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Notation

Throughout the thesis all rings will be assumed to be commutative rings

with unity. For a commutative ring R, a prime ideal P of R, and an R-algebra

A, the following notation will be used:

Spec(R) : The set of all prime ideals of R.

ℎt(P ) : The height of the ideal P.

Qt(R) : The field of fractions of R, when R is an integral domain.

R[n] : Polynomial ring in n variables over R.

R∗ : Group of units of R.

k(P ) : Residue field RP /PRP .

AP : = S−1A where S = R∖P.
SymR(M) : Symmetric algebra of an R-module M over R.

AutR(A) : The group of R-algebra automorphisms of A.

tr.deg
R
(A) : Transcendence degree of A over R.

cℎ(R) : Characteristic of R.

ΩR(A) : The universal module of differential of A over R.

DVR : Discrete valuation ring.

v



vi



Contents

1 Introduction 1

2 Preliminaries 11

3 Codimension-one A1-fibration with retraction 17

3.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 A version of Russell-Sathaye criterion for an algebra to be a

polynomial algebra . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Codimension-one A1-fibration with retraction . . . . . . . . . . 23

4 Factorial A1-form with retraction 33

4.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Planes of the form b(X,Y )Zn − a(X,Y ) over a DVR 39

5.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Planes of the form bZn − a over a field . . . . . . . . . . . . . . 40

5.3 Planes of the form bZn − a over a DVR . . . . . . . . . . . . . 46

5.4 Planes of the form bZn − a over rings containing a field . . . . 49

Bibliography 51

vii



viii



Chapter 1

Introduction

Aim:

The main aim of this thesis is to study the following problems:

1. For a Noetherian ring R, to find a set of minimal sufficient fibre condi-

tions for an R-algebra with a retraction to R to be an A1-fibration over

R.

2. To investigate sufficient conditions for a factorial A1-form, with a retrac-

tion to the base ring, to be A1.

3. To investigate whether planes of the form b(X,Y )Zn − a(X,Y ) are co-

ordinate planes in the polynomial ring in three variables X, Y and Z

over a discrete valuation ring.

The 1st problem will be discussed in Chapter 3 entitled “Codimension-

one A1-fibration with retraction”, the 2nd problem will be studied in Chapter

4 under the heading “A1-form with retraction” and the 3rd problem will be

investigated in Chapter 5 which has the title “Planes of the form b(X,Y )Zn−
a(X,Y ) over a DVR”.

Brief introductions to the topics of the problems and precise statements of

the main results obtained are given below:

∙ Codimension-one A1-fibration with retraction

Let R be a ring. A finitely generated flat R-algebra A is said to be an A1-

fibration over R if A ⊗R k(P ) = k(P )[1] for all prime ideals P of R. A very

1



Chapter 1: Introduction 2

interesting and important phenomenon is that the generic and codimension-

one fibres determine an A1-fibration. To get a feel for this striking feature of

A1-fibration, here is a nice result by Bhatwadekar-Dutta ( [BD95]):

Theorem 1.0.1. Let R be a Noetherian domain with field of fractions K and

A an R-subalgebra of R[T1, T2, ⋅ ⋅ ⋅ , Tn] such that A is flat over R, A⊗R K =

K [1] and A ⊗R k(P ) is an integral domain for every prime ideal P in R of

height one. Then

(i) If R is normal, then A ∼= SymR(I) for an invertible ideal I of R.

(ii) If R contains ℚ, then A is an A1-fibration over R.

(iii) If R is seminormal and contains ℚ, then A ∼= SymR(I) for an invertible

ideal I of R.

An analogous result has also been obtained by Dutta ( [Dut95]) for finitely

generated faithfully flat R-subalgebras:

Theorem 1.0.2. Let R be a Noetherian domain with field of fractions K and

A a faithfully flat finitely generated R-algebra such that A ⊗R K = K [1] and

A⊗R k(P ) is geometrically integral for every prime ideal P in R of height one.

Then

(i) If R is normal, then A ∼= SymR(I) for an invertible ideal I of R.

(ii) If R contains ℚ, then A is an A1-fibration over R.

(iii) If R is seminormal and contains ℚ, then A ∼= SymR(I) for an invertible

ideal I of R.

We will call an R-algebra A a Codimension-one A1-fibration if A⊗Rk(P ) =

k(P )[1] for each prime ideal P of R with ℎt(P ) ≤ 1. In view of the above

theorems it is easy to see that

1. For a Noetherian normal domain R or a Noetherian domain R containing

ℚ, a flatR-subalgebraA of a polynomial algebra overR is an A1-fibration

over R if and only if A is a codimension-one A1-fibration over R.

2. For a Noetherian normal domain R or a Noetherian domain R containing

ℚ, a faithfully flat finitely generated R-algebra A is an A1-fibration over

R if and only if A is a codimension-one A1-fibration over R.
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In ( [Asa87], Theorem 3.4), Asanuma has given a structure theorem for

Ar-fibrations over a Noetherian ring. The statement of Asanuma’s theorem

shows that

A necessary condition for an algebra A over a Noetherian ring R to be

Ar-fibration is that A is isomorphic, as an R-algebra, to an R-subalgebra of

some polynomial ring over R.

As a consequence of this result we get that any Ar-fibration over a Noethe-

rian ring has a retraction to R. Therefore, when R is Noetherian, it is natural

to ask for minimal sufficient fibre conditions which ensure that an R-algebra

with a retraction to R will be a codimension-one A1-fibration over R.

Recently, in [BDO], Bhatwadekar-Dutta-Onoda have shown, as a conse-

quence of a general structure theorem for any faithfully flat R-algebra over a

Noetherian normal domain which is locally A1 in codimension-one, that for a

Noetherian normal domain R, a flat R-algebra A with a retraction to R is an

A1-fibration over R (in fact, Spec(A) is an algebraic line bundle over Spec(R))

if A is locally A1 in codimension-one; more precisely,

Theorem 1.0.3. Let R be a Noetherian normal domain with field of fractions

K and A a Noetherian flat R-algebra such that AP = RP
[1] for each prime

ideal P of R of height one. Suppose that there exists a retraction Φ : A−−↠ R.

Then A ∼= SymR(I) for an invertible ideal I in R.

In view of the above results, naturally one asks the following questions:

(1) Is Theorem 1.0.1 true when the condition “A is an R-subalgebra of

R[T1, T2, ⋅ ⋅ ⋅ , Tn]” is replaced by the condition “A has a retraction to

R”?

(2) Is Theorem 1.0.2 true when the condition “A is a faithfully flat finitely

generated R-algebra” is replaced by the condition “A is a flat R-algebra

with a retraction to R”?

(3) How far can the hypothesis “R is normal” in Theorem 1.0.3 be relaxed?

In Chapter 3 of the thesis, we investigate the above questions. We will

show that questions (1) and (2) have answers in the affirmative when A is

Noetherian; the results also show that Theorem 1.0.3 holds in more generality.

The main results of this study are listed below (Proposition 3.3.4, Theorem

3.3.5, Theorem 3.3.7, Theorem 3.3.9):
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Proposition A. Let R be either a Noetherian domain or a Krull domain

with field of fractions K and A a flat R-algebra with a retraction Φ : A−−↠ R

such that

(1) Ker Φ is finitely generated.

(2) AP = RP
[1] for every prime ideal P of R satisfying deptℎ (RP ) = 1.

Then there exists an invertible ideal I of R such that A ∼= SymR(I).

Theorem A. Let R be a Krull domain with field of fractions K and A a flat

R-algebra with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is an integral domain for each height one prime ideal P of R.

Then there exists an invertible ideal I of R such that A ∼= SymR(I).

Theorem B. Let R be a Noetherian domain with field of fractions K and A

a flat R-algebra with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is geometrically integral over k(P ) for each height one prime

ideal P of R.

Then A is finitely generated over R and there exists a finite birational extension

R′ of R and an invertible ideal I of R′ such that A⊗R R′ ∼= SymR′(I).

Theorem C. Let R be a Noetherian domain containing ℚ with field of frac-

tions K and A a flat R-algebra with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is an integral domain for each height one prime ideal P of R.
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Then A is an A1-fibration over R. Thus, if R is seminormal, then A ∼=
SymR(I) for some invertible ideal I of R.

As a consequence of Theorem A, we get the following Lüroth-type result

(see Corollary 3.3.6):

Corollary A. Let R be a UFD with field of fractions K and A a flat R-algebra

with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is an integral domain for each height one prime ideal P of R.

Then there exists x ∈ Ker Φ such that A = R[x] = R[1].

∙ Factorial A1-form with retraction

Let k be a field with algebraic closure k̄ and let R ↪→ A be k-algebras. We

shall call A an A1-form over R if A⊗k k̄ = (R ⊗k k̄)
[1]. It is well known that

any separable A1-form over any field is trivial. More generally, the following

result ( [Dut00], Theorem 7) shows that a separable A1-form over any arbitrary

commutative algebra is trivial.

Theorem 1.0.4. Let k be a field, L a separable field extension of k, R a k-

algebra and A an R-algebra such that A⊗k L ∼= Sym(R⊗kL)(P
′) for a finitely

generated rank one projective module P ′ over R ⊗k L. Then A ∼= SymR(P )

for a finitely generated rank one projective module P over R.

If k is not perfect, there exist non-trivial purely inseparable A1-forms.

Asanuma gave a complete structure theorem for purely inseparable A1-forms

over a field k of characteristic p > 2 ( [Asa05], Theorem 8.1). However, from

Asanuma’s results, it can be deduced that any factorial A1-form over a field k

with a k-rational point is trivial, i.e, we have the following result:

Theorem 1.0.5. Let k be a field and A an A1-form over k such that

(1) A is a UFD.

(2) A has a k-rational point.

Then A = k[1].
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In Chapter 4 of this thesis we prove the following generalization (see Theo-

rem 4.2.2) of the above result. Our result also gives a simple proof of Theorem

1.0.5 without using Asanuma’s intricate structure theorem.

Theorem D. Let k be a field and let R ↪→ A be k-algebras such that

(1) A is a UFD.

(2) There is a retraction Φ : A −→ R.

(3) A is an A1-form over R.

Then A = R[1].

∙ Planes of the form b(X,Y )Zn − a(X, Y ) over a DVR

Let k be a field and g ∈ k[X1, X2, . . . , Xm](= k[m]). We say g is a vari-

able in k[X1, X2, . . . , Xm] if there exist elements f1, f2, . . . , fm−1 such that

k[X1, X2, . . . , Xm] = k[g][f1, f2, . . . , fm−1] = k[g][m−1]. It is obvious that if

g ∈ k[X1, X2, . . . , Xm](= k[m]) is a variable, then k[X1, X2, . . . , Xm]/(g) =

k[m−1]. Naturally one asks whether the converse holds:

Problem 1. Let k be a field, m ≥ 2 an integer and g ∈ k[X1, X2, . . . , Xm](=

k[m]) be such that k[X1, X2, . . . , Xm]/(g) = k[m−1]. Is then k[X1, X2, . . . , Xm] =

k[g][m−1]?

In affine algebraic geometry, this problem is generally known as the Epi-

morphism problem. While the problem is open in general, a few special cases

have been investigated by some mathematicians. For such cases, one also

considers the corresponding generalized epimorphism problem.

Problem 1′. Let R be an integral domain, m ≥ 2 an integer and g ∈
R[X1, X2, . . . , Xm](= R[m]) be an element such that R[X1, X2, . . . , Xm]/(g) =

R[m−1]. Is then R[X1, X2, . . . , Xm] = R[g][m−1]?

The first major breakthrough in this area was got, independently, by

Abhyankar-Moh ( [AM75]) and Suzuki ( [Suz74]). They showed that Problem

1 has an affirmative answer for the case m = 2 when the characteristic of the

field k is 0:

Theorem 1.0.6. Let k be a field of characteristic 0. Suppose that g ∈
k[X,Y ](= k[2]) is such that k[X,Y ]/(g) = k[1]. Then k[X,Y ] = k[g][1].
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This theorem is known as the famous Abhyankar-Moh and Suzuki Epi-

morphism Theorem. The following well known counter example shows that

Theorem 1.0.6 does not hold over fields of positive characteristic.

Example 1.0.7. Let k be a field of characteristic p > 0 and g = Y pe −X −
Xsp ∈ k[X,Y ](= k[2]) where p ∤ s and e ≥ 2. Then k[X,Y ]/(g) = k[1] but

k[X,Y ] ∕= k[g][1] (see [Abh77], Example 9.12, pg. 72).

In ( [RS79], Theorem 2.6.2), Russell-Sathaye showed that Theorem 1.0.6

holds over locally factorial Krull domains of characteristic 0. The most gen-

eralized version of Theorem 1.0.6 has been obtained by Bhatwadekar. He has

shown that the theorem can be extended to any seminormal domain of char-

acteristic 0 and to any integral domain containing a field of characteristic 0

( [Bha88], Theorem 3.7 and Theorem 3.9):

Theorem 1.0.8. Let R be a seminormal domain of characteristic 0 or

an integral domain containing ℚ. Let g ∈ R[X,Y ](= R[2]) be such that

R[X,Y ]/(g) = R[1]. Then R[X,Y ] = R[g][1].

The case m = 3 of Problem 1 is still open in general. Among the partial

results in this direction, the following theorem of Kaliman ( [Kal02]) deserves

a special mention.

Theorem 1.0.9. Let g ∈ ℂ[X,Y, Z] be such that ℂ[X,Y, Z]/(g − ¸) for all

but finitely many ¸ ∈ ℂ. Then ℂ[X,Y, Z] = ℂ[g][2].

For certain specific forms of g, affirmative answers (to the case m = 3 of

Problem 1) had been obtained by Sathaye, Russell and Wright. In particular,

when g is of the form b(X,Y )Zn−a(X,Y ), affirmative answers were obtained

in the following cases:

(1) n = 1, k a field of characteristic 0 (A. Sathaye, [Sat76]).

(2) n = 1, k a field of any characteristic (P. Russell, [Rus76]).

(3) n ≥ 2 and k an algebraically closed field of characteristic p ≥ 0 with

p ∤ n (D. Wright, [Wri78]).

In Chapter 5 of the thesis, we first show that the result (3) of D. Wright

can be generalized to any field, not necessarily algebraically closed, in the

following form (see Theorem 5.2.5):
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Theorem E. Let k be a field of characteristic p ≥ 0 and let g ∈ k[X,Y, Z]

be of the form bZn − a where a, b ∈ k[X,Y ] with b ∕= 0 and n is an integer

≥ 2 not divisible by p. Suppose that B := k[X,Y, Z]/(g) = k[2] and identify

k[X,Y ] with its image in B. Then there exist variables U, V in B such that

V is the image of Z in B, U ∈ k[X,Y ], b ∈ k[U ], k[X,Y ] = k[U, a] and

k[X,Y, Z] = k[U, g, Z].

We will then discuss how far the result of David Wright can be generalized

to the case of DVR and more general rings so that we can get some answers

to Problem 1′ for m = 3 when g = b(X,Y )Zn − a(X,Y ), n ≥ 2.

The study of Epimorphism problem (Problem 1′) for m = 3 over a DVR

containing ℚ has an additional importance in that it is closely related to the

study of A2-fibration over a regular local ring of dimension 2. We recall below

the connection.

Let R be a ring and A an R-algebra. If A = R[2], it is obvious that A

is an A2-fibration over R. Now, what about the converse? If A is an A2-

fibration over R, is then A = R[2]? Till now this is an open problem when R

is a regular local ring containing ℚ. However, some partial results have been

obtained in this direction. In ( [Sat83]), Sathaye showed that an A2-fibration

over a DVR containing ℚ is A2. It can be seen by a result of Bass-Connell-

Wright ( [BCW77]) that over a PID containing ℚ, an A2-fibration is A2. An

immediate question occurring after this result is the following:

Problem 2. Let R be a regular local ring of dimension two containing ℚ.
Suppose A is an A2-fibration over R. Is then A = R[2]?

Though Problem 2 is open till now, Bhatwadekar-Dutta showed in (

[BD94b], section 4) that this problem is closely related to the following Epi-

morphism problem (a special case of Problem 1′) in the sense that a counter

example to this Epimorphism problem (Problem 3) will give rise to a counter

example to Problem 2:

Problem 3. Let (R, t) be a DVR containing ℚ and let g ∈ R[X,Y, Z](= R[3])

be such that R[X,Y, Z]/(g) = R[2]. Is then R[X,Y, Z] = R[g][2]?

Hence, to explore Problem 2, it is relevant to explore Problem 3 at least

for polynomials like g = b(X,Y )Zn − a(X,Y ) for which the corresponding

Problem 1 (with m = 3) has already been settled.
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The first investigation in this direction was made by Bhatwadekar-Dutta

in [BD94a]. They showed ( [BD94a], Theorem 3.5) that Problem 3 has an

affirmative answer (in any characteristic) when g = b(X,Y )Z−a(X,Y ) with t ∤
b(X,Y ), thereby partially generalizing A. Sathaye’s theorem on linear planes

over a field ( [Sat76]).

In Chapter 5 we will show that Problem 3 has an affirmative answer for

polynomials of the form g = b(X,Y )Zn − a(X,Y ), where n ≥ 2 is an integer

not divisible by the characteristic of R/tR, thereby obtaining a generalization

of D. Wright’s theorem ( [Wri78], Theorem). More precisely, we will prove the

following (see Theorem 5.3.3 ):

Theorem F. Let (R, t) be a DVR with residue field k. Let g ∈ R[X,Y, Z](=

R[3]) be of the form g = bZn − a where a, b ∈ R[X,Y ] with b ∕= 0 and n is an

integer ≥ 2 such that n is not divisible by the characteristic of R/tR. Suppose

that R[X,Y, Z]/(g) = R[2]. Then R[X,Y, Z] = R[g, Z][1], R[X,Y ] = R[a][1]

and b ∈ R[X0] where K[X,Y ] = K[X0, a].

The proof of Bhatwadekar-Dutta’s theorem on linear planes over a DVR

is highly technical. However, in the case of planes of the form bZn − a with

n ≥ 2, the proof turns out to be much simpler due to the fact that g is a

variable along with Z.

Using theorems on residual variables of Bhatwadekar-Dutta ( [BD93]), we

shall show that Theorem F can be further generalized over (i) any integral

domain containing ℚ and (ii) any Noetherian UFD containing a field of char-

acteristic p ≥ 0 where p ∤ n. We shall prove (see Theorem 5.4.1 and Theprem

5.4.2):

Theorem G. Let R be an integral domain containing ℚ. Let g ∈ R[X,Y, Z](=

R[3]) be of the form g = bZn − a where a, b ∈ R[X,Y ] and n is an integer

≥ 2. Suppose that R[X,Y, Z]/(g) = R[2]. Then R[X,Y, Z] = R[g, Z][1] and

R[X,Y ] = R[a][1].

Theorem H. Let R be a Noetherian UFD containing a field of characteristic

p ≥ 0 and g ∈ R[X,Y, Z](= R[3]) be of the form bZn− a where a, b ∈ R[X,Y ],

b ∕= 0 and n is an integer ≥ 2 such that p ∤ n. Suppose that R[X,Y, Z]/(g) =

R[2]. Then R[X,Y, Z] = R[g, Z][1] and R[X,Y ] = R[a][1].

The results obtained in Chapter 3 and Chapter 5 were obtained in two
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joint works with my supervisor Dr. Amartya K. Dutta ( [DDa], [DDb]); and

the results of Chapter 4 was obtained in my independent work [Das].



Chapter 2

Preliminaries

Throughout the thesis R will denote a commutative ring with unity. The

notation A = R[n] will mean that A is isomorphic, as an R-algebra, to a

polynomial ring in n variables over R.

Definitions

1. An R-algebra A is said to be an Ar-fibration over R if

(i) A is finitely generated over R.

(ii) A is flat over R.

(iii) A⊗R k(P ) = k(P )[r] for all prime ideals P of R.

2. Let k be a field, k̄ denote the algebraic closure of k and R be a k-algebra.

An R-algebra A is said to be an Ar-form over R (with respect to k) if

A⊗k k̄ = (R⊗k k̄)
[r].

3. Let k be a field and k̄ denote the algebraic closure of k. A k-algebra R is

said to be geometrically integral over k if R⊗k k̄ is an integral domain.

4. Let k be a field. A k-algebra A is said to be geometrically normal if

A⊗k k̄ is a normal domain.

5. A reduced ring R is said to be seminormal if it satisfies the condition :

for a, b ∈ R with a2 = b3, there exists t ∈ R such that t3 = a and t2 = b.

6. Let A be a ring and R be a subring of A. An R-algebra homomorphism

® : A−−↠ R is called a retraction from A to R and R is called a retract

of A.

11
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7. Let k be a field. A k-algebra A is said to have a k-rational point if there

is a retraction from A to k.

Results

We state some results which have been used subsequently. The first result

occurs in ( [BD95], Lemma 3.4).

Lemma 2.0.10. Let R be a Noetherian ring and R1 a ring containing R which

is finitely generated as an R-module. If A is a flat R-algebra such that A⊗RR1

is a finitely generated R1-algebra, then A is a finitely generated R-algebra.

The following result follows from ( [BD95], Lemma 3.3 and Corollary 3.5).

Lemma 2.0.11. Let R be a Noetherian ring and A a flat R-algebra such that,

for every minimal prime ideal P of R, PA is a prime ideal of A, PA∩R = P

and A/PA is finitely generated over R/P . Then A is finitely generated over

R.

We now quote a theorem on finite generation due to N. Onoda ( [Ono84],

Theorem 2.20).

Theorem 2.0.12. Let R be a Noetherian domain and let A be an integral

domain containing R such that

(1) There exists a non zero element t ∈ A for which A[1/t] is a finitely

generated R-algebra.

(2) Am is a finitely generated Rm-algebra for each maximal ideal m of R.

Then A is a finitely generated R-algebra.

The results on A1-fibrations in ( [BD95], [Dut95], [DO07]) crucially involve

certain patching techniques. We state below one such “patching lemma” (

[DO07], Corollary 3.2).

Lemma 2.0.13. Let R ⊂ A be integral domains with A being faithfully flat

over R. Suppose that there exists a non-zero element t ∈ R such that

(1) A[1/t] = R[1/t][1].

(2) S−1A = (S−1R)[1], where S = {r ∈ R∣ r is not a zero-divisor in R/tR}.
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Then there exists an invertible ideal I in R such that A ∼= SymR(I).

Now, we state the result of D. Wright ( [Wri78], Pg. 95) which we will

generalize in Chapter 5.

Theorem 2.0.14. Let k be an algebraically closed field of characteristic p ≥ 0.

Let g ∈ k[X,Y, Z](= k[3]) be of the form bZn−a where a, b ∈ k[X,Y ] with b ∕= 0

and n is an integer ≥ 2 not divisible by p. Suppose that k[X,Y, Z]/(g) = k[2].

Then there exist variables X̃, Ỹ in k[X,Y ] such that a = Ỹ and b ∈ k[X̃] and

k[X,Y, Z] = k[X̃, g, Z].

We also mention some relevant result on Autk(k
[2]) over a field k (see

[Wri78], Appendix, Theorems 2 and 3).

Theorem 2.0.15. Let k be a field and A = k[U, V ](= k[2]). Let GA2(k)

denote the group of k-automorphisms of A, Af2(k) the subgroup of GA2(k)

defined by Af2(k) = {(U, V ) 7→ (®1U + ¯1V + °1, ®2U + ¯2V + °2)∣ ®i, ¯i, °i ∈
k and ®1¯2 − ®2¯1 ∕= 0}, ℰ2(k) the subgroup of GA2(k) defined by ℰ2(k) =

{(U, V ) 7→ (®U + ℎ(V ), ¯V + °)∣ ®, ¯ ∈ k∗, ° ∈ k and ℎ(V ) ∈ k[V ]} and

Bf2(k) = Af2(k) ∩ ℰ2(k). Then GA2(k) = Af2(k) ∗Bf2(k) ℰ2(k). Moreover, if

¾ ∈ GA2(k) is of finite order, then there exists ¿ ∈ GA2(k) such that either

¿¾¿−1 ∈ Af2(k) or ¿¾¿−1 ∈ ℰ2(k).

The next result is due to A. Sathaye ( [Sat76], Corollary 1). We will use

it to prove Lemma 5.2.2.

Theorem 2.0.16. Let L∣k be a separable field extension. Assume that there

exist ℎ ∈ k[X,Y ] and elements ui ∈ L[X,Y ] for 1 ≤ i ≤ s such that

1 L[X,Y ]/(ui) = L[1] for each i.

2 (ui, uj)L[X,Y ] = L[X,Y ] for i ∕= j.

3 ℎ =
s∏

i=1
ui

ri, ri > 0.

Then there exist u ∈ k[X,Y ], ¸i ∈ L∗ and ¹i ∈ L such that ui = ¸iu+ ¹i for

1 ≤ i ≤ s.

We will also use the following special case of the result ( [Dut00], Theorem

7).
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Theorem 2.0.17. Let k be a field, L a separable field extension of k, A a

factorial k-domain and B an A-algebra such that B⊗k L = (A⊗k L)
[1]. Then

B = A[1].

The following version of Abhyankar-Eakin-Heinzer’s cancellation theorem

( [AEH72], Theorem 3.3) will be used in the proofs.

Theorem 2.0.18. Let A be an affine domain over a field k such that k is

algebraically closed in A and tr.deg
k
(A) = 1. Suppose that B is a k-algebra

such that A[n] = B[n] for some n ≥ 1. Then either B = A or B ∼= A = k[1].

We now state a version of the Russell-Sathaye criterion ( [RS79], Theorem

2.3.1) for a ring to be a polynomial algebra over a subring (see [BD94a],

Theorem 2.6).

Theorem 2.0.19. Let R ⊂ A be integral domains with A being finitely gener-

ated over R. Suppose that there exist primes p1, p2, . . . , pn in R such that for

each i, 1 ≤ i ≤ n,

(1) pi remains prime in A,

(2) piA ∩R = piR,

(3) A[ 1
p1p2...pn

] = R[ 1
p1p2...pn

][1] and

(4) R/piR is algebraically closed in A/piA.

Then A = R[1].

The following result from ( [BD94a], Lemma 2.5) will enable us to apply

Theorem 2.0.19.

Lemma 2.0.20. Let R be an integral domain and F ∈ R[X,Y ](= R[2]) be

such that R[X,Y ]/(F ) = R[1]. Then R[F ] is algebraically closed in R[X,Y ].

We now quote a result of E. Hamann ( [Ham75], Theorem 2.6).

Theorem 2.0.21. Let R be a Noetherian ring such that Rred is seminormal.

Then R[1] is R-invariant, i.e., if A is an R-algebra such that A[m] = R[m+1]

as R-algebras, then A = R[1].

Finally, we state a result on residual variables which will be our main tool

to prove Theorem G and Theorem H. It comes as a direct consequence of

Theorem 3.1, Theorem 3.2 and Remark 3.4 in [BD93].
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Theorem 2.0.22. Let R be a Noetherian domain such that either R contains

ℚ or R is seminormal, A be a polynomial algebra in n variables over R and

W1,W2, . . . ,Wn−1 ∈ A. Then the following are equivalent:

1. A = R[W1,W2, . . . ,Wn−1]
[1].

2. A⊗R k(P ) = (R[W1,W2, . . . ,Wn−1]⊗R k(P ))[1] for every prime ideal P

of R.
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Chapter 3

Codimension-one A1-fibration

with retraction

3.1 Preview

The following result on A1-fibrations was proved in ( [Dut95], Theorem 3.4,

Theorem 3.5):

Theorem 3.1.1. Let R be a Noetherian domain with field of fractions K and

A a faithfully flat finitely generated R-algebra such that A ⊗R K = K [1] and

A⊗R k(P ) is geometrically integral over k(P ) for each height one prime ideal

P of R. Under these hypotheses, we have the following results:

(i) If R is normal, then A ∼= SymR(I) for an invertible ideal I of R.

(ii) If R contains ℚ, then A is an A1-fibration over R.

A striking feature of this result is that conditions on merely the generic and

codimension-one fibres imply that all fibres are A1. Analogous results were

proved for subalgebras of polynomial algebras ( [BD95], 3.10, 3.12) without

the hypothesis “A is finitely generated over R”. In this chapter we investigate

whether the condition “A is finitely generated” in Theorem 3.1.1 can be re-

placed by a weaker hypothesis like “A is Noetherian” when the R algebra A

is known to have a retraction to R. Recently, in [BDO], Bhatwadekar-Dutta-

Onoda have shown the following:

Theorem 3.1.2. Let R be a Noetherian normal domain with field of fractions

K and A a Noetherian flat R-algebra such that AP = RP
[1] for each prime

17
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ideal P of R of height one. Suppose that there exists a retraction Φ : A−−↠ R.

Then A ∼= SymR(I) for an invertible ideal I in R.

The above theorem occurs in [BDO] as a consequence of a general structure

theorem for any faithfully flat algebra over a Noetherian normal domain R

which is locally A1 in codimension-one. The statements and proofs in [BDO]

are quite technical. In this chapter, we will first prove (see Theorem 3.3.5) an

analogue of Theorem 3.1.1 (i). Our approach, which is more in the spirit of the

proof in ( [Dut95], 3.4), will provide a short and direct proof of Theorem 3.1.2.

Next we will prove an analogous version of Theorem 3.1.1 (ii) (see Theorem

3.3.9).

3.2 A version of Russell-Sathaye criterion for an al-

gebra to be a polynomial algebra

In this section we present a version of Russell-Sathaye criterion ( [RS79], The-

orem 2.3.1) for an algebra to be a polynomial algebra. Our version is an

extension of the version given by Dutta-Onoda ( [DO07], Theorem 2.4) and

suitable for algebras which are known to have retractions to the base ring. For

convenience, we first record a few preliminary results. The first result is easy.

Lemma 3.2.1. Let B ⊂ A be integral domains. Suppose that there exists a

non-zero element p in B such that B[1/p] = A[1/p] and pA ∩ B = pB. Then

B = A.

Lemma 3.2.2. Let C be a D-algebra such that D is a retract of C. Then the

following hold:

(I) pC ∩D = pD for all p ∈ D.

(II) If D ⊂ C are domains, then D is algebraically closed in C.

Proof. Proof of (I): Let p ∈ D. Note that pC ∩D = pD is equivalent to say

that the map D/pD −→ C/pC is injective. Now since D is a retract of C,

the composite map D/pD −→ C/pC −−↠ D/pD is identity and hence the map

D/pD −→ C/pC is injective.

Proof of (II): Let Á : C −−↠ D be the retraction and let t ∈ C∖{0} be

algebraic over D. Then there exits a polynomial f(X) ∈ D[X] (unique upto
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a constant multiple) of least degree such that f(t) = 0. Note that Á(t) ∕= 0.

Since Á(f(t)) = f(Á(t)) = 0 and since Á(t) ∈ D, we must have f(X) = (X −
Á(t))g(X) where deg(g(X)) < deg(f(X)). Now, since f(X) is a polynomial of

least degree such that f(t) = 0, we get g(t) ∕= 0 and hence from the relation

f(t) = (t−Á(t))g(t) = 0 we have t = Á(t), i.e., t ∈ D. Thus D is algebraically

closed in C.

Lemma 3.2.3. Let R be a ring and A be an R-algebra with a generating set

S = {xi : i ∈ Λ} where Λ is some indexing set. Suppose that there is a

retraction Φ : A−−↠ R. Then Ker Φ = ({xi − ri : i ∈ Λ})A where ri = Φ(xi)

for each i ∈ Λ.

Proof. Let S̃ = {xi − ri : i ∈ Λ} and I be the ideal of A generated by S̃. Note

that R[S] = R[S̃]. It is easy to see that A = R ⊕ Ker Φ = R ⊕ I. Since

I ⊆ Ker Φ, it follows that Ker Φ = I.

Lemma 3.2.4. Let R ⊂ A be integral domains and Φ : A−−↠ R be a retraction

with finitely generated kernel. Suppose that there exists an element p which

is a non-zero non-unit in R such that A[1/p] = R[1/p][1]. Then there exists

x ∈ Ker Φ such that x /∈ pA and A[1/p] = R[1/p][x].

Proof. Suppose, if possible, that x ∈ pA for every x ∈ Ker Φ for which

A[1/p] = R[1/p][x].

Let Ker Φ = (a1, a2, . . . , am)A. Choose x0 ∈ Ker Φ such that A[1/p] =

R[1/p][x0]. Note that Φ extends to a retraction Φp : A[1/p] −−↠ R[1/p] with

kernel x0(A[1/p]). By our assumption, x0 = px1 for some x1 ∈ A. Obviously,

x1 ∈ Ker Φ and A[1/p] = R[1/p][x1] and hence x1 ∈ pA. Arguing in a

similar manner, we get x2 ∈ Ker Φ such that x1 = px2, A[1/p] = R[1/p][x2]

and x2 ∈ pA. Continuing this process we get a sequence {xn}n≥0 such that

xn ∈ Ker Φ, A[1/p] = R[1/p][xn] and xn = pxn+1. Thus x0 = pnxn for all

n ≥ 1.

Note that (x0, x1, . . . , xn, . . . )A ⊆ (a1, a2, . . . , am)A. But since ai ∈ A ⊂
A[1/p] = R[1/p][x0], there exist ni ∈ ℕ and ®ij ∈ R[1/p] such that ai =
ni∑
j=0

®ijx0
j . Choose N ∈ ℕ such that ®ijp

jN ∈ R for all i, j and set ¸ij :=

®ijp
jN . Now since x0, ai ∈ Ker Φp, we have ®i0 = 0 for all i and hence

ai =
ni∑
j=1

®ijx0
j . Thus ai =

ni∑
j=1

¸ijxN
j ∈ xNR[xN ] ⊆ xNA for all i, 1 ≤ i ≤ m.

So, we have Ker Φ = (a1, a2, . . . , am)A = xNA. Now xN+1 ∈ Ker Φ = xNA,
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which implies that xN+1 = ®xN for some ® ∈ A. Since xN = pxN+1, it follows

that ®p = 1, which is a contradiction to the fact that p is not a unit in A.

Thus there exists x ∈ Ker Φ such that x /∈ pA and A[1/p] = R[1/p][x].

Now we present a version of Russell-Sathaye criterion when there exists a

retraction.

Proposition 3.2.5. Let R ⊂ A be integral domains such that there exists a

retraction Φ : A−−↠ R. Suppose that there exists a prime p in R such that

(1) p is a prime in A.

(2) A[1/p] = R[1/p][1].

Then pA∩R = pR, R/pR is algebraically closed in A/pA and there exists

an increasing chain A0 ⊆ A1 ⊆ A2 ... ⊆ An ⊆ ... of subrings of A and a

sequence of elements {xn}n≥0 in Ker Φ with x0A ⊆ x1A ⊆ ⋅ ⋅ ⋅ ⊆ xnA ⊆ . . .

such that

(a) An = R[xn] = R[1] for all n ≥ 0.

(b) A[1/p] = An[1/p] for all n ≥ 0.

(c) pA ∩An ⊆ pAn+1 for all n ≥ 0.

(d) A = ∪
n≥0

An = R[x1, x2, . . . , xn, . . . ].

(e) Ker Φ = (x0, x1, x2, . . . , xn, . . . )A.

Moreover the following are equivalent:

(i) Ker Φ is finitely generated.

(ii) Ker Φ = xNA for some N ≥ 0.

(iii) A is finitely generated over R.

(iv) A = R[xN ] for some N ≥ 0.

(v) There exists x ∈ Ker Φ∖pA such that A = R[x] = R[1].

The conditions (i)–(v) will be satisfied if ∩
n≥0

pnA = (0).
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Proof. pA ∩ R = pR by Lemma 3.2.2. Since Φ induces a retraction Φp :

A/pA−−↠ R/pR, R/pR is algebraically closed in A/pA by Lemma 3.2.2.

By condition (2), there exists x′0 ∈ A such that A[1/p] = R[1/p][x′0]. Let
x0 = x′0−Φ(x′0). Then x0 ∈ Ker Φ and A[1/p] = R[1/p][x0] = R[1/p][1]. Set

A0 := R[x0](= R[1]). Then A0 ⊆ A and A[1/p] = A0[1/p] = R[1/p][x0].

Now suppose that we have obtained elements x0, x1, . . . , xn ∈ Ker Φ such

that setting Am := R[xm](= R[1]) for all m, 0 ≤ m ≤ n, we have A0 ⊆ A1 ⊆
A2 ⋅ ⋅ ⋅ ⊆ An ⊆ A and Am[1/p] = A[1/p]; 0 ≤ m ≤ n.

We now describe our choice of xn+1:

Let xn denote the image of xn in A/pA. We consider separately the two

possibilities:

(I) xn is transcendental over R/pR.

(II) xn is algebraic over R/pR.

Case I : xn is transcendental over R/pR. In this case the map An/pAn(=

R[xn]/pR[xn]) −→ A/pA is injective, i.e., pAn = pA ∩ An. Since An[1/p] =

A[1/p], we get An = A by Lemma 3.2.1. Now we set xn+1 := xn and An+1 :=

R[xn+1](= An = A).

Case II: xn is algebraic over R/pR. Since R/pR is algebraically closed in

A/pA, we see that xn ∈ R/pR. Thus xn = pun+ cn for some un ∈ A and cn ∈
R. Applying Φ, we get 0 = Φ(xn) = pΦ(un) + cn showing that cn ∈ pR and

hence xn ∈ pA. Set xn+1 := xn/p(∈ A). Clearly xn+1 ∈ Ker Φ. Now setting

An+1 := R[xn+1](= R[1]), we see that A0 ⊆ A1 ⊆ A2 ⋅ ⋅ ⋅ ⊆ An ⊆ An+1 ⊆ A

and An+1[1/p] = An[1/p] = A[1/p].

Thus we set xn+1 := xn or xn+1 := xn/p depending on whether the image

of xn in A/pA is transcendental or algebraic over R/pR. By construction,

conditions (a) and (b) hold. We now verify (c).

If xn = xn+1, i.e., An+1 = An = A, then pA ∩ An = pA = pAn+1.

Now consider the case xn = pxn+1 ∈ pAn+1. Let a ∈ pA ∩ An. Then a =

r0 + r1(pxn+1) + ⋅ ⋅ ⋅ + rl(pxn+1)
l for some l ≥ 0 and r0, r1, . . . , rl ∈ R. Then

r0 ∈ pA ∩R = pR ⊂ pAn+1. Therefore, a ∈ pAn+1. Thus pA ∩An ⊆ An+1.

We now prove (d). Let B = ∪
n≥0

An. Obviously, B ⊆ A and B[1/p] =

A[1/p]. Hence, by Lemma 3.2.1, it is enough to show that pA ∩B = pB.
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Clearly, pB ⊆ pA ∩ B. Now let y ∈ pA ∩ B. Then there exists i ≥ 0 such

that y ∈ pA ∩Ai ⊆ pAi+1 ⊆ pB. Thus pA ∩B = pB.

(e) follows from Lemma 3.2.3.

(i) =⇒ (v) follows from Lemma 3.2.4. Our construction shows that (iii)

=⇒ (iv). The implications (v) =⇒ (iii) and (iv) =⇒ (ii) =⇒ (i) are easy.

Note that our construction shows that the sequence {xn}n≥0 is eventually

a constant sequence (i.e., there exists N ≥ 0 such that xN+r = xN for all

r ≥ 0) if and only if there exists N ≥ 0 such that the image of xN in A/pA is

transcendental over R/pR. It is easy to see that each of the conditions (i)-(v)

is equivalent to the above condition.

If the image of xm in A/pA is algebraic over R/pR for 1 ≤ m ≤ n, then

xn = pnx0 ∈ pnA. Therefore, if ∩
n≥0

pnA = (0), then the sequence {xn}n≥0

must be eventually constant and hence the conditions (i)–(v) hold.

Proposition 3.2.5 shows that we can extend the Dutta-Onoda version (

[DO07], 2.4) of Russell-Sathaye criterion for A to be R[1] as follows:

Corollary 3.2.6. Let R ⊂ A be integral domains. Suppose that there exists a

prime p in R such that

(1) p is a prime in A.

(2) pA ∩R = pR.

(3) A[1/p] = R[1/p][1].

(4) R/pR is algebraically closed in A/pA.

Then the following are equivalent:

(i) A is finitely generated over R.

(ii) A has a retraction to R with finitely generated kernel.

(iii) tr.deg
R/pR

(A/pA) > 0.

(iv) A = R[1].

Proof. Follows from ( [DO07], 2.4) and Proposition 3.2.5.

By repeated application of Proposition 3.2.5 we get the following:
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Corollary 3.2.7. Let R ⊂ A be integral domains with a retraction Φ : A−−↠ R.

Suppose that there exist primes p1, p2, . . . , pn in R such that

(1) Ker Φ is finitely generated.

(2) p1, p2, . . . , pn are primes in A.

(3) A[ 1
p1p2...pn

] = R[ 1
p1p2...pn

][1].

Then there exists x ∈ Ker Φ such that A = R[x] = R[1].

3.3 Codimension-one A1-fibration with retraction

In this section we will prove our main theorems (Theorems 3.3.5 and 3.3.9)

and auxiliary results (Propositions 3.3.4 and 3.3.7).

We first state a few preliminary results. The next result is easy to prove.

Lemma 3.3.1. Let R be a ring and A an R-algebra. If R′ is a faithfully flat

algebra over R such that A⊗RR
′ is finitely generated over R′, then A is finitely

generated over R.

We now observe a property of algebras with retractions.

Lemma 3.3.2. Let R be an integral domain with field of fractions K and A

be an integral domain containing R with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

Then there exists t ∈ R and F ∈ Ker Φ such that A[1/t] = R[1/t][F ].

Proof. Let S = R∖{0}. By (2), S−1A = K [1]. Since A has a retraction Φ, it is

easy to see that there exists F ∈ Ker Φ such that S−1A = K[F ](= K [1]) and

hence F (S−1A) = (Ker Φ)S−1A. Therefore, by (1), there exists t ∈ S such

that FA[1/t] = (Ker Φ)A[1/t]. Thus FA[1/t] is the kernel of the induced

retraction Φt : A[1/t]−−↠ R[1/t]. Hence we have

A[1/t] = R[1/t]⊕ FA[1/t]

= R[1/t]⊕ FR[1/t]⊕ F 2A[1/t]

. . .

= R[1/t]⊕ FR[1/t]⊕ F 2R[1/t]⊕ ⋅ ⋅ ⋅ ⊕ FnR[1/t]⊕ Fn+1A[1/t] ∀n ∈ ℕ.
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As S−1A = ⊕
n≥0

KFn, it follows that A[1/t] = R[1/t][F ].

Remark 3.3.3. In Lemma 3.3.2 if we assume that Ker Φ is principal, say,

Ker Φ = (G), then A = R[G].

We now deduce a local-global result. Our approach gives a simpler proof

of Theorem 3.1.2 which is obtained in [BDO] as a consequence of a highly

technical structure theorem.

Proposition 3.3.4. Let R be either a Noetherian domain or a Krull domain

with field of fractions K and A a flat R-algebra with a retraction Φ : A−−↠ R

such that

(1) Ker Φ is finitely generated.

(2) AP = RP
[1] for every prime ideal P of R satisfying deptℎ (RP ) = 1.

Then there exists an invertible ideal I of R such that A ∼= SymR(I).

Proof. The case dim R = 0 is trivial. So we assume that dim R ≥ 1. Note

that A is a faithfully flat R-algebra and an integral domain. By Lemma 3.3.2,

A[1/t] = R[1/t][F ]. If t is a unit in R, then A = R[1] and we would be through.

So we assume that t is a non-unit in R.

Let P1, P2, ..., Ps be the associated prime ideals of tR. Let S = R∖( s∪
i=1

Pi) =

{r ∈ R∣ r is not a zero-divisor in R/tR}. By (2), for each maximal ideal m

of S−1R, (S−1A)m = (S−1R)m
[1]

and hence S−1A = (S−1R)
[1]
, S−1R being a

semilocal domain. Hence, by Lemma 2.0.13, A ∼= SymR(I) for some invertible

ideal I of R.

We now prove Theorem A for the case R is a Krull domain.

Theorem 3.3.5. Let R be a Krull domain with field of fractions K and A a

flat R-algebra with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is an integral domain for each height one prime ideal P of R.

Then there exists an invertible ideal I of R such that A ∼= SymR(I).
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Proof. Let P be a prime ideal in R for which deptℎ (RP )(= ℎt(P )) = 1. Then

RP is a DVR. Let ¼P be the uniformising parameter of RP . Note that the

retraction Φ : A −−↠ R induces a retraction ΦP : AP −−↠ RP with finitely

generated kernel, condition (2) ensures that AP [1/¼P ] = RP [1/¼P ]
[1] = K [1],

and condition (3) ensures that ¼P is a prime in AP . Hence, by Corollary

3.2.7, AP = RP
[1]. Therefore, by Proposition 3.3.4, A ∼= SymR(I) for some

invertible ideal I of R.

As an immediate consequence we get the following variant of a Lüroth-type

result over UFD (see [RS79], 3.4):

Corollary 3.3.6. Let R be a UFD with field of fractions K and A a flat

R-algebra with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R K = K [1].

(3) A⊗R k(P ) is an integral domain for each height one prime ideal P of R.

Then there exists x ∈ Ker Φ such that A = R[x] = R[1].

Now we prove Theorem B:

Theorem 3.3.7. Let R be a Noetherian ring and A be a flat R-algebra with

a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R k(P ) = k(P )[1] for each minimal prime ideal P of R.

(3) A⊗R k(P ) is geometrically integral over k(P ) for each height one prime

ideal P of R.

Then:

(I) A⊗R k(P ) is an A1-form over k(P ) for each prime ideal P of R.

(II) A is finitely generated over R.

(III) If R is an integral domain, then there exists a finite birational extension

R′ of R and an invertible ideal I of R′ such that A⊗R R′ ∼= SymR′(I).
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Proof. (I): Note that for any prime ideal P of R, A⊗R k(P ) = AP ⊗RP
k(P ).

So, to prove the fibre condition (I), we replace R by RP (and A by AP ) and

assume that R is a local ring with maximal ideal m. We prove that A⊗R k(m)

is an A1-form over k(m) by induction on height m, i.e., dim R.

Case : dim R =0.

Trivial.

Case : dim R =1.

Replacing R by R/P0 for some minimal prime ideal P0, we may assume

that R is a Noetherian one-dimensional local integral domain with field of

fractions K. Note that condition (3) implies that A⊗R k(m) is geometrically

integral over k(m).

Let R̃ be the normalisation of R and let Ã = A ⊗R R̃. Then, by Krull-

Akizuki theorem, R̃ is a Dedekind domain ( [Mat89], p 85); and sinceR is local,

R̃ is semilocal and hence a PID. Let m̃1, m̃2, . . . , m̃r be the maximal ideals of R̃.

Again, by Krull-Akizuki theorem ( [Mat89], p 85), k(m̃i) is a finite algebraic

extension of k(m). Clearly, the retraction Φ : A−−↠ R gives rise to a retraction

Φ̃ : Ã−−↠ R̃. From the split exact sequence 0 −→ Ker Φ −→ A −→ R −→ 0,

it follows that Ker Φ̃ = Ker Φ⊗R R̃ = Ker Φ⊗A Ã = (Ker Φ)Ã and hence

Ker Φ̃ is finitely generated.

Thus, from (1), (2) and (3), we have:

(i) Ker Φ̃ is finitely generated.

(ii) Ã⊗
R̃
K = K [1].

(iii) Ã⊗
R̃
k(m̃i) is geometrically integral over k(m̃i) for every maximal ideal

m̃i of R̃.

Hence, by Corollary 3.3.6, Ã = R̃[1]. In particular, Ã⊗
R̃
k(m̃i) = k(m̃i)

[1]

for each maximal ideal m̃i of R̃. This shows that A ⊗R k(m) is an A1-form

over k(m).

Case : dim R ≥ 2.

By induction hypothesis we have that A⊗R k(P ) is an A1-form for every

non-maximal prime ideal P of R. Let R̂ denote the completion of R and let

Â = A ⊗R R̂. Then R̂ is a complete local ring with maximal ideal m̂ and

R̂/m̂ ∼= R/m. Since R is Noetherian, R̂ is Noetherian and faithfully flat over

R and hence Â is faithfully flat over both A and R̂. The retraction Φ : A−−↠ R

gives rise to a retraction Φ̂ : Â−−↠ R̂. Note that Ker Φ̂ = (Ker Φ)Â is finitely
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generated. Now, for any non-maximal prime ideal P̂ of R̂, P̂ ∩ R ∕= m and

hence Â⊗
R̂
k(P̂ ) is an A1-form over k(P̂ ).

Replacing R by R̂, we may assume R to be a complete local Noetherian

ring. Further, replacing R by R/P0, where P0 is a minimal prime ideal of R,

we may assume R to be a complete, local, Noetherian domain with maximal

ideal m and field of fractions K such that

(a) A⊗R K = K [1].

(b) A ⊗R k(P ) is A1-form over k(P ) for each non-maximal prime ideal P

of R.

Let R̃ be the normalisation of R. Since R is a complete local ring, R̃ is

a finite R-module ( [Mat89], p 263) and hence is a Noetherian normal local

domain. Let Ã = A ⊗R R̃. As before, the retraction Φ : A −−↠ R induces a

retraction Φ̃ : Ã−−↠ R̃ with finitely generated kernel (Ker Φ)Ã. Now we have

the following:

R̃ is a Noetherian normal local domain with field of fractions K and Ã is

a faithfully flat R̃-algebra such that

(1′) There is a retraction Φ̃ : Ã−−↠ R̃ with finitely generated kernel.

(2′) Ã⊗
R̃
K = A⊗R K = K [1].

(3′) Ã⊗
R̃
k(P̃ ) is an A1-form over k(P̃ ) for each height one prime ideal P̃

of R̃ (since for any height one prime ideal P̃ of R̃, P̃ ∩R ∕= m).

By Theorem 3.3.5, Ã = R̃[1]; in particular, Ã ⊗
R̃
k(m̃) = k(m̃)[1]. This

shows that A ⊗R k(m) is an A1-form over k(m) and hence A ⊗R k(P ) is an

A1-form over k(P ) for every prime ideal P of R.

(II): We now show that A is finitely generated over R. By Lemma 2.0.11, it

is enough to take R to be an integral domain; by Theorem 2.0.12 and Lemma

3.3.2, it is enough to assume R to be local and, by Lemma 3.3.1, it is enough to

take R to be complete. Thus we assume that R is a Noetherian local complete

integral domain. Let R̃ be the normalisation of R. Then the proof of (I) shows

that A⊗R R̃ = R̃[1]; in particular, A⊗R R̃ is finitely generated over R̃. Since

R̃ is a finite module over R, by Lemma 2.0.10, A is finitely generated over R.

(III): Now R is given to be an integral domain. Recall that, by (I), we

have that A⊗R k(P ) is an A1-form over k(P ) for every prime ideal P of R.
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Let R̃ be the normalisation of R. Then R̃ is a Krull domain ( [Mat89], p

91). Let Ã = A⊗R R̃. As before, there is a retraction Φ̃ : Ã−−↠ R̃ with finitely

generated kernel. We now have the following:

R̃ is a Krull domain with field of fractions K and Ã is a faithfully flat

R̃-algebra such that

(1′′) There is a retraction Φ̃ : Ã−−↠ R̃ with finitely generated kernel.

(2′′) Ã⊗
R̃
K = K [1].

(3′′) Ã⊗
R̃
k(P̃ ) is an A1-form over k(P̃ ) for each prime ideal P̃ of R̃ (since

k(P̃ ) is algebraic over k(P̃ ∩R)).

Using Theorem 3.3.5, we get that A ⊗R R̃ = R̃[ĨT ] for some invertible

ideal Ĩ of R̃. Let Ĩ = (a1, a2, . . . , an)R̃ and let ®1, . . . , ®n ∈ Ĩ−1 be such

that a1®1 + . . . an®n = 1. Set bij := ai®j(∈ R̃), i, j, 1 ≤ i, j ≤ n. Let

apT =
sp∑
q=1

upq ⊗ cpq where cpq ∈ R̃ and upq ∈ A.

By (II), A is finitely generated; let A = R[y1, y2, . . . , yt] where each yℓ ∈
Ker Φ. Then

yℓ ⊗ 1 =

rℓ∑

m=0

∑
m1+m2+⋅⋅⋅+mn=m

dℓ m1m2...mn a1
m1a2

m2 . . . an
mn Tm

for some dℓ m1m2...mn ∈ R̃.

Now, let R′ be the R-subalgebra of R̃ generated by the elements

a1, a2, . . . , an; bij where 1 ≤ i, j ≤ n; cpq where 1 ≤ q ≤ sp, 1 ≤ p ≤ n;

and dℓ m1m2...mn where m1 +m2 + ⋅ ⋅ ⋅+mn = m, 0 ≤ m ≤ rℓ, 1 ≤ ℓ ≤ t. Let

I be the ideal (a1, a2, . . . , an)R
′. Then R′ is a finite birational extension of R

and I is an invertible ideal of R′.

Since A is faithfully flat over R, we have A⊗R R′ ⊆ A⊗R R̃ ⊆ A⊗R K =

K[T ]. Now considering A⊗R R′ and R′[IT ] as subrings of A⊗R K, it is easy

to see that A⊗R R′ = R′[IT ].
This completes the proof.

Remark 3.3.8. The above proof shows that in the statement of Theorem 3.3.7

it is enough to assume in (2) that the generic fibres are A1-forms. (In the proof

take R̃ to be the integral closure of R in L where L is finite extension of K

such that A⊗R L = L[1].)

We now prove Theorem C.
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Theorem 3.3.9. Let ℚ ↪→ R be a Noetherian ring and A be a flat R-algebra

with a retraction Φ : A−−↠ R such that

(1) Ker Φ is finitely generated.

(2) A⊗R k(P ) = k(P )[1] at each minimal prime ideal P of R.

(3) A⊗R k(P ) is an integral domain at each height one prime ideal P of R.

Then:

(I) A is an A1-fibration over R.

(II) If R is an integral domain, then there exists a finite birational extension

R′ of R and an invertible ideal I of R′ such that A⊗R R′ ∼= SymR′(I).

(III) If Rred is seminormal, then A ∼= SymR(I) for some finitely generated

rank one projective R-module I.

Proof. (I): By Theorem 3.3.7, it is enough to show that A⊗R k(P ) = k(P )[1]

for each prime ideal P in R of height one.

Fix a prime ideal P in R of height one. Replacing R by RP , we assume

that R is a one-dimensional Noetherian local ring with maximal ideal m and

residue field k. Moreover, replacing R by R/P0 for some minimal prime ideal

P0, we may further assume that R is an integral domain with field of fractions

K. We show that A⊗R k = k[1].

Note that k is a field of characteristic 0. By Krull-Akizuki theorem, there

exists a discrete valuation ring (R̃, ¼, k̃) such that R ⊂ R̃ ⊂ K and k̃ is a finite

separable extension of k. Let Ã = A⊗R R̃. Since separable A1-forms are A1,

to show that A⊗R k = k[1], it is enough to show that Ã/¼Ã(= A⊗R k̃) = k̃[1]

and hence enough to show that Ã = R̃[1].

Now, the retraction Φ : A −−↠ R with finitely generated kernel induces a

retraction Φ̃ : Ã −−↠ R̃ with finitely generated kernel. Also Ã[1/¼] = K [1].

Using Lemma 3.2.4, we get x ∈ Ker Φ̃∖¼Ã such that Ã[1/¼] = K[x].

Let B = R̃[x] ⊂ Ã. We will show that Ã = B. Since ¼ is a non-zero divisor

and since Ã¼ = B¼, by Lemma 3.2.1, it suffices to show that ¼Ã ∩B = ¼B.

Let D = A ⊗R k. Then Ã/¼Ã = Ã ⊗
R̃
k̃ = (A ⊗R k) ⊗k k̃ = D ⊗k k̃. By

hypothesis, D is an integral domain and hence, as k̃∣k is separable, Ã/¼Ã =
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D ⊗k k̃ is a reduced ring. Note that Ã/¼Ã is a finite flat module over D and

hence Ã has only finitely many minimal prime ideals P1, P2, . . . , Pn containing

¼Ã. To show that ¼Ã ∩ B = ¼B, it is enough to show that Pi ∩ B = ¼B for

some i.

Suppose, if possible, that Pi ∩ B ∕= ¼B for all i. Let Pi ∩ B = Qi. Then

ℎt(Qi) > 1, i.e., Qis are maximal ideals of B (since dim B = 2). Let t be

the number of distinct ideals in the family {Q1, Q2, . . . , Qn}. By reindexing, if

necessary, we assume that Q1, Q2, . . . , Qt are all distinct. Let Ii = ∩
Pj∩B=Qi

Pj .

Since Qis are pairwise comaximal, Iis are pairwise comaximal. Thus Ã/¼Ã =

Ã/I1 × Ã/I2 × ⋅ ⋅ ⋅ × Ã/It.

Since D = A ⊗R k, the retraction Φ : A −−↠ R induces a retraction

Φk : D−−↠ k. Let m0 be a maximal ideal of D such that D/m0 = k. Note that

D ↪→ Dm0 and hence due to flatness, D ⊗k k̃ ↪→ Dm0 ⊗k k̃. Since Dm0 is local

and since k̃∣k is a finite extension, Dm0 ⊗k k̃ is also local with maximal ideal

m0(Dm0 ⊗k k̃) and residue field k̃. As the local ring Dm0 ⊗k k̃ is a localisation

of D ⊗k k̃ = Ã/¼Ã, it follows that there exists a prime ideal p of Ã/¼Ã such

that Dm0 ⊗k k̃ = (Ã/¼Ã)p.

Note that Ã/¼Ã = D⊗k k̃ ↪→ Dm0⊗k k̃ = (Ã/¼Ã)p. As the map Ã/¼Ã −→
(Ã/¼Ã)p is one-one, it follows that the zero divisors of Ã/¼Ã are contained in

p. Consequently, Pi ⊂ p where Pi is the image of Pi in Ã/¼Ã. But this would

imply that the local ring (Ã/¼Ã)p is a product of t rings which is possible only

if t = 1. So Pi ∩ B = Q for all i, which implies that ¼Ã ∩ B = Q. Note that

the retraction Φ̃ : Ã −−↠ R̃ induces a retraction Φ̃¼ : Ã/¼Ã −−↠ R̃/¼R̃. Now

since ¼Ã∩B = Q, the retraction Φ̃¼ induces a retraction Φ̃′
¼ : B/Q−−↠ k̃. But

Q is a maximal ideal of B, i.e., B/Q is a field. Hence Φ̃′
¼ is an isomorphism.

As x ∈ Ker Φ̃, it then follows that that x ∈ Q ⊂ ¼Ã and hence x ∈ ¼Ã, a

contradiction.

Thus ¼Ã ∩ R̃[x] = ¼R̃[x] and hence Ã = R̃[1] showing that A⊗R k = k[1].

(II): Follows from (III) of Theorem 3.3.7.

(III): Follows from (I) and the result ( [Asa87], 3.4) of Asanuma, using

results of Hamann ( [Ham75], 2.6 or 2.8) and Swan ( [Swa80], 6.1); also see

( [Gre86]).

Remark 3.3.10. Examples from existing literature would show that the hy-

potheses in our results cannot be relaxed. For instance, the hypothesis that
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“Ker Φ is finitely generated” is necessary in all the results as can be seen from

the example: Let (R, ¼) be a DVR and A = R[X,X/¼,X/¼2, . . . , X/¼n, . . . ].

An example of Eakin-Silver ( [ES72], 3.15) shows that the hypothesis “A

has a retraction to R” is necessary in Proposition 3.3.4. Even if R is local and

factorial and A Noetherian, the hypothesis “A has a retraction to R” would

still be necessary in Theorem 3.3.5 even to conclude that A is finitely generated

as has been shown recently in [BDO]. Even if A is finitely generated, the

hypothesis “A has retraction to R” would still be necessary in Theorem 3.3.5

to conclude that A is a symmetric algebra (consider R = k[[t1, t2]] where k is

any field and A = R[X,Y ]/(t1X + t2Y − 1)).

The following example of Yanik ( [Yan81], 4.1) shows the necessity of

seminormality hypothesis in the passage from (I) to (III) in Theorem 3.3.9:

Let k be a field of characteristic zero, R = k[[t2, t3]] and A = R[X, tX2] +

(t2, t3)R[X]; also see [Gre86].

For other examples (e.g. necessity of “flatness” or the necessity of “geomet-

rically integral” in Theorem 3.3.7), and the necessity of ℚ ↪→ R in Theorem

3.3.9, see ( [BD95], section 4).



Chapter 3: Codimension-one A1-fibration with retraction 32



Chapter 4

Factorial A1-form with

retraction

4.1 Preview

Let k be a field. We call a k-algebra D a k-form of a k-algebra C if there

exists an algebraic field extension k′∣k such that D ⊗k k′ ∼= C ⊗k k′. It is to

be noted that a k-algebra A is a k-form of k[X] if and only if A is an A1-form

over k. It is easy to see that if A is an A1-form over k, there exists a finite

algebraic extension k′∣k such that A⊗k k
′ = k′[1]. A k-form, or an A1-form, is

called purely inseparable (resp. separable), if we can take the field extension

k′∣k to be a purely inseparable (resp. separable) extension. It is well known

that there exist k-domains A such that all separable k-forms of A are trivial

i.e., isomorphic to A. For example,

(i) For any field k, separable A1-forms over k are trivial( [Dut00]). In fact,

in ( [Dut00], Theorem 2.0.17) it has been shown that separable A1-forms

over arbitrary domains are trivial.

(ii) For any perfect field k, Ar-forms over k (r = 1, 2) are trivial ( [Kam75]).

However if k is not perfect, Rosenlicht showed that non-trivial Ar-forms over

k always exists even if r = 1 ( [Ros63]). Asanuma gave a structure theorem for

the purely inseparable k-forms of geometrically normal affine plane curves and

hence a structure of purely inseparable A1-forms over field k of characteristic

p > 2 ( [Asa05]). But the case characteristic p = 2 is still unsolved! Asanuma

conjectured that if k is not perfect, any one dimensional affine k-domain has

33
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a non-trivial k-form. It is not known if there exists an one dimensional affine

k-domain all of whose k-forms are trivial!

One of the discussed questions in this area is: Under what conditions will

a k-form be trivial? Theorem 4.1.5 addresses this question. A more general

result will be presented in section 4.2.

We now quote some definitions and results of Asanuma ( [Asa05]) which

are related to our work.

Definition 4.1.1. Let k be a field of characteristic p > 0. A polynomial

f(X) ∈ k[X](= k[1]) is called a p-polynomial if f(X) is of the form f(X) =

a0 +X + a1X
p + a2X

2p + ⋅ ⋅ ⋅+ anX
np, (ai ∈ k).

Note that f(X) ∈ k[X] is a p-polynomial if and only if ∂(f(X)) = 1 where

∂(f(X)) denotes the derivative of f(X) with respect to X.

Asanuma showed that corresponding to each p-polynomial we can con-

struct a non-trivial purely inseparable A1-form ( [Asa05],Proposition 4.4).

Proposition 4.1.2. Let k be a field of characteristic p ≥ 0. Let k[Xpe , f(X)],

(e ≥ 0) for a p-polynomial f(X) ∈ k1/p
e
[X]. Then A is a purely inseparable

A1-form over k.

Definition 4.1.3. A k-form of k[1] which is k-isomorphic to A = k[Xpe , f(X)]

as in Proposition 4.1.2 is said to an A1-form of p-polynomial type.

It is easy to observe that if A is an A1-form over a field k, then Ωk(A)

is a projective module over A. The next result ( [Asa05], Theorem 4.8) of

Asanuma shows that that for an A1-form A over k, Ωk(A) is a free A-module

if and only if A is of p-polynomial type.

Theorem 4.1.4. Let k be a field of characteristic p > 0 and let A be a k-form

of k[1]. Then the following are equivalent:

(I) A is generated by two elements over k.

(II) Ωk(A) is free A-module of rank one.

(III) A is of p-polynomial type.

Now it is to be noted that if A is a factorial A1-form over k, then Ωk(A)

is a free A-module. So it follows directly from Theorem 4.1.4 that an A1-form

over k is of p-polynomial type if A is an UFD. It it obvious that if an A1-form
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is trivial, it must be a UFD. So, the immediate question is: “Under what

other conditions will a factorial A1-form over k be trivial?” It can be seen, as

a consequence of the Theorem 4.1.4, that a factorial A1-form over k is trivial

if it has a k-rational point.

Theorem 4.1.5. Let k be a field and A an A1-form over k such that

(1) A is a UFD.

(2) A has a k-rational point.

Then A = k[1].

We started investigating whether Theorem 4.1.5 holds in more general-

ity. In section 4.2 we will show that the above result can be generalized over

arbitrary k-algebras (Theorem 4.2.2). The proof of our result gives an inde-

pendent proof to Theorem 4.1.5 (see Theorem 4.2.2, when B = k) which does

not involve Asanuma’s intricate structure theorem.

4.2 Main Result

First we note the following property of polynomial algebra:

Lemma 4.2.1. Let R be a ring and X a transcendental element over R. Then

ℎt(XR[X]) = 1

Proof. Note that if P is a minimal prime ideal of R[X], then P = P0[X] for

some minimal prime ideal P0 of R. Now if P0[X] is a minimal prime ideal in

a chain of prime ideals determining the height of XR[X], then ℎt(XR[X]) =

ℎt(X(R/P0)[X]). Since ∩
n≥1

Xn(R/P0)[X] = 0 and since R/P0 is a domain,

ℎt(X(R/P0)[X]) = 1. Thus ℎt(XR[X]) = 1.

We now prove Theorem D, the main theorem of this chapter.

Theorem 4.2.2. Let k be a field and let R ↪→ A be k-algebras such that

(1) A is a UFD.

(2) There is a retraction Φ : A −→ R.

(3) A is an A1-form over R.

Then A = R[1].
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Proof. Since A is an A1-form over R, there exists a finite algebraic extension

L∣k such that A⊗k L = (R⊗k L)[X] = (R⊗k L)
[1]. Let P = ker Φ. Then we

have a short exact sequence S :

0 −→ P −→ A
Φ−→ R −→ 0. (4.2.1)

Tensoring S with L with respect to k gives the short exact sequence S ⊗ L:

0 −→ P ⊗k L −→ A⊗k L
Φ̃−→ R⊗k L −→ 0 (4.2.2)

where Φ̃ := Φ⊗ 1.

Let P̃ = P ⊗k L. Note that Φ being a retraction from A onto R, Φ̃ is

also a retraction from (R ⊗k L)[X](= A ⊗k L) onto R ⊗k L with kernel P̃ =

(X−Φ̃(X))(R⊗kL)[X]. ReplacingX byX−Φ̃(X), we assume P̃ = X(A⊗kL).

From the short exact sequence (4.2.2), we see that P (A ⊗k L) = P̃ ; and

by faithful flatness of A ⊗k L over A, we have P̃ ∩ A = P ( [Mat89], Pg. 49,

Theorem 7.5). Since A⊗kL = (R⊗kL)[X] is a polynomial ring over R⊗kL, by

Lemma 4.2.1, ℎt(P̃ ) = 1. A⊗k L being faithfully flat and integral over A, by

the going down theorem ( [Mat89], Pg. 68, Theorem 9.5), ℎt(P ) = ℎt(P̃ ) = 1

and since A is a UFD, there exists g ∈ A such that P = gA.

Thus we get g(A⊗k L) = P̃ = X(A⊗k L). Since X is a non-zero divisor in

A⊗k L(= (R ⊗k L)[X]), it follows that g = ¸X for some ¸ ∈ (A⊗k L)
∗. Let

¸ = a0+a1X+a2X
2+ ⋅ ⋅ ⋅+anX

n where a0 ∈ (R⊗kL)
∗ and ai ∈ nil(R⊗kL),

for all i = 1, 2, ⋅ ⋅ ⋅ , n. Let I = (a1, a2, ⋅ ⋅ ⋅ , an)(R⊗k L). Then I is a nilpotent

ideal of R⊗k L. Let N be the least positive integer such that IN = (0). Since

g ≡ a0X(mod I), we have (R⊗k L)[X] = (R⊗k L)[g] + I(R⊗k L)[X] = ⋅ ⋅ ⋅ =
(R⊗k L)[g] + IN (R⊗k L)[X] = (R⊗k L)[g].

So, we get R[g]⊗k L = A⊗k L and hence R[g] = A, since L∣k is faithfully

flat. Thus A = R[1].

The following two well-known examples ( [KMT74], Pg. 70–71, Remark

6.6(a), Examples (i) and (ii)) respectively show that in Theorem 2 (and hence

in Theorem 3), the hypothesis on the existence of a retraction and the hy-

pothesis “A is a UFD” are necessary.

Example 4.2.3. Let Fp be the prime field of characteristic p and let k =

Fp(t, u) be a purely transcendental extension of Fp with variables t and u.
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Then A = k[X,Y ]/(Y p− t−X −uXp) is a factorial non-trivial A1-form over

k which does not have a retraction to k.

Example 4.2.4. Let k be a field of characteristic p ≥ 2 and A =

k[X,Y ]/(Y p − X − aXp) where a ∈ k∖kp. Then A is a non-trivial A1-form

over k with a retraction to k. Here A is not a UFD.
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Chapter 5

Planes of the form

b(X,Y )Zn − a(X,Y ) over a

DVR

5.1 Preview

An important question in affine algebraic geometry is the following epimor-

phism problem:

Question 1. Let K be a field of characteristic 0. Let g ∈ K[X,Y, Z](= K [3])

be such that K[X,Y, Z]/(g) = K [2]. Is then K[X,Y, Z] = K[g][2]?

While the problem is open in general, a few special cases have been investi-

gated by Sathaye, Russell and Wright in [Sat76], [Rus76], [Wri78] and [RS79];

in some of these cases, Question 1 has an affirmative answer even when K is

a field of positive characteristic. In particular, they considered polynomials of

the form b(X,Y )Zn − a(X,Y ) and obtained affirmative answers when

(1) n = 1, K a field of characteristic 0 (A. Sathaye, [Sat76]).

(2) n = 1, K a field of any characteristic (P. Russell, [Rus76]).

(3) n ≥ 2 and K an algebraically closed field of characteristic p ≥ 0 with

p ∤ n (D. Wright, [Wri78]).

In this chapter we shall first show (see Theorem 5.2.5) that the above result

(3) of D. Wright (see Theorem 2.0.14) holds even when K is not necessarily

algebraically closed.

39
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We now consider the corresponding question over a DVR.

Question 2. Let (R, t) be a DVR containing ℚ and g ∈ R[X,Y, Z](= R[3]) be

such that R[X,Y, Z]/(g) = R[2]. Is then R[X,Y, Z] = R[g][2]?

As shown by Bhatwadekar-Dutta in ( [BD94b], section 4), this problem is

closely related to the problem of A2-fibration over a regular two-dimensional

affine spot over a field of characteristic zero. Hence, one could explore Ques-

tion 2 at least for polynomials like g = b(X,Y )Zn − a(X,Y ) for which the

corresponding Question 1 has been settled. For such polynomials, in view

of the corresponding results over fields, one could extend the investigation of

Question 2 even to the positive characteristic case.

The first investigation in this direction was made by Bhatwadekar-Dutta

in [BD94a]. They showed (Theorem 3.5, [BD94a]) that Question 2 has an

affirmative answer (in any characteristic) when g = b(X,Y )Z−a(X,Y ) with t ∤
b(X,Y ), thereby partially generalizing A. Sathaye’s theorem on linear planes

over a field ( [Sat76]).

We will show that Question 2 has an affirmative answer (see Theorem

5.3.3) for polynomials of the form g = b(X,Y )Zn − a(X,Y ) where n ≥ 2

is an integer not divisible by the characteristic of R/tR, thereby obtaining a

generalization of D. Wright’s theorem (Theorem 2.0.14).

Using theorems on residual variables of Bhatwadekar-Dutta ( [BD93]), we

will further show that the result for n ≥ 2 holds over (i) any integral do-

main containing ℚ (see Theorem 5.4.1) and (ii) any Noetherian UFD domain

containing a field of characteristic p ≥ 0, if p ∤ n (see Theorem 5.4.2).

In sections 5.2 and 5.3, we prove our main results over a field and DVR

respectively and in section 5.4, we prove our result for rings containing a field.

5.2 Planes of the form bZn − a over a field

In this section we will show that Wright’s arguments in ( [Wri78]) can be

modified to show that his result (Theorem 2.0.14) can be extended over any

field. We first prove a few auxiliary results (Lemmas 5.2.1 and 5.2.2), then

consider the case when the field k contains all nth roots of unity (Proposition

5.2.4) and finally show that Theorem 2.0.14 holds over any field (Theorem

5.2.5).

We first record a result on Autk(k
[2]).
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Lemma 5.2.1. Let k be a field of characteristic p ≥ 0 and ¾ a k-automorphism

of B = k[2] of order n such that p ∤ n. Suppose that k contains all the ntℎ

roots of unity. Then there exist elements U, V ∈ B and ®, ¯ ∈ k∗ such that

B = k[U, V ], ¾(U) = ®U and ¾(V ) = ¯V , where ®n = ¯n = 1.

Proof. By Theorem 2.0.15, one can choose coordinates U ′, V ′ of B such that

either ¾ ∈ ℰ2(k) or ¾ ∈ Af2(k).

Case: ¾ ∈ ℰ2(k).
In this case ¾(U ′) = ®U ′ + ¹ and ¾(V ′) = ¯V ′ + f1(U

′), where ®, ¯ ∈ k∗,
¹ ∈ k and f1(U

′) ∈ k[U ′]. Since ¾ is of order n, we have ®n = ¯n = 1.

If ® = 1, then U ′ = ¾n(U ′) = U ′ + n¹ and hence ¹ = 0, as p ∤ n. Set

U := U ′ if ® = 1 and U := U ′ + ¹
®−1 if ® ∕= 1. Then K[U ′, V ′] = K[U, V ′],

¾(U) = ®U and ¾(V ′) = ¯V ′+f(U) for some f(U) ∈ k[U ]. We will now show

that we can choose g(U) ∈ k[U ] such that ¾(V ′ + g(U)) = ¯(V ′ + g(U)). Let

f(U) =
r
§
i=0

aiU
i. First we show that for any i, 1 ≤ i ≤ r, if ai ∕= 0, then ®i ∕= ¯.

Suppose ¯ = ®i. Now, since V ′ = ¾n(V ′) = ¯nV ′ + ¯n−1f(U)+ ¯n−2f(®U)+

⋅ ⋅ ⋅+ f(®n−1U), we get ¯n−1f(U) + ¯n−2f(®U) + ⋅ ⋅ ⋅+ f(®n−1U) = 0, which

implies that ¯n−1ai+¯n−2®iai+¯n−3®2iai+⋅ ⋅ ⋅+®(n−1)iai = 0, i.e., n¯n−1ai =

0, and hence ai = 0 (as p ∤ n and ¯ ∕= 0). Thus ®i ∕= ¯ if ai ∕= 0.

Now we define bi for each i = 1, 2, ⋅ ⋅ ⋅ , r as follows:

bi =

{
0 if ai = 0.

ai/(¯ − ®i) if ai ∕= 0.

Now let g(U) =
r
§
i=0

biU
i and set V := V ′ + g(U). Then

¾(V ) = ¯V ′ + f1(U) + g(®U)

= ¯V ′ +
r
§
i=0

aiU
i +

r
§
i=0

bi(®U)i

= ¯V ′ +
r
§
i=0

(ai + ®ibi)U
i

= ¯(V ′ +
r
§
i=0

biU
i)

= ¯(V ′ + g(U))

= ¯V.

Thus k[U ′, V ′] = k[U, V ], ¾(U) = ®U and ¾(V ) = ¯V .

Case: ¾ ∈ Af2(k).
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In this case ¾(U ′) = ®1U
′ + ¯1V

′ + °1 and ¾(V ′) = ®2U
′ + ¯2V

′ + °2 for

some ®i, ¯i, °i ∈ k (i = 1, 2) with ®1¯2 ∕= ¯1®2. If ¯1 = 0 or ®2 = 0, then it

reduces to the previous case after applying some change of variables. So we

assume that ¯1 ∕= 0 and ®2 ∕= 0.

Choose ¸ ∈ k̄ such that (®1 − ¸)(¯2 − ¸) − ®2¯1 = 0. Then ¸ is an eigen

value of the linear transformation (X,Y ) 7→ (®1X + ®2Y, ¯1X + ¯2Y ) of k̄2.

Let (º1, º2) ∈ k̄2, not both zero, be an eigen vector corresponding to the eigen

value ¸. Then we have

®1º1 + ®2º2 = ¸º1

¯1º1 + ¯2º2 = ¸º2

Therefore, ¾(º1U
′ + º2V

′) = ¸(º1U
′ + º2V

′)+¹ where ¹ = º1°1 + º2°2. Since

¾ is of order n, we have ¸n = 1 and hence ¸ ∈ k∗. Thus we may choose

º1, º2 ∈ k. Therefore, setting U := º1U
′ + º2V

′, we have ¾(U) = ¸U + ¹ and

hence ¾(V ′) = ·V ′ + ℎ(U) for some · ∈ k∗ and ℎ(U) ∈ k[U ]. Now, by taking

U and V ′ to be the coordinates for B, the problem reduces to the earlier case:

¾ ∈ ℰ2(k).
Thus in both the cases we get U, V ∈ B and ®, ¯ ∈ k∗ such that B =

k[U, V ], ¾(U) = ®U and ¾(V ) = ¯V . This completes the proof.

We now record a consequence of Sathaye’s result (Theorem 2.0.16).

Lemma 5.2.2. Let k be a field, B = k[2] and b ∈ B∖k. Suppose that there

exist a separable algebraic extension E∣k and an element X ′ ∈ B ⊗k E such

that B ⊗k E = E[X ′][1] and b ∈ E[X ′]. Then there exists X ∈ B such that

b ∈ k[X], B = k[X][1] and E[X ′] = E[X].

Proof. Without loss of generality, we assume E∣k to be a finite separable ex-

tension.

Let B = k[X1, Y1]. Then B ⊗k E = E[X1, Y1] = E[X ′][1]. Let X ′ =

Á(X1, Y1). Interchanging X1 and Y1 if necessary, we may assume that the

X1-degree of Á(X1, Y1) is positive. Hence the leading coefficient of X1 in

Á(X1, Y1) is a non-zero element ¸ ∈ E ( [Abh77], Proposition 11.12, pg. 85).

Let X ′′ = X ′/¸.

Let G = {¾i ∣ i = 1, 2, ⋅ ⋅ ⋅ ,m} be the group of k-automorphisms of E∣k.
We extend each ¾ ∈ G to a B-automorphism of B⊗kE. Let k̄ be an algebraic
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closure of k containing E and b =
s∏

i=1
(¸iX

′′+¹i)
ni be the prime decomposition

of b in k̄[X ′′], where ¸i ∈ k̄
∗
, ¹i ∈ k̄ and ni ∈ ℕ, 1 ≤ i ≤ s. Since ¾(b) = b

for each ¾ ∈ G, b =
s∏

i=1
(¾(¸i)¾(X

′′) + ¾(¹i))
ni is also a prime decomposition

of b in k̄[X ′′]. This shows that for each ¾ ∈ G, ∃ ® ∈ k̄
∗
and ¯ ∈ k̄ such that

¾(X ′′) = ®X ′′ + ¯. Since X ′′ and ¾(X ′′) are both monic in X1, it follows that

® = 1.

Since X ′′ is a variable of B ⊗k E, we have (B ⊗k E)/(¾(X ′′)) = E[1] for

each ¾ ∈ G. It is also easy to see that if ¾i(X
′′) ∕= ¾j(X

′′) for ¾i, ¾j ∈ G, then

¾i(X
′′) and ¾j(X

′′) are comaximal in B⊗k k̄ and hence comaximal in B⊗kE.

Let u1, ⋅ ⋅ ⋅ , ut be the distinct elements of the set {¾(X ′′)∣¾ ∈ G}. Then, for

each i = 1, 2, ⋅ ⋅ ⋅ , t, there exists mi ∈ ℕ such that
∏
¾∈G

¾(X ′′) =
t∏

i=1
umi
i ∈ B,

(B ⊗k E)/(ui) = E[1] and for i ∕= j, ui and uj are comaximal in B ⊗k L.

Since B = k[2], applying Theorem 2.0.16, we get that for each ¾ ∈ G there

exist ¸ ∈ E∗ and ¹ ∈ E such that ¸¾(X ′′) + ¹ ∈ B. Fix a ¾ ∈ G and let

X = ¸¾(X ′′) + ¹ ∈ B. Then E[X ′′] = E[¾(X ′′)] = E[X] and b ∈ E[X] ∩ B.

Since B = k[2], X ∈ B, and E∣k is separable, we must have E[X] ∩B = k[X].

Hence b ∈ k[X] ⊂ B. Now since B = k[2] and B⊗kE = E[X ′′][1] = E[X][1], by

Theorem 2.0.17, we see that B = k[X][1]. By construction, E[X] = E[X ′′] =
E[X ′].

For convenience, we state below a result which follows from a lemma of A.

Sathaye ( [Sat76], Lemma 1).

Lemma 5.2.3. Let k be a field and X ′ a variable in k[X1, X2, ⋅ ⋅ ⋅ , Xn](= k[n])

which is comaximal with X1. Then X ′ = ®X1 + ¯ with ®, ¯ ∈ k, ® ∕= 0.

We now show that the Theorem 2.0.14 can be extended to the case of fields

containing ntℎ roots of unity.

Proposition 5.2.4. Let k be a field of characteristic p ≥ 0 containing the

ntℎ roots of unity and g ∈ k[X,Y, Z] = k[3] be of the form bZn − a where

a, b ∈ k[X,Y ] with b ∕= 0 and n is an integer ≥ 2 not divisible by p. Suppose

that B := k[X,Y, Z]/(g) = k[2] and identify k[X,Y ] with its image in B.

Then there exist variables U, V in B such that V is the image of Z in B,

U ∈ k[X,Y ], b ∈ k[U ] and k[X,Y ] = k[U, a] = k[2].
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Proof. Let ¾ be the k-automorphism of B induced by the k-automorphism ¾̃

of k[X,Y, Z] defined by ¾̃((X,Y, Z)) = (X,Y, !Z) where ! is a primitive ntℎ

root of unity. Obviously, ¾ has order n.

Since B = k[2], by Lemma 5.2.1, there exist elements U ′, V ′ ∈ B and

®, ¯ ∈ k∗ such that B = k[U ′, V ′], ¾(U ′) = ®U ′ and ¾(V ′) = ¯V ′, where
®n = ¯n = 1. Let z be the image of Z in B and A = k[X,Y ][a/b]. Then

zn = a/b and B = A[z] = k[X,Y ][z] = A⊕ zA⊕ z2A⊕ ⋅ ⋅ ⋅ ⊕ zn−1A so that, for

any x ∈ B, z ∣ (x − ¾(x)). Thus z ∣ (1 − ®)U ′ and z ∣ (1 − ¯)V ′. But since

U ′ and V ′ can not have common (non-unit) factor and z /∈ k∗, we have either

® = 1 or ¯ = 1. Interchanging U ′ and V ′ if necessary, we assume that ® = 1.

Then the ring of invariants of ¾ is A = k[X,Y ][a/b] = k[U ′, a/b](= k[2]). Note

that V ′ is a unit multiple of z. Thus B = k[U ′, z]. Set V := z.

Now we show that we can choose U from k[X,Y ] such that B = k[U, V ],

b ∈ k[U ] and k[X,Y ] = k[U, a]. If b ∈ k∗, then k[X,Y ] = k[X,Y ][a/b] =

k[U ′, a/b], so that, in this case, we may set U := U ′. We now consider the case

b /∈ k∗. Let p1, p2, . . . , pm be the distinct irreducible factors of b in A(= k[2]),

and set pi := k[X,Y ] ∩ piA. Note that for each i = 1, 2, . . . ,m, both b and

a(= b.a/b) ∈ k[X,Y ] ∩ bA ⊆ pi. This shows that (bZn − a)k[X,Y, Z] ⫋ pi[Z]

which implies ℎt pi > 1. Thus each pi is a maximal ideal of k[X,Y ].

Let k̄ denote an algebraic closure of k, Li be the subfield of k̄ isomorphic to

k[X,Y ]/pi and let L be the subfield of k̄ generated by the fields L1, L2, . . . , Lm.

Then Li is an algebraic extension of k and A/piA = (k[X,Y ]/pi)[³i] = Li[³i]

where ³i is the image of a/b in A/piA. Since piA ⊆ piA, it follows that ³i

is transcendental over Li and piA is a prime ideal of A. As ℎt piA = 1 and

piA ∕= 0, we have piA = piA. This shows that pi’s are pairwise comaximal in

A and hence in B.

Let g(³i) be the image of U ′ in A/piA = Li[³i]. Then U ′ − g(a/b) is

divisible by pi in A⊗k Li. But U
′ − g(a/b) = U ′ − g(V n) is a variable in both

A ⊗k Li and B ⊗k Li. Hence U ′ − g(a/b) is a constant multiple of pi. Thus

A⊗kLi = Li[pi, a/b], B⊗kLi = Li[pi, V ], and for i ∕= j, (pi, pj)B⊗kL = B⊗kL.

Set U := p1. Using Lemma 5.2.3, we have pi = ¸iU+¹i for ¸i ∈ L∗ and ¹i ∈ L.

So, we have b ∈ L[U ]. This shows that U is integral over L[X,Y ] and hence

over k[X,Y ]. As U ∈ k[X,Y ][a/b] and k[X,Y ] is a normal domain, we have

U ∈ k[X,Y ]. Since L∣k is faithfully flat, it follows that B = k[U, V ] with

U ∈ k[X,Y ], V = z and b ∈ k[U ].

Now, to complete the proof, we are only left to show that k[X,Y ] = k[U, a].
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We repeat the argument in ( [Wri78], pg. 98) to prove it. First we claim that

whenever ℎ ∈ k[U, a] and ℎ ∈ bk[X,Y ], then ℎ ∈ bk[U, a]. To see this, write

ℎ = ℎ0(U) + ℎ1(U)a+ ⋅ ⋅ ⋅+ ℎd(U)ad.

Since a ∈ bA, it follows that ℎ0(U) ∈ bA. But since A = k[U, a/b](= k[2]),

we get ℎ0(U) ∈ bk[U ] and hence ℎ0(U) ∈ bk[U, a]. So, we may replace ℎ by

ℎ − ℎ0(U) = ℎ1(U)a + ℎ2(U)a2 + ⋅ ⋅ ⋅ + ℎd(U)ad. Let ℎ′ = ℎ1(U) + ℎ2(U)a +

⋅ ⋅ ⋅ + ℎd(U)ad−1. Then ℎ = ℎ′a. Since there is no height one prime ideal of

k[X,Y ] which contains both a and b, and since ℎ′a ∈ bk[X,Y ], it follows from

the normality of k[X,Y ] that (the associative prime ideals of a are of height

one) ℎ′/b ∈ ∩
p∈Spec(R); ℎt(p)=1

k[X,Y ]p = k[X,Y ]. Therefore, ℎ′ ∈ bk[X,Y ].

Now we argue as before that ℎ1(U) ∈ bk[U, a]. We continue this process to

conclude that ℎi(U) ∈ bk[U, a] for 0 ≤ i ≤ d, which proves the claim. Now,

let f ∈ k[X,Y ]. then f ∈ k[U, a/b] = A. We claim that whenever f can be

written as

f = f0 + f1.(a/b) + ⋅ ⋅ ⋅+ fs.(a/b)
s

with f0, f1, ⋅ ⋅ ⋅ , fs ∈ k[U, a], s > 0, then we can express f as such a polynomial

of lower degree. Multiplying by bs, one sees that fsa
s ∈ k[X,Y ]. But since

no height one prime ideal of k[X,Y ] contains both a and b, it follows that

fs ∈ bk[U, a]. Writing fs = bf ′ we get

f = f0 + f1.(a/b) + ⋅ ⋅ ⋅+ fs−2.(a/b)
s−2 + (fs−1 + af ′).(a/b)s−1

with fs−1 + af ′ ∈ k[U, a]. Continuing this process we get that f ∈ k[U, a].

Thus, we have shown that k[X,Y ] = k[U, a].

We now prove Theorem E, which essentially shows that the result of D.

Wright (Theorem 2.0.14) holds over any field.

Theorem 5.2.5. Let k be a field of characteristic p ≥ 0 and g ∈ k[X,Y, Z]

be of the form bZn − a where a, b ∈ k[X,Y ] with b ∕= 0 and n is an integer

≥ 2 not divisible by p. Suppose that B := k[X,Y, Z]/(g) = k[2] and identify

k[X,Y ] with its image in B. Then there exist variables U, V in B such that

V is the image of Z in B, U ∈ k[X,Y ], b ∈ k[U ], k[X,Y ] = k[U, a] and

k[X,Y, Z] = k[U, g, Z].

Proof. Let E be the field obtained by adjoining all the ntℎ roots of unity to k.
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Since p ∤ n, E is Galois over k. By Proposition 5.2.4, we get variables U ′ and V ′

of B ⊗k E (= k[X,Y, Z]/(g) = E[2]) such that V ′ is the image of Z, b ∈ E[U ′]
and E[X,Y ] = E[U ′, a]. As E∣k is separable, we have k[X,Y ] = k[a][1] by

Theorem 2.0.17. If b ∈ k[X,Y ]∖k, then, by Lemma 5.2.2, we get U ∈ k[X,Y ]

such that k[X,Y ] = k[U ][1], b ∈ k[U ] and E[U ] = E[U ′]. Since E∣k is faithfully

flat, E[U ′, a] = E[U, a] and k[U, a] ⊆ k[X,Y ], we have k[U, a] = k[X,Y ]. If

b ∈ k, then we choose U to be any complementary variable of a in k[X,Y ].

From the relation k[U, a] = k[X,Y ], we have

k[X,Y, Z] = k[U, a, Z] = k[U, bZn − a, Z] = k[U, g, Z].

The relation k[X,Y, Z] = k[U, g, Z] shows that B is generated by the images

of U and Z. This completes the proof.

Remark 5.2.6. Theorem 5.2.5 does not hold if p ∣ n. We reconsider Example

1.0.7: Let k be a field of characteristic p > 0 and g = Zpe −Y −Xsp ∈ k[Y,Z]

where p ∤ s and e ≥ 2. It is known that k[Y, Z]/(g) = k[1] but k[Y, Z] ∕= k[g][1]

(see [Abh77], Example 9.12, pg. 72). Therefore k[X,Y, Z]/(g) = k[2]. But

k[X,Y, Z](= k[Y, Z][X]) ∕= k[g][2] by Theorem 2.0.21.

5.3 Planes of the form bZn − a over a DVR

For convenience, we first record an observation.

Lemma 5.3.1. Let R be a UFD with field of fractions K. Let U ∈ R[X,Y ]

be such that K[X,Y ] = K[U ][1]. Then K[U ] ∩ R[X,Y ] is an inert subring

of R[X,Y ] and K[U ] ∩ R[X,Y ] = R[W ](= R[1]), where W is an element of

R[X,Y ] such that K[W ] = K[U ].

Proof. Let D = K[U ]∩R[X,Y ]. Clearly, D is an inert subring of R[X,Y ] and

hence a UFD of transcendence degree one over R. Therefore, by ( [AEH72],

Theorem 4.1), D = R[W ](= R[1]) for some W ∈ R[X,Y ]. Clearly, K[W ] =

K[U ].

Lemma 5.3.2. Let R be a UFD of characteristic p ≥ 0 with field of fractions

K and g ∈ R[X,Y, Z](= R[3]) be of the form g = bZn − a where a, b ∈
R[X,Y ] with b ∕= 0 and n is an integer ≥ 2 such that p ∤ n. Suppose that

R[X,Y, Z]/(g) = R[2]. Then
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(i) R[a] = K[a] ∩R[X,Y ].

(ii) R[a] is an inert subring of R[X,Y ].

(iii) tR[X,Y ] ∩R[a] = tR[a].

Proof. (i) By Theorem 5.2.5, K[X,Y ] = K[a][1] and, by Lemma 5.3.1, K[a]∩
R[X,Y ] = R[W ] for some W ∈ R[X,Y ] satisfying K[a] = K[W ]. It then

follows that a = ¸W + ¹ where ¸, ¹ ∈ R. We claim that ¸ ∈ R∗. Suppose

¸ /∈ R∗. Let p be a prime factor of ¸ and L denote the algebraic closure

of the field of fractions of R/pR. Let ā and b̄ denote the images of a and

b respectively in L[X,Y, Z]/(g). Then we would have ā(= ¹) ∈ L; in fact,

as L[X,Y, Z]/(g) = L[X,Y, Z]/(b̄Zn − ā) = L[2], we would have that ā is a

unit in L. Since L[X,Y ] ↪→ L[X,Y, Z]/(b̄Zn − ā)(= L[2]), it would follow that

b̄ ∈ L∗. But then, as n ≥ 2, L[X,Y, Z]/(b̄Zn − ā) would not be an integral

domain, contradicting that L[X,Y, Z]/(b̄Zn − ā) = L[2]. Thus ¸ ∈ R∗ and

hence R[a] = R[W ] = K[a] ∩R[X,Y ].

(ii) and (ii) follow from (i) easily.

We now prove Theorem F.

Theorem 5.3.3. Let (R, t) be a DVR with residue field k and let p(≥ 0) be the

characteristic of k. Let g ∈ R[X,Y, Z](= R[3]) be of the form g = bZn−a where

a, b ∈ R[X,Y ] with b ∕= 0 and n is an integer ≥ 2 such that p ∤ n. Suppose

that R[X,Y, Z]/(g) = R[2]. Then R[X,Y ] = R[a][1], R[X,Y, Z] = R[g, Z][1]

and b ∈ R[X0] where K[X,Y ] = K[X0, a].

Proof. Let K and k denote the field of fractions and residue field of (R, t).

For any f ∈ R[X,Y, Z], let f̄ denote the image of f in k[X,Y, Z]. Note that

k[X,Y, Z]/(bZn − a) = k[2] and K[X,Y, Z]/(bZn − a) = K [2]. Hence, by

Theorem 5.2.5, we have K[X,Y ] = K[a][1] and K[X,Y, Z] = K[Z, bZn − a][1].

We first suppose t ∤ b. In this case, applying Theorem 5.2.5, we get

k[X,Y ] = k[ā][1] and k[X,Y, Z] = k[Z, b̄Zn − ā][1]. By Theorem 2.0.19, we

get R[X,Y ] = R[a][1] and R[X,Y, Z] = R[Z, bZn − a][1].

We now assume t ∣ b. In this case, we have:

k[X,Y, Z]/(ā) (= k[X,Y ]/(ā))[1] = R[X,Y, Z]/(t, bZn − a) = k[2].

Hence, by Theorem 2.0.18, k[X,Y ]/(ā) = k[1]. Therefore, by Lemma 2.0.20,

we see that k[ā] is algebraically closed in k[X,Y ]. Since t is prime in both
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R[a](= R[1]) and R[X,Y ], and since a is a generic variable of R[X,Y ], using

Theorem 2.0.19, we see that R[X,Y ] = R[a][1]. By similar argument, we have

R[X,Y, Z] = R[Z, bZn − a][1].

Now, by Theorem 5.2.5, one can choose U ∈ R[X,Y ] such that K[X,Y ] =

K[U, a] and b ∈ K[U ]. By Lemma 5.3.1, K[U ] ∩ R[X,Y ] = R[X0] for some

X0 ∈ R[X,Y ] satisfying K[U ] = K[X0]. Thus b ∈ R[X0] where K[X0, a] =

K[U, a] = K[X,Y ]. Hence the result.

Note that, in the case R is a ℚ-algebra, the hypothesis in Theorem 5.3.3

regarding n (p ∤ n) is automatically satisfied. Thus, in particular, Theorem

5.3.3 holds when R is a DVR containing ℚ. In the next section we shall show

(Theorem 5.4.2) that the result is, in fact, true for any UFD containing a field

of any characteristic p ∤ n.

Remark 5.3.4. Note that, in the notation of Theorem 5.3.3, X0 need not be

a variable in R[X,Y ]. Consider a DVR (R, t). Let g = bZn−a where a = −Y

and b = t2X + tY 2, and let X0 = tX + Y 2. Then R[X,Y, Z]/(g) = R[2],

b ∈ R[X0], K[X,Y ] = K[X0, Y ] but R[X,Y ] ∕= R[X0]
[1].

The following example shows that the conclusion of Theorem 5.3.3 can fail,

even when R is a DVR of characteristic zero, if p divides n.

Example 5.3.5. Let R = ℤ(p) where p is a prime in ℤ, K = Qt(R) = ℚ and

k = R/pR = ℤ/pℤ. Let a = Y p + Y + pX and g = Zp − a ∈ R[X,Y, Z]. Then

R[X,Y, Z]/(g) = R[2] but R[X,Y ] ∕= R[a][1].

Proof. We shall, in fact, show that R[X,Y, Z] = R[g][2]. Let Z ′ = Z − Y .

Then R[X,Y, Z] = R[X,Y, Z ′] and g = Z ′p − pf(Z ′, Y ) − Y − pX for some

f ∈ R[Z ′, Y ]. Let D = R[g, Z ′]. We have K[X,Y, Z] = K[g, Y, Z] = K[g, Z ′][1]

and k[X,Y, Z] = k[X, ḡ, Z ′] = k[ḡ, Z ′][1] where ḡ denotes the image of g in

k[X,Y, Z]. Since p is prime in R, p is prime in both R[X,Y, Z] and D. Hence,

by Theorem 2.0.19, R[X,Y, Z] = D[1] = R[g][2]. Let ā denote the image of a

in k[X,Y ]. Since k[ā] = k[Y + Y p] is not algebraically closed in k[X,Y ], ā is

not a variable in k[X,Y ] and hence a is not a variable in R[X,Y ].

However the next result shows that Theorem 5.3.3 holds over any DVR

(R, t) of characteristic 0 for every g = bZn − a, for which (R/tR)[ā] is alge-

braically closed in (R/tR)[X,Y ].
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Proposition 5.3.6. Let (R, t) be a DVR of characteristic 0 and g ∈
R[X,Y, Z](= R[3]) be of the form g = bZn − a where a, b ∈ R[X,Y ],

b ∕= 0 and n is an integer ≥ 2. Suppose that R[X,Y, Z]/(g) = R[2] and

(R/tR)[ā] is algebraically closed in (R/tR)[X,Y ]. Then R[X,Y ] = R[a][1] and

R[X,Y, Z] = R[Z, g][1].

Proof. We see that R[1/t][X,Y ] = R[1/t][a][1] by Theorem 5.2.5, t is prime in

both R[a] and R[X,Y ], tR[X,Y ]∩R[a] = tR[a] by Lemma 5.3.2 and (R/tR)[ā]

is algebraically closed in (R/tR)[X,Y ] by hypothesis. Hence, by Theorem

2.0.19, R[X,Y ] = R[a][1].

Let B := R[X,Y, Z]/(g)(= R[2]) and denote the image of Z in B by z.

Then B/(z) = R[X,Y, Z]/(Z, bZn − a) = R[X,Y ]/(a) = R[1] and hence, by

the generalized epimorphism theorem of Bhatwadekar (Theorem 1.0.8 ), we

have B = R[z][1]. Let C = R[Z]. Identifying the image of Z in B with Z itself,

we have C[X,Y ]/(g) = C [1]. Since C is a normal domain of characteristic 0,

again by Bhatwadekar’s result (Theorem 1.0.8), we have C[X,Y ] = C[g][1],

i.e., R[X,Y, Z] = R[g, Z][1].

5.4 Planes of the form bZn− a over rings containing

a field

We now prove Theorem G.

Theorem 5.4.1. Let R be an integral domain containing ℚ. Let g ∈
R[X,Y, Z](= R[3]) be of the form g = bZn−a where a, b ∈ R[X,Y ] and n is an

integer ≥ 2. Suppose that R[X,Y, Z]/(g) = R[2]. Then R[X,Y, Z] = R[g, Z][1]

and R[X,Y ] = R[a][1].

Proof. Without loss of generality we may assume that R is Noetherian. Fix

P ∈ Spec(R). Let the images of b, a and g in R[X,Y, Z]⊗R k(P ) be b̄, ā and

ḡ respectively. We show that k(P )[X,Y ] = k(P )[ā][1] and k(P )[X,Y, Z] =

k(P )[ḡ, Z][1] from which by Theorem 2.0.22 the result will follow.

If b̄ ∕= 0, then by Theorem 5.2.5, k(P )[X,Y, Z] = k(P )[ḡ, Z][1] and

k(P )[X,Y ] = k(P )[ā][1]. If b̄ = 0 (and hence ā = ḡ), then k(P )[X,Y ]
(ā) [z] =

k(P )[X,Y,Z]
(ḡ) = k(P )[2] and hence k(P )[X,Y ]

(ā) = k(P )[1], by Theorem 2.0.18. There-

fore, by the Epimorphism theorem of Abhyankar-Moh and Suzuki (Theorem

1.0.6), k(P )[X,Y ] = k(P )[ā][1] and hence k(P )[X,Y, Z] = k(P )[g, Z][1].
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This shows that k(P )[X,Y ] = k(P )[ā][1] and k(P )[X,Y, Z] = k(P )[g, Z][1]

for each prime ideal P in R and hence, by Theorem 2.0.22, R[X,Y ] = R[a][1]

and R[X,Y, Z] = R[g, Z][1].

Next we will prove Theorem H which will show that whenR is a Noetherian

UFD, then Theorem G holds even if R contains any field of characteristic p ≥ 0

where p ∤ n.

Theorem 5.4.2. Let R be a Noetherian UFD containing a field of charac-

teristic p ≥ 0 and g ∈ R[X,Y, Z](= R[3]) be of the form bZn − a where

a, b ∈ R[X,Y ], b ∕= 0 and n is an integer ≥ 2 such that p ∤ n. Suppose that

R[X,Y, Z]/(g) = R[2]. Then R[X,Y, Z] = R[g, Z][1] and R[X,Y ] = R[a][1].

Proof. Fix P ∈ Spec(R). Let the images of b, a and g in R[X,Y, Z] ⊗R k(P )

be b̄, ā and ḡ respectively. Let z denote the image of Z in k(P )[X,Y, Z]/(ḡ).

First we show that k(P )[X,Y, Z]/(ḡ) = k(P )[z][1] and then we show that

k(P )[X,Y ] = k(P )[ā][1] and k(P )[X,Y, Z] = k(P )[ḡ, Z][1].

If b̄ ∕= 0, then by Theorem 5.2.5, k(P )[X,Y, Z] = k(P )[ḡ, Z][1] and

k(P )[X,Y ] = k(P )[ā][1]. If b̄ = 0, then ā = ḡ. Therefore, k(P )[X,Y,Z]
(ḡ) =

k(P )[X,Y ]
(ā) [z] = k(P )[2] and hence k(P )[X,Y ]

(ā) = k(P )[1], by Theorem 2.0.18. This

shows that k(P )[X,Y,Z]
(ḡ) = k(P )[z][1] for each prime ideal P in R and hence, by

Theorem 2.0.22, R[X,Y, Z]/(g) = R[Z][1].

We now show that R[X,Y ] = R[a][1] and R[X,Y, Z] = R[g, Z][1]. By

Theorem 5.2.5, we have K[X,Y ] = K[a][1] and hence there exists r ∈ R

such that R[1/r][X,Y ] = R[1/r][a][1]. Let p1, p2, ⋅ ⋅ ⋅ , pt be the prime fac-

tors of r in R. Then R[ 1
p1p2⋅⋅⋅pt ][X,Y ] = R[ 1

p1p2⋅⋅⋅pt ][a]
[1]. Also, by Lemma

5.3.2, piR[X,Y ] ∩ R[a] = piR[a] for all i. Let api denote the image of

a in (R/(pi))[X,Y ]. Then (R/(pi))[X,Y ]/(api) = R[X,Y, Z]/(pi, Z, g) =

(R/(pi))
[1] and hence by Lemma 2.0.20, (R/(pi))[api ] is algebraically closed

in (R/(pi))[X,Y ]. Thus by Theorem 2.0.19, R[X,Y ] = R[a][1]. By arguing

similarly we can show that R[X,Y, Z] = R[g, Z][1].
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