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Chapter 1
Introduction

Classical Fourier analysis derives much of its power from the fact that there
are three function spaces whose images under the Fourier transform can be
exactly determined. They are the Schwartz space, the L? space and the space
of all €* functions of compact support. The determination of the image
is obtained from the definition in the case of Schwartz space, through the
Plancherel theorem for the L? space and through the Paley-Wiener theorem
for the other space.

In harmonic analysis of semisimple Lie groups, function spaces on various
restricted set-ups are of interest. Among the multitude of these spaces it is
again the spaces analogous to the three spaces above for which characteriza-
tion of images under Fourier transform has been possible. Having neither the
advantage of the duality nor the well behaved characters as the Euclidean
set-up, the determination of images has been hard work in all the situations
here- leading to the Schwartz space isomorphism theorems, the Paley-Wiener
theorems and the Plancherel theorems. Some of these results have been re-
worked in recent years resulting in simpler approaches and redefining the
interrelationships of these results. This the context of the present thesis.

Our set-up is a connected, non-compact, semisimple real Lie group G
having finite center and K a maximal compact subgroup of G. A main inspi-
ration for our work is J-P. Anker’s [2] proof of Schwartz space isomorphism
under the Fourier transform for bi- K-invariant functions on G. Unlike the
earlier proofs of this result, this beautiful proof relies on the Paley-Wiener
theorem and takes no recourse to the asymptotics of elementary spherical
functions due to Harish-Chandra except, indirectly, for what is involved in
the Paley-Wiener theorem. Since a proof of the Paley-Wiener theorem had
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already been found that did not use the Schwartz space isomorphism the-
orem as well, Anker’s proof thus scripted an ‘elementary’ development of
Harmonic Analysis of bi- K-invariant functions.

It is in the above spirit that we take up our first function space, the
LP-Schwartz space 8§(X) (0 < p < 2) of a given (left) K-type § on the sym-
metric space X = G/K under the assumption that G/K is of real rank-1.
The relevant Fourier transform here is the d-spherical transform. In charac-
terizing the image of the d-spherical transform, we do not attempt to adopt
the arguments of Anker as suggested in [2]. Instead we exploit the Kostant
polynomials to reduce the problem to the bi- K-invariant case and use Anker’s
result thereafter. Again this provides arguments relying on the Paley-Wiener
theorem to prove our result which is a part of the Eguchi-Kowata theorem [9]
(where they established the isomorphism for 8?(X) without the restriction
of the left type).

The second function space that we consider is in connection with the the-
ory of spectral projection advocated by Stricharz [41,42,44]. Bray [8] worked
on spectral projections in the semisimple context to obtain the Paley-Wiener
theorem. We work with the LP-Schwartz space 8P(X)x (0 < p < 2) of K-
finite functions on X = G/K. With the assumption of real rank-1, like in
Bray’s [8] result, we are able to obtain a characterization of the image of
this space under spectral projection; we also have partial results removing
the rank restriction. Our result looks akin to what Stricharz obtains for Eu-

clidean spaces.

In the third function space we go out of the bi-K-invariant or right- K-
invariant situation. As is well-known, harmonic analysis on the full group
has not yet gone very far. Indeed, it is only for the group SLy(R) that the
characterization problem for the LP-Schwartz space 8P(G) have so far been
solved (Barker [7]). On the same group we take up the case of LP-Schwartz
spaces (1 < p < 2) of functions having given left and right-K-types. We

obtain again a (somewhat) elementary proof of Barker’s result in this case.

The thesis is organized as follows. In Chapter 2 we set down our no-
tation and collect useful results and formulae. Chapter 3 is devoted to the

Schwartz space isomorphism of 8§(X). In Chapter 4 we give our results on



spectral projection. This chapter can also be viewed as an application of the
isomorphism theorem obtained in Chapter 3. In the last chapter, Chapter 5,
we come back to Schwartz space isomorphism under Fourier transform, this
time on the group SLy(R), for the space of functions with fixed left and right
K-types.
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Chapter 2

Notation and preliminaries

In this chapter we shall briefly recall some facts and results about noncom-
pact Riemannian symmetric space realized as X = G/K, where G be a
connected noncompact semisimple Lie group with finite center and K a max-
imal compact subgroup of GG. In our discussion we shall concentrate on the
‘rank-1" Riemannian symmetric spaces, that is, the semisimple Lie group G
will be of ‘real rank-1". Many of the basic notions, and results will be stated
without proof. We refer to the standard textbooks [14,20,26,27,32] for more
details and proofs.
We denote g and ¢ for the Lie algebras of G and K respectively. As K is a
maximal compact subgroup of G, there exists an involutive automorphism
0, called the Cartan involution, of G whose set of fixed points is precisely K.
The Lie algebra g has the Cartan decomposition into the eigenspaces of the
Cartan involution:

g=t®p, (2.0.1)

where, t ={X € g | 0X = X} and p={zr € g| 06X = —X}. The corre-
sponding decomposition G = K expp is called the Cartan decompositions of
G respectively. Let us denote g¢ for the complexification 28, p-180] of the
Lie algebra g. The Killing form B on g has the properties

(i) B is invariant under the action of G and 0,

(ii) it is real valued on g x g, positive definite on p and negative definite

on €.

Then % induces an inner product on g by (X,Y) = —8B(X,0Y) which ex-

tends to gc as a Hermitian inner product-called the Cartan-Killing form.

bt
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The corresponding norm is denoted by || X|*> = —B(X,0X). The Cartan-
Killing form also induces the Riemannian structure on X = G/K, whose
tangent space at eK is identified with p.

Let us choose and fix a one dimensional subspace a C p. We denote by a*
its real dual and af. its complex dual vector space. The Cartan-Killing form
induces an inner product on a and hence on a*. We denote (-,-); for the

extension of the inner product to ai. For any o € a* we set
go={X€g|[H X]=aH)X, HEa}. (2.0.2)

We denote gy = m which is the centralizer of a in . We shall call « a root
of the system (g, a) (called restricted root of g) if & # 0 and g, # 0. We
denote by ¥ the set of all roots of (g, a). For each root o, m, = dimg, is the
multiplicity of the root a. Selecting a non-zero element X € a, we call a root
a positive if a(X) > 0; the set of positive roots is denoted by ¥t in ¥ and
n = @, cs+ 0o is a nilpotent subalgebra of the Lie algebra g. Let N = expn
be the analytic subgroup of G defined by n. N is a closed subgroup of GG and
the exp map is a diffeomorphism from n onto N. The sub group A = expa
normalizes N. We denote M = expm; then clearly M is the centralizer of A
in K. The subgroup M of K also normalizes N. Let M’ be the normalizer of
Ain K. The Weyl group W = M'/M is the group {1, —1} which acts on a;
identifying a and R with the help of X above, W acts on R by multiplication.
The cone at in a corresponds to the set of all positive numbers; a** will be
the dual cone of a*. Let p =1 > es+ Myy € a7 We now change our choice
of X so that p(X) = 1. This normalization identifies A, a and a* all with R
and in particular p is identified with 1. The complexifiction af. is identified
with C. The group elements of A will now be denoted by a; where ¢t € R and
expt = a;. With the normalization the positive chambers A™, a* and a**
are all identified with R¥.

We shall be using the Iwasawa and the Cartan decomposition of G and
the corresponding expressions of the Haar measure on GG. The Iwasawa de-

composition gives
g=tdadn, and G = KAN, (2.0.3)

where the map (k,a,n) — kan € G is a diffecomorphism from K x A x N
onto GG. The group G can also be expressed as G = NAK, the map being



again a diffeomorphism. Let H : g = ka;n — H(g) =t and A : g = na, k —
A(g) = t; are Iwasawa-a-projections of ¢ € G in a for KAN and NAK
decomposition of the group respectively. These two projections are related
by A(g) = —H(g™') for all g € G.

The Cartan decomposition gives G = KA+ K. It induces a diffeomorphism
from K/M x AT x K (or K x AT x M/K) onto an open dense subset of
G. Let z be the at projection of x € G for the Cartan decomposition
x = ki(expax™)ky and we denote |z| = ||xT||. For all x € G the Iwasawa-a-

projection H(x) and the quantity |z| are related by the inequality:
|H(z)|| < c|z|, x € G, where ¢ >0 is a fixed constant. (2.0.4)

We also note that in the symmetric space X = G/K, |z| is the Riemannian
distance of K from the coset eK, e being the identity element of G.

The Haar measure corresponding to the Iwasawa-K AN decomposition is

/G f(x)dz = const. /K dk / ) e2dt /N dnf (kam), (2.0.5)

where, the const stands for a normalizing constant. For Iwasawa-NAK de-

given by

composition the expression for the Haar measure is even simpler

/G f(z)dz = const. /N dk / di /K dnf(kan). (2.0.6)

In the case of the Cartan decomposition the Haar measure on G is given by

/G f(x)dz = const. /K dky / Ay /K dlo f (kracks), (2.0.7)

where the weight function A(t) = [],cx+ sinh™* a(t). We shall use the esti-
mate A(t) = O(e*) of the density function. The maximal compact subgroup
K acts on the group G from left as well as from right. A function f on G is

said to be bi-K -invariant if it satisfies the relation
f(k1xks) = f(z), for all z € G and ky, ks € K, (2.0.8)

and it may also be regarded as a function on the double cosets K \ G/K =
G//K. A function f will be called right-K -invariant if for all x € G and
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k € K it satisfies
f(zk) = f(x). (2.0.9)

Althrough in this thesis we shall consider a function on the symmetric space
X = G/K as a right- K-invariant function on the group G. For any function
space §(G) on G or §(G/K) on X, we shall denote F(G//K) for the corre-
sponding subspace of bi- K-invariant functions.

We denote C*(G) for the set of all smooth functions on G. We fix a ba-
sis {X,} for the Lie algebra g. Let U(g) be the universal enveloping algebra
over g. Let Dy --- D,,, Ey - -+ E,, € U(g), then the action of U(g) on a function
f € C*(G) is defined as follows:

d d d d

% |t1:() . ﬁhmzo g |51:O . E 5,20 f(etlDl - etmDmxelel - eSnEn)'
1 m 1 n

(2.0.10)

Let bj; = B(X;, X;) and (bY) be the inverse of the matrix (b;). We now
define a distinguished element, called the Casimir element, of U(g) by the
following:
Q=Y 1XX;. (2.0.11)
7
The differential operator €2 lies in the center of U(g). The action of the
Laplace-Beltrami operator L on X is defined by the action of €2:

Lf(zK) = f(z;Q), z€QG. (2.0.12)

Let P = MAN be a minimal parabolic subgroup of G. We describe the
spherical representations of interest for analysis of right- K-invariant func-
tions. The one dimensional representation 7% : ma;n — e (A € C) of P

induces the principal series representations my (A € C) of G realized on the
Hilbert space L?*(K /M), given by the formula:

{m(2)CH (kM) = e”VHERDA(K (27 ) M), ¢ € LX(K/M), (2.0.13)
where, (z,kM) — H(xz,kM) is the function from G x K/M into a defined

by H(z,kM) = H(z7'k) and K(y) denotes the K projection of y € G in
Iwasawa- K AN decomposition. For each x € G and )\ € C, the adjoint of the



operator my(x) is given by
{mz(z)}* = m5(z 1), (2.0.14)

The representation 7 is unitary if and only if A € R [14, Proposition 3.1.1].
It follows from the definition that )|k is the left regular representation of
K in L*(K/M). Clearly, the constants C - 1 are in L?(K/M) and they are
precisely the K-invariant vectors for each my in L?(K/M). The elementary
spherical functions are the following matrix coefficients of the principal series

representations corresponding to the function 1:
() = (ma(@)1, 1) L2 /m) = / e~ AFDHETE) g (2.0.15)
K

Using (2.0.14)) one can get an alternative integral expression for the elemen-
tary spherical functions as follows:
ox(@) = (1, mA(2) 1) r2(e/an) = (L wx(@7)) 20 /0m),
= / eA—DHER) g (2.0.16)
K

We collect some of the very basic properties of the elementary spherical

functions, which will be used throughout.

Proposition 2.0.1. (i) The expression px(x) is a bi-K-invariant C™
function in the x variable and it is a W -invariant holomorphic function
in A€ C.

(ii) For each A € C, z — ¢\(x) is a joint eigenfunction of all the G-
invariant differential operators on G /K in particular for the Laplace-

Beltrami operator we have:

Loy(-) = =((A A+ Dea(),  AeC (2.0.17)

(11i) For each A € C and x,y € G, the following property is referred to as

the ‘symmetric property of the elementary spherical functions’

w(gj_ly):/ oA H(y ) A= DHE k) g (2.0.18)
K
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(iv) For any given D, E € U(g), there exists a constant ¢ > 0 such that

lox(D; x5 E)| < ¢(|A| + 1)%eoFrdeaD oy (2)  for allz € G, X € C.
(2.0.19)

(v) Given any polynomial P in the algebra S(a*) of symmetric polynomials

over a*, there exists a positive constant ¢ such that:

()0

(vi) For allt and X in R™ we have:

< (14 |z))™F piga(z), =z €G. (2.0.20)

0 < p_irn(ay) < eMpo(ay). (2.0.21)

(vii) For all x € G, we have 0 < @o(z) = po(z™!) < 1;

(viii) For allt € RT, we have the following two-side estimate of @
et < polay) <e(l+t)%e ™, (2.0.22)

where c,a > 0 are group dependent constants;

Property (i) is a very basic fact which follows from the definition. For
a proof one can see [14, Ch. 4]. Property (ii) was proved by Helgason [27].
For (iii) we refer to [26, Ch. III, Theorem 1.1]. The estimates (iv), (v), and
(vi) follows from the results in [14, Sec. 4.6]. For a direct and a simple proof
of (iv) and (v) one can see [2, Proposition 3]. The estimate (vii) of ¢ is
due to Harish-Chandra. A proof of this can be found in [14, Theorem 4.6.4,
Theorem 4.6.5]. We should note that a sharper two-sided estimate of ¢ is
given by Anker [1].

Let 0 be a unitary irreducible representation of K realized on a finite
dimensional vector space Vs with an inner product (-,-). Let us denote
dimVs = ds. We denote by K the set of equivalence classes of unitary
irreducible representations of K and by customary abuse of notation re-
gard each element of K as a representation from its equivalence class. For
cach § € K , let xs stand for the character of the representation o and
VM = {v € Vs | §(m)v = vforallm € M} is the subspace of Vj fixed

under d|,s. For a group with real rank-1, V! can be of dimension either zero
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or 1 (see [34]). Let Ky stands for the subset of K consisting of § for which
VM #£ {0} and we will mostly be interested in representations § € K. We
set an orthogonal basis {v;}1<j<4; of V5 and we assume that v; generates
VM. We also define a norm for each unitary irreducible representation of K.
Let © be the restriction of the Cartan-Killing form B to € x €. Let K4, ..., X,

be a basis for £ over R orthonormal with respect to ©. Let
we = —(K} + ... + K2)

be the Casimir element of K. Clearly wy is a differential operator which
commutes with both left and right translations of K. Thus d(we) commutes
with 0(k) for all k € K. Hence by Schur’s lemma [46, Ch.I, Theorem 2.1]:

O(we) = c(9)d(e), where ¢(6) € C.

As §(K;) (1 < i < r) are skew-adjoint operators, ¢(d) is real and ¢(d) > 0.
We define 8|2 = ¢(4), for 6§ € Kyy. As, 0 € Ky, 6(k) is a unitary matrix of
order ds x ds. So ||6(k)||2 = v/ds where || - ||z denotes the Hilbert Schmidt
norm. Also, from Weyl’s dimension formula we can choose an r € Z™ and a

positive constant ¢ independent of ¢ such that
[0(k)[l2 < c(1+1[6])" (2.0.23)

for all k € K. Thus, ds < (1 + [6])?" with ¢ > 0 independent of d.
For any f € C*(X) we put:

fo(z) = d(;/ f(kx)s(k~1)dk. (2.0.24)
K
Clearly, f°is a C>® map from X to Hom(V;, V;) satisfying
fokx) =6(k)fo(x), forallz € X,k € K. (2.0.25)

Any function satisfying the property (2.0.25) will be referred to as (a ds x ds
matrix valued) left J-type function. For any function space E(X) C C*(X),
we write E(X) = {f° | f € &(X)}. We shall denote by § the contragradient
representation of the representation § € K v and a function f will be called

a scalar valued left d-type function if f = dsys * f, where the operation x
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is the convolution over K. For any class of scalar valued functions §(X) we
shall denote

5(0,X) ={g € S(X) | g =dsxs =g}

Throughout our discussion we fix the notation D(X) for the subclass of
functions in €*°(X) which are of compact support. The following theorem,
due to Helgason, identifies the two classes D?(X) and D(d, X) corresponding
to each § € K M-

Theorem 2.0.2. [Helgason [26, Ch.III, Proposition 5.10]]
The map Q : f — g, g(x) = tr(f(z)) (x € X) is a homeomorphism from
D(X) onto D(6,X) and its inverse is given by g — f = ¢°.

Remark 2.0.3. For each § € Ky, the space D(X, Hom(V;, V) of € func-
tions on X taking values in Hom(Vs, Vi), carries the inductive limit topology

of the Fréchet spaces

Dr(X, Hom(Vs,Vs)) = {F € D(X, Hom(Vs, Vs)) | suppF C B%(0)},

for R=10,1,2,---. As D(0, X) C D(X), so the natural topology of D(5, X)
is the inherited subspace topology.

A consequence of the Peter- Weyl theorem can be stated [27, Ch.IV, Corol-
lary 3.4] in the form that any f € €>(X) has the decomposition

fla)y= > tr(f'(z)). (2.0.26)

56[?]\/[

A function f € €>°(X) is said to be left K finite if there exists a finite subset
I'(f) c K (depending on the function f) such that tr(f7(-)) = 0 for all
v € Ky \I(f). For any class H(X) C C®(X) of function we shall denote
H(X) g forits left K finite subclass. Let I' be a fixed subset (finite or infinite)
of K. Then we shall use the notation §(X;T) for the subclass of (X)

HXT) ={geHX)|g°(-)=0, forall § € K \T}. (2.0.27)
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2.1 Generalized spherical functions

Definition 2.1.1. For each ¢ € IA(M and X € C, the function
Dy 5(7) = / e~ MDHETR 5(1ydk,  z € G, (2.1.1)
K

is called the ‘generalized spherical function’ of class . For each x € G,
O, 5(z) is an operator in Hom(Vs, V). Taking point-wise adjoints leads to

the expression
Bs 4(0)" = / (DA RSNk g e G (2.1.2)
K

Remark 2.1.2. From the Iwasawa decomposition, if v € G and 7 € K,
H(rz) = H(x). Hence, the expressions (21.1) and (2.1.2) show that both
Dy 5(-) and @5 45(-)* can be considered as functions on the space X = G/K.

In the following proposition we list out some basic properties of the gen-

eralized spherical functions that we will be using.

Proposition 2.1.3. (i) Let § € Ky and A € C. Then for each x € X
and k € K we have

Dy s(kx) = 6(k)Dps(x) and Dx4(kx)" = Oxq(x)*o(k™").  (2.1.3)
Let v e Vs and m € M then

d(m) (@;’5@)*0) = @X’(;(x)*v. (2.1.4)

(ii) For each fized X\ and §, the function ®,s(x) and its adjoint are both
joint eigenfunction of all G-invariant differential operators of X. Par-
ticularly, for the Laplace-Beltrami operator L, the eigenvalues are as

follows:

(L(DA,é) (l’) = — (()\, )\)1 + 1) @A,g(l'), reX. (2.1.5)

(111) For each fixred x € X, the function X\ — @, s(x) is holomorphic.

(iv) For any g, g, € U(gc) there exist constants ¢ = c(gy, g5), b = b(g1, g»)
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and ¢y > 0 so that
1Pa5(g1; 75 o) |2 < c(1+ [8])°(1 + |A])opo () el SN (2.1.6)

forall x € X and X € C.

Proof. Property (Z1.3]) follows trivially from the definition of the generalized
spherical function. (2I.4)) also follows from (ZI.]) as below:

3(m) (®y 5(x)*v) = { /K e(“‘l)H(mlk)é(mk‘l)dk} v

by a simple change of variable mk~! to &'~! we get the right side

_ {/ 6(i>\—1)H(:c1k’m)5(k/—l)dk/} v.
K

In the above, let 271k = K (27 k") (exp H(z7'k’))n’ for some n’ € N. As M
normalizes N and centralizes A we have,

' m = K27 'K Ym(exp H(x 'K ))N(z7'k)

this shows that H(z7'k") = H(x~*k’m). Thus

5(m) (5 5(z)"v) = {/K e(M_l)H(x1kl)5(k'_1)dk"} v =05 s(x)v. (2.1.7)

A proof of property (ii) may be found in [26, §1 (6)] and [27, Ch.II, Corollary
5.20]. The estimate (2.1.6]) is a work of Arthur [6]. n

Remark 2.1.4. The property (2.1.4) clearly shows that for each x € X the
operator 5 5(x)* maps Vs to Vi, Hence @ 5(x)* is a ds x ds matriz whose
only the first row can nonzero. Consequently, for each x € X, @, 5(z) is a
ds x ds matrix of which only the first column can be nonzero. In other words,
the operator @, s(x) vanishes identically on the orthogonal complement of the

subspace VM.

Unlike the elementary spherical functions, the generalized spherical func-
tions @, 5(-) and @5 ,(-)* are not even in the A variable. The following the-
orem, due to Helgason, determines the effect of Weyl group action on the A

variable the generalized spherical function.
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Theorem 2.1.5. [Helgason [26, Ch.III, Theorem 5.15 |]
For each § € I?M and for all X € C, the restrictions ®y 5|4 and @;75(-)*|A
satisfy the relations

(I))\,(g‘AQ(;(l — Z)\) = (I)_)\75|AQ5(1 + Z>\)7 (218)

Qs(1—iA) " x4]a()" = Qs(1 +iN)P_551a(), (2.1.9)

where, Qs(1+1\) is a polynomial on C, called the Kostant polynomial. Fur-
thermore, both sides of (Z1.9) are holomorphic for all X € C, implying that
D5 51a(-)" is divisible by Qs(1 — i)) in the ring of entire functions.

A description of the polynomial Qs(1 — i\) can be found in [26, p.-238|.
The polynomial Qs(1 — ¢A) has the representation in terms of the Gamma
functions [26, Theorem 11.2, Ch. III, §11]

Qs(1— i) = (%(am“ —i)\))r_ﬂ <%(a—ﬁ+1 —z’)\))u (2.1.10)

_ T(z4+m

where (2),, = ) and r, s are integers. Two group dependent constants «

I'(z)
and [ are given by o = %(m7+m2v—1), 8= %

(r,s) gives a certain parameterization of the representation § € K v ( this

(mgy—1). The pair of integers

parameterization was originally done by Kostant [34]; here we use a related
parameterization due to Johnson and Wallach [31] ). Clearly Qs(1 — i) is a
polynomial in A of degree r. Helgason [26, Ch. III, § 11] further showed that
all the zeros of the polynomial Q)5(1 — i)\) lie on the imaginary axis and, for
all § € Ky, none lies in the interior of the strip a} := {\ € ag o |[ImA] <1}
The following Lemma is an immediate corollary of the expression (ZI.T0) of

the Kostant Polynomial.
Lemma 2.1.6. For each § € Ky, Qs(1—i)\) # 0 for all A € a* +ia*+ C C.

The following theorem, due to Helgason, establishes an interrelation be-
tween the generalized spherical function corresponding to ¢ and the elemen-
tary spherical function. This theorem will be the main pathway for extending
certain results from the bi- K-invariant class to the left-6 type class of func-
tions on X.

Theorem 2.1.7. For each nontrivial § € Ky, and for all X € C, we have

Oy slyp(2) = (DPpy) (2)Qs(1 —iN) ™!,z € X, (2.1.11)
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where, D° is a left invariant differential operator on X .

For a proof of the theorem and a description of the differential operator
D° we refer to [26, Ch.III, §5].

2.2 Fourier transforms

In this section we shall recall some basic definitions and results of Fourier
transforms defined on function classes with different left- K-types. We shall
confine our discussion here mostly to the compactly supported functions. We
begin our discussion with the class D(G//K).

Definition 2.2.1. For each f € D(G//K), its spherical transform or
Harish-Chandra transform is a function Sf on C defined by

SF(N) = / F(£)pr(x)da. (22.1)

From Morera’s theorem 8f is holomorphic for all A € C. As the ele-
mentary spherical function is even in the A variable, it immediately follows
that

Sf(AN) =8f(=N), AreC. (2.2.2)

Before we give a topological characterization of the image of D(G//K) under

the spherical transformation we define a function space on C.

Definition 2.2.2. A holomorphic function (X)) on af is called a holomor-

phic function of exponential type-R if there exists a positive constant R such
that for each N € Z+

sup [(A)[(1+ [A)Ne 9N < Oy < 400, (2.2.3)

A€ag

where Cy is a positive constant depending on N. We denote HR(C) for the
class of all holomorphic exponential type-R functions on C. Let HE(C)y C
H(C) be the subclass of even functions.

We denote

H(C) = | HC), and H(C)w = | J H(C)w. (2.2.4)
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The space 3 (C) has the topology of uniform convergence on compacta and
H(C) is given the inductive limit topology. The subspace H(C)y inherits
its topology from H(C). In our discussion we shall refer to the following

theorem as the Paley- Wiener theorem.

Theorem 2.2.3. The spherical transform f — Sf is a topological isomor-
phism from D(G//K) onto H(C)y, with the inverse transform given by

f@) =5 [ oOA@IeN i e (225

here, |e(\)|72d\ is the Plancherel measure. More precisely, f € Dp(G//K) =

{f € D(G//K) | suppf C BE(0)} if and only if §f € H(C)w .
This theorem was originally proved by Helgason [22] and Gangolli [13].
Rosenberg [38] removed the dependence of the proof on Harish-Chandra’s

Schwartz space isomorphism theorem.

The Plancherel measure is a fundamental contribution of Harish-Chandra.
The function c(A) in the measure is also called the Harish-Chandra c-
function. A complete expression of ¢(\) can be found in [27, Chap. IV]
or [14, Sect. 4.7]. For our purpose we shall only need the simple estimate [3]

. for constants ¢,b > 0
lc(N)[72< e(|]A]+1)" forall A € a* =R, (2.2.6)

Remark 2.2.4. For any f € D(G//K), let Af be the function on a defined
by
(Af)t) = et/ f(amn)dn. (2.2.7)
N

This map f — Af is called the Abel transform. It can be shown that

Sf(A) = /_R(Af)(t)e*th, AeC. (2.2.8)

From the above we get a commutative diagram involving the operators A,
8 and FEuclidean Fourier transform. The Paley-Wiener theorem (Theorem
[2.2.3) now shows that the Abel transform is a topological isomorphism be-
tween the spaces D(G//K) and D(R)w. The relation (22.8) plays crucial

roles in proving several results for the spherical transform.
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The Fourier transform of functions on the symmetric space X, that we
shall be considering here, was introduced by Helgason. Geometrically it is
the analogue of the Euclidian Fourier transform of functions ' on R™ in polar

coordinate form
F(w) = / F(z)e @9 dz,  |w|=1,A€R. (2.2.9)

In this formula, the inner product (x,w) stands for the signed distance from
the origin to the hyperplane passing through the point # with an unit normal
w.

We make the formal definition of the Fourier transform now.

Definition 2.2.5. Let f € D(X), then its Helgason Fourier transform
(HFT) [26, Ch.Ill, §1] denoted by Ff is a function defined on C x K/M
given by the integral

FFN EM) = /G Fx)eA—DHETE) o (2.2.10)

For the sake of simplicity we fix the notational convention Ff(\, kM) =
Ff(\ k). We should note that, for a bi- K-invariant function (that is a left
K-invariant function) g on X, the HFT reduces to the spherical transform:
Fg(A k) = Fg(A e) = 8g(A).

A € function (A, k) on C x K/M is said to be of uniformly exponential
type-R if there exists a constant R > 0 and for each N € Z™* there is a
constant C'y > 0 such that

sup e BN 4 NN\ E)| < On < +o0. (2.2.11)
\eC,keK/M

We denote the class of such function by HE(C x K/M). Let H(at x K/M) =
UpsoHE(C x K/M). Let H(C x K/M)y C H(C x K/M) be the subclass
of functions ¥ with the property: A — [, e AFDHE Ky () k)dk is an even
entire function. We now state the analogue of the Paly-Wiener theorem for

the Helgason Fourier transform.

Theorem 2.2.6. Helgason [26, Ch.III, §5]
The HET is a bijection of D(X) onto H(C x K/M)w with the inversion
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formula

f@) = @ @@ =5 [ [ OIIEOE RO ]| ZdAdk
v (2.2.12)
In particular, if for some R > 0, ¢ € HE(C x K/M)y then F~19¢ € DE(X).

Remark 2.2.7. A commutative diagram similar to (2.2.8) can also be ob-
tained for the HF'T. In this case the role of the Abel transform is played by
the Radon transform. For a symmetric space X = G/K the space of all
horocycles is identified with the quotient == G/MN. Each horocycle £ € =
s a submanifold, hence it inherits a Riemannian structure. The N orbit &g,
s the horocycle passing through the origin. Left-G-action on & generates all
the members of =. The ‘Radon transform’ or the ‘horocycle transform’ of
any suitable function f on X, denoted by Rf, is a function on the horocycle

space = and is given by the following integral.

Rf)(g - &) = /N F(gn - 0)dn. (2.2.13)

For any f € D(X), the HFT Ff is sliced through the Radon transform R f

as follows:

FFNE) = / (Rf) (kay - &)eTADO gt (2.2.14)

R

For cach f € D(X) and § € K, we define the d projection of its HF'T
Ff as follows:

(FF)° (N k) = d5/ FF(N, kok)S(ky)dky, where A € C and k € K. (2.2.15)
K

The HFT JF(f?) of f° is also defined by the formula (ZZ.I0), in this case the
integral of the matrix function being the matrix of the entry-wise integrals.
Lemma 2.2.8. For each f € D(X) and § € Ky the following are true

(i) (FF) (A k) = 0(k) (FF)° (A ),

(i) F(fONE) = (F)° (A k), foralxeC and k € K.

Proof. Part (i) of the Lemma follows trivially from ([2:2.15]). Part (ii)
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can be deduced from the following calculation
FIOKM) = [ )0 0y
b'e
= dy / { / f(k1:c)(5(k1‘1)dk1} eA-DHET R gy, (2.2.16)
¢ Uk

Now the desired result follows from (2.2.16) by Fubini’s theorem.
]

If f € D(X) then f° € D°(X). The quantity (Ff)°(\,e) (for all X € a}),
which is same as F(f?)(\, e), is called the §-spherical transform of the func-
tion fo € DO(X). Let us give an alternative integral representation of this
matrix valued Fourier transform using the generalized spherical functions,
that is, the d-spherical transform on D°(X). Most of the basic analysis was
done by Helgason [26] on D(§, X), we shall follow those results closely and
prove them on D?(X) using the homeomorphism Q, defined in Theorem 2.0.21

Definition 2.2.9. For f € D°(X) the §-spherical transform f is a matriz

valued function on af and is given by

FOV = ds /G trf(z) B5 5(a)'dr, A€ ab. (2.2.17)

Clearly, for each A, f(\) € Hom(Vs, VM) and A — f()) is an entire func-
tion. The following Lemma identifies the two definitions of the d-spherical

transform mentioned above.

Lemma 2.2.10. If f € D(X), where § € Ky, then Ff(\ e) = f(\) for all
AeC.

Proof. For any f € D%(X), using the topological isomorphism Q as de-
scribed in Theorem 0.2 we get trf(:) € D(5,X) and also f(z) =
ds [i trf(kx)d(k~")dk. Now from the definition of HFT (2.210) we get:

?f()\’ 6) _ / f(x>e(i)\—1)(H(xfle))dx
G

- dﬁ/ / b f (k)3 (k) ke D) gy,
GJK
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By Fubini’s theorem and on substituting £z = y the last expression

= d; / trf(y) { / eW—l)(H(yl'f>>5(k—1)dk}dy
G K
—ds [ @)y, from @I2)

=f(A), by @ZID).

Let us now determine the behavior of the d-spherical transform under the

action of the Weyl group.

Lemma 2.2.11. Let § € Ky, and f € D(X), then the map
A= Qs(1—iN) " (N, (2.2.18)

where Qs is the polynomial defined in Theorem[2.1.5, is an even holomorphic

function on C.

Proof. This result is an easy consequence of the Definition [2.2.9/and Theorem
2.1.5 u

Lemma 2.2.12. Let f € D%(X), then the inversion formula for the J-
spherical transform (Definition[2.2.9) is given by:

1

f@) =5 | Basle) TV (2:2.19)

Proof. The formula (Z.22.19) comes from the inversion formula (2212 of the
HFT

1 . 1
flz) =35 / /K FF(\ k)e AFDEHETED 16 (X)) 72dk d) from (Z.2.10)
= % / / S(k)F F(N, e)e PHDHET 6 (X)|~2dk d) by Lemma 2.2.8
at JK

_ 1/ {/6—(i)\+1)(H(:c1k))5(k,)dk} F(N)|e(A)|"2dX by Lemma 222101

2 K
=5 | Pu@Fle(h]ax by @I,
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A topological Paley-Wiener theorem can be deduced for the J-spherical
transform, which we shall present in the next chapter.
The above transforms and most of the results mentioned above can be ex-
tended to larger classes of functions containing the compactly supported
functions. In our discussion we shall consider the Schwartz class of func-

tions.



Chapter 3

Schwartz space isomorphism

theorem

3.1 Introduction

In this chapter we give a simple proof of the LP-Schwartz space isomorphism
(0 < p < 2) under the Fourier transform for the class of functions of left
)-type on a rank-1 Riemaniann symmetric space X realized as G /K, where
G is a connected, noncompact semisimple Lie group with finite center and
with real rank-1, and K a maximal compact subgroup of G.

The LP-Schwartz space isomorphism theorem (0 < p < 2) for the bi-
K-invariant class of functions has a long history. This theorem was first
proved for p = 2 by Harish-Chandra [18-20]. Later, it was extended to
0 < p < 2 by Trombi and Varadarajan [49]. Particular cases were considered
in [10,11,23]. Rouviere [39] proved this theorem for real rank-1 groups by
using an explicit form of the inverse of the Abel transform. The book by
Gangolli and Varadarajan [14] contains a detailed and complete proof of the
Schwartz spaces isomorphism theorem. Our point of departure is the work of
Anker [2] who gave a remarkably short and elegant proof of the LP-Schwartz
space isomorphism theorem (0 < p < 2) for K-bi-invariant functions on the
group G under the spherical transform. In his proof, Anker obtained the
Schwartz space isomorphism theorem as a consequence of the Paley-Wiener
theorem for the bi- K-invariant class of functions. He avoids use of accurate
estimate of the behavior of the elementary spherical functions, which played

the crucial role in all the earlier works. In this chapter we have used Anker’s

23
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result to obtain the isomorphism of the LP-Schwartz space (0 < p < 2)
of the functions on X with a fixed left- K-type, under the Helgason Fourier
transform. Our technique is to first reduce the problem to the bi- K-invariant
situation by the use of the Kostant’s polynomial, so that we are able to invoke
Anker’s result. Apart from giving a simple proof our treatment has the same
advantage as Anker’s of not using higher asymptotics of the p,(x).

In the last section of this chapter we further extend the isomorphism
(Theorem B3.3)) to the Schwartz class SP(F; X) C C®(F : X), where F' is
a finite subset of K. The main content of this chapter is a joint work [30]
with Rudra P. Sarkar. Below, our plan is to give the explicit statement of
the isomorphism theorem for the bi-K-invariant class of functions, before we

take up our work on the function spaces on X.

3.2 Bi-K-invariant results

We begin this section with the definition of the LP-Schwartz space SP(G)

where G is a semisimple Lie group as mentioned earlier.

Definition 3.2.1. For every 0 < p < 2, the LP-Schwartz space 8(G) is
the space of functions f € C®(G) with the following decay: for each D, E €
U(gc) and m € Z+ U {0}

2
#p.pm(f) = sup |f(D;z; B)|(1+ |2])™po ” () < +o0. (3.2.1)

We denote by 8P(G//K) the subspaces of 8”(G) consisting of bi-K-
invariant functions. The space 8”(G//K) is a Fréchet space with the topology
induced by the seminorms {up g} defined in (3.2.1]).

The space D(G//K) is a dense subspace of 8?(G//K) with respect to the
topology of the Schwartz space. The image of D(G//K) under the spherical
Fourier transform is completely characterized in the Paley-Wiener theorem.
It can be shown that for each f € SP(G//K), the spherical transform 8 f
given by (2.2.1]) exists for all A in a strip af C C where € = (% - 1) and

@ ={\eC ||\ <e) (3.2.2)

On the )\ variable domain we have.
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Definition 3.2.2. Let 8(a’)w be the space of all complex valued functions
defined on a} satisfying the following properties.

(i) Each h € 8(af)w is holomorphic in the interior of the strip al and

extends as a continuous function to the closed strip.

(ii) For each A € a, h(\) = h(—=\) (This is the Weyl group invariance in

our case).

(i11) For each polynomial P € S(a*) and t € Z* U {0} we have,

Tpi(h) = sup

AEIntat

P <d%) h(A)‘ (1+ A" < 400, (3.2.3)

where S(a*) is the symmetric algebra of constant coefficient polynomials
on a* and P (%) is the differential operator obtained by replacing the
variable X in P(\) with <.

It can be shown that, with the topology induced by the countable family
{7p:} of seminorms, 8(a})w becomes a Fréchet space. Moreover, H(C)w |q:
(see (2.24]) ) is a dense subset of $(a*)y,. The Schwartz space isomorphism

theorem states the following.

Theorem 3.2.3. The spherical transform (2.21) is a topological isomor-
phism from 8P(G//K), for 0 < p < 2, onto the space 8(al)w; the inverse
transform is given by the integral (2.2.3).

We observe that the topology of the space 8(a) can also be determined
by two other families of seminorms, both of them equivalent to the one given
in (8:2.3). For simplicity, we use the same notation for these seminorms. The

first one is

Tpt(h) = sup

AElntat

d
P (ﬁ) {01+ 1)th(>\)}‘ < o0, (3.2.4)
where P € S(a*) and ¢t > 0 is an integer. The equivalence of ([B.2:3) and
[B:24) is trivial. As the members of 8(a’)y are all even, so the seminorms

on this space can also be defined alternatively as follows:

d
Tpi(h) = sup ‘P <ﬁ) h()\)‘ (Al + 1) < +o0. (3.2.5)
AeInt(azN(R+iRT))
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These, alternative forms of the seminorms will be useful for proving certain

results in the course of our discussion.

3.3 Left-o-type case

We now come to the function spaces of our interest, where we find it more
convenient to work with matrix valued functions. Let us choose one § € K
with the representation space Vs . Let ds be the dimension of the space V.
The basic LP-Schwartz space 8§(X) is the space of Hom(Vs, Vs) valued €™

functions f on the symmetric space X satisfying the properties:
(i) for each x € X and k € K, f(kx) = 0(k) f(x);

(ii) for each D, E € U(gc) and for each integer n > 0 one has

2

po,en(f) = Sup | £(D; 2 E)|2(14 |2))"p, " (z) < +o0.  (3.3.1)

Remark 3.3.1. (i) In fact it can be shown that: 8§(X) = {f° | f € $7(X)},
where SP(X) is the subspace of SP(G) consisting of right K-invariant
functions. [ We note that any function on X can also be regarded as a
right K -invariant function on G.] The projection f — f° is as defined
mn (2.0.24)).

(ii) Let 87(0; X) = {f € 8"(X) | f = dsx; * f}, where § is the contragra-
dient representation of 8. Being a subspace of $P(X), 87(0;: X) has the
subspace topology. Theorem[2.0.2 can be easily extended to the Schwartz

space level and the map f(z) — trf(z) (xr € X) is a homeomorphism
from 82(X) onto 87(5; X) with the inverse given by (2.0.24).

We now define a function space in the Fourier domain which is a prospective

candidate for the image of 8§(X) under the d-spherical transform.

Definition 3.3.2. We denote S5(a?) for the space of all Hom(Vs, Vs) valued

functions 1 on the complex strip a with the properties:

(i) For each X € a*, ¥(\) maps Vs to VM. We have already mentioned
that dimVM =1, so with a convenient choice of basis () is a ds X ds

matriz with all the rows except the first one being identically zero.
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(ii) Each v is holomorphic in the interior of the strip a> and extends as a

continuous function to the closed strip.

(11i) 1 satisfies the identity

Qs(N) () = Qs(=N) T (=N),  Aeal (3.3.2)
where Qs(\) = Qs(1 —iN) is the Kostant polynomial (21.10).

(iv) For each P € S(a*) and for each integer t > 0 we have:
d

P — A

() v

It can be shown that the space Ss5(a?) is a Fréchet space with the topology

(14 |A]) < +o0. (3.3.3)

Tpi(1) = sup

Aelntat

induced by the countable family of seminorms {7p;}. Let us now state the

main theorem of this chapter.

Theorem 3.3.3. For 0 < p <2 ande = (2/p—1) the §-spherical transform
f— fis a topological isomorphism between the spaces 8§(X) and 8s(ak).

This theorem is a part of the result of Eguchi and Kowata [9].
In the following discussion we shall actually show that the d-spherical trans-
form is a continuous bijection from 8§(X) onto 85(a’). Hence Theorem
will follow from the open mapping theorem. Before that, let us state the topo-
logical Paley-Wiener theorem, due to Helgason, for the d-spherical transform,

which will be crucially used in our proof.

3.3.1 A topological Paley-Wiener theorem
A holomorphic function ¢ : aft ~ C — Hom(Vs, VM) is said to be of
exponential type R if for each N € Z*

sup e BN 4+ IADN () ||z < +oo0. (3.3.4)

A€ag
We denote the class of such functions by Hf(C). Let H;(C) = (Jz.o HF(C).

Theorem 3.3.4. [ Topological Paley-Wiener Theorem for K-types]
For each fized § € Ky, the 6-spherical transform, given by(Z.Z.17) is a home-
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omorphism between the spaces D°(X) and P°(C), where

P(C) = {€ € Hs5(C) | A= Qs(N)T'E(N) is an even entire function} .
(3.3.5)

Here Qs(\) is the Kostant polynomial. The inverse transform is given by

(2.2.19).

Proof. We rely on the proof of the topological Paley-Wiener theorem given
by Helgason ( [26, Ch.III, Theorem 5.11]), where he characterized the image

of the space D(J, X) under the transform f — f, where

70 = ds /G F(2)5 4 (2) dz, (A€ ab). (3.3.6)

Helgason showed that, the above transform is a topological isomorphism
between the spaces D(d, X) and P*(C). From Theorem 202, and the def-
inition of the d-spherical transform given in (2.2.17) the following diagram

———

commutes: for each f € Ds(X), (Qf)(A) = f(A), for all A € C.
The theorem follows from the facts that the maps Q and f — J? are

homeomorphisms. [ ]

Let us consider the function space P(C) = {h € H;s(C)| h is even} with
the relative topology. Any h € P$(ak) can be written as a row h = (M) 1< j<ds-
Each of the scalar valued component function h; is entire, W-invariant
and of exponential type. Let D(G//K, Hom(Vs, Vi) be the spaces of all
Hom(Vs, VM) valued bi- K-invariant, compactly supported, € functions on
G. From the Paley-Wiener theorem ( Theorem ) for the spherical
transform, we get an unique f; € D(G//K) such that 8f; = h;. We set
f= (fj)1gjgd5' We denote 8f := (Sfj)lgjgda, and so 8f = h. Moreover
the Paley-Wiener theorem concludes that, § is a homeomorphism between
D(G//K, Hom(Vs, VM)) and P§(C). Furthermore the following Lemma
shows that the two Paley-Wiener spaces P°(C) and P5(C) are homeomor-
phic.

Lemma 3.3.5. [Helgason]
The mapping ¥(A\) — Qs(N)w(N\) (A € C) is a homeomorphism from P4(C)
onto P°(C).

Proof. For a proof of the above Lemma see [26, Ch.-III, §5, Lemma 5.12]. =
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The following is a key lemma for the proof of Theorem [3.3.3]

Lemma 3.3.6. Any function f € D%(X) can be written as f(z) = D°¢(z)
(Vx € G), where ¢ € D(G//K,Hom(Vs, VM) and D’ is the constant
coefficient differential operator corresponding to Qs as introduced in (2_111).

Proof. Let f € D%(X), then by the Paley-Wiener theorem (Theorem [3.3.4),
its d-spherical transform f € P)(C). Using the homeomorphism given in
Lemma B35, we get an unique function A — ®(\) = Qs(A\) "1 f(A) in P(C).
The Paley-Wiener theorem for the spherical transform gives a function ¢ €

D(G//K, Hom(Vs, ViM)) such that:

o) =5 [ er @B (V] 2dr (337

2
Now we apply the differential operator D°, introduced in Theorem 2.1.7], on
the both sides of (3.3.7). As the integral in the above expression converges

absolutely, so we can write:

2

now we use (ZIII]) to get ,

— 5 [ Bas@)@sN )|

(D%0) (0) = 5 [ (DPa(a) @) fe(V)]

2

=5 [ Pu@F el

= f(z), by the inversion formula (Z2.19).

Looking at the bi- K-invariant result that, H(C)y
of 8(a¥), the following result is expected.

« 1s a dense subspace
€

Lemma 3.3.7. The Paley-Wiener space P°(C)
Fréchet space Ss5(ak).

ar 15 a dense subspace of the

To prove this Lemma, we again need to go back and forth between the
Fréchet space 8s(a*
Let 8p(az) denotes the space of all Hom(Vs, VM) valued C*> functions h on

aZ such that

) and its symmetric counterpart.
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(i) h is holomorphic on Intal and it extends as a continuous function to

the closed strip a;
(ii) h is an even function on a;

(iii) for each polynomial P € S(a*) and integer n > 0
d
P{—)h(\
(55) 0
+

The seminorms 75, (-) makes Sy(a;) a Fréchet space. Note that the space

T (h) = sup (1+ A"
Aelnt(azn(R+iRT))

< 400. (3.3.8)
2

8o(a}) can also be viewed as the space of all Hom(Vs, VM) valued functions
whose matrix entries are in 8(a})y . For our purpose we shall be using another
equivalent (inducing the same topology) family of seminorms on Sy (af) given
by

(3.3.9)

CE N O I T

As the spherical transform 8 can be extended to the class of operator valued

2

functions, we can extend the isomorphism given in Theorem [3.2.3] for this

class as follows:

Lemma 3.3.8. The spherical transform is a topological isomorphism between
the spaces 8P(G/ /K, Hom(Vs, VM) and Sy(az).

Proof. This Lemma can be proved easily by using the conclusion of the Theo-
rem 3.2.3 for each matrix entry of the functions of 8?(G//K, Hom(Vs, ViM)).
]

The next Lemma proves that the two spaces S8s5(a’) and Syp(a’) are home-
omorphic. Infact the following Lemma extends the homeomorphism given in
Lemmal[3.3.5lbetween the Paley-Wiener spaces to the corresponding Schwartz

classes.

Lemma 3.3.9. The map
g(A) = Qs(N)g(N),  forall \€al, (3.3.10)

is a homeomorphism from the space Sy(ak) onto Ss(ak).
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Proof. Let us first take g € §y(a). We denote h(A) = Qs(N\)g(A) (A € al ).
We shall show that h € 85(a?). It is clear that h is holomorphic in the interior
of the tube a?.

It trivially follows from the definition that the function A — Qs(A)~th())
is W-invariant. We shall now show that h also satisfies the Schwartz space
decay. Let us take a polynomial P € S(a*) and m € Z* U {0}. Then

| () o] oo
< o Ee e () e} {n () spo] oo

by the simple application of Leibniz rule, where P, P are polynomials and

the sum over a finite set,

d d
< e |3 P — A P, | — A 14+ [A)™
<, e {2 (i) o} [{ (&) of 0] e
d 5
< su AP — M (1 [A)™= 3.3.11
s S {n () of ] 0w 3311
where m? are nonnegative integers and ¢’ are positive constants both de-

pending on & € Ky As g € So(a?), the right hand side of (3:311) is clearly
finite. The inequality (B:3.11]) shows that the map ([.3.10) is continuous from
Sp(a?) into 8s(al).

Now let ¢ € 8s(a?) and define g(\) = Qs(A\)~'¥(A) ( A € af ). As,

Y € 8s(ar), by Definition B.3.2 the function g is even and it is holomor-
phic in the interior of the tube a. To conclude g € 8y(a

*

*) all we have to

show is that the function g has a certain decay. At this point we use the
alternative form (B.3.9) of the seminorms on Sy(ak).
Let P € S(a*) and t be any nonnegative integer, then

{P(5)on}a+omy

— {p (d%) Qé(A)—l@b(A)} (L4 (A A))"

_ P 0D

X (3.3.12)
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where P;()\), P»(\) are a polynomials whose degrees are clearly dependent on

ds and O is a certain constant coefficient polynomial in (5) We also note

that the polynomial P, is precisely of the form (Qs(\))™ (m € Z*) hence
it does not vanish on (a* N (R + iR¥)) (see, Lemma 2.1.6) . Hence there

€
exists some constant €5 > 0, so that, inf |Py(A)| > 05. Thus

AeIntazN(R+iRT)
the following inequality follows easily from (B.3.12).

e | Oy PO RN A |
< Cs/0s sup ||Pi(A) Op(N)[[2 (3.3.13)

peElntat

As i) € Ss5(ak), so the right-hand side of (8.3.13) is clearly finite which proves
that the function ¢ has the required decay of the Schwartz class 8y(aZ). This
also proves that the map (3.3.I0) is a bijection. As both the spaces 8y(af)
and 8s(ak) are Fréchet spaces, so an application of the open mapping theorem
completes the proof of the Lemma. [ ]

We shall now give a proof of the Lemma 3.3.7
Proof. of Lemma[3.5.7]

Let us take any H € Ss(af), it is enough to show that, there is a sequence
{G,} ( G, € P°(C)) converging to H in the topology of the space 8s(a¥).
Let H(A) = (Hj(M)),<jcq,-
we get one unique G € §y(af) such that

By the isomorphism obtained in Lemma [3.3.9]

H(A) = (HJ(A))lngd(; = Qs(N)G(A) = (Qs(N)G;(A ))1<]<d (3.3.14)

As G € 8y(al), so from the definition of the Schwartz space Sy(af) it follows
that the entry functions G; € 8(af) for each j, 1 < j < ds. We know that
the Paley-Wiener space P(af.) under the spherical transform is dense in the
Schwartz class 8(af) [14]. Therefore we can get a sequence {g;, } C P°(C)
converging to G; in 8(ak). As, Qs()) is only a polynomial, hence for each
A€ az, {Qs(N)g;, (A} converges to Qs(A\)G;(A) in S(a?).

Let g,(\) = (gjn()\))lgjgdé. As each g; € P(C), so from the definition
it follows that, the matrix valued function g, € PJ(C). Clearly by Lemma
for each natural number n, Qsg, € P°(C). Let P be any polynomial in
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S(a*) and ¢ be any nonnegative integer then:

7Pt (Qs(1)gn(-) — Qs(-)G(+))

- s |P (%) (@0 = QGO | (1)
=5 sup p(%) (gn— G V|| (1+ A" (3.3.15)

Suitably large n makes the right hand side of (33315 arbitrarily small. Hence
we get the sequence {Qs(+)gn}, in P°(C) converging to H in the topology of
8s(a’). This completes the proof of the Lemma. u

3.4 Proof of Theorem

We shall first extend the definition of the §-spherical transform (2.2.17) to
the Schwartz class 8§(X) where 0 < p < 2.

Lemma 3.4.1. For each f € 85(X), the function \ — ]7()\), where f is
given by (2.2.17), is a holomorphic function in the interior of the complex
strip aX and it extends as a continuous function to the boundary of the strip.

If p =2, f is continuous on a*.

Proof. For each f € 8%(X), it is easy to observe that [trf(z)] < || f(x)]2
(r € X). The function x +— trf(z) has the following decay: for each
D,E € U(gc) and integer n > 0

2
sup [trf(D; z; E)|(1 + |z])"¢, " (z) < 400, (3.4.1)
zeCG

which follows easily from ([3.3.3]). We also notice that

e—(i)\—l—l)H(gc*lk) ||(5(l{2) H2dk

@sata)l < [
K
205/ e—(—%A—l—l)H(x*lk)dk

K

= cspisa(z), Te€ G NeC. (3.4.2)

Observe now that the integrand in the definition of f(\) satisfies, for A € a*
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and x € G

2 S| |2 :
[t f () @5 5(2) (|2 < o () (1 + 2]) ey (|]), using BE2)
—n |S\||z 2+1
< (1 + [a])TmePNGE T (|2)
< C(l + |x‘)—n+dpe(e—%—1)\x\

c(1 + [a]) e, (3.4.3)

where the constant ¢ (for a given n) comes from (3.4.1)) and d, from the
estimate (Z.0.22). The function (1 + |z|)~"*%e~2?l is integrable for large n
and dominates the integrand for all A\ € a. The continuity of f(A) for A € a?
now follows from the dominated convergence theorem.

Let v be a closed curve in the interior of the tube a?. From the definition

of the d-spherical transform we get: for f € 8§(X)

[yf()\)d)\:défy{/Gtrf(:)s)ém(x)*dx} d,

as we have already noticed that the integral within braces exists absolutely

for A € aZ, so a simple application of Fubini’s theorem gives:

— ds /G tr f(z) { A @Xﬁé(x)*cu} iz,

as A — @5 ()" is an entire function, so by the Morera’s Theorem the inner

integral vanishes and hence we get:
=0.

Hence by Morera’s theorem again it follows that, for each f € 8§(X) the

transform fin a holomorphic function on Inta’. [ ]

Lemma 3.4.2. The d-spherical transform f — f s a continuous map from
the Schwartz space 85(X) into Ss(az).

Proof. Lemma [B4.1] shows that the integral representation (2217 is well-
defined for the Schwartz class on a} furthermore, the transform f is holo-

morphic in the interior of the tube af. Lemma 2.2.T1] has an extension for
all f € 8§(X) and f satisfies (8:3.2)) for all A € a}. It is now enough to show
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*

that given any seminorm 7 on 8;(a}

such that

) one can find a seminorm g on 8%(X)

7(f) < eu(f) for each f € 89(X).
Let P be any polynomial in S(a*) and n be any nonnegative integer. From

the definition of the d-spherical transform we get

P(5) {17 fn

—d; P (%) /G trf(x) (0 A + 1) @5 ()" de

—(—1)"dy p(%) /G trf(z) LGy (x)da

— (=1)"d; P(%) /G L'tr f(z) Oy 4(x) da

= (—1)"d; P(d%) /G L trf(x) By 5(x)de.

The second equality in the chain uses (Z.1.5) and the third follows from
an application of integration by parts. As the differential operator L acts
entry-wise to the operator valued function f, so it is easy to check that

Ltrf(z) = trLf(x) and so the last expression becomes

— (—1)"ds P (dii) /G tr L' f(z) Og(z)de

= (=1)"ds P (d%) /G tr L™ f(z) { /K e(“‘l)(H(xlk))é(k‘l)dk} dz,

using the integral expression (2.1.9) for the generalized spherical function.
Here f € 8(X), so as discussed earlier, f can also be considered as a right
K invariant function on the group G. The action of the Laplace Beltrami
operator L on f is the same as the action of the Casimir operator on f
considering it as a function on G. Hence, by the property of the Casimir op-
erator, the action of L does not change the left K-type of the function f, that
is, the function L" f is again of left d-type. Moreover, for each nonnegative
integer n the function L" f(x) € 8§(X). Hence by Lemma [B.Z.T], the repeated
integral in the last line exists absolutly. We now apply Fubini’s theorem to

interchange the integrals and then we put 7'k = y~! to get:
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= (=1)"dsP (d%) / / trL™ f(ky) e DHE s (kY dydk
KJG
d

= (=1)"dsP (ﬁ)/G{/KtrL"f(k:y_l) 5(k‘1)dk:} cA-DHG) g
=1 [ PEHET ) 0,

the last equality follows by using (ii) of Remark B30l Let us now break up
the group G as well as the Haar measure using the Iwasawa K AN decom-

position and write y = ka,n, where r € a = R and expr = a, to obtain
= (_1)n/ // P(iH (ka,n))L" f(n~ a, k1) DHEam) g2 g dn
KJaJN
=(=-1)" // P(ir)L"f((a,n) 1) drdn. (3.4.4)
aJN
From (B.4.4) it follows that:

P (i) { v v} |
< [ [ IR i) s (PG, (3.45)

Using the basic estimate (2.0.4]) we ge |r| < ¢(1 + |a,n|) and hence one can
find dp € Z* such that

|P(ir)| < (1 + |a.n|)?. (3.4.6)

As f € 8§(X), so for each m € ZT we have

2

L™ ((a;n)™Dl2 < prrr () (L + larn]) ™08 ((@rm) ™). (3.4.7)

The above inequality also uses the fact that |g| = |¢g7!| for all ¢ € G. The
estimates (3.4.6) and (3.4.7) reduces the inequality (3.4.5) to the following.

17 (35) {417 7o) 2

2 [
< cpnnn() [ [ (U4 aml) 0 0f () el
aJN
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= ctwrm(f / / / 1+ [kaem]) ™ 0 () el DH R g

= () [ (1 Jaly g e, (3.48)

Now we use the Cartan decomposition i.e. x = kjexp |x|ky and the
appropriate form of the Haar measure (Z.0.7) to get

= clirr m / / / 900 (exp |x ) (1+ ‘kl exp |x\k2‘)—m+dp
at

e(SA=DH ks explelka)) g, A(|z|)d|x| dks
— () [ [ cllexplal) (1]l )
at JK
A(jal)dle] dks
2
— () [ i (explal) (L [al)
a

{/ (9= (H(exp [z]k2)) dkz} Aljzl)dl=]
K

= cprrm(f) /+ g (expz]) (14 [x]) ™" g (exp [z 71])
A([z])d|z|
249 N
< () [ 6" explal) (14 fal) e N A

(3.4.9)

where the last inequality in this chain follows by using the estimate (2.0.21)
of the elementary spherical function. We take A € Inta}, therefore |3\ <
e = (3 —1). By using the fundamental estimate (20.22), we reduce the
inequality (8.4.9) to the following

7 (35) {om+ v fw}|
< cunnn(F) [ (1 f) 9 e ) Ao

=) [ (4 fa) 7 G e, (3410

We choose a suitably large m € Z* so that the integral in (B.4£10) converges
( [20, Lemma 11]). This completes the proof of the Lemma. n
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We now take up the extension of the inversion formula ([2.2.19) of the

d-spherical transform.
Lemma 3.4.3. For each h € 85(a?) the integral

1 / Das(x) B leN)] 2N, (3.4.11)

2 Ja
gives a Hom(Vs, Vs) valued, left 6-type C*° function of x € X. [From now
on we shall denote this function by Jh].

Proof. Let us take any D € U(gc). Since h € Ss(ak), for all x € X

%/ 122,6(D; 2) [l [[A(A) [[2]e(V)~*dA

< C5<po(a:)/ (1 + [A)PRromdN, (3.4.12)

by using the decay (B:2Z3)) and the estimates (Z2.6) and (Z.I6) one can
choose a suitably large n so that the integral in (34.12)) exists finitely. This

proves Jh is a function on X and DJh exists for all D € U(gc). Hence
Jh € C°(X, Hom(V5, Vs)). As, @, 5(+) is of left o-type (Proposition 2.1.3)), so
is Jh. |

Lemma 3.4.4. If h € 85(a%) then the inverse Jh € 8§(X).

Proof. To prove this Lemma we shall first consider the spaces P°(C) and
D (X) equipped with the topologies of the respective Schwartz spaces con-
taining them. We have seen that P°(C) and D°(X) are dense subspaces of
8s(ar) and 85(X) respectively.

We shall show that the map J is a continuous map from P°(C) onto (by The-
orem [3.3.4)) D°(X) with respect to the Schwartz space topologies. That is for
each seminorm g on D?(X), there exists a seminorm 7 on P?(C) such that
u(f) < er(h), where f =Jh € D°(X) and c is a positive constant depending
ondck M-

As, f € D°(X), by LemmaB3.3.6, we get a function ¢ € D(G//K, Hom(V;, Vs))
such that f = D°¢. If ® be the image of ¢ under the spherical transform
then it follows easily that h(:) = Qs(-)®(-). Let D, E € U(gc) and n be any
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nonnegative integer, then

p(f) = sup | (D5 B) [a(1+ |z, ’ (@)
= sup [D°9(Di i B) |2 (1 + [a]) "¢, ’ (2)
= CDéD,E,n(@- (3-4-13)

[ Here ¢ denote the seminorms on the Fréchet space 8P(G// K, Hom(Vs, Vs)). |
At this point we use Anker’s [2] proof of the Schwartz space isomorphism the-
orem for K-bi invariant functions. For each D, E € U(gc) and n € Z* one
can find a polynomial P € S(a*) and ms € Z" (depending on ds) such that,

P <%) D(N)

Using the isomorphism, proved in Lemma[3.3.9] between the Schwartz spaces
So(al) and 8s(af) we get that

P (%) h(\)

where 7p, ., (h) is one of §(a?) seminorms and h € P°(C) C Ss(a?).

(14 [A[)™.

2

<D5D,E,n(¢) < c sup
A€lntat

(14 [A)™s = 7p, s (h),  (3.4.14)

2

o ER(f) <c sup

Aelntay

Now we apply the density argument to conclude the Lemma. Let us now
take h € Ss5(a’). As, Ps(C) is dense in Ss5(a’), there exists a Cauchy sequence
{h,} C Ps(ag) converging to h. Then, by what we have proved above, we
can get a Cauchy sequence {f,} C DI(X) such that f, = h,. As 8¥(X) is a
Fréchet space the sequence must converge to some f € 8§(X). Now f = Jh
by a pointwise convergence argument from Lemma[3.4.3. This completes the
proof of the Lemma B.4.11] n

We note that the Lemma [3.4.4] also implies the fact that the 6- spherical
transform is an injection in the corresponding Schwartz space level.
Finally, Lemma and Lemma 344 together show that the d-spherical
transform is a continuous surjection of 8¥(X) onto 85(a¥) for (0 < p < 2).
A simple application of the open mapping theorem concludes that the J-
spherical transform is a topological isomorphism between the corresponding
Schwartz spaces. This proves the Theorem 3.3.3] In the next section we shall

extend this result to a slightly larger class of functions.
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3.5 Finite K-type functions

Let X be a rank-1 Riemannian symmetric space, as before. Let D(F; X) C
C*(F'; X) denote the subspace of compactly supported scalar valued func-
tions f on X such that f is left- K-finite with the left types lying in the fixed
subset F' C K M-

SP(F; X)={f e 8(X => trf’(z) forall z€ X}, (351)

6cF

the Schwartz space containing D(F'; X). It also follows easily from the defi-
nition that, if f € 8?(F; X) then for each § € F the projection f° (defined in
(20.:24)) is a member of 8§(X). For these classes of functions the transform
we shall mainly consider is the Helgason Fourier transform.

Let us now define the Schwartz class of functions on the domain af x K /M.

Definition 3.5.1. Let 8(F;af x K/M) denotes the class of functions h on
al x K/M satisfying the following properties:

(i) For each kM € K/M, the function A\ — h(\, kM) is holomorphic on
Inta’, and it extends as a continuous function on the closed strip a.
The function h is a smooth function in the k € K/M wvariable.

(i) For all A € a} andz € G
h(\, x) = h(=\, z), (3.5.2)

where, h(\,z) = [, h(\, k)e” (ATDHER) g
(iii) For each P € S(a*) and for integers n,m > 0 the function h satisfies
the following decay condition

sup )P (ddA) WOV kW) (14 )" < 400, (353)

(A k)eIntarx K /M

(iv) For each 6 € K \ F the left-0-projection h° defined by
RO\ k) = d(;/ h(\, kK)o (ky V) dkey, (3.5.4)
K

is identically a zero function on af x K/M.
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The space 8(F;af x K/M) is a Fréchet space with the topology induced
by the seminorms ([B.5.3]). By the theory of smooth functions on compact
groups [45], the topology of the space S(F;af x K /M) can be given by the

following equivalent family of seminorms; for each P € S(a*) and m € Z*

we have
d
sup P (—) RN eM)|| (14 |A)™ < 400, for h € 8(F;a x K/M).
Aelntat 0€F dA 2

(3.5.5)
We denote by S(a* x K/M) the Fréchet space satisfying all the conditions
of the Definition B.5.0] except condition (iv). The space 8(F;al x K/M) is
a closed subspace of S(aX x K/M). We know that HFT can extended to
the Schwartz class 8P(X) [9], further more HFT is a continuous map from
8P(X) into 8(aX x K/M). Hence HFT is a continuous map from 8?(F'; X)
into S(F;af x K/M).

Lemma 3.5.2. Let h € 8§(F;al x K/M), then for each § € F, the left-6-
projection h® € 85(a?).

Proof. The function \ +— h%(\,eM) trivially satisfies condition (i) and (ii)
of Definition B:3:21 The required decay (3.33) is also an easy consequence of
B53). Tt can be shown that the d-projection h° also satisfies the condition

(WYX, z) = (h9) (=X, x), x € X.

It is easy to check that h%(\, kM) = §(k)h°(\,eM), hence for each (), a) €
az x A-0 we write (h9)()\, a) as follows

(h)(\, a) = @y 5(a)h? (N, eM).

By the property (2.1.8) of the generalized spherical functions it follows
that A — Qs(A)7*h°(\,eM) is an even function. Hence we conclude that
Ro(-,eM) € 85(a?). m

By using Theorem B.3.3] for each h € 8(F;af x K/M) we get an unique
finite sequence {f°}scr of € functions on X such that each member f? €

85(X). We consider the following scalar valued function

fla)=> trf'(z), z€X. (3.5.6)

0eF
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For each § € F, (F'h)’ (z) = Ind(z) = f°(z). Hence, we get F~'h(z) =
f(z) for all x € X. The function f € 8P(F;X), furthermore, for each
D.E € U(gc) and n € Z* we have

sup | £(D; 2 B)| (1 + [2])"¢o * (x)

zeG

<c sup |[f(Dsz;E)2(1+ |2))"p, 7 (@)

z€G,0EF
d
<o s ||P (—) WOed)| (14 e
Aelntat,6€eF X 2
d
<cy sup Py (—) h(A ks wi)| (14 |A])™,
Aelntat ke K dA

for some P; € S(a*) and r,my € Z*. Thus, the HFT is a bijective map from
S(F;al x K/M) to 8P(F; X). Once again, by the open mapping theorem we
conclude the following.

Theorem 3.5.3. Let F be a finite subset of IA(M, then the Helgason Fourier
transform is topological isomorphism of the space 8P(F'; X)) onto the Fréchet
space S(F;aX x K/M).



Chapter 4

Image of Schwartz Space Under

Spectral Projection

4.1 Introduction

This chapter can be viewed as an application of the Schwartz space isomor-
phism for the rank-1 Riemannian symmetric space obtained in the previous
chapter. Let X be the Riemannian symmetric space realized as G/K where,
G is a connected, noncompact, real rank-1 semi-simple Lie group with fi-
nite center. Let ) (A € af) be the elementary spherical functions of G.
For f € 87(X) (0 < p < 2) (for the case 1 < p < 2, f € LP(X)) we
consider the transform f — Pyf(x) = f * ¢x(x) for each A in a suitable
domain. The function P, f is an eigenfunction of the Laplacian L, satisfying
LP\f(x) = —(1+ X?)Pyf(x) and the transform f — P, f is called the gener-
alized spectral projection. Strichartz in his series of papers [41], [42], [43], [44]
initiated the project of reviewing Harmonic Analysis in terms of the general-
ized spectral projection. Continuing this project Bray [8] proved a spectral
Paley-Wiener theorem for the symmetric space X = G/K. Ilonescu [29]
characterized the image Py (L*(X)). Strichartz [42] determined the image
of Euclidean Schwartz class functions under spectral projection. The aim
of this chapter is to characterize the image of the LP-Schwartz space 8P(X)
(0 < p < 2) under the transform f +— P,f. This chapter is mainly di-
vided in three parts. In Section [4.2] we obtain properties of the functions
Py\f for f € 8”(X). Sufficient conditions for a left K finite function f(\,x)
on af x X, to be of the form Pyg(x) = f(\ z), for some g € 8P(X), are

43
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taken up in Section 43l Finally, in Section [4.4] we shall characterize the
image of certain subspace of L?(X) under the spectral projection in the light
of the inverse Paley-Wiener theorem [47]. Main references for this chapter
are [26,27] and [8]. For Section [£.4] we refer [15-17,35,37] and [47].

Most of the basic notation used here have been defined in Chapter 2] and
Chapter Bl Throughout this chapter we shall denote &\(X) = {g €
C®(X) | Lg = —(1 + Mg} (A € C). The space &5(X) is the space of
all matrix valued left d-projection of the members of £,(X). We denote
Ex(0, X) = C>(0, X) N EAX).

4.2 Necessary Conditions

In this section we start with the LP-Schwartz space (0 < p < 2) 8P(X).
For f € 8(X) we define P\f(z) = (f * ¢)(x), for A € a*. We get an
alternative expression for the spectral projection Py f(+) in terms of the Hel-
gason Fourier transform Ff of the function f € 8P(X). Beginning with
Pf(x)=[.f o fWealy™ 12)dy, we use the following standard property

@A(y_lx)Z/ 6—(M+1)H(x*1k*1)6(i>\—1)H(y*1k*1)dk
K

of the elementary spherical functions and use Fubini’s theorem to write:

P)\f / {/ f (2)\ DH(y 'k dy} Z)\+1)H(m’1k*1)dk

/?f)\ k= ) (I H (2 k™ )dl{?
K

/fff(A k)~ PAHDHETIR) g (4.2.1)
K

We have already noticed in Chapter [3] that for any f € 8?(X) the Helgason
Fourier transform Ff is defined on the domain a} x K/M, where af is the
closed strip {A ceC|ISAN<e= <% — 1) } Hence, ([A21) implies that for
each f € 8P(X) the function (A, z) — Py f(z) is defined on af x X. We could
also obtain a direct proof of the existence of P, f(z) and its continuity in
both the variables by closely following the arguments in Lemma [3.4.T]

We use the notation ey () for e ADHEE) \which is the kernel of the

integral in the definition (£21]). As we have already mentioned that the
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Iwasawa decomposition K AN is diffeomorphic to G, so, for each k € K, the
Iwasawa- A-projection  — H(x7'k) is a € map on G. Thus ¢y € €*(X)
for each A € C and k € K. Hence, from ([£21) one can conclude that
for each A\ € a? and for each f € 8P(X), P.f € C*(X). Furthermore the
kernel e, is a joint eigenfunction of the algebra D(X) of all G-invariant
differential operators on X. In particular for the Laplace-Beltrami operator

L the eigenvalue for ¢, we have:
Leysi(2) = —(1+ X)exn(2), (4.2.2)

for each A € C and k € K [14]. According to our notation ey, € E5(X) for
each A € C. Note that the integral in the definition ([L.2.1]) of P\ f is over a
compact set. Therefore, it follows easily that for each A € a* and f € 8P(X),
P\f € Ex(X).

Before we prove other characteristic properties of the function space
P\(8P(X)) (A € a%), we need to recapitulate some of the results proved
in the previous chapters.

If f € 8P(X) then f° belongs to the space 8§(X) which is the opera-
tor valued left d-projection of the space 87(X). The image of 8§(X) under
the d-spherical transform (Z217) is characterized in the previous chapter
(see Theorem [B.3.3)). In this section we shall mainly use the continuity (see
Lemma [3.4.2)) of the transform from 8%(X) onto the space Ss(ay) (as defined
in Definition B.3.2)).

For each f € 8”(X) and for each A € af, Py f € C®(X), we define its
matrix valued left §-projection (Pyf)° by

(P\f) () = dj /K Pyf(kz)d(k~Y)dk. (4.2.3)

It is clear that for cach § € Ky, (P\f)’ € E3(X). Now (Py\f)° satisfies
(PAf)o(kx) = 6(k)(Paf)(z) (k € K,x € X). Hence tr(Pyf)° is a left o-type
scalar valued function and hence tr(Pyf)° € £(5, X).

The following proposition relates the projection (Pyf)° with the generalized
spherical function (2I.T)). This structure will be very useful for estimating
the decay of the function Py f for each f € 8?(X) (0 <p <2).

Proposition 4.2.1. Let f € LP(X) ifl <p <2and f € SP(X) if0 <p < 1.
Then — (Pyf)’(z) = PA(f0)(z) = ®rs(z) fO(N), forx € X and X € Inta?,
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where f‘g is the §-spherical transform of f° as defined in (2.0.24).

Proof. The existence of Py f needs a proof in case of f € LP(X), 1 <p < 2.
It is a consequence of the estimates (Z0.19) and (2.021)) of the function
@, that for A € af, o)(-) € LX), where % —i—% = 1. Further, it can be
shown that, for each compact set U C Intal, there exists a g € L9(X) with
g > 0 such that |py(z)| < g(x), for A € U and x € X. Thus by Holder’s
inequality f % ¢, (z) exists for all A € U. Moreover, the uniform domination
of the ¢, means that A\ — ¢, is a continuous map of U to L(X). Holder’s
inequality will then make f * p,(z) continuous in A € U. The compact set
U being arbitrary we get the existence and continuity in both the variables
on Intal x X. From ([A2.3]) we now have:

(PAf)’(z) = da/KPAf(/W) S(k™1) dk
= da/K/Gf(y)w(y‘lkév) dy 6(k™") dk
= dg/}{Lf(kZ)@A(z_lx) dz 6(k™Y) dk

= ds /G on(z 1) /K F(kz) 8(k7Y) dk dz

= /Gf‘s(z)gp,\(z_lx) dz (4.2.4)
= P\(f)(2).

Using the symmetry of the spherical function (2Z.0.18) the expression (£2.4)
can be written as

PAf / f5 / —(iIA1)H(z~ k) (2)\ H(z~1 dk dz. (4_2_5)

The repeated integral on the right-hand side converging absolutely, we inter-

change the integrals to obtain

P [ — —(iN+1)H 71]@ 5 Z)\ HH dZ dk
(P = [ [ re
:/ e AEVHE@TRG (O (N o) dk
K
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We have already noticed that Ff°(\, k) = 6(k)Ff°()\,e) and also we have
observed that Ff°(\,e) = f5(\). Then

(P f)%(z) = { /K e—(i/\+1)H(:c1k)5(k)dk;}f5()\) = (I))\76(l')ﬁ()\)- (4.2.6)
]

From the above Proposition it follows easily that, for all f € 8?(G//K)
(0<p<2), Pf(z)=p@xrx)8f(N\), where A € a* and Sf is the spherical
transform of f.

Remark 4.2.2. As py(x) = p_x(z) for all X € af, so both the functions
Pyf(), (PAf)°(-) and tr(Pyf)° are even in the X\ variable.

To characterize Py f for f € 8(X), we shall first concentrate on each of its

d-projections (Pyf)°. The following proposition summarizes the properties
of (Pyf)° which will be useful to characterize P\(8P(X)) () € a?).

Proposition 4.2.3. For f € 8°(X), where 0 < p < 2 and for each fized
§ € K the operator valued left -projection (Pxf)° of Pxf (X € af) has the

properties:
(i) For each \ € af, the function (Pyf)° € €5(X).

(ii) For eachx € X, A+ (Pyf)°(x) is an even holomorphic function in the
interior of the strip al and it extends as an even continuous function on
the closed strip. The map A — Qs(1—i\)~L(Pyf)°(z) is a holomorphic
function on the open strip Inta*. Forp =2, (Pf)’(x) is a C>-function
of A € R.

(111) For each D, E € U(gc), m,n,s € ZT U {0} and for any real number
rp < % we can find positive constants ¢; and positive integers [, t such

that

(55) BDiE)

m

<> all+ o) Sup |Z @)1 + )y ” ()

=0

L+ |21+ [A) ey ()

2

sup
zeG, elntat

(4.2.7)
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Proof. Property (i) has already been discussed. The property (ii) is a conse-

quence of the expression (£L2.0) and Lemma B.4.11
(iii)  Using the result of the Proposition 2.1l we get

H (%)’” (P.f)"(D; 2; E)

- H (%)m{%m;x; E)/(\)}

d ?
(5) Py s5(D;x; E)

2

NG o,

(4.2.8)

t
<
=0

We shall use the following estimates for the various derivatives of the matrix

coefficients of the principal series representation [21, §17, Lemma 1]:

d ¢
(&) s

where, ¢ > 0 is a constant (may depend on the derivatives chosen but inde-
pendent of § € Ku ), ¢ € Z" depends on D, E € U(gc) and u € Z* depends
on the integer £. As A € af we can replace |\ by € = (2 — 1) in ([£2.9).
Now from (L.2.8) and (£.2.9) we get:

< e(L+[8)7(1+ AN+ [2])“po(a)ePH (4.2.9)

2(1 +1z)" (L + Ay " ()

H (ﬁ)m(PAf)‘S(D;x;E)

(d%)m_eﬁu)

We notice that for all 0 < p < 2,1 -7, > 0. Now we make use of the

co(L+ [ (14 [N (L + [8]) % " (w)el”

NE

<

¢ 2

Il
o

estimate gp(l]_r" (z) < a(1+]z|)br elre=Vlel 2 € X (where, b, is a positive real
number, to be precise, it is exactly 1 —r, ). This is an easy consequence of
the two-sided estimate (2.0.22) of the elementary spherical function ().
Hence we can continue the above chain of inequalities by

(%)m F

Y

(4.2.10)

< D el ) (L AL+ o)) %
=0
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where, v =2 — % —rp. Clearly, vy > 0 as r, < %. Hence from (£.2.10)

sup
reG, elntaf,

(55) (D)

(L+ |2))" (14 A ey ™ ()

<> a1l +]0])1 {sup(l + |gg|)”+“+bpe—'vw}
=0 reX
d m—~ -
(5) A0V

(&) oy

Now the expression within braces is the norm 7,44 .m—¢(f?). Using the con-

{ sup (14 [A])**

Aelntat

J
}

(4.2.11)

SZ@(HW{ sup (1+ M)+

I—0 Aelntat

tinuity of the d-spherical transform (Lemma [B.4.2)), we write: there exists
positive integers [, ¢ such that the last expression (£2.17]) is dominated by

e+ o])*sup I £ @)1 + ) oy * () (4.2.12)

Remark 4.2.4. The fact that X — Qs(1 —i\)" (P f)° (for all f € 87(X))
is holomorphic on Inta can be given a separate proof by using the struc-
tural form ([£.2.6) of (Pxf)’(:). It can be shown that (in fact we shall
discuss about this in detail in the next section), for each x = ka; - 0,
D) 5(kai-0) = 3(k)Qs(1+iN)P(N, t), where ®(A,t) is a scalar valued function
on C x R+ such that for each value of X it is a nonzero function in the t
variable. Hence, by ([£.2.0), Qs(1 +i\)~t (Pxf)° is holomorphic on Inta?.
Now X +— (Pyf)° being an even function, it is easy to notice that, actually,
[Qs(1 —iN)Qs(1 + N (Pyf)? is holomorphic on Inta®.

The above proposition helps us to get the decay/growth of P,f when
f € 8P(X) and A € a’. The following is the main theorem of this section.

Theorem 4.2.5. For f € 8(X) (0 < p < 2), the complex valued function
Py, f defined on al x X has the properties:

(i) For each A € a* Pyf € Ex(X);



Chapter 4: Spectral projection 50

(ii) For each x € X the function A\ — Pyf(z) is an even holomorphic
function on Inta’ and it extends as an even continuous function to the
closed strip a. For each 0 € K, the §-projection (Pyf)? is identically
zero function on X at all the zeros of the Kostant polynomial Qs(1—i\)
lying in Inta’;

(111) For each D, E € U(gc), m,n,s € Z* U {0} and for all real number
rp < %, one can find integers {,t € ZT and a positive constant c

depending on m,n,s and r, such that:

d

| (55) PIDE B+ a0+ )

reG,Aelntat

_2
< esup L f ()| (1 + |z])'p " () < +o00.
FAS

(4.2.13)

Proof. (i) This property has already been discussed.
(ii) The Peter-Weyl decomposition of the function Py f(x) is given by:

Pyf(z) = Z tr(Pyf)°(x), (4.2.14)

where the convergence is in the sense of uniform convergence on compact
sets. Condition (ii) is an easy consequence of the above decomposition and
Proposition [4.2.3

(iii) By using (£2.14) we get:

‘ (i)mpkf(D; ; E)‘(l + )" (1+ [N) gy " (2)

d\
< 3| () rBNOEB|a+edr0+ Ny
0eK v
- X () | @sm|a+iara+ e
< ¥ |(5) roan)| asara e
0eK v

(4.2.15)
The next inequality follows easily from (£.2.15) by applying (A.2.11]).
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sup
zeG \elntat

Z Z sup {1+|A|>8+q<1+|5|>q

( ) Pf(Dsx E)‘(1+|x|)"(1+|A|)Sgpg7”P(x)
(&) o }
(%)m_jfé(x) }

(4.2.16)

AEIntat
o€

<

'MS

Z(l + ‘5|)_2 { sup (1+ |)\‘)S+q(1 + |5Dq+2

— Aelntar
1 (5€K1\/1 c

J

As, f € 8P(X), so its Helgason Fourier transform Ff € S(aX x K/M) [9].
Thus, by the definition of the Schwartz space 8(af x K /M) (see Definition
B.5.11 ), one gets: for each Ny, N, € Z* and P € S(a*),

sup ‘P ( d ) FFOLkwi)| (1 + A" < 4o0.

NeIntat ke K /M d

The above countable family of seminorms induces a Fréchet topology on
S(aX x K/M). By the theory of smooth functions on the compact group [45,
Theorem 4], it follows that the topology of 8(a’ x K/M) can also be obtained

from the equivalent family of seminorms, given by

d\ ~
Pl —] /(X
() o
Hence, we can state that the expression within braces of each of the sum-
mands of (£.2.16) is dominated by the single finite quantity :

(%)m )

This coupled with the summability of > (1 + [§])~2 reduces the inequality
(.2.16) to:

(T+ A1+ )" < 4o0.
2

sup
NeInta: 6€K

(1 [ADSFI(1 + |6]) 7t (4.2.17)

sup
Aelntag;éelA{M

sup
reX,  elntak

S

j AEInta¥; 5€K]w

<d)\) Prf(D;x E>’(1+Ix\) (L+]AD*eo ™ (2)

d%)m_j i

(L+ D1+ |5\)q+2} :

2
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Again by the equivalence of the seminorms on 8(aX x K/M), we can find

positive integers my, mo, mg such that the last expression is

<c sup ‘ (i) FfN kywe™)

14+ [A)™s
NelntazkeK /M dA (T+[AD™,

and by the continuity of the Helgason Fourier transform on the Schwartz
space 8P(X) [9], we get nonnegative integers ¢,t € Z* such that the above

expression is

2

< esup [L*f(2)|(1 + [2) "¢, 7 (). (4.2.18)
zeCG
This completes the proof of theorem. [ ]

Remark 4.2.6. This part of the characterization does not really use the fact
that G is of real rank-1. Thus it can also be obtained for any Riemannian
symmetric space realized as G/K with G a non-compact, connected semisim-

ple Lie group with finite center.
For each € > 0, let us now define a function space P.(X).

Definition 4.2.7. For ¢ > 0, then P.(X) denotes the class of functions
(N, z) — fa(z) defined on af x X and satisfying the following conditions:

(i) For each x € X the function A — fy(z) is an even C function on a*
and is analytic on the interior of the strip a> = {\ | |SA| < e}. On the

boundary it extends as a continuous function.

(ii) For each X € a the map x — fi(x) is a € function on X, an eigen-
function of L, fy € Ex(X).
Moreover, for each § € Ky and z € G, the function A — Qs(1 —
i\) "L (x) is holomorphic on Inta?.

(111) For each D, E € U(gc) and m,n,s € Z* U {0}

sup
xeG, elntat

(55) A+ N @) < oo
(4.2.19)

l—e
where, re < 175
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It is easy to verify that P.(X) is a Fréchet space with the topology induced
by the countable family of seminorms (£2.19).
We shall conclude this section by restating the Theorem in the light of
Definition [4.2.7]

Theorem 4.2.8. The spectral projection f — Py f is a continuous map from
the Schwartz space 8P(X) (0 < p < 2) into P.(X), where e = (% — 1),

In the next section we shall obtain sufficient conditions for the image of
8P(X) under the transform f — P, f. The fact that G is of real rank-1 plays

a crucial role there.

4.3 Sufficient Conditions

We begin this section with the definition of a specific subspace of the
function space P.(X) for each ¢ > 0.

Definition 4.3.1. we denote by P.(X), for each ¢ > 0, the class of functions
fa(x) in P.(X) which are of left K-finite type in the x variable, where the
finite set of 6 € K involved can be chosen independently of \.

In this section we shall try to establish a sufficient condition for a mea-
surable function (A, ) — fy(z) € P.(X) to be of the form Py f(z) with some
f € 8(X) for suitable 0 < p < 2. Let us fix one ¢ > 0 and a function
fr(z) € P(X).

Because of the decay (£2.19) the integral

fo(2) = (-1)”/ 1+ 27 (@) [eM)2dN, (neZb)  (431)

a*t

converges absolutely, where c()) is the Harish-Chandra c-function. Let us
set fo=f,i.e

f@) = [ A@lear (4.3:2)
It also follows from the specified decay (4.2.19)) of the function (A, z) — fi(z):
that for n =0,1,---, the function f, € C*(X). As, fo() € Ex(X), it can

be shown that L"f = f,, .
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For each A € a’ and ¢ € K v we define the operator valued left d-projection
by

F(z) = /K Fr(kz)s(k™)dk. (4.3.3)

It is clear from the definition of the function space P.(X) that for each
§ € Ky and each \ € a’, f2 € €5(X). The Peter-Weyl decomposition of the
function f\(-) is as follows

)= > trfix), Ned. (4.3.4)

56&]\1

As f) is assumed to be left K-finite, so in the above decomposition (A3.4)) all
but finitely many terms are identically zero functions. Let us denote F for the
finite subset of Ky, corresponding to the function fy for which the summands

are non zero functions. It follows from the earlier discussion that for each
§ € Fand \ € af, x + trf(z) is of left d-type. Hence trfl(-) € Ex(5, X).

Lemma 4.3.2. For each § € F the map (A, z) — f2(x) satisfies the decay

(55) #w

where, K = d;’m - ¢, the constant ¢ being independent of 0.

sup
rzeX,\elntat

(T4 |z)"(1+ [N’y () < K< 400 (4.3.5)

2

Proof. The assertion is true because

{(5) B@}aslras e e
—as{ [ (55) BonsE Iy e e @)
—ds [ {(55) 500 o014 a0 )

Now taking Hilbert Schmidt norms on both sides and using the fact ||0(k)||2 =
V/ds we get an inequality from which we get the required conclusion. ( It is
easy to check that the 6 dependent part in the dominating constant is precisely
d?). An immediate corollary is |
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Corollary 4.3.3. For each m,n,s € Z" U{0} and for each fized 6 € F

(d%)mtrff(x)

Lemma 4.3.4. The function f obtained in (4.3-3) is also left K-finite and

moreover,

sup (T+]z)" (14 Ay (x) < 400.  (4.3.6)

reX,\elnta¥

trf(z) = /*+ trfd(z) |e(\)|~2dX . (4.3.7)

Proof. Using (£3.2) and ({34 we get the following:

fla) = [ S trfita) le] 2an

6cF

as the above sum is over a finite set F', so

= / " trf(z) [e(N)]~%dA. (4.3.8)

0eF

Let us denote ¢s(x) = [ ., trfi(x) |c(A)|"2dA. The integral converges ab-
solutely because of the decay ([#3.6). We have already noticed that, trfJ(-)

are of left 4-type and we only need the routine checking
vs() =ds | {xswtrf] Ha) [e)| 2
a*

—ds [ { [ st} oy
:d(;/Kx(;(k‘l){/jrff(kx)dk |c(>\)\‘2d)\} dk

a*

= ds{xs * Vs }(x) (4.3.9)

to conclude that each 15 is a scalar valued left o-type. The rest follows from

the Peter-Weyl decomposition. [ ]

So far we have noted that the function f obtained in (£.3.2) is in C*(X)
and it is of left K-finite type. Now we shall try to show that f € SP(X)
for some 0 < p < 2. Towards that we shall first try to obtain a structural
form of f¢ analogous to the one given in Proposition 26 The assumption
that f2 € €5(X) will now play a crucial role. The following theorem is the
key to the desired form of f. Let § € IA(M and Vs (ds = dimVs)be the

representation space for § with the orthonormal basis vy, vs, - -+ , vy, Where,

&
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‘/(;M = C'Ul.

Theorem 4.3.5. [Helgason, [23, Theorem 1.4, p-133]]
Let X € C be such that R{i\, o) > 0, where « is positive restricted root. Then

the functions

U552 \F/ SIS (K)o, vj) d 1 <j<ds,
(4.3.10)
form a basis of the eigenspace Ex(5, X).

We note that, by using the definition ([ZI1.1]) of the generalized spherical
functions we can write the basis vectors as follows

U, 55(2) = Vs (Or5(x)vr , v)) (4.3.11)

Remark 4.3.6. For a real rank-1 group G, we have identified the Iwasawa A
subgroup with R. With this normalization a, a* are identified with R and a™,
a*t with RT. As we are only considering the real rank-1 group, so there will
be a smallest positive restricted root o and at most one more which will be
2a. Clearly, o € RT. This immediately suggests that for all X with S\ <0,
RN ) > 0.

Hence, for all X\ € ai~ = {\ € al | SA < 0}, the vectors W, 5,(x) forms a
basis of €x(0,X).

Lemma 4.3.7. For each 6 € IA(M the matrixz valued projection f3 of f\ for

each \ € a’~ has the following structural form

£ (kay.0) = /ds ®y5(kas.0)R2 () (4.3.12)
where, ® s5(ka;.0) is a (ds x 1) matriz and h°(\) is a (1 X ds) matriz

Proof. We have noticed that trf) € £,(5,X) for all A € a* and § € F. Now
we shall write tr f2(z) in terms of the basis vectors given in (Z3.1]).

trfd(x d52h5 ) (D 5(2)v1, ;) (4.3.13)

where, h()) are coefficients depending on A. Let us denote the (1xds) matrix
ho(X) = (R§(A),---,hg (N)). We also recall the fact that the generalized



57 4.3 Sufficient Conditions

spherical function @, s(z) vanishes on the orthogonal complement of V3V,
so we can regard @, s(z) as the (ds x 1) column vector with the entries
(@) s(x)v1,v;). Then it is clear from (L3.13) that

trf3(z) = \/ds tr[®ys(z)h’ (V)] (4.3.14)

Next we shall show that the matrices f(x) and ®y s(x)h(A\) have identical

entries.
ff(x)z 0= <f§(x)Wa U,>

ds < /K tr ff(k:c)é(k‘l)dkw,vl>
= d(;/Ktrff(k::E) (8(k " Yvg, v, ) dk. (4.3.15)

Now we use ([{3.14) to replace trf3(kz) to get
ds
5 3 -1 5
(@), ¢ = dj Z/ (Prs(kzyvr , vj) (S(k™ )ve,v,) h5(N) dk
j=1"K

3 ds
:dEZ/K@( )Pxs(x)or,v5) (6(k™ Ug,%>h§-()\) dk

d2z / Yo, Brs(@)un) (50k Yoe,v,) BN dk. (4.3.16)

The representation coefficients k — (0(k)v, u) (u,v € Vy) satisfies the follow-
ing consequences of the Schur’s Orthogonality Relations : If w,v,u’,v" € Vj,
then

/K (§(k)u,v) (§(k)u', vy = ds ™ (u,u') (v, ). (4.3.17)

Using (£317) in (£3.16) as also the fact that {v;}(1 < i < ds) forms an

orthonormal basis of the representation space Vs we write

F2), 0 = Vs (5 5(2)vr,0,) BI(N). (4.3.18)

The right hand side of (£318)) is precisely the (1,¢) entry of the matrix
\/CT(; (I))\75(1’)h5()\).

Hence the Lemma follows. n
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Remark 4.3.8. By the assumption for each x € X the function A\ — f3(x)
is even, so the structural form given in (4.3.13) is valid for all A € a.

Remark 4.3.9. (i) Writing

R(@) = V/ds®sg(2)h*(N)
= Vds{Qs(1 — iNDrs(2) H{Qs(1 — M) TR (N} (4.3.19)
We notice that f{ is even in the \ wariable and the function \ +—

Qs(1 — iX)Dy 5(x) is even by (Theorem [2.1.5). Hence for all A € af,
the function X — Qs(1 —i\)"th%(N\) is an even function.

At this point we need to look in a different direction. The matrix entries
of the generalized spherical functions are associated with Jacobi functions.
Let x = ka;.0 € X. Then

(I))\’(; j(l{?at> = <(I))\’5(]€6Lt>’01,’0j> = (5(1{)(1),\,5(%)1)1,@]-).

It can easily be seen that @, s(at)v € V(;M for all v € V5. Hence on V(;M,

®, 5(a;) will be a multiplication operator

Dy s(ar)vr = pas(t)vr, (4.3.20)

where, ¢, s(t) is a function of ¢ depending on A and §. For each § € K
and A € af the function t — ¢, s(t) has an expression in terms of the

hypergeometric functions (Helgason [24], Koornwinder [33] )

ors(t) = Qs(iX + 1) (a + 1) (sinh £)" (cosh )33 TP+ (1), (4.3.21)
where, gof\‘”’ﬁ ™ is the Jacobi function of the first kind with parameters (o +

r, 3+ s). The integers (r,s) and the quantities «, 3 are already introduced
in (Z.I.10). This Jacobi function has the integral representation [33]:

1 T
e3Pt (1) = / / | cosht — ve sinh t| ™27 2d P, , 514(x,0),  (4.3.22)
o Jo

where, o = a+7r+ [+ s+ 1 and dP,,1s(t, 0) is a probability measure [25]
on [0, 1] x [0, 7].
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Lemma 4.3.10. For all A\ € C the Jacobi function gpi‘”’ﬁﬂ satisfies the
following:

PN 0) =1 (4.3.23)

d k
‘ (ﬁ) (pi-i-r,ﬁ—i-s (t)

Proof. These two properties follows from the integral representation (E3.22).

< ctheBFIL T e RY ke Zt (4.3.24)

We use the estimate
log|cosht — re?sinht| <ct, >0,

to get the inequality (E3.24]). ]

Our next Lemma concerns the domain on which the function k% holomor-

phic.

Lemma 4.3.11. For each § € Ky, the functions X — h3(\) and A
Qs(1 — i)t (N) = ¢°(N\) are holomorphic in the interior of the complex
strip al.

Proof. We note that the zeros of the polynomial Qs(1 —i\) are purely imag-
inary. We have assumed that x — f?(z) is identically zero function on X for
all A which are zeros of the polynomial Qs(1 — i\). Also we have assumed
that f? is even in \. So, z — f{(x) is also zero for the zeros of Qs(1+i)\) in
Inta?. Hence, A — Qs(1 +iA\)~1f{(+) is holomorphic on Inta:.

We restrict the function f(-) to (af x A*.0). Then by the structural form

obtained in Lemma [1.3.7 we write:

Far) = Vds ®rs(a)h’(N),  (t>0). (4.3.25)

For proving A — h°(\) is holomorphic on Inta? it is enough to prove that
each of its matrix entries are so. By definition the (1,7)th (1 < j < dy)

matrix entry of f3(a;) is given by f2(a;)1; = Vds®xs 1(ar)h°(N);.

q))\,é l(at) = <q))\75(at)’l]1, U1>’
= llvilles(t). (4.3.26)
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Hence by (4.3.26]) and the expression ([£3.21]) we get:

flay = llorll(@+ 1)1 Qs(1 + i) (sinh £)" (cosh ) 3 ()RS ().

J

(4.3.27)

As the first order zeros of Qs(1 + i)) are neutralized by that of f{(as)1;, so

we write:
Qs(1 4+ M) f(ar)1j = Coy o(sinh )" (cosh t)s<p§f+r’ﬁ+s(t)h§(>\). (4.3.28)

The left hand side of (£3.28) is holomorphic on Intat. To conclude that hf is
holomorphic at A € Inta*, we can choose to > 0 so that ™75 (ty) # 0 as is
possible by the observation (3.23). Noting that ¢$*""**(ty) is holomorphic
in A and that both sinh ¢, and coshty are positive we reach our conclusion.
To see that A — Qs(1 — 4A)~th°()\) is holomorphic on Inta®, we note that
f2(az)1; is symmetric in A and so from (L328) Qs(1 +iX\) 7' f{(ay)1; as well
as Qs(1 —i\)7'f{(as)1,; are analytic in Inta?. From the exact expression of
Qs(1 —i\) (2II0) we further notice that the polynomials Qs(1 + ¢A) and
Qs(1 — i\) have no common zeros. We can hence conclude that [Qs(1 —
iN)Qs(1+iN)] 71 f{(ar)1; is analytic on Inta?. Using ([{.3.28) again we get the
desired analyticity of Qs(1 —i\)"1h°(\) in IntaZ. ]

Remark 4.3.12. For cach v € X and § € Ky; A — f2(x) extends as
a continuous function to the closed strip a. From ({{.3.13) it follows that

A= h°(\) also extends as a continuous function to aX.

Our next aim is to determine the decay of the function h’, for that we

need a lower bound of the associated Jacobi function.

Lemma 4.3.13. (Bray [8, Lemma 2.4])

Let pu,7 > —35, then for any A > =, there is a constant C' depending on
i, 7, \ such that

(1
o <W) ‘ > Capyr,  for [N >A (4.3.29)

Infact the constant Cy - has the following form:

_24ptT

Capr=¢€ & cos(1/A).
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Remark 4.3.14. [The following observation is due to R. P. Sarkar]
We note that for G = SU(n, 1), the quantities « > 0, =0 (where «, [ are
as in (Z110)) and the parameterization (r,s) of Ky runs over Z*+ x 7 with

r+s e 2Z*%. Suppose for some § € IA(M, ss < 0. In such a case we use the
relation [33, (5.75)]

Py (1) = (cosh )l 4), > 0,0 e C (4.3.30)

and rewrite (4.3.21) as follows

oas(t) = Qs(id + 1) (o + 1), M (sinh #)s (cosh £) 1l ol ). (4.3.31)

The Jacobi function gpi‘”‘”'s‘”(t) clearly satisfies the conditions of Lemma

[4.3.13. For other classes of real rank-1 groups the parameters a + r and
B+ s are positive integers. Thus, for all G of real rank-1, the condition of
Lemma [£.3.13 holds for the function @§+"+*

Proposition 4.3.15. For each § € F the function X — h(\) for each
1=1,2,--- ,ds satisfies the following decay condition:

sup
A€az

<%)nhf(>\)‘ (1+[A)™ < +o0. (4.3.32)

Proof. The structural form obtained in Lemma 3.7 and (4.3.5]) gives the
following decay/growth condition for each (1, j)th matrix entry of f(a;): for
each m,n € Z* U {0}

sup
atr€at Aelntaz

Dy 5 1(ar) h?()\)‘(1+t)"(1+|>\\)mgoo_rf(at) = ¢y, < +o0. (4.3.33)
This immediately implies that: for A € Intal and ¢t > 0

m 1 Te
[Pas 1 (@) [[RGV)[(1+ [A)™ < U g (ar)

< ci(re, t), (4.3.34)

where,

(ro.t) = c1j if r.>0
C1j\Te, 1) = Cljelrs‘t if r.<O0.

The last line of the inequality ([A3.34) is a consequence of the fact that
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wol(a;) < 1 for all t > 0 and the two-sided estimate ([Z.0.22)) of pg(ay).
Now we express @, 1(a;) in terms of the Jacobi function (A3.2I]), which
reduces ([A3:34) to the following:

BSOS (01| Qs (A + 1) (sinh £)" (cosh £)°] (1 + [A[)™ < ﬁ%(ra,t)-
(4.3.35)

We note that h°¢°(A\)Qs(1 —iA), A € Inta’. Hence we get the inequality.

97T (O]1Q5(1 — i) Qs (iA + 1) (sinh ¢)7[[ (cosh #)*|(1 + [A])™

1
< —c15(re, t). (4.3.36)
o]
We now let t = # We choose one A > % large enough so that the disk
BA0) = {\ | |A\| £ A} contains all the zeros of the polynomial Qs(1 + i)
lying in Inta’. For X € Inta® \ B*(0), by Lemma E3.13),

a-TT S 1
TPt <W) ‘ > Cpps > 0. (4.3.37)
We note that the polynomial Qs(14iX)Qs(1—i)) is of degree 2r (see, (ZI1.10)
). Hence for all A € Inta?\ B*(0) one can find a positive constant 9 such
that |Qs(1 +i\)Qs(1 — iN) <sinh ﬁ) ) > .

Also, for the above choice of A, "I < e"IAP | Hence from (A330]) we
conclude that: for all A € Inta’ \ B*(0)

1
elmelar

g7 (NI + [A)™ <

< = cs(say) for each m € Z*. (4.3.38)
CA,a+r,6+s

As BA(0) contains all the zeros of the polynomial Qs(1 —4)), so there exists
a constant k; > 0 such that |Q(1 — i\)| > ks for all A\ € BA(0)¢. Thus, for
X € Inta® \ BA0)

B 1
- 1Qs(1 = iN)]

For each 1 < j < ds the following inequality is also obtained from (£3.3):

C
g7 (NI + [A)™ < k—‘s

[R5 (V1L + D™ (4.3.39)
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for all a; € AT and \ € Inta*

(ﬁ) 122 2(a)Qs(1 - M)g?w}' (10" U+ W)™ () < .

{0} @l = Vs st + 00 (35 ) (@ul1 = s 1)
(14 )™ < 64, 72).

The last line can be written as

{50 b st = g a1+ 1

< c’lj(rg,t) +

B0 55 ) 1@ = Vs (e} 1+ ),

writing ®) 5 1(a;) in terms of the Jacobi functions as in (£.3.21]) we get,
< (e, 1)+

% g;(N) (a%\) {Q(S(l —1A)Qs(1 4 t\)(sinh ¢)"(cosh t)sgpf‘\‘Jr’"ﬂ*S(t)H

< C/1j<T€7 t)+

% g;(N) {(%) Qs(1 —iA)Qs(1 + M)} (sinh ¢)"(cosh t)sapiJrr’ﬁ*S(t)‘
% 95(N)Qs(1 — iA)Qs(1 + i\)(sinh t)" (cosh t)s{<dil)\) @§+T76+8(t)}‘ .

(4.3.40)
We rewrite the inequality as

(35) sto0] -+ 1
< ey (reat) [|Q5(1 +iX)Q(L — A) (sinh )" | (cosh 1) [ 5 7*(0)]|
2 (Qs(1— N Qs(1+ )|
Qo1+ INQs(1— )]
(%) (piz—l-r,ﬁ—l-s (t)‘

T (1)

+1g7 (NI + A

+1g7 (NI (1 + IM)m‘ (4.3.41)

Again we take t = # and choose A > % suitably large so that B*(0) contains
all the zeros of the polynomial Qs(1 —i\). We will presently obtain bounds
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for the three terms on the right-hand side separately for A € Inta’\ B*(0).

The first term is bounded by a constant, as seen earlier. We have already

obtained a bound for the factor [¢J(A)|(1 + |A])™ present in the last two

terms. The quotient in the second term is clearly bounded in the region

Inta\ B*(0). Finally, a bound for the quotient in the last term is obtained

from the following facts """ +S(#)| > Cpatrpts ( by Lemmal313) and
1

() 2577 ()| < e (by @3ZI).
As h3(X) = Qs(1 —iX)gi(A), so for each m € Z*

(%)h?“)‘ (1+|A)™ < C5 < +o0. (4.3.42)

sup
AElntat
For any order of the derivative on A\, we can use essentially the same argu-

ment. [ |

Corollary 4.3.16. From the decay (4.3.33) of each matriz entry of the func-
tion h® obtained in the above Proposition[].3.15 we get: for each fized § € F,
for each m,n € Z* U {0}

d m
sup (—) RN (14 A)™ < +o0. (4.3.43)
AEIntat dA 2
Here the norm || - |2 stands for the Hilbert Schmidt norm.

Let us now recollect the properties we have obtained for the function h°

(0 € Ky) in the following Lemma.

Lemma 4.3.17. The function h’ (as obtained in [{.3.19) ) is a Hom(Vs, VM)

valued function on af which satisfies the following properties:

(i) h° is holomorphic in interior of a* and it extends to the closed strip o

as a continuous function.

(i) A+ Qs(1 —iX)"LhO(A) is an even function and also it is holomorphic

on Intal.

(iii) for each m,n € ZT U {0}

() o

sup
AElntat

(1+ A" < +oo (4.3.44)

2
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The above Lemma shows that, for each § € Ky, h® € Ss(a’) (see Defini-
tion ). Hence by Theorem the inversion Jh® given by

0 (z) = / sl e (4.3.45)

belongs to the left d-type operator valued projection 8§(X) of the p th

Schwartz class of functions 87(X), where p is determined by the chosen ¢

bypzl—ie.

It is clear from (A3.45), (A3.12) and @3.2) that f° = \/ds Jh°. Hence
for each &, trf? satisfies the Schwartz space decay condition: for each
D, E € U(gc) and n € Z+ U {0},

_2
sup |tr fO(D; z; E)|[(1 4 |z))"p, ” (z) < +oo. (4.3.46)
zeX

The function f obtained in ([A32) was proved to be left K-finite. Hence

f € 8P(X) where, p = 1%5

Finally we shall show that P\ f(x) = fi(z) ( A € a} ) where the function

f is obtained in (A32). As f is left K finite Pyf can be decomposed as

follows

Pyf(x) = tr(Pyf)(x)

0eF

= trP(f)(x), (4.3.47)

where the last line follows by using Lemma 2] and F is a finite subset of

K. Now from the above discussion and Lemma EL2.1] we get the following:
PA(f)(z) = Bag() fO(N) = Bas(x)h®(\) = fi(x), A€l  (4.3.48)

Thus (£3.47) can be reformulated as follows

Pyf(z) =) trf3(x),
SeF
which immediately gives Py f(z) = fi(x) for all A € af and z € X. We give
the gist of what we have shown in this section in the form of the following

theorem
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Theorem 4.3.18. Any continuous function g : (x,\) — gx(z) defined on
X x af with certain € > 0 and satisfying the conditions of Definition[{.53.1 is
of the form gx(x) = P\f(z) for some left K finite function f € SP(X) where

_ 2
P=1=-

4.4 Inverse Paley-Wiener Theorem

We begin the section with a definition.

Definition 4.4.1. Let Pr(X) be the class of scalar valued functions (A, x) —
fa(z) on a* x X satisfying:

(i) the map X\ — fy(+) is an even, compactly supported C° function on a*
with it support lying in [—R, R| (note that our group G is of real rank-1
and thus we have identified a* with R),

(i1) for each X\ € a*, x — fy(z) is a C* function on X and f\(-) € Ex(X).

In this section we shall try to characterize the space Pgr(X) as an image
of certain subspace of L?(X) under the spectral projection.
We need to recall some basic results regarding a certain G-invariant domain
= in G¢/Kc called the complex crown. Here X¢ = G¢/Kc is the natural
complexification (see [36]) of the symmetric space X. The domain can be
explicitly written as = = Gexpif) - xyg, where g = eK and Q = {H €
a||a(H)| < F,ac X} [35]. Let G(Z) be space of all holomorphic functions
on the complex crown. For A\ € ia*, the function H — ¢)(expiH) (H € a)
can be analytically continued in the tube domain a 4 2i€2 [37]. Almost all
the basic analysis on the crown domain uses a fundamental tool called the
orbital integrals developed by Gindikin et al. [15]. Let h be a function on =
suitably decreasing at the boundary and Y € 22, then the orbital integral is

defined by »
On(iY) = / h(gexp (%Y) -xo) dg. (4.4.1)
G

Ifa holomorphic function 6 on the tube a+2i€2 has the representation 0(Y) =
Jiwe 9ON) @r(expY)lc(A )|_2d)\ then we deﬁne (With certain condition on g,
see [36]) the operator DO(Y) = [ . g(\) Ye(N)|72dX, where 5 (Y) =
eMY) 4 XY The operator Dis a pseudo differential shift operator [36].
The following is an inverse Paley-Wiener theorem for the Helgason Fourier

transform.
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Theorem 4.4.2. [Thangavelu [47, Theorem 2.3
Let f € L2(X), then the Helgason Fourier transform f(\, kM) is supported
in |A| < R if and only if the function f has a holomorphic extension F' € G(Z)

which satisfies the estimate
DOpp(iY) < Ce*BYVL where C is independent of Y € 290, (4.4.2)

Our main theorem in this section is a consequence of the above theorem.

Theorem 4.4.3. A function f\(z) (x € X, X € a*) is in Pr(X) if and only
if fa(z) = (fxo\)(x) (Vo e X, \ea*) for some f € L*(X) which admits
a holomorphic extension F € G(Z) satisfying the estimate ({.4.3)

Proof. Let f\(x) € Pr(X); then we get a function

z) = / (@) [e(V)] A, (4.4.3)

The integral (£.4.3) is obviously convergent and f € C*(X). A simple ap-
plication of the Peter-Weyl theorem gives

/ > tr = (A)|~2d. (4.4.4)

5EKM

Now for each € Ky and A € a*, f3(-) € &(X), hence by Theorem
we can write f3(z) = v/ds®ys(x)h°(N). As A — f(-) is compactly supported
and @, 5(+) is an entire function so the function h° must have its support in
[—R, R]. The above structural form can further reduce (£.4.4) as follows:

f(:c):/*+ > \/d’éz (@ 5(x)h (Mg, v:) | [e(A)]|"2dA

66KM
[ E desZ @ a()or,v0) (0N, 1) | e(V)]~2dA
axt
5€K]u

/. ZﬁaZ [ eI 50k ) () 0

5EKM

lc(\)]~2d\
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ds
:/ / e—(iA+1)H(m*1k) Z \/67(;2(5(]{?) U17Ui> <h5(>\)vi,v1>
art K 56[?]\/[ i=1
(V)| ~2dk dA
_ / / e~ OFDHE | S SRR V) | Je(M)|2dkdA.
art JK 56&]\1
(4.4.5)

We denote the function h(\,k) = Y.z, Vds tr(d(k)h°(N)) in (@EZLT).
Then clearly it is a €*° function in the A variable and the function A +—
[ eCMDHETR) B (X kYdE is even. Also h(),-) is a compactly supported
function and f is nothing but the Helgason Fourier inversion of the function
h. Hence by [47, Theorem 2.3], the function f € L?*(X) and it admits a
holomorphic extension on the complex crown satisfying the estimate (£.4.2)).
On the other hand if ¢ € L?(X) then, for all A € a* and » € X,
Pg(x) = g* pa(z) = [ e VARG k) dk. Furthermore if g can
be extended holomorphically to some § € §(Z) with g satisfying (£.4.2) then
by Theorem 42 g(\,-) is supported in [—R, R]. It is now easy to show
that g % py(-) € Pr(X). n



Chapter 5

Characterization of Fourier
transforms of rapidly

decreasing functions on
SLo(R)-of given left and right
K-types

5.1 Introduction

In this chapter we shall establish the LP-Schwartz space isomorphism theorem
(1 < p <2) for the Schwartz class functions on the group SLs(R) with fixed
left and right K-types. Characterization of the image of the LP-Schwartz
space under the group Fourier transform started with Ehrenpreis and Maut-
ner [12], where, they have considered the case p = 2 and characterized the
image of 82(G) where G = PSLy(R). Later, the complete p = 2 result, for
any reductive group, was established by Arthur in [4,5]. The corresponding
theorem for values other than p = 2, to be specific 1 < p < 2, was obtained
by Trombi [48], who proved his result under the K-finite restriction for any
semisimple Lie group with real rank-1. The main reference for this section
is W. H. Barker [7], where, he has established the LP-Schwartz space iso-
morphism theorem (0 < p < 2) for the group SLy(R). In each of the works
recounted above, the Harish-Chandra expansion of the matrix coefficients

of the principal series as well as the discrete series representations plays an

69
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important role.
Following Anker [2], we give here a simple proof of the isomorphism between
the space 8¢ (G) (G = SLa(R)), of all L? (1 < p < 2) Schwartz class func-

tions with fixed left type m and right type n, and its image space San’n(@).
Our proof does not involve the asymptotic expansions of the matrix entries
of the representations, except what goes into the Paley-Wiener theorem. Our
notation in this chapter closely follows Barker [7]. In particular there is a
change in the parameterization of af. (by the rotation A — i)) from what we
have used in the previous chapters. Whereas so far the real axis represented

the unitary dual, it would be the imaginary axis in this chapter.

5.2 Notations and some basic results

In this section we concentrate on the 2 x 2 real special linear group SLo(R),
that is

b
G = SLy(R) = { <“ d) lad—be=1, a,b,c,d € R} . (5.2.1)

C

The Lie algebra of G denoted by sly(R) is realized as

gzﬁ[Q(R):{<a Z) | a+d=0, a,b,c,deR}. (5.2.2)
c

The elements

1 1 1 —
X = ! ,H =3 ! Y = 0 and Y = 00
-1 0 0 -1 00 -1 0

of the Lie algebra sly(R) are of special interest. The corresponding

group elements to the first three of these elements are:

kgz@{p(@X)z(Cose sm@)7 0 cR.

—sinf cos®
et 0
a; = exp (2tH) = 0 et] t € R, and

ne =exp (£Y) = ((1) i), e
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The subgroups of G,
K={k [0 eR}, A={a|teR}, N={n|{eR},

have corresponding Lie algebras denoted respectively by ¢, a and n. The com-
pact subgroup K is maximal compact in G and the Iwasawa decomposition is
G = K x Ax N. Through the element H € a, the Lie subalgebra a gets iden-
tified with R and so also a* through the usual paring. The only root is then
2 € R = a and we have the half sum of the positive roots p =1 € R. The
complexification af of the space a* is identified with C, the Weyl group in
this case is simply W = {£1} and the positive Weyl chamber is thus R*. The
Cartan decomposition of the group is as follows G = K - CI(A") - K, where
AT ={a; | t > 0}. If according to this decomposition any element = € G be
written as = kpa,k,, the element a,; is unique and we denote |z| =t. The
Haar measure corresponding to the Iwasawa K AN decomposition is this case
is given by dr = e*dkdadn where x = kgayng, dk = dky = %d@ (0 <0 <2m),
da = da; = dt and dn = dng¢ = d§.

The maximal compact subgroup K being isomorphic to SO(2), the set K of
equivalence classes of all irreducible representations of K is parameterized
by Z and the character corresponding to n € Z is given by 7,(kg) = e™?.
Let n,m € Z. A complex valued function f on the group G is said to of
left type n and right type m or simply type (n,m) if for each ky, ko € K and
x € G:

f(k1xks) = 7 (k1) f ()T (K2). (5.2.3)

In particular, (0, 0)-type functions are precisely the K-bi-invariant functions
on the group G = SLy(R). For any C> function on G, the (m,n) th com-
ponent or the (m,n) projection of f denoted by P, ,.(f) or f™™ is simply
given by

P (f) = f () = /K /K T (k1) T (o) f (kracks ) dky dey

— / / e~ m0e=i? f(kpxky)dkodky. (5.2.4)
KJK

Clearly, ™™ is of (m,n) type. Any C> function f can be decomposed as
f= Zm,nEZ fmm) and this sum is absolutely convergent. For any function

class §(G), we shall denote §,,,(G) for the (m,n)-type projection of the
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corresponding function class.

The centralizer M of A in K is given by M = {£I}, where I is the 2 X
2 identity matrix. Let M = {o,,0_} be the equivalence classes of the
irreducible representations of M, where o, (—1) = 1 and o_(—1) = —1.
For each ¢ € M and A € C we get a one dimensional representation (o, \)
of the minimal parabolic subgroup P = MAN: (o, \)(man) = o(m)A(a),
me M, ae A, n€ N. Let (7, Hy) be the principal series representation
of G, induced from (o, A). The representation space H, is a subspace of
L*(K) generated by the orthonormal basis {7, |[n € Z}, where Z° is the
set of even integers for ¢ = o, and the set of odd integers for ¢ = o_.
The representation 7,y is unitary if and only if A = ¢R. On H, it has the
following form [7, 4.1]

[Toa(2)70) (k) = e OHDHERD 7 (R (a7 k1), (5.2.5)

For each k € Z*, the set of all non zero integers, there exists a discrete
series representation m, of the group G. These representations appear as
sub representations of 7, |, where o is chosen so that k € Z* \ Z°. For
the representation 7, we need the infinitesimal action of the Lie algebra
g = slh(R), and gc. The following three elements of gc are of special interest

while dealing with the principal series representations:

_ 1 _ —1
X,E:2H+i(Y—Y):<_ Zl>,F:—2H+i(Y—Y)=<. i)
1 — 1

(5.2.6)
The 7, 5 action of the above elements are as follows:

ToX(X) T = inT, ToX(E)T = (n+ A+ D)Toge, Tox(F)7 = (n—A—1)7,_0.

(5.2.7)
For m,n € Z7 and k € Z* \ 27, let ®]\"(x) = (T (2)Tn, 7o) and ¥;" =
(mp(z)7E  7F) . be the matrix coefficients of the principle and the discrete

series representations respectively. Here (-, -); is a fixed normalizing inner
product of 7, and 7% denotes the normalized version of the basis elements of
the representation space of 7 (see, [7, p. 20]). For each 0 € M, A € C and

m,n € Z°, the matrix coefficients of the principal series representation can
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be given an explicit integral representation as follows:
q);rfs\n(x) — / 6_(>\+1)H(IE*1k*l)T_m(K(x—lk—l))Tn(k—l) dk (528)
K

From (5.2.8)), it is clear that CI>2’B7 \(x) = @a(x). Some very elementary prop-
erties and estimates of ®7'{" are highlighted in the following remark, which

will needed later.

Remark 5.2.1. (i) Suppose o € M, m,n € Z° and k € 77, then o

1s identically zero if and only if m < —k <n orn <k <m.

(ii) For allo € M, A € C and m,n € Z°, the function x O (z) is
of type (m,n). It is also an eigenfunction of the Casimir operator )

([7,4.7])

A —1
Qo7 () = 1 (), Vi € G. (5.2.9)

(11i) For all o € M, \eC and m,n € 7°:
(2730 (@)] < @a () = (). (5.2.10)

Further we have the following estimate for ®7'\" and its derivatives due
to Harish-Chandra [21, Lemma 17.1]. For each g,, 9, € U(gc) , s € Z*
and € > 0, there exists a positive constant ¢ and integers r1,ro > 0 such
that

d ° m,n
' <a) (I)U,S\ (91575 9o)

< (14 |m])" (14 [n)"(1 4 |A])"

(1+ |2])* "5 (),
(5.2.11)

for all x € G and for all | RA| < €. The integers ro (a =1,2) may be
chosen so that r, < degree(g,,).

() The matriz coefficients V""" of the discrete series representations are
merely multiples of the corresponding entries CI)ZL"Z' [7, Proposition 7.6,
hence they are also of spherical type (m,n). Fizing ¢ € Z% and g,¢g €
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U(gc), there exists constants ¢,r;(1 < j <4) > 0 such that

(U7 (gy s g)| < e(1+ m])™ (1 + [nf)™ (1 + k)™ (1 + |2)™ o5 (@),
(5.2.12)
for all k € Z° with |k| > ¢ and for all m,n € Z \ Z°. This estimate is
due to Barker [7] ( see also Trombi and Varadarajan [50]).

For a suitable function f on G the Fourier transform of f relative to the

principal series and the discrete series representation, denoted respectively
by Fu(f)(o,\) and Fg(f)(k), are defined to be the operators

Fu()0:N) = [ f@maale e, and Fa(£)(4) = [ Fle)ma s
¢ ¢ (5.2.13)
Hence the group Fourier transform F is given by the ordered pair F =
(Fy,Fp). The canonical matrix coefficients of the operators in (5.2.13) are
denoted by F;"(f) and F5"(f), also they have the following integral rep-
resentation:

T (NleN) = [ F@ess e, (5.2.14)

TN = [ i) (5.2.15)

For notational simplicity, once we fix m,n € Z°, we shall simply write

Fy"(f)(A) instead of F5"(f)(o, N).

Remark 5.2.2. Let g be a (m,n)-type compactly supported function on G.
Then only the (m, n)th matriz coefficient of the operator valued Fourier trans-
form Fyg will be non zero. Hence, in effect, for any (m,n)-type function g
Fulg) = Fy"(g). Similarly, for the discrete part of the Fourier transform
we have: Fp(g) = F5"(g).

5.3 Paley-Wiener Theorem and its conse-

quences

We shall denote by DT(G) the space of all € functions on G' whose sup-
ports are in [T, T] and D] (G) be its (m,n)-type projection. Before we

give a formal description of what we call the Paley-Wiener space DY, . (G),
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let us define the Kostant functions on C, which are related to intertwining
operations between principal series representation. For ¢ € M, m,n € 7Z°
and A € C

[n| =142 ([n|=34X)---(jm[+14+))
[n]=1=A)(|n|=3=A)-(jm[+1=A)’

n—m

(
(
o =4 (1), when |n| = |m; (5.3.1)
(m
(

when |n| > |m|;

)(jm|=3=2)-(|n|+1-X)
Y([m|=3+X)(In]+1+X) *

1-X
T EE=: when |m/| > |n].

The following proposition list out some properties of this function gb%\"

Proposition 5.3.1. [Barker [7, Proposition7.2]|
Let o € M and m,n € Z°. Then

i) the function X\ — ¢"\" is meromorphic and its only singularities are
oA
the first order poles at X = k € 7Z°~ such that min (|m|,|n|) < |k| <

max (|ml, [n|);

(ii) ot = (05) " = oy

(i) ®75'(x) = ¢ 3 )", for all x € G and for all X € C which are not
poles of ¢,3";

() ¢, = 0 precisely when @'\ () is identically zero and ®]"", () is not
identically zero;

(v) ¢, has first order poles in the A variable when ®" is identically

zero but 3" is not identically zero.

Let us now formally define the Paley-Wiener space DL (G).

H;mmn

Definition 5.3.2. The space DL, (G) is the space of all entire functions

¢ : C+— C such that

H;mmn

(i) ¢(A) = @75 ¢(=A), for all X where ¢3" is defined;

(ii) for each N > 0, there ezists a constant Cy < 0o such that

[B(A\)] < Cn (14 [A]) N, AeC.

(iii) if m,n € Z° and mn < 0, then ¢(k) = 0 for all k € Z°~ such that
|k < min{|m], [n]}.
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Below is the Paley-Wiener theorem for the spherical (m, n)-type functions
(Barker [7, Theorem 10.5]).

Theorem 5.3.3. The transform F™ is an isomorphism from DI (G) onto
DT

H;mmn

(G), with the inverse 5" given by:

@ = () [ oo

2T
N (%) S ok (@)K,

keLyw™

(5.3.2)

where, L™ = {k € Z°~ | 0 < k < min{m,n} or max{m,n} < k <0} and

the Plancherel weight ji(o, \) is the meromorphic function

(o) = { (Ami/2)tan Aw/2, ifo =0 (533)

(=Ami/2) cot Aw /2, if o =0_.

It is clear from (5.3.3)) that there exists a constant ¢ such that for all o

and A € iR, |u(o,\)| < ¢(1 + |\|). For a proof of the above Paley-Wiener
theorem one can see [11].
When [m| = |n|, the function A — ®%\" is either even or odd function, hence
this case is simpler to deal with. When |m| # |n|, to avoid repetition of the
arguments, we shall confine ourselves the case |m| > |n|. One can mimic
the argument, with suitable changes, to tackle the case |m| < |n|. From the
definition (5.3.1]) of the Kostant function ¢,\" and from (iii), (iv), (v) of the
above Proposition 5.3.1]it follows that: for |m| > |n|,

1
(I)m,n
(Im| —=1=X)(m| =3 =X)---(Jn| +1—=X) o (x)
1
— @77’7,,77/ ]
(|m| —l—l—)\)(|m|—3_|_)\)...(|n|_|_1+)\) o,_A(I)a ZL’GG,)\EC

(5.3.4)

Moreover, both sides of (5.3.4]) are holomorphic in A. We denote
PonN) =(m| =14+ XN)(m| =3+ X)---(In| + 1+ N). (5.3.5)

From (5.3.4) and from the definition (5.2.14]) of the continuous part of the
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Fourier transform it follows that for each f € D,, ,(G), Fi" f satisfies

T F(N) = =g (). (5.3.6)

Pm,n(_)‘) Pm,n()‘)

and both sides of the above equation are entire functions.

Proposition 5.3.4. Let ¢ € ngn(@) where, m,n € Z° and |m| > |n|,
then the map A — Y(A) = P (=A)"'p(\) (A € C ) is an even entire
function of exponential type-T .

Moreover, if m and n are of opposite signs then 1 vanishes on the points

k € Z°~ where |k| < |n|.

Proof. As ¢ € D%};mvn(@), so ¢ is an entire function of exponential type-
T. Now from (£.3.6 ) we already know that ¢ is an even entire function.
What remains is to show that it is of exponential type which can be done by
elementary means.

It can be seen, moreover that v is of exponential type-T" as ¢ is so.

When m and n are of opposite signs, then a careful observation of the zeros
of ®"{" given in (i) of Remark (2.1 and the zeros of the polynomial P, ,

shows that ¢ vanishes on the points k& € Z7~ where |k| < |n|. n
Lemma 5.3.5. Let m,n € M and |m| > |n| then
(i) when m > 0, Pry(—=N @0 (2) = OLN (€ i 2);

[m|—|n]
2

(i) when m < 0 then Py n(=\)®0\ (z) = (=1) (I)Z:;‘NI(Sm,n; )

forallz € G and A € C. Here €, ,, and §,,,, are certain differential opera-

tors on the group.

Proof. Let us first consider m > 0. From the definition (£.3.5]) of the polyno-
mial P, , and the matrix entries ®'}"(-) of the principle series representation

we get:

Pm,n(_)‘)éz,’;\n(a?)
=m—-1=XN(m—=3=X)---(In|]+1 =N (mon(z)T , Tn)

=(m—=3=X---(In|]+1 =N (mon(z)7 , (Mm—1—=X)7p)
(m—=3=XA)-(In| + 1= XN (Tox(@)Tn » T, =3y(E)Tm—2)

m — |n
2
= (T A ()T A (@) T Tig) = CLN (€05 ). (5.3.7)

— <7r0,>\(:c)7'n , 7T07m(Etm”)T|n‘> , where t,,, =
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The third equality follows from (5.2.6]), the forth by iterating the same
method and in the last line 7, \(&,,.) is the adjoint of WJ,W(EW")- When
m < 0 we take m = —p (> 0). Hence in this case we get:

P (=) @55 ()

(=A== A =3 (|| + 1= \{moa(@)7 , 7,)

— (=3 =) (I + 1 = Mmoo (@)70 s — (= + 1+ (V)7
= (3= A (0] + 1= Mm@, — 7, 5 (F)7 )

= (~1) " (mon (@) 7, 7, g ()7 )

= (1) A B )T s 7o) = (1) 2 B2 (G s )

(5.3.8)

Again the third and the forth line in the above chain of equality follows from
(£.2.6) and in the last line 7, \(Fm,n) is the adjoint of 7, 5 (Ffmn). n

Remark 5.3.6. When |m| < |n|, an analogue of the above Lemma can be

obtained. The proof will be similar to that of the above Lemmoa.

The following Proposition is a nice corollary to the above Lemma. This
proposition will play a very crucial role for proving the main result of this

section.

Proposition 5.3.7. Let m,n € Z° where |m| > |n| and T' > 0. Then, each
f e DL (G) can be represented as follows:

(i) if m > 0 then there exists an unique 1 € DT (G) such that f = &, ,1;

nl;n

(ii) when m < O then there exists an unique @ € DT = (G) such that

—|nl;n
lmi—in]

[ = (_ ) Sm n¥;
where, €, , and Fmn are differential operators as defined in Lemma 5.3

Proof. Let f € DI (G) and f be the image of f under the transform Fgr.

Then by the inversion formula we can write:

1 ? ry n,m 1 ry n,m
r0=(5) [ Fovesoue o o PIRICLACL

(5.3.9)
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We have already noticed in Lemma [5.3.4that f(\) is a multiple of P, ,,(—\)

for all A € C and ¥(\) = meﬁ‘)_ 5 is an even entire function of exponential

type-T. Also as |m| > |n| so for m > 0, L"" = L™ and for m < 0,
L™n = Ly Hence we may rewrite (5.3.9) as follows

f(x) = (%) /§R>\=0 %Pmn(—)\ﬂﬁy(z)u(a, A)dA

1 fie »
tor 2 poop Pee(COTT @I (5:3.10)

feLm™n Pm7
o

By the Lemma B.3.5] we get: for m > 0

1 2
flz) = (—) / \Il()\)q):,\;l(@mm;xm<07 A)dA
2w RAZ0 :
! n,nl .
+5- >, VO (Enma)ll;  (5:3.11)
éeLUn n

and for m < 0

/ (=1) 2 WD (@ 2100, A AN

RA=0
1 |~ In] nln] '

D DI e e 10t Sl (GAMPITTR CE RE)
LerL,;'mhm

Now by the Paley-Wiener theorem (Theorem [5.3.3]) there exists unique ¢ €

Qﬂ\,n(G) and ¢ € QT‘nLn(G) in the cases (.310) and (B.3.12) respectively
such that for all x € G

|m|—|n|

w(em,na [L’), when m >0
o) = |
(=) =z @(Fmn;x), when m <O0.

This completes the proof of the Proposition. [ ]

5.4 Schwartz Spaces and Schwartz space iso-
morphism

Let us now come to the LP-Schwartz space (1 <p <2) 8P  (G). The space
8P, ,(G) is the space of all smooth functions f on G such that f = f™" is of



Chapter 5: Functions on S Ls(R)-of given left and right K-types 80

(m,n)-type and for all
2,8, € U(gc) and r € RT

Prgnr(f) = subseclf (8157 8)| (1 + 2l) 0" (@) < +oo. (5.4.1)

8P, .(G) is a Fréchet space with the topology induced by the family of semi-
norms {pg, g,y - Let 8 (G) = P, (87(G)). For each pin 1 < p < 2
we assign as before a positive real number ¢ = (% — 1). We denote
Se =N € C| RN < ¢}, L) = {k € L | |k] < €} and
Lr™(e)e = {k € LV | |k| > ¢}. We note that for each m,n € Z? the

set L ()¢ is a finite set.

~

Definition 5.4.1. For each m,n € Z° we denote by 8% (G) the set of

B,m,n
. Lm’n(a)c
functions C*e )

~

P (G) is given a linear topology.

The finite dimensional space 8g,, ,

Definition 5.4.2. For 1 < p < 2 and m,n € Z° we denote 8 (@) for

H;mmn
the space of functions f : S — C, such that,

(i) the map X — f(o,\) is holomorphic on IntS® and it extends as a

continuous function on the closed strip S¢;
(ii) for all X € S¢, f(=X\) = &Y™ f(o,N);

(111) for all ry,7my € ZT U {0}

_p f—
T(mm)rl,rg(f) a )\eSIIiLItjss

(55) F| s < oo a2

() if mn <0 then f(k) =0 for all k € Z~7 with |k| < min (|m], |n|,¢).

~

S%MW(G) becomes a Fréchet space with the topology induced by the
family of seminorms {?fm n) } . For f € 8  (G), we define the
T2 ) py roeZtU{0} ’

Fourier transform (F5", F5") in consistency with (5.2.14) and (5-2.15):

10 (£) (0, A) = /G F(@)@7 (e N dz and T (F)(k) = /G Fa)ur (),

It can be shown that the integrals converge absolutely and that F;"(f) is a

holomorphic function on IntS¢. It may be also be noted that the function
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", where k| > ¢, belong to the space 87, (G), using the Barker’s estimate
G.2.12).

Proposition 5.4.3. For ecach f € 8 (G), Fy"(f) € S‘?{;m’n(@) and
I (f) € Spmn

and F3" is onto.

(G). The transforms T and F2" are continuous maps

Proof. For a proof of this Proposition we refer to Theorem 9.1 and Theorem
9.6 of [7]. The remark about the functions ¥;"" and the fact that ¥;"" and
U™ are orthogonal if k # k" ensure that F"" is onto. n

~

(G). Now g = (7, )

is a continuous function of 87, (G) into anm(@).

(G)x 8"

B,m,n

Let us denote Sﬁm(@) ~ 8"

Hm,n

~

For each pair F' = (0,§) € 8, ,,(G), we define the following functions on

the group G
@) = (52) [ o084
Ty )= Y G (5:44)

keLg " (e)e

We write I (9, §) () = Ty, ,, () (2) + T5,,,,,(E) (2)
Lemma 5.4.4. (i) For each 9 € 8¢ (@), the inversion Jp.m ¥ is a C

H;mmn
(m,n)-type function on G.

(i4) For each § € 83, (G), the function Ip,mn§ € 87, (G).

B;m,n

~

Proof. (i) For each ¥ € 8%, .(G), the convergence of the integral in the
definition (543) of the inversion map can be shown by using the decay
(B42) of ¥ and the estimate (5.2.10) of the spherical function.

The statement (ii) is a consequence of the remark about ;" made above.

Our main aim now is to show that J7,  is a continuous map from 85%,1(@)
to 8, ,(G). Since S%;mm(é) is finite dimensional, we need only to show that
the continuous part J7;, . is a continuous map into 82, . (G). To prove this,
the main tool that we shall be using is the Abel transform. For f € 8¢  (G)

we define the Abel transform by the following

Af(t) = et /N Flamn)dn. (5.4.5)
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The following Lemma, due to Sarkar and Sengupta [40, Lemma 3.4], shows
that the Abel transform (5.4.0) gives a commutative-as in the bi- K-invariant
case- diagram under the continuous Fourier transform F75". For the sake of

completeness we also reproduce their proof

Lemma 5.4.5. Let o € M and let f € 8, o (G) for some m,n € Z7. Then

TR ()N = Af(=iN), (5.4.6)
for A € iR where, Af(v = [ Af(t)e ™ dt.

Proof. Using the definition (5.2.I4) of the transform Fp™ and the integral
representation (5.2.8) of the matrix entry " of the principal series repre-

sentation we write: for A € iR
/ f(x / —(+1) (xkil)T_m(K(l’k‘_l))Tn(k‘_l)dk‘ dx,

as the repeated integral converges absolutely, we can interchange the inte-
grals. Then we by substituting £~'ak for z and also by using the fact that

the Haar measure of the group G is invariant under the action of K, we get:

/ / f(k™ yk)e” MO0 - (K (K y)) 7 (k™) dy dk.
KJG
(5.4.7)

As, the function f is of spherical (m,n)-type, so f(k~yk) =
F)Tm(k~H7u(k). Also we know that 7_,,(K(k™1y)) = 7 (k)7 m(K(y)).
Hence (B.4.7) reduces to:

/ F)e= I (K (4))dy. (5.4.8)

Now we take the Iwasawa G = K AN decomposition of the group and also the

corresponding decomposition (as given in section [(.2)) of the Haar measure

_ /K /A /N F(kagn)e=O Dt (k) dke? dtdn
_ /K ()7 () /A /N Flam)ete M dndt

to get:
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_ /A {et /N f(atn)dn}e‘Mdt

= / Af(t)e =Nt by the definition (5.4.7)
A

= Af(—i)). (5.4.9)

Remark 5.4.6. We should note that, the above Lemma also holds for all A €
8¢ for which both sides of the equality (5.4.6) are well-defined and analytic.

5.4.1 |m| = |n| case.

In the first stage we shall be interested in the class of (m,n)-type functions,
where |m| = |n|. This class of function is very close to the class of bi-K-
invariant functions. Let us first fix one o € M and take some m,n € Z°
such that |m| = |n|. In this case each ¥ € S%;m,n(é) is either an even or an

odd function on 8%, holomorphic in the interior of 8¢ and continuous on the

closed strip and also satisfies the decay condition

72 (¥) = sup

1,72
AeInt8

(%)” w)‘ (14 A < +oo. (5.4.10)

Lemma 5.4.7. The Abel transform (5.4.5) is a topological isomorphism be-
tween the spaces DY, (G) , where m,n € Z° with |m| = |n| T € R* , and the
space DT(R)epen (DT (R)oqa) of all even (odd) C> functions on R supported
in [T, T).

Proof. This Lemma is a simple consequence of the Paley-Wiener theorem
(Theorem [5.3.3]) and the slicing property of the Abel transform proved in
Lemma

Let f € DI (G) with [m| = |n|. Then, by the Definition 5.3.2] of the Paley-
Wiener space, F5"(f) is an entire function of exponential type-T" and it is
purely even or odd in nature depending on the choice of m and n. Therefore
for A € C,

Tt (£)(—iX) = Ty (NN or — TR (f)(iN).
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Hence by the Lemma and the Remark we get: for A € C
AF(=N) = Af(N) or —AF(N).

Also jL? is entire and of exponential type-T'. Hence by the Euclidean Paley-
Wiener theorem Af € DT(R).pen or DT(R)ogq. As both the maps f +—
Fi"(f) and levf — Af are topological isomorphisms so by the commutative
diagram given in Lemma [5.4.5] f — Af is also a topological isomorphism
from DY, (G) onto DT (R)eyen (D' (R)oda)- u

We have already noted that D,,,(G) is dense in the Schwartz space
82,.,(G).

'

Humon S @ CONLINUOUS

Lemma 5.4.8. Form,n € Z° and |m| = |n|, the mapJ
map from 8%, (@) into 8 . (G).

H;mn

Proof. To prove this Lemma we shall almost mimic the proof, due to Anker
[2, Lema 15], of the bi-K-invariant analogue of the above Lemma. We shall
first consider the spaces Dy, (G) and Dy n(G) = F" (D (G)) with the
topologies of the respective Schwartz spaces containing them. We shall first
establish the Lemma for these subspaces and then extend the map to the
whole space by a density argument.

Let us take g € Dm,n(@), then clearly by the definition there exists some
T > 0 such that g € Dfm(@) The Paley-Wiener theorem gives an
unique f € D,,,(G) such that g(A) = Fg"(f)(N) for all A € S© or in other
words f(z) = Iy, ,(g9)(z) for all z € G. Let us choose g;,g, € U(gc). The
following estimate follows from the inversion formula (5.4.3)) for the (m,n)-
type functions by using the estimate (5.2.11]) of the spherical function ®\"
with A € iR and also the Schwartz space decay of the function g:

|/ (g15 2 8)| < cK(m,n)(1+ |z[)o(x) Tg),, (9), (5.4.11)

where, K (m,n) is a positive constant given by K (m,n) = (1+|m|)"(1+|n|)",
here r, 7" are nonnegative integers depending on the degree of the derivatives

g,,8, and ?’(’O)S(g) = supyer |9(A)[(1+ |A])%. Now we fix a positive integer ¢
2
and denote F'(z) = |f(8;%; 82)|(1 + |2|)%p, ¥ (x). Hence by (5.4.1T):

P(a) < cKmn)(1+ o) “e5(@) Ty, (g). (5412)
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We shall now break the group G into an increasing sequence of compact sets.
Let G; = K(exp [—J,j])K for j =1,2,---. It is easy to see that

sup F(z) < (1 + |n])" 7, (9) sup(l+ z]) Ty % (2) < +oo.  (5.4.13)
z€Gs r€G2

Next we shall be considering the set G4 \ G for j = 2,3,---. This is
the most crucial step. Let w € C* be a function such that w = 0 on (—o0, 0]

and w =1 on [1,400). We define the ‘auxiliary function’
wi(t) =w(j —tw(j+1t) VteR. (5.4.14)

Clearly, w; for j = 2,3,---, is an even C'* function on R furthermore w; =1
on [—j+1, j—1] and w; = 0 outside [—j, j]. Let us denote h; = (1—w;)Af. As
fe @ZW(G) so by Lemma [5.4.7, Af is either purely even or purely odd C'*
function on R and of exponential type-7". We note that the function (1 —w;)
and all its derivatives are uniformly bounded with respect to j and also it
is an even function. Thus if Af € DT (R)een (DT(R)oqq) then, for each
7y hj € DT(R)even (DT (R),44). Hence by the characterization obtained in
Lemma [5.4.7] there exists unique element f; € @{,W(G) such that h; = Af;.
We denote g; = F};" f;. By the Lemma 547 the functions f; and f can
differ only inside G;. Hence, if we consider x € G;;; \ Gj, the expression
F(z) will not change even if we replace f by f;. The following inequality
is obtained from (5.4.12) by using the estimate (2.0.22)) of the elementary
spherical functions

sup  F(z) < ci(1+|n|)"j™ e T oy (95)- (5.4.15)
2€G;11\G;

Now by Lemma BA7, for A € C, g;(A) = h;(i\) = Jg hj(t)eMdt. Hence we
get the following inequality.

N

— | hi(t

Honlo) <) [
=0 VR
d Z
— | hi(t)]|.

1
<3 Z sup (1 +t)?

Now we know that h; = (1 —w;)Af. It follows easily that the function

(1 — wj) vanishes on [—j + 1,5 — 1] and it is bounded uniformly along with

dt

(5.4.16)

r—0 tERT
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all its derivatives with respect to j. Thus we have

e (4) aso)

T1

7. (g95) < e sup
(O)rs 33 ;teW\[—jH,j—u

(5.4.17)

Consequently, we get

T1

J"” e T ( )r1 (9]) < CSZ sup
r—0 tERT\[=j+1,5—1]

e e (4 as

1

< ¢s E sup
=0 teR+t

d

(14 £)*72 (dt) Af(t)]. (5.4.18)

We now use the commutative diagram given in Lemma G485 to write Af (t) =
+ Jp 9(—iX)e*dX and hence from (5.418) we get

T1

3 e T, (g5) < e Y sup
( i ;teﬂv

(1+8)2 et /R (iA)fg(—z'A)erA'

r1 24712 m
T2 d N\ (i)t
< — A
07;7”2:0 ( ) tselig /R(z)\) (d)\) g(—i)e ‘

r1 2+47ro 2 , d m

< 2 SRR s o\ (e

< 07;; ( m ) ti%g /R(z)\ £) (dk) gle —iNe d)\‘
2479 d ¢

<C8Z/R(1+ A" (5) g(z —iN)| dA, (5.4.19)
=0

where the third inequality in this chain follows by Cauchy’s theorem and the
last one by choosing a suitable r3 € Z* depending on r;. From (5.4.15]) and

(54.19)) it follows that:
d\* ,
(d)\) gle —iN)|.

(5.4.20)
The right hand side of (5.4.20) is obviously finite and independent of j. Thus

we get the Lemma. [ ]

2419
sup  F(z) < co(1+[n])" ) sup (14 [A))e*?
mGGj+1\Gj =0 )\ES

Using Proposition ), Lemma [5.4.8 and the fact that J% is a contin-

B;m,n

uous map from the space SB mn(G) into 8% (G) we conclude: for |m| = |n/,

the Fourier transform (75", F5™") is a topological isomorphism between the
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spaces 8 (G) and 81;’,17n(@).

Remark 5.4.9. We should note that we have not included p = 1 case in
the above section. This restriction can also be removed in some choice of m
and n. To make it precise we have to recall the general inversion formula on

Sp

H;mmn

(G), which is given by:

@) = (52) [ BT @l )i
+ ) h(R)OL ()], (5.4.21)

kLT (e)e

where, u(o,\) and L™"(¢) are as defined earlier and L7 (e)¢ = {k €
Len |kl > e}

(i) If m and n are of opposite signs then by the definition LI™" is an empty
set. Hence in this case (5.4.21) will reduce to (5.4.3) for all 0 < p < 2.
Furthermore if we impose the condition |m| = |n|, then Lemma[5.4.§
holds for all p in 0 < p < 2.

(ii) If we take m,n € Z°~, for which both m and n are odd integers. Then
members of L™ are all even integers. Hence in this situation for all
1 <p <2, L) is empty. Therefore, (5.4.21) reduces to (5.4.3).
Similarly as above, for m,n € Z7~ and m = n the Lemma[5.4.8 holds
forall1 <p<2.

Note that the assumption |m| = |n| in this section has been used only

to conclude that the functions in 8%, ,

odd. This restriction will be removed in the next section. Our next aim is

(@) are either purely even or purely

to extend this result for general (m,n) case.

5.4.2 |m| # |n| case.

As proposed in Sectio 1.2 we confine ourselves to the case |m| > |n|. Anal-

ogous results for |m| < |n| will have a similar proof.

Proposition 5.4.10. For 1 <p <2, 0 € M and m,n € Z° with |m| > |n|,
the space 8% (G) (respectively 8,

H;‘nlvn ;_In‘v‘nl

the Schwartz space 8, (G) if m >0 (respectively, if m < 0).

H;mmn

(CA;)) is topologically isomorphic to
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Proof. When n is even or a non-negative integer:
We suppose m > 0. Let ¢ € 8%, nln (G) We define the map

D(A) = Prn(=N(\) = £(\) A € S°. (5.4.22)

We show that £ € 8 Hmn(G) by verifying conditions (i) — (iv) of the
Definition 5421 The conditions (i), (iii) and (iv) present no difficulty. For
(49) what we need is {(—\) = ¢ \'§(N), A € S°.

[n|=n

We have 1(=A) = (=1) "7 ¢(X) as ¢ € 83, , (G). Thus

5(_)‘) - Pmm()‘)w(_)‘)
= Pun(N)(=1) "7 9(N)
m=14 ) {nl+1+2) — as |n|_niseven
R Cry ey by (e ey s A GO G)
= ¢y5 §(N)- (5.4.23)

As to condition (iv), since min (|m|, |n|) = |n|, the condition is the same for
St nln (G) and 8 rim (CA;) We denote by 7(,, , and 7{

(nln) respectively for

m)
the seminorms on the Schwartz spaces 8., n(G) and 8%, (@).

() co|a+i

7 = sup

T1,r2 AeIntSe
d\"
= s [(55) SO0 (14 1
erntse | \ dA
d\"
< sw |(5) o)
elntse | \ dA
= C T{nlm) V). (5.4.24)
7T, Tmn
Thus ¢ € SHmn(@) and so our map (5.4.22) is continuous from 8%, . (@)
into S’;{mn(@) What remains is to show that the inversion map & ( ) —

(Prn(=X)71(N) = ¥(N\), A € S is a continuous map from SHmn(G) into
S/ ()

At this point we note that the zeros of the polynomial F,,,()) are lying
outside of the closed strip S¢, hence there exists a positive constant d(m,n)
such that |Py,,(A)| > d(m,n) for all A € S°. By an argument, similar to

(B:4.23), one can show that ¢ € 8%, (@).
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To show that & — 1 is continuous, one has to show that for each ry,ry € Z*
there exists s(m,n),r(m,n) € Z* such that

Tty vy () < o) (€).

s(m,n),r(m,n)

This follows easily from the fact that the polynomial |P,, ,(—\)| admits a
lower bound in the strip A € S°.
When n is a negative odd integer:

In this case we take the map
V() = Poa(=A)A(N), where v € 85, (G),\ € S°. (5.4.25)

For showing & € 87, n(G) we verify conditions of the Definition[5.4.2. Again,
it is easy to verify condition (i), (i) and (v). for (iii), we first note that
Y e 8§ nln (G) and n being a negative odd integer )(—\) = —1/(A). Thus,

§(=A) = Pan(M (=21 (=2)
= Pun(MN)A) ()
_PPM(A))PM( MAP(A) = &R E(N). (5.4.26)

As the map ((5.4.27)) is simply multiplication by a polynomial so it must be

continuous from S’I’ﬂn"n(@) into 8%, mn(@)
Let us now take up the inverse map

) = (Pra(=)N) " E0) = v (say), A € 57, (5.4.27)
where, § € SHmn(@) As m and n are of opposite signs so the function &

vanishes at the point A = 0 and hence the map (5.427) is well-defined. To
show 1 € 8 Hlnln (@) we shall only check condition (iii) of definition [5.4.2]

other conditions are easy to verify.

_ _Pmm()‘)
C Pon(=N) P (M)A

E(N) = —¥(N).
(5.4.28)

The above relation shows that ¢(0) = 0 and also proves condition (v) of the
definition [5.4.2] The continuity of the map (5.4.27)), from the Schwartz space
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(G) into 8%;‘71'7”(@), can be established by using the facts (i) £(0) =0

and (ii) the polynomial P,,,(\) does not vanish on the interior of the strip
Se.

The case m < 0 is exactly similar to the above. The only difference in this

817

H;mmn

~

case is the space 8, . (G) is being identified with the space 8}, n(@) u

Now we shall prove an analogue of Lemma [5.4.8) for m, n-types.

Lemma 5.4.11. The inverse Fourier transform 3%, is a continuous map

from 8%, (@) into 8, o(G), where, m,n € Z° such that |m| > |n|.

H;mmn

Proof. To prove this Lemma we shall use the results that we have proved in

Lemma 548 Like the |m| = |n| case we shall first prove that the inversion

P

Homn from Dyn(G) into Dy, ,(G) is continuous with respect to the

map J
topologies of the corresponding Schwartz spaces containing them. Then a
density argument will extend the continuity to the whole Schwartz spaces.
Let us take one ¢ € Dmn(@) By the Paley-Wiener theorem there is an
unique ® € D, ,,(G) such that F;"® = ¢. Now by Proposition (.37
there exists an unique ¥ € Dy, ,(G), such that & = D,,, ¥ for some dif-
ferential operator ®,,,. Let ¢(\) = ?'I?""\II(A) then it can be shown that
©(A) = Ppn(=M)(X). Hence ¢ € Dw,n(@) which is dense in 8?{;\n|,n(@>’
Let g,,8, € U(gc) and t € Z™.

2

() = 5D [B(g: 75| (14 ]y ()
zeG
2

= sup | (D, V) (815 71 82) | (1 + [2]) 00 7 (), (5.4.29)

zeG

by Lemma [5.4.8, we can find ¢;,s € Z1 and a positive constant ¢ such that

(&) vy

by the Proposition (410, we get some t(m,n), s(m,n) € Z* and constant

¢(m,n), all dependent on m,n such that

< csup (14 [AD,

Aese

<c(m,n) 7 (o). (5.4.30)

(mv")t(m,n),s(m,n)

This proves the Lemma. ]
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Finally Lemma[5.4.§ and Lemmal[5.4.1Ttogether proves the main theorem
(stated below) of this chapter.

Theorem 5.4.12. Let 1 <p <2 0 € M and m,n € Z°, then the Fourier
transform (Fg", Fy") is a topological isomorphism between the Schwartz
spaces 8, (G) and S”mn(é)

As we can see the main key to deal with |m| # |n| case is to reduce it to
the |m| = |n| case. Hence in the lights of Remark [5.4.9 we can conclude the

following:

Remark 5.4.13. (i) For allm,n € Z° or Z°~ with mn < 0, this proof of
Schwartz space isomorphism between the spaces 8, , (G) and SI’m,n(@)
for0 <p<2.

(i) For allm,n € Z°~, the above proof can be extended for the LP-Schwartz
spaces with 1 < p < 2.
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