ii) the memory constraint of the sensor nodes, this solution is not practical. On the
other hand, on-line key exchange is not very popular till date since implementation of public
key framework demands processing power at the higher end. Very recently implementations
of ECC and RSA on 8-bit CPUs have been proposed [40]. Still a closer scrutiny of [36,
Table 2, Section 3.3] reveals that the algorithms execute in seconds (the range being 0.43s to
83.26s); whereas the key pre-distribution just involves the calculation of inverse of an integer
modulo a prime number, which is bound to be much faster than the former.

Hence key pre-distribution to each of the sensor nodes before deployment is a thrust area
of research and the most used mathematical tool for key pre-distribution is combinatorial
design. Each of the sensor nodes contains M many keys and each key is shared by Q many
nodes, (thus fixing M and Q) such that the encrypted communication between two nodes
may be decrypted by at most Q − 2 other nodes if they fall within the radio frequency
range of the two communicating nodes. Similarly one node can decrypt the communication
between any two of at most M(Q− 1) nodes if it lies within the radio frequency range of all
the nodes who share a key with it.

Let us present an exact example from [65]. Take N = 2401, M = 30, Q = 49. The
parameters are obtained using a transversal design (for a basic introduction to transversal
designs, refer to [97, Page 133]). It has been shown that two nodes share either 0 or 1 key. In
this case, M(Q− 1) gives the number of nodes with which one node can communicate. The

expected number of keys that is common between any two nodes is M(Q−1)
N−1

= 0.6, (in [65], this
is called the probability that two nodes share a common key). Further, it can be checked
that if two nodes do not share a common key, then they may communicate via another
intermediate node. Let nodes νi, νj do not share a common key, but νi, νk share a common
key and νk, νj share a common key, i, j, k are all distinct. Hence the secret communication
between νi and νk needs a key (encrypted by νi, decrypted by νk) and that between νk and
νj needs another secret key (encrypted by νk, decrypted by νj). It has been shown in [65]
that the communication between two nodes is possible in almost 0.99995 proportion of cases
(this is based on some assumptions on the geometric distribution of nodes, which we do not
use for our analysis). However, the following problems are immediate:

1. Communication between any two nodes in 60% of the cases will be in one step (no
involvement of any other node), but the communication between any two of them

40



needs two steps for the rest 40% of the cases, making the average of 1.4 steps in each
communication. This is an overhead. Thus we need a design where we can guarantee
that there is a common key between any two nodes.

2. The direct communication between any two nodes can be decrypted by at most Q− 2
other nodes. However, if one takes the help of a third intermediate node, then the
communication can be decrypted by at most 2(Q−2) nodes. Thus any communication
can be decrypted by at most 1.4(Q− 2) many nodes on an average.

3. In an adversarial situation, if s many nodes are compromised, it has been shown that
1− (1− Q−2

N−2
)s proportion of links becomes unusable. In this specific design, for s = 10,

out of 2401 nodes, the proportion of unusable links becomes as high as 17.95%.

The solution to all these problems is based on the fact that we need to increase the number
of common keys between any two nodes. The issues at this point are as follows:

1. The number of keys to be stored in each node will clearly increase. So one needs to
decide the availability of storage space. In [65, Page 4], it has been commented that
storing 150 keys in a sensor node may not be practical. On the other hand, in [31,
Page 47], [64, Section 5.2], scenarios have been described with 200 many keys. If one
considers 4 Kbytes of memory space for storing keys in a sensor node, then choosing
128-bit key (16 byte), it is possible to accommodate 256 many keys.

2. It is not easy to find out combinatorial designs with pre-specified number of com-
mon keys (say for example 5) among any two nodes for key pre-distribution [24, 96].
Consider the following technique. Generally a sensor node corresponds to a block in
combinatorial design [12, 65]. Here we “merge” (defined below) a few blocks to get a
sensor node. Thus the key space at each node gets increased and the number of com-
mon keys between any two nodes can also be increased to the desired level. It will be
shown that this technique provides a much better control over the design parameters
in key pre-distribution algorithms.

3. Further it is also shown that by this random merging strategy, one gets more flexible
parameters than [65].

Definition 18 Merging of two blocks: Two blocks (or sets of keys) P and Q are said to be
merged to form a new sensor node R when the new node R contains the multiset of keys
contained in either of the blocks P and Q, with repetition of element (key) instances allowed.

Thus the goal in this chapter is to present a randomized block merging based design
strategy that originates from transversal design. We differ from the existing works where it
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is considered that any two nodes will have either 0 or 1 common key and motivate a design
strategy with more number of common keys. This is important from resiliency consideration
in an adversarial framework since if certain nodes are compromised, the proportion of links
that becomes unusable can be kept low, i.e., the connectivity of the network is less disturbed.

The computation to find out a common key is also shown to be of very low time com-
plexity under this paradigm as explained in Section 4.4. Note that Blom’s scheme [4] has
been extended in recent works for key pre-distribution in wireless sensor networks [31, 64].
The problem with these kinds of schemes is the use of several multiplication operations (as
example see [31, Section 5.2]) for key exchange.

The randomized key pre-distribution is another strategy in this area [34]. However, the
main motivation is to maintain the connectivity (possibly with several hops) in the network.
As example [34, Section 3.2], a sensor network with 10000 nodes has been considered and
to maintain the connectivity, it has been calculated that it is enough if one node can com-
municate with only 20 other nodes. Note that the communication between any two nodes
may require a large number of hops. However, as we discussed earlier, only the connectivity
criterion (with too many hops) can not suffice in an adversarial condition. Further in such
a scenario, the key agreement between two nodes requires exchange of the key indices.

The use of combinatorial and probabilistic design (also a combination of both – termed
as hybrid design) in the context of key distribution has been proposed in [12]. In this case
also, the main motivation was to have low number of common keys as in [65]. On the other
hand we propose the idea of good number of common keys between any two nodes. The
novelty of our approach is to start from a combinatorial design and then apply a probabilistic
extension in the form of random merging of blocks to form the sensor nodes and in this case
there is good flexibility in adjusting the number of common keys between any two nodes.

Note that in our approach, we first consider the block merging strategy in a completely
randomized fashion. In such a case there is a possibility that the constituent blocks (which
are merged to get a sensor node) may share common keys among themselves. This is a loss
in terms of the connectivity in the designed network as no shared key is needed since there
is no necessity for ‘intra-node communication’. Thus we further consider a merging strategy
towards minimizing the number of common keys among the blocks that are being merged.
We present a heuristic for this and it works better than our initial random merging strategy.
The scheme is a hybrid one as combinatorial design is followed by a heuristic.

The first section introduces the topic. In the next section, the different definitions and
results from Combinatorial Design are summarised. The main idea of [65] is also presented
in this section. The next section discusses our merging strategy and presents the important
mathematical results and theorems. After that, some heuristic improvements are suggested
along with extensive experimental results. A comparison between all these schemes is also
given. The key exchange protocol is described next followed by the conclusion and future

42



directions of research.

4.2 Our Strategy: Merging Blocks in Combinatorial

Design

4.2.1 Probability Model

Before we present our strategy, a few words on the probability model are in order.

Consider two nodes N1 and N2, each formed by merging z blocks. Each of these blocks
contain k keys. Since these blocks are taken from the TD(k, r), any two of these blocks have
either 0 or 1 key in common. Also note that the probability of any two blocks sharing a
common key is k

r+1
. Now let us concentrate on the number of common keys between N1 and

N2. It is easy to see that in one extreme case, each of the z blocks in N1 may have a key
in common with each of the z blocks in N2 and thus there could be totally z2 common keys
between N1 and N2. In the other extreme case, none of the z blocks in N1 may have a key
in common with any of the z blocks in N2 and thus there could be 0 common keys between
N1 and N2.

Let Bij be a discrete random variable defined as follows:

Bij = 1 if the ith block of N1 shares a common key with the jth block of N2

= 0 otherwise.

Also note that P (Bij = 1) = k
r+1

for all i, j where 0 ≤ i, j ≤ z.

We define another random variable X denoting the number of common keys between N1

and N2. It is defined as X =
z∑

i=0

z∑
j=0

Bij.

Hence X ∼ Bin(z2, k
r+1

).

4.2.2 Merging

We use the concept of merging blocks to form a sensor node. Initially we do not specify any
merging strategy and consider that blocks will be merged randomly. In this direction we
shall present a technical result. However, it is important to note that

Theorem 2 Consider a (v, b, r, k) configuration (resulting from the TD(k, r)) with b = r2.
We merge z many randomly selected blocks to form a sensor node. Then
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1. There will be N = b b
z
c many sensor nodes.

2. The probability that any two nodes share no common key is (1− p1)
z2

, where p1 = k
r+1

.

3. The expected number of keys shared between two nodes is z2p1.

4. Each node will contain M many distinct keys, where zk−
(

z
2

)
≤ M ≤ zk. The average

value of M is M̂ = zk −
(

z
2

)
k

r+1
.

5. The expected number of links in the merged system is

L̂ =

((
r2

2

)
−
⌊

r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

6. Each key will be present in Q many nodes, where d r
z
e ≤ Q ≤ r. The average value of

Q is

Q̂ = 1
kr

(
b b

z
c
) (

zk −
(

z
2

)
k

r+1

)
.

Proof : The first item is easy to see.

Since the blocks are merged randomly, any two sensor nodes will share no common key
if and only if none of the keys in z blocks constituting one sensor node are available in the
z blocks constituting the other sensor node. Thus there are z2 many cases where there are
no common keys. As we have considered random distribution in merging z blocks to form a
node, under reasonable assumption (corroborated by extensive simulation studies), all these
z2 events are independent. Note that p1 is the probability that two blocks share a common
key. Hence the proof of the second item.

The number of common keys between two nodes follows binomial distribution. The
probability that two nodes share i many common keys is given by

(
z2

i

)
pi

1(1−p1)
z2−i, 0 ≤ i ≤

z2. Thus the mean of the distribution is z2p1 which proves the third item.

For the fourth item, note that each block contains k many distinct keys. When z many
blocks are merged, then there may be at most

(
z
2

)
common keys among them. Thus the

number of distinct keys M per sensor node will be in the range zk −
(

z
2

)
≤ M ≤ zk. The

average number of common keys between two nodes is k
r+1

. So the average value of M is

zk −
(

z
2

)
k

r+1
.

Consider that z blocks are merged to form a node, i.e., given a (v = rk, b = r2, r, k)
configuration (resulting from the TD(k, r)) we get b r2

z
cmany sensor nodes. The total number

of links was
(

r2

2

)
k

r+1
before the merging of blocks. For each of the nodes (a node is z many

blocks merged together),
(

z
2

)
) k

r+1
many links become intra-node links and totally, there will

be a deduction of b r2

z
c
(

z
2

)
k

r+1
links (to account for the intra-node links) on an average. .
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s 1 2 3 4 5 6 7 8 9 10
fail(s) 0.019591 0.038799 0.057631 0.076093 0.094194 0.111940 0.129338 0.146396 0.163119 0.179515
Fail(s) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
Expt. 0.020406 0.040609 0.059986 0.078376 0.096536 0.117951 0.135109 0.151639 0.165508 0.184885

Table 4.1: Calculation of fail(s) and Fail(s).

Further as we use b r2

z
c many sensor nodes, we discard (r2 mod z) number of blocks, which

contribute to (r2 mod z)k many links. There will be a deduction for this as well. Thus the
expected number of links in the merged system is((

r2

2

)
−
⌊

r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

This proves the fifth item.

Note that a key will be present in r many blocks. Thus a key may be exhausted as
early as after being used in d r

z
e many sensor nodes. On the other hand a key may also be

distributed to a maximum of r many different nodes. Hence the number of distinct nodes Q
corresponding to each key is in the range d r

z
e ≤ Q ≤ r. Now we try to find out the average

value of Q, denoted by Q̂. Total number of distinct keys in the merged design does not

change and is also kr. Thus Q̂ = NM̂
kr

= 1
kr

(
b b

z
c
) (

zk −
(

z
2

)
k

r+1

)
. This proves the sixth item.

4.2.3 Calculating fail(s) when a block is considered as a node (no
merging)

The expression fail(s), the probability that a link become unusable if s many nodes are
compromised, has been approximately calculated in the following way in [65]. Consider that
there is a common secret key between the two nodes Ni, Nj. Let Nh be a compromised node.
Now the key that Ni, Nj share is also shared by r−2 other nodes. The probability that Nh is
one of those r−2 nodes is r−2

b−2
. Thus the probability that compromise of s many nodes affect

a link is approximately 1− (1− r−2
b−2

)s. Given the design (v = 1470, b = 2401, r = 49, k = 30)
and s = 10, fail(10) ≈ 0.17951.

We calculate this approximate expression in a little different manner, which is better than
the one described above. Given b = r2 many nodes, the total number of links is

(
r2

2

)
k

r+1
.

Now compromise of one node reveals k many keys. Each key is repeated in r many nodes,
i.e., it is being used in

(
r
2

)
many links. Thus if one key is revealed, it disturbs the following

proportion of links: (
r
2

)(
r2

2

)
k

r+1

=
1

kr
.
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Now s many nodes contain ks−
(

s
2

)
k

r+1
many distinct keys on an average. This is because

there are
(

s
2

)
many pairs of nodes and a proportion of k

r+1
of them will share a common key.

Thus, in our calculation, on an average

Fail(s) =
ks−

(
s
2

)
k

r+1

kr
=

s

r
(1− s− 1

2(r + 1)
).

Note that to distinguish the notation we use Fail(s) instead of fail(s) in [65]. Considering
the design (v = 1470, b = 2401, r = 49, k = 30), we tabulate the values of fail(s), Fail(s) and
experimental data (average of 100 runs for each s) regarding the proportion of links that
cannot be used after compromise of s many nodes. The results look quite similar. However,
it may be pointed out that our approximation is in better conformity with the experimental
values (see Table 4.1) than that of [65], which looks a bit underestimated.

4.2.4 Calculation of Fail(s) when more than one blocks are
merged

Let Na and Nb be two given nodes. Define two events E and F as follows:

1. E: Na and Nb are disconnected (i. e., Na and Nb do not share a valid common key)
after the failure of s nodes,

2. F : Na and Nb were connected before the failure of those s nodes.

The sought for quantity is

Fail(s) = P (E|F ) =
P (E

⋂
F )

P (F )
.

Let X be the random variable denoting the number of keys between Na and Nb and following
the proof of Theorem 2(2), we assume that X follows B

(
z2, k

r+1

)
. Thus,

P (F ) = P (X > 0) = 1− P (X = 0) = 1−
(

1− k

r + 1

)2

.

Next define two sets of events:

1. E1i: i number of keys (shared between Na and Nb) are revealed consequent upon the
failure of s nodes,

2. E2i : i number of keys are shared between Na and Nb.
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Let Ei = E1i

⋂
E2i for i = 1, 2, . . . , z2. So, Ei

⋂
Ej = ∅ for 0 ≤ i 6= j ≤ z2. As E

⋂
F =

z2⋃
i=1

Ei, we have P (E
⋂

F ) = P

(
z2⋃
i=1

Ei

)

=
z2∑
i=1

P (Ei) =
z2∑
i=1

P (E1i|E2i)P (E2i) and also

P (E2i) =
(

z2

i

)(
k

r+1

)i(
1− k

r+1

)z2−i
.

Now we estimate P (E1i|E2i) by hypergeometric distribution. Consider the population
(of keys) of size kr and γ number of defective items (the number of distinct keys revealed).
We shall draw a sample of size i (without replacement) and we are interested in the event
that all the items drawn are defective.

Note that γ is estimated by the average number of distinct keys revealed, i.e., γ =

szk
(
1− sz−1

2(r+1)

)
. So P (E1i|E2i) =

(γ
i)

(kr
i )

, i = 1, 2, . . . , z2.

Finally P (E|F ) = P (E
⋂

F )
P (F )

=

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i

1−(1− k
r+1)

2 .

The estimate γ is a quadratic function of s and hence is not an increasing function
(though in reality, it should be an increasing function of s ∀s). That is why Fail(s) increases

with s as long as γ increases with s. Given γ = szk
(
1− sz−1

2(r+1)

)
, it can be checked that

γ is increasing for s ≤ 2r+3
2z

. As we are generally interested in the scenarios where a small
proportion of nodes are compromised, this constraint on the number of compromised nodes
s is practical.

s 1 2 3 4 5 6 7 8 9 10
Fail(s) (Th 4) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
Fail(s) (Th 3) 0.022167 0.044369 0.066527 0.088560 0.110385 0.131917 0.153069 0.173756 0.193891 0.213388
Expt.(random) 0.022987 0.045345 0.068904 0.090670 0.114853 0.135298 0.158633 0.181983 0.203342 0.222167

Expt.(heuristic) 0.022595 0.044146 0.067136 0.091243 0.112162 0.133693 0.157884 0.178895 0.200226 0.219273

Table 4.2: Calculation of Fail(s) in case of nodes which are merging of more than one blocks.

Based on the above discussion, we have the following theorem.

Theorem 3 Consider a (v, b, r, k) configuration resulting from the TD(k, r). A node is
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created by random merging of z many blocks. For s ≤ 2r+3
2z

,

Fail(s) ≈

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i

1−
(
1− k

r+1

)2 ,

where γ = szk
(
1− sz−1

2(r+1)

)
.

It may be mentioned that while estimating P (E1i|E2i) by
(γ

i)
(kr

i )
, we are allowing a higher

quantity in the denominator. The number of distinct keys revealed is under the restric-
tion that the keys are distributed in s distinct blocks. However, the denominator is the
expression for choosing i number of distinct keys from a collection of kr keys without any re-
striction. As a consequence, the resulting probability values will be under estimated, though
the experimental results reveal that the difference is not significant at all (see Table 4.2).

Note that in Theorem 3, there is a restriction on s. Next we present another approxima-
tion of Fail(s) as follows where such a restriction is not there. However, the approximation
of Theorem 4 is little further than that of Theorem 3 from the experimental results (see
Table 4.2).

Theorem 4 Consider a (v = kr, b = r2, r, k) configuration resulting from the TD(k, r). A
node is formed by merging z > 1 blocks. Then in terms of design parameters, Fail(s) ≈

1

1− (1− k
r+1

)z2

z2∑
i=1

(
z2

i

)
(

k

r + 1
)i(1− k

r + 1
)z2−iπi,

where, π = szk(1− sz−1
2(r+1)

) Q̂(Q̂−1)

2L̂
.

Proof : Compromise of one node reveals M̂ many keys on an average. Thus there
will be sM̂ many keys. Further, between any two nodes, z2 k

r+1
keys are common on an

average. Thus we need to subtract
(

s
2

)
z2 k

r+1
many keys from sM̂ to get the number of

distinct keys. Thus the number of distinct keys in s many merged nodes is = sM̂−
(

s
2

)
z2 k

r+1
=

s(zk −
(

z
2

)
k

r+1
)−

(
s
2

)
z2 k

r+1
= szk(1− sz−1

2(r+1)
).

We have N = b b
z
c many sensor nodes and L̂ = (

(
r2

2

)
− b r2

z
c
(

z
2

)
) k

r+1
− (r2 mod z)k many

average number of total links. Each key is repeated in Q̂ many nodes on an average, i.e., it

is being used in Q̂(Q̂−1)
2

many links. Thus if one key is revealed that disturbs Q̂(Q̂−1)

2L̂
many
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links on an average. Hence compromise of 1 key disturbs
Q(Q−1)

2

L̂
proportion of links. Hence,

compromise of s nodes disturbs π = szk(1− sz−1
2(r+1)

) Q̂(Q̂−1)

2L̂
proportion of links on an average.

Thus we can interpret π as the probability that one link is affected after compromise of s
many merged nodes.

Now the probability that there are i many links between two nodes given at least one
link exists between them is 1

1−(1− k
r+1

)z2

(
z2

i

)
( k

r+1
)i(1 − k

r+1
)z2−i. Further the probability that

all those i links will be disturbed due to compromise of s nodes is πi. Hence Fail(s)

= 1

1−(1− k
r+1

)z2

z2∑
i=1

(
z2

i

)
(

k

r + 1
)i(1− k

r + 1
)z2−iπi.

The following example illustrates our approximations vis-a-vis the experimental results.
Consider a (v = 101 · 7, b = 1012, r = 101, k = 7) configuration (resulting from the
TD(7, 101)) and merging of z = 4 blocks to get a node. Thus there will be 2550 many nodes.
In such a situation we present the proportion of links disturbed if s many (1 ≤ s ≤ 10) nodes
are compromised, i.e., this can also be seen as the probability that two nodes get discon-
nected which were connected earlier (by one or more links). In Table 4.2 we present the
values that we get from Theorem 4, Theorem 3 and also experimental results which are the
average of 100 runs.

4.2.5 Comparison with the Lee-Stinson Approach

Comparison our our [65]
Section 4.2.2 Section 4.3

Number of nodes 2550 2550 2401
Number of keys per node ≤ 28 28 30

Prob(two nodes don’t share a common key) 0.320555 0.309916 0.4
Fail(s) 0.222167 0.219273 0.185714

Table 4.3: Comparison with an example presented in [65]

In the example presented in [65], the design (v = 1470, b = 2401, r = 49, k = 30) has
been used to get N = 2401, M = 30, Q = 49, p1 = 0.6, 1− p1 = 0.4.

Now we consider the design (v = 101 · 7 = 707, b = 1012 = 10201, r = 101, k = 7). Note
that in this case p1 = k

r+1
= 7

102
. We take z = 4. Thus N = b10201

4
c = 2550. Further the

probability that two nodes will not have a common key is (1− 7
102

)16 = 0.32061. Note that
this is considerably lesser (better) than the value 0.4 presented in [65] under a situation where

49



the number of nodes is greater (2550 > 2401) and number of keys per node is lesser (28 < 30)
in our case. Thus our strategy is clearly more efficient than that of [65] in this aspect. On
the other hand, the Fail(s) value is worse in our case than what has been achieved in [65]. In
Table 4.3, for our approaches, we present the experimental values which are average over 100
runs. For the time being let us concentrate on the comparison between our contribution in
this section (Section 4.2.2) and the idea presented in [65]. In the next section (Section 4.3),
we will present a better idea and the result of that is also included in Table 4.3 for brevity.

The comparison in Table 4.3 is only to highlight the performance of our design strategy
with respect to what is described in [65] and that is why we present a design with average
number of common keys between any two nodes ≤ 1. However, we will present a practical
scenario in the next subsection where there are more number (≥ 5) of common keys (on
an average) between any two nodes and consequently the design achieves much less Fail(s)
values.

One more important thing to mention is that we consider the average case analysis for
our strategy. The worst case situation will clearly be worse than the average case, but that is
not of interest in this context as we will first try to get a merging configuration which is close
to the average case. As this is done in preprocessing stage, we may go for more than one
attempts for the configuration and it is clear that in a few experiments, we will surely get a
configuration matching the average case result. On the other hand, it is very important to
identify the best case as this will provide a solution better than the average case. However,
this is open at this point of time.

The strength of our scheme is in the presence of several common keys between two nodes,
which in fact makes it more resilient. Of course, this is at the cost of an obvious increase
in number of keys in each node by a factor of z. The example presented in Subsection 4.2.5
and Subsection 4.2.6 illustrate this fact. In Subsection 4.2.5, we deliberately allowed a very
low number of common keys (so that the node size is comparable to that of [65]) and hence
the negative resiliency measure Fail(s) increased slightly. In what follows, we demonstrate
that with an increase in the node capacity, the negative resiliency measure Fail(s) assumes
a negligible value.

4.2.6 A Practical Design with More than one Key (on Average)
Shared Between two Nodes

We start with the idea that a node can contain 128 keys and as we like to compare the
scenario with [65], we will consider the number of sensor nodes ≥ 2401, as it has been used
in the examples in [65].

Consider a (v = rk, b = r2, r = 101, k = 32) configuration resulting from the TD(32, 101).
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If one merges z = 4 blocks (chosen at random) to construct a node, the following scheme is
obtained (refer to Theorem 2, 3).

1. There will be
⌊

10201
4

⌋
= 2550 sensor nodes.

2. The probability that two nodes do not share a common key is approximately(
1− 32

102

)16
= 0.0024.

3. Expected number of keys shared between two nodes = 16·32
102

≥ 5.

4. Each node will contain on an average M̂ = 4 × 32 −
(
4
2

)
32
102

≈ 126 many distinct keys
and at most 128 many keys.

5. Fail(10) = 0.019153 ≈ 2% and Fail(25) = 0.066704 ≈ 7%.

This example clearly uses more keys (≤ 128) per sensor node than the value 30 in
the example of [65]. Note that directly from a (v, b, r, k) configuration (resulting from the
TD(k, r)), it is not possible to have k > r. However, in a merged system that is always
possible. Moreover, the average number of keys shared between any two nodes is ≈ 5. It is
not easy to get a combinatorial design [97] to achieve such a goal directly. This shows the
versatility of the design proposed by us.

4.3 A Heuristic: Merging Blocks attempting to mini-

mize the number of intra node common keys

So far we have used the concept of merging blocks to form a sensor node without any
constraints on how the blocks will be chosen to form a node. Now we add the constraint
that the blocks that will be merged to form a node will not have any common key among
themselves. For this we present the following heuristic. Before we present the heuristic, we
shall need another definition.

Define a move as follows:

1. From the list of pairs of nodes sharing maximum number of common keys, select one
pair of nodes randomly. Call them a and b.

2. From the list of pairs of nodes sharing no common key, select one pair of nodes ran-
domly. Call them c and d.
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3. Select one block each from a and b and remove them such that the removed blocks
intersect each other and a and b are still connected upon their removal. Let the removed
blocks be α and β respectively.

4. select one block each from c and d and remove them. Let the removed blocks be γ and
δ respectively.

5. Put γ in a, δ in b, α in c and β in d.

6. Update the adjacency matrix and record the increase in connectivity.

7. Undo the above changes.

Heuristic :

1. flag = true; count = 0; all the blocks are marked as unused;

2. an array node[. . .] is available, where each element of the array can store z many blocks;

3. while(flag){

(a) choose a random block, mark it as used and put it in node[count];

(b) for (i = 1; i < z; i + +){
i. search all the unused blocks in random fashion and put the first available one

in node[count] which has no common key with the existing blocks already in
node[count];

ii. mark this block as used;

iii. if such a block is not available then break the for loop and assign flag = false;

(c) } (end for)

(d) if flag = true then count = count + 1;

4. } (end while)

5. report that count many nodes are formed such that there is no intra node connectivity.

6. for rest of the (r2 − count · z) many blocks, merge z blocks randomly to form a node
(they may have intra node connectivity) to get (b r2

z
c− count) many extra nodes. This

constitutes the initial configuration.

7. Calculate the adjacency matrix.
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8. Make 1000 moves in succession, choose the one that gives rise to the maximum increase
in connectivity and make the corresponding change in the configuration. Call it an
iteration.

9. Perform 1000 such iterations.

In one of the earlier experiments, we have considered only up to step 5 of Heuristic 4.3 [18].
It is very clear that given (v, b, r, k) configuration (resulting from the TD(k, r)) with b = r2,
if one merges z many blocks to get each node then the maximum possible nodes that are
available could be N ≤ b b

z
c. However, it is not guaranteed that given any configuration one

can really achieve the upper bound b b
z
c with the constraint that the blocks constituting a

node can not have any common key among themselves. Using Heuristic 4.3 up to step 5,
one can use all the blocks in some cases, but sometimes it may not be possible also.

The following example illustrates the experimental results and we show that using this
technique we get better (lower) Fail(s) value than Section 4.2.2 as evident from the last row
of Table 4.2. Consider a (v = 101 · 7, b = 1012, r = 101, k = 7) configuration (resulting
from the TD(7, 101)) and merging of z = 4 blocks to get a node. Thus there will be 2550
many nodes. In such a situation we present the proportion of links disturbed if s many
(1 ≤ s ≤ 10) nodes are compromised, i.e., this can also be seen as the probability that two
nodes get disconnected which were connected earlier (by one or more links).

4.3.1 Experimental Results with this Heuristic

Let us refer to Table 4.3 for the comparison. As usual, we consider the (v = 101 · 7 =
707, b = 1012 = 10201, r = 101, k = 7) configuration (resulting from the TD(7, 101)) to
attain a comparable design after merging. Note that in this case p1 = k

r+1
= 7

102
. We

take z = 4. Thus N = b10201
4
c = 2550. Considering the binomial distribution presented

in Theorem 2(3), the theoretical probability that two nodes will not have a common key is
(1 − 7

102
)16 = 0.32061. Experimentally with 100 runs we find the average value as 0.309916

which is less (better) than the theoretically estimated value and also the experimental value
0.320555 as explained in Section 4.2.2 under the same experimental set up. Note that this is
considerably lesser than the value 0.4 presented in [65]. The average number of common keys
between any two nodes is z2p1 = z2 k

r+1
= 16 7

102
= 1.098039. Experimentally with 100 runs

we get it as 1.098362 on an average which is a higher (improved) value than the theoretical
estimate and also the experimental value 1.098039 as given in Section 4.2.2 under the same
experimental set up. Further note that the last row of the Table 4.2 provides better (lesser)
Fail(s) values available from the heuristic than the random search.
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s 1 2 3 4 5 6 7 8 9 10
Fail(s) 0.000724 0.001763 0.003050 0.004643 0.006612 0.008495 0.011694 0.013063 0.017261 0.019339

Table 4.4: Experimental Fail(s) values.

4.3.2 More Keys Shared Between Two Nodes

As in Subsection 4.2.6, consider a (v = rk, b = r2, r = 101, k = 32) configuration (result-
ing from the TD(32, 101)). If one merges z = 4 blocks to construct a node according to
Heuristic 4.3, the following scheme is obtained.

1. There are
⌊

10201
4

⌋
= 2550 many sensor nodes.

2. The probability that two nodes do not share a common key is approximately(
1− 32

102

)16
= 0.002421. The experimental value on an average is 0.002094 with 100

runs which is lesser (better) than the theoretically estimated value.

3. Expected number of keys shared between two nodes = 16·32
102

≥ 5.019608. The experi-
mental value with 100 runs is 5.021080 on an average, little better than the theoretically
estimated value.

In Table 4.4 we present the experimental value for Fail(s), where we take the average
over 100 runs for each s.

4.4 Key Exchange

In this section, we present the key exchange protocol between any two nodes. First we present
the key exchange protocol (as given in [65]) between two blocks Na, Nb having identifiers
(a1, a2) and (b1, b2) respectively. We take a (v = kr, b = r2, r, k) configuration (resulting from
the TD(k, r)). Thus the identifier of a block is a tuple (a1, a2) where a1, a2 ∈ {0, . . . , r − 1}
and the identifier of a key is a tuple (k1, k2) where k1 ∈ {0, . . . , k − 1}, k2 ∈ {0, . . . , r − 1}.

Algorithm 1

1. Consider two blocks Na, Nb having identifiers (a1, a2) and (b1, b2) respectively.

2. if a1 = b1 (and hence a2 6= b2), then Na and Nb do not share a common key.

3. else x = (b2 − a2)(a1 − b1)
−1 mod r. If 0 ≤ x ≤ k − 1, then Na and Nb share the

common key having identifier (x, a1x + a2). If x ≥ k, then Na and Nb do not share a
common key.
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They can independently decide whether they share a common key in O(log2
2 r) time as

inverse calculation is used [95, Chapter 5].

In the proposed system, a node comprises of z number of blocks. Since each block has
an identifier (which is an ordered pair (x, y) ∈ Zr × Zr), a node in the merged system has z
number of such identifiers which is maintained in a list.

Algorithm 2

1. for the tth block in the node Na, t = 1, . . . , z

(a) send the identifier corresponding to the tth block to the other node Nb;

(b) receive an identifier corresponding to a block in Nb;

(c) compare the received identifier from Nb with each of the z identifiers in it (i.e.,
Na) using Algorithm 1;

(d) if a shared key is discovered acknowledge Nb and terminate;

(e) if an acknowledgment is received from Nb that a shared key is discovered then
terminate;

2. report that there is no shared key;

Since Na and Nb participate in the protocol at the same time, the above algorithm is
executed by Na and Nb in parallel. There will be O(z) amount of communications between
Na and Nb for identifier exchange and the decision whether they share a common key. At
each node at most z2 many inverse calculations are done (each identifier of the other node
with each identifier of the node), which gives O(z2 log2

2 r) time complexity.

4.5 Conclusion and Future Research

In this chapter, we first present a randomized block merging strategy in proposing a key pre-
distribution scheme for secure communication among the sensor nodes. Our idea presents
a departure from the usual combinatorial design in the sense that the designs are readily
available according to user requirements. Our merging strategy results into schemes that are
not directly available from combinatorial designs.

Our main target is to get more than one common keys among any pair of nodes that
provides a robust network in terms of security under adversarial conditions where some nodes
may get compromised. We present detailed mathematical analysis in presenting our results
with supporting experimental data.
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Next we present a heuristic improvement of the basic randomized block merging strategy.
In this case we present a strategy for merging blocks in a (v, b, r, k) configuration (resulting
from the TD(k, r)) in such a manner that the blocks constituting a node will not share any
common key among themselves. This provides better parameters than our basic design.

It will be interesting to regularize the key pre-distribution after random merging. In the
strategy presented in this chapter, the number of common keys between any two nodes follow
binomial distribution. Thus, there is a probability (though very low) that there may be no
common key between two nodes (for the time being, to get around this difficulty, two nodes
can always communicate via an intermediate node with almost certainty). It looks promising
to apply more sophisticated heuristic re-arrangement of blocks among the nodes available
after the merging so that the number of common keys between any two nodes becomes more
or less constant and always ≥ 1.
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Chapter 5

Clique Size in Sensor Networks with
Key Pre-distribution Based on
Transversal Design

5.1 Introduction

A sensor node is a small, inexpensive and resource constrained device that operates in RF
(radio frequency) range. It has limitations in different aspects such as communication, com-
putation, power and storage. A DSN (distributed sensor network) is an ad-hoc network
consisting of sensor nodes. The sensor nodes are often deployed in an uncontrolled envi-
ronment where they are expected to operate unattended. In many situations, the DSN is
also very large. In either case, though one might try to control the density of deployment,
the only deployment option is to randomly scatter the nodes to cover the target area. The
consequence is that the location or topology is not available prior to deployment.

Given the various limitations, the security of the DSN hinges on efficient key distribution
techniques. Even with the present day technology, public key crypto-systems are considered
too computation intensive for DSNs and typically a DSN establishes a secure network by
the use of pre-distributed keys. The following four metrics are often used to evaluate key
pre-distribution solutions.

1. Scalability: The distribution must allow post-deployment increase in the size of net-
work.

2. Efficiency:

(a) Storage: Amount of memory required to store the keys.
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(b) Computation: Number of cycles needed for key establishment.

(c) Communication: Number of messages exchanged during the key
generation/agreement phase.

3. Key Connectivity (probability of key share): The probability that two nodes
share one/more keys should be high.

4. Resilience: Even if a number of nodes are compromised, i.e., the keys contained
therein are revealed, the complete network should not fail, i.e., only a part of the
network should be affected.

One of the challenges in DSNs is to find efficient algorithms to distribute the keys to
sensor nodes before they are deployed. The solutions may be categorized as follows:

1. Probabilistic: The keys are randomly chosen from a given collection of keys and
distributed to the sensor nodes.

2. Deterministic: The key distribution is obtained as the output of some deterministic
algorithm.

3. Hybrid: A combination of deterministic and probabilistic approaches.

A trivial (and obvious) deterministic solution to the problem is to put the same key in
all the nodes. However, the moment a single node is compromised, the network fails. To
guard against such a possibility, one can think of using distinct keys for all possible pair of
nodes in the DSN. The very good resilience notwithstanding, the solution is not viable for
even networks of moderate size due to the limited storage capacity of the nodes. If there are
N nodes, then there will be

(
N
2

)
keys in total and each node must have N − 1 many keys.

It is not possible to accommodate N − 1 many keys in a node given the current memory
capacity of sensor hardware when N is moderately large, say ≥ 500.

Let us now briefly refer a few state of the art key pre-distribution schemes. The well
known Blom’s scheme [4] has been extended in recent works for key pre-distribution in wire-
less sensor networks [31, 64]. The problem with these kinds of schemes is the use of several
multiplication operations (as example see [31, Section 5.2]) for key exchange. The random-
ized key pre-distribution is another strategy in this area [34]. However, the main motivation
is to maintain a connectivity (possibly with several hops) in the network. As an example [34,
Section 3.2], a sensor network with 10000 nodes has been considered and to maintain the
connectivity, it has been calculated that it is enough if one node can communicate with only
20 other nodes. Note that the communication between any two nodes may require a large
number of hops. However, only the connectivity criterion (with too many hops) may not
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suffice in an adversarial condition. Further in such a scenario, the key agreement between
two nodes requires exchange of the key indices. The use of combinatorial and probabilistic
design (also a combination of both – termed as hybrid design) in the context of key distri-
bution has been proposed in [12]. In this case also, the main motivation was to have low
number of common keys.

In [65] transversal design (see Subsection 3.4 for more details) has been used where the
blocks correspond to the sensor nodes. In our recent works [17, 18], we have proposed to
start from a combinatorial design and then apply a probabilistic extension in the form of
random merging of blocks to form the sensor nodes and in this case there is good flexibility in
adjusting the number of common keys between any two nodes. In our earlier works [17, 18],
we dealt with the cases of (i) unconstrained random merging of blocks and (ii) random
merging of blocks with the restriction that the nodes are composed of disjoint blocks (do not
share common keys among themselves). The computation to find out a shared key under this
framework is of very low time complexity [17, 18, 65], which basically requires calculation
of the inverse of an element in a finite field. That is the reason this kind of design becomes
popular for application in key pre-distribution.

In the domain of distributed computing, the nodes forming a complete graph is an “ideal
situation.” As mentioned earlier, one gains a lot in terms of resilience. Moreover, the commu-
nication complexity decreases because fewer messages are exchanged between the nodes in
order to generate/agree upon a key. In such a scenario, there is no question of “multi-hop”
paths and since there is a unique key shared between any two nodes, the computational
complexity decreases as well.

Thus, in a DSN, it is important to study the subset of nodes (clique, in graph theoretic
terminology) that are connected to each other. By connectivity of two nodes we mean that
the nodes share one or more common secret key(s) for secure communication. In this chapter,
we study the basic combinatorial designs [65] and their extensions in terms of merging [17, 18]
to estimate the cliques of maximum size. We show that if one uses a (v = rk, b = r2, r, k)
configuration (resulting from the TD(k, r)), where each block corresponds to a node [65],
then the maximum clique size is r =

√
b. We also study the extension of the basic design

where a few blocks are merged to get a node [17, 18] and show that in such a strategy the
clique size becomes considerably larger than what is available in the basic design [65].

5.2 Analysis of Clique Sizes

First we study the maximum clique size where the (v = rk, b = r2, r, k) configuration (re-
sulting from the TD(k, r)) is used and each block in the design corresponds to a sensor node,
which is the idea proposed in [65].
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Theorem 5 Consider a DSN with b many nodes constructed from a (v = rk, b = r2, r, k)
configuration (resulting from the TD(k, r)). The maximum clique in this case is of size r.

Proof : First we prove that there is a clique of size r. It is known that a key is repeated
in r many different blocks. Fix a key. Thus, there are r many distinct blocks which are
connected to each other by the fixed key. Hence there is a clique of size r.

Now we prove that there is no clique of size r + 1, because that will rule out the possi-
bility of cliques of larger size. Let there be a clique of size r + 1. Note that the (v, b, r, k)
configuration results from TD(k, r) (see Subsection 3.4). In this case each block is identified
by two indices (i, j), 0 ≤ i, j ≤ r− 1. Further two blocks having same value of i (i.e., in the
same row) can’t have a common key. The moment one chooses r + 1 blocks, at least two of
the blocks must be from the same row (by pigeon hole principle as there are at most r many
rows) and are disjoint, which is a contradiction to the basic assumption of a clique having
size r + 1.

It should be observed that the clique size r is exactly the square-root of the number of
nodes b = r2. Note that in such a case two nodes/blocks either share a common secret
key or not. Consider the graph with b2 many nodes/vertices where each block corresponds
to a node. Now two vertices are connected by an edge if they share a common secret key,
otherwise they are not connected. Now a block contains k many distinct keys. For each key,
a clique of size r is formed. Thus a vertex/node in this graph participates in k many cliques
each of size exactly r.

Given two keys, which never occur together in the same block, will form cliques which
are completely disjoint. On the other hand, two keys may occur together at most in a single
block. In such a case, the two different cliques generated by them can intersect on a single
node/vertex corresponding to the block that contains both the keys.

5.2.1 The Merging Approach

To overcome certain restrictions in the strategy provided in [65] (explained in the previous
subsection), we have provided a strategy to merge certain blocks to construct a sensor node
in chapter 4. The basic idea is to start from a (v = rk, b = r2, r, k) configuration (resulting
from the TD(k, r)). Then we merge z many blocks to form a single sensor node. Thus the
maximum number of sensor nodes available in such a strategy is b r2

z
c. We have studied a

random merging strategy in section 4.2.2, where randomly chosen z many blocks are merged
to get a sensor node. In such a scenario, we found that the number of common keys among
any two nodes approximately follows the binomial distribution B(z2, k

r+1
)). The expected

number of common secret keys among any two nodes is z2k
r+1

(see theorem 2). It has been
shown that this strategy provides favourable results compared to [65]. Note that in section
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4.2.2, the blocks are merged randomly. So it may happen that the blocks being merged may
have common secret key(s) among themselves. This is actually a loss, since we really do
not need a common key among the blocks that are merged to get a single node. Hence, in
section 4.3, we improved the strategy such that only disjoint blocks are merged to construct
node. This provides little better parameters compared to what is given in section 4.2.2. In
this chapter, we will show that our strategy given in section 4.2.2 and section 4.3 provides
better clique size than that of the design presented in [65].

Now we concentrate on the cliques where blocks are merged to get a node as described

in sections 4.2.2 and 4.3. It is worth mentioning that the number of blocks is
⌊

r2

z

⌋
in this

case. From [17, Theorem 1], each key will be present in Q many nodes, where average value
of Q is Q̂ = 1

kr

(⌊
b
z

⌋) (
zk −

(
z
2

)
k

r+1

)
≈ r. So cliques of size ≈ r are available in the design

where merging strategy is employed.

We like to highlight that the value of z is much less than r (as example, r = 101, z = 4)
though it is not a serious restriction in the proof of our results in the following discussion.

Thus we like to point out the following improvement in the merging strategy over the
basic technique.

1. In the basic design, there are r2 many nodes (each block corresponds to a sensor node)
and the maximum clique size is r.

2. Using the merging strategy, there are
⌊

r2

z

⌋
many nodes (z many blocks are merged to

get a sensor node) and the maximum clique size is ≈ r. Thus there is an improvement
by a factor of

√
z in the size of clique.

Let us present some examples to illustrate the comparison. The design (v = 1470, b =
2401, r = 49, k = 30) has been used as an example in [65]. Hence there are 2401 nodes
and the largest clique size is 49. Now consider a (v = 101 · 7, b = 1012, r = 101, k = 7)
configuration (resulting from the TD(7, 101)) and merging of z = 4 blocks to get a node.
Thus there will be 2550 (we take this value as it is comparable to 2401) many nodes. We
have cliques of size ≈ 101 on an average, which shows the improvement.

Next we provide a more improved result by increasing the clique size beyond r. We
present a merging strategy where one can get a clique of size r + z − 1 ≥ r for z ≥ 1. The
result is as follows.

Theorem 6 Consider a (v, b, r, k) configuration (resulting from the TD(k, r)) with b = r2.
We merge z many blocks to form each node in achieving a DSN having N = b b

z
c many sensor

nodes. Then there exists an initial merging strategy which will always provide a clique of size
r + z − 1.

61



Proof : Let’s denote the nodes by ν1, ν2, . . .. Initially choose the first column of the
TD(k, r) and place the r blocks (indexed by (i, 0) for 0 ≤ i ≤ r − 1) successively to fill up
the first slot (out of the z slots) of the first r nodes ν1, ν2, . . . , νr. That will obviously yield
a clique of size r as any two blocks in a specific column always share a common key.

The rest of the available blocks will always be traversed in column-wise manner. That is
the next available block is now the one indexed by (0, 1). Let us refer to the next available
block by (i, j) for the rest of the present discussion. Once a block is used, we apply the update
function on its index to get the next available node. Update (i, j) to ((i + 1) mod r, j + δ),
where δ = 0, if i < r − 1 and δ = 1 when i = r − 1.

We go on adding new nodes for t = 1 to z − 1 to generate a clique of size r + z − 1 at
the end.

To add a new node νr+t, proceed as follows. Choose the first available block (i, j) and
put it in νr+t. Place the next available blocks in ν1, ν2, . . . , νk as long as i ≤ r − 1. After
using the last element of current column, the update function provides the first block of the
next column. In that case, we add this new block (0, j) to the node νr+t. Then again the
next available blocks are put into the nodes νk+1, νk+2, . . . , in the similar manner. Once the
blocks in that column gets exhausted, we again add the first block of the next column to
νr+t and the following blocks to the nodes as long as we reach νr+t−1. Thus it is clear that
all the nodes ν1, . . . , νr+t−1 are connected to νr+t increasing the size of the clique by 1.

In this strategy, the value of t is bounded above by z − 1 as otherwise the number of
blocks in a node will increase beyond z . The remaining blocks will be arranged randomly

to have z blocks in each node to get
⌊

r2

z

⌋
many nodes in completing the merging strategy.

Now we present an example corresponding to the strategy presented in Theorem 6.

Example 3 Consider the TD(k, r = 5). Let z = 2. Consider the 52 blocks of the TD
arranged in the form of a 5 × 5 matrix. If we adopt the strategy outlined in the proof
of Theorem 6, initially, the following clique is obtained: ν1 → {(0, 0)}, ν2 → {(1, 0)},
ν3 → {(2, 0)}, ν4 → {(3, 0)}, ν5 → {(4, 0)}. Next (0, 1) is put in the new node ν6 and
then (1, 1) is added to ν1, (2, 1) is added to ν2, (3, 1) is added to ν3, (4, 1) is added to ν4.
As the second column gets exhausted, (0, 2) is added to the new node ν6 and then (1, 2) is
added to ν5. Thus we get, ν1 → {(0, 0), (1, 1)}, ν2 → {(1, 0), (2, 1)}, ν3 → {(2, 0), (3, 1)},
ν4 → {(3, 0), (4, 1)}, ν5 → {(4, 0), (1, 2)}, ν6 → {(0, 1), (0, 2)} and they form a clique of size
6.

Next we observe that the clique size we present in Theorem 6 is not the maximum
achievable one. One can indeed find a different merging strategy that provides a clique of
larger size. Here is an example.

Example 4 Taking a different arrangement compared to Example 3, we get a clique of
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size 7 as follows: ν1 → {(0, 0), (2, 1)}, ν2 → {(1, 0), (3, 1)}, ν3 → {(2, 0), (4, 1)}, ν4 →
{(3, 0), (0, 2)}, ν5 → {(4, 0), (1, 2)}, ν6 → {(0, 1), (2, 2)}, ν7 → {(1, 1), (3, 2)}.

Thus it will be interesting to devise a merging strategy which will provide the largest
clique size when the (v, b, r, k) configuration (resulting from the TD(k, r)) and z are fixed.

Theorem 7 Consider a (v, b, r, k) configuration (resulting from the TD(k, r)) with b = r2.
We merge z many blocks to form each node in achieving a DSN having N = b b

z
c many sensor

nodes. Then there exists an initial merging strategy which will always provide a clique of size
2r −

(⌈
r
z

⌉)
.

Proof : Let the nodes forming the clique be ν1, ν2, · · · , νr+t. Each node has z number of
empty slots. These slots are to be filled up by the properly chosen blocks. The TD may be
considered as a r×r matrix filled with the values 0 to r2−1. The value at the (i, j)th position
of the matrix is i · r + j and that entry is used as an identification of the corresponding block
in the TD. We try to form a clique with r + t nodes, t < r. The value of t will be clearer as
we go through the proof.

A column in the matrix (corresponding to the TD) is chosen first and the r blocks are
placed one by one in r blank nodes, viz., ν1, ν2, · · · , νr. As all the blocks in the same column
share the same secret key, the nodes ν1, ν2, · · · , νr form a clique.

Then another column is chosen and the blocks are placed in the next t nodes, one each. In
other words, the blocks are put in the nodes νr+1, νr+2, · · · , νr+t and they form a clique among
themselves. The rest r − t blocks are added in the first r − t nodes, viz., ν1, ν2, · · · , νr−t (in
the second slot). Thus each of ν1, ν2, · · · , νr−t gets connected to each of νr+1, νr+2, · · · , νr+t.

In a similar fashion, the third column is chosen and the blocks are placed in νr+1, νr+2, · · · ,
νr+t, one each (in the second slot). The rest r − t blocks are placed in νr−t+1, νr−t+2, · · · ,
νr−t+r−t (in the second slot). Thus each of νr−t+1, νr−t+2, · · · , νr−t+r−t gets connected to each
of νr+1, νr+2, · · · , νr+t.

We will continue the above process as long as the second slots of the first r nodes are
eventually filled up. However, the continuation can be performed at most z many times as a
node may accommodate at most z blocks. Each time r− t new nodes are connected out of a
target of r nodes. Thus, in order to complete the above process, we must have r ≤ z(r− t),
t ≤ r − d r

z
e.

Example 5 The technique in Theorem 7 outputs cliques of size r + t where t = r − (d r
z
e).

Let us consider r = 5 and z = 2 as in the previous examples. This technique outputs a clique
of size 5 + t where t = 5− (d5

2
e) = 2, i.e., we get a clique of size 7.

The technique constructs the clique as follows:
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ν1 → {(0, 0), (3, 1)}, ν2 → {(1, 0), (4, 1)}, ν3 → {(2, 0), (3, 2)},
ν4 → {(3, 0), (4, 2)}, ν5 → {(0, 1), (0, 2)}, ν6 → {(1, 1), (1, 2)},
ν7 → {(2, 1), (2, 2)},

Note that in the basic (v, b, r, k) configuration (resulting from the TD(k, r)) or after
our merging strategy, the size of cliques are not dependent on the number of keys in each
block/node. It is clear that the connectivity of the DSN increases with the increasing number
of keys in each node. However, increasing the number of keys is constrained by the limited
memory capacity of a sensor node. It is a nice property that the clique size does not increase
with number of keys in each node (using our strategy) as otherwise one may be tempted to
obtain cliques of larger sizes by increasing the number of keys in each node (i.e., by increasing
the edges in the graph).

5.2.2 Configurations Having Complete Block Graphs: Projective
Planes

Since we are talking about cliques, we should also revisit the designs where the entire DSN
forms a clique. In [65, Theorem 11, 12], it has been pointed out that the block graph of a
set system is a complete graph if and only if the set system is the dual design of a BIBD and
in particular, there exists a key pre-distribution scheme for a DSN having q2 + q + 1 nodes,
in which every node receives exactly q + 1 keys and in which any two nodes share exactly
one key. It is also stated that such designs are not recommendable as a key pre-distribution
scheme in large DSNs because of storage limitation in each sensor node. We like to point
out that even if the storage space is not a limitation, then also this scheme is not suitable.
The reason is as follows.

In this design any two nodes share a common key. However, for better resiliency one may
like to have more common keys among any two nodes (this is one important motivation for
our merging strategy [17, 18]). Even if one maintains multiples keys against each identifier,
the projective planes does not help because compromise of a single node results in discarding
the identifiers contained in each node (block) and all the corresponding keys for each identifier
also get discarded. Thus the resiliency measure fail(s), (the probability that a given link is
affected due to the compromise of s number of randomly chosen nodes) does not improve
(i.e., does not reduce).
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5.3 Conclusion and Future Research

In this chapter, we consider the DSNs where the key pre-distribution mechanism evolves
from combinatorial design. Such schemes provide the advantage of very low complexity key
exchange facility (only inverse calculation in finite fields). In terms of distributed computing
and communication among the sensor nodes, it is important to study the subset of nodes
that are securely connected to each other (clique). In this chapter, we have studied that
in details. We studied the cliques corresponding to the (v, b, r, k) configuration (resulting
from the TD(k, r)) where each block corresponds to a node. Further we study the scenario
when more than one blocks are merged to generate a node. We show that the clique size
gets improved in such a scenario. An interesting future work in this area is to implement a
merging strategy such that one can get cliques of maximum size after the merging.
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Chapter 6

Combinatorial Structures for Design
of Wireless Sensor Networks

6.1 Introduction

Combinatorial designs are very effective tools for managing keys in an infrastructure where
power and memory are two major constraints. None of the present day wireless technologies
takes advantage of combinatorial designs. In this chapter, we propose a general framework
using combinatorial designs which will enable the participating devices to communicate se-
curely among themselves with little memory and power overhead. The scheme proposed
caters for different kinds of user requirements and allows the designer to choose different
combinatorial designs for different parts or levels of the network. A few examples of WLAN
technologies are IEEE 802.11a/b/e/g/h/i, HiperLAN/2, HomeRF etc. and on the other
hand, Bluetooth, ZigBee, UWB etc. are examples of WPAN technologies.

Very recently it is reported that two researchers have been successful in cracking the
Bluetooth PIN [85]. The other wireless LAN technology protocol 802.11x also suffers from
several security loopholes: insertion attacks, interception and monitoring wireless traffic,
misconfiguration, jamming and client to client attacks are a few of the important ones. In
the following, we shall introduce the desiderata of wireless technologies.

6.1.1 Wireless Technologies: How the Properties of Radio Waves
Affect Networking Capabilities

An ideal radio wave for wireless technologies should have high speed, travel far distances and
consume little energy. Had such radio waves existed, it would have been possible for us to
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transfer information very rapidly at any distance using little battery power. Unfortunately,
real radio waves do not behave like that. The high speed and long range of a radio wave
demands more energy. That is why the designers of the wireless technologies try to optimise
certain parameters under a given condition. As a direct consequence, we find wireless area
networks of different orders (e.g., personal, local, metropolitan, global, etc.) and each of
them is suitable for a particular application or usage.

As an example, in wireless local area network (WLAN), the power consumption is less
important compared to range/speed whereas the design of a wireless personal area network
(WPAN) demands low power in preference to high speed or long range.

6.1.2 Our Proposal: An Uncharted Territory

However, an unexplored area in the security of wireless technologies is the use of combinato-
rial designs. Our proposal is an endeavour to propose security solutions in a wireless network
using combinatorial designs. The method is not restricted to smart homes only and may also
find application in Hierarchical Sensor Networks where the deployment of the sensor nodes
may be made in a more or less controlled manner. One can think of other scenarios where
a hierarchical structure may be deemed fit. As an extreme example, suppose the different
countries of the world are divided into a few groups (possibly based on their geographical
locations) and a multinational company operates globally, setting up branches in different
countries. However, the management may decide to delegate the authority to each of the
branch offices in an hierarchical structure. That structure may easily be translated to our
model. In the following, we shall talk about two specific application areas viz., smart homes
and sensor networks, though we have a common set of objectives in mind:

1. The entire communication in the network will take place securely.

2. The protocol will be as simple as possible.

3. The network will comprise of several logical parts. The network will be resilient to
such an extent that the other parts will continue to function even if one/more parts of
the network are compromised.

6.1.3 Smart Homes

A smart home or building is a home or building, usually a new one, that is equipped with
special structured wiring to enable occupants to remotely control or program an array of au-
tomated home electronic devices by entering a single command. For example, a homeowner
on vacation can use a Touchtone phone to arm a home security system, control temperature
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gauges, switch appliances on or off, control lighting, program a home theater or entertain-
ment system and perform many other tasks. The field of home automation is expanding
rapidly as electronic technologies converge. The home network encompasses communica-
tions, entertainment, security, convenience, and information systems.

Suppose we want to install the network in such a building. Naturally each of the rooms
of the building forms a “logical part” of the network. The natural user requirement would
be that the devices in one room should function independently of the devices of any other
room. If one room has is cut off from the network, by accident, intention or malice, the other
parts of the building should still be able to function unhindered. One can use same/different
combinatorial designs to model the different parts of the network.

6.1.4 Key Pre-distribution in General: Our Proposal

One possible solution is to have a situation where every node is guaranteed to have a common
key with every other node with which it needs to communicate. For a very large network, this
is not possible, as explained earlier. We propose to divide the network into certain logical
sub networks. Intra sub network nodes always share keys with each other. For each sub
network, we earmark a particular node as a special node. Inter sub network communication
takes place by the communication between the special nodes of the respective sub networks.

The issues at this point are as follows:

1. One has to have some control over the deployment of the nodes.

2. For the special nodes, the number of keys to be stored in each node will clearly increase.
So one needs to decide the availability of storage space. In [65, Page 4], it has been
commented that storing 150 keys in a sensor node may not be practical. On the other
hand, in [31, Page 47], [64, Section 5.2], scenarios have been described with 200 keys.
If one considers 4 Kbytes of memory space for storing keys in a sensor node, then
choosing 128-bit key (16 byte), it is possible to accommodate 256 keys.

Thus the goal in this chapter is to present a scheme that aims at failsafe connectivity
all-over the network. We differ from the existing works where it is considered that any two
nodes will have either 0 or 1 common keys all over the network. Our motivation is to have a
design strategy where the entire network is divided into a number of subnetworks. Any two
nodes of a particular subnetwork share a common key. The special nodes of different subnet-
works share more than one common keys. This is important from resiliency consideration
in an adversarial framework since even if a certain subnetwork is compromised, the other
parts of the network, i.e., the other subnetworks may function without any disturbance.
Moreover, even if one or more special nodes are compromised, the other special nodes can
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still communicate among themselves. In other words, the connectivity of the network is not
disturbed at all.

The rest of the chapter is organised as follows: We give examples using combinatorial
designs for which any two nodes will have either 0 or 1 common keys. We then conclude
with the future research proposals.

6.2 Key Pre-distribution in General: Our Approach

Server

S1 S

NW1 NW2
NWx

Sx2 Sx−1

NWx−1

... ...

... ...

Figure 6.1: The Network

6.2.1 The Correspondence Between a Combinatorial Design and
a Sensor Network

The blocks of the combinatorial design corresponds to a sensor node and the elements present
in a block represent the keys present in a sensor node.
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6.2.2 The Method

Lee and Stinson [65], have shown that using a transversal design, there is direct connectivity
between two nodes in 60% of the cases. Overall, any two nodes can communicate either
directly or through an intermediate node (i.e., a two-hop path) with almost certainty. For a
large network, the compromise of even 10 nodes will render 18% of the nodes unusable.

Our approach is very different from the approach of [65]. In the diagram, we have shown
a network with only two levels of hierarchy. There may be more levels depending on the user
requirements. Our proposal is perfectly general and fits into networks of any size. The root
of the hierarchy tree is assumed to be a central server, S. At the next level, x special nodes
S1, S2, · · · , Sx are placed. The leaf level comprises of the subnetworks NW1, NW2, · · · , NWx.

One has the freedom to choose different combinatorial designs for different parts of the
network. Again, that depends on the specific requirements of the user. For example, if
the sub networks are required to form a totally connected network graph, one can choose
projective planes. This may be applicable in case of a smart home. If the subnetworks
are very large in size and total connectivity is not a requirement (i.e., if single/multi-hop
connectivity is permissible), transversal designs might be a reasonable choice.

Let us assume that we are using only projective planes in all the parts of the network.
We know that a projective plane of order n (n is a prime power) has n2 + n + 1 number of
blocks and each block contains n + 1 keys. If we use a projective plane of order n, we can
accommodate a network of n2 + n + 1 nodes with n + 1 keys per node.

Let us assume that max
i
|NWi| = α (for i = 1, 2, · · · , x), i.e., the subnetwork size is at

most α, so that a projective plane of order ≥
⌈√

α− 3
4
− 1

2

⌉
may be used to model the

subnetwork.

In fact, we should choose the sub network size n2 + n instead of n2 + n + 1 because we
shall have to include the special node Si(at the next highest level) corresponding to each sub

network NWi. The corresponding projective plane is of order
⌈√

α + 1
4
− 1

2

⌉
.

If we have x such sub networks, we have also x corresponding projective planes. They
may or may not be of the same order depending on the same/different sizes of the various
sub networks. One can use different projective planes for different sub networks NWi simply
by replacing α by NWi in the above expression.

Note that each of the subnetworks NWi including the special node Si, i.e., Si

⋃
NWi (for

i = 1, 2, · · · , x) forms a complete network graph. Since we are using a projective plane to
distribute the keys in the underlying nodes, this property is guaranteed. In other words, any
two nodes of NWi

⋃
Si for i = 1, 2, · · · , x share a common key with each other.

Had we used a transversal design TD(k, r) instead of a projective plane, every pair of
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nodes would not have been connected in a single hop. However, a constant fraction of the
total number of pairs would have been connected (i.e., would have shared a common key).
It is easy to see that the value of the fraction is k

r+1
. Out of r2 blocks of the TD(k, r), a

particular block shares keys with kr− k = k(r− 1) blocks. Excepting that particular block,

there are r2 − 1 blocks in the TD(k, r). So the fraction is k(r−1)
r2−1

= k
r+1

.

At the next stage, we would like to have several common keys between any two special
nodes Sj and Sk. In order to achieve that, we may again choose projective planes. A

projective plane of order m ≥
⌈√

x + 1
4
− 1

2

⌉
will suffice to connect all the Sis for i =

1, 2, · · · , x and also the root server S may be included as the (x+1)th node. Using multiple
copies (say t copies) of the projective plane of order m and labelling them differently, we

easily obtain t common keys between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a sensor net-
work) should have more storage capacity in comparison with the other nodes in order to
accommodate t(m + 1) keys.

6.2.3 An Example Using Projective Planes

Let us continue our discussion apropos of the previous network diagram, i.e., a network with
only two levels of hierarchy. The root of the hierarchy tree is the central server, S. At the
next level, x = 18 and special nodes S1, S2, · · · , S18 are placed.

The leaf level comprises of the subnetworks NW1, NW2, · · · , NW18. Let us use only
projective planes all over the network.

Let us assume that max
i
|NWi| = 900, i.e., the subnetwork size is at most 900, or, α = 900.

The corresponding projective plane is of order ≥
⌈√

900 + 1
4
− 1

2

⌉
≥ 30.

The next highest prime being 31, let us choose a projective plane of order 31.

Since we have 18 such sub networks, we have also 18 corresponding projective planes.
They may or may not be of the same order depending on the same/different sizes of the
various sub networks. One can use different projective planes for different sub networks
NWi simply by replacing 900 by |NWi| in the above expression.

Note that each of the subnetworks NWi including the special node Si, i.e., Si

⋃
NWi

forms a complete network graph. Since we are using a projective plane to distribute the
keys in the underlying nodes, this property is guaranteed. In other words, any two nodes of
NWi

⋃
Si share a common key with each other (because the keys were distributed using a
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projective plane).

At the next stage, we would like to have several common keys between any two special
nodes Sj and Sk. In order to achieve that, we may again choose projective planes. A

projective plane of order m ≥
⌈√

18 + 1
4
− 1

2

⌉
≥ 4 will suffice to connect all the Sis (for

i = 1, 2, · · · , 18) and also the root server S may be included as the 19th node. Let us choose
m = 4. Using multiple copies (say 4 copies) of the projective plane of order m and labelling

them differently, we readily have 4 common keys between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a sensor network)
need more storage capacity than the other nodes in order to accommodate 4(4 + 1) = 20
keys.

6.2.4 Another Example Using Projective Planes and Transversal
Designs

Suppose we have a different kind of requirement. The sub networks are very large, say each
subnetwork may be of size 2500 and hence multi-hop communication is permissible.

Again let us assume that the network has only two levels of hierarchy, the root of the hier-
archy tree is the central server, S. At the next level, x = 25 and special nodes S1, S2, · · · , S25

are placed. The leaf level comprises of the subnetworks NW1, NW2, · · · , NW25.

At the sub network level, we do not have the requirement that any two nodes should
be able to communicate directly. So we may use transversal designs at this level. However,
since all the special nodes should be able to communicate directly among themselves and
need an enhanced level of security by having multiple keys shared between any two nodes,
we prefer to use projective planes at this level. In this example any two nodes at the sub
network level can communicate in at most two hops.

Since the sub network may have 2500 nodes, we should choose a transversal design
accordingly. We know that a TD(k, r) has r2 blocks. We also know that if r is prime and
2 ≤ k ≤ r, then there exists a TD(k, r) (see construction 1).

Since
√

2500 = 50, we choose the next highest prime 53 as our r. Now we can choose k
for our own convenience. We choose k = 36.

As mentioned earlier, the key sharing probability between any two nodes of the sub
network = k

r+1
= 36

53+1
= 0.667.

Note that each of the subnetworks NWi including the special node Si, i.e., Si

⋃
NWi (for

i = 1, 2, · · · , 25) does not form a complete network graph. Since we are using a transversal
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design to distribute the keys in the underlying nodes, any two nodes of NWi

⋃
Si share a

common key with each other with probability 0.667.

At the next stage, we would like to have several common keys between any two special
nodes Sj and Sk. In order to achieve that, we may again choose projective planes. A

projective plane of order m ≥
⌈√

25 + 1
4
− 1

2

⌉
≥ 5 will suffice to connect all the Sis for

i = 1, 2, · · · , 25 and also the root server S may be included as the 26th node. Let us choose
m = 5. Using multiple copies (say 4 copies) of the projective plane of order m and labelling

them differently, we readily have 4 common keys between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a sensor network)
need more storage capacity than the other nodes in order to accommodate 4(5 + 1) = 24
keys.

6.3 Conclusion and Future Research

We shall further investigate networks where “users” have differing resources and capacity
requirements. One case involves a large network with large, mostly self-contained sub-
networks. Another case involves networks which need more robustness at different levels
of application. For example, at the second level of hierarchy (i.e., the level containing the
special nodes), one may need to have different number of common keys shared between two
given nodes. It will be an interesting combinatorial problem to find out a design having such
a property. One may even look for better alternatives, in special circumstances, to the use
of copies of projective planes at this level.
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Chapter 7

Application of Transversal Design to
Implement a Secure Grid of
Distributed Wireless Sensor Network

7.1 Introduction

We have been considering random deployment of the nodes so far. Let us consider a slightly
different area of application of the sensor network. Often there are practical applications
of sensor networks to monitor an area that may be divided into a square grid. The points
of intersection are accessible and the sensor devices may be placed at those points with
reasonable precision. An example may be a factory floor or a warehouse. It will be interesting
to setup a sensor network where the deployment pattern is in the form of a grid.

Transversal designs have an inherent structure so that the blocks may be considered to
form a square matrix. Thus one can often choose a transversal design of appropriate size
in order to cover a grid of sensor network and the blocks of the transversal design and the
points of intersection of the physical grid are in 1-1 correspondence.

In this chapter, we assume that the keys contained in the sensor nodes are pre-distributed
according to a transversal design and the sensor nodes are placed on a square grid.

Suppose the keys are pre-distributed in the sensor nodes in accordance with a transversal
design TD(k, r) and the transversal Design is exactly mapped to the deployment grid of size
r×r. The computation to find out a common key between two nodes is also of very low time
complexity in this case. The connectivity and coverage of the network is examined when
a number of nodes fail or get compromised. Given the number of compromised nodes, we
study whether the network is still connected and covers the entire region under observation.
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Such a configuration may help in considering different design choices like the number of keys
per node, the sensing/RF radius of the sensor nodes and the robustness, R(s), which is the
probability that the network of sensor nodes is connected and covers the entire grid despite
the failure of s nodes.

7.1.1 Related Works

In a random deployment model, the scaling laws for connectivity of nodes placed at random
over a unit area is introduced in [38]. The same authors found the data carrying capacity of
the network in [39]. In [37], the capacity of a network with n mobile nodes is studied. It has
been shown that capacity of the network increases with node mobility and also end-to-end
delay. In [41], the coverage problem when objects of various shape are dropped over an
infinite plane is studied and in [72], the connectivity problems or percolation problems for a
random node-replacement model is studied where the node placement points originate from
a two-dimensional spatial Poisson process.

Bernoulli graph is another network model and is studied in [7]. It is fundamentally
different from the radio-graph model as in a Bernoulli graph, two nodes may be separated
by a large distance but still be connected whereas in radio-graph model, one can not travel
an arbitrary distance in a single hop. In [57, 58], the authors discussed scaling results for
reliable communications in gossip networks and developed a self-organising, peer-to-peer
protocol that converges to reliably support a gossip network. They used Bernoulli graphs
with directed arcs.

Quite a few problems of related nature have been studied in the context of sensor networks
where the deployment pattern is known. The solutions usually discuss the connectivity,
coverage, network lifetime, sleeping model of the sensor nodes. In [50], the authors proposed
a sentry-based power management scheme. Here “sentry” means a live node. The dynamic
sentry selection was not discussed in this work. However, [42] gives a scheme for sentry
selection. In this scheme, a back-off interval inversely proportional to remaining energy is
chosen by a node. Then the node informs the neighbouring nodes of its intention to become
a sentry. This scheme manages energy consumption well, though it does not give any method
to calculate the probability of a sentry selection if the expected lifetime of the network is
known. A solution to this problem is offered in [59]. It discusses Random Independent
Sleeping (RIS) where each node decides independently whether to sleep or remain alive for
any given time period. This happens probabilistically with a fixed probability of remaining
alive. RIS also does not compel a node that intends to become a “sentry” to communicate
with its neighbours.

Apart from the goal of minimising power consumption, the principal goal is to ensure the
coverage of the entire area under surveillance. If sufficient number of nodes are not deployed,
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it will not be possible to have enough nodes so that all the control points are covered by
at least one node (known as 1-coverage). However, [42] can not provide 1-coverage in this
case. Similarly, k-coverage is defined where each of the control points is covered by k nodes.
Though [48, 100] present algorithms for deciding the sleeping strategy in this case, they do
not talk about the minimum number of nodes to be deployed to ensure k-coverage.

Transversal design based key pre-distribution schemes for distributed wireless sensor net-
work have been discussed in [16, 18, 21, 64], where it was assumed that the nodes are
deployed at random and no a priori deployment knowledge is available. We noted that the
inherent combinatorial structure of the transversal design enables to map it directly onto a
two-dimensional grid of sensor networks. We analysed the network parameters under this
assumption with the restriction that two nodes can communicate with each other only when
they are within the RF communication range to each other and they share a common secret
key.

7.2 Preliminaries

7.2.1 The Correspondence Between the Combinatorial Design and
the Deployment Grid

Out of several parameters associated with a sensor node, two different parameters are “sens-
ing radius” and “RF radius.” The radius within which a sensor node is capable of gathering
data is said to be the sensing radius of the sensor node. On the other hand, the radius
within which a sensor node is capable of communicating to any other node using the radio
frequency (RF) is said to be the RF radius of the sensor node. Though these two radii are
unrelated, we may either assume them to be the same or choose the minimum of the two for
the purpose of our analysis in this chapter and denote it by ρ, the “radius.”

Consider a (v = rk, b = r2, r, k) configuration (resulting from the TD(k, r)) [97]. There
are b = r2 number of blocks which are actually considered as the sensor nodes, each con-
taining k distinct keys. Each key occurs in r nodes. The parameter v = rk gives the total
number of distinct keys in the design. One should note that bk = vr and v − 1 > r(k − 1).
The design provides 0 or 1 common key between any two nodes.

These r2 number of nodes may be arranged in the form of a r × r matrix. Consider a
square grid (mesh) with unit length u, i.e., a grid of size (r−1)u× (r−1)u so that the nodes
are placed at all the r2 number of points of intersection as shown in figure 7.1.

We can often make our life easier by putting u = 1 without any loss of generality.

In a transversal design TD(k, r), there are r2 blocks and the blocks are indexed as if
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they are arranged in the form of a matrix of size r × r. If such a transversal design is
used to construct a sensor network as described above and deployed on a grid of size r × r,
one can easily associate the keys in each sensor node with its positional co-ordinates, thus
establishing a natural correspondence between the transversal design and the square grid.

Definition 19 Physical neighbour: For a given node α located at (i, j) and a pre-specified
radius ρ = t · u, t > 0 integer, we define all the nodes β located at (i′, j′) satisfying max(|i−
i′|, |j − j′|) ≤ ρ as the ρ-physical neighbours of α.

Definition 20 Key-sharing neighbour: For a given node α located at (i, j) and a pre-
specified radius ρ, we define all the nodes γ located at (i′, j′) satisfying max(|i−i′|, |j−j′|) ≤ ρ
and having a common key with α as the ρ-key-sharing neighbours of α.

As ρ increases, more number of nodes are considered to be neighbours and both kinds of
neighbours of a given node should increase. Strictly speaking, one should consider a circular
region of radius ρ around each node for the radio frequency coverage. However, we are
considering the grid only in order to facilitate the treatment. If we assume the circumscribing
circle of a square of radius ρ, 2ρ, . . . for each of the nodes, the correspondence between the
square grid and the circular area of coverage is immediate.

Definition 21 Network graph: A sensor network may be described as an undirected graph
G = (V, E) where V is the set of vertices (sensor nodes in our case) and E is the set of
edges. We draw an edge between two vertices (sensor nodes) if they share a common key.

Definition 22 Connectivity of the network: If there exists a path between any two nodes α
and β of the network, the network is said to be connected.

Definition 23 Coverage of a node: For a given ρ, if a node is located at (i, j), it is said to
cover the complete square having the four corner points (i′, j′) satisfying max(|i−i′|, |j−j′|) =
ρ. Here, (i, j) is an internal node. Had it been a boundary node, we would have considered
only the part of the square lying inside the grid.

Definition 24 Coverage of the network: If any area under observation in the complete grid
is covered by at least one node, the network is said to be covered.

One needs to ensure at any point of time, the network is covered and connected.

Since we need to calculate ρ-key-sharing neighbours of a given node, we must find out
whether two nodes (blocks) have a key in common. The blocks are constructed from a
transversal design TD(k, r) as described earlier.
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Let the blocks be Ai,j and Ai′,j′ where Ai,j = {x, (ix + j) mod r : 0 ≤ x ≤ k − 1} and
Ai′,j′ = {x, (i′x + j′) mod r : 0 ≤ x ≤ k − 1}, where 0 ≤ i, i′, j, j′ < r.

So it boils down to check whether Ai,j and Ai′,j′ have a valid intersection. Solving for x,
we get (ix + j) mod r = (i′x + j′) mod r, or, x = (j′ − j)(i− i′)−1 mod r.

The value of x is a valid value if and only if the inverse exists in the above expression
and also the value of x lies in the admissible range, i.e., i 6= i′ and 0 ≤ x ≤ k − 1.

Let us call the interval [0, k − 1] the “connectivity interval.”

7.3 Connectivity Analysis

Consider a square of size 2ρ× 2ρ, centred around the node A at (i, j). The square contains
(2ρ + 1)2 − 1 sensor nodes excluding (i, j). Thus the “number of nodes that are physical
neighbours of A” is (2ρ + 1)2 − 1 = 4ρ(ρ + 1).

Here, we assume r to be a prime so that Zr becomes a field and every non-zero element
of this field has an inverse modulo r.

Consider a sensor node at (i, j). For any square of side 2ρ, centred at (i, j), consider the
sensor nodes in that square at the points (i′, j′) which are (i+I, j+J), (i−I, j+J), (i+I, j−J)
and (i− I, j − J), where 0 < I ≤ ρ and 0 ≤ J ≤ ρ. Now consider the four cases.

1. Let i′ = i + I, j′ = j + J . Then x = (j′ − j)(i − i′)−1 mod r = J(−I)−1 mod r =
−JI−1 mod r.

2. Let i′ = i − I, j′ = j + J . Then x = (j′ − j)(i − i′)−1 mod r = J(I)−1 mod r =
JI−1 mod r.

3. Let i′ = i + I, j′ = j − J . Then x = (j′ − j)(i − i′)−1 mod r = −J(−I)−1 mod r =
JI−1 mod r.

4. Let i′ = i − I, j′ = j − J . Then x = (j′ − j)(i − i′)−1 mod r = −J(I)−1 mod r =
−JI−1 mod r.

We record the above facts as

Lemma 2 Both the points (i + I, j + J), (i − I, j − J) either share a key with (i, j) when
−JI−1 ≤ k − 1 or do not share a key when −JI−1 > k − 1. Similarly both the points
(I − i, J + j), (I + i, J − j) either share a key with (i, j) when JI−1 ≤ k − 1 or do not share
a key when JI−1 > k − 1. Here, 0 < I ≤ ρ and 0 ≤ J ≤ ρ.

79



Note 1 If r = γ mod I, then I−1 mod r =
((I−γ−1) mod I)r+1

I
mod r. Here 0 < I ≤ ρ and

γ 6= 0.

The expression in lemma 2 involves inverses. The above result may be used to simplify
the above conditions in certain cases.

For example, let I = 2. Since r is a prime, r = 1 mod 2, Or, γ = 1. So I−1 = r+1
2

. So
lemma 2 states that (i, j) is connected to (i + I, j + J) provided 0 ≤ −J( r+1

2
) ≤ k − 1 for

J = −2,−1, 0, 1, 2.

If J = 2, then 0 ≤ −(r+1) ≤ k−1, which is impossible. So (i+2, j +2) is not connected
to (i, j). If J = −2, then 0 ≤ (r + 1) ≤ k − 1 ⇒ r ≤ k − 2, which is impossible. So
(i+2, j−2) is not connected to (i, j). If J = 0, then 0 ≤ 0 ≤ k−1, which is always true. So
(i + 2, j) is always connected to (i, j). If J = 1, then 0 ≤ − r+1

2
≤ k− 1, which is impossible.

So (i + 2, j + 1) is not connected to (i, j). If J = −1, then 0 ≤ r+1
2
≤ k − 1, which is true

provided k ≥ r+3
2

. So (i + 2, j − 1) is connected to (i, j) if k ≥ r+3
2

.

Since the sharing or non sharing of a common key is based on the relative distance, we
may very well assume the point (i, j) as (0, 0) for the purpose of analysis. The important
issue is to study the expression JI−1 mod r (i.e., whether it is ≤ k − 1 or > k − 1) when
0 < I ≤ ρ and 0 ≤ J ≤ ρ. It should also be noted that all the nodes of the form (I, 0) share
a common key with (0, 0) and all the nodes of the form (0, J) do not share a common key
with (0, 0).

Theorem 8 If (i + I, j + J) and (i − I, j − J) are connected/disconnected to (i, j), then
(i− I, j + J) and (i + I, j − J) respectively disconnected/connected to (i, j) provided

1. Either x < k < r−1
2

2. Or, x > k > r+1
2

Proof :

1. If x < k < r−1
2

, then −x > −k > − r−1
2
⇒ r − x > r − k > r − r−1

2
= r+1

2
> k.

2. Again, if x > k > r+1
2

, then −x < −k < − r+1
2
⇒ r − x < r − k < r − r+1

2
= r−1

2
< k.

Let us examine what exactly is happening in each of the four cases described in the
beginning of section 7.3. x assumes two values, either JI−1 or −JI−1 where 0 < I ≤ ρ and
0 ≤ J ≤ ρ. These two values are the additive inverses of each other. If r be a prime, one
may be obtained by subtracting the other from r. One can again have the following cases :
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1. If both the values are in the “connectivity interval,” i.e.,

0 ≤ x ≤ k − 1 and 0 ≤ r − x ≤ k − 1 ⇒ r − k + 1 ≤ x ≤ k − 1 ⇒ k−1
r
≥ 1

2

2. If both the values are outside the “connectivity interval,” i.e., k − 1 < x ≤ r − 1 and
k − 1 < r − x ≤ r − 1 ⇒ k − 1 < x < r − k + 1 ⇒ k−1

r
< 1

2

3. If one value is inside and the other value is outside the “connectivity interval,” i.e.,
0 ≤ x ≤ k − 1 and k − 1 < r − x ≤ r − 1 ⇒ 1 ≤ x ≤ r − k + 1

Now again there may be two cases :

(a) k − 1 < r − k + 1 ⇒ k−1
r

< 1
2

(b) k − 1 ≥ r − k + 1 ⇒ k−1
r
≥ 1

2

So either 1 ≤ x ≤ k − 1 and k−1
r

< 1
2

Or 1 ≤ x ≤ r − k + 1 and k−1
r
≥ 1

2

7.3.1 Connectivity Ratio

Fix a node α located at (i, j) and radius ρ. Consider the set Aρ of ρ-key-sharing neighbours
of α and the set Bρ of ρ-physical neighbours of α. Recall that Aρ = {(i ± I, j ± J) : 0 ≤
I, J ≤ ρ = tu, 0 ≤ −JI−1 mod r ≤ k − 1, I 6= 0} and Bρ = {(i± I, j ± J) : 0 ≤ I, J ≤ ρ =
tu, I, J both not zero}.

Clearly |Bρ| = (2t + 1)2 − 1 =
(

2ρ+u
u

)2 − 1 = (2ρ + 1)2 − 1 (putting u = 1). Or,
|Bρ| = 4ρ(ρ + 1).

Definition 25 Let us denote the “connectivity ratio” by Rρ and define it as Rρ = |Aρ|
|Bρ| , i.e.,

the ratio of “number of nodes that are both physical and key-sharing neighbours of A” and
the “number of nodes that are physical neighbours of A.”

Proposition 1 For 1 < k < r, R1 = 0.5.

Proof : If ρ = 1, there are eight points surrounding a specific point (0, 0). Each of the
two points (1, 0) and (−1, 0) shares a common key with (0, 0). Each of the two points (0, 1)
and (0,−1) does not share a common key with (0, 0). Each of the two points (1,−1) and
(−1, 1) shares a common key with (0, 0) as in that case JI−1 mod r = 1 ≤ k − 1. Each of
the two points (1, 1) and (−1,−1) does not share a common key with (0, 0) as in that case
JI−1 = −1 mod r = r − 1 > k − 1. Thus, R1 = 4

8
= 0.5.

Proposition 2 For 1 < k < r, R r−1
2

= k
r+1

.

81



Proof : For ρ = r−1
2

, |Aρ| = k(r− 1) and |Bρ| = r2− 1. Hence Rρ = |Aρ|
|Bρ| = k(r−1)

r2−1
= k

r+1
.

Theorem 9 1
2ρ
≤ Rρ ≤ k(r−1)

4ρ(ρ+1)
for ρ = 1, 2, · · · , r−1

2
.

Proof : Consider the set Aρ. All the 2ρ nodes (i + I, J) for I = ±1,±2, · · · ,±ρ are
connected to (i, j). Also the two nodes (i + 1, j − 1) and (i − 1, j + 1) are connected to
(i, j) which is evident from lemma 2. The total number of nodes connected to (i, j) is

k(r − 1). Hence 2ρ + 2 ≤ |Aρ| ≤ k(r − 1). Now |Bρ| = 4ρ(ρ + 1) and Rρ = |Aρ|
|Bρ| . Hence

2ρ+2
4ρ(ρ+1)

≤ Rρ ≤ k(r−1)
4ρ(ρ+1)

. Now 2ρ+2
4ρ(ρ+1)

= 1
2ρ

Hence 1
2ρ
≤ Rρ ≤ k(r−1)

4ρ(ρ+1)
for ρ = 1, 2, · · · , r−1

2
.

In table 7.1, we show the values of Rρ for k = 7 and r = 53.

In the figures 7.2, 7.3 and 7.4, we have illustrated the three cases:

1. If k
r+1

< 1
2
, then k

r+1
≤ Rρ ≤ 1

2
. (k = 2, r = 13)

2. If k
r+1

= 1
2
, then Rρ = 1

2
. (k = 7, r = 13)

3. If k
r+1

> 1
2
, then 1

2
≤ Rρ ≤ k

r+1
. (k = 12, r = 13)

The values of Rρ are compared to the bounds obtained from theorem 9.

7.3.2 Coverage

The area covered by a single node is = (2ρ)2 = 4ρ2. The area of the square grid = (r−1)2u2.

So minimum number of nodes required to “cover” the entire grid =

⌈(
(r−1)u

2ρ

)2
⌉

=
⌈(

r−1
2t

)2⌉
.

7.3.3 Connectivity Does not Imply Coverage and Vice Versa

Consider any single column of the (r − 1)u × (r − 1)u grid and the corresponding column
of the transversal design. It is obvious that the network comprising of r nodes is connected.
However, they may not cover the entire grid unless ρ is not very large compared to (r− 1)u.

On the other hand, one can easily locate
⌈(

r−1
2t

)2⌉
nodes covering the entire grid but there

may be two nodes present that are not connected by single/multi hop paths.
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7.4 A Design Methodology for a Sensor Network

Suppose we know the area of deployment of the sensor network. For example, if one wants to
monitor the temperature of a production unit, it is possible to divide the area in the form of
a grid and place the sensor nodes in the intersection points of the grid. The communicating
radius and the sensing radius are also known and we choose the lesser one for the purpose of
our calculation and denote it by ρ. If we pre-distribute the keys according to a transversal
design, we can have several design choices depending on the permissible value of the prob-
ability that the network should fail. Here, by “failure,” we shall mean that the enter area
to be monitored has to be connected and covered by the sensor nodes. A certain fraction
of nodes may always fail, still the robustness of the network may be chosen according to
user requirement. Consider the event that despite the failure of s nodes, the entire area is
covered by the sensor nodes and the nodes form a connected network. Denote the probability
of this event by R(s). In fact, this R(s) gives a measure of robustness of the network. Now
the number of keys k in each node, the size of the area (r − 1)u × (r − 1)u, the radius ρ
and the measure fail(s) are inter-related. Assuming a random mode of failure of the sensor
nodes, we have a simple program that gives an estimate of R(s). The experimental values
are tabulated. These values are obtained from a the output of a C program and the average
value of 100 runs is tabulated as the value of R(s) in the tables 7.2, 7.3.

It may be noted that in the tables 7.2, 7.3, certain combinations of values are not tab-
ulated for k = 2, 3, 4, 5, ρ = 1, 2, 3, 4, 5, s = 10, 20, · · · , 100 and also s = 200, 300, · · · , 1000.
For those values, R(s) = 0 whenever ρ = 1 and R(s) = 1 otherwise.

Example 6 Suppose the user specifies that the grid size to be covered is r = 53. The
robustness R(s) to be maintained is 90% at the level s = 1000. It is immediate from table
7.3 that even with only k = 2 keys per node, he can achieve this objective.

7.5 Conclusion and Future Research

In this chapter, we assume that the nodes fail/are put to sleep randomly and we did not
specify any particular algorithm that determines which nodes will remain alive and which
nodes will be inactive so that the longevity of the network is increased. However, by in-
creasing the number of inactive nodes, one can arrive at a configuration that can maintain
a connected network and at the same time can cover all the grid points. It is easy to find
two disjoint configurations with only half of the total nodes being live. One can assume that
half of the nodes will be alive at any given point of time and the rest will sleep and conserve
energy. In our future work, we shall give deterministic algorithms for sleeping of the sensor
nodes.
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ρ No. of Physical Neighbours No. of Physical and key-sharing Neighbours Rρ

1 8 4 0.50000
2 24 10 0.41667
3 48 16 0.33333
4 80 24 0.30000
5 120 30 0.25000
6 168 40 0.23810
7 224 44 0.19643
8 288 54 0.18750
9 360 64 0.17778
10 440 76 0.17273
11 528 86 0.16288
12 624 102 0.16346
13 728 116 0.15934
14 840 128 0.15238
15 960 140 0.14583
16 1088 156 0.14338
17 1224 174 0.14216
18 1368 194 0.14181
19 1520 212 0.13947
20 1680 232 0.13810
21 1848 252 0.13636
22 2024 272 0.13439
23 2208 296 0.13406
24 2400 318 0.13250
25 2600 340 0.13077
26 2808 364 0.12963

Table 7.1: A few values of Rρ for k = 7 and r = 53
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k ρ s R(s) k ρ s R(s) k ρ s R(s) k ρ s R(s)
2 2 10 0.88 3 2 10 0.90 4 2 10 0.93 5 2 10 0.92
2 2 20 0.86 3 2 20 0.90 4 2 20 0.92 5 2 20 0.92
2 2 30 0.86 3 2 30 0.90 4 2 30 0.92 5 2 30 0.92
2 2 40 0.86 3 2 40 0.89 4 2 40 0.92 5 2 40 0.92
2 2 50 0.86 3 2 50 0.89 4 2 50 0.92 5 2 50 0.92
2 2 60 0.86 3 2 60 0.88 4 2 60 0.92 5 2 60 0.92
2 2 70 0.86 3 2 70 0.88 4 2 70 0.91 5 2 70 0.92
2 2 80 0.86 3 2 80 0.88 4 2 80 0.91 5 2 80 0.92
2 2 90 0.85 3 2 90 0.87 4 2 90 0.91 5 2 90 0.92
2 2 100 0.85 3 2 100 0.87 4 2 100 0.91 5 2 100 0.92

Table 7.2: Values of k, ρ, s and R(s) for small values of s (for r = 53)
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k ρ s R(s) k ρ s R(s) k ρ s R(s) k ρ s R(s)
2 2 200 0.68 3 2 200 0.87 4 2 200 0.86 5 2 100 0.92
2 2 300 0.63 3 2 300 0.85 4 2 300 0.83 5 2 200 0.92
2 2 400 0.48 3 2 400 0.77 4 2 400 0.81 5 2 300 0.90
2 2 500 0.41 3 2 500 0.72 4 2 500 0.71 5 2 400 0.84
2 2 600 0.26 3 2 600 0.63 4 2 600 0.66 5 2 500 0.80
2 2 700 0.16 3 2 700 0.55 4 2 700 0.56 5 2 600 0.69
2 2 800 0.06 3 2 800 0.48 4 2 800 0.42 5 2 700 0.57
2 2 900 0.03 3 2 900 0.34 4 2 900 0.32 5 2 800 0.51
2 2 1000 0.01 3 2 1000 0.19 4 2 1000 0.23 5 2 900 0.39
2 3 200 0.98 3 3 100 0.99 4 3 300 0.96 5 2 1000 0.27
2 3 300 0.96 3 3 200 0.97 4 3 400 0.95 5 3 200 0.96
2 3 400 0.95 3 3 300 0.97 4 3 500 0.95 5 3 300 0.96
2 3 500 0.93 3 3 400 0.97 4 3 600 0.95 5 3 400 0.95
2 3 600 0.86 3 3 500 0.94 4 3 700 0.94 5 3 500 0.95
2 3 700 0.83 3 3 600 0.91 4 3 800 0.92 5 3 600 0.95
2 3 800 0.77 3 3 700 0.90 4 3 900 0.90 5 3 700 0.94
2 3 900 0.71 3 3 800 0.84 4 3 1000 0.87 5 3 800 0.93
2 3 1000 0.56 3 3 900 0.81 4 4 200 0.99 5 3 900 0.91
2 4 200 0.99 3 3 1000 0.77 4 4 300 0.99 5 3 1000 0.89
2 4 300 0.97 3 4 600 0.99 4 4 400 0.99 5 4 100 0.99
2 4 400 0.97 3 4 700 0.98 4 4 500 0.99 5 4 200 0.99
2 4 500 0.97 3 4 800 0.98 4 4 600 0.99 5 4 300 0.99
2 4 600 0.96 3 4 900 0.96 4 4 700 0.99 5 4 400 0.99
2 4 700 0.96 3 4 1000 0.96 4 4 800 0.98 5 4 500 0.99
2 4 800 0.94 3 5 200 0.99 4 4 900 0.97 5 4 600 0.99
2 4 900 0.93 3 5 300 0.99 4 4 1000 0.98 5 4 700 0.97
2 4 1000 0.89 3 5 400 0.99 4 5 200 0.99 5 4 800 0.95

Table 7.3: Values of k, ρ, s and R(s) for large values of s (for r = 53)
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Chapter 8

The Deterministic Extension of the
Sensor Network

In chapter 4, we have shown the construction of designs probabilistically. In this chapter, we
shall show that it is possible to construct deterministic designs which may also be used. We
revert to our usage in chapter 3 of regarding the (simple) sensor network as a (0,1) matrix,
A, the incidence matrix of the sensor network. Clearly any (0,1) matrix could be used but
we assigned properties to A so that we could ensure certain properties and obtain bounds
on other properties. In previous work, it has been assumed that the number of common
keys between any two blocks has been guaranteed to assume one of a set with few values.
Historically, the values would be “smallish” due to the storage limits of the sensor device
and the average number of common keys tends to decrease. It is also not easy to find an
accurate estimate of fail(s) . However, there are methods which could be used to guarantee
upper and lower limits on the numbers of common keys and bounds on fail(s), the negative
resilience measure.

In this chapter, we consider the application of some other combinatorial designs to sensor
network key distribution.

It may be noted that throughout this chapter, the rows of the incidence matrix (of a
combinatorial design) will correspond to the sensor devices and the columns will correspond
to the keys.

Linkage: The minimum number of common 1s between any two rows of the incidence
matrix of a combinatorial design is denoted by Λ and defined as the “linkage” of the incidence
matrix or the corresponding combinatorial design.

1. BIBDs: If we consider the matrix B, the incidence matrix of a BIBD (v, b, r, k, λ), then
it is easy to see that any two rows will have λ elements in common. In other words,
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the “dot product,” or “linkage” of the incidence matrix will be Λ = λ. We shall prefer
to use this notion and think of the rows of the incidence matrix, B, as our “sensor
nodes” and the columns as the “keys.”

If B constitutes the whole of the incidence matrix of the sensor network, then using the
desirability criteria listed in Section 3.1 we can choose any BIBD with suitably large
v, suitably small b. Since bk = vr, we have the number of keys r given by r = bk/v.
Because we have the “linkage property” (provided λ > 0) every pair of nodes will have
a pair of keys in common and can communicate directly.

For the notations, please refer to chapter 3.

2. PBIBDs: If we extend the incidence matrix B of the previous subsection to a PBIBD

(v, b, r, k, λ1, λ2, · · · , λ`)

then any two blocks will have Λ = min{λ1, λ2, · · · , λ`} keys in common and so pro-
vided Λ 6= 0 again every pair of nodes will have a pair of keys in common and can
communicate directly.

For the notations, please refer to chapter 3.

3. Pairwise Balanced Designs PBD(K, λ): If the incidence matrix of a PBD(K, λ) is used
as the incidence matrix of a sensor network, the number of keys in each sensor node is
less than the size of the maximum element in K. Hence there is no need to restrict r,
k or λ. For the notations, please refer to chapter 3.

8.1 Some Thoughts on Constructions

Since our aim is to have large number of sensor nodes sharing common keys between any
two nodes, we illustrate how we may begin with a pair of small known BIBDs and generate
large incidence matrices of sensor networks from them.

Consider two BIBDs: (v1, b1, r1, k1, λ1) and (v2, b2, r2, k2, λ2) such that v2 = r1. Let X
and Y denote their respective incidence matrices.

Theorem 10 Replace the ith 1 of each row of X by the ith row of Y for i = 1, 2, · · · , r1.
The zeros in X are replaced by the appropriate 1× b2 matrix of zeros. The resultant matrix
Z has λ1λ2 common 1s between any two rows.

Proof : Consider the p-th row and the q-th row of the Z, 1 ≤ p, q ≤ r1. The p-th row of
Z is formed by replacing the i-th 1 of the p-th row of X by the i-th row of Y , i = 1, · · · , r1.
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Similarly the q-th row of Z is formed by replacing the i-th 1 of the q-th row of X by the
i-th row of Y , i = 1, · · · , r1. In X, there were λ1 1s common between the p-th row and the
q-th row. Similarly, in Y , there were λ2 1s common between the p-th row and the q-th row.
Now for each of the λ1 common 1s between the p-th row and the q-th row, there will be λ2

additional common 1s contributed by Y . Hence the number of common 1s between the p-th
row and the q-th row is λ1λ2.

This incidence is of the type described early in this chapter and so it can be used as the
“linked” incidence matrix of any sensor network where each node can reach any other node
in at most one step provided λ1λ2 > 0.

Example 7 Consider two specific SBIBDs. For example, consider a Hadamard Design (4t−
1, 4t− 1, 2t− 1, 2t− 1, t− 1) and a Projective Plane(n2 + n + 1, n2 + n + 1, n + 1, n + 1, 1).
These can be combined as in Theorem 10 to produce the incidence matrix of a sensor network
which will have v = b = (n2 + n + 1) = (2t − 1), k = (n + 1)(2t − 1) and “linkage”
Λ = t − 1. The construction of the theorem requires that v2 = r1, which forces us to have
v = b = (n2 +n + 1) = (2t− 1). Note that all the rows of the resulting incidence matrix may
or may not be used.

Specifically choose t and n such that 2t− 1 = n2 + n + 1 =⇒ t = n2+n+2
2

.

As a concrete example, let n = 3, then t = 7. So we have a Hadamard Design
(27, 27, 13, 13, 6) and a Projective Plane (13, 13, 4, 4, 1).

Consider the incidence matrix of the Hadamard Design. Denote it by A where A is of
order 27 × 27. Also consider the incidence matrix of the Projective Plane. Denote it by B
where B is of order 13× 13.

Now replace the ith 1 of each row by the ith row of B for i = 1, 2, · · · , 13. More generally,
one can replace it by s copies of the ith row of B and the 0s of A are replaced by 1 × 13
matrix of 0s.

The resulting matrix will be of order 27 × 27 · 13s. However, the number of common 1s
between any two rows will be 6s.

One problem with the previous result is that although the number of common keys
between any two nodes increases, the total number of nodes does not increase. The next
result is suitable for “blowing up” the design because we can start with v1 much less compared
to b1 and v2 much less compared to b2.

Consider two BIBDs: X = (v1, b1, r1, k1, λ
′
1) and Y = (v2, b2, r2, k2, λ

′
2). Denote their

incidence matrices by A and B respectively. Consider the Kronecker product C = A ⊗ B.
We have the following well known result [99]. We give a proof for the sake of completeness.
More importantly, the technique of the proof will allow us to obtain good bounds on the
resilience measure fail(s).
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Theorem 11 Let C be the Kronecker product of the incidence matrices of two BIBDs X =
(v1, b1, r1, k1, λ

′
1) and Y = (v2, b2, r2, k2, λ

′
2). Then C is the incidence matrix of a PBIBD

with (at most) three associate classes and parameters v = v1 · v2, b = b1 · b2, r = r1 · r2,
k = k1 · k2, λ1 = λ′

1 · λ′
2, λ2 = λ′

1 · r2, λ3 = r1 · λ′
2.

Proof : We define the associates classes as follows: two rows of C, the (x1v2 + y1)th row
and (x2v2 + y2)th row are

1. 1st associates if x1 6= x2 and y1 6= y2.

2. 2nd associates if x1 6= x2 and y1 = y2.

3. 3rd associates if x1 = x2 and y1 6= y2.

where 0 ≤ x1, x2 ≤ v1 and 0 ≤ y1, y2 ≤ v2.

It may be verified that
p1

11 = (v1 − 2)(v2 − 2)
p1

12 = p1
21 = (v1 − 2)

p1
13 = p1

31 = (v2 − 2)
p1

22 = 0
p1

23 = p1
32 = 1

p1
33 = 0

p2
11 = (v1 − 2)(v2 − 1)

p2
12 = p2

21 = 0
p2

13 = p2
31 = (v2 − 1)

p2
22 = (v1 − 2)

p2
23 = p2

32 = 0
p2

33 = 0
p3

11 = (v1 − 1)(v2 − 2)
p3

12 = p3
21 = (v1 − 1)

p3
13 = p3

31 = 0
p3

22 = 0
p3

23 = p3
32 = 0

p3
33 = (v2 − 2)

The above follows from (1), (2) and (3), using simple counting arguments.

So P1 =

 (v1 − 2)(v2 − 2) (v1 − 2) (v2 − 2)
(v1 − 2) 0 1
(v2 − 2) 1 0


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P2 =

 (v1 − 2)(v2 − 1) 0 (v2 − 1)
0 (v1 − 2) 0

(v2 − 1) 0 0



P3 =

 (v1 − 1)(v2 − 2) (v1 − 1) 0
(v1 − 1) 0 0
(v2 − 1) 0 (v2 − 2)


Also n1 = (v1 − 1)(v2 − 1), n2 = v1 − 1 and n3 = v2 − 1.

For our analysis of fail(s) we now explicitly obtain the values of λ1, λ2 and λ3.

Lemma 3 Let C be the Kronecker product of the incidence matrices of two BIBDs X =
(v1, b1, r1, k1, λ

′
1) and Y = (v2, b2, r2, k2, λ

′
2). If a sensor network is constructed using C as

the underlying incidence structure, then there will be at least τmin common keys between any
two nodes of the sensor network where

τmin = min{λ1 = λ′
1 · λ′

2, λ2 = λ′
1 · r2, λ3 = r1 · λ′

2.}

Proof :

A =


a1,1 a1,2 · · · a1,b1

a2,1 a2,2 · · · a2,b1

· · · · · · · · · · · ·
av1,1 av2,2 · · · av1,b1



B =


b1,1 b1,2 · · · b1,b2

b2,1 b2,2 · · · b2,b2

· · · · · · · · · · · ·
bv2,1 bv2,2 · · · bv2,b2



C = A⊗B =


a1,1B a1,2B · · · a1,b1B
a2,1B a2,2B · · · a2,b1B
· · · · · · · · · · · ·

av1,1B av2,2B · · · av1,b1B


It may be noted that the xv2 + yth row of C has the following structure:

ax+1,1(by,1 by,2 · · · by,b2) ax+1,2(by,1 by,2 · · · by,b2) · · · ax+1,b1(by,1 by,2 · · · by,b2)
where 0 ≤ x ≤ v1 and 0 ≤ y ≤ v2.
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Consider the dot product τ of the x1v2+y1th and x2v2+y2th rows of C where 0 ≤ xi ≤ v1

and 0 ≤ yi ≤ v2, i = 1, 2. This can take one of three values λ1, λ2, or λ3, depending on the
rows chosen.

1. If x1 6= x2, then ax1+1,i = ax2+1,i for λ′
1 values of i. For each of these λ′

1 values of i, the
dot product of (by1,1 by1,2 · · · by1,b2) and (by2,1 by2,2 · · · by2,b2) will be λ′

2 if
y1 6= y2 and r2 if y1 = y2.

So the dot product, λ1 is λ′
1λ

′
2 if x1 6= x2 and y1 6= y2.

The dot product λ2 is λ′
1r2 if x1 6= x2 and y1 = y2. Note that x1 6= x2 and y1 6= y2 is

possible in v1(v2−1)v2(v1−1)
2

= 2
(

v1

2

)(
v2

2

)
ways. Also x1 6= x2 and y1 = y2 is possible in

v1(v1−1)v2

2
=
(

v1

2

)
v2 ways.

2. If x1 = x2, then ax1+1,i = ax2+1,i for r1 values of i. For each of these r1 values of i, the
dot product of (by1,1 by1,2 · · · by1,b2) and (by2,1 by2,2 · · · by2,b2) will be λ′

2 if
y1 6= y2 and r2 if y1 = y2.

So the dot product λ3 is r1λ
′
2 if x1 = x2 and y1 6= y2 and r1r2 if x1 = x2 and y1 = y2.

Again x1 = x2 and y1 6= y2 may happen in v1v2(v2−1)
2

= v1

(
v2

2

)
ways.

We therefore see that if C were used to design the sensor network we would have the result
of the enunciation.

Corollary 1 Average value of τ =
λ′1λ′2(2(v1

2 )(v2
2 ))+λ′1r2((v1

2 )v2)+r1λ′2(v1(v2
2 ))

2(v1
2 )(v2

2 )+(v1
2 )v2+v1(v2

2 )

= λ′
1λ

′
2

(v1−1)(v2−1)
v1v2−1

+ λ′
1r2

v1−1
v1v2−1

+ r1λ
′
2

v2−1
v1v2−1

≈ λ′
1λ

′
2

(
1− 1

v1
− 1

v2

)
+ λ′

1r2

(
1
v2

)
+ r1λ

′
2

(
1
v1

)
.

In other words, the average value will be very close to λ′
1λ

′
2.

Consider any two rows of the incidence matrix C who share the minimum number of keys,
τmin. Denote these keys by α1, · · · , ατmin

. Recall that the resilience measure fail(s) means
the probability of the key(s) shared between two given nodes is/are revealed consequent

upon the failure of s random nodes. In this context, fail(s) = Prob(

τmin⋂
i=1

Ei) where Ei denotes

the event that the αi-th key is revealed, i = 1, · · · , τmin.

Theorem 12 fail(s)≤ [Prob(

τmin⋂
i=1

Ei)]τmin=1 = 1−
(

(v1v2−k1k2
s )

(v1v2−2
s )

)
≤ 1−

(
v1v2−k1k2−s+1

v1v2−s−1

)s

.

Note: The above theorem gives a rather loose bound for fail(s) . Since the number of
keys is large, it will be more reasonable to estimate fail(s) by considering the Eis to be
independent, i = 1, · · · , τmin.
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Example 8 Consider two specific BIBDs, X = (v1 = 28, b1 = 36, r1 = 9, k1 = 7, λ′
1 = 2)

and Y = (v2 = 91, b2 = 91, r2 = 10, k2 = 10, λ′
2 = 1).

If we take the Kronecker Product of the incidence matrices of X and Y , the resulting
three associate class PBIBD will have the following parameters: v = 28 · 91 = 2548, b =
36 ·91 = 3276, r = 9 ·10 = 90, k = 7 ·10 = 70, λ1 = 2 ·1 = 2, λ2 = 2 ·10 = 20, λ3 = 9 ·1 = 9.

τ =


λ1 = 2 ( happens 2

(
28
2

)(
91
2

)
= 3095820 times)

λ2 = 20 ( happens
(
28
2

)
91 = 34398 times)

λ3 = 9 ( happens 28
(
91
2

)
= 114660 times)

Average value of τ = 2.43816254, which is very close to λ′
1λ

′
2 = 2 · 1 = 2.

fail(10) ≤ 1−
(

(2478
10 )

(2546
10 )

)
= 0.2375 ≤ 1−

(
2469
2537

)10
= 0.2379.

However, it appears more reasonable to estimate fail(10) by assuming that the revealing
of the keys are independent of each other (as described in the note above).
So fail(10) ≈ k1k2

v1v2
· k1k2

v1v2
= 70

2548
· 70

2548
= 0.00075.

Remark 3 Let us compare the examples given in section 4.2.6 and 8. The number of
keys in each node is between 126 and 128 in example of section 4.2.6, but it is only 90 in
example 8. Though the average number of common keys is higher (more than 5) in example
of section 4.2.6, but there are cases where two nodes may not share a common key. Whereas,
in example 8, the average number of common keys is fewer, but it is guaranteed to have at
least 2 common keys between any two blocks. If we compare the fail(10) values, we find that
in the example of section 4.2.6, it is around 2%. In example 8, it is less than 23%, but in
reality, it appears to be much less since the bound is not tight. In fact, the value should be
close to 0.075%.

We have compiled a long table of PBIBDs. The original table is available at [104]. In fact,

it is evident that given a table of n BIBDs, one can generate a new table of n(n+1)
2

PBIBDs.
A few rows from the original table is given in table 8.1.

8.2 Key Agreement

For the key agreement purpose, let each node be given an identification number, which in
binary represents the row corresponding to that particular node of the incidence matrix.
Each key is assigned an index and that index is stored in each node along with the keys.
Let two nodes have the ids ν0 and ν1 and they want to agree upon a common key. At
first, they exchange their respective ids. Next they calculate the logical AND of the binary
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v b r k λ1 λ2 λ3

2541 2772 60 55 1 5 12
2541 9240 120 33 1 10 12
2541 5544 120 55 2 10 24
2541 3960 120 77 3 10 36
2541 5544 144 66 3 12 36
2541 8316 180 55 3 36 15
2541 4620 180 99 6 72 15
2548 5733 90 40 1 9 10
2548 12285 135 28 1 9 15
2548 3276 90 70 2 9 20
2548 7020 135 49 2 9 30
2548 3822 150 100 5 50 15
2548 8190 225 70 5 75 15
2553 2553 121 121 5 55 11
2555 2555 126 54 5 45 14
2556 5964 210 90 6 42 30
2556 2556 225 225 18 90 45
2560 9360 117 32 1 9 13
2560 3744 117 80 3 27 13
2560 2880 117 104 4 36 13

Table 8.1: A few values from the table of three associate class PBIBDs

representation of the id received with the binary representation of its own id. So both the
nodes now have the knowledge of the indices of the common keys between them from the
presence of 1s in the expression. Next, one of them randomly chooses the index of one of
the common keys and sends it across to the other node. The other node accepts it.

Algorithm 3 1. Node νi sends its id to node ν1−i where i = 0, 1.

2. Node νi computes the logical AND of the binary representation of νi and ν1−i. Denote
it by xi, i = 0, 1.

3. Node νi learns about the common keys from the presence of 1s in xi, i = 0, 1. Let the
positions of those 1s be at t1, t2, · · · , tα.

4. Node ν0 chooses a j randomly from [1, α] and sends it across to ν1.

5. Now node ν1 also gets informed that the agreed upon key is the key with index tj.
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The above protocol exchanges bit-strings of size blog2(v)c + 1 where v = no of sensor
nodes and stores the indices for each key which is also of the size blog2(v)c+1, thus effectively
increasing the key size by a few bits or equivalently, at the expense of storing a few extra
keys in each sensor node.

For example, consider a network with v = 3276. The bit-string exchanged will be of
length blog2(3276)c + 1 = 12 only, which is less than 2 bytes. For 90 keys per node, it will
take an additional 90× 12 = 1080 bits or 135 bytes. If we assume 16 byte keys, the memory
requirement for the keys will be 90 × 16 = 1440 bytes and the total memory requirement
will be 1440 + 135 = 1575 bytes, which is even less than 2Kbytes.

8.2.1 A Special Case for SBIBDs

There is an elegant algorithm for key agreement if the underlying BIBDs are symmetric
and generated from difference sets. Assume that the SBIBD generated from a difference set
has the blocks from the elements in Zv. Let there be v blocks. The i-th block contains the
element i for i ∈ Zv. So the blocks may be indexed by the elements of Zv. In other words, we
may consider v blocks indexed by {0, 1, · · · , v−1}. Let the 0th block be {0, α1, α2, · · · , αk−1}.
So the ith block will be {i, α1 + i, α2 + i, · · · , αk−1 + i} where i ∈ Zv and the additions are
modulo v. Also consider an empty list L of size v having elements L0, L1, · · · , Lv−1, where
each element Li is a vector of size λ whose elements are in Zv . Assume that two blocks
intersect at λ points.

Method 1 1. For i ∈ Zv, consider the intersection of the i-th block with the 0th block
and put the λ elements in Li. Denote them by Li1 , Li2 , · · · , Liλ.

2. Let two nodes with indices p and p + i want to agree upon a common key.

3. They calculate the difference in their indices. Here it is i.

4. Look up the i-th element Li from the list.

5. The common key is p + Lij where 1 ≤ j ≤ λ.

Proof of correctness of method 1

We are required to prove that if the 0th block and the ith block intersect at αn (say), then
the pth block and the (p + i)th block will intersect at p + αn.
Proof : Consider the 0th block {0, α1, α2, · · · , αk−1}
and the ith block {i, α1 + i, α2 + i, · · · , αk−1 + i} where i ∈ Zv and the additions are modulo
v. Let αn = αm + i where αm, αn, i ∈ Zv and 0 ≤ n, m ≤ k − 1. So we put αn in the list
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against i. In other words, αn is one of the λ elements that are put in Li. Next consider
the p-th block {p, α1 + p, α2 + p, · · · , αk−1 + p} where p ∈ Zv and the (p + i)th block
{(p + i), α1 + (p + i), α2 + (p + i), · · · , αk−1 + (p + i)} where (p + i) ∈ Zv. Now let
αx + p = αy + p + i =⇒ αx = αy + i. This is obviously satisfied if x = n and y = m. The
common key is αx + p = αy + p + i = p + αn = p + αm + i.

Example 9 Let us cite an example of the projective plane (13, 13, 4, 4, 1). The blocks of the
projective plane are as follows:

0 1 3 9
1 2 4 10
2 3 5 11
3 4 6 12
4 5 7 0
5 6 8 1
6 7 9 2
7 8 10 3
8 9 11 4
9 10 12 5
10 11 0 6
11 12 1 7
12 0 2 8

We can easily index the blocks by the first elements of each block. It is easy to see that
the i-th block is {i mod 13, (i+1) mod 13, (i+3) mod 13, (i+9) mod 13}. Next we construct
the table 8.2:

Suppose we need to calculate the common key between the blocks (nodes) 7 and 11. Node
7 at once calculates the difference 11 − 7 = 4 and looks up table 8.2 against the difference
value 4. The corresponding index of the key is i mod 13. Putting i = 7, it finds the index to
be 7. On the other hand, node 11 calculates the difference 7− 11 = −4 = 9, since everything
is calculated modulo 13. Node 11 looks up table 8.2 against the difference value 9 and finds
that the corresponding index of the key is (i + 9) mod 13. Putting i = 11, it finds the index
to be 7. Hence the index of the mutually agreed upon key is 7.

Example 10 Let us cite an example of the biplane (11, 11, 5, 5, 2). The blocks of the biplane
are as follows:
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Difference Indices of the Keys
1 (i + 1) mod 13
2 (i + 3) mod 13
3 (i + 3) mod 13
4 i mod 13
5 (i + 1) mod 13
6 (i + 9) mod 13
7 (i + 3) mod 13
8 (i + 9) mod 13
9 (i + 9) mod 13
10 i mod 13
11 (i + 1) mod 13
12 i mod 13

Table 8.2: Pre-computed table of Difference and V alue of the Key.

0 2 3 4 8
1 3 4 5 9
2 4 5 6 10
3 5 6 7 0
4 6 7 8 1
5 7 8 9 2
6 8 9 10 3
7 9 10 0 4
8 10 0 1 5
9 0 1 2 6
10 1 2 3 7

We can easily index the blocks by the first elements of each block. It is easy to see that
the i-th block is {i mod 11, (i + 2) mod 11, (i + 3) mod 11, (i + 4) mod 11, (i + 8) mod 11}.
Next we construct the table 8.3:

Suppose we need to calculate the common key between the blocks 4 and 10. Node 4
calculates the difference 10 − 4 = 6 and looks up table 8.3 against the difference value 6.
The corresponding indices of the keys are (i + 3) mod 11, (i + 8) mod 11. Putting i = 4,
it finds the indices to be 7 and 1. Node 10 calculates the difference 4 − 10 = −6 = 5 and
looks up table 8.3 against the difference value 5. The corresponding indices of the keys are
(i+2) mod 11, (i+8) mod 11. Putting i = 10, it finds the indices to be 1 and 7. Hence both
the nodes agree upon the keys with indices 1 and 7. Now they have an option of selecting
either of the two keys. Note that all the computations are done modulo 11.
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Difference Indices of the Keys
1 (i + 3) mod 11, (i + 4) mod 11
2 (i + 2) mod 11, (i + 4) mod 11
3 (i + 3) mod 11, i mod 11
4 (i + 4) mod 11, (i + 8) mod 11
5 (i + 2) mod 11, (i + 8) mod 11
6 (i + 3) mod 11, (i + 8) mod 11
7 i mod 11, (i + 4) mod 11
8 i mod 11, (i + 8) mod 11
9 i mod 11, (i + 2) mod 11
10 (i + 2) mod 11, (i + 3) mod 11

Table 8.3: Pre-computed table of Difference and V alue of the Key.

Example 11 We shall cite a final example of the projective plane (21, 21, 5, 5, 1). The blocks
of the projective plane are as follows:

0 1 6 8 18
1 2 7 9 19
2 3 8 10 20
3 4 9 11 0
4 5 10 12 1
5 6 11 13 2
6 7 12 14 3
7 8 13 15 4
8 9 14 16 5
9 10 15 17 6
10 11 16 18 7
11 12 17 19 8
12 13 18 20 9
13 14 19 0 10
14 15 20 1 11
15 16 0 2 12
16 17 1 3 13
17 18 2 4 14
18 19 3 5 15
19 20 4 6 16
20 0 5 7 17
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Difference Indices of the Keys
1 (i + 1) mod 21
2 (i + 8) mod 21
3 i mod 21
4 (i + 1) mod 21
5 (i + 6) mod 21
6 (i + 6) mod 21
7 (i + 8) mod 21
8 (i + 8) mod 21
9 (i + 6) mod 21
10 (i + 18) mod 21
11 (i + 8) mod 21
12 (i + 18) mod 21
12 (i + 18) mod 21
13 i mod 21
14 (i + 1) mod 21
15 i) mod 21
16 (i + 1) mod 21
17 (i + 18) mod 21
18 (i + 18) mod 21
19 (i + 6) mod 21
20 i mod 21

Table 8.4: Pre-computed Table of Difference and Value of the Key.

Index the blocks by the first elements of each block. It is easy to see that the i-th block is
{i mod 21, (i+1) mod 21, (i+6) mod 21, (i+8) mod 21, (i+18) mod 21}. Next we construct
the table 8.4:

Suppose we need to calculate the common key between the blocks 15 and 18. For node 18,
we at once calculate the difference 15− 18 = −3 = 18 (all the calculations are done modulo
21) and lookup table 8.4 against the difference value 18. The corresponding index of the key
is (i + 18) mod 21. Putting i = 18, the index is readily found to be 15. For node 15, we at
once calculate the difference 18− 15 = 3 and lookup table 8.4 against the difference value 3.
The corresponding index of the key is i mod 21. Putting i = 15, the index is readily found to
be 15. So the both the nodes agree upon the key with index 15.
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8.2.2 Another special case for designs generated from SBIBDs

If we generate PBIBDs by the Kronecker Product of the incidence matrix of two SBIBDs
resulting from difference sets, then also we can calculate the indices of the keys common
between any two nodes of the resulting sensor network. Consider two SBIBDs having pa-
rameters (v1, b1 = v1, r1, k1 = r1, λ1) and (v2, b2 = v2, r2, k2 = r2, λ2). Denote their incidence
matrices by A and B respectively. Let C = A⊗ B. We can easily prepare one list each for
both the SBIBDs, as shown in method 1. Let us denote those two lists by L1 and L2. Now
the sensor network resulting from C will have v1v2 blocks (nodes) and these nodes may be
indexed by xv2 + y where 0 ≤ x ≤ v1 and 0 ≤ y ≤ v2. Consider two such nodes x1v2 + y1

and x2v2 + y2.

Method 2 1. Find the common keys between x1th row and x2th row from L1 using
method 1. Denote them by γ1, γ2, · · · , γλ1

2. Find the common keys between y1 and y2 from L2 using method 1. Denote them by
δ1, δ2, · · · , δλ2

3. The indices of the common keys will be

v2γ1 + δ1 − 1, v2γ1 + δ2 − 1, · · · , v2γ1 + δλ2 − 1,

v2γ2 + δ1 − 1, v2γ2 + δ2 − 1, · · · , v2γ2 + δλ2 − 1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
v2γλ1 + δ1 − 1, v2γλ1 + δ2 − 1, · · · , v2γλ1 + δλ2 − 1

Proof of Correctness of Method 2

Proof : There will be common 1s between the two rows of A at columns γ1, γ2, · · · , γλ1

and similarly there will be common 1s between the two rows of B at columns δ1, δ2, · · · , δλ2 .
Next consider the dot product of the two rows x1v2 + y1 and x2v2 + y2 of C = A⊗B. Each
row may be thought of as v1 blocks of length v2 each. The ith block contains the columns v2i
to v2(i + 1)− 1, both inclusive, where i = 0, 1, · · · , v1 − 1. We are interested in the presence
of common 1s between the aforesaid rows of C. Now the x1th row and the x2th row of A
contain common 1s at γ1, γ2, · · · , γλ1 column positions and the y1th row and the y2th row
of B contain common 1s at δ1, δ2, · · · , δλ2 column positions. So there will be common
1s between the aforesaid rows of C at γ1, γ2, · · · , γλ1th blocks since all other blocks will
contain only 0s. Again, in each block, there will be common 1s at δ1, δ2, · · · , δλ2 positions.
Hence the absolute indices of the columns containing the common 1s are

v2γ1 + δ1 − 1, v2γ1 + δ2 − 1, · · · , v2γ1 + δλ2 − 1,
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v2γ2 + δ1 − 1, v2γ2 + δ2 − 1, · · · , v2γ2 + δλ2 − 1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

v2γλ1 + δ1 − 1, v2γλ1 + δ2 − 1, · · · , v2γλ1 + δλ2 − 1

Example 12 Let A be the incidence matrix of the projective plane (v1 = 13, b1 = 13, r1 =
4, k1 = 4, λ′

1 = 1) and B be the incidence matrix of the biplane (v2 = 11, b2 = 11, r2 =
5, k2 = 5, λ′

2 = 2). We take the Kronecker product of the incidence matrices of these two
designs to generate the incidence matrix of a 3 associate class PBIBD with parameters v =
143, b = 143, r = 20, k = 20, λ1 = 2, λ2 = 5, λ3 = 8. Suppose we want to find the common
keys between the nodes 50 and 100. We first note that x1 = b50

11
c = 4, y1 = 50 mod 11 = 6,

x2 = b100
11
c = 9 and y2 = 100 mod 11 = 1. So there are λ1 = 2 common keys between these

two nodes. From example 9, the common keys between 4 and 9 is γ1 = 5 and from example
10, the common keys between 6 and 1 are δ1 = 3 and δ2 = 9. So the indices of the common
keys are v2γ1 + δ1 − 1 = 11 · 5 + 3 − 1 = 57 and v2γ1 + δ2 − 1 = 11 · 5 + 9 − 1 = 63. The
incidence matrices of example 9 and example 10 are shown below.

A =



1 1 0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 1 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 0 0 1


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B =



1 0 1 1 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0
1 0 0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 0 1


The dot product of the 50th and the 100th rows of C comprises of two 1s at the 57th and

63rd column position and the rest 141 column positions are all 0s.

8.3 Conclusion and Future Research

In this chapter, we have noted that many combinatorial designs can be used to give key
distributions for sensor networks. We have studied the use of BIBDs to give a rather loose
upper bound for fail(s) and also an approximate estimate. It will be a worthwhile exercise
to calculate the value of this probability with more accuracy. We have explored in detail
the use of SBIBDs for key distributions for sensor keys. We note that relatively speaking,
SBIBDs are rare compared with other combinatorial designs.

We have given a general protocol for key agreement. Several special cases are also dis-
cussed for easier methods of key agreement when the underlying pre-distribution schemes
result from difference sets (which are rarer than SBIBDs).

We are working on some other techniques of key pre-distribution using error correcting
codes (n,m, d) where n corresponds to the total number of keys, m corresponds to the total
number of sensor nodes and “the number of keys in each node” corresponds to the weighs
of the codewords. For more details on these techniques, refer to [3, 35, 71, 84].
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Chapter 9

Conclusion

We have plans for future research work as follows.

In chapter 4, we have presented a randomized block merging strategy. The resulting designs
are readily available according to user requirements, but they are not directly available from
combinatorial designs. The target is to get more than one common keys between any two
nodes. A heuristic improvement of the basic randomized block merging strategy is presented
for merging blocks in a (v, b, r, k) configuration (resulting from the TD(k, r)). It is done in
such a manner that the blocks constituting a node will not share any common key among
themselves. This provides better parameters than our basic design. It will be interesting to
regularize the key pre-distribution after random merging. In the strategy presented in this
chapter, the number of common keys between any two nodes follow binomial distribution.
Thus, there is a probability (though very low) that there may be no common key between two
nodes (for the time being, to get around this difficulty, two nodes can always communicate via
an intermediate node with almost certainty). It looks promising to apply more sophisticated
heuristic re-arrangement of blocks among the nodes available after the merging so that the
number of common keys between any two nodes becomes more or less constant and at least
one.

In chapter 5, we have studied the subset of nodes that are securely connected to each
other (clique). We have studied the cliques corresponding to the (v, b, r, k) configuration
(resulting from the TD(k, r)) where each block corresponds to a node. We also consider the
scenario where more than one blocks are merged to form a node. We show that the clique
size increases in such a scenario. An interesting future work in this area is to implement a
merging strategy such that one can get cliques of maximum size after the merging.

In chapter 6, we have further investigated networks where users have differing resources
and capacity requirements. One application involves a large network with large, mostly self-
contained sub-networks, while another application involves networks with different robust-
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ness at different levels. For example, at the second level of hierarchy (i.e., the level containing
the special nodes), one may need to have different number of common keys shared between
two given nodes. It will be an interesting combinatorial problem to find out a design having
such a property. One may even look for better alternatives compared to the use of copies of
projective planes at this level.

In chapter 7, we have considered the case of random and independent failure of nodes.
We have not specified any particular algorithm that determines which nodes will remain
alive and which nodes will be put to sleep so that the longevity of the network increases.
However, by increasing the number of compromised nodes, one can arrive at a configuration
that can maintain a connected network and at the same time can cover all the grid points.
It is easy to find two disjoint configurations with only half of the total nodes being live. One
can assume that half of the nodes will be alive at any given point of time and the rest will
sleep and conserve energy. In our future work, we shall give deterministic algorithms for
sleeping of the sensor nodes.

In chapter 8, we have given an upper bound for fail(s) and also an approximate estimate.
It will be a worthwhile exercise to calculate the value of this probability with more accuracy.
We have given a general protocol for key agreement. Several special cases are also discussed
for easier methods of key agreement when the underlying pre-distribution schemes result
from difference sets. An interesting exercise will be to explore other combinatorial designs
(linked designs in particular), which may also be used in designing sensor networks.
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