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0. PREFACE

Topological and geometric methods have played a major role in the study of infinite groups since the time
of Poincaré and Klein, with the work of Nielsen, Dehn, Stallings and Gromov showing particularly deep
connections with the topology of surfaces and three-manifolds. This is in part because a surface or a
3-manifold is essentially determined by its fundamental group, and has a geometric structure due to the
Poincaré-Kobe-Klein uniformisation theorem for surfaces and Thurston’s geometrisation conjecture, which
is now a theorem of Perelman, for 3-manifolds.

A particularly fruitful instance of such an interplay is the relation between intersection numbers of
simple curves on a surface and the hyperbolic geometry and topology of the surface. This has reached its
climax in the classification of finitely generated Kleinian groups by Yair Minsky and his collaborators, who
along the way developed a deep understanding of the geometry of the curve complex.

Free (nonabelian) groups and the group of their outer automorphisms have been extensively studied in
analogy with (fundamental groups of) surfaces and the mapping class groups of surfaces.

In my thesis, we study the analogue of intersection numbers of simple curves, namely the Scott-Swarup
algebraic intersection mumber of splittings of a free group and we also study embedded spheres in 3-
manifold of the form M = #,5% x S'. The fundamental group of M is a free group of rank n. This
3-manifold will be our model for free groups. We construct geosphere laminations in free group which are
analogues of geodesic laminations on a surface.

CHAPTER 1 In this chapter, we introduce basic concepts related to free product, free groups and splittings

of groups.

CHAPTER 2 In this chapter, we study geometric intersection number of simple closed curves on a surface.
In particular, we see its applications to study geometric properties of curve complex of the surface. We
also study topological properties of curve complex. We shall see how curve complex is used to study
mapping class group of surfaces. The geometric intersection number has been used to study Thurston’s
compactification of Teichmiiller space of surface and the boundary of Teichmiiller space, namely the space
of projectivized measured laminations. At the end of this chapter, we study its analogue sphere complex

of a 3-manifold and its topological properties.
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CHAPTER 3 In this chapter, we study the model 3-manifold M = #;5% x S*. We also see how a partition
of ends of the space M , the universal cover of M, corresponds to an embedded spheres in M. We also
discuss the intersection number of a proper path in M with a homology class in HQ(M ). At the end of this

chapter, we see how embedded spheres in M correspond to splittings of the fundamental group of M.

CHAPTER 4 Scott and Swarup [39] introduced an algebraic analogue, called the algebraic intersection
number, for a pair of splittings of groups. This is based on the associated partition of the ends of a
group [42]. Splittings of groups are the natural analogue of simple closed curves on a surface F' — splittings
of m1(F) corresponding to homotopy classes of simple closed curves on F. Scott and Swarup showed that,

in the case of surfaces, the algebraic and geometric intersection numbers coincide.

Embedded spheres in M correspond to splittings of the free group. Hence, given a pair of embedded
spheres in M, we can consider their geometric intersection number as well as the algebraic intersection
number of Scott and Swarup for the corresponding splittings. Our main result is that, for embedded
spheres in M these two intersection numbers coincide. The principal method we use is the normal form for
embedded spheres developed by Hatcher. The results in this chapter are the outcome of joint work with
my adviser Siddhartha Gadgil.

CHAPTER 5 In this chapter, we study embedded spheres in M = #;,5% x S' and M, the universal cover of
M. In the Section 5.1, we see how a partition A of the set of ends of M corresponds to an embedded sphere
in M which is in normal form in the sense of Hatcher, by specifying the data determining the partition A
and the normal sphere. Given a properly embedded path ¢: R — M and a homology class A € HQ(M ), we
have an intersection number ¢ - A. Further, this depends only on the ends c4 of the path ¢. In the Section
5.2, we prove that the class A € Hy (]Téf ) can be represented by an embedded sphere in M if and only if, for
each proper map c¢: R — M, c-Ae€{0,1,—1}. We also constructively prove that the class A € m3(M) can
be represented by an embedded sphere in M if and only if A can be represented by an embedded sphere
in M and for all deck transformations g € (M), A and gA do not cross. The results in this chapter are
the outcome of joint work with my adviser Siddhartha Gadgil.

CHAPTER 6 Geodesic laminations (and measured laminations) on surfaces have proved to be very fruitful in
three-manifold topology, Teichmiiller theory and related areas. In this chapter, we construct analogously
geosphere laminations for free groups. They have the same relation to (disjoint unions of) embedded
spheres in the connected sum M = 4,52 x S' of n copies of S? x S' as geodesic laminations on surfaces
have to (disjoint unions of) simple closed curves on surfaces. The manifold M has fundamental group the

free group on n generators, and is a natural model for the study of free groups.
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Laminations for groups (including free groups) have been constructed and studied in various contexts.
However, they are one-dimensional objects, corresponding to geodesics. We study here objects of codi-
mension one, which correspond to splittings. In the case of surfaces, dimension one and codimension one
coincide. Our main result is a compactness theorem for the space of (non-trivial) geosphere laminations.
We also show that embedded spheres in M are geosphere laminations. Hence sequences of spheres, in
particular under iterations of an outer automorphism of the free group, have subsequences converging to
geosphere laminations. It is such limiting constructions that make geodesic laminations for surfaces a very

useful construction.

Our construction is based on the normal form for disjoint unions of spheres in M due to Hatcher. The
normal form is relative to a decomposition of M with respect to a maximal collection of spheres in M.
This is in many respects analogous to a normal form with respect to an ideal triangulation of a punctured
surface. In particular, isotopy for spheres in normal form implies normal isotopy, i.e., the normal form
is unique. As in the case of normal curves on surfaces and normal surfaces in three-manifolds, we can
associate the number of pieces of each type to a collection of spheres in Hatcher’s normal form. However,
these numbers do not determine the (collection of) spheres up to isotopy. We instead proceed by consid-
ering lifts of normal spheres to the universal cover M of M. In the universal cover M. , a normal sphere
is determined by a finite subtree 7 of a tree T associated to M together with some additional data. We
construct geospheres in M by dropping the finiteness condition. We construct an appropriate topology
on the space of geospheres and show that the space is locally compact and totally disconnected. The lift
of a normal sphere in M to its universal cover satisfies an additional condition, namely it is disjoint from
all its translates. This can be reformulated in terms of the notion of crossing of spheres in M , following
Scott-Swarup, which depends on the corresponding partition of ends of M. We show that there is an
appropriate notion of crossing for geospheres, which is defined in terms of the appropriate partition of ends
(into three sets in this case). Our main technical result is that crossing is an open condition. We recall that
this is the case for crossing of geodesics in hyperbolic space, and that this plays a central role in the study
of geodesic laminations. The proof of compactness of the space of geospheres uses the result that crossing
is open. The construction based on normal forms is not intrinsic, as it depends on the maximal collection
of spheres with respect to which M is decomposed. However, we show that geospheres can be described in
terms of their associated partitions. This gives an intrinsic definition. The results in this chapter are the

outcome of joint work with my adviser Siddhartha Gadgil.

CHAPTER 7 In this chapter, we discuss the natural questions arising out of this thesis and further directions

for research.



1. FREE PRODUCTS, FREE GROUPS AND SPLITTINGS OF GROUPS

In this chapter, we introduce basic concepts related to free products, free groups and splittings of groups.

1.1 Free Products of Groups

We shall see the concept of the free product of groups. For more details, see [38].

Let G be a group. If {G,}acs is a family of subgroups of G, we say that these groups generate G if
every element x of G can be written as a finite product of elements of the groups G. This means that
there is a finite sequence (z1,...,x,) of elements of G, such that £ = x;1 - - - z,,. Such a sequence is called
a word of length n in groups G,; it is said to represent the element x of G. As we lack commutativity, we
can not rearrange the factors in the expression for x so as to group together factors that belong to a single
one of the groups G,. However, if in the expression for z, x; and z;; both belong to the same group
G, we can group them together, thereby obtaining the word (z1,...,Z;—1,Z;%it1, Tit2,...,T,) of length
n — 1, which also represents x. Furthermore, if any z; equals 1, we can delete z; from the sequence, again

obtaining a shorter word that represents x.

Applying these reduction operations repeatedly, one can in general obtain a word representing x of the
form (y1, ..., Ym), where no group G, contains both y; and y; 11, and y; # 1, for all i. Such a word is called
reduced word. This discussion does not apply, however, if z is the identity element of G. For, in that case,
one might represent by a word such as (a,a~!), which reduces successively to the word (aa=!) of length
1, and then disappear altogether. Accordingly, we make the convention that the empty set is considered
to be reduced word of length zero that represents the identity element of G. With this convention, it is
true that if the groups G, generate GG, then every element of G can be represented by a reduced word in
the elements of group G,. If (x1,...,2,) and (y1,...,¥ym) are words representing x and y, respectively,
then (21,...,Zn,Y1,...,Ym) is a word representing xy. Even if two words are reduced words, however, the

third will not be a reduced word unless none of the groups contains both x,, and y;.

Definition 1.1.1. Let G be a group, let {G4 }acs be a family of subgroups of G that generates G. Suppose
that G, N Gg consists of identity alone whenever o # 3. We say that G is the free product of the groups
G, if for each z € G, there is only one reduced word in the groups G, that represents z. In this case, we

write G = x4 G, or in the finite case, G = G1 % - - x G .

The free product satisfies an extension condition:
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Proposition 1.1.2. Let G be a group, let {G,} be a family of subgroups of G. If G is the free product of
the groups G, then G satisfies the following condition:
Given any group H and any family of homomorphisms h, : G, — H, there exists a homomorphism

h : G — H whose restriction to G, equals h,,, for each a.

Furthermore, h is unique.

For proof, see [38, Lemma 68.1].
We now consider the problem of taking an arbitrary family of groups {G,} and finding a group G that

contains subgroup G/, isomorphic to the groups G, such that G is free product of the groups G?,.

Definition 1.1.3. Let {G,} be an indexed family of groups. Suppose that G is a group and that i, :
G, — G is a family of monomorphisms, such that G is the free product of the groups i,(G,). Then, we

say that G is the external free product of the groups G, relative to the monomorphisms ¢,,.

The group G is not unique. We shall see later that it is unique up to isomorphism. Now, we shall see

a construction of G.

Theorem 1.1.4. Given a family {Go}tacs of groups, there exists a group G and a family of monomor-

phisms i : G4 — G such that G is the free product of the groups i (Ga).

We can assume that the groups G, are disjoint as sets. Then as before, we define a word (of length
n) in the elements of the groups G, to be an n-tuple w = (x1,...,x,) of elements of UG,. It is called a
reduced word if a; # 41, for all 4, where «; is the index such that z; € G4, and if for each i, z; is not
the identity element of G,. We define the empty set to be the unique reduced word of length zero. We

denote the element w as w =x1 -+ - .

Let W denote the set of all reduced words in the elements of the groups G,. We define the group

operation in W as juxtaposition,

(xlmn)(ylym)lexnylym

This product may not be reduced, however: if z, and y; belong to the the same G, then they should be
combined into single letter (z,y1) according to the multiplication in G, and if this new letter x,,y; happens
to be the identity of G, then it should be canceled from the product. This may allow x,_; and y2 to be
combined, and possibly canceled too. Repetition of this process eventually produces a reduced word. For

L... xfl) everything cancels and we get the identity element of W,

example, in the product (z1 - zm)(z,,
the empty word. One can easily see that W with this group operation forms a group. For detailed proof
of this, see [38, Theorem 68.2]. We denote W = G = *,G,. Each group G, is naturally identified with a
subgroup of G, the subgroup consisting of the empty word and the nonidentity one-letter word x € G,,.
From this point of view, the empty word is the common identity element for all the subgroups G, which
are otherwise disjoint. Thus, we can easily see that we get a family of monomorphisms i, : G, — G such

that G is the free product of the groups i, (G).
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The extension condition for ordinary free products translates immediately into an extension condition

for external free product. For proof, see [38, Lemma 68.3].

Lemma 1.1.5. Let {G,} be a family of groups; let G be a group; let in : Go — G be a family of
homomorphisms. If each iy is a monomorphism and G is the free product of the groups io(Ge), then G
satisfies the following condition:

Given a group H and a family of homomorphisms hy : Go — H, there exists a homomorphism h : G —
H such that h o, = hy for each .

Furthermore, h is unique.

An immediate consequence is a uniqueness theorem for (external) free products:

Theorem 1.1.6. Let {G,} be a family of groups. Suppose G and G’ are groups and i, : Go, — G and
i, : Go — G’ are families of monomorphisms, such that the families {in(Gqa)} and {il,(G.)} generate G
and G', respectively. If both G and G’ have the extension property stated in the preceding lemma, then

there is a unique isomorphism ¢’ : G — G’ such that ¢' o i, = 4., for all a.

For proof, see [38, Theorem 68.4].

Now, we state the following result which shows that the extension condition characterizes free products:

Theorem 1.1.7. Let {G,} be a family of groups; let G be a group; let i, : Go — G be a family of
homomorphisms. If the extension condition of the Lemma 1.1.5 holds, then each i, is a monomorphism

and G is the free product of the groups io(Go).

For detailed proof, see [38, Lemma 68.5].

1.2 Free Groups

Let G be a group; let {a,} be a family of elements of G, for « € J, where J is some index set. We say that
the elements {a,} generate G if every element of G can be written as a product of powers of the elements

aq. If the family {a,} is finite, we say G is finitely generated.

Definition 1.2.1. Let {a,} be a family of elements of a group G. Suppose each a, generates an infinite
cyclic subgroup G, of G. If G is the free product of the groups {G,}, then G is said to be a free group,

and the family {a,} is called a system of free generators for G.

In this case, for each element x of GG, there is a unique reduced word in the elements of the groups G,
that represents . This says that if z # 1, then = can be written uniquely in the form x = (af!)--- (allt),

where a; # a;4+1 and n; # 0, for each i. The integers n; may be negative.

Free groups are characterized by the following extension property:

Lemma 1.2.2. Let G be a group; let {an} be a family of elements of G. If G is a free group with system

of free generators {ay}, then G satisfies the following condition:
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Given any group H and any family {y.} of elements of H, there is a homomorphism h : G — H such
that ho(aa) = ya for each a.
Furthermore, h is unique. Conwversely, if the above extension condition holds, then G is a free group

with system of free generators {aq}.

For the proof see [38, Lemma 68.1].

In other words, a free group is the free product of any number of copies of Z, finite or infinite, where Z
is the group of integers. The elements of a free group are uniquely representable as reduced words in the
powers of generators of the various copies Z, with one generator of each Z. These generators are called basis
for the free group, and the number of basis elements is the rank of the free group. The abelianization of a
free group is the a free abelian group with basis the same set of generators (images in the abelianization),
so since the rank of a free abelian group is well defined, independent of the choice of basis, the same is true

for the rank of a free group. For details, see [38, section 69].
An example of a free product that is not a free group is Zs * Zs.

We have the following result for subgroups of a free group.

Proposition 1.2.3. Every subgroup of a free group is free.

For proof, see [38, Theorem 85.1].

1.3 Presentation of a group

One method of defining a group is by a presentation. One specifies a set S of generators so that every
element of the group can be written as a product of some of these generators, and a set R of relations
among those generators. We then say G has presentation (S | R).

Informally, G' has the above presentation if it is the ”freest group” generated by S subject only to the
relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient
of a free group on S by the normal subgroup generated by the relations R.

As a simple example, the cyclic group of order n has the presentation (a | a™ = 1), where 1 is the group
identity. This may be written equivalently as (a | a™), since terms that don’t include an equals sign are
taken to be equal to the group identity.

Every group G has a presentation. To see this consider the free group (G) on G. Since G clearly
generates itself, one should be able to obtain it by a quotient of (G). Indeed, by the universal property of
free groups, there exists a unique group homomorphism ¢ : (G) — G which covers the identity map. Let
K be the kernel of this homomorphism. Then, G clearly has the presentation (G | K).

Every finite group has a finite presentation, in fact, many different presentations.

A presentation is said to be finitely generated if S is finite and finitely related if R is finite. If both

are finite it is said to be a finite presentation. A group is finitely generated (respectively, finitely related,
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finitely presented) if it has a presentation that is finitely generated (respectively, finitely related, a finite
presented).

Some more examples of group presentations include the following.

1. The presentation (x,y | 22 = 1,y" = 1, (xy)" = 1) defines a group, isomorphic to the dihedral group

D,, of finite order 2n, which is the group of symmetries of a regular n-gon.

2. The fundamental group of a surface of genus g has the presentation:

<x1,y1,x2, s Lgy Yg | [zl,yl][$2,y2]-u[$g,y9] = 1>

1.4 Amalgamated Free products and HNN-Extension

Free products of groups are generalized by a notion of amalgamated products of groups joined together along
specified subgroups. For the sake of concreteness, we will carry out this construction for an amalgamated
product of two groups. Suppose, we have two groups GG; and G and homomorphisms f; : H — G; and
fo: H — G5. We define:

Definition 1.4.1. The amalgamated product G * g G is defined as follows: let N be the normal subgroup
of G * G5 generated by elements of the form fi(h)(f2(h))~! for h € H; then

Gl X GQ = (G1 *GQ)/N

Note that G1 * G5 can be expressed as the special case of the amalgamated product where H is trivial.

The amalgamated product satisfies a natural universal property generalizing the one for the free product:

Proposition 1.4.2. For a group G', write Hom(G1,G’) x g Hom(G2,G") for {(g1,g92) € Hom(G1,G’) x
Hom(G2,G") : fiog1 = faoga}. Then, the natural map induced by composition with G1 — G1 *xg G2 and
G — G1 g Go induces a bijection Hom(Gy xg G2,G') — Hom(G1,G’") xg Hom(G2,G").

For a proof, see [41].
The amalgamated product also arises naturally in topology: the fundamental group of the gluing of
two topological spaces along given subspaces is the amalgamated product of the fundamental groups of the

two spaces, over the fundamental group of the subspaces being glued.

Definition 1.4.3. Let G be a group with presentation G = (S | R), and let « be an isomorphism between
two subgroups H and K of G. Let ¢ be a new symbol not in .S, and define

Gxo = (S,t | R,tht™! = a(h),Vh € H)

The group Gx, is called the HNN- extension of G relative to a. The original group G is called the
base group for the construction, while the subgroups H and K are the associated subgroups. The new

generator t is called the stable letter. Sometimes, we also write Gxg for Gx,.

Since the presentation for G*, contains all the generators and relations from the presentation for G,

there is a natural homomorphism, induced by the identification of generators, which takes G to Gx,.
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Higman, Neumann and Neumann proved that this homomorphism is injective, that is, an embedding of
G into G#,. A consequence is that two isomorphic subgroups of a given group are always conjugate in
some over group; the desire to show this was the original motivation for the construction. In terms of the
fundamental group in algebraic topology, the HNN- extension is the construction required to understand

the fundamental group of a topological space X that has been 'glued back’ on itself by a mapping f.

1.5 Graph of groups

We now introduce the terminology, due to Serre, of a graph of groups. A graph I' is a 1-dimensional
CW-complex, so that a it may contain a loop, i.e., an edge with its two endpoints identified. This gives
rise to difficulties with orientations of such an edge. In order to avoid these difficulties, we first introduce
the idea of an abstract graph. Essentially this has twice many edges as I', one for each orientation of an
edge of T'.

Definition 1.5.1. An abstract graph I' consists of two sets E(I") and V(I") called the edges and vertices
of T, an involution on E(T') which sends e to &, where € # e and a map Jy : E(I') — V(I').

We define 0;e = dpe and say that e joins Jpe to dse.

An abstract graph I" has an obvious geometric realization |I'| with vertices V(I") and edges corresponding
to pairs (e, €). When we say that I' is connected or has some topological property, we shall mean that the
realization of I" has the appropriate property. An orientation of an abstract graph is a choice of one edge
out of each pair (e, €).

A graph of groups consists of an abstract graph I" together with a function assigning to each vertex v of I’
a group G, and to each edge e a group G, with Gz = G., and an injective homomorphism f, : Ge — Go,e.

Similarly, we may define a graph x of topological spaces, or of spaces with preferred base point: here, it
is not necessary for the map X. — Xp,. to be injective, as we can use the mapping cylinder construction to
replace the maps by inclusions and this does not alter the total space defined below. But, we will suppose
for the convenience that the spaces are CW-complexes and maps are cellular.

Given a graph x of spaces, we can define total space xr as the quotient of U{X, : v € V(I") JU{U{ X XTI :
e € E(I")}} by identifications,

Xex I — Xz x1Iby (z,t) = (x,1—1)

Xe — Xaoe by (1’,0) - fe(w)

If x is a graph of (connected) based spaces, then by taking fundamental groups we obtain a graph X of
groups (with the same underlying abstract graph I'). The fundamental group Gr of the graph of groups is
defined to be the fundamental group of the total space xr. One can show that Gr is independent of the
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choice of . Observe that in the case when I' has just one pair (e, €) of edges and two vertices v1 and va, if
groups associated to vy, ve and (e, €) are A, B and C, respectively, the fundamental group Gr is A x¢ B.
In the case when I' has just one pair (e, €) of edges and one vertex v, if the associated groups are C' and

A, respectively, then the fundamental group Gr is Axc. For more details, see [40].

1.6 Splittings of a group

A group G is said to split over a subgroup H if G is isomorphic to Axyg or to A xy B, with A £ H # B.
We will need a precise definition of a splitting of G.

Definition 1.6.1. We shall say that a splitting of G consists either of proper subgroups A and B of G
and a subgroup H of AN B such that the natural map A xy B — G is an isomorphism, or it consists of
a subgroup A of G and subgroups Hy and H; of A such that there is an element ¢ of G which conjugates

Hy to Hy and the natural map Axy — G is an isomorphism.

If G splits over some subgroup, we say G is splittable. For example, Z is splittable as Z = {1}x.

A collection of n splittings of a group G is compatible if G can be expressed as the fundamental group
of graph of groups with n edges, such that, for each 7, collapsing all edges but i-th, yields the i-th splitting
of G. For more details, see [39].

1.7 Some Important theorems

Two of most important theorems about free products are the theorems of Grushko (1940) and Neumann
(1943) and that of Kurosh (1934) [33].

Theorem 1.7.1. Let F be a free group, and let ¢ : F — xA,. Then, there is a factorization of F' as a
free product, F = xF, such that ¢$(Fy) = Aq.

It has a following important corollary:

Corollary 1.7.2. If G = Ay x ... * A, and the rank (minimal number of generators) of A; is r;, then the
rank of G isri+ -+ 1,.

Theorem 1.7.3. Let G = *A,, and let H be a subgroup of G. Then, H is a free product, H = F x (xHpg),

where F' is a free group and each Hg is the intersection of H with a conjugate of some factor A, of G.

1.8 Kneser conjecture on free products

Now, we shall prove that each splitting of the fundamental group of a 3-manifold as a free product is

induced by splitting of the manifold as a connected sum. We need the following definitions:
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Definition 1.8.1. The connected sum M;§Ms of n-manifolds M; and M is formed by deleting the
interiors of n-balls Bl in M and attaching the resulting punctured manifolds M; — int(B;) to each other
by a homeomorphism h : 9By — 9By, so M1§Ms = (M7 — int(B1)) Up (M2 — int(Bs)).

The n-balls B; is required to be interior to M; and dB; bicollared in M; to ensure that the connected

sum is a manifold.

An incompressible surface, heuristically, is a surface, embedded in a 3-manifold, which has been sim-

plified as much as possible while remaining ”"nontrivial” inside the 3-manifold.

Definition 1.8.2. Suppose that S is a compact surface properly embedded in a 3-manifold M. Suppose
that D is a disk, also embedded in M, with D NS = 9dD.

Suppose that the curve dD in S does not bound a disk inside of S. Then, D is called a compressing
disk for S and we also call S a compressible surface in M. If no such disk exists and S is not the 2-sphere,

then we call S incompressible (or geometrically incompressible).

There is also an algebraic version of incompressibility: Suppose ¢ : S — M is a proper embedding
of a compact surface. Then, S is mi-injective (or algebraically incompressible) if the induced map on
fundamental groups ¢, : m1(S) — 71 (M) is injective. The loop theorem then implies that a two-sided,
properly embedded, compact surface (not a 2-sphere) is incompressible if and only if it is m-injective.

An incompressible sphere is a 2-sphere in a 3-manifold that does not bound a 3-ball. Thus, such a
sphere either does not separate the 3-manifold or gives a nontrivial connected sum decomposition. Since
this notion of incompressibility for a sphere is quite different from the above definition for surfaces, often

an incompressible sphere is instead referred to as an essential sphere or reducing sphere.

Definition 1.8.3. For a 3-manifold M and a space X, we say that two maps f,g : M — X are C-equivalent
if there are maps f = fo,..., fn = g of M to X with either f; homotopic to f;_1 or f; agreeing with f; 1
on M — B for homotopy 3-cell B C M with BN OM empty or a 2-cell.

If m3(X) = 0, C-equivalent maps are homotopic. In any case, C-equivalent maps induce the same
homomorphism 71 (M) — 71(X) up to choices of base point and inner automorphisms. Now, we see the

following theorem from [25].

Theorem 1.8.4. Let M be a compact 3-manifold such that each component of OM (possibly empty) is
incompressible in M. If (M) = Gy x G, then M = M§Ms, where w1 (M;) = G;, fori=1,2.

Proof. Choose complexes X; and Xy with m1(X;) 2 G; and m2(X;) = 0. Join a point of X; to a point of
Xo by a l-simplex A to form a complex X = X; U AU X5. Note that m(X) & Gy * G2 and mo(X) = 0.
Thus, we can construct a map f : M — X such that f, : m (M) — m(X) is an isomorphism (which
can be preassigned). Choose zg € int(A). We may assume that each component of f~1(xg) is a 2-sided
incompressible surface properly embedded in M. If F is a component of f~1(zg), then since ker(my (F) —

71 (M)) = 1, f. is injective, and f(F) = zg, we must have 7 (F) = 1. If some component F of f~!(zg)
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is a (incompressible) 2-cell, then by hypothesis OF bounds a 2-cell D C dM. The 2-sphere F' U D can
be pushed slightly into int(M) to obtain an incompressible 2-sphere F’. Since, mo(X;) = 0, f can be
modified by a C-equivalence, to a map which replaces F' by F as a component of the inverse of zg. By this
reasoning, we may now assume that each component of f~!(zg) is an incompressible 2-sphere in int(M).
If f~1(z) is connected, we are done. If not, there is a path 8 : I — M such that 8(0) and 3(1) lie in
different components of f~!(x). Now, f o 3 is a loop in X and since f, is surjective, there is a loop
based at 3(1) such that [f o~] = [f o 8]7!. Then, a = 3y is a path satisfying

1. a(0) and «(1) are in different components of f~*(zg),
2. [foal=1€em(X).

We may assume that « is a simple path which crosses f~1(zo) transversely at each point of a(int(I).
Of all such paths satisfying the above conditions, we assume that (o~ (f~!(z0))) is minimal. We must
have a(int(I)) N f~Y(xo) = 0. For if not, we can write & = ajas---a; (k > 2) where for each i,
a; (int(I) N f~Y(x0) = 0 and o;(0I) C f~1(xg). Then, [f o a;][f o as]---[f o ax] is a representation of the
identity element as an alternating product in the free product Gy * G. Thus, for some i, [fo ;] = 1. If
a;(0) and a;(1) lie in the same component of f~!(zg), we could reduce fa=*(f~(x¢)). If not, we contradict
our minimality assumption. Thus, we have a(int(I)) N f~!(xzo) = 0. Let F; (j = 0,1) be the component
of f~1(xg) containing a(j). Let C be a small regular neighborhood of «(I) such that C N F; = D; is a
spanning 2-cell of C' and CN f~!(zg) = DyUD;. Let B be the annulus in dC bounded by dDoUdD;. Push
int(B) slightly into int(C) to obtain an annulus B’ with 0B’ = 0B and B U B’ the boundary of a solid
torus T. We define a map f; : M — X as follows. Put f1|M — int(C) = f|M — int(C) and f,(B’) = xo.
Since, [f oa] = 1, we can extend f; across a meridional 2-cell E of T. Now, it remains to extend f; across
the remaining two open 3-cells; this can be done since mo(X;) = 0, for i = 1,2. The extension can be done
so that f;'(zo) N C = B’. Thus, f; is C-equivalent to f and f; (z0) = (F~(x¢) — (Do U D;)) U B’ has

one less component than f~1(xg). The proof is completed by induction. O

1.9 The mapping class group of a surface and Out(F,,)

Definition 1.9.1. Let X = X, ,, be a compact oriented surface of genus g and with n boundary components.

The mapping class group M, ,, = M(X) is the group of isotopy classes of homeomorphisms of X.

Definition 1.9.2. The outer automorphism group Out(F,,) is group whose elements are equivalence classes
of automorphisms @ : F,, — F,,, where two automorphism are equivalent if they differ by an inner auto-

morphism.

The outer automorphism group Out(F,) of the free group of rank n is naturally maps onto GL,,(Z)
and contains as a subgroup of the mapping class group of a compact surface with fundamental group F,,.

It is not surprising then to expect Out(F,) to exhibit the phenomena present in both linear groups and
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mapping class groups. Much of the recent of Out(F,,) has focused on developing tools and proving results

known in other two categories.

1.9.1 Dehn-Nielsen-Baer theorem

Theorem 1.9.3. Let S be a closed surface of positive genus. Then, the mapping class group of S is

isomorphic to the group of outer automorphisms of m1(S).

This is a beautiful example of the interplay between topology and algebra in the mapping class group.

For proof, see [29].



2. GEOMETRIC INTERSECTION NUMBER, CURVE COMPLEX AND SPHERE
COMPLEX

2.1 Introduction

In this chapter, we study geometric intersection number of simple closed curves on a surface. In particular,
we see its applications to study geometric properties of curve complex of the surface. We also study
topological properties of curve complex. We shall see how curve complex is used to study mapping class
group of surfaces. The geometric intersection number of curves on surfaces has been used to study Thurston
compactification of Teichmiiller space of a surface and the boundary of Teichmiiller space, namely the space
of projectivized measured laminations. At the end of this chapter, we study its analogue sphere complex

of a 3-manifold and its topological properties.

2.2 Intersection numbers of curves on surfaces

(1) Let ¥ be an orientable surface.

Definition 2.2.1. A simple closed curve in ¥ is said to be essential if it does not bound a disk in X.

Henceforth, we shall deal with essential simple closed curves only.

Definition 2.2.2. Given two isotopy classes « and 3 of essential simple closed curves in ¥, we define the
geometric intersection number I(«, ) as the minimal of the cardinality of |aN 3| among all the realizations
of @ and (3 in 3, i.e.,

I{a, B) = min{laNb|la € a,b € 5}

Here, a and b are simple closed curves on ¥ representing the isotopy classes a and ( respectively.

It is clear that this number is symmetric in the sense that it is independent of the order of o and 3.
Also, I(a, 8) = 0 if and only if there exists representatives a and b of o and 3, respectively, such that a
and b are disjoint simple closed curves in X.

(2) We can also define intersection number I(a, 8) of & and g as follows:

One can always choose representatives a and b of o and (8 respectively, to be shortest closed geodesic

in some Riemannian metric with negative curvature on ¥ so that they automatically intersect minimally.



2. Geometric Intersection Number, Curve complex and Sphere Complex 15

Let G denote m(X). Let H denote the infinite cyclic subgroup of G carried by a, and let ¥y denote
the cover of ¥ with fundamental group equal to H. Then a lifts to X and we denote its lift by a again.
Let a denote the pre-image of this lift in the universal cover Y of ¥ . The full pre-image of a in ¥ consists
of disjoint lines which we call a-lines, which are all translates of @ by the left action of G. Similarly, we
define K, Y , the line b and b-lines in 3. Now, we consider the images of the a-lines in Y x. Each a-line
has image in X which is a line or circle. Then we define I'(«, 3) to be the number of images of a-lines in
¥ which meet b. Similarly, we define I((, ) to be the number of images of b-lines in ¥z which meet a.
Using the assumption that a and b are shortest closed geodesics, that each a-line in ¥ crosses b at most
once, and similarly for b-lines in X . It follows that I’(«, 3) and I'(3, ) are each equal to the number of

points of a N b, and so they are equal to each other.
(3) We can define geometric intersection number for surfaces with nonempty boundary as follows:

Given a compact orientable surface ¥ = 3, ,, of genus ¢g with n boundary components, a curve system
on X is a proper l-dimensional sub-manifold so that each component of it is not null homotopic and not
relatively homotopic into the boundary. The space of all isotopy classes of curve systems on ¥ is denoted
by C'S(X). This space was introduced by Max Dehn in 1938 who called it the arithmetic field of the

topological surface.

Definition 2.2.3. Given two classes o and § in C'S(X), their geometric intersection number I(a, ) is
defined to be min{|la N b||a € a,b € 5}.

2.3 Curve complex

The complex of curves of a surface ¥ is the simplicial complex with vertices isotopy classes of simple
closed curves on ¥ and simplices disjoint families of simple closed curves on Y. The complex of curves is
used in the study of 3-manifolds and mapping class groups. This complex was considered by Harer from
homological point of view (with applications to the homology of the mapping class group). In particular,
Harer determined the homotopy type of the curve complex [15], [16]. Ivanov used the curve complex to
determine the structure of the mapping class group [27]. Masur and Minsky [36] showed that the curve
complex is § — hyperbolic in the sense of Gromov. Hempel and others used the curve complex for studying

3-manifolds.

A particularly useful tool in studying the complex of curves is intersection numbers. For instance, these
have been used to prove geometric property of curve complex like hyperbolicity of the curve complex.
Feng Luo has been used intersection number of curves on a surface to study Thurston’s compactification
of Teichmiiller space of a surface [35]. The intersection numbers of curves on a surface has been used to
give important constructions like Thurston’s space of measured laminations. Now, we shall see precise

definitions.
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2.3.1 The curve complex

Let X be a closed orientable surface and let # C X be a (possibly empty) finite set. Harvey associated a
curve complex to (X, ) as follows:

The vertex set X = X (3, ), consists of the set of isotopy classes of essential simple closed curves in
Y\7 (which we refer to simply as curves). A set of curves is deemed to span a simplex in the curve complex
if they can be realized disjointly in ¥\7.

There are a few exceptional cases (sporadic cases) namely,

(1) If ¥ is a 2-sphere and |7| < 3, then X= ¢.

(2) If X is either a 2- sphere with |7| =4 or a torus with |7| = 1, then the associated curve complex is
just a countable set of points.

For non-exceptional cases (X, ), one can see that the curve complex is connected and has dimension
39(X) + |m| — 4, where g(¥) = genus of ¥. We define complexity of C(X, 7)= 3g(X) + |r| —4, where C(3, )
is the curve complex associated to (3, 7).

The curve complex is locally infinite. The finiteness of dimension follows by an Euler characteristic
argument. The maximal dimensional simplex in the curve complex is called Fenchel- Nielsen system (or
pants decomposition).

People have used topology and geometric properties of the curve complex to study various objects like
mapping class groups and Teichmiiller spaces. Now, we shall see how topology of curve complex has been

used.

2.4 Topology of curve complex

The homotopy type of the curve complex was determined by Harer [16].

Theorem 2.4.1. Let ¥ = X, be compact orientable surface with genus g and n boundary components,
then the curve complex associated to it is homotopically equivalent to a wedge of spheres of dimension T,
where

(i)r=29g+n—-314g>0andn > 0.

(ti)r =29 —2 if n=0.

(fi)r=n—4if g=0.

This shows that the curve complex is simply connected and not contractible. Topology of curve complex
has been used by Harer to compute the virtual cohomological dimension of the mapping class group of

surface ¥ = Xf , of genus g with n boundary components and r punctures.

Theorem 2.4.2. For 2g + s+ 1 > 2, the mapping class group Mg, = M(E = Z;n) 18 a virtual duality
group of dimension d(g,r,s), where d(g,0,0) = 4g — 5, d(g,r,s) =4g+2r+s—4,g>0andr + s> 0,

and d(O,r,s) = 2r + s — 3. In particular, the virtual cohomological dimension of M ,, is d(g,r,s).
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For proof, see [16].

2.5 Mapping class group and the curve complex

We recall the definition of mapping class group of surfaces.

2.5.1 Mapping class group:

Let ¥ = ¥, ,, be a compact oriented surface of genus g and n boundary components. The mapping class
groups M, ,, = M(X) is the group of homeomorphisms of ¥ which are identity on boundary 0% modulo
isotopy. Here, isotopies leave points on 9% fixed.

The mapping class group has a natural simplicial action on the curve complex C(X), where vertices are
isotopy classes of essential unoriented non boundary parallel simple loops in X.

If [h] € M(X) and o = [a] € C(X), then [h] - « = [h(a)]. Here, simplicial action means simplicial
structure preserving action.

A natural question one would like to ask is whether every automorphism of the curve complex is induced
by a homeomorphism of the surface.

In 1989, Ivanov [28] sketched a proof the result that if the genus of a surface is at least 2, then any
automorphism of the curve complex C(X) is induced by a homeomorphism of the surface.

Feng Luo [32] has settled the automorphism problem for the rest of the surfaces. His proof does not

distinguish the case genus g > 2 from the case genus g <1 .

Theorem 2.5.1. (a)If the dimension 3g+n —4 of the curve complex is at least 1 and (g,n) # (1,2), then
any automorphism of C(X, ) is induced by a self homeomorphism of the surface.

(b)Any automorphism of C(X1,2) preserving the set of vertices represented by separating loops is induced
by the self homeomorphism of the surface.

(c)There is an automorphism of C(X1,2) which is not induced by any homeomorphism of the surface
21’2.

This proof uses the work of Harer on homotopy type of the curve complex. An important step is to
show that any automorphism of C(X) preserving the multiplicative structure (See [32]) on C(X) is induced

by the homeomorphism of the surface. For proof, see [32].

2.6 Geometric properties of the curve complex

Among others, Masur, Minsky, Bowditch, Feng Luo have studied geometric properties of curve complex.
Geometry of curve complex plays a central role in recent work on the geometry of non-compact hyperbolic
3- manifolds, in particular by Minsky and his collaborators towards proving Thurston’s ending lamination

conjecture. Now, we see some of the geometric properties of curve complex and how these are used.
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2.6.1 Intersection numbers and Hyperbolicity of the Curve Complex

Let X be a closed orientable surface and 7 be a (possibly empty) finite. The 1-skeleton of the curve complex
C (%) is a graph which we denote by G = G(X, 7). We write d for the induced combinatorial path metric
on X which assigns unit length to each edge of G. Thus, (G,d) is a metric space, which is actually a
path connected metric space. Mazur and Minsky [36] showed that the curve complex C'(X) associated with
the surface is hyperbolic in the sense of Gromov. This geometric property of curve complex is useful in
studying mapping class group of surfaces. To prove hyperbolicity of the curve complex, we require a simple

inequality relating intersection number to distances in the curve complex. The inequality is :

Lemma 2.6.1. If the complezity of C(X) is positive, then Yo, 8 € X we have,

(e, B) < I(a, B) +1

Now, we recall notions of geodesic metric space and hyperbolicity. The notion of hyperbolic metric

space is due to Gromov.
Hyperbolicity :
1.A geodesic metric space X is a path-connected metric space in which any two points x and y are

connected by an isometric image of an interval in the real line, called a geodesic and denoted by [zy].

)

2. We say that X satisfies the ” thin triangle condition ” if there exists some § such that for any

geodesic triangle [zy] U [yz] U [zz] in X each side is contained in a d- neighborhood of the other two. This
is one of the several equivalent conditions for X to be § hyperbolic in the sense of Gromov or negatively

curved in the sense of Cannon.
Examples :
1. Classical Hyperbolic Spaces.
2. All simplicial trees.
3. Cayley Graphs of the fundamental groups of a closed negatively curved manifolds.
4. Every finite diameter space is trivially hyperbolic space with § equal to diameter.

Bowditch [5] has given another proof of the same result. The constructions in his proof are more
combinatorial in nature and allow for certain refinements and elaborations. Mazur and Minsky has not
given an explicit estimate of the hyperbolicity constant, but Bowditch has shown that the hyperbolicity
constant is bounded by a logarithmic function of complexity. Thus, hyperbolic constant depends on (X, 7).

Any upper bound on d(a, 3) in terms of I(«, ) is enough to prove hyperbolicity.

The logarithmic bound on the hyperbolicity constant is obtained by the bound on d(«, ) in the following

lemma:

Lemma 2.6.2. There is a function F' : N — N with F(n) = O(logn) such that if complezity of curve

complex is positive and o, f € X, then

d(a, B) < F(I(e, 3))
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2.6.2 Infinite diameter of the curve complex

All this would be rather trivial if the curve complex had finite diameter because a space of finite diameter is
obviously hyperbolic. Feng Luo has given a simple argument which shows that any non-exceptional curve

complex has infinite diameter [36]. We will see the sketch of this proof.

The sketch of the proof: Let p be a maximal geodesic lamination and \; be any sequence of closed
geodesics converging geometrically to p. Then, if d(vg,,) remains bounded, then after restricting to a
subsequence, we may assume that d(vp,7,) = N,Vn > 0. For each ~,, we may then find (3, such that
d(Bn,an) =1 and d(v0, Bn) = N — 1. But v, — p and g is maximal implies that 8, — p as well, since
vn, and [, are disjoint in 3. Proceeding inductively, we arrive at the case N = 1 and in this case the

conclusion is that 8, — u and (3, = 7o, which is a contradiction .

The basic idea to prove hyperbolicity of curve complex is to construct a preferred family of of paths
connecting any pair of vertices in G. Thus, if a, 5 € X, we have a path 7, in G from « to 5. Then,
we show that any triangle formed by three paths 7.3, 73y and 7,4 is "thin” in an appropriate sense. In
particular, there is a ”center”, ¢(«, 3,v) € X, which is a bounded distance from all three sides. A key
point in the argument is to show that if v, € X are adjacent, then d(¢(a, 8,7), ¢(a, 8,9)) is bounded.
Given this one sees that the paths m, g are uniformly quasigeodesic. From this the hyperbolicity of G
follows via a subquadratic isoperimetric inequality .

The curve complex encodes the asymptotic geometry of the Teichmiiller space of a surface. We shall
also see how geometric intersection number of curve curves on a surface is used to give various important
constructions like Thurston’s space of measured laminations. Now, we shall see what is the Teichmiiller

space of a surface.

2.7 Teichmiiller space of surface and Thurston’s compactification of Teichmiiller space

Let ¥ = ¥, ,, be a compact, connected, orientable surface of genus g and n boundary components (n may
be 0) and of negative Euler characteristic. By a hyperbolic metric on the surface 3, we mean a Riemannian
metric of curvature —1 on the surface X so that its boundary components are geodesics. The Teichmiiller
space T(X) is the space of all isotopy classes of hyperbolic metrics on the surface X. Two hyperbolic metrics
are isotopic if there is an isometry between the two metrics which is isotopic to identity.

Thurston introduced the space of projective measured laminations on ¥, which will be denoted by
PML(Y), and a compactification of T(X) whose boundary is equal to PML(X). Thurston boundary
PML(Y) is a natural boundary of T(X), in the sense that the action of mapping class group of ¥ extends
continuously to the Thurston compactification T(X) = T(X) U PM L(X).
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Intersection number and Thurston’s space of measured laminations

Recall from [35], given a compact, orientable surface ¥ with possibly non empty boundary, space of all
isotopy classes of curve system on ¥ is denoted by CS(X). Thurston observed that the pairing I(,) :
CS(X) x CS(X) — Z behaves like a non-degenerate bilinear form in the sense that

(1) Given any « in CS(X), there is # in C'S(X) so that their intersection number I(«, ) is non-zero.

(2) I(kran, ko) = k1kol (a1, a9), for k; € Z>o,o; € CS(X), where k;y; is the collection of k; copies
of .

Thurston’s space of measured laminations on the surface X, denoted by M L(X) is defined to be the
completion of the pair (C'S(X), I(,)) in the following sense : Given a in C'S(X), let m(«) be the map sending
B to I(a, 3). This gives an embedding 7 : C'S(X) — RS where the target has product topology. The
space M L(Y) is defined to be the closure of Qs¢ x 7(CS(X)) = {rm(z) : r € Qso,z € CS(X)}

Using notion of train tracks, Thurston showed that M L(X) is homeomorphic to a Euclidean space and

intersection pairing I(, ) extends to a continuous homogeneous map from M L(X) x M L(X) to R. See [35].

2.7.1 Thurston’s compactification of Teichmiiller spaces
Consider a fixed hyperbolic structure o on X.

Definition 2.7.1. A geodesic lamination p is a closed subset of 3, which is a disjoint union of simple
geodesics which are called leaves of pu. The leaves of a geodesic lamination are complete, i.e., each leaf
is either closed or has infinite length in both of its ends, and a geodesic lamination is determined by its

support, i.e., a geodesic lamination is a union of geodesics in just one way.

We write GL(X) to denote the space of geodesic laminations on X, which is equipped with the Hausdorff
metric on closed subsets. Note that GL(X) is compact and therefore, in particular, every infinite sequence

of nontrivial simple closed geodesics has a convergent subsequence.

A transverse measure on a geodesic lamination p is a rule, which assigns to each transverse arc « a
measure that is supported on g Na, which is invariant under a map from « to another arc 3 if it takes each
point of intersection of o with a leaf of u to a point of intersection of 5 with the same leaf. A measured
lamination on ¥ is a geodesic lamination p with a transverse measure of full support, i.e., if (a N p) # ¢
then a has nonzero measure for any transverse arc «. For example, a simple closed geodesic equipped with
counting measure is a measured lamination. We write M L(3) to denote the space of measured laminations
on 3. There is a natural action of RT on ML(X). Suppose that » > 0. The measured lamination ru has
the same geodesic lamination as p with the transverse measure scaled by r. We write PM L(S) to denote

the set of equivalence classes of projective measured laminations.

Then, Thurston’s compactification of T(X) is T(X) = T(X) U PM L(X), with appropriate topology. See
[30].

Now, we study one dimensional higher analogue of curve complex, namely sphere complex.
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2.8 Sphere complex

The sphere complex associated to M = #,52 x S, i.e., the connected sum of k copies of S? x S, is a
simplicial complex whose vertices are the isotopy classes of embedded spheres in M. A set of isotopy classes
of embedded spheres in M is deemed to span a simplex if they can be realized disjointly in M. This is an
analogue of the curve complex associated to a surface. The topological properties of the sphere complex
have been studied by Hatcher, Hatcher-Vogtmann and Hatcher-Wahl in [17], [20], [21], [22], [23], [24].

Definition 2.8.1. A smooth, embedded 2-sphere in M is said to be essential if it does not bound a 3-ball
in M.

Definition 2.8.2. A system of 2-spheres in M is defined as a finite collection of disjointly embedded,

pair-wise non-isotopic, essential smooth 2-spheres S; C M.

Definition 2.8.3. The sphere complex S(M) associated to M is a simplicial complex whose vertices are
the isotopy classes of essential embedded 2-spheres in M. A set of isotopy classes of embedded spheres in

M is deemed to span a simplex in the sphere complex if they can be realized disjointly in M.

The maximal simplices of S(M) all have the same dimension, namely 3n 4+ s — 4, as one sees by
Euler characteristic considerations using the fact that the complementary regions of a maximal system of

2-spheres are all 3-punctured spheres.

2.8.1 Topology of sphere complex

In [17], Hatcher has proved that the sphere complex S(M) is contractible. This is proved by imitating the
simple proof in [19] of contractibility of the analogous complex of arcs on a punctured surface. However,
for this scheme to work one needs the fact that sphere systems can be isotoped into a fairly canonical
normal form with respect to a decomposition of M into “pairs of pants”, i.e., 3-punctured S®’s. This
normal form is analogue of a well-known property of curves on a surface. We shall discuss “normal forms
of sphere systems* in details in the Chapter 4. Culler and Vogtmann [7], introduced a space X,, on which
the group Out(TF,,) acts with finite point stabilizers, and proved that X, is contractible. Peter Shalen later
invented the name “ Quter space” for X,,. Outer space with the action of Out(F,,) can be thought of as
free group analogous to the Teichmiiller space of a surface with the action of the mapping class group of
the surface. Culler and Morgan have constructed a compactification of Outer space much like Thurston’s

compactification of Teichmiiller space [6].
Now, we see the connection between the sphere complex and the outer space.
2.8.2 Sphere complex and Outer space

The points of the rank n Outer Space X,, of Culler-Vogtmann are equivalence classes of homotopy equiva-

lences f: Xg — X, where X is a bouquet of n circles and X is a metric graph which doesn’t deformation
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retract onto any subgraph, the metric being normalized so that the total length of all the edges is 1.
The equivalence relation on such ”marked metric graphs“ f : Xg — X is given by homotopy of f and
composition with isometries X — X’. Fixing the topological type of X and varying only the lengths of
its edges traces out an open simplex in X,,. Passing to faces of this simplex corresponds to letting the
lengths of some edges go to zero. Depending on which edges are collapsing in this way, the face might or
might not belong to X,,. Let S = S(M), and let Sy, be the subcomplex of S consisting of sphere systems
having at least one non simply-connected complementary component in M. A sphere System S has a dual
graph G(S) having vertices the components of M — S and edges the spheres of S. We may view G(S5) as
embedded in M by choosing a vertex point in each component of M — S and connecting these vertices
by edges crossing the spheres of S, each sphere having a single edge crossing it exactly once. Some what
more canonically, G(S) is also a quotient of M, obtained by thickening S to a product S x [—1,1] C M,
then collapsing the components of M — (S x (0,1)) to points and also the components of S x t, for each
t€(0,1). If Sisin S — S, then both maps G(S) — M and M — G(S) are isomorphisms on 7.

Fixing a System Sy with G(Sy) = Xj, the composition G(Sp) — M — G(S) is then a homotopy
equivalence. The barycentric coordinates of a point in the open simplex of S determined by S give weights
on the components of S and hence lengths on the corresponding edges of G(S). In this way we obtain
amap © : S — S, — X, sending the weighted system S to G(Sy) — G(S). On each open simplex of
S — Sw0,0 is a linear homeomorphism onto an open simplex of X,,, and © is continuous when we pass to
faces of simplices, hence © is continuous everywhere. Also, © is equivariant with respect to the natural
action of Out(F,) on S — S and X,,. This maps actually turns out be a homeomorphism. See [17].

The space X,, has dimension 3n — 4, and Culler-Vogtmann describe a nice ”spine“ of X,, which is a
contractible subcomplex of dimension 2n—3 on which Out(F,,) acts with finite stabilizers and finite quotient.
Using this they prove that Out(F,) has finitely generated homology groups and virtual cohomological

dimension 2n — 3. See [7].



3. THE MODEL 3-MANIFOLD M AND ENDS

3.1 Introduction

In this chapter, we study the model 3-manifold M = #,5? x S'. We also see how a partition of ends of
the space M , the universal cover of M, corresponds to an embedded sphere in M. We also discuss the
intersection number of a proper path in M with a homology class in Hs (]T/f ). In the last section of this

chapter, we discuss splittings of the fundamental group of M.

3.2 The model 3-manifold M

Consider the 3-manifold M = #,5% x S, i.e., the connected sum of k copies of S? x S'. A description
of M can be given as follows: Consider the sphere S$% and let A;, B;,1 < i < k, be a collection of 2k
disjoint embedded balls in S3. Let P be the complement of the union of the interiors of these balls and
let S; (respectively, T;) denote the boundary of A; (respectively, B;). Then, M is obtained from P by
gluing together S; and 7; with an orientation reversing diffeomorphism ¢; for each i,1 < ¢ < k. Let
X=2=5; |_|%, T;, for 1 <4 < k. The fundamental group m (M) = G of M, which is a free group of rank &,
acts freely on the universal cover M of M by deck transformations.

Let ¥ = U;3; be a maximal system of 2-sphere in M. Splitting M along 3, then produces a finite
collection of 3-punctured 3-spheres Pi. Here, a 3-punctured 3-sphere is the complement of the interiors of

three disjointly embedded 3-balls in a 3-sphere.

We recall some constructions from [17]. First, we associate a tree T to M corresponding to the de-
composition of M by 3. Let S be the pre-image of ¥ in M. The closure of each component of M-%
is a 3-punctured 3-sphere ﬁc which is a lift of a Px. The vertices of the tree are of two types, with one
vertex corresponding to the closure of each component of M — ¥ and one vertex for each component of 3.
An edge of T joins a pair of vertices if one of the vertices corresponds to the closure of a component X of
M — . and the other vertex corresponds to a component of Y that is in the boundary of X. Thus, we have
a Y-shaped subtree corresponding to each complementary component. We pick an embedding of 7" in M
respecting the correspondences. This tree has bivalent and trivalent vertices. Bivalent vertices correspond

to components of 3. We call components of ¥ as standard spheres in M.

Let 7 =7 C 70 C ... be an exhaustion of T by finite subtrees of T" such that all the terminal vertices of

each 7; are bivalent in T". Let K. be the union of closures of /PZ ’s which corresponds to vertices in 7 which
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are trivalent in 7. Then, one can easily see that K, is a compact, simply-connected space homeomorphic
to a space of the form S* — U%_,int(D;) with D; disjoint embedded balls in 5.

We observe that mo(M) = ma(M) = Ho(M). This follows from Hurewicz theorem which we state below:

Theorem 3.2.1. If a CW-complex X is (n — 1)-connected, n > 2,then m,(X) is isomorphic to H,(X).

A topological space X is said to be m-connected if and only if it is path-connected and its first m

homotopy groups vanish identically, that is,

mi(X)=0,1<i<m.

So a class in w2 (M) can be considered as a class in mo (M) as well as a class in Hy(M). We shall implicitly

use this identification throughout. For reference, see [18].

3.3 Ends of M

We recall the notion of ends of a topological space: Let X be a topological space. For a compact set
K C X, let C(K) denote the set of components of X — K. For L compact with K C L, we have a natural
map C(L) — C(K). Thus, as compact subsets of X define a directed system under inclusion, we can define
the set of ends F(X) as the inverse limit of the sets C(K). Further, we can compute the inverse limit with
respect to any exhaustion by compact sets.

It is easy to see that a proper map f : X — Y induces a map E(f) : E(X) — E(Y) and that if
f:X =Y and g:Y — Z are proper maps, then E(go f) = E(g) o E(f). In particular, the real line R
has two ends which can be regarded as oo and —oco. Hence, a proper map ¢ : R — X gives a pair of ends

c_ and ¢y of X which may be equal.

Now, consider proper maps ¢ : R — M. As M is a union of the simply-connected compact sets K, the

following lemma is straightforward.

Lemma 3.3.1. There is a one-one correspondence between proper homotopy classes of maps ¢ : R — M

and pairs (c_,cq) € E(M) x E(M).

3.3.1 Topology on the set E(M)

To define topology on E(]T/.f ), we use compact subsets of M. If K is any compact subset of M , then
M — K has finitely many components. Then, we have the set of ends of a component of M — K whose
closure is non-compact to be a basis element. We can easily see that the collection of all the sets of ends

of components of M — K whose closures are non-compact, for all compact subsets K of M , forms a basis

for a topology on E(M)

The set E(M) is homeomorphic to a Cantor set, hence compact. Note that the set E(T') of ends of T'

can be identified with the set E(M).
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3.4  Embedded spheres in M and partitions of ends of M

Fix an orientation of M and hence, of M.

Lemma 3.4.1. Let S is an embedded sphere in M. Then, S separates M.

Proof. Suppose S is non-separating. Choose a regular neighborhood V' = 5% x [~1,1] of S and an embedded
path v in M — V from a point of $% x —1 to a point S? x 1. The sphere S’ which is the connected sum of
S? x —1 with S? x 1 along with the boundary of a regular neighborhood U of ~, clearly bounds U UV in
M. Thus, M = (UUV)U(M — (UUV)). Then, UUV is (5% x St) — B? with boundary S’, where B3 is a
3-ball and (M — (U UV)) is a 3-manifold with boundary S’. Thus, M is a connected sum of S2 x S with
some three manifold. This implies, by applying Van-Kampen theorem, that the fundamental group of M

is non-trivial, which is a contradiction. So, S separates M.

O

If S is an embedded sphere in M , then S separates M into two components, say V1 and V™, with
VT on the positive side of S according to the given orientations on S and M. If the closure of one of
these components is compact, then S is homologically trivial. If the closures of both the components are
non-compact, then we get a partition of the set E(M ) of ends of M into two non-empty subsets E*(S) of

E(M). The sets E£(S) are the sets E(V*) of ends components V.

Proposition 3.4.2. The sets EX(S) are open in E(M).

Proof. Suppose 7 is finite subtree of T" with all of its terminal vertices bivalent such that S is contained
in K. Then, K = K, is a compact, 3-dimensional, connected manifold contained in M such that the
closure W; of each complementary component of K is non-compact. As M is simply-connected and K
is connected, N; = 0W; is connected for each W;. Note that there are finitely many sets W, and E (M )
is partitioned into the sets E(W;). The space K is S3— interior of finitely many disjointly embedded
3-balls with boundary spheres N;. The sphere S separates K and gives a partition of the collection {N;}).
Note that interior of each W; is completely contained either in V* or V'~ and hence each set F(W;) lies
entirely either inside £t or inside £~. Thus, both ET and E~ are unions of basis elements, hence they

are open. O

As the sets E£(S) give partition of E(M), both E* and E~ are closed subsets of E(M). As E(M) is
compact, both E* and E~ are compact subsets of E(]/\\i/ ).

Proposition 3.4.3. If S’ is an embedded sphere in M, homologous to S, then both S and S’ give the same
partition of the set of ends of M.

Proof. As S and S’ are embedded spheres in M , there exist a finite subtree 7 of T" with all of its terminal

vertices bivalent in T', such that both S and S’ are contained in K,. The space K = K, is a compact,
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3-dimensional, connected manifold contained in M such that the closure W; of each complementary com-
ponent of K is non-compact. As M is simply-connected and K is connected, N; = dW; is connected for
each W;. There are finitely many sets W; and E(M) is partitioned into the sets E(W;). The space K
is S3— interior of finitely many 3-balls with boundary spheres N;. As each W; is non-compact and the
boundary sphere N; is non-trivial in Ho(W;), an algebraic topology argument implies that spheres S and

S’ are homologous in M if and only if they are homologous in K. Now, we claim the following:

The embedded spheres S and S’ in K are homologous in K if and only if they give the same partition
of the collection of boundary spheres N;.

Let K—S = KjUKy and K~ = K|UK}. Let 0K;—S = N;U---UN, and 0K5—S = N,41U---UNj.
Let Ay =Ny U---UN, and Ay = N, U---UN}. We have 0K = A | | As. Similarly, let 0K| — S’ = A}
and 0Ky — S = A}, where each A’ is a disjoint union boundary spheres and K = A} | | A}. It follows that

S is homologous to A; and also to As. Similarly, S’ is homologous to A} and also to Aj.

If S and S’ are homologous in K, then A; is homologous A;-, for all 1 < j,k < 2. Note Ho(K) is
generated by the homology classes [N;] of the boundary spheres N; with the relation ) ,[N;] = 0. Now, A;
is homologous to A} and if A; # Af, then A} = A,, as the class B = [A;] — [A2] = 0 can be represented
by union of boundary spheres N;. From this, it clear that both S and S’ give the same partition of the

collection of boundary spheres.

Conversely, if S and S’ give the same partition {A;, A2} of the collection of boundary spheres N; of K.
Then, both S and S’ are homologous to A;. Hence, S and S’ are homologous in K.

Now, if S and S’ are homologous in M , then they are homologous in K. So, they give the same partition
of the collection of boundary spheres N; of K. Therefore, they give the same partition of the collection

{E(W;)} and hence, give the same partition of the set E(M). O

Conversely,

Proposition 3.4.4. If S and S’ are two embedded spheres in M such that they give the same partition
(ET,E~) of the set E(M) of ends of M, then S and S' are homologous in M.

Proof. As S and S’ are embedded spheres in M , there exist a finite subtree 7 of T" with all of its terminal
vertices bivalent in T', such that both S and S’ are contained in K,. The space K = K, is a compact,
3-dimensional, connected manifold contained in M such that the closure W; of each complementary com-
ponent of K is non-compact. Let N; = OW;. There are finitely many sets W; and F (]T/f ) is partitioned
into the sets E(W;). The space K is S®— interior of finitely many 3-balls with boundary spheres N;. The
sphere S separates K and gives a partition of the boundary spheres of K into two sets. This partition of
boundary sphere into two sets gives a partition of the collection { E(W;)} into two sub collections. Each set
E(W;) lies entirely either inside E* or E~ and theses two sub collections of {E(W;)} determine the sets
E* and E~. Similarly, this is true for S’. This implies S and S’ give the same partition of the boundary

spheres of K. Hence, S and S’ are homologous in K and therefore, homologous in M. O
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Proposition 3.4.5. Given a partition of the set E(M) into two infinite closed (hence open) sets ET and
E~, there exist an embedded sphere S in M, which gives the same partition of E(M)

Proof. Suppose that ET and E~ are two disjoint closed subsets of E/ (M ), which give a partition of F (M ).
If 7 C T is a tree such that all the terminal vertices of 7 are bivalent in T, then K = K, is a com-
pact, 3-dimensional, connected manifold contained in M such that the closure W; of each complementary

component of K is non-compact. Let N; = OW;.

Suppose that we can choose a subtree 7 C T with all the terminal vertices of 7 bivalent in T" such that
each E(W;) lies entirely either in ET or E~. We can assign signs to N;, + or — depending upon whether
E(W,) lies inside E* or E~. Then, we can choose a sphere S in K which separates all positive signed N;
from all negative signed IV;, as K is S3— interior of finitely many 3-balls with boundary spheres INV;. Then,

one can easily see that S gives the partition of E(M) into the sets ET and E~.

Now, we see how to choose such a tree 7. We have both ET and E~ are both open and closed. As the
set E(M) is compact, both E+ and E~ are compact. Let e € ET. As ET is open, we can choose a finite
tree 7 C T such that e is an element of the set U, of the ends of a component of M— K;and U, C ET. We
can choose such a basic open set U, for each e € E*. As ET is compact, there exists finitely many basic
open sets Ue,, ..., U, such that ET = U ,U,,. Let 7; be finite subtree of T with all their terminal vertices
bivalent such that U,, is the set of ends of a component of M — K, for each i =1,...,n. Let W; be the
closure of the component of M — K., such that U,, = E(W;), the set of ends of W;. Let N; = OW;. Then,
N; corresponds to a terminal vertex v; of 7;. If for some 1 < 7,k < n, Ny, lies in W}, then we have W), C W;
and U = E(Wy) C E(W;) = Uj. Then, we discard the vertex vy, corresponding to N, from the collection
of bivalent vertices {v1,...,v,} of T. So finally, we get bivalent vertices v;,,...,v;,, such that the sets
Wi,,...,W;, are disjoint. Then, we have the sets U;,,...,U,, are disjoint and ET = U, Uj;,. Note that
given any two bivalent vertices v;, and v;,, 1 <4,k < m, the reduced path joining them does not contain
any other vj,, j # | # k. We consider the subtree 7" of T' which is the span of the vertices v;. Then, all vj,,
1 <4 < m, are the terminal vertices of 7/. We enlarge the tree 7’ to the subtree 7 of T' by taking unions of
those Y’s which have non-empty intersection with the interior of the tree 7/. The tree 7 is a subtree of T
with all the terminal vertices of 7 are bivalent in 7" and all the Vj},’s are terminal vertices of 7. Now, one can
easily see that 7 has the required property. For, if K = K, K is S3— interior of finitely many 3-balls with
boundary spheres Nj,,...,N; ,Ni,...,N/. The boundary sphere N;, corresponds to the vertex v;,. The
s Wi, ..., W/ For each 1 <i <m, N;, = 0Wj,
and for each 1 < k < I, N, = OW]. As the sets Uj,,...,U,, are disjoint and ET = U™ Uj,, for each
1<k, E(W,;) C E~. Thus, we have 7 C T with all the terminal vertices of 7 bivalent in 7" such that
each the set of ends of the closure of each complementary component of K lies entirely either in £+ or
E~. O

space M — K has components with closures Wj, ..., W;
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3.5 Crossings of spheres in M

Let A and B be two homology classes in HQ(M ) represented by embedded spheres in M. We saw a
homology classes A of embedded spheres S in M is completely determined by a partition of £ (]Téf ) into two
open subsets of E(M) If S gives partition of E(]/\Z) into two open subsets ET(S) and E~(S) of E(]Tj),
then we can write ET(A) = ET(S) and E~(A) = E~(S).

Definition 3.5.1. We say that A and B cross each of the four sets E¢(A) N E"(B) # ¢, for € and 7

obtained by choosing signs € and 7 in {4, —} is non-empty.

Suppose A and B do not cross, then for some choice of sign E<(A) D E"(B). It follows that E<(A) C
E"(B), where ¢ and 7} denote the opposite signs. Further, if A # B, then the inequalities are strict.

Definition 3.5.2. We say that B is on the positive side of A if E*(A) D E"(B) for some sign n. Otherwise,
we say that B is on the negative side of A. In general, we say that B is on the e-side of A for the appropriate

sign e.

Proposition 3.5.3. Let A and B be two homology classes in Ho(M) represented by embedded spheres in
M. Then A and B can be represented by disjoint embedded spheres in M if and only if A and B do not

CT0S8S.

Proof. Suppose A and B can be represented by embedded spheres S and S’ respectively. Denote the closures
of the components of the complement of S (respectively, S’) by X; and X5 (respectively, ¥; and Y3) so
that E(X;) = EY(A) = ET(S) and E(X3) = E~(A) = E~(S) (respectively, E(Y;) = ET(B) = ET(5’)
and E(Yy) = E~(B) = E~(5")). Suppose S and S’ are disjoint embedded spheres in M. Suppose S’
is contained in the interior of X;. Then, the component Y; which does not intersect S is completely
contained inside X;. Let this component be Y;. Then, ET(B) = E(Y;) C E(X;) = E*(A). This implies
Et(B)N E~(A) = ¢. Similarly, we can see in all other cases at least one of the four sets E<(A) N E"(B),
for e and 7 obtained by choosing signs € and 7 in {4+, —}, is empty.

Conversely, suppose A and B do not cross. We shall show that A and B can be represented by disjoint
embedded spheres in M. Let 7 be a finite subtree of T with all of its terminal vertices bivalent in T, such
that both A and B are supported in K = K. The space K = K, is a compact, 3-dimensional, connected
manifold contained in M such that the closure W; of each complementary component of K is non-compact.
Let N, = OW,. Note that there are finitely many sets W; and E(M) is partitioned into the sets E(W;).
Note K is S3— interior of finitely many 3-balls with boundary spheres N;. Each set E(W;) is completely
contained either in E*(A) or E~(A) (respectively, each set E(W;) is completely contained either in E+(B)
or E7(B)). We can assign signs to N;, +4 or —4 depending upon whether E(W;) lies inside E*(A) or
E~(A) (respectively, we can assign signs to N;, +p or —p depending upon whether E(W;) lies inside
E*(B) or E~(B)). Thus, the collection of boundary spheres N; of K get partitioned into two sets Uf
and U, containing +4 signed and — 4 signed boundary spheres, respectively. Similarly, the collection of

boundary spheres N; of K get partitioned into two sets U;E and Ug containing +p signed and —p signed
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boundary spheres, respectively. As A and B do not cross, we can assume that for some choice of sign,
E¢(A) D E"(B). Suppose ET(A) C E*(B). This implies Ul C Uj. Then, inside K, we can choose
disjointly embedded spheres S and S’ which give partitions {UX, Uy} and {U,Uz} of boundary spheres
N; of K, respectively. Thus, we get two disjointly embedded spheres S and S’ representing the homology

classes A and B, respectively. Similarly, we can consider all the other cases.

O

3.6 Intersection number of a proper path and homology classes

Let A € Hy(M) = m5(M). Represent A by a (not necessarily connected) surface in M (also denoted A).
Given a proper map ¢ : R — M which is transversal to A, we consider the algebraic intersection number
¢+ A. This depends only on the homology class of A and the proper homotopy class of ¢. Now we shall
discuss this intersection number in details: The proper map c: R — M gives a pair of ends c¢_ and cy of
M. We shall refer c as a proper path from c_ to ¢4 or as a proper path joining c¢_ and c¢y. We denote
such a path ¢ by (c—, ¢4 ). This is well defined up to proper homotopy. In particular, for a homology class

A € Hy(M), the intersection number (c_, cy) - A (which we define in detail below) is well defined and can
be computed using any proper path joining c_ and c;. We shall use this implicitly throughout.

For a proper path ¢ : R — M and an element A € HQ(M ), we can define the algebraic intersection
number c- A by making ¢ transversal to A and computing the intersection number. We formalize this using
the exhaustion of M by the sets K,. Namely, if ¢ : R — M is a proper path, then there is an interval
[—L, L] such that ¢~ '(K,) C [-L, L]. It follows that ¢|[_,, ] gives an element in Hy(M, M — int(K,)) =
Hi(K,,0K,) = H*(K,), where the first isomorphism is by excision and the second by Poincaré duality.
On passing to inverse limits, we see that c gives an element of H? (M ). Evaluating this element on A gives
c-A.

Note that every class A € Hy (M ) is supported in K, for some finite tree 7, and a proper path ¢ gives
an element of H?(K,). Further, as the closures of the complementary components of K, in M are all non-
compact, any proper path « : [0,1] — K can be extended to a proper path ¢: R — M whose intersection
with K, is a. In particular, the cohomology class in H?(K,) = H,(K,,dK,) corresponding to « is the
image under the map induced by inclusion of the class corresponding to c¢. It follows that a- A = ¢+ A for
A€ Hy(K;).

We use the above observations and the fact that K is a compact, simply-connected space homeomorphic
to S with finitely many balls deleted, with the boundary components corresponding to the edges in 67 to

deduce some elementary results concerning the homology of M .

As Ho(K,) is generated by its boundary components of K., it follows that these spheres generate
Hy(M).
Next, note that if A and B are two homology classes, then for some finite subtree 7 C T', they are both

supported by K,. If A is not homologous to B, then as H;(K,) = 0, by Poincaré duality there exists a
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proper path « in K such that - A # « - B. By extending « to a proper path ¢: R — M, we deduce that
there is a proper path ¢: R — M with ¢ A # ¢+ B. Thus, an element A € Hy (M) is determined by the

intersection numbers ¢ - A, for proper paths ¢ : R — M.

If S is an embedded sphere in M, then S separates M into two components. If the closure of one of
these is compact, then S is homologically trivial. Otherwise, we can find a proper path ¢: R — M with

c-S =1, from which it follows that S is primitive.

3.7 Splitting of the fundamental group and embedded spheres

Recall from section 3.2, the description of M. Fix a base point zp away from ;. For each 1 < i < k,
consider the element «; € (M) represented by a closed path ~; starting from xg of M, going to A;,
piercing X/, and returning to the base point from B;. We choose this closed path 7; such that it does not
intersect any ¥, j # i. Then, the collection {a1,...,ay} forms a free basis of G = m (M) = (a1, ..., o)
which is a free group of rank k. Any directed closed path in M hitting the X} transversely represents a
word in {aq,...,ax} by the way it pierces each X/ and the order in which it does so. Without a base point
chosen, such a closed path represents a conjugacy class, or equivalently the cyclic word. We call the basis
{a1,...,ar} as a standard basis and spheres Xf,..., %) as standard basic spheres.

Group theoretically, embedded spheres in M correspond to splittings of the fundamental group of M.
Now, we shall see how an embedded sphere in M corresponds to a splitting of G.

Let S is an embedded sphere in M . If S separates M, then using Van-Kampen’s theorem, we can
easily get a splitting of the fundamental group G of M. Now, suppose S is non-separating. Choose a
regular neighborhood V' = 52 x [—1,1] of S and an embedded path ~ in M —V from a point of S? x —1 to
a point S% x 1. The sphere S’ which is the connected sum of S? x —1 with §? x 1 along with the boundary
of a regular neighborhood U of +, clearly bounds U UV in M. We have M = U UV U (M — (UUYV)).
The set U UV is (82 x S') — B3 with boundary S’ and (M — (U U V)) is a 3-manifold M’ — B? with
boundary S’. Thus, M is a connected sum of S? x S! with the three manifold M’. Then, we get a spitting
of G = G’ (t), where m (M') = G’ and m(S? x S1) = (t). Thus, G can be viewed as an HNN-extension
of G’ over the trivial subgroup {1} of G’.

Now, we shall see that given a splitting of G, there exists an embedded sphere S in M which gives
that splitting of G. It follows from 1.8. Here, we give another proof of this in M. There are two cases
depending on whether the splitting is an amalgamated free product or a HNN extension over the trivial
group.

Suppose G = F; x F5. As subgroups of free group are free, both F} and F5 are free. Choose free bases
{a1,...,amn} and {bymt1,...,bman} of F1 and Fy, respectively. The set {a1,...,am,bm+1,-..,b,} forms a
free basis for G. Therefore, m+n = k. Any two bases of a free group are equivalent in the sense that there
exists an automorphism of that free group sending one basis to another. So, we have an automorphism
¢ of G sending the basis {a1,...,am,bm+1,...,b;} to the standard basis with ¢(a;) = a;, for 1 <i <m
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and ¢(bm+;) = amqj, for 1 < j < n. Every automorphism of a free group is finite composition of Nielsen
automorphisms and every Nielsen automorphism of G is induced by a homeomorphism of M, [33], [42].
Thus, every automorphism of G is induced by a homeomorphism of M fixing the base point. Let h be
a homeomorphism of M which fixes the base point and induces the automorphism ¢ on GG. The element
é(a;) = hy(a;) = oy, for 1 < i < m, corresponds to the basic standard sphere X} and ¢(by, 1) = hu(bpyj) =
Qm4j, for 1 < j < n corresponds to the basic standard sphere X/ +;- We can choose an embedded sphere
S, disjoint from all 3} such that it partitions the collection of basic standard spheres into two sets, namely,
{258 Yand {¥],1,...,%],,,}. Then, S gives a free splitting of G = Ax B, where A = (a1,..., )
and B = (mi1,--+;@man). Now, the sphere h=1(S) = S’ gives partition of the collection of spheres
{h=1(2)),...,h (2, )} into two sets {h~1(X}),...,h (20} and {h~ (2], 41), ..., A (20, 0) ) The
sphere structure {h~1(X}),..., A" (X}, ,,,)} corresponds to the basis {a1,...,@m,bm+1,---,bmin}. Then,
by applying Van-Kampen theorem, we can see that S’ gives the splitting G = F; * F5.

Note that if G is an HNN-extension of a subgroup G’ of G relative to the subgroups H, K of G’ and
an isomorphism 6 : H — K, then H = K = {1} and G’ is a subgroup of rank n — 1. Thus, G = G’ x* (t),
where t € G. We choose a basis {c1,...,cx_1} of G’. The set {c1,...,cx—1,t} forms a basis of G. Then,
we have an isomorphism ¢’ of G sending the basis {c1,...,cx_1,t} to the standard basis with ¢'(¢;) = au,
for 1 <i<k—1and ¢'(t) = ag. Let b’ be a homeomorphism of M which fixes the base point and induces
the automorphism ¢ on G. The element ¢'(¢;) = hl(¢;) = a;, for 1 < i < k — 1, corresponds to the
basic standard sphere X} and ¢'(t) = h/,(t) = a4 corresponds to the basic sphere X} . The sphere structure
R, WS, ), W TH(Z,)} corresponds to the basis {c1,...,cx—1,t} of G. Now, one can easily
see that the sphere //~!(X}) gives a splitting of G as an HNN-extension of G’ over the trivial subgroup
{1}. Thus, embedded spheres in M corresponds to splittings of the fundamental group of M.



4. ALGEBRAIC AND GEOMETRIC INTERSECTION NUMBERS FOR FREE
GROUPS

The geometric intersection number of homotopy classes of (simple) closed curves on a surface is the mini-
mum number of intersection points of curves in the homotopy classes. In Chapter 2, we saw that this is a
much studied concept and has proved to be extremely useful in low-dimensional topology.

Scott and Swarup [39] introduced an algebraic analogue, called the algebraic intersection number, for a
pair of splittings of groups. This is based on the associated partition of the ends of a group [42]. Splittings
of groups are the natural analogue of simple closed curves on a surface F' — splittings of w1 (F') corresponding
to homotopy classes of simple closed curves on F. Scott and Swarup showed that, in the case of surfaces,
the algebraic and geometric intersection numbers coincide.

We show here that the analogous result holds for free groups, viewed as the fundamental group of the
connected sum M = 4,52 x S of n copies of S? x S'. Thus, the manifold M can be regarded as a model
for studying the free group and its automorphisms.

Embedded spheres in M correspond to splittings of the free group. Hence, given a pair of embedded
spheres in M, we can consider their geometric intersection number (defined below) as well as the algebraic
intersection number of Scott and Swarup for the corresponding splittings. Our main result is that, for
embedded spheres in M these two intersection numbers coincide. The principal method we use is the

normal form for embedded spheres developed by Hatcher.

Before stating our result, we recall the definition of the intersection numbers.

4.1 Intersection numbers

Definition 4.1.1. Let A and B be two isotopy classes of embedded spheres S and S’, respectively, in
M. The geometric intersection number I(A, B) of A and B is defined as the minimum of the number of
components |SN.S’| of SN .S’ over embedded transversal spheres S and S’ representing the isotopy classes

A and B, respectively.

This is clearly symmetric. Further, for an embedded sphere S, if A = [S], then I(A4, A) = 0.

We consider next the algebraic intersection number. Let M be the universal cover of M. Observe that

mo(M) = me(M) = Ho(M). The fundamental group 71(M) = G of M, which is a free group of rank n,

acts freely on the universal cover M of M by deck transformations. Homotopy classes of spheres in M
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correspond to equivalence classes of elements in Ho(M) up to the action of deck transformations. For
embedded spheres, we can consider isotopy classes instead of homotopy classes as the homotopy classes of
embedded spheres are the same as isotopy classes of embedded spheres [31].

For an embedded sphere S € M with lift SeM , all the translates of S are embedded and disjoint
from S. In particular, if A = [S] is the isotopy class represented by S, then A and gA can be represented
by disjoint embedded spheres for each deck transformation g € G.

Definition 4.1.2. Let A = [S] and B = [S’] be two isotopy classes of embedded spheres S and 5,
respectively, in M. Let A= [5] and B = [.§’], where S and S’ are the lifts of S and S’, respectively, to
M. The algebraic intersection number T(A, B) of A and B is defined as the number of translates gB of B
such that A and gE can not be represented by disjoint embedded spheres in M.

It was shown in [11] that this coincides with the algebraic intersection number of Scott and Swarup.

Definition 4.1.3. We say that two isotopy classes A = [S] and B = [S’] of embedded spheres in M cross
if they cannot be represented by disjoint embedded spheres.

Thus, the algebraic intersection number is the number of elements g € (M) such that A and gB
cross. We shall also say that S and S cross if the classes they represent cross.

It is immediate that A and gé cross if and only if g_lg and B cross. It follows that f(A, B) = IN(B7 A).
Thus, the algebraic intersection number is symmetric.

Clearly, for all but finitely many translates gé of B , A and gg can be represented by disjoint embedded
spheres in M. This is because, for any pair of embedded spheres S and S’ in M, all but finitely many
translates of S/ are disjoint from S in M. Hence, f(A,B) is finite for all isotopy classes A and B of
embedded spheres in M.

As was shown in [11], it follows from results of Scott and Swarup that if the algebraic intersection
number between classes A and B as above vanishes, then they can be represented by disjoint embedded
spheres, i.e., their geometric intersection number vanishes. The converse is an easy observation.

We prove here a much stronger result that the algebraic and geometric intersection numbers are equal.

Theorem 4.1.4. For isotopy classes A and B of embedded spheres in M, I(A, B) = I(A, B).

Our proof is based on the normal form for spheres in M due to Hatcher [17], which we recall in
Section 4.2. We extend a sphere ¥ in the isotopy class B to a maximal system of spheres and consider a
sphere S in the isotopy class of A in normal form with respect to this system. We then show in Section 4.3
that, when S is in normal form, the number of components of intersection between S and 3 is the algebraic
intersection number between the isotopy classes A = [S] and B.

Our methods also show that, if Aq,... A, is a collection of isotopy classes of embedded spheres, each pair
of which can be represented by disjoint spheres, then all the classes A; can be simultaneously represented

by disjoint spheres. We prove this in Theorem 4.3.3.
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An important ingredient of our proofs is the observation that if S and S’ are embedded spheres in M
and S is in normal form with respect to a maximal system of spheres containing S’, then S and S’ intersect
minimally. This is somewhat analogous to results for geodesics and least-area surfaces [9],[10]. Further
the components of intersection correspond to crossing. This is very similar to the case of geodesics, where

intersections correspond to linking of end points.

4.2 Normal spheres

We recall the notion of normal sphere systems from [17].

Let ¥ = U;3; be a maximal system of 2-sphere in M. Splitting M along 3, then produces a finite
collection of 3-punctured 3-spheres Py. Here a 3-punctured 3-sphere is the complement of the interiors of

three disjointly embedded 3-balls in a 3-sphere.

Definition 4.2.1. A system of 2-spheres S = U,;S; in M is said to be in normal form with respect to ¥ if
each S; either coincides with a sphere 3; or meets ¥ transversely in a non empty finite collection of circles

splitting S; into components called pieces, such that the following two conditions hold in each Pj:
1. Each piece in Py meets each component of 0P in at most one circle.
2. No piece in Py is a disk which is isotopic, fixing its boundary, to a disk in 0Pj.

From (1), it follows that the pieces are either disks, cylinders, or pairs of pants. A cylinder piece
connects two components of 9P, and a pants piece connects all three components of 0P,. A disk piece
has boundary on one component of 0Py and separates the other two components of 9Py, by (2). Hence a
P, can not contain both disk and pants pieces, and all the disk pieces in a P, must have their boundaries
on the same component of Py. Each individual cylinder or pants piece in a P, must be unknotted in Py
since its boundary circles lie on different components of 0P, but a collection of cylinder and pants pieces
can be knotted and linked in a complicated fashion. However, since homotopic systems are isotopic, such
knotting and linking can always be eliminated by an isotopy of the system in M, though the isotopy will

generally have to move outside Pj.

Recall the following result from [17].

Proposition 4.2.2 (Hatcher). FEvery system S C M can be isotoped to be in normal form with respect to
3. In particular, every essential embedded sphere S in M can be isotoped to be in normal form with respect
to 3.

We recall some constructions from [17]. First, we associate a tree T to M corresponding to the de-
composition of M by X. Let 3 be the pre-image of ¥ in M. The closure of each component of M-
is a 3-punctured 3-sphere. The vertices of the tree are of two types, with one vertex corresponding to
the closure of each component of M — % and one vertex for each component of Y. An edge of T joins

a pair of vertices if one of the vertices corresponds to the closure of a component X of M — ¥ and the
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other vertex corresponds to a component of ¥ that is in the boundary of X. Thus, we have a Y-shaped
subtree corresponding to each complementary component. We pick an embedding of T in M respecting

the correspondences.

Given a sphere S in normal form with respect to ¥ and a lift S of S to M , we associate a tree
T(g) corresponding to the decomposition of S into pieces. The tree has two types of vertices, vertices
corresponding to closures of components of S (i.e., pieces) and vertices corresponding to each component
of SNY. Edges join a pair of vertices if one of the vertices corresponds to a piece and the other to a boundary

component of the piece.

In [17], it is shown that T(S) is a tree. Moreover, the inclusion S < M induces a natural inclusion

map T'(S) — T. So, we can view T'(S) as a subtree of T'. The bivalent vertices of T correspond to spheres

components in i i.e., lifts of the spheres ¥; and their translates.

4.3 Algebraic and Geometric Intersection numbers

Consider now two isotopy classes A and B of embedded spheres in M. Choose an embedded sphere Y7 in
the isotopy class B and extend this to a maximal collection ¥ of spheres. Let S be a representative for A

in normal form with respect to ¥. Theorem 4.1.4 is equivalent to showing that I(A4, [¥;]) = I(A4, [¥;]) for
7 = 1. We begin by showing the non-trivial inequality here.

Lemma 4.3.1. If A = [S] is the isotopy class of the embedded sphere S in M, then for the isotopy class

[3;] of 85 in M, I(A,[E]) > I(A, [55]).

Proof. The sphere S, which is in normal form with respect to 3, represents the class A. We shall show
that the number of components of intersection of S with %, is I(A,[%;]). As the geometric intersection
number is the minimum of the number of components of intersection of spheres in the isotopy classes, the

lemma is an immediate consequence of this claim.

Fix a lift S of S. The components of S N X; are homotopically trivial circles in M. These lift to
circles of intersection between S and components of the pre-image of ¥;. These correspond to vertices
of T(S). As T(S) is a tree which embeds in T, different circles of intersection of S and Y, correspond
to intersections of S with different components of the pre-image of Y;. It follows that the number of

components of intersection of S with 3; is the number of components of the pre-image of X; that intersect

S.

The main observation needed is the following lemma.

Lemma 4.3.2. Ifg intersects a component XT] of the pre-image of ¥;, then the spheres S and ivj CToss.

Proof. Assume that S intersects the component i\; of the pre-image of ;. The sphere iv] corresponds to
a vertex vy of T. As S intersects XT] and S is in normal form, the vertex vg is an interior vertex of T'(S).
We recall the notion of crossing due to Scott and Swarup, which by [11] is equivalent to the notion

we use. The spheres S and i; partition the ends of M into pairs of complementary subsets E§ and E;
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corresponding to the components of the complement of the respective spheres in M. The spheres S and
i}; cross if all the four intersections Egt N Eg are non-empty.

A properly embedded path ¢: R — M induces a map from the ends +oo of R to the ends of M. Thus,
we can associate to ¢ a pair of ends c+. We say that the path ¢ is a path from c_ to c¢;. Poincaré duality
gives a useful criterion for when two ends F and E’ of M are in different equivalence classes with respect
to the partition corresponding to S. Namely, £ and E’ are in different equivalence classes if and only if
there is a proper path ¢ from F to E’ so that c- S = +1, with ¢- S the intersection pairing obtained from

the cup product using the duality between homology and cohomology with compact support.

The ends of M can be naturally identified with the ends of the tree T'. The sets E% correspond to the
ends of the two components of T'— {vg}. It is easy to see that XTJ and S cross if and only if each of the sets
E; contain pairs of ends Fy and E5 which are in different equivalence classes with respect to the partition
corresponding to S. By symmetry, it suffices to consider the case of E; . Let X denote the closure of the
component of M — flj with ends(X) = E4:.

As vy is an internal vertex of the tree T'(.S), there is a terminal vertex w of T(S) contained in X. A
terminal vertex of T' (§ ) corresponds to a piece which is a disc D in a 3-punctured sphere P, with P the
closure of a component of M —3%. Let @1 and @2 denote the boundary components of P disjoint from D
(hence from S). Then D separates Q1 and Qs.

For i = 1,2, let W; denote the closure of the component of M — @; which does not contain S. As @Q;
is the lift of an essential sphere, and M is simply-connected, @Q; is non-trivial as an element of H2(]\7 ).
Hence W; is non-compact. By construction W; C X, hence the ends of W; are contained in E; .

As D separates Q1 and Q, (after possibly interchanging @1 and Q) there is a path ¢ : [0,1] — P
intersecting S transversely in one point (with the sign of the intersection +1) so that ¢(0) € @ and
c(l) € Q2. As Wi and Wy are non-compact, we can extend ¢ to a proper function ¢ : R — M with
¢((—00,0)) € W7 and ¢((1,00)) C Wa.

The ends E; and Es of ¢ are ends of X (as W; C X for i = 1,2). Further, by construction c - S=1.Tt
follows that the ends F1, Fy C E; are in different components with respect to the partition corresponding

to S. By symmetry, we can find a similar pair of ends in Eg,. It follows that S and ¥ cross.

O

We now complete the proof of Lemma 4.3.1. We have seen that the number of components of S N3
is the number of components of the pre-image of 3; which intersect S. For a fixed lift EIVJ of ¥;, the
components of the pre-images of ¥; are the translates gi; of ivj

By Lemma 4.3.2, it follows that if S intersects gi}, then S crosses gi}. The converse of this is obvious.
By the definition of algebraic intersection number, Lemma 4.3.1 follows.

O

Proof of Theorem 4.1.4. We have seen that it suffices to consider the case when A = [S], B = [¥;] and S

is in normal form with respect to ¥. By Lemma 4.3.1, I(A, B) > I(A, B).
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Conversely, let S and ¥; be embedded spheres with A = [S], B = [£41] and I(A,B) = [SN %4]. Let
S and ivl be lifts of S and ¥, respectively, to M. Observe that (distinct) components of intersection of
S with ¥, lift to (distinct) components of intersection of S with translates of £;. Hence the number of
translates of ¥; that intersect S is at most I (A,B). As I(A, B) is the number of translates of ¥, that
cross S, and components that cross must intersect, it follows that I(A, B) < I(A, B).

This completes the proof of the theorem.

O

Our methods also yield the following result. This also follows from the work of Scott and Swarup, see
[39].

Theorem 4.3.3. If Ay,...,A, are isotopy classes of embedded spheres in M such that, for 1 <i,j <mn, A;
and A; can be represented by disjoint spheres, then there exist disjointly embedded spheres S;, 1 < i <,
such that A; = [S;].

Proof. We prove this by induction on n. For n = 1,2, the conclusion is immediate from the hypothesis.
Assume that the result holds for n = k and consider a collection A; as in the hypothesis with n =k + 1.

Suppose one of the spheres, which we can assume without loss of generality is A,,, is not essential. By
the induction hypothesis, there are disjoint embedded spheres S;, 1 < i < n, with [S;] = A4;. Choose a
3-ball disjoint from the spheres S;, 1 < ¢ < n and let S, be its boundary. Then, the spheres S;, 1 < i < n,
give the required collection.

Thus, we may assume that all the isotopy classes A; of spheres are essential. By induction hypothesis,
there are disjoint embedded spheres S;, 1 < ¢ < n, with [S;] = A;. As these are essential by our assumption,
we can extend the collection S; to a maximal system of spheres. We let S,, be a sphere in normal form
with respect to this collection. By hypothesis, I(S,,S;) = 0 for 1 <i < n. By the proof of Lemma 4.3.1,
it follows that S, is disjoint from .S;. Thus, 5;, 1 < i < n, is a collection of disjoint embedded spheres with
A; = [Si).

O

Remark 4.3.4. The above theorem shows that the sphere complex associated to M is a full complex in the
sense that if Vi, Vs, ...., Vj are the vertices of the sphere complex and if there is an edge between every pair

Vi, Vj of vertices, where 1 < 4,7 < k, then these vertices bound a simplex in the sphere complex.

The geometric intersection number of curves on a surface has been used to give constructions like the
space of measured laminations whose projectivization is the boundary of Teichmiiller space, [35], as well as
to study geometric properties, including hyperbolicity of the curve complex in [5], [36]. One may hope that
the geometric intersection number of embedded spheres in M might be useful to give such constructions

in case sphere complex and Outer space.
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In this chapter, we study embedded spheres in M = #,5% x S and M , the universal cover of M. In the
Section 5.1, we see how a partition A of the set of ends of M corresponds to an embedded sphere in M
which is in normal form in the sense of Hatcher, by specifying the data determining the partition A and
the normal sphere. Given a properly embedded path ¢ : R — M and a homology class A € HQ(M ), we
have an intersection number c¢- A. Further, this depends only on the ends c4 of the path ¢. In the Section
5.2, we prove that the class A € HQ(M ) can be represented by an embedded sphere in M if and only if, for
each proper map ¢: R — ]\7, c-A€{0,1,—1}. We also constructively prove that the class A € mo(M) can
be represented by an embedded sphere in M if and only if A can be represented by an embedded sphere
in M and for all deck transformations g € m (M), A and gA do not cross.

5.1 Partition of ends and normal forms

This section is devoted to associating to a partition A = (ET(A), E~(A)) of the space E(M) of ends of
M into open sets, an embedded sphere S in M which is in normal form in the sense of Hatcher, so that
E*(S) = E*(A). Along the way, we see what data determines a sphere in normal form in M and the

relation between this data, partitions of ends and crossings. Specifically, we prove the following:

Theorem 5.1.1. Given a partition A = (ET(A), E=(A)) of the set E(M/) of ends of M into two open
sets, there is a normal sphere S in M so that A is the partition given by the ends of the components of
M-S,

In this case, we say S represents A. We recall the notion of crossing of two such partitions A and B.

Definition 5.1.2. We say that A and B cross if each of the four sets E€(A) N E"(B) is non-empty, for e
and 7 obtained by choosing signs € and n in {+, —}.

Suppose A and B do not cross, then for some choice of sign, E(A) D E"(B). It follows that E(A) C
E"(B), where € and 7] denote the opposite signs. Further, if A # B, then the inequalities are strict.

Definition 5.1.3. We say that B is on the positive side of A if E*(A) D E"(B) for some sign 7. Otherwise,
we say that B is on the negative side of A. In general, we say that B is on the e-side of A, for the appropriate

sign €.
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Note also that if A and B do not cross, then either E*(A) C E"(B) for some sign n or E~(A) C E"(B)

for some sign 7. Further, these are exclusive unless A = B.

We shall need the following elementary observation.

Lemma 5.1.4. If B is on the e-side of A and C is on the é-side, then B and C do not cross.

Proof. For appropriate signs 7 and ¢, E"(B) C E¢(A) and E*(C) C E¢(A). Hence, E"(B) N E$(C) = ¢,
which shows that B and C' do not cross. O

If B is on the e-side of A and C' is on the éside, then we say that A is between B and C.

Given a sphere S in M , we have a natural partition of ends of M associated to it. So, we can talk

about crossing of a partition A of F(M) and sphere S. We now turn to the construction of the normal
sphere in M representing A.

We recall the notion of normal sphere systems from [17].

Let ¥ = U;¥; be a maximal system of 2-sphere in M. We recall that splitting M along X, then
produces a finite collection of 3-punctured 3-spheres P;. Here, a 3-punctured 3-sphere is the complement

of the interiors of three disjointly embedded 3-balls in a 3-sphere.

Definition 5.1.5. A system of 2-spheres S = U,;S; in M is said to be in normal form with respect to 32 if
each S; either coincides with a sphere ¥; or meets ¥ transversely in a non-empty finite collection of circles

splitting S; into components called pieces, such that the following two conditions hold in each Pj:
1. Each piece in P, meets each component of dP; in at most one circle.
2. No piece in Py is a disk which is isotopic, fixing its boundary, to a disk in 0P.

Similarly, we can define sphere systems in normal form with respect to the pre-image Y of ¥ in M.

We call each sphere ¥; as a standard sphere in M and '27 as standard sphere in M.

Given a sphere S in normal form with respect to ¥ in M and a lift S of S to M, we associate a tree
T(S) corresponding to the decomposition of S into pieces. We consider the dual tree T'(S) to SN in S,
having a vertex for each component of S \ ¥ and an edge for each circle of SN .

In [17], it is shown that T(S) is a tree. Moreover, the inclusion S < M induces a natural inclusion
map T(S) < T. So, we can view T(S) as a subtree of T. The bivalent vertices of T correspond to spheres
components in i, i.e., lifts of the spheres X; and their translates. This shows that each 73; contains at the
most one piece of S. Similarly, one can easily see that if S’ is a normal sphere in M , then each ]3;; contains
at the most on piece of S’. If S is a standard sphere (or can be isotoped to standard sphere), then the

associated tree T'(S) is single vertex in T corresponding to that standard vertex.

Our construction is motivated by the following lemma from [12].

Lemma 5.1.6. Let S be a normal sphere in M and let f]l be a standard sphere.

o The spheres S and S, intersect if and only if they cross.
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o IfS and 3 intersect, they intersect transversally in a circle S*.

Thus, if A is represented by a normal sphere S in M , we can determine the intersection of S with
each standard sphere in M , in terms of crossings. The standard spheres in M correspond to the bivalent
vertices of the tree T. We call them as “standard vertices”. We can talk about the crossing of A with
the classes of standard spheres in M. Now, we associate a subgraph 7 of T to A as follows: If A crosses
standard sphere i, then 7 contains the bivalent vertex v; corresponding to Z and the edges e} and e}
containing that vertex v;. The other end vertex v]i- of each edge eé—, j=1,2is a trivalent vertex in T" which
corresponds to a component of M —X. Each v} may be a bivalent or univalent or a trivalent vertex in 7. If
A does not cross some standard sphere in M , then 7 does not contain the standard vertex corresponding
this standard sphere and hence, it does not contain the edges containing this standard vertex. Note that

any edge e in T has a unique end vertex which is a standard bivalent vertex in 7.

Lemma 5.1.7. Suppose A = (E*, E7) is a partition of E(M) into two open sets such that ET # ¢ # E~.
Suppose no standard sphere crosses A. Then, there exists a standard sphere Xy such that ET = EF(%).

Proof. By hypothesis, if v is a standard bivalent vertex of T', the standard sphere 3(v) corresponding to v
does not cross A. Hence, after choosing orientations appropriately, either E¥(X(v)) C ET or E~(X(v)) C
E~. If ¥(v) = Xy satisfies both the conditions, then E* = E*(%,).

Suppose no X(v) satisfies both the above conditions, we get a partition of bivalent vertices of T as
Vt={v: ET(S(v)) Cc E*}

and
Vi={v:E-(Z(w)) C E}.

Let X* is the union of all the edges e in T such that the bivalent vertex of e lies in V*. Then X+
are closed and T = X+ U X~. Hence, XT N X~ # ¢. By construction, X+ N X~ consists of trivalent
vertices of T. Let w € XTN X~ and let vy, vy and v3 be bivalent vertices adjacent to w. Note that at least
one v; € XT and at least one v; € X~. Without loss of generality, suppose v1,v2 € X+ and vz € X ™.
Let N(w) denote the set of all the points in T distance at most 1 from w. Then, T'— N(w) has three
components V7, Vo and V3 whose closures contain the vertices vy, v and vs, respectively. It is easy to see
that E(V1) € ET,E(V2) C ET and E(V3) C E~. It follows that ET(X(vs3)) = ET(2(v1)) U ET(2(v9)).
This implies ET(X(v3)) € EY. Aswvs € X—, E=(3(v3)) € E~. But then, v3 € V* N V~. This is
a contradiction as V' and V'~ are disjoint. Hence, there must exist a standard sphere ¥ such that
E* = E%(%)). O

Thus, if A does not cross any standard sphere, the tree T associated to A is a standard vertex corre-
sponding to the standard sphere representing A.
A normal sphere S in M has connected intersection with each set 13; The set SN 13; (which we call a

piece) is a disc D, an annulus (which we call a tube) A or a thrice punctured 2-sphere Y (which we call a
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Y -piece or pant piece) according as the number of edges in 7(5) adjoining v corresponding to Ec is1,2or

3. We first make some observations about these cases.

Firstly, suppose v is a vertex of 7 adjacent to a single edge ey € 7, i.e., a terminal vertex of 7. Let vy € 7
be the other end vertex of ey and Xy be the standard sphere in M corresponding to vg. Then, A crosses
>g. Let the other edges adjacent to v in T be e; and ey with other end vertices vy and vy, respectively.
Consider the standard spheres Y, = i(vl) corresponding to vertices v;, with orientations chosen so that
for i = 1,2, the set Et(%;) is the set of ends of the component of M — %; that does not contain 3. We
can orient g so that ET(3) = E1(3,) U EH(%y).

Lemma 5.1.8. For some sign e, E<(A) D Et(2)) and E<(A) D ET(3,).

Proof. First note that we cannot have ET(%;) D E"(A), for i = 1,2, as this would imply that E* (%) D
E"(A), contradicting the hypothesis that A crosses [%o]. Hence, as A does not cross the spheres %;, for
appropriate signs ¢;, E<(A) D ET(X;) for i = 1,2. Finally, if ¢, = e; = ¢, then E(A) D ET(Zg) as
Et (%) = ET(X1) U Et(X,), contradicting the hypothesis that A crosses Xg. O

Thus, one of the spheres ¥, and 3 is on the positive side of A and the other on the negative side. In
the case of a vertex v of valence 2 of 7, either it is a bivalent vertex (standard vertex) of T or there is an
edge e, of T adjacent to v which is not in 7. The standard sphere f](ev) corresponding to the other end
vertex of the edge e, is either on the positive side of A or on the negative side.

We shall see that 7 is a tree and the partition A is determined by 7 together with data of the above
form at terminal and non-standard bivalent vertices of 7. The standard bivalent vertices of 7 are standard
(bivalent) vertices of T. We begin by showing that 7 is a tree. As this is a subgraph of a tree T, it suffices

to show that 7 is connected.

Lemma 5.1.9. The subgraph 7 C T 1is connected, hence a tree.

Proof. Suppose T is not connected. As 7 is a subgraph of T, there is a standard vertex v ¢ 7 such that
both components X; and Xy of T — v intersect 7. Let 7; = 7 N X;, for i = 1,2. Let Xy = X(v).

As v ¢ 7, A does not cross ¥. Hence, we can orient Yy so that for some sign e, ET(%y) € E<(A).
Without loss of generality, E+(§~Jo) is the set of ends of X;.

Let 7" be the convex hull of the vertex v and 71. As 7 is a finite graph, 7/ is a finite tree. Let w be
a terminal vertex of 7/ distinct from v. Then, w is a vertex of 7 by Lemma 5.1.8, there is an adjacent
edge ¢/ ¢ T with its other end vertex v’ such that E1(Z(v')) € E€(A), with the orientation chosen so that
E+(2(v')) is the set of ends of the component of M — > (v') that does not intersect 7. It follows that
Et(2(v)) € ET(%), and hence, ET (%) N E<(A) # ¢, a contradiction. O

We next see that 7 is a finite tree.

Lemma 5.1.10. The tree T is compact, hence finite.
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Proof. If T is not compact, then some end P € E(M) = E(T) is an end of 7. Without loss of generality
P € ET(A). As ET(A) is open in the space of ends of T, there is a finite connected tree k C T and a
component V of T'— k so that P € E(V) C E*(A). We shall show that no edge of V is contained in 7,
contradicting the assumption that P is an end of 7.

Let e be an edge of T contained in V =T — k. Then, as x is connected, some component W of T — e
is disjoint from x, and hence contained in V. Suppose v is the end vertex of e such that v is a standard
bivalent vertex in 7. Let X(v) be the standard sphere corresponding to v, then it follows that for some
sign e, E4(X(v)) C E(V) C E*(A), and hence, ¥(v) does not cross A. This implies v is not in 7. It follows

that e is not in 7. Thus, no edge of V' is in 7, as required. O

Thus, we have a finite tree 7 associated to the partition A. Note that the terminal vertices of 7 are
trivalent vertices in 7. We shall next show that the partition A is determined by the tree together with
additional data for vertices adjoining the tree.

Let N(7) be the subgraph of T consisting of points with distance at most 1 from 7. Then, N(7) is a

tree, which is the union of 7 with the following two kinds of edges:

1. For each terminal vertex v of 7, we have a pair of edges e;(v) ¢ 7 and ey(v) ¢ 7 with v as an

end-vertex. Let vy and vy be the other end vertices of e; and es, respectively.

2. For each non-standard bivalent vertex w of 7, we have an edge e(w) ¢ 7 with w as an end-vertex.

Let w; be its other end vertex.

By Lemma 5.1.8, for a terminal vertex v, the sphere corresponding to one of v; and vs is on the positive
side of 7 (positive side of A). The vertices v; and vs are end vertices of e; and es respectively. So, we can
assign positive or negative signs to these edges accordingly. We denote this by ey (v) and denote the other
edge (which is on the negative side) by e_(v). We denote the standard spheres corresponding to v; and
vy by 2(v1) = X(e1) and B(vp) = X(ez), respectively. For a non-standard bivalent vertex w of 7, we can
associate a sign e(w) so that X(w;) = X(e(w)) is on the e(w)-side of A.

We show that the tree 7 together with the additional data determines a partition of the ends, which

coincides with the given partition.

Lemma 5.1.11. The partition A is determined by T together with the functions ey (v) and e(w), where v's

18 univalent vertices of T and w's is non-standard bivalent vertices of T.

Proof. We show that the partition of the ends of M into E* (A) is determined by the given data. The
spheres (e (v)) for terminal vertices of 7 together with 3(e(w)) for non-standard bivalent vertices of 7
separate M into a compact component corresponding to 7 and one non-compact component for each such
sphere . We can orient the spheres X so that A is on the negative side of 3. Then, the set of ends of the

non-compact component is E+(X). Hence, we have a partition

E(M) = Uy(E* (5(e4 (v)) U E* (E(e- (v)))) Uu B¥ (E(e(w)))
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By construction, Et(3(ey (v))) € E1(A) and ET(2(e_(v))) N Et(A) = ¢, for each terminal vertex v
of 7. For each non-standard bivalent vertex w of 7, ET(Z(e(w))) € ET(A) if e(w) = + and E~(Z(e(w)))N
E*(A) = ¢ otherwise. Hence,

E(A) = Uy ET(£(e+ (1)) Utue(wy=11 BT (E(e(w)))

This is determined by the given data. Hence, the partition A is determined by the given data.
O

It is now easy to construct a normal sphere S in M representing the same the partition A. Note that

a normal sphere S represents the partition A if and only if E*(S) = E*(A).

We can associate to an oriented normal sphere S data very similar to that associated to the partition
A. Firstly, the sphere S has a support which is a subtree 7. A terminal vertex v of 7 corresponds to a disc
pieces in a thrice-punctured 3-sphere P(v), which separates the two other boundary components of P(v).
Exactly one of these lies on the positive side. Thus, as the boundary components correspond to vertices
of T adjacent to v, we get a pair of edges e+ (v). A non-standard bivalent vertex w of 7 corresponds to an
annulus piece (cylinder piece) in P(w). The boundary component of P(w) not intersecting the annulus is
on either the positive or the negative side of S, giving a sign e(w). A trivalent vertex w’ corresponds to a

pant piece in the 3-punctured 3-sphere P(w').

Lemma 5.1.12. Given a finite tree T, associated data e4 (v) and e(w), and a oriented circle on the sphere
E(V’) for each non-terminal vertex v' of T, there is an oriented normal sphere S with corresponding data T,
e+ and € and whose restriction to each thrice-punctured 3-sphere has boundary the corresponding oriented

circles. Further, the partition corresponding to S is the one corresponding to the data T, ey and e.

Proof. To each standard bivalent vertex of the tree 7, we associate a circle in the corresponding standard
sphere which we co-orient according to the given partition. For each trivalent vertex v of 7, we associate
a pants piece with boundary the circles in the standard sphere that have been constructed.

Next, if v is a non-standard bivalent vertex of 7, the two adjacent standard vertices correspond to
circles on two standard spheres. We join them by an annulus so that the other standard sphere bounding
the 3-holed sphere corresponding to v is on the side of the annulus given by €(v). Similarly, for a terminal
vertex of 7 we consider a disc so that the standard spheres corresponding to adjacent vertices e (v) of T'
that is not in 7 is on the positive side of the disc and the one corresponding to the other adjacent vertex

is on the negative side. O

5.2 Embedding classes, normal spheres and graphs of trees

In this section, we give proofs of theorems of [11] using normal forms.

We give a constructive proof of the following result from [11] giving a criterion for a class A € mo(M) =

H5(M) to be representable by an embedded sphere in M.
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As Hl(]T/.f) = 0, a homology class A is determined by the intersection numbers ¢ - A, where ¢: R — M

is a proper path. The first result of [11] characterizes which classes in Hy(M) can be represented by
embedded spheres in M.

Theorem 5.2.1. The class A € Hs (M) can be represented by an embedded sphere in M if and only if, for
each proper map ¢: R — ]\A/f, c-Ae{0,1,—-1}.

It is easy to see (for proofs see [11]) that if S is an embedded sphere in M, then S partitions M into
two components with closure of each component non- compact. Hence, the ends of M are partitioned into

components E*(S9), so that if ¢ : R — Mis a proper path, then
e Ifc_. e E~(S)and ¢y € ET(S), thenc-S=1
e Ifc_ e ET(S)and ¢y € E~(9), thenc-S=-1
e Ifc_ e E-(S)and ¢y € E7(S), thenc-S=0
e Ifc_ € ET(S) and ¢ € EY(S), thenc¢-S =0

In particular, ¢- S € {0,1, —1}.
Conversely, let A be a homology class satisfying the hypothesis of the theorem. We shall construct a
normal sphere in M that represents A.

The first step is the following Lemma whose proof is in [11].
Lemma 5.2.2. There is a partition E*(A) of the set E(M) of ends M so that
o Ifc_ e E=(A) andcy € ET(A), thenc-A=1
o Ifc_ € EY(A) and cy € E~(A), thenc- A= —1
o Ifc_ e E=(A) andcy € E=(A), thenc-A=0
o Ifc_ e EY(A) and cy € ET(A), thenc-A=0

Thus, we have a partition of the ends just as in the case of embedded spheres. By Theorem 5.1.1, this

corresponds to the partition given by a normal sphere S in M. As homology classes are determined by

their associated partitions, the sphere S represents the homology class A € Hy(M) and the result follows.

We now turn to the question of when a class in mo(M) can be represented by an embedded sphere in
M.

Theorem 5.2.3. The class A € ma(M) can be represented by an embedded sphere in M if and only if A
can be represented by an embedded sphere in M and for all deck transformations g € m (M), A and gA do

not cross.



5. Embedded Spheres, normal form and Partitions of Ends 45

If A can be represented by an embedded sphere S in M, then one can easily see that its lift S and all
of its translates in M are disjoint. Therefore, A and gA can be represented by disjoint embedded spheres
in M, for all g € m1 (M), which implies A and gA do not cross, for all deck transformations g € m (M).
Now, we give the constructive proof of the converse. This is based on graph of trees associated to normal
spheres.

We recall from [8] that, a graph T consists of two sets E(T) and V(T), called the edges and vertices
of T, a mapping from E(T) to E(T), with e — é, for which e # € and € = e, and a mapping from FE(T)
to V(T) x V(T), e — (o(e),t(e)) such that & — (t(e),o(e)) for every e € E(T). An edge path in T is a
sequence e, ez, ..., e, of edges, such that t(e;) = o(e;11), €; # €41, for i =1,2,...,n—1. If e, f € E(T),
we write e < f if there is an edge path ey, es,..., e, for which e; = e and e, = f. If T is a tree, then <

determines a partial ordering on on E(T). In addition the following conditions are satisfied:

1. ife < f, then f < &

2. if e < f, there are only finitely many g for which e < g < f;

3. for any pair e, f, at least one of e < f, e < f, € < f, € < f holds;
4. for no paire, fise< fande < f ;

5. for no paire, fise < fand e < f.

Theorem 5.2.4 (Dunwoody). Let (E, <) be a partially ordered set with a mapping E — E, e — &, for
which e = €, and suppose above conditions (1) — (5)are satisfied. Then, there exists a tree T with E = E(T),
where E(T) is the set of edges of T and the order relation on E is precisely that determined by edge paths

in T as above.

Our first step is to understand data specifying a normal sphere in M (up to homotopy).

Suppose we are given an oriented (hence, co-oriented) normal sphere S in M. Let S be a lift of S in M.
Then, S induces an orientation (hence, co-orientation) on S and on each of its translates ¢S, g € m1(M).
The orientation on S (respectively, on gg ) determines the positive and negative complementary components
of S (respectively, of ¢S) in M. The sets E+(S) and E~(S) (respectively, E*+(gS) and E~(¢S)) correspond
to the sets of ends of positive and negative complementary components of S (respectively, of g§) in M
respectively. As S is in normal form with respect to the maximal system of 2-spheres ¥ = U,;%;, S and
its translates g§ are in normal form with respect to the inverse image S of X. The sphere S and all of its
translates in M are disjoint from each other. If we consider the homology classes of any two translates,
say 91§ and 92§ of §, then they do not cross. So, the class [915'] is either on the positive side or on the
negative side of [ggg]. Then accordingly, the sphere g1§ is either in the positive or negative complementary
component of ggg in M. The positive and negative complementary components of a translate gg of Sin M
determines positive and negative complementary components of a piece inside a fPS; If both the translates

glg and ggg intersect some ]3;;, the piece of 91§ lies either on the positive side or negative side of the piece
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of ggg in .,Pvlw according to the sphere 91§ lies on the positive or negative side of 92§ . Similarly, orientation
on the translate gg determine the positive and negative side of the circle of intersection of g§ N3 in
f]l-, where 3; is the boundary sphere of ,ka Thus, orientation on S, (hence, co-orientation) determines
co-orientation of each circle of intersection of SN Y;, for each i. The same is true for each piece of S inside
Py.

We associate to S a graph of trees structure as follows: The standard spheres ¥; decompose M into
components P;. We have an associated graph I' with vertices P, and edges Y;. The graph of trees we
consider is analogous to a graph of groups, with trees associated to edges and vertices and appropriate

inclusion maps of the trees.

First, let 3; be a standard sphere. Then, S NY; is a collection of disjoint circles. Consider the graph
t(X;) whose edges e correspond to the circles of intersection and vertices v complementary components,
with v a vertex of e if the boundary of the component corresponding to v contains the circle corresponding
to e. The co-orientation of S induces co-orientations for each of the circles of intersection, hence for the
edges of the graph ¢(%;).

Lemma 5.2.5. The graph t(3;) is a finite tree. Further, given a finite tree t, there is a collection of circles

in X; with corresponding tree t.

Proof. Firstly, we shall prove that the graph ¢(X;) is a tree. We prove this by induction on number of
circles of intersection of S N Y; in ¥;. If there is exactly one circle ¢; of intersection, then as it separates
the 2-sphere Y; into two components with closure of each component is a disc with boundary ¢;. Then,

the corresponding graph contains exactly two vertices and an edge joining them which is clearly a tree.

Now, suppose the result is true for any n circles of intersections of SN X; in ¥;. A tree with n edges
contains n + 1 vertices. So, these n circles of intersections separates Y; into n + 1 components. Note that
the terminal vertices of the tree ¢(X;) corresponds to disc components of the complements of these circles
in ;.

Now, suppose that there are n + 1 circles of intersections in ¥;, say ci,ca,...,cp,cnt1. For circles
€2,C3,...,Cn,Cnt1, We have the associated graph ¢'(%;) is a tree with edges eq, es3,..., €, e,11 and with
vertices vg, Vs, . . ., Unt1,Un+2. These vertices corresponds to the components of ¥\ (coUczU- - -UepUcyt1).
We denote these components also by va, vs, ..., Upt1, Unt2 - Now, ¢; is disjoint from all ¢, c3, ..., Cry Crg1.
So, it lies completely in exactly one component, say vg. It separates 3; in two components such that the
closure of each component is a disc with ¢; as boundary. Suppose these components are D1 and Dy. The
circle ¢1 separates vy into components v}, = vy N Dy and v}, = v NDa. So now, 3;\ ((c1UcaU- - -Ue, Ucny1)
has components vs, v3, ..., Vk_1, v;, vg, e ey Unt1,Unta. So, the associated graph ¢(%;) can be obtained from
t'(2;) by replacing the vertex vy by an edge e joining vj, and v}. Now, each edge in incidenting on v in
t'(X;) either incident at vj, or at vj/. The tree ¢/(X;) can be obtained from ¢(X;) by collapsing the edge e to
vertex vg. Then, one can easily see that ¢(3;) is tree as, if it contains any loop or circuit, then collapsing

the edge e to a vertex vy gives a circuit in ¢'(X;) which is impossible. Hence, the proof.

Now, we shall show that given a finite tree t, there is a collection of circles in 3; with the corresponding
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tree t. We again prove this by induction on number of edges in the tree ¢. Suppose ¢ contains exactly one
edge e with end vertices v; and vo. If we consider any circle ¢ on ¥;, then it separates ¥; in two boundary
components such that closure of each component is a disc with boundary c¢. Then, one can easily see the
corresponding graph is t. Suppose the result is true for any tree ¢ containing n edges. Now, consider a tree
t with n + 1 edges. Let v be a terminal vertex of t. Let e be the edge in t containing v as its end vertex.
Let the other end vertex be v'. By deleting the edge e from ¢, we get a tree ¢’ with n edges. By induction
hypothesis, we get disjointly embedded circles ¢y, ¢, ..., ¢, in X; with corresponding graph t'. Now, if we
consider a circle ¢; which completely lies in the interior of the component v’ corresponding to the vertex v’
of ¢’ such that ¢; bounds a disc in v’. Then, one can easily see that the associated graph is ¢ in this case.

Thus, for any tree ¢, we get a collection of disjoint circles in ¥; with corresponding tree ¢. O

If the edges of t are oriented, the circles can be co-oriented accordingly.

Let 3; be a lift of &; in M. We can associate the same oriented tree t(%;) to the sphere i-, where
each edge corresponds to the circle of intersection of ¥, with a translate g§ of S. Let Jis-- -, Gn, Where
gi € m (M), for 1 < i < n, such that gig intersects 3;. Let B; = [gig], for 1 < i < n, be the homology
class in Hy(M). Note that each B; crosses the class [3;]. As any pair of translates B; and Bjof B= [S] do
not cross, Bj is either on the positive or the negative side of B;. Similarly, if B;, B; and B, are translates

of B, we can determine whether B; is between B; and Bj.

Given a tree 7, we have a notion of when an edge e; of 7 is between two other edges e; and ez of 7. If

T is oriented, then we can speak of edges being on the positive side of 7.

Using Theorem 5.2.4, the following lemma is an easy consequence.

Lemma 5.2.6. Let By, ..., B, be translates of B. Then, there is an associated oriented tree with edges e;

corresponding to classes B; so that e; is on the positive side of e; if and only if Et(B;) C ET(B;)

Proof. We choose set E as {By, ..., By, B1,...B,}, where if B; is represented by oriented sphere gig, then
B; is a homology class of g?, sphere ¢S with opposite orientation. We define B; < B; if ET(B;) C ET(B;).
We can easily check “<” turns out be a partial order relation satisfying the hypothesis of theorem 5.2.4.
Hence, the result. O

Note that the oriented tree in the above lemma 5.2.6 associated to By, ..., B, is the tree ¢(3;).

We can similarly associate an oriented tree t(Py) to a component Py (and to a lift ﬁ;), with edges as
the pieces of S in Py and vertices as their complementary components. If 3; is a boundary sphere of Py,
there is a natural simplicial inclusion map from ¢(¥;) to ¢(Px) which respects orientations. Each edge in
the tree t(Py) associated to ]3; corresponds to a piece of a translate of S. There is at the most one piece
of any translate of S in ﬁ; . If we consider the homology classes of the translates of S intersecting at least
one boundary sphere of /PZ, then the oriented tree in the lemma 5.2.6 associated to these homology classes
is the oriented tree ¢(Py). Given an oriented edge e, it has an initial vertex and a ending vertex. We
can make the convention that initial and ending vertices of the edge e correspond to negative and positive

complementary components of the pieces of S corresponding to e inside Py, respectively.
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Each vertex V of the graph I' is trivalent. We associate oriented trees to the vertices and edges of
I' by taking the oriented trees associated to the corresponding component Py’s and standard spheres
3; respectively. If Ej, Fs and Fj3 are three adjoining edges to V, we have simplicial inclusion maps
ij 1 t(E;) — t(V) respecting the orientation. It is easy to see that the union of the images i, (¢(E};)) is all of
t(V). If e is an edge in ¢(V'), then e corresponds to a pants piece in Py, corresponding to V' if and only if it
has non-empty inverse image under all three inclusion maps 7;’s. If e has non-empty inverse image under
exactly two inclusion maps, say ;, and i;,, then e corresponds to a tube piece in P joining the standard
spheres corresponding to the ¢(E;, ) and t(E;,). Conversely, if e corresponds to a tube piece in Py, then
e has non-empty inverse image under exactly two inclusion maps ¢;’s. If e has non-empty inverse image
under exactly one inclusion map ¢;, then e corresponds to a disc piece with boundary on the standard

sphere corresponding to ¢(E;) and, conversely.

To the edges in t(V) = t(Py), we associate the following data: If an edge e in ¢(V) corresponds to a
tube piece in Py joining the boundary spheres, say ¥; and ¥,,. Then, the third boundary sphere ¥;, lies
either in positive or in negative complementary component of the tube in Pj. If the sphere X, lies in the
positive component, then we assign this sphere to the ending vertex of the edge e, otherwise to the initial
vertex. If an edge e in ¢(V') corresponds to a disc piece in P, with boundary circle on ¥;,, then it separates
the other two boundary spheres ¥;, and X;,. The sphere which lies in the positive component, we assign
it to the ending vertex of e and the other boundary sphere to the initial vertex of e. If an edge corresponds
to a pants piece in Py, then we do not associate any data to this edge. This is the graph of oriented trees
structure associated to S.

Our goal is to associate a graph of oriented trees to a class A satisfying the hypothesis of Theorem 5.2.3
and construct a corresponding normal sphere S. The class A can be represented by an embedded sphere in
M, say S'. Fix an orientation of S’. Then, S’ determines the the set E+(A) and E~(A). The orientation
on S’ induces an orientation on each translate ¢S’ of S’. It will then determine the sets E*(gA) and
E~(gA) for each g € m1(M).

Consider (Z, ,Zvl), where A is a lift of A and %; is a lift of ¥; such that A crosses 3;. We define (g, /27)
is equivalent to (g;l, gi) for all g € m1(M). Note that this is an equivalence relation. Given any lift f]?
of X; and an equivalence class [(g, /27)], there is a unique representative (ZO,,Z:O) equivalent to (Z, ,Evl),
where X9 = ¢%; and A® = gA. We define the partial order 7 < 7 as [(A, g)] < [(ﬁ’,i)] if and only if
E*+(A") c E*(A). One can easily see that this is well defined.

Similarly, we can consider pairs (K, ]3;), where A is a lift of A and J/Ek is a lift of P, such that A crosses
at least one boundary sphere of Pi. We define (g, Eﬁ) is equivalent to (gﬁ, ngS;;) for all g € m(M). Note
that this is an equivalence relation. Given any lift Py of Py and an equivalence class (A, /Pz)], there is
a unique representative (EO,EO) equivalent to (ﬁ,,kaL where 1”;0 = g,ﬁc and A° = gg. We define the
partial order ” < ” as [(4, Py)] < [(4, Py)] if and only if ET(A’) C E*(A). One can casily see that this is
well defined.

Let ¥; be a standard sphere and let ¥, be a lift to M. Then, as A has compact support, at most
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finitely many translates of A cross Y,;. Denote these translates A, ..., An, A1, ..., A,. By Lemma 5.2.6,
we can associate an oriented tree £(3;) to the collection {[(A1,%3)]; ..., [(An, 3)], [(A1, 23], - ., [(An, 9]}
respecting the relation ”<”. We associate this oriented tree to the edge in I' corresponding to ¥;. Next,
consider a component Pj, and let Fk be a lift to M. We consider the translates of A that cross at least one
of the boundary spheres of fﬁ;; Suppose these translates are By,...,B,, By,...,B,. Once more, we can
associate an oriented tree ¢(Py) to collection {[(By, Py)l; - .-, [(Br, P)], [(B1, Py)l, - -, [(By, Py)]} respecting
the the relation ”<”. To each edge e of t(P}) we associate the following data: Suppose that e corresponds
to a translate B; of A and B; does not cross some boundary sphere i of E Then, the sphere i is either
on the positive or negative side of B;. If ¥, is on the positive side of B;, we associate the sphere ¥; (image
of 3;) to the ending vertex of e, otherwise to initial vertex of e. We associate this oriented tree to the
vertex in I' corresponding to Py. If B; crosses all the boundary spheres of Py, then we do not associate

any data to the edge e.

Lemma 5.2.7. Let A;, A; and Ay be translates of A such that A; < A; < Ap. If Ay and Ay cross the
homology class of the boundary sphere i of ],5;, s0 does A;.

Proof. As Aj < Ay, ET(Ag) C ET(4;). As Ay crosses the homology class [’27] of the boundary sphere
%, we have E*([%;]) N Et(A}) # ¢. This implies E*([5,]) N E*(4;) # ¢.

As A; < A; | ET(A;) C ET(4;) and hence, E~(A;) C E~(A;). As A; crosses the homology class 4]
of the boundary sphere ¥;, we have E*([;]) N E~(A;) # ¢. This implies E=([;]) N E~(4;) # 6.

Thus, all the four intersections E*([%;]) N E*(A;) are non-empty. Hence, A; crosses the homology
class of the boundary sphere '27 of .’PS;; O

We shall define a map on vertices of £(3;) to vertices of ¢(Py), where ¥; is a boundary sphere of Py, as
follows: Let v be vertex in ¢(%;), Consider an edge e with v as its ending vertex. This edge e corresponds
to an equivalence class [(A;, 3;)]. As A; crosses 3, A; crosses Py. So, the class [(4;, Py)] corresponds to
an edge €'in t(Py). We map v to the terminal vertex of ¢’. Suppose e” is another edge with v as a terminal
vertex. The edge e corresponds to a class [(Aj,i)] As the classes A; and A; cross ¥; and the edges e
and e” are adjacent edges in t(X;), by Lemma 5.2.7, the classes [(4;, ﬁ;)] and [(4;, lrgk)} correspond to the
adjacent edges ¢/ and e in t(P;). Thus, the edges ¢/ and e’ have the same terminal vertex. This shows

this map on vertices is well-defined. This map can be naturally extended on edges.

Thus, we have a natural simplicial inclusion maps from the trees associated to each boundary component
of P to the tree associated to Pj respecting the orientation and the image under inclusion of the tree
associated to a boundary sphere is a subtree of the tree associated to P;. Thus, we have a graph of
oriented trees associated to A.

We are now in a position to construct the normal sphere in M representing A. By Lemma 5.2.5, we
have a collection of disjoint co-oriented circles in each standard sphere ¥; corresponding to the edges in
t(X;). We shall extend these to each component P}, using the following lemma. We use the inclusion maps

to regard the trees corresponding to the boundary spheres as subtrees of the trees corresponding to Pj.
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Lemma 5.2.8. Given an oriented tree t = t(Py) associated to Py and orientation preserving simplicial
inclusion maps i; of oriented trees t(X;) associated to the boundary spheres ¥; of Py so that the union
of the images i;(t(X;)) is all of t(Py), there is a collection of co-oriented disjoint pieces in Pj, whose
restriction to each boundary sphere X; is the given collection of disjoint circles corresponding to edges in
t(3;). Furthermore, using the data associated to each edge, we can choose each piece such that the boundary

sphere not intersecting that piece lies in any specified component of the complement of that piece.

Proof. We proceed by induction on the size of the tree ¢ = t(Px). Thus, if ¢’ is obtained from ¢(Py) by
deleting a terminal vertex v and its adjoining edge e, there is a collection of co-oriented disjoint pieces in Py
whose restriction to each boundary sphere is the given collection of disjoint circles except those associated
to e. Also, using the data associated to each edge, each piece is chosen such that the boundary sphere not
intersecting that piece lies in any specified component of the complement of that piece. We shall extend

this using one more piece corresponding to the edge e.

Let v’ be the vertex of e in ¢. The edge e has non-empty inverse image under the inclusion maps i;
in one or two or all three oriented trees ¢(3;) associated to the boundary spheres ¥; of Pj. The same is
true for vertex the v. Then, e corresponds to a circle in each of those boundary components X; of P, for
which e has non-empty inverse image in ¢(X;). Consider such boundary spheres ¥;’s of P;. As v’ is a
vertex of the tree ¢(3;), by the correspondence between circles and trees, the circle on X; corresponding to
e is in the component corresponding to v' in ¥; and it bounds a disc corresponding to v in the component
corresponding to v” in 3;. Note that t(X;) is a subtree of ¢(Py) and each component in 3; corresponding
to a vertex in t(X;) is the intersection of the component of Py corresponding to the same vertex with X;.
So, the circles corresponding to e in ¥;’s and the discs corresponding to v in X;’s lie inside the component
of Py corresponding to v'. Now, we can construct the piece as the neighborhood of a graph with terminal
vertices in the discs corresponding to the vertex v, inside the component corresponding to v" in Py. Further,
using the data associated to the vertex v or v/, we can construct the piece so that any boundary sphere X;

not intersecting the piece lies inside the appropriate component of P, — S. O

Now, we shall show that the graph of trees associated to the class A € mo(M) represents a normal
sphere S in M such that S represents the class A. Fix a lift A of A. We associate a subgraph 7 of T to
A as follows: If A crosses standard sphere '27-, then 7 contains the bivalent vertex v; corresponding to i
and the edges e! and e} containing that vertex v;. The other end vertex v} of each edge e?-, j=12isa
trivalent vertex in T which corresponds to a component of M — X. Each v} may be a bivalent or univalent
or a trivalent vertex in 7. If A does not cross some standard sphere, then 7 does not contain the standard
vertex corresponding this standard sphere. Hence, 7 contains no edges containing this standard vertex.
By Lemmas 5.1.9, 5.1.10, 7 is a finite tree. Consider a standard bivalent vertex of 7. It corresponds to a
standard sphere f)l- in M. Consider the image ¥; of f)i. We associated a tree ¢(X;) to X;. As A crosses
S;, there is an edge e in #(3;) which corresponds to [(4,%;)] and a circle in ;. We consider lift of this
circle to 3; (also to all the other translates of ;). The edge e is also in t(Py) and it corresponds to the

class [(g,/ﬁ;)], where P is a 3-punctured 3-sphere with ¥; as a boundary sphere. If the vertex v € 7
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corresponding to ,P; of which ¥; is a boundary sphere, is a non-standard bivalent vertex of 7, then data
associated e in t(Py) determines the value of the function € on the vertex v. If v is terminal vertex of 7,
then data associated to e determines the value of the function e} on the vertex v. Thus, we have the triple
(7, €, ey ) representing Ain M. We can construct pieces of a normal sphere in M representing A as follows:
We have chosen a circle which correspond to the class [(g, f)%)] on each ¥; as described above. We consider
a 3-punctured 3-sphere ,P; such that A crosses at least one boundary sphere of ,ﬁ; . Consider its image
Py.. Consider the images (in Py) of the chosen circles in the boundary spheres of 13; . For each boundary
sphere 3; of Py, we have a circle and this circle corresponds to an edge e; in ¢(%;). For each 4, under the
inclusion map from ¢(%;) to t(Px), the edge e; gets mapped to the same edge e in ¢(Py). Corresponding
to this edge e, there is a piece inside P, with boundary circles of the piece coinciding with the images of
the chosen circles in the boundary spheres of 13;; , by Lemma 5.2.8. Consider the lift of this piece in 13;
(and also to the translates of TD;) Thus, we get a normal sphere Sin M representing the class A. The
pieces of S get mapped to the pieces given by the the graph I' of trees associated to A. Similarly, we get
get normal sphere for each translate of A such that the normal sphere representing gg is a translate g§ .
Now, any piece P given by I' corresponds to an edge in ¢(V') = ¢(P%), for some k. This edge corresponds
to some class [(Z’, ﬁ;)] If g,/? = A, then the lift of this piece P to P is a piece of the normal sphere g§
representing gz. Therefore, there is a piece g~ 'P of S which is a g~ ! translate of P, is mapped to the
piece P. Thus, each piece in M given by I' is the image of a piece of the normal sphere S. Hence, we get

a normal sphere in M representing the class A.



6. GEOSPHERE LAMINATIONS FOR FREE GROUPS

Geodesic laminations (and measured laminations) on surfaces have proved to be very fruitful in three-
manifold topology, Teichmiiller theory and related areas. In this chapter, we construct analogously geo-
sphere laminations for free groups. They have the same relation to (disjoint unions of) embedded spheres
in the connected sum M = #,5% x S of n copies of S? x S! as geodesic laminations on surfaces have
to (disjoint unions of) simple closed curves on surfaces. The manifold M has fundamental group the free

group on n generators, and is a natural model for the study of free groups.

Laminations for groups (including free groups) have been constructed and studied in various contexts.
However, they are one-dimensional objects, corresponding to geodesics. We study here objects of codi-
mension one, which correspond to splittings. In the case of surfaces, dimension one and codimension one

coincide.

Our main result is a compactness theorem for the space of (non-trivial) geosphere laminations. We also
show that embedded spheres in M are geosphere laminations. Hence sequences of spheres, in particular
under iterations of an outer automorphism of the free group, have subsequences converging to geosphere
laminations. It is such limiting constructions that make geodesic laminations for surfaces a very useful
construction.

Our construction is based on the normal form for disjoint unions of spheres in M due to Hatcher. The
normal form is relative to a decomposition of M with respect to a maximal collection of spheres in M.
This is in many respects analogous to a normal form with respect to an ideal triangulation of a punctured
surface. In particular, isotopy for spheres in normal form implies normal isotopy, i.e., the normal form is
unique.

As in the case of normal curves on surfaces and normal surfaces in three-manifolds, we can associate
the number of pieces of each type to a collection of spheres in Hatcher’s normal form. However, these
numbers do not determine the (collection of) spheres up to isotopy. We instead proceed by considering
lifts of normal spheres to the universal cover M of M.

In the universal cover M , a normal sphere is determined by a finite subtree 7 of a tree T" associated to
M together with some additional data. We construct geospheres in M by dropping the finiteness condition.
We construct an appropriate topology on the space of geospheres and show that the space is locally compact
and totally disconnected.

The lift of a normal sphere in M to its universal cover satisfies an additional condition, namely it is

disjoint from all its translates. This can be reformulated in terms of the notion of crossing of spheres in M ,
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following Scott-Swarup, which depends on the corresponding partitions of ends of M. We show that there
is an appropriate notion of crossing for geospheres, which is defined in terms of the appropriate partition
of ends (into three sets in this case).

Our main technical result is that crossing is an open condition. We recall that this is the case for crossing
of geodesics in hyperbolic space, and that this plays a central role in the study of geodesic laminations.
The proof of compactness of the space of geospheres uses the result that crossing is open.

The construction based on normal forms is not intrinsic, as it depends on the maximal collection of
spheres with respect to which M is decomposed. However, we show that geospheres can be described in

terms of their associated partitions. This gives an intrinsic definition.

6.1 Geospheres

To construct geosphere laminations in M, we first need the analogue of (not necessarily closed) geodesics
in M. We first construct the analogue of geodesics in M , which we call geospheres. We then consider
when two such geospheres cross, and deduce basic properties of crossing. This allows us to study the
appropriate notion of geospheres embedded in M. Our main technical lemma says that crossing is an open
condition. This allows us to construct limiting laminations and prove a compactness theorem for geosphere
laminations in M.

In Chapter 5, we have seen that a normal sphere in M is determined by a triple (7,¢,e4), with 7 a
finite subtree of T" with each univalent vertex of 7 is a trivalent vertex of T or 7 is a standard vertex, €
an assignment of sign to each non-standard bivalent vertex of 7 and e, an assignment to each univalent

vertex v of 7 an edge containing v and not contained in 7.

Geospheres are generalizations of such spheres where we drop the condition that 7 is finite.

Definition 6.1.1. A geosphere o in Mis a triple o = (7, ¢, e4) with

e 7 a subtree of T such that univalent (terminal) vertices of 7 are trivalent vertices in T or 7 is a

standard vertex of T'.
o If B(7) is the set of non-standard bivalent vertices of T, € is a function € : B(7) — {+,—}.

e If C(7) the set of univalent vertices of 7, e; : C(1) — EDGE(T) is a function to the edges of T so
that for v € C(71), ex(v) € EDGE(T) is an edge containing v and not contained in 7.

Let GS(M) be the set of such geospheres in M. To construct a topology on GS(M), we consider
restrictions to compact subtrees x C T such that each of its univalent vertex is a trivalent vertex in T'. We
call a tree containing no edge as a trivial tree. We define for a non-trivial tree k, N (k) is the set of points

of distance at most 1 from k. For a trivial tree x, we define N (k) = k.

Henceforth, we consider only subtrees x of T" such that all univalent vertices of x are trivalent in T or

K 1s a trivial tree.
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Definition 6.1.2. If 0 = (7,¢,e) is a geosphere, then the restriction res,(c) of o to k is the triple

U|H = (T N N(Kl)v e‘B(T)ﬂli7 €+‘C(r)rm)~

Note that the valence of a vertex v of 7 such that v € k is determined by 7 N N(x). Further, for
univalent vertices v of 7 N k, the edges ey (v) (and e_(v)) are in N(7). Thus, we can view res|, as a map
from GS(M) to the set GS(r) defined as below:

Definition 6.1.3. For a subtree x C T, we define GS(k) to be the set of triples o = (7,¢€,e4) with

e 7 a subtree of N (k) or the empty graph.

o If B(7) is the set of vertices 7 N k which are non-standard bivalent vertices in 7, € is a function
e:B(r) = {+,—}

o If C(7) is the set of vertices of 7 N k which are not standard vertices in 7' and univalent in T,
ey : C(r) — EDGE(T) is a map to the edges of T so that for v € C(7), e (v) is an edge containing

v and not contained in 7.

Note that if « is a finite subtree of T', then the set GS(x) is finite. We say that an element o = (7,¢€,e4)
of GS(k) is non-trivial if 7 is non-empty.

Suppose £’ is a subtree of T such that £’ D k, then we can similarly define a restriction map resy . :
GS(k') — GS(k). Further, res, = res, - ores,s. In particular, we can denote without ambiguity the map
TeSy, s as simply res,.

We define a topology on G S (]\7 ) using the restriction maps. Namely, for each subtree x of T and each
oo € GS(k), consider the set

U(k,00) = {0 € GS(M) : resn(c) = oo}

Lemma 6.1.4. The sets U(k,00) for finite subtrees k of T form a basis for a topology on GS(M).

Proof. Showing that the sets U(k, 0¢) form a basis for a topology on GS (M ) is equivalent to showing that
if U(k?,0}), 1 < i < n is a finite collection of basic open sets and o € N;U(x*,08), then there is a basic
open set containing o and contained in each of the sets U(k?, o).

To show this, let x be the finite subtree of T spanned by the subtrees x?, and let og = o|,. Note that
as 0 € U(k',0}), resyi(0) = 0. Hence, if o/ € U(k,0|.), as k D K, res,i(0’) = res.i(0) = of. Thus,

U(k,ols) C U(k', ad), for each i as required. O

Henceforth, consider G.S (1\7 ) with the topology whose basis is given by the sets U(k,0p) as above. By
construction, G'S (]\A/[/ ) is second countable. If kK = k1 C ko C ... is an exhaustion of T by finite subtrees
of T, then for each i, the collection {U(k;,0) : 0 € GS(k;)} is finite. Hence, one can easily see that the
collection U;{U(k;,0) : 0 € GS(k;)}; gives a countable basis for the topology on GS(M).
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If k C T is a finite tree and o1, o2 are elements of GS (k) such that o1 # o9, then U(x, 01)NU(K,02) = ¢
and GS(M) = U(k, 0;), where o; € GS(k).
We see that the space GS (M ) is Hausdorff, in fact totally disconnected.

Lemma 6.1.5. The space GS(M) is totally disconnected.

Proof. Let o = (77,€', €% ), i = 1,2, be two distinct points in GS(M). It is easy to see that for some finite
tree K, res,(ot) # res.(0?). As GS(k) is a finite set, it follows that we can partition G'S(k) into finite sets
S1 and Sy with res.(c?) € S;, for i = 1,2.

Let U; = {o € GS(M) sresg(o) € S;}, i =1,2. Then, U; are disjoint (finite) unions of basic open sets
with o? € U;. This shows GS(M) is Hausdorff.

If A is any subset of GS (M ) containing more than one point, then we can consider two distinct points
ot = (r%,€,e'), i =1,2 in A. We can find open sets U;, i = 1,2, as above with o’ € U;. Then, the sets
ANU; and AN U, gives separation of A. O

In fact, we can see that if o = (7%, €', €% ), i = 1,2, are two distinct points in GS(M), then we can find
disjoint open sets U;, i = 1,2 with ¢ € U; and Uy UU, = GS(M).

The main result we need about the topology is the following compactness theorem. This is the analogue
of the fact that the set of geodesics in hyperbolic space (more generally, in any Riemannian manifold) that

intersect a fixed compact set is compact.

Theorem 6.1.6. For a fized finite subtree k C T, the set of all geospheres whose restriction to k is

non-trivial is compact.

Proof. Let A be the set of all geospheres whose restriction to  is non-trivial. As GS (M ) is second countable
and Hausdorff, it is metrizable. Hence, it suffices to show that every sequence in the given subspace A has
a convergent subsequence in A.

Let k = k1 C ko C ... be an exhaustion of T by finite subtrees of T'. Let o; be a sequence of geospheres
in M whose restriction to & is non-trivial. We construct a convergent subsequence of o;.

Firstly, for each i, res,, (0;) € GS(k1) and GS(k) finite set. Hence, on passing to a subsequence (which
we denote by 0;), we can assume that res,, (o;) is constant. Similarly, passing to a further subsequence, we
can assume that res,,(c;) is constant. Iterating this and passing to a diagonal subsequence, we obtain a
sequence, which we also denote o;, so that the restriction of o; to each of the sets k; is eventually constant.
More concretely, we can assume that for j,k > i, resy, (o) = resy, (ok).

We claim that the subsequence o; constructed as above has a limit o = (7, ¢, e;). Namely, to determine
whether an edge e is in 7, consider ¢ large enough that e € k;. Then, as res,, (c;) = resy,(0;) for j >
(taking k = i), either e € 7; for all j large enough or e ¢ 7; for all j > 4, where 7; is the tree corresponding
to oj. In the former case, we declare e € 7 and in the latter case e ¢ 7. We can see 71 C 7 C ... is an

exhaustion of 7. We similarly can decide what vertices are in 7 and also the values of the functions ¢ and

€.
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As the restriction of each o; is non-empty, the limiting subgraph 7 is non-empty.

One can show that 7 is connected. Namely, is v and w are vertices of 7, for j sufficiently large, v and
w are contained in the tree 7;, hence there is a unique reduced path A between them. It follows that A C 7
by the definition of 7.

Thus, 0 € GS (M ). Finally, as x; is an exhaustion of T by compact subtrees, any compact subtree x’
is contained in «; for some j. Hence, for k > j, res./(ox) = res, (o). By the definition of the topology on

GS(M), we see that o; — 0.
O

As a corollary, we see that GS (M ) is locally compact. In fact, every geosphere o is contained in a

compact open subset of GS (M ).

Proposition 6.1.7. Any geosphere o is contained in a compact open subset U of GS(M).
Proof. Tt is easy to see that there is a finite tree k such that res, (o) is non-trivial. Let
U={0" € GS(M): res.(c) = res.(c")}
By Theorem 6.1.6, U is compact. The set U is open by definition of the topology on GS(M). O

In Chapter 5, we have seen that a normal sphere S in M is determined by triple o = (7,€,e4), with
7 is a finite subtree of T, ¢ is an assignment of sign to each non-standard bivalent vertex of 7 and e
an assignment to each univalent vertex of 7 an edge containing v and not contained in 7. Hence, normal
spheres M are geospheres.

Let 5(1\7) be the set of all normal spheres in M, i.e., S(]\7) is the set of all geospheres o = (7, ¢, e4),

where 7 is a finite subtree of T.

Proposition 6.1.8. The set S(]T/f) is the set of isolated points of GS(M) and is dense in GS(M).

Proof. Let 0° = (79, €°,¢%) be a normal sphere in M. We see that res?(0°) = ¢°. Consider U(r°,¢°). If

o' =(r',€,¢e,) e U(r° "), then res?(o’) = ¢°. By definition of res,

res? (@)= ("n N(TO)7 €1B(r') N 70, €/+|C(T')mro) = (7'0, €Y, 63_).

T

As 7' N N(7Y) = 7°, we have 7/ = 70 and ¢ = €%, ¢/, = €. Thus, ¢/ = ¢°. This implies U(7%,0°) = {s°}
and hence, oy is an isolated point in GS (M ).

Let 0 = (7,¢,e4) be a geosphere in M, where 7 is a subtree of T" with each univalent vertex of 7 a
trivalent vertex in 7. We call such a geosphere as a non-trivial geosphere. Let x be subtree of T. We define
res”(o) to be the triple (7 N &, €[p(r)nrs €+ |c(r)nk)- Suppose & is a finite subtree of T" such that res” (o)
is non-trivial in the sense that 7 N x contains at least one edge. Let kK = k1 C ko C ... be an exhaustion
of T' by finite subtrees of T'. Let 0; = res" (o) = (7 N ki, €| BTy, €+lc(T)nx, ). To each univalent vertex

v & C(7) of TN k;, we assign an edge €/, (v) containing v and contained in 7\ x;. Note that a univalent
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vertex of 7 N k; is a trivalent vertex in 7. Thus, we have a function €/, : C(r N k;) — EDGE(T) from
univalent vertices of 7 N k; to edge set of 1" whose restriction on C(7) N K; ie equal to ey|c(r)ns. Let
o; = (70 ki, €| B(ryne;» €4 lor)nk, ). Then, for each i, o} € S(M) c GS(M) and res,, (o}) = resy, (o).
Therefore, o’ € U(k;, resy, (o)), for each i.

Now, we claim that the sequence o; converge to o in GS (M ). Let k' be subtree of T. Consider the
basic neighborhood U(x’,res, (o)) of o in GS(M). For large enough i, &’ C ;. Then, U(rj,resy,; (o)) C
U(r',res, (o)) for all j > i. This implies 0 € U(x',res, (o)) for all j > 4. Hence, the sequence o; converge
to o in GS(M). This implies every geosphere o ¢ S(M), is the limit of a sequence of points of S(M) and
hence, it is not an isolated point in GS(M). This shows that the set S(M) is the set of isolated points of

GS(M) and is dense in GS(M). O

6.2 Crossing of geospheres

As in the case of spheres, we can associate to a geosphere a partition of the ends of M , which can be
identified with the set of ends E(T). However, in the case of a geosphere o = (7,¢, e, ), we get a partition

into three sets

E(T) = E%(0) 11 E*(0) 11 E~ (o)

with £ (o) closed and E* (o) open.

The set E* (o) is defined to be the set of ends of 7. It is easy to see that, as 7 is a subtree of T, 7 is
closed. Hence, E*° (o) is closed in E(T). Observe that E>(c) can also be interpreted as the set of ends of
N(r).

The complement V(o) =T — N(7) of N(7) is an open set. We shall partition the components of V(o)
into sets V't (o) and V(o) using the data for o, in analogy with the case of spheres. We shall define
E*(0) as the set of ends of VE (o).

Let Vj be a component of T'— N(7). Then, as 7 is a tree, the closure of Vj contains exactly one vertex
w of N (1), which in turn is a distance 1 from a unique vertex v of 7 which is either bivalent or univalent.
If v is bivalent, we say that Vj is positive (and w is on the positive side of v) if e(v) = + and say that Vj
is negative otherwise. If v is univalent, we say that V; is positive (and w is on the positive side of v) if the
edge e (v) joins v to w and say that Vj is negative otherwise.

By the above rule, each component of V(o) is assigned a sign. We define V(o) to be the union of the
positive components and V ~ (o) the union of negative components. We define E* (o) as the set of ends of
VE(a).

Given two geospheres o1 and o9, we can define when they cross.

Definition 6.2.1. The geospheres o = (77, €', €', ), i = 1,2 cross if either each of the four sets

E*(0") N (E¥(0?) U E>(0?))
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is non-empty or if each of the four sets
E*(0®) N (E*(c') UE>(a"))
is non-empty.

We remark that it is necessary to consider both the above collections of four sets separately.

2 is on the positive side of

The above definition is motivated by the observation that if, for instance, o
o, then all ends (in fact points) on either the negative side of o2 or the positive side of o2 (the side away
from o!) are on the positive side of o'. Hence, one of the intersections E~(c!) N (E*(02?) U E>(0?)) is

empty.
Lemma 6.2.2. Let o° = (7, ei,ei), i=1,2 be geospheres. If 7' N 12 = ¢, then o' and o* do not cross.

2 is contained

Proof. As 7! and 72 are subtrees of T'and 7'N72 = ¢, for some component Vi of T—N(71), 7
in Vi'. Let v! be the point in 7! that is unit distance from V. Without loss of generality assume V' is
positive.

As 72 is contained in the closure of V), E>°(0?) is contained in the ends of V!, and hence is contained in
E*(o'). Further, as 71 is a tree, 7! is contained in a component Vi of T'— N(72) and all other components
of T — N(r2) are contained in Vj}. Hence, if V¥ is positive, then E~(0?) is contained in the ends of V},
and hence is contained in E* (o).

Thus, as V! and Vi are positive, the intersection E~(o!) N (E~(0?) U E*~(0?)) is empty. Considering
other cases similarly, we see that in each case, at least one of the intersections E* ()N (E*(c?)UE>(0?))
is empty.

Reversing the roles of 7! and 72, we see that one of the four intersections E*(02?) N (E* (') U E> (o))

is also empty. Thus, o' and o2 do not cross. O

Our main technical result is that crossing is an open condition.

Lemma 6.2.3. Suppose o° = (7%, ¢!, ei_), i =1,2 cross, then there are open sets U', i = 1,2, with o' € U?

s0 that if s* € U' fori= 1,2, then s' crosses s>.
Proof. Without loss of generality, we assume that each of the four intersections
E*(0') N (E*(0®) UE>(0?))
is non-empty. We shall construct open sets U? containing o’ so that for s* € U?,
E*(s")n(E*(s*) UE™(s*) # ¢

We can similarly construct open sets for which each of the other three intersections is non-empty. The

intersections of the four pairs of open sets thus constructed give the required neighborhoods of o*.
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We first make some observations. Suppose £ € ET(o!) is an end. Then, there is a component Vg of
T — N(1') so that £ € E(Vj). The intersection of the closure of V with N(71) is a vertex w, which is unit
distance from a unique vertex v of 7'. Further, the vertex is bivalent or univalent, with w on the positive

side of v.

0

Let # be a finite tree containing v. Then, if (79, €, €}) is another geosphere with res, (6°) = res, (o),

then as N(k) N7 = N(k)N7!, wis a vertex of N(7°) =70, visin 70. As €® = ¢! and € = e, w is on the

Yis connected, that Vj is a component of T — N (79)

positive side of v with respect to o°. It follows, as T
which is positive.

Suppose now that ¢ is an end in E* (o) N (E*(0?) U E*(0?)). We consider two cases. Firstly, if
¢ € Et(a') N E*(0?), then as above we have positive components Vg of T — N(r%) containing ¢ and
corresponding vertices v* and w’. Let x be a finite tree containing v! and v? and let U = U(k, res,(c?)).

Suppose s* = (t',€',e’.) € U, i = 1,2, then, as above, V{ is a component of T'— N (t) and is positive.
Hence, £ € ET(s%) fori = 1,2, i.e.,, £ € ET(s}) N ET(s?) C E*(s!) N (ET(s%) U E><(s?)).

Next, consider the case when & € ET(a') N E>(0?). Let V be the component of T'— N(o!) that has
¢ as an end and let v and w be as above. As & € E*(0?), the intersection 72 N V; is infinite.

Note that as o' and o2 cross, we cannot have 7' N 72 = ¢, as this would imply that one of the
intersections £~ (o!) N (E*(02) U E*(0?)) is empty. As 72 is connected and 71 N 72 # ¢ # Vo N 72, it
follows that v and w are vertices of 72.

Let  be a finite tree containing v and w and let U? = U(k,7es,(c")) and s® be as before. As in the
first case, if s' € U, then Vj is a positive component of T'— N (t!). To complete the proof, we show that
if 2 € U?, then the set of ends of Vj contains either a point of E>°(s2) or a point of E*(s3).

To see this, observe that as 72 N V; is infinite and 2 N N(k) = 72 N N(k), with x a tree containing w,
2 N Vp is non-empty. Suppose t2 N V; is infinite, then an end of 2NV} lies in Vy N E*°(s?), as claimed. On
the other hand, if 2 NV} is finite, it has a terminal vertex. By Lemma 5.1.8, a component of T — N (¢?) is
positive and contained in V°. An end of this component gives an element E*(s3) which is an end of Vj,
hence in E*(s!).

Thus, we have shown that in all cases ET(s') N (E¥(s2) U E*¥(sg)) is non-empty for s* € U*.

6.2.1 Geosphere laminations in M

We are now in a position to define geosphere laminations in M, which are the analogues of embedded
geodesic laminations in a surface. Recall that the group 71 (M) acts on M by deck transformations.
Geosphere laminations are the natural completion of the inverse image in M of a sphere (or a collection of

spheres) in M.

Definition 6.2.4. A subset X C GS(M) is said to be embedded in M if for 01,09 € X, 01 does not cross

ag9g.
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Definition 6.2.5. A geosphere lamination in M is a subset I' C GS(M) such that

1. T is closed in GS(M).
2. T is invariant under the action of m (M).

3. I' is embedded in M.

We denote the set of geosphere laminations in M by L(M). We shall see that this contains all collections
of disjoint, non-parallel spheres in M, and that the space of non-trivial geosphere laminations is compact.

This allows us to consider limits of spheres in M.

We first observe that the condition that I' is closed is easy to achieve.

Lemma 6.2.6. Suppose X C GS(]T/.f) is embedded in M, then so is its closure X.

Proof. Suppose o, and o9 are geospheres in X that cross. By Lemma 6.2.3, there are open sets U; with
o; € U; so that if s; € U;,i = 1,2, then s; and sy cross. As o; € X, there are elements s; € X N U;,
which thus cross. But, this contradicts the hypothesis that X is embedded in M. Thus, X is embedded in
M. O

It is clear that the closure of a 7 (M)-invariant set in GS(M) is 7 (M)-invariant. Thus, if X is not
closed but satisfies the other two conditions for being a geosphere lamination, then its closure is a geosphere

lamination.

6.2.2 Topology on L(M)

We shall make the set L(M) of sphere laminations in M into a topological space by defining a topology on
L(M). To do this, we first define a topology on the set of closed subsets of GS(M), which we denote by
C(M).

The topology we construct is analogous to the Hausdorff topology. Namely, if ' C GS (1\7 ) is closed
and k is a finite subtree of T, consider the image res,(I') of " under the restriction map. For S C GS(k),
consider the set

U(r,S) = {I € C(M) : res, (') = S}.

Lemma 6.2.7. The sets U(k, S) for finite subtrees k of T form a basis for a topology on C’(M)

Proof. Showing that the sets U(k, S) form a basis for a topology on C (M ) is equivalent to showing that if
U(k', S%), 1 <i < nis a finite collection of basic open sets and I' € N;U(x?, S%), then there is a basic open
set containing I' and contained in each of the sets U(x?, S).

To show this, let k be the finite subtree of T' spanned by the subtrees x?, and let Sy = res,(T'). Note
that as I' € U(k?,S%), res,:(I') = S*. Hence, if I" € U(k, So), as k D k', res.i(I') = res,:(I') = S¢, for
each i. Thus, U(x, So) C U(k,0}), for each i as required. O
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Thus, the sets U(k, S) form the basis for a topology, which we take to be the topology on C(]Tf) Note
that as GS(k) is finite, so is the collection of subsets of GS(k).

If k € T is a finite tree and S; and Sy are subsets of GS(k) such that Sy # Ss, then U(k, S1)NU(k, S2) =
¢ and C(M) =11 U(k, S;), where S; is a subset of GS(k).

We can easily see that C' (M ) is second countable. We see that the topology is Hausdorff, in fact totally

disconnected. This is based on the following lemma.

Lemma 6.2.8. IfI'1,I's C GS(]T/.?) are closed sets with T'y # T'y, then for some finite subtree k of T,
resg(T'1) # resg(T2).

Proof. As T'y # Ty, without loss of generality, there is a point ¢ € T’y \ I's. As I's is closed subset of
GS(M), there is a basic open set U = U(k,00) with ¢ € U but Y NTy = ¢. But this means that
resg (o) € resg (1) \ resx (). Hence, res,(T'1) # res,(Ta). O

It is easy to deduce that the topology on C’(M ) is totally disconnected. The proof is analogous to
Lemma 6.1.5.

Lemma 6.2.9. Given I'1,T'> € C(M), there are disjoint open sets Uy,Us C 0(1\7) with T'; C U; so that
Uy Ully = C(M).

We can consider S(M) as a subset of C(M). If o = (r,e,e;) € S(M), then {oc} € C(M) and
res (o) = o € GS(7). One can easily see that U(7, {o}) = {{c}}. For, any geosphere whose restriction to
T is 0 is equal to o only. Thus, every point of S(M) is an isolated point of C(M)

The topology on C’(M) restricts to one on L(M). To study the restriction, the following lemma is

useful.

Lemma 6.2.10. The subspace L(M) C C(M) is closed.

Proof. As the topology on C (]Tj ) is second countable and Hausdorff, it suffices to show that if Ty is the
limit of a sequence I'; € L(M), then Ty € L(M). Firstly, as C(M) is Hausdorff, limits are well-defined.
Hence, if g € m1(M), as gI'; = T'; and gI'; — gy (as the deck transformation ¢ is a homeomorphism),
gTo = Tg. Thus, Ty is 7 (M)-invariant. Further, Ty is closed as it is an element of C(M) Thus, to
complete the proof it suffices to show that I'g is embedded in M.

Suppose I'y is not embedded in M, then there are elements 01,02 in I'g that cross. By Lemma 6.2.3,
there are open sets U; with o; € U; so that if s; € U;, then s and s, cross. By the definition of the topology
on G’S(M)7 for some finite tree k, U; contains the open set U(k,res,(0;)). As I'; — T, for i sufficiently
large, res,(T;) = res.(Tp), in particular, there are elements s; € T'; with s; € U;. It follows that s; and so
cross, contradicting the hypothesis that I'; € L(M). O
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6.3 Constructing Geosphere laminations

In this section, we first see that (collections of) spheres in M have associated geosphere laminations. We
then see how limits of spheres give rise to geosphere laminations.

Suppose first that ¥’ is a collection of disjoint, non-parallel spheres in M which are in normal form
with respect to . Let %’ be the collection of lifts of the spheres in ¥, i.e., the inverse image of ¥’ under
the covering map M — M. Each element of 3 is a sphere, and hence, gives a geosphere. Thus, ¥/ can be
viewed as a subset of GS(M).

It is immediate that the set %’ is m; (M)-invariant. The set %’ is embedded in M as it is a union of
disjoint spheres. To see that 3 gives an element in L(M)), it only remains to show that the set Y is a
closed subset of GS(M).

Lemma 6.3.1. The set ¥/ is closed in GS(M).

Proof. The tree 7 corresponding to each element o € >/ is finite, with diameter determined by the corre-
sponding sphere in M. Hence, there is an integer D > 0 such that the trees 7 corresponding to elements
o € ¥/ have diameter at most D.

Suppose now oy is in the closure of ', with 7y the tree corresponding to og. Let v be a vertex of 7
and let x be the tree consisting of all points of distance at most D from v.

As 0y is in the closure of X/, res.(0g) = res, (o) for some o € X', If 7 is the tree corresponding to o,
then v € 7 and 7 has diameter at most D. It follows that 7 C &, and hence, 7 = 7N N (k) and is contained
in the interior of N(k). As 1o N N (k) = 7 N N(k), 70 N N (k) is contained in the interior of N(x). Hence,
as 7o is connected, 7o = 19 N N (k) = TN N(k) = 7. As res,(09) = res, (o), it follows that oy = o, hence

0o € ¥. Thus, any element of the closure of ¥’ is in ¥/, showing that >’ is closed. O

Thus, given any embedded sphere S in normal form with respect to ¥ in M, we have a geosphere
lamination associated to it, namely, the inverse image of S in M under the covering map. So, we can
regard S as a geosphere lamination in M. Let So(M) be the set of isotopy classes spheres in M. Then,
So(M) can be considered as subset of L(M).

Definition 6.3.2. Let I' be geosphere lamination in M. A geosphere o € T is called a leaf of T'.

Definition 6.3.3. A subset I of a geosphere lamination T is said to be sublamination of T" if T itself is

a geosphere lamination.

Definition 6.3.4. A geosphere lamination I' is said to be maximal if T" is not a proper sublamination of

any geosphere lamination in M.

Definition 6.3.5. A geosphere lamination I' is said to be minimal if no proper subset of I' sublamination
of I.
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6.3.1 Example of a geosphere lamination as the limit of a sequence of spheres

Consider M = #55% x S1. Then, 7 (M) = G, which is a free group of rank 2. Fix a basis {a1, a2} of G.
Then, there exists a collection ¥’ = {A, B} of disjoint, embedded 2-spheres in M, related to this basis:
Each sphere A and B has two sides, denoted by A*™ and A~ for A and BT and B~ for B. The element a;
is represented by a closed path 7, starting from the base point zg of M which does not belong to A and
B, going to A~ piercing A, and returning to the base point from AT. We can choose ~; such that it does
not intersect B. Similarly, the element a4 is represented by a closed path v, starting from the base point
xo of M, going to B~ piercing B, and returning to the base point from B+. Again, we can choose 7, such

that ~9 does not intersect A and ~;.

Extend the collection ¥’ to a maximal collection X = {A, B, C'} of disjointly embedded 2- spheres in M.
The sphere C has two sides, denoted by C* and C'~. Cutting M along X, then produces two 3-punctured
3-spheres, say P, and P,. Suppose we have chosen sphere C such that P; has boundary spheres A™, BT C*
and P, has boundary spheres A=, B~,C~.

6.3.2 The universal cover M and the related tree T

Let 3 be the inverse image of ¥ in M. To the pair (M7 %), we have the tree T associated. For a lift Py of
Py, we have Y-shaped subtree of T such that the end vertices of this subtree correspond to lifts of AT, B+
and C*. We denote these end vertices again by AT, BT and C*. We call such subtrees as Yp, type of
subtree of T'. Similarly, For a lift E of P, we have Y-shaped subtree of T such that the end vertices of
this subtree correspond to lifts of A=, B~ and C~. We denote these end vertices again by A=, B~ and
C~. We call such trees as Yp, type of subtrees of T'.

Consider spheres S,, in M as follows (see figure 6.1): We construct S,, by taking a copy of A" in Py
and a copy of A in P». We join them by a tube which represents afa;. We get two disc pieces of Sy,
one in P; with boundary on C* and one disc piece in P, with boundary on C~. S, has n tube pieces
in P, joining BT to CT and n tube pieces joining C~ to B~. We give an orientation to each S,, such
that if we consider the triple (7", €", €’} associated to a lift S,, has the following form : The tree 7" is a
finite subtree of T" and the terminal vertices of the tree 7" are trivalent vertices in 7. The tree 7" has two
terminal vertices: one terminal vertex vy in a Yp, type of subtree of T" such that the edge in 7™ containing
vy joins the vertex vy to the vertex CT of Yp, and the other terminal vertex vy in a Yp, type of subtree of
T such that the edge in 7" containing v joins the vertex vs to the vertex C'~ of Yp,. For all the other Yp,
type of subtrees with which 7" has non-empty intersection with Yp,, 7" N Yp, contains an edge joining the
vertex CT to the trivalent vertex of Yp, and an edge joining the trivalent vertex of Yp, to the vertex BT of
Yp,. Similarly, for all the other Yp, type of subtrees with which 7" has non-empty intersection, 7" N Yp,
contains an edge joining the vertex C'~ to the trivalent vertex of Yp, and an edge joining the trivalent

vertex of Yp, to the vertex B~ of Yp,.

For every non-standard bivalent vertex v of 7", €"(v) is positive. For terminal vertices v; € aYp, and

vy € aYp, of T, €t (v1) is the edge joining the vertex BT and e’} (v2) is the joining the vertex B~.
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P1 P2

Fig. 6.1: The spheres Sy,

6.3.3 The geosphere lamination T’

Consider the set I' which consists of the followings geospheres:

1. A geosphere 0 = (7,¢,e), where 7 has exactly one terminal vertex v in a Yp, type of subtree of
T with ey (v) is the edge joining v and the vertex BT of that Yp,. The edge in 7 containing the
terminal vertex v joins the vertex v to the vertex C* of Yp,. For all the other Yp, type of subtrees
of T" with which 7 has non-empty intersection, 7 N Yp, consists of two edges, one edge joining the
vertex BT and the trivalent vertex of Yp, and the other edge joining the the trivalent vertex to CT.
For all the Yp, type of subtrees of 7" with which 7 has non-empty intersection, 7 N Yp, consists of
two edges, one edge joining the vertex C'~ and the trivalent vertex of Yp, and the other edge joining
the the trivalent vertex to B~. For each non-standard bivalent vertex v’ of T, e(v’) is positive. The

set I' contains all the translates of o.

2. A geosphere ¢’ = (7/,¢, €/ ), where 7/ has exactly one terminal vertex v in a Yp, type of subtree of
T with €/, (v') is the edge joining vy and the vertex B~ of the Yp,. The edge in 7’ containing the
terminal vertex v’ joins the vertex v’ to the vertex C~ of Yp,. For all the other Yp, type of subtrees
of T with which 7/ has non-empty intersection, 7 N Yp, consists of two edges, one edge joining the
vertex C'~ and the trivalent vertex of Yp, and the other edge joining the the trivalent vertex to B~
of Yp,. For all the Yp, type of subtrees of 7" with which 7/ has non-empty intersection, 7/ N Yp,
consists of two edges, one edge joining the vertex BT and the trivalent vertex of Yp, and the other
edge joining the the trivalent vertex to Ct. For each non-standard bivalent vertex v’ of 7/, €'(v') is

positive. The set I contains all the translates of o’.
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3. A geosphere 0" = (7",€",€/[), where 7 has no terminal vertex. For all the Yp, type of subtrees of
T with which 7”7 has non-empty intersection, 7/ N Yp, consists of two edges, one edge joining the
vertex BT and the trivalent vertex of Yp, and the other edge joining the the trivalent vertex to CT.
For all the Yp, type of subtrees of T with which 7/ has non-empty intersection, 7"/ N Yp, consists of
two edges, one edge joining the vertex C'~ and the trivalent vertex of Yp, and the other edge joining
the the trivalent vertex to B~. For each the non-standard bivalent vertex v’ of 7, e(v’) is positive.

The set I" contains all the translates of ¢”.

Note that for any geosphere 8 = (77, €°, ei) €T, the tree 77 does not contain any vertex of type A*

and A~. Therefore, 3 does not cross sphere A and its translates, where A is a lift of the sphere A. Now,

clearly I' is 7r;-invariant.

Lemma 6.3.6. The set I' is embedded in M.

Proof. We can easily see that given a type (1) geosphere o = (7,¢,e4), it is the limit of the sequence of
geospheres :S;; = (", €", el ), where :9; is a lift of S,, such that each 7" has a terminal vertex in the same
subtree Yp, of T' where 7 has its terminal vertex, see Proposition 6.1.8. As crossing of geospheres is an open
condition (Lemma 6.2.3), we can see that o and its translate go do not cross, for any g € 71 (M). Similarly,
we can show that for a type (2) geosphere ¢’, ¢’ and go’ do not cross, for any g € m (M). Consider a
type (1) geosphere o = (7,¢€,e4) and a type (2) geosphere ¢’ = (7/,€¢,€/,). Then, there exists a sequence
Sn = (7", €",ell), where S, is a lift of S, such that each 7™ has a terminal vertex in the same subtree
Yp, of T' where 7 has its terminal vertex and the spheres :9; converges to ¢ in GS (M ). Similarly, there
exists a sequence :S‘Z = (7", €™, el'), where :S'Z is a lift of S,, such that each 7' has a terminal vertex in
the same subtree Yp, of T where 7/ has its terminal vertex and the spheres S/, converges to o/ in GS(M).
Again, using the fact that crossing is an open condition, we see that ¢ and ¢’ do not cross. For type (3)
geosphere ¢”, the set E~(0”) = ¢. Given any translate go”, (E*(c") U E*(c")) N E~(go") = ¢ and
(E£(go") U E*(go")) N E~(c") = ¢. Hence, 0" and go” do not cross, for any g € m(M). By similar
argument, any geosphere of type (1) and type (3) do not cross, for ¢ = 1,2. Thus, the set I' is embedded
in M. O

Lemma 6.3.7. The set I is a closed subset of GS(M) and is the set of accumulation points of the set
Y= Un { inverse image of Sy, in M}

Proof. Suppose o9 = (7°,€%,€}) is a geosphere in M such that oo ¢ T. As op is not in T, we have the

following possibilities:

0 contains a vertex of the

1. The geosphere oy crosses some lift Aof Ain M: If oo crosses A (i.e., 7
type AT or A7), then by Lemma 6.2.3, there are open sets U*, i = 1,2, with 09 € U and A € U?
so that if s* € U? for i = 1,2, then s! crosses s2. If og is a limit point of I, there exists a sequence

of geosphere 3, € T' converging to og. Therefore, there exists 3, € U for large n. But, then this
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will imply that 3, crosses A which is absurd. Hence, U' is a neighborhood oy in G'S (1\7 ) which is

disjoint from I'. So, in this case oy can not be limit point of T".

. The geosphere does not cross A (i.e., 7¥ does not contain any AT or A~ vertex) and 70 has a

terminal vertex v in some subtree Yp, of T such that the edge e € 7°

containing v, joins v
and the vertex Bt of Yp,: Consider a subtree r of T containing this Yp,, then res,(o,) is the
triple (7% N N(K;),60|B(To)mmei\c(70)m). Then, 7° N N(k) contains the edge e and v as a ter-
minal vertex of 7° N N (k). For any geosphere 3 = (T’G,eﬁ,@{i_) € T, if we counsider res.(8) =
(TP AN (K), €| proyns eﬁ\C(Ts)m,{L then 7% N N (k) does not contain edge e with v as terminal vertex
of 7% N N (k). So, we have 3 ¢ U(r,res.(09)), for any 3 € I'. So, we get a neighborhood of oq in

GS(M) disjoint from I'.

. The geosphere does not cross A (i.e., 7° does not contain any AT or A~ vertex) and 7° has a

terminal vertex v in some subtree Yp, of T such that the edge ¢ € 7°

containing v, joins v
and the vertex B~ of Yp,: Consider a subtree £ of T containing this Yp,, then res,(o,) is the
triple (7% N N(/i),60|B(To)m,eo+\c(70)m). Then, 7° N N(k) contains the edge e and v as a ter-
minal vertex of 70 N N(k). For any geosphere 3 = (Tﬁ,eﬁ,ei) € T, if we consider res,(8) =
(TP ON(K), €| proyn e’i |c(+#)ns), then 78 NN (k) does not contain edge e with v as terminal vertex
of 7% N N (k). So, we have 3 ¢ U(k,res.(00)), for any 3 € I'. So, we get a neighborhood of o in

GS(M) disjoint from I'.

. The geosphere does not cross A (i.e., 7° does not contain any A* or A~ vertex) and 7° has a terminal
vertex v in some subtree Yp, of T such that the edge e € 79 containing v, joins v and the vertex B
of Yp, and €9 (v) is the edge joining v and the vertex A of Yp,: Consider a subtree x of T’ containing
this Yp, , then res,(0,) is the triple (7 NN (k), €| 5(r0)n, €% |c(r0)ni). Then, 79 NN (k) contains the
edge e and v as a terminal vertex of 7NN (k) and €9 (v) is the edge joining v and the vertex A of Yp, .
For any geosphere 3 = (77,¢7, ¢ ) € T, if we consider res,(8) = (7% NN (k), €| pr)mms €1 lc(r8)0m)s
then 77 N N (k) does not contain edge e with v as terminal vertex of 77 N N(x) and eﬁ(v) is the edge
joining v and the vertex AT of Yp,. So, we have 3 ¢ U(k,res.(0g)), for any 8 € T'. So, we get a

neighborhood of oy in GS(M) disjoint from TI'.

. The geosphere does not cross A (i.e., 7 does not contain any A™ or A~ vertex) and 7" has a terminal
vertex v in some subtree Yp, of T such that the edge e € 7° containing v, joins v and the vertex B*
of Yp, and €9 (v) is the edge joining v and the vertex A~ of Yp,: Consider a subtree x of T' containing
this Yp,, then res,(0,) is the triple (T° NN (k), €| p(r0yn, €% |c(0)rw)- Then, 79NN (k) contains the
edge e and v as a terminal vertex of 7NN (k) and egr(v) is the edge joining v and the vertex A~ of Yp,.
For any geosphere 3 = (77, €?, ei) € T, if we consider res.(3) = (7% N N(k), 65|B(Tﬁ)m, ef_|C(Tg)m),
then 77 N N (k) does not contain edge e with v as terminal vertex of 77 N N(x) and eﬁ(v) is the edge
joining v and the vertex A~ of Yp,. So, we have § ¢ U(k,ress(0p)), for any 8 € T'. So, we get a

neighborhood of o in GS(M) disjoint from T.
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6. The tree 7° is finite: In this case ¥ is a an isolated point. Hence, o, can not be a limit point of T

Thus, for any geosphere o ¢ I', we get a neighborhood of oy in GS (M ) disjoint from I'. This shows
that I" is a closed subset of G'S (]Tj ). Similar, arguments will show that any geosphere o, ¢ T' is not an

accumulation point of the set 7 Hence, T is the set of accumulation points of the set 7

O

6.3.4 The set res,(T)

Suppose & is a finite nontrivial tree. The set res, (') consists of empty graph together with the following

types of elements (7,¢,e,) € GS(k):

1. A subtree 7 of N(x) having a terminal vertex v which is a trivalent vertex in T with e (v) is the
edge joining v to a vertex BT. There is an edge in 7 joining the vertex v and a vertex CT. All the
other edges in 7 are edges joining a vertex C~ to B~ or a vertex BT to CT. For each non-standard

bivalent vertex v’ € B(7), e(v') is positive. Note that 7 has exactly one terminal vertex.

2. A subtree 7 of N(k) having a terminal vertex v which is a trivalent vertex in T with ey (v) is the
edge joining v to a vertex B~. There is an edge in 7 joining the vertex v and a vertex C~. All the
other edges in 7 are edges joining a vertex C~ to B~ or a vertex BT to CT. For each non-standard

bivalent vertex v’ € B(7), e(v') is positive. note that 7 has exactly one terminal vertex.

3. A subtree 7 of N (k) with all the edges are edges joining a vertex C~ to B~ and a vertex B to
C™. For each non-standard bivalent vertex v’ € B(7), ¢(v') is positive. Note that 7 has two terminal

vertices.

Proposition 6.3.8. The sequence S, of geosphere laminations in L(M) converges to the the set T' in
C(M).

Proof. Let x be any subtree of T' such that each terminal vertex x is a trivalent vertex of T. If k is
trivial, then x is a vertex v of T which is trivalent T. For such k, we have N(k) = k. Then, the set
resn(T) = {K, ¢} = {{v}, ¢}. Then, for any geosphere lamination S,, we have a lift S, = (7", €, et) such
that v is a terminal vertex of 7. So, the set res.(S,) = {{v}, ¢} and hence, S,, € U(k,res,(T")), for all n.

Now, for a non-trivial finite subtree s of T', N (k) contains both Yp, and Yp, type of subtrees of T'. If
diameter of N (k) is D, then we consider all n > 2D + 4.

Let 3= (17, €°, eﬁ) be an element of type (1) in res,(I"). We choose a lift Sp = (1™, €, el}) of Sy, such
that 7" has a terminal vertex (which is a trivalent vertex) in a Yp, type of subtree of N(x) where 77 has
its terminal vertex. Then, as diameter of 7" > 2D + 4, the other terminal vertex of 7 does not lie inside
N (k) and res,(S,) = 3. Similarly, given an element 3 = (77, eﬁ,eﬁ) of type (2) in res,(T'), if we choose a
lift, S, = (17, €",elt) of S, such that 7" has a terminal vertex (which is a trivalent vertex) in a Yp, type

of subtree of N (k) where 77 has its terminal vertex, then resﬁ(gn) =p.
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Let 3 = (77,¢6°, ei) be an element of type (3) in res,(T). Let v be terminal vertex of 7%. Note that
v is a standard bivalent vertex of T and also a terminal vertex of N(x). If v is a terminal vertex of a
Yp, type of subtree contained inside N(k), then v is either a BT or a Ct vertex in N(k) N Yp,. If v is a
C™ vertex, then consider the Yp, type subtree P’ of T containing v. Note that P’ is such a unique Yp,
type of subtree. If we consider a lift S, such that 7 has a terminal vertex (which is a trivalent vertex)
in P’, then as diameter of 7 > 2D + 4, the other terminal vertex of 7™ also does not lie inside N(x) and
resﬁ(g’;) = 3. Now, Suppose v is a BT vertex. Let P” be a Yp, type of subtree of T' containing v and
let P be a Yp, type of subtree of T such that P” and P"’ share a vertex v’ which corresponds to a C~
vertex in P” and C* vertex in P, If we choose a lift S, such that 7 has a terminal vertex (which is a
trivalent vertex) in P", then as diameter of 7 > 2D + 4, the other terminal vertex of 7™ also does not lie
inside N (k) and res,@u(:S'vn) = 0.

Similarly, we consider the cases where v corresponds to B~ and C~ type of vertices of some Yp,
contained in N(K). As for a lift Sp = (17,€",e) of S, only finitely many translates of 7" intersects N (x,
empty graph is also an element of res,(S,). Thus, for any n > 2D + 4, res,(S,) = res,(T'). This implies
Sn € U(k,res,(T)), for all n > 4D + 4. Hence, the sequence S,, of geosphere converges to I' in C’(M) .

O

In the above example, the geosphere lamination I' is not minimal as it contains a sublamination I
which consists of all the geospheres of type (3). It is not maximal as it is a sublamination of the geosphere

lamination I' U A.

6.3.5 Example of a geosphere lamination not in the closure of So(M)

Now, consider a subset I'g = {0, }, where o, = (70, €0, €0, ) is geosphere such that 70 = T". Then, 7y has
no terminal as well as non-standard bivalent vertices. The set I'y is clearly a geosphere lamination and it
is minimal. For o,, E*®(0g) = E(T) and E* (o) = ¢ = E~(0p). For any type (3) geosphere ¢”, E*(a")

contains only two elements. The set £ (¢”) is non-empty and E~(¢”) = ¢. Then, we have
E*(09) N (E*(0) UE™(0%)) = ¢

and
E~(6") N (E%(00) U E®(00)) = ¢.

This implies o and any geosphere of type (3) do not cross. Thus, the geosphere lamination I'g not maximal
as the it is a sublamination of the geosphere lamination I, UT".

For any subtree k of T, 70 N N(k) = N(r). The set res,(T',) contains exactly one element which is
not an empty graph of GS(k). But for any normal sphere S in M, the set res,(S), restriction of the
geosphere lamination S to k, contains the element empty graph of GS(k). Thus, for any subtree k of T,
U(k,res;(Tp)) does not contain any geosphere lamination given by a sphere in M. Hence, I'g can not be

limit of a sequence of geosphere laminations in So(M) C L(M).
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6.4 Compactness for geosphere laminations

Our main result concerning geosphere laminations is the following compactness theorem.

Theorem 6.4.1. The spaces L(M) and C(M) are compact.

Proof. First observe that as L(M) is a closed subset of C' (M), it suffices to show that C(M ) is compact.
Further, as C (M ) is second countable and Hausdorft, it suffices to show that any sequence I'; € C (]Tf ) has
a convergent subsequence.

As in the proof of Theorem 6.1.6, let x; be an exhaustion of T' by finite subtrees. Observe that
res,, (I';) € GS(k;) is contained in a finite set, namely the set of subsets of GS(k;). Hence, passing to
a subsequence, we can assume that this is constant. Similarly, passing to a further subsequence, we can
assume that res,, (I';) is constant for each successive integer j. Iterating this and passing to a diagonal
subsequence, we obtain a sequence, which we also denote I';, so that the restriction of I'; to each of the sets k;
is eventually constant. More concretely, we can assume that for j, k > ¢, res,, (I';) = res,, (T'x) = res,, (I';).

We claim that the subsequence T'; constructed as above has a limit T'g. Let X; = {0 € GS(J\A]) :
resy,; (o) € res,, (I;)}. It is immediate that I'; € X;. We let T = N; X

We claim that I'; — T'g. As the finite trees x; form an exhaustion, it suffices to show that for j
sufficiently large, res,, (T'j) = res.,(Io). We show this for j > 1.

Observe that for j > ¢, X; C X;. This is because if o € X, by definition there is a geosphere
o' € T'; with res,, (o) = res,; (o). As k; C ki, it follows that res,, (o) = resy, (0’) and hence res,, (o) €
res, (I';) = resg, (I';), hence 0 € X;. As o € X; was arbitrary, X, C X;.

Next, note that resy, (I';) = res,,(I';) for j > i. Hence, we are reduced to showing that res,,(I';) =
res,, (Lo). Firstly, as Tg C X; and for o € X, res,, (o) € res,, (I';), we have res,;, (Tg) C res,, ().

Conversely, suppose 0¢ € res, (I';), and without loss of generality, o¢ is not trivial. Then, as resy, (I';) =
res., (I';) for j > i and I'; C X, o9 € res,,(X;). Hence, for j > 4, there is an element o; € X; with
resy, (o) = oo.

By the compactness theorem, Theorem 6.1.6, there is a subsequence o, that converges to a geosphere
o. By construction res,, (o) = 09. We finish the proof by showing that o € 'y, hence o € resy, (I'o).

Assume without loss of generality that n; > j for all j. Hence, if j > 4 is fixed, for & > j, op, €
Xn, C X;. As Xj is closed and 0,,, — 0, 0 € X;. As j > i was arbitrary, 0 € N;X; = I's. Thus,
00 =resy,; (o) € res,, (o).

O

Thus, we can extract limits of geosphere laminations, in particular those of collections of spheres. For
this construction to be useful, one would like the limit to be non-trivial. This turns out to be automatic

for geosphere laminations in M.

Proposition 6.4.2. The empty subset ¢ € L(M) is an isolated point.
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Proof. As m (M) acts cocompactly on T', there is a finite tree x such that the translates of x cover T.
Let U be the open set in C(M) given by U = {T" € C’(]\7) :res(0) = ¢}. Clearly, ¢ € U for the empty
lamination ¢. We shall show that if I' € L(M) and I" # ¢, then I" ¢ U.

Suppose I' € L(M) is non-trivial, and let ¢ € T be a geosphere. Let v be a vertex in the tree 7
corresponding to o. Then, as the translates of x cover T, v € gk for some g € 71 (M). Hence, g~*
which implies that g='7 Nk # ¢.

It follows that res.(g7'I') # ¢. But, as I' € L(M), g~ 'T' = T and hence, res,(T) # ¢, i.e., [ ¢ U as

claimed. O

v € R,

6.5 Geospheres and partitions

The definition of geospheres a priori depends on the choice of standard spheres for M. However, we show
that geospheres can be defined intrinsically by showing that they are determined by the partition of the

space of ends.

As we have seen that every geosphere o = (7,¢,e) corresponds to a partition of the set of E(M) of
ends of M in to three sets E+ (0),E~ (o) and E* (o). If 7 is a finite tree, then E*(c) = ¢. If 7 =T, then
E® = E(M) and E*(c) = E~(0) = ¢. In general, we get a partition with E*(X) open sets and E>®(X)
a closed set.

We show that any such partition corresponds to a geosphere.

Theorem 6.5.1. Given a partition E(M) = Et UE~ U E> of the ends of M (hence of T) into disjoint
sets so that E* are open (and hence E> is closed) so that either E> has at least two points or both E*
and E~ are non-empty, there is a geosphere o = (T,¢,e4) so that E*(X) = E* and E=(X) = E*®

The proof is a slight extension of the proof of Theorem 5.1.1. We denote this partition of E (M ) by
A= (ET,E7,E>®) = (ET(A),E~(A), E(A)). We note that it makes sense to talk of partitions crossing
(as in the Definition 6.2.1).

Firstly, we associate a subgraph 7 of T' to A as in the Section 5.1 as follows: If A crosses standard sphere
E, then 7 contains the bivalent vertex v; corresponding to g and the edges €% and e containing that
vertex v;. The other end vertex v} of each edge e§», 7 = 1,2, is a trivalent vertex in T" which corresponds to
a component of M — Y. Each v; may be a bivalent or univalent or a trivalent vertex in 7. If A does not
cross some standard sphere in M, then 7 does not contain the standard vertex corresponding this standard

sphere and hence, it does not contain the edges containing this standard vertex.

Lemma 6.5.2. If the partition A does not cross any standard sphere in M, then E*(A) = ¢ and there
exists a standard sphere $g such that E* = E*(3).

Proof. Firstly we shall show that E°(A) = ¢. Suppose E*(A) # ¢. Let P € E*. Suppose E* has
another point ), we consider the geodesic v C T from P to . Given any edge e of v, if X(e) is the
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standard sphere corresponding to the standard vertex of e oriented appropriately, then P € E~(¥(e)) and
Q € ET(X(e)). Hence, X(e) crosses the given partition A. This contradiction to the hypothesis as A does
not cross any standard sphere.

On the other hand, if P is the only point in E*°(A), then there are points Q* € E*(A). Let a be the
geodesic from @~ to QT and let v be the unique geodesic ray from a point of  to P with the property
that its interior is disjoint from «. Given any edge e of v, if X(e) is the standard sphere corresponding
to the standard vertex of e oriented appropriately, then P € E~(X(e)) and Q* € E*(%(e)). Hence, X(e)
crosses the given partition A. This is contradiction to hypothesis. Therefore, E*°(A) = ¢.

Now, by hypothesis, if v is a standard bivalent vertex of T, the standard sphere ¥(v) corresponding
to v does not cross A. Hence, after choosing orientations appropriately, either ET(X(v)) € ET(A) or
E=(X(V)) € E~(A). If (v) = Xy satisfies both the conditions, then E¥(A4) = E*(%).

Suppose no X(v) satisfies both the above conditions, we get a partition of bivalent vertices of T as
Vt={v:ET(X(v)) C ET(A)}

and
Vo={v: E=(Z(wv)) c E=(4)}.

Let X* is the union of all the edges e in T such that the bivalent vertex of e lies in V*. Then, X+
are closed and T = X+* U X~. Hence, XT N X~ # ¢. By construction, X+ N X~ consists of trivalent
vertices of T. Let w € X+ N X~ and let vy, vy and v3 be bivalent vertices adjacent to w. Note that at least
one v; € X and at least one v; € X~. Without loss of generality, suppose v1,v; € X+ and v3 € X ™.
Let N(w) denote the set of all the points in T distance at most 1 from w. Then, T'— N(w) has three
components Vi, Vo and V3 whose closures contain the vertices v, v9 and vs, respectively. It is easy to see
that E(Vy) € ET,E(V3) C ET and E(V3) C E~. It follows that ET(X(v3)) = ET(3(v1)) U ET(X(vg)).
This implies ET(X(v3)) C Et. Aswvz € X—, E=(3(v3)) € E~. But then, v3 € V* N V~. This is
a contradiction as VT and V'~ are disjoint. Hence, there must exist a standard sphere Y such that
E*(A) = EX(%). O

If A does not cross any standard sphere, the tree T associated to A is a standard vertex corresponding
to the standard sphere representing A. Note that any edge e in T has a unique end vertex which is a

standard bivalent vertex in T.
We make the following observations :

If the partition A = (E+,E~,E®) of E(M) crosses a sphere § = (E*(S), E~(5)) in M, where
(ET(S), E~(9)) is a partition of E(M) given by S, then all the four intersections E*(S) N (E* U E>) are
non-empty. For, if £<(S)N (E"(A)UE>(A)) = ¢, for some sign € and 7, then E7(A) C E¢(S) and hence,

E"(A) N E¢(S) = ¢. This is a contradiction to the fact the partition A crosses S.

Lemma 6.5.3. The graph 7 is connected and hence, a subtree of T.
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Proof. Suppose S, S’ and S are standard spheres in M such that the standard bivalent vertex v/ in T
corresponding to S’ lies on the reduced path in T joining the standard bivalent vertices v and v” in T
corresponding to S and S”, respectively. By giving appropriate orientations to S, S’ and S”, we can assume
that E1(S”) c ET(S") C ET(S) and E~(S) C E~(S") € E~(5”). Now, if A crosses S and S”, then we
can easily see that A crosses S’. This shows that the reduced path in 7" joining v and v in T' is completely

contained in 7. From this, one easily see that 7 is connected and hence a subtree of T'. O

Note that the terminal vertices of 7 are trivalent vertices in 7.

If A does not cross a sphere § = (E*+(S), E~(S)) in M, where (E*+(S), E~(S)) is a partition of E(M)
given by S, then E¢(S) N (E"(A)UE>®(A)) = ¢, for some sign ¢ and n obtained by choosing signs € and n
in {+,—}. Then, E(S) C E"(A) and (E"(A)U E*>(A)) C E*(S). In this case, we say S is on the 7j-side
of A and A is on &-side of S.

Note that the tree 7 may or may not have terminal vertices. Suppose v is a vertex of 7 adjacent to a
single edge ey € T, i.e., a terminal vertex of 7. Let vy € 7 be the other end vertex of ey and ¥y be the
standard sphere in M corresponding to vg. Then, A crosses ¥y. Let the other edges adjacent to v in T
be e; and ey with other end vertices v; and v, respectively. Consider the standard spheres 3; = i(vi)
corresponding to vertices v;, with orientations chosen so that for i = 1,2, the set E™ (iz) is the set of ends of
the component of M —33; that does not contain %y. We can orient g so that E+(50) = E*(S1)UE*(Sy).

Lemma 6.5.4. For some sign ¢, E5(A) D Et(2,) and E5(A) D E+(%,).

Proof. First note that for each i, i = 1,2, E*(%;) N E*(A) = ¢. For, if E+(%;) N E°°( ) # ¢, then
ET(Z) N (EE(A)UE>®(A)) # ¢. As E~ (%) € E~(%;) and A crosses Y, we have E~(%;) N (ET(A) U
E>(A)) # ¢. This implies that A crosses ¥;, which is a contradiction. Thus, ET(30) N E®(A) = ¢.

As A does not cross the spheres 3;, for appropriate signs e;, (E (A) U E®(A)) N Et(X;) = ¢. Then,
we have E1(%;) € ES(A), for i = 1,2. Finally, if &, = e5 = ¢, then E°(A) D Et(3g) as E1(3g) =
Et(Z1)UET(E;). As E®(A) N E(Sy) = ¢, we get ET(39) N (E5(A) U E*(A)) = ¢, contradicting the
hypothesis that A crosses Y. Therefore, €1 # 5. Hence the result. O

Thus, one of the spheres ¥, and X is on the positive side of A and the other on the negative side. In
the case of a vertex v of valence 2 of 7, either it is a bivalent vertex (standard vertex) of T or there is an
edge e, of T adjacent to v which is not in 7. The standard sphere i(ev) corresponding to the other end
vertex of the edge e, is either on the positive side of A or on the negative side.

Let N(7) be the subgraph of T' consisting of points with distance at most 1 from 7. Then, N(7) is a

tree, which is the union of 7 with the following two kinds of edges:

1. For each terminal vertex v of 7, we have a pair of edges e1(v) ¢ 7 and ex(v) ¢ 7 with v as an

end-vertex. Let v; and vy be the other end vertices of e; and es, respectively.

2. For each non-standard bivalent vertex w of 7, we have an edge e(w) ¢ 7 with w as an end-vertex.

Let wy be its other end vertex.
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By Lemma 6.5.4, for a terminal vertex v, the sphere corresponding to one of v; and vs is on the positive
side of 7 (positive side of A). The vertices v; and vy are end vertices of e; and e respectively. So, we
can assign positive or negative signs to these edges accordingly. We denote this by e4 (v) and denote the
other edge (which is on the negative side) by e_(v). We denote the standard spheres corresponding to
vy and vy by X(v1) = S(ey) and B(vy) = X(ez), respectively. For a non-standard bivalent vertex w of 7,
we can associate a sign e(w) so that 3(w;) = X(e(w)) is on the e(w)-side of A. Thus, we have a triple
o = (7,€,e4) which is geosphere in M.

Now we shall show that o gives the partition A of E (]T/f )-

Lemma 6.5.5. The partition (E* (), E~(c), E®(c)) of E(M) given by the geosphere o is the same as
the partition A of E(]Tf)

Proof. Let P € ET(A). As E*(A) is open in the space of ends of T, there is a finite connected tree Kk C T
and a component V of T — k so that P € E(V) C ET(A). We shall show that no edge of V is contained
in 7. Let e be an edge of T contained in V' =T — k. Then, as k is connected, some component W of T'— e
is disjoint from k, and hence contained in V. Suppose v is the end vertex of e such that v is a standard
bivalent vertex in 7. Let ¥(v) be the standard sphere corresponding to v, then it follows that for some
sign ¢, £5(X(v)) C E(V) C ET(A), and hence, ¥(v) does not cross A. This implies v is not in 7. It follows
that e is not in 7. Thus, no edge of V is in 7, as required.

Let Wy be the component of T'— 7 that contains V. Then, the closure of W, intersects 7 in a single
vertex, which is either a terminal vertex or a non-standard bivalent vertex. In either case, E(Wy) C E* (o)
by construction of the partition associated to a geosphere. Then, as P € E(V) C E(Wy), P € E* (o).
Thus, E* C E*(0).

We next show that E*°(A) C E*®(o). Let P € E*°(A). Suppose E*(A) has another point @,
we consider the geodesic v C T from P to (. Given any edge e of v, if ¥(e) is the standard sphere
corresponding to the standard vertex of e oriented appropriately, then P € E~(2(e)) and Q € ET(X(e)).
Hence, X(e) crosses the given partition A, so v € 7 and hence, e € 7. Thus, v C 7 and hence P € E*° (7).

On the other hand, if P is the only point in E>°(A), then there are points Q* € E*(A). Let a be the
geodesic from Q~ to Q1 and let + be the unique geodesic ray from a point of a to P with the property
that its interior is disjoint from «. Given any edge e of v, if ¥(e) is the standard sphere corresponding
to the standard vertex of e oriented appropriately, then P € E~(X(e)) and Q* € E+(%(e)). Hence, (e)
crosses the given partition A, so e € 7. Thus, v C 7 and hence, P € E*(r).

This shows that E*(A) C E*® (). Thus, as (E*(c), E~(0), E*(0)) and A form partitions of E(M),
both are the same. O

From this, Theorem 6.5.1 follows.



7. FURTHER DIRECTIONS...

In this chapter, we see our further plans of work.

The geometric intersection number of curves on surfaces has been used to study Thurston compact-
ification of Teichmiiller space of a surface and the boundary of Teichmiiller space, namely the space of
projectivised measured laminations. Geodesic laminations (and measured laminations) on surfaces have
proved to be very fruitful in three-manifold topology, Teichmiiller theory and related areas and mapping
class group of a surface. By Dehn-Nielsen-Baer theorem, the mapping class group of a surface S of positive

genus is isomorphic to the group of outer automorphisms of m(S).

Culler and Vogtmann [7], introduced a space X,, on which the group Out(F,) acts with finite point

“

stabilizers, and proved that X, is contractible. Peter Shalen later invented the name “ Quter space” for
X,,. Outer space with the action of Out(F,,) can be thought of as free group analogous to the Teichmiiller
space of a surface with the action of the mapping class group of the surface. Culler and Morgan have
constructed a compactification of Outer space much like Thurston compactification of Teichmiiller space
[6].

We are trying to develop techniques to study sphere complex, Out(F, ), Outer space of a free group
analogous to simple closed curves on a surface, intersection numbers, geodesic laminations, measured

laminations, curve complex used to study mapping class group of a surface.

We can ask the following questions:

(1) What are the isolated points of the space L(M) of geosphere laminations of M? Given a space X,
we can define X, to be the set of accumulation points of X. This inductively gives sequences X D X, D
(Xw)w D -+ . What is this for L(M) and for the space GS(M) of geospheres in M?

(2) Given any embedded sphere S in normal form with respect to ¥ in M, we have a geosphere
lamination associated to it, namely, the inverse image of S in M under the covering map. So, we can
regard S as a geosphere lamination in M. Let So(M) be the set of isotopy classes spheres in M. Then,
So(M) can be considered as subset of L(M). What is the closure of So(M) in L(M)?

(3) Geosphere can be defined as a partition of the set of ends of M. Put appropriate topology on the
set of such partitions and show that the topology on the geosphere defined earlier and this topology are
the same. Define notion of geosphere laminations independent of the maximal sphere system in M. Study

geosphere laminations in this set up.

(4) Define intersection number for geospheres and geosphere laminations and study this intersection
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number.

(5) Introduce concept of measured geosphere laminations and study its connection with the boundary
of Outer space of a free group.

(6) Use geosphere laminations and measured geosphere laminations to study Out(F,,) and try to connect
this with the work of Bestivina and Handle, [1], [3], [2], [4]

(7) Embedded sphere in M corresponds to splittings of free group. What are geosphere in algebraic
setting?

(8) The geometric intersection number of curves on a surface has been used to give constructions like
the space of measured laminations whose projectivization is the boundary of Teichmiiller space, [35], as
well as to study geometric properties, including hyperbolicity of the curve complex in [5], [36]. One may
hope that the geometric intersection number of embedded spheres in M might be useful to give such

constructions in case of the sphere complex and Outer space.

Study Scott-Swarup intersection number of spheres in more details.

(9) Define multiplicative structure of spheres and study it.

(10) Study hyperbolicity of sphere complex. See whether sphere complex is d-hyperbolic in the sense
of Gromov or not.

(11) Define the analogue of geodesic currents so that the geosphere laminations are geodesic currents
with self intersection number zero. Is there an analogue of Teichmiiller space? (12) What is the structure
of a geosphere lamination, in particular in terms of its sublaminations?

(13) Given ¢ € Out(m(M)), relate limits of ¢™(X), where ¥ is sphere in M, with the structure of outer

automorphism.



[10]

[11]

[12]

BIBLIOGRAPHY

Bestvina, Mladen, Feighn, Mark, Handel, Michael. The Tits alternative for Out(F,) I. Dynamics of
exponentially-growing automorphisms. Ann. of Math. (2) 151 (2000), no. 2, 517-623.

Bestvina, Mladen, Feighn, Mark. The topology at infinity of Out(F,). Invent. Math. 140 (2000), no.
3, 651-692.

Bestvina, M., Feighn, M., Handel, M. Laminations, trees, and irreducible automorphisms of free
groups. Geom. Funct. Anal. 7 (1997), no. 2, 215-244.

Bestvina, Mladen, Handel, Michael. Train tracks and automorphisms of free groups. Ann. of Math.
(2) 135 (1992), no. 1, 1-51.

Bowditch, Brian H. Intersection numbers and the hyperbolicity of the complex of curves. preprint.
Culler, M., Morgan, J.M. Group actions on R-trees Proc. Lond. Math. Soc. 55 (1987), 571-604.

Culler, M., Vogtmann, K. Modulii of graphs and automorphisms of free group Invent. Math. 87 (1986)
no.1, 91-119.

Dunwoody M.J. Accessibility and groups of cohomological dimension one. Proc. London Math. Soc.
(3) 38 (1979), no. 2, 193-215.

Freedman, Michael; Hass, Joel; Scott, Peter Closed geodesics on surfaces. Bull. London Math. Soc. 14
(1982), no. 5, 385-391.

Freedman, Michael; Hass, Joel; Scott, Peter Least area incompressible surfaces in 3-manifolds. Invent.
Math. 71 (1983), no. 3, 609-642.

Gadgil, S. Embedded spheres in 4,5 x S*. Topology and its applications 153 (2006) 1141-1151.

Gadgil,S., Pandit,S. Algebraic and Geometric intersection numbers for free groups ArXiv:0809.3109v1
[math.GT] 18 Sep 2008

Gadgil,S., Pandit,S. Embedded Spheres, normal forms and Partition of Ends preprint.

Gadgil,S., Pandit,S. Geosphere Laminations for free groups preprint.



Bibliography 4

[15]

[16]

[27]

[28]

[29]

[30]

[31]

Harer, John L. Stability of the homology of the mapping class groups of orientable surfaces. Ann. of
Math. (2) 121 (1985), 215-249.

Harer, John L. The wirtual cohomological dimension of the mapping class group of an orientable
surface. Invent. Math. 84(1986), 157-176.

Hatcher, Allen Homological stability for automorphism groups of free groups. Comment. Math. Helv.
70 (1995), 39-62.

Hatcher, Allen Algebraic topology. Cambridge University press, 2001.
Hatcher, Allen. On triangulations of surfaces. Topology Appl. 40 (1991) 189-194.

Hatcher, Allen; Vogtmann, Karen Isoperimetric inequalities for automorphism groups of free groups
Pacific J. Math. 173 (1996), 425—441.

Hatcher, Allen; Vogtmann, Karen The complex of free factors of a free group. Quart. J. Math. Oxford
Ser. (2) 49 (1998), 459-468.

Hatcher, Allen; Vogtmann, Karen Rational homology of Aut(F,). Math. Res. Lett. 5 (1998), 759-780.

Hatcher, Allen; Vogtmann, Karen Homology Stability for Outer Automorphisms of Free Groups

preprint.

Hatcher, Allen; Wahl, Nathalie Stabilization for the Automorphisms of Free Groups with Boundaries

preprint.

Hempel, John 3-Manifolds. Ann. of Math. Studies, No. 86. Princeton University Press, Princeton,
1976.

Hirose, Susumu A complex of curves and a presentation for the mapping class group of a surface.
Osaka J. Math. 39 (2002),

Ivanov, Nikolai V. Complexes of curves and Teichmiiller spaces. (Russian) Mat. Zametki 49 (1991),
54-61, 158

Ivanov, Nikolai V. Automorphism of complexes of curves and of Teichmiiller spaces. Internat. Math.
Res. Notices 14 (1997), 651-666.

Ivanov, Nikolai V. Mapping class groups. In Handbook of geometric topology,523-633,(edited by R.J.

Daverman and R.B. sher), north Holland,Amsterdam.

Kim, Y. D. The Thurston’s boundary of Teichmilar Space and curve complex. arXiv,math/050603/VI
[math.Gt.], 2 Jun 2005.

Laudenbach, Francois. Topologie de la dimension trois: homotopie et isotopie. (French) Astérisque,
No. 12. Société Mathématique de France, Paris, 1974.



Bibliography 78

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

Luo, Feng Automorphisms of the complex of curves. Topology 39 (2000), 283-298.

Lyndon, R.C. , Schupp, P.E. Combinatorial Group Theory Springer-Verlag, Berlin Heidelberg New
York 1977.

Luo, Feng A Presentaion of the mapping class groups. arXiv.math.GT /9801025 v1 7 Jan 1998.

Luo, Feng. , Stong, R. Cauchy type inequality and the space of measured laminations,I. arxiv.math/
0006007v/ [math.GT] 2 Jun 2000.

Masur, H. A. ; Minsky, Yair. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138
(1999), 103-149.

Minsky, Yair. The classification of Kleinian surface groups, I: Models and bounds preprint.
Munkers, J.R. Topology. Second edition, Low price edition, Pearson education, 2001.

Scott, Peter; Swarup, Gadde A. Splittings of groups and intersection numbers. Geom. Topol. 4 (2000),
179-218.

Scott, Peter; Wall, Terry Topological methods in group theory. Homological group theory (Proc. Sym-
pos., Durham, 1977), 137-203, London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press,
Cambridge-New York, 1979.

Serre, J. P. Trees. Springer-Verlag, Berlin and New York, 1980.

Stallings, John Group theory and three-dimensional manifolds. Yale Mathematical Monographs, 4,
Yale University Press, New Haven, Conn.-London, 1971.

Stallings, John R. A topological proof of Grushko’s theorem on free products. Math. Z. 90 (1965) 1-8.

Stallings, John R. Whitehead graphs on handlebodies. Geometric group theory down under (Canberra,
1996), 317-330, de Gruyter, Berlin, 1999.



