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hink soomod to heve buoon practically ignorsd.  But whon forme—
lizod wa an algobra, Myir algebra scoms to boe s vory vorsatile
tool to doel with many aspucts of combimatorics. With tho holp
of thie algobra all the aoxisting formules for tho cvalwation of
pormanonts aro dorivod and cwen bottor Formulas arc dorivod.
Morgover a gensral procedure, hy which any curber of such formulas
can be darived, is given. An interesting result on pormansnt of
inteqral matrices is derived. Then all the formulas ©f inNClusiofe
exclusion are derived through Mulr algebra. Finally the generat-
ing funetion for the partition function is got using Mylr algebra.
It can be eafely predicted that Muic algebra will turn out to be

a very Iimportant tool irt combinmatorics.

Chaptar four is the direect result of the altempls to
resolve vander Waerdean &onjecture on doubly stochastic mattices.
A naw Funntinnéhr{ﬂl is introduced and all the results are Bx-
pressad interms of this function in an Blegant mamnear, Some ime
egualities that look 1iks van der Waerdsn's are proved. Tuarherg's
conjecturs end Djokovie conjocture (theough net rosolved) are
analyseds On doybly stochastic matrices the problam posed by
Friedland end Minc is partially solved. Some inegualitiws en &
pRemansnts are got through the uss of multinomial distribution and
covarianca,. Then the reasons for the Failura of Ayscr™s conjocture
{through Junkat's countsr examplo) are analysed and this results

in the definition of column dominating matricus and fow dominating
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This thesle mainly demle with combinatoriel aspscte of
diegonels of matrices. UOf course, thers are also rosults which
are not combimetorisl in nature$ but these are merely by-products.
Chapter< gives 2 very short summary of the contenta of tho thosia.
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matrices. Thua 8 new class of doubly stochestic matrices, on

which van dar Wasrden conjaicturs is true, results.  Structure of

thig clams is snalyasd.

The fifth and last choptor doasls with the wso of pere
manunt functlon to get a complete invariant polynomial for gruphs.
Bome new results on graphs emargo. Though & compleby invariant
polyromial is only suggested {and not proved) it has bzon verified
through the use of the computur in [W[.7., Madros that the poly-
nomial ig indoed & complete imvariant For graphs with atmost 7
vartices, This polymomial is modifiod and two mor: equivalaont
palynomiale which are botter behaved are suggosted to bo complete
irnvariant polynomials. If this conjecture proves to boe corroeek,
than, there is cvery pesaibility that Ulsam's conjucture will also
be eettlad in the sam: mannur as bhoro ara clese links. Thus &

datailed study of this polynomial fis Iikoly to bo of immense usa

in graph thedry.

It ie nppropriate bPure to montion that whenevor o vame
vithout a referuence or a rusult without A reference is givon in
the thosls the refererce is ALWAYS to '"Pormamunts - Monpyk Mies
Ypl,6 of Epcyclopedia of Maothsmatics and its Applications -

Addison Woslay (1978).



COMAINATORICS AND DIRGONALS UF MATRICES

CHABTER =~ 0
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This thasis mainly deale with combinatorlal aspacts of
disgonale of matrices. UWhile it ie true that certain quantita-
tive aspoocts of matrices that cannot be properly brought undsr
combinatorice {whieh may profitably go under linear algebraj are
certainly dealt with in the thesis, thase should be taksn more
#s a detour or unavoidable accompanimentse, the maln thread being
only cowhinstorice, Paerhaps, a8 uvnder combinstorics, certaln
quantitative technigues nannot be svelded just as certain parts
of mambor theory require complex verliasble tochniguos, the by-

progucte cannot be avolded.

?hlﬁﬁﬂiita-wurﬁ arpae out of an attempt to solva somg
pomblnet¥iial probloms and tander Waordonm conjocture on doubly
atochastic setrives,Whils tho basic gqueetionas atill romsin une

resolved the sttompt Llteelf producad highly frultful results.

- The firat chapter deals with diagonals of matrices.
Thie ia an important chapter as it rosoclves affi{irmativoly two
con jeotures of Tzu Heds Weng snd disproves a third by moans of
countor oxemploss In Fact the First two conjrecturos aro consi-
derably oxtonded and several proofs arc given. A result In asaigne
mant problem in operations Rosearch comge as = by~-product in

disproving tho third conjeocturn.
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Tho First chaptor slesp introducos the concopt of dis—
joint disgonale asnc dcals with latinsguaros and orthogonal letin
squerca in a unificd manncr with the holp of this concept. A
conjogtura is proposcd on tho form of orthogonal latin esguarns.
Tha samo concopt alsoc tackles projuctive plancs and appllcation

of differonce sots to projoctivo pliancs,

The second chaptor is mainly on dlsgonal products in
matrices. WNatyrelly dotermlimante ang permanonts Find due plecs
hares Permanonte and dotorminamts with roespoct to group comploxos
' arc Introducod and in this sotting tho usual proportios acquirc
now dimonsionme. Then one of the most productive of concopts,
namaly, the coneopt of inner products in teonsor products to doe
fino permerents, intrsoducod by Marvin Marcus and Morrils Nowman
i1s uend and goneralizations of many cosults snd somo now results

on permanante dro gok.

Than, in tho aame chapter, an important cunjocturs of
Marvin Mareus on tho rank of positivo matricos s affirmatively
sottlond with help of some beautiful lommas. But what strike moro
arg scmo of the consequences of this conjocture, This cunjocturs
may turn out to be extremoly usaful in combinatorics if theso

congasgunnese are any indlcsation.

Tho third chapter doals with Mulr algobessMuir hinted

at an algobra to d-al with puemanonta long time back. Aut this



CHAFTER =1

THE DIAGONALS IN MATRICES

1.0 INTRODUCTIONM

Metrices ate ubiguitouw in pure and applied matbematiecs.
“Twy repressnt Ilimeak transformstions and hence Find extensive
Cspplicetions in vector speces. The detérminant eescciated with
sgeate matrices ers extremsly usaful in almost sll branches of
Mithemetics, But whén we deal with combinatorial structures we
rewd functiors of metrices other than determinsnts. A modificat=
ion of detsrmipants known as parmanents find incressing uas in
pombinatorice., Byt IF we catefully analysse determinante snd
‘phrmsnants one aspect that strikes our mind forcefully is the con=
cept of & diagonals FMows and columne of metrices are wall known.
Lews known ate ths diegoneale. But moet of the useful Functions of

metricam, direstly or Indirectly, pan og expremsss through the

diagonals.

After defining diagonals of a mquare matrix we initially
conetdar diegonals of doutily stochastic matrices, Hern Wang J 17 _/
propogsed thresa cdanjocturss on diagonal sums of doubly atochestic
matrices. In this chapter two conjecturee are affirmestively settled
and the third is disproved in & gareral way and aleso through counter-

examples. In fact the proofs consider much wider preoblems, Then



through the eoncegt of disjoint disgonale latim squarss ars analysed
end sohe Lnteresting resulte come out regarding complstion of o sot
of mutually orthogonal latin sguarss of a special class. This nat-
yrally loads to ths considecation of finitw projective plamos and ue

get a nice cherspterization.

141 NOTATIONS ANO TERMINOLOGIES

Lot A = (aij} be an n x n matrix over soms sob X. Let S_
he the Full symmetric group of degres n oacting on the sot
L™ {1, b T Y H} If =& 5.+ then s(iJ & N For pvery { & N
arnd 1 ﬂ J impliss a{i) £ {1}, If A= [aij}f then tho gollection
. A iEH} is called tho DIAGONAL = of A, Whar no coafosion
. 1:‘*“) '
arisass the 'poeitions’ {(i, Sfi}}l i€ N} can be dafined as tha

dimgonal =.

When we Heal with ructangular matrices we may still use
‘the concept of diagonsls., But wzusdly we restrict our sttention to
mx n matrices with m & n. This is rot o severe rustriction ae

aithur A or ikw trareposs _RT satisflos thiz reetriction. Lot Sﬁ

be the ast of all dno-one mappings fFrom M = (1, 2, 3, +esy m) into

o= (1| 2'- Fp rvaay iI'!}n. Elﬂﬂl‘l'f then 5_” = Sn’n. IF A = (HJ.J} is anm

mx n matrix with m n, thon for s € Sfﬂuﬁ' the colloction

‘ A M 1 ¢ E: .
{.i,s(i] [ i€ } ig callod the diagunal s of A



1f X is a'commutativo ring we define diagonal sums ong

a8 follows. For s G_Sm'n the diagonal sum of

Al N ] afid the diagonel product is W B, .y
5 1,01} jen irsti)

The diagohels, diagonal sums and diagonal progucts are

sxtiemely useful in combinstorice, This chapter doals mainly with

thasa,

Suppane HEQ_ rn. Lat HD denote the set of 411 non
i t",!'l

R
Lot Ihr

&ﬁri!ﬂihg r“"ﬂuehﬂgﬁ of elamants Feom [112' ey n]- "
]

donute the et of all strlckly imersmsing resaguences of claomants
From {1, 24 euay N}. OF course we assums that rg e IF B (aij]
igtan m x n matrix, then for s{E_HDr,m and t € HDs,n then Hzﬁsi q;?
reproserts tha'r x & submatrix of A with (i,3)th alemont suual ta
h'{i)it{j} where s} ie the ith comporent of the sequersa 5 and
t{]) s the }ih vomponent of the sequence t. Even when s & o

or t € mn,n e uwe tha nbotation Afé’ tj in the sams mannsr.

Suppose BE N . t€ IN  « Than we define H(af t) as
Tam By

aTs8] 8 7 uhare »° is obteinad from & by doloting the slemants af

- 4 From fT,Z, ey WM} ang tt' iy pbimined from t by dolating the

alemants oF £ From (1,2, ..., n). For obvious ressons we may cell

.ﬁ[s’ t__7 [-la%a H(si t) as complemsnts of mach athsr. Wots that
R(i] J) is the matrix obtainsd from A by omitting its ith tow jth

columne For sxample iIF A is on n x n matrix on a commutative



‘Firg X, than the expenslaon of the detorminant of B in tarms of ith

M a dot alif i)

tiw Will take the form det A = £ (1) y

jg N
We uea ths symbol R For the roal Figld and O For the come

plex rield, IFf A = (aij} is an n » n matrix on R, then we call A,

& glochagtio matrix if ﬂij}"ﬂ for all i, j and & gy = 1 fFor
' JE N

svary 1. IF A and ﬂT ara both stochastic, then R L2 said to bs
goybly stochestin. : The set of all n x n doubly stochastic matricos
will %e reprosénted by Uﬂ. Tha sat af all m x n metrices with

entries in & set X will be ropresented by M ﬁ(h’},
¥

Suppties sé En' Lut Eij rapresent the usyel! Yronecket
. N mo | ot
dalta. Then P_ = (561'3“}}6 n,n(ﬂj is called the permutation
matrix sseooipted with the purmutation s. IF X = {EI. ‘l} , thom
the slemants of ﬁmm(x) will be called {O0,1)=matrices. MNotes that
Pﬂ ie a {0, ﬂ‘-mat.ri:t. Let 'IT” dfenote thg sst of all m % n porme-

tation matricen.

T.21 DIARONAL 3UMS

Wang [‘I", _7 gave thros conjectures. e sottle all the

threp ponjoctures hura.
A

Supposs A = {aijlé M. o{RIe Then h{A), nalled theo
maximnl diagonel sum of A, la doFined ns follows.

i h(ﬂ} = max

sE€5 i N iys(i)



elescly wo cun aleo dafine h{A} in tho following manner.

1.28:.., N{A) = max tr (PR} = max tr (AP)

PET PETT
n
wherg tr{A), the trace of A, ia ; 8

1,23 WANG'S CONJECTURE I : If A, B D_, then
n(a) + n{B) - n(aB} &L n.

be will grove a dtrongar result. Lat U = ;_’-U, 1__7, ths closnd unit

irtsrval of real rumbers From O to 1.
THEOREM 1.24 ¢+ If A, B & mmn(u}, then
h{a) + n(B) - n{aB) & n.
PRODF 1 We will prove an interesting lomma firat.
LEMMmA 1,25 ¢ If A, Bﬁmn'n{u}, then tr(A) + te(B} - tr{am) & n.
IF 4w }a”] and B = (hlj}, than

te{h) + tr{B) = tr(AB) = tr(AME=AB) = %(a“-ﬁ by; = EZ 2, 8yy)
_ JEN

< %N{Eii*' bygmagg Byyd = 5:”[(“11'”“"’11)*1_7

""g..lz :N1 = n for (aiiﬂ}ﬁ-bii)gﬂ.

Now, From the dafinition 1,22, there must exist P, P, & T

ateh that h{u} = tr{P A}, t{B) = tr{BFE)



ﬁ? lomma 1,25, ﬂ%‘r{ﬁ,'ﬂ} * tr(BPz) - trfp1nap2}$ N

HBut vr(P,880,) & te(P.p a8} n(kA) for AP E 1T .

$28.es  Thus (A} > n(B} - h(nﬂ),{; n{n) + n{B) ~ tr(r-ﬁ,lnupz}sg B

This proves Theorem 1.24 and consaguontly Wang's

tonjecture I.

4.27 THE CASE OF EQUALITY ¢ It is Interesting to sev when the
stiuplity holde in Thegorem 1.24, hAsauming eguality we have, From
1.26, h{a) + n{B) = h{rB}) = tr(F’1.'a} + tr{5p2; - tr{'[-",hnljp_z] = N

Taking PR = taij} and 8P, = (dij) ws have
z[n ok, - E.d,.-J:ﬂa
- 11 it jEﬂ 1j “jt
Bub cy3 + gy - % iy 9y % Sig 9y vy 9K
_ Bence ¢, + By, —fj% 05 B3 @ By ¥ Gyq m €y dyy = 1 Por sach 1 €N,

But €y # 8y = ¢y 95, = 1.1f and only if atleast one of 0,y 0T djy

is 1 For sach 1 &N, ileo j!i‘ ~ G4y 95y =y dyy i and only if

ji z t:“ dj.t = 0 for aach i W or equivalently Ei.j dji = 0 for 1 £ }.
J#

ol R

Hence the aquallty holds if snd only if the fellowing conditions are

sotisfisd,

1.20000 gy = Tord, =1 {or both} Fer sach i€ N

1.2840s :ij dji = 0 for sach & # j.



PARTICULAR CASE ¢ If A, BE D_, then P.A, 8P, & D . Hence the
condition 1.28 sutomatically implies the condition 1.29. Hence

1.28 i{s a necessary and sufficient condition for the equality in

‘Wang's conjecture I.

1.3 GENERKLIZATION OF THEOREM 1.24

Let G be any subgroup of S_. For [«\6 m n(R) define hG(A),
L]

the maximal diagonal sum of A restricted to the subgroup G, as follows.

1.3,  h (R) = max Z a. = max tr(P. A) = max tr(AP.)
G s€ G i€N irs(i) s€ G 5 s e G S

Then we have the following _generalization of Theorem 1.24.

THEOREM 1,32 ¢ IF A, BEM  (U), then for eny subgroup G of S
' a

ho(R) + hs(8) - hG(Ae)“ e

PROOF ¢ Let TTn(G) be the set of all permutation matrices Pg for

s€ G. It is casily seen that PP, =P, for s, t € G and hence

T _(6) with product ag the binary operation is isomorphic image of G.
Therfs exist P,y F*QETTn(G) such that hG(H) = tr (P1 A) and hG(B)ztr(BPZ).

By Lemma 1.25 we get

tr(P,A) + tr(BPZ) - tr(P,lHBPZ)é n

But tr(P,ABP)) = tr (pzp1ma)$ he(#B) for PP, & m (6).

Thus hG(n) + hG(B) - hG(nB)s ne



Taét DIS3IOENT DIAWGOMKLS

Suppose 8, t &£ 5 . Lot o 5 :"rmn(m. We say that the
‘dfaganala' & and t of h ars disjoint if the sets 4(i,s(i))f 1€ n}
\sﬁf} {(i.tfl}} ' it H} are disjuint._ Mote that thy disjointness
of diagonals s and t of A hes nothing to do with the gloments of A.

1t i{s simply m property of ths permutations s snd £

LEMMA 1.4% t Dipgonals o arel t ark disjoint it and only if

T

L =0

tr (P_ ¥

T . T x
PROOF ¢ (PP, T rze:'m Pl B z . (pt"jr

= r%m g.ipﬂ{r) 5.ht'[r] = r%ﬁl 53{r];*"lvf‘

w numbor of slemusnts common to {(r,a{r}}’ r& }

and {(r,lir]j ' rE ?':!3' .

Lamma 1.41 now Follows feadily.

1.42 DEFIMITION ¢+ Suppose © = [mij]él"lnm{ﬁ}ﬁ Wa mny that s is
a JERD DInGDNAL of o if a, = 0 For each i & N. MNow wa are
fy8(i)

-
ready/state Weng's conjucturs IT,

1.43 WANG'S CONJECTURE I1 ¢ ict :-|€-_an and lat oy oy weey tooEu
m mutually disjoint zere dingemals of f, 14 rnén-‘l . If overy

diagarnal disjeint fram aach ., [ = 14 25 evey ® has a consbant sum
o



%ﬁﬁ! conetant sum must ba n/{r=m}) thurn all ontreivs of F the

zero dlagomels are squal to 1/{n-m).

PRUCF §# e know that puary doubly stochastic matrix is in the
convexX hull of permytation motrices. This ls a well known rusult
due to Birkhoff and Von Nowmann, Thus wao havg

r
Tedduss HGE Ay Pj whare F’iﬁ Ti”h fop L= 1y 2 a.uy Ty

=

I
&I#‘}DFGF 1= 1' 2y ey F ﬁﬂﬂ?: E".Ii = 1.

iz
Cleerly asch ey is disjoint from each Pt Thus by
J
Lamma 1,41 £(P, L)} = 0 for £ =1, 2, ceuy £ 0nd J = 1y 2y aeey M
J
By the hypothesis of the theorom
T .
tedSans tr{hFi Y= nfln-m) For £ = 1, 2, cuuy I
r T r

From 1.44 & A5 15 = = L a, P. 1B = 5,08,
ro 44 and 1 wa gut nf{n-m) rzi;inl Ps | § “am

] T _
whoig Hi,} = tr{pipj Yo FOr j = 1y 2, uvuy t.

lat L = {51, Dok vees ar} amd £ o= {uijj, AN ¢ ow ot matrix

and J = {1, ¥, +v., 1) with r olumintes. Then we hoave

1-&5--& L:] =1' LL E'{m J

From 1.46 wo got the Following.
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T T n
164700 s LEL = m L = o <

r
. a, e, .,
8 %5 %ij

r

1 =1

r T .
A1l80 tr(AAT) "Z Z a; 8y 9y from 1.44. Thus we get,

i=1  j=1
m m .
:E:: 2
164840 tr(““T) =t E ai. = n‘ (n-m).
i=1 =1
Ifa 4y @ j 9 eeer @ are the (n-m) elements of the ith row
lj1 ijZ ijn-m

of A not in any diagonal ti' i=1y 2y aeey my then clearly
N
r= ij
Hence the mean of such a,.'s for each i is e and hence so
ij (n-m)

must be the ovarall mean. On the otherhand, by 1.48, the overall

|
mean of the sguares of such aij's 1/(n—m)2. This implies that such

8 must each be equal to 1/(n-m).

This completes the proof of Wang's conjecture Il. Ue
will give a second proof which is much more elegant. For this

purpose we need a lemma.

n
LEMMA 1,49 8 Lot &, 0y 1 =1y 25 eeey andg a, > 0. Then
for any real rnumbers L Xpy eoey X

n 2 n ’ n
S:: a; x; = (EE% aixi) [ g;% a; implies

a;X; = ay i a.x, for i = 1, 2y eeay No
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i 2 2
Phoor ¢+ By Cauchy's ineguality {Zaixi}l = {Eﬁ xlﬁ )

‘E Zai) ttﬂixf] agual ity hﬂlﬂiﬁg if and anly 1iF for soma K,
“g;; X, = RE for i =1, 2, +ouy N or eguivalently a.x, = Ka .
%ﬁicmllj’ than K = Zaixi ;xai and - honece Hixi = ai Eaih‘i Far

P

i = 1% 2; siiy Ne :
Antithar interesting rusult we need is tho following.

1.5 4o Suppoge A is am m x n matrix., Lst 5 donote the set of
all positione in #, f.e., S = 1,0 [ 1€ 1&m 1€ 1€} .
Fay Taﬁ defimg the imcldenes matrix ET # (aij) of order m x N

by setting 8y | w1 §f {i,j}& T and O otherwisa,.

Than z aij # tr{E: f) whers E;r_ is the transpnss
(L ET

ot Ey» This fosult is guito obyious,

'y
Il PROOF OF WAHE'S CONJECTURE JT v Let h = 37 8, P, whers
i=1
o T
gie Tl'n Fﬂriﬁ‘l, 2' avsy T ahd Ei) i]' Eiﬂ'Ia
' i=1

Let ub mesume ONLY that the diagonal sums of o corrose

ponding to theew r diagnnals R, are squal to af(n-m}.
T .
TeBTuus t:‘(Pi f’l] = nf(ﬂ*m'} For L = 1] 2' ++ag§ T

Let T be tha sot of all positione in & ofFf the m zZero

" disgonals and lot ET bu lts incidoncw matreix. Tharn,
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152000 3 3 By = n{n=-m) Nlso n -_-iZ 3 =‘i£ %aijaij

i ] J
T z T L n ‘
Now tr{f A) = tr ( X a; by n) = Zai o) = n/(n=m) by 1.51:
i=1 i=1

But tr(l\TA) aiz ziafj -3 z °j afj whence
i3 g B
2 ¢ 2 2
{:?eij 8 ; znl(n-_m):n,n(n-m)z(zi' %eij aij) ‘zi:zjeij
zz-eij 3 3 ey

Hen b 1 m 1.&9 P .. =3, ., =
ence y iemma ’ glJ a8 Zieij (n‘m)

1] 1]

and this proves Wang'e Conjecturwv II.

The 11 Proof lends itsslf to an extension of Wang's

conjecture as follows.
11 -
THEOREM 1.53 Suppose A k x n row stochastic matrix.

LetA:Z_L_ ai Bi where ai>0, ai=1 and Bi is a k x n row

i=1
stochastic (0,1) matri‘ for i = 1, 2, eeey Te Suppose in each
row of A there are m positions, 0 m\(. n=1, where A has zero entry.
If the sum of all entries in k corresponding to entries 1 in B, is

K ’ (n=m) for i = 19 2y eesy © then avery entry off the mk zero

positions is egual to 1 ' (nem).

PROOF : For a row stochastic matrix,wississ /A a representation of ths
form Z aiBi always exists. In fact ruw stochastic matrices are in

the convex hull of row stochastic (0,1) matrices.



Let T be the set of all k{n-m) positions off the km zero

positions and let ET be the incidence matrix of T. Then,

T .
1¢5644. z g@ij = k(n"m)! tr(Bl A) = k/(n‘m) for 1 = 1y 25 eeey T
1

1455.4. %'23: azi’_ 23'.

Now Z p I z = tr(n'n) = tr 2 a, BTiu = Zaitr(BTll\)
J i

J

g

ij iJ T

k .
Zai —— = k' (n=m) using 1.55.

i

o By oy el o = €8 ) E B

s =6 zz- ii%i - ®ij
ij "1 7 i Zzeij {n-m)

Applying Lemma 1.49 we get e

and the proof is complets.

Notg that, in this proof, the basic result seems to be
unconnected with matrices. A more gencral result applied to matrices
ylelds theorem 1,53 and Wang's conjecturc II. This is an abstract
generalization given the name constancy of functions restricted to

a subsat.

1.56 CUNSTANCY OF FUNCTIONS RESTRICTED TO n SUBSET

Suppose S is a finits nonempty set. Let F be the
algehra of all real functions on S under usual addition and

scalar multiplication and multiplication defined by
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(F.g) (x) = F(x). g(x) for cach x &S and f, g& F.

Dofine Fz as f.f for cvery F€ F. For A S defing XAE F by
XR(X) =1 if xe A and O othetwiss. Thus XA is merely the chara-

N f
cteristic function of the set A. Let JA| represent the cardinality

]

of A. If A and B arc two sets let Ae~B represent the rclative comple-

ment of B in A.

t

. . s
THEOREM 1.57 ¢ Suppose f = z; r X“i whero l\i s are distinct (not
necessarily disjoint) subsets of S and ri's are non-zero real numbers.

Let B(CS bo such that X .f = 0, the zero function of F. Let

8

t
E' Flx) =k, for i =1, 2, vy to 1P E_ r kg = (22 Flx) )%/(5
X A

i

i=1 x & S~8

then f restricted to S-B is a constant function.

PRODF :  Clearly |5 - 8> 0.

t
T i = x};_‘_s (160 T2 7, %, 6)

ng.s (g F) ()

Xe 5 1=1
t

= Z-ri Z: (XA . £Y(x)
i=1 ' x&5 M
> 5

= r. f(x) = r, k,
izl * x€ A, = 11

1

Also Z: (Xe_p F)(x)/ Xe_q (X} = ( : F(x))/ sl
S8 oy S8

x&S x€ 5B

2 2 \
Hence x%s Xs_a(x).F (x) = ()ES XS—B (x) f(x)) /()(%:S XS_B(x)).



Thus by Lemma 1.49 we get

3 (xg g F))
( x€s
Xg_g{x) F(x) = Xg 5 (x) c

x€&S

Xgg (x)

This means that the function f, restricted to 5-B is a constant

function.

CORDLLARY 1.58 : Suppose ‘“i‘ =n for i =1, 2y sesy t and

t
f(x) = ; r, X, (x) where ¢, > 0, Zri =1. Let 2 ‘ Fix) = k,
i= 1 xiEAl

fFor i = 1, 2, eeey to If BE S ba such that f(x) = 0 for each x€B

and k = nz, !S-B‘ , then f restricted to S-B is a constant function.

From Corollary 1.58 we can easily prove Wang's Conjecture 11
and its generalization to now stochastic matrices. We shall give only
the proof for Wang's conjecturs 1I, its generalization being similarly

proved.

WANG'S CONJECTURE II : PROOF : Let S = {(i, D=1y 2 ey n}.
Let 4 be an n x n doubly stochastic matrix. Let B be the set of all

points in § belonging to the m zero diagonals. Clearly {8y = nm.
t

Thus a; . = 0 if (i, j)E 8. Lot A =2 v, P, whero r,> 0 and
i=1
:E: r, = 1« h may be considercd to be a function from S to R. Let
Ai be the subset of S representing the positions occupied by 1'S in Dl.

Then 'Ai| =n for i =1, 2, sesy ts Clearly P 's arc disjoint from

the m zoro diagonals. #, consideraod as a function from S to R can
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.

r
be writtan as A = 12: r. X. . Lot us assume ONLY that the sum of
= A

the elements of f on each 4, is n' (n=m).

Thus Z_: A(x) =°(-;-E-;‘)' 2 ry XA‘(X) For i = 1, 25 eeey to
x&5S x€& S i

nz’ |- . By Corollary 1.58, we gst

H

But n' (nem) = nz‘ n{n-m)

Xs_g (x) A(x) = k, a constant. But ::: Xe_n (x) A(x) = 2:: A(x) = n.
xE S x€ S

Now k = Xg_o (x) h(x) = ( Xer n () AN ( Xe_gn (X)) =
ou gog \X/ PAX ng:s 5.8 X { X‘E—S 5-p X
n !n(n-m) = 1/(n=m). Hence Xg o (x) a{x) = 1/(n-m). This completes

the proof.

1.59 WUANG'S CONJECTURE 111 3 Wang /17 7, discussing the
important properties of the function h, tho maximum diagonal sum,
restricted to Dn observed that it behaves like the usual rank

function. Thus he conjectured the following.

If A, 8, CE€ D_» then h(#B) + h(BC) - b (HBC)sh(B).
This is the familiar Frobenius inequality if h is replaced by the

rank function re.

This conjecture turns out to be false. Rather than
disproving the conjucture by giving ccunter examples obtained
by trial and error we develnp here a theory from which an infinite

number of counter examples can be genurateds To this end we will
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prove the Following theorem guite useful in its own right. A

diagonal s is said to be positive in A if all the elemants of i

in s are positive.

THEOREM 1,60 If nE D BEMn ; (R), then tr(aB) = h(nB) = n(B)
?

if and only if s is positive diagonal of A implies tr(DL B) = h(B).

PROOF :  Suppose tr(nB) = h(iB) = h(B). Let A = z:. r, P, uhere
;; g for L =1, 2, ey t and 2:r =1& P, EE'W For gach i. Then

h(AB) = tr(AB) = }:r tr(P,B) < 2__ r; h(8) = h(B). Hence
i=1 i=1
tr(PiB) = h(8) for all i. Moreover if s is a positive diagonal of n,

T

~
(8]

then there is a representation of A inythe form z:ri Pi with P1 P

Z—See Ryser sz 4 _;l;7. Hence we conclude that tr(Pz B) = h(B)

whenever 'Ps' is a positiva diagonal of i.

it

Suppose s 1s a paositive diagonal of # implies tr(PIB) h(8) .

t . i

If & =Z ry P, then it follows that tr (pia) = h{(B) for i = 1,2,c0e,t.
i=1

Hence we get

1.61...  tr(aB) = Z:ri tr(p,8, = Fr, h(B) =n(8). ulso,

106240e tr(RB)s h(iB)

t
Thus h(n8) = max tr(PiB) = max 2 ry tr(PP.B)

P& TTn PeTTn i=1

t :
max Q2 r, h(B) = h(B) for tr(PP.8)& h(B).
PéTTn i=1
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Crpam 1461 and 1.62 1t Follows that

Y { hinB ). Thus R{sdY = tr(na0) = h{AY.
;h_(ﬂi w trf kﬁ}é {u Jé a) ws h{kb) r{~) (A)
¥ |

CROLLWBY 1.63 ¢ Supposc @ 0. Lot ¢ = j_'; v, P Lot uﬁmnm(n}.
1=

- 1F t,r(r&iﬂ} 2 H(B) For i = 1y 7, eaey b than tr(PI 3) = h{u) whore s is

any positlve diagonal of i,

Fn pthyr words 1f 3 has a mambor of maximim dizgunnls thoen
any dliagonal Formod solely out of the positiens cocupiod by thos:
maximum diagonale ls alss a maximur dingoanl. This is @ Familbiar
fesult In an vptimal allucetion problem namaly the asslgoment
problam whieh is usgally pruvsd by osing duality thooowem in lincor

programming.

Cbket us now sew how Wany'o Conjuetuare 111 cue ber disproved.
Supposs we chooso i, A& U, such bhat wQi) = b{11), bhen, iF the
conjocture is to bo truo, It is roncsseey bhat h{PC) - n{;-.:s[:}g 0.
But inm general, for o, o, C & D we hauo H{BEY - b -asan:};_n. Thus

“almost all™ EEDn wiill then digprove the oopjocture.

Ta choose +, BE O, such that h{wB} = h{B} w uso the
proyioyas theorem. Wo choose an arbitenrey U E*Dn suzh that it hns
atleast btwo maximum dingonals, say, g and . Thep we moy chouso

) Dg-l- {1-r} Dt For O ref t.

Tage 1rf-2) = w{8) = ~{5),  Thon wn may chrose Yalmost

7 »

any” EE. Ur- et s Son % oswm v NIl Lwammid,
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1 z 2
fet B w % 2 1 2 This clearly has two maximom
s 2 1 —
il i} 1 I 1
diagonals 8 and t whore P = 1 0 0 and P, = 0 ]
] 1 I 1 0
i 1 7 a] S
Tﬂkﬁﬂu%ﬁ’ +%Pt 13 2 0 1, rnﬂ=*:|%

tr(AB) » h{fB) = 6/5 = hi{B). Taking C = » ws have

HC w AB

Thus h(

£ 5 4 14 14 17

1 : i _
- 4 5 5 » WEC = oo 17 14 14
g 4 & i 14 17 14

ABC) = 17/15 ¢ 6/5 = h{BC). This cuuntor axample disproves

Wang's Conjectura 111,

NOTE 1

dafinadg

8 is dufFincd by a(1) = 2, s(2) = 3, =(3) = 1 and t is

by t{1) = 3, t{2) = 1, £{3) = 2,

P, = { ési.sfj}J = 1 0 4] ang P = { é;i t{J}
1

1«64 D

such th:

of K.

very 1i

ISJ0INT OTIAGONAHLS, LoTIM SOUGHES sND PROJECTIVE PLAMES

# latin =quarg nn an nesot X is an elemunt & mo(x)
¥
st pvery row and evory column of 4 contalps all the elements
Though latin sguares arz, by thair wery definibtion, matricos

ttle matrix thooretlc oporations aro generally vsed to donl
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with them. Ws are going to analyse latin squarcs by the caoncept
of disjoint diagnnals and permutation matrices. Let Ln(X) reprasent
the set of all latin squaras on tha neset X. The elements of X may

be conveniencly taken as (x1, Xpp seey xn) or even marely as (1,2,eee50)

Considar the positions db%ypiad by the symbol x, on a latin
square A€ Ln(x). This is clearly a diagonal, say, S,+ HAs no cell
in A has more thanm one symbol from X clearly si's are mutually disjoint.
Copversely n mutually disjJoint diagonals Sy {=1, 2y seey Ngive a
latin squere. Thus a latin sguare L can be taken as L = (51,32,...,sn)

where 8; is the diagonal occupied by x; in L. Consequently

1465000 tr(PT P ) = 0 FDé i. j = 1, 2y eeey N & i # j.
Si Sj

Equivalently L ¢an be defined by the pormutation matrices
P8 's . Let us write, for convenience, PS as Pi. Thus any latin
i i
T
square L = (P1, p2’ ceey pn) where Pi€§ T and tr(Pi Pj) = 0 for

iy J= 1y 2y sesyg N & i # Je

1.66 ORTHOGONAL LATIN SQUARES :  Suppose L,, L, € Ln(X). Wo say
that L1 and L2 are orthogonal if, when we supcrimpose L1 on L2 all

the elements in the cartesian product of X with itsclf appear in

the nzocalls. This means precisely that each diagonal s; of !1

meets sach diagonal tj of L2 in ocxactly one pointe. Conversely if the
diagonals of L1 and L2 arc such that the above condition is satisfied,

then L1 and L, are orthogonal.

2
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Suppose L1 = (p,‘, pzy seey pn) & L2 = (Q,]’ 02’ esey Qn)
whare Pi. QiEE'WH for ench 1. Then L1 and L2 are orthogonal if

and only if
T ..
1e6700e tr (pi Qj) = 1 for i, J = ‘\', 2y csey Na

THEOREM 1.68 If L, = (P1, Poy eees pn) and L, = (01, Qyr wees Qn)
are orthogonal, then for any P & TTn' PL1 = (PP1, PPz, coey PPn) and

PL2 = (PQ1, PQZ, ooy PQn) are also orthogonal,.

PROOF + First of all we will prove that PL, and PL, are latin

8qUares.

1469400 tr((Ppi)T(ppj)) = tr(PszPE;j) = tr(PTi pj) =0 if 1 £ j.

Hers we have used the fact that PTP = 1 as any permutation matrix

is trivially an orthogonal matrix.

1.69 shows that PL1 is a latin square. In a similar

manner PL, is aleo a latin squars.

2

T T .7 T
1.7044, Tr(PPi) (pmj)) - tr(Pi p puj) = tr (Pi Qj) = 1 for

1’ J. 1, 2, seag No

1,70 shous that PL1 and PL, are orthogonal latin sguarses.

2

COROLLARY 1,70 ¢ If L1 and L2 arg orthogonal latin squares sg are

PL, Q@ and PL, Q for p) Q ewn.



T

PROOF 1 tr({PPiD]T {iju}} = tr(UTPE PoPPU) = tr(DTPIPjUJ

T.T T R
= tr{ug vy pj) = tr(P, ujj =0 if i £ j.

tr(fPPiﬂJT (ha;0)) = tr{mTwIPTPuJu3 = tr{DTPEUjG}

W TT T
= tr{ln uiuj} = tr(#iﬂjj w1 for 1, J = 1,2,00a,N.

INTERPRETHTION ¢ Thsorom 1.68 also implies thot if s @ 5_, then
(P'“_}, i‘-"aw), ey Ps[n)} is also s laotin sguare and Eopullarcy 1,710
1@1.‘[93 that {p5(1}’ pg{z‘]' LA | 'JS(I'I}} al“ld Eut{,llg J’C(E}' LR ] E]t,(n)J
ars orthogomal latin sguares For s, t & 5, assuming that (P1, caay rJn}
and (UT; ﬂfy P Dﬂ] aro orthogqunal lakin sguares. The last reosult

maana that the orthogonality of twe latin sguarcs aro wRaffactod  owven

if the aymbole in them arce lndepandently permetod.

THEOREM 1.71 1 Suppose L and |J5L aru orthogonal latin sguaros.
Than BE Sh, whan cgxprossed 1n cycles, has exactly ron eyclo of

langth ome. In ntharwards & Fixes just one symbol.

PROOF 3 IfL=(p ,*H veey M} then arthogerality of L oand B L
1 n ; -

2.!
tmplias tr(P}(PP)) = 1 Fac i, § =1, 2, »uoy 0.

. T T .
Taking L = j, tr (P, ¥, P o= tr(e By = e(0 ) = 1

But tr(lﬁs]' w1 1s teus if and only 3f s fixes oxootly ono symbool.

INTERPRETATION ¢ If L §s a latin sguaru ond we want to Find annther

lptin sguare M orthogonal to L merely by permuting the rows of L,



- 23 -

then we have to fix sxactly nne row of L. Of course this does not
mean that given a latin square we can form another orthogonal to

it by permuting the rows. Fixation of one row is just necessary.

THEQREM 1.72 3 Suppose L, P_L, pi Ly soey P:"1 L are pairwise

orthogonal (mutually orthogonal), then s S, expressed as a pruduct
of disjoint cycles contains just one cycle of length one and all

other cycles are of length atleast r.

PROCF ¢  Suppose L is orthogonal to PZ L for t =1, 2, eeey =1,

Sincse PZ 2 P N it follouws that st leaves exactly one symbol unaltered
s

for t = 1, 2, seey I=1. Thus any other cycle must have a length of

atleast r (note that if a cycle C is of langth m thoen c™ is 1dentity).
] Y

COROLLARY 1,73 ¢ Suppose L, PS L, Pz Ly vooy P:_1 L are mutually

orthogonal and r> .".’.:2‘_1.. , then s has a cycle of length one and

another cycle of length (n=1).

PROOF 3 Suppose s has a cycle of length t, where, r&£ t S_(n-Z).
Then s must have another cycle of length almost (n~t=1); but > 212-"1-
n-1 N1
implies e 4 t,g(n-z). Hence 'lé n-t-1€ n - - - 1= 1.

But this is impossible according to Theorem 1.72. The only possi-

bility is t = n=1 and thus proves the corollary.
THEDREM 1,74 ¢ Suppose L, PSL, ng Ly sceey qu L are mutually

2

orthogonal latin squares with r > D-:Z:l then L, USL, “2 Ly eoey “2_ L

form a complete set of {n=1) mutually orthugonal latin squares.
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PROOF ¢ By Corollary 1.73, s consists of a single cycls of length
one, and another cycle of length (n=1). Thus P';“' = I, the unit matrix.
) . u v
let L = P,], P2, veey Hn « DOrthogonality of PS L and Py L for
U T v .
0€udv £ (r-1) shows that tr ['(pspi) (psuj)_] = 1 for severy i,je
Hence tr [rbz P;-U‘Pj;7 =1 . But clearly we can also interchange

u and v and get tr [PTi P pjj =1.

But the set of values of u-v and v-u for 0§ u& v e r-
whers r)ﬂ";i is clearly (1, 2, eeey{n=2)) modulo (n=1). Thus wo

Bt tr pT pt B, = 1 for each i, j and t = 1, 2’ es ey (n“2)o
9 i's

u oV
Now consider Py L and o L for Osu V4" \<'(n-2).
u T,V T Vel .
tr[(Ps Pi) (PS Pj) 7 = tr [/ u—'i ”s P, 7 = 1 for every i, j for

U v »
1€ v-u & n=2, Thys u—’s L and .JS L are orthogonal. Hence the theorem.

! L are mutually orthogonal

INTERPRETHTION & If L, PL, P2L, ..., B°°
. n=1 :

with r> -l theh this set can bo extended tu a complcte set of
(n=1) mutually orthogonal latin squares. In this connection we

conjecturs the following.

CONJECTURE 1.74 ¢ If for an n there are r mutually orthogonal latin
squares of order n, then we can find L and ¥ of ordsr n such that

L, PL, PZL, seey pr=1 L are mutually orthogonal.

Note that when n is a power of a prime number it is a

well known result that (np=1) mutually orthogonal latin squares of
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2 L exist. In fact ¥ pcrmutes cyclically

the form L, PL, PoL, <.., o
the last (n=1) rows of L /[ Mann ( 18)_7. Thus the conjecture is

certainly true when n is a power of a prime.

1,75 LATIN SQUARES AND KRONECKER ~RODUCTS 3 Suppose A = (aij) is an
t ]
mx n matrix and B = (bij) is an r x s matrix whers 3;;'s and bij 8

are in a commutative ring. The Kronecker product of A and B is defined

by
;11 B 3,55 B coe a, B_‘

147640¢ A XxB = : : ::: : in partitioned form,
a B A2 3 cee " B.‘

clearly A x B is an mr x ns matrix. Important properties of the

Kronacker product are the Following.

1770 (A xB) (C x D) = AC x BD providud both sidos are meaningful.

14780e¢  tr{A x B) = tr 4. tr B if A4 and B square matrices.

1!79:1‘0' (A X B)T = AT X BT.

-1

1.800es (A x B)m1 = H-1 x B~ if A and B are invewtible square matricocs.

LEMMA 1.81 1 If Pe‘le and QGTTH, then ¢ x QGTTmn.

PROOF 3 Clearly " x Q@ is a (0, 1) matrix. « and Q being orthogounal
matrices we get (P x Q)T (P x Q) = (VT x QT) (v x Q) = (pTP) X (DTQ)

= Im X In = Imn' Thus ? x Q is an orthogonal (0, 1) matrix and

hence must be a permutation matrix.
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THEOREM 1,82 1f L1 = (p1, Pos eees Pm) and L2 = (01,51 yoeesll )

i=1, 2,..°,m€
J"'1 2,..-,” '

are latin squares then L1 x L2, defined by L1 X L2 £P1><Uj

ig a latin square of order mn.

PRODF : By Lemma 1.81 clearly P, x Qj € Ton

@

atso tr/ (P, x @, ) (e, xQ, )7/
o 2

tr['(pTi )x(mJ e, )7/

1 Jd2

W

T T . . , . .
= tr(Pi Py ). tr([Jj 0, ) = 0 if either i, # i, or j, # Joe

1 72 1 J2
: o \T
Thus iF (1,0 3y) # (ip Jp)y then tr [(Pi1 x Qj1) (p.12 x QJ.2)_7 =

Hence L1 X L2 is a latin sguare.

THEOREM 1,83 If L1, LZ""" Lk arse mutually orthogonal latin

sguares of order m and N1, MZ’ saoy Ml are mutually orthogonal latin

LXM,..-;LXM

sguares of order n and if r = min (kel), then Ly x My Ly 5 R

are mutually orthogonal latin sguares of order mn.

PROOF ¢+ By Theorem 1.82, certainly L1 X N,‘, L2 X !"\2, resy Lr X Mr

are latin squares. Consider L x M  and L, x M, for 1 _f.u AP L

Let LU = (p11, p12, se sy p,lm), L (p21, pzz, seey pzn)

mu = (011' Uygs o= l"J‘\rn)’ My, = (Q21’ Upps erer Q?n)'

.
Then tr [(p111 x Q,‘iz) (p2j1 232),_7 tr [’(p11 x(U ’32)"7

. T ) . . .
= ‘c.xz'(P,‘1 9231). tr(u“7 Q2,37) =1 x1=1for every i, 12. S P
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Thus L x M and L x M are orthogonal for 1€ u&v &£ and this
U u Y v hand

complstes the proof.

INTERPRETATIONS 1 Theorem 1.83 implies that if there are k mutually
orthogonal latin squares of order m and 1 mutually orthogonal latin
squares of order n, then for r = min (k,1) certainly there are r

mutually orthogonal latin squires of order mn. In fact Theorem 1.83

givas the construction of these r latin sgquares.
1.84 APPLICATION OF DISJ0INT DIAGONALS TO FINITE PROJECTIVE PLANES?:

A finite projective plane, pG(2, s), consists of m==sz+s+1

points arranged in (s+1) lines, each containing (s+1) points such
PRI L

that any two lines have just one point in common and any two points

a

e in just one line., Existence of a pG(2, s) is equivalent to the
existence of an m x m (0, 1) matrix N such that NTN = NNT = sl + J

where I is the unit matrix of order m and J is the m x m matrix with

gach entry unitye.

THEOREM 1,85 3 A PG(2, s) exists if and only if there exist (s+1)

disjoint permutation matrices P1, PZ, coey ps+1 of order m x m such

that I together with P; Pj, i 4] iy J= 1y 2y seey 8+ form

m disjoint permutation matrices.

PROOF 1 N is (0, 1 ) matrix with sach row sum and each column

eum (s + 1). Hence there exist (s+1) disjoint permutation matrices
s+1
p1, ng sy p8+1 such that N = ;l pin
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Thus NN = & & Py P =51+
i

For 1 = J» og p,=1. Thus NN = (s+1)] + o 5 pz P = sl+ds
14
Thus:. PT.P =J = L trE ZPTP.ztr(J—I)=U.
i4 b T4y b

Thus i#j implies tr(PEPJ) = 0 anhd hence Pl's are disjoint.

Also 3-1 is a (0, 1) matrix and hence the permutation

matrices PI Pj For i # J must be disjoint and disjoint from I.
Conversely suppose I, P; Pj for i # j form m disjoint pormutation

2
matrices. Together the {'s in these matrices must occupy m cells

and hence 1 +z ZPE Pj = Js
i

g+1
Take N = P.. Then NTN = (s+1) 1 +Z Z,PT p. = sl+d.
=1 T4 C

-+

-

Trus PG(2, s) exists.

1n fact we don't require the Pi's to be disjoint in the

converse and we get the following theoreme

THEOREM 1.86 3 A PG(2, 8) oxists if and only if (s+1) poermutation
. T, . /-
matrices P.‘, Pz, very PS+1 of order m exist such that pipj s for 1#3

are disjoint.

/

PROCF ¢ "Only if" pert of the Theorem is same as that of Theorem 1.85.

In "If" part disjointness of PI Pj's imply tr[(F’Tin)T(P:;Pl)J = 0
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iFif g, k# 1 and (i, j) # (k, 1). Taking i = k but j # 1, we get
T T T, =~ T

trzrbj P P Pk;7 = tr zrbj PL_/ = 0., Thus tr [rbj Pl_7 = 0 for

j# 1. Hence Pi’s are disjoint. Now, Theorem 1.85 completes the

proof e

1.87 DIFFERENCE SETS AND PG(2, e) ¢ Suppose d1, dz, oy ds+1 ardg
(s+1) integers such that di - dj (for i # j) form the numbars

1y 2y eevy (m=1) modulo m ( = s+ 8+ 1). Then dys dys eeey d_

is said to be a difference set of order (s+1). Finding a set of
necessary and sufficient conditions on 8 for the existence of such

a difference set is still an unsolved problem. The following theorem

is well known; but we give a simple proof.

THEOREM 1.88 ¢+ Existence of a diffcrence sot (d;; dyy «ees d"1)

implies the existonce of PG(2,s).

PROOF s Lot P be the permutation matrix of order m{= 52+s+1) with

1's in (1,2)y (2,3)y eeey (m=1,m) and (m,1) positions. Actuallv

P = Pu. where @~ is the cycle (m,m=1, m=2, +eey 3, 2, 1). Obviously
: d o
1 ,
p, pz, p3’ se ey r)m(= I) are diSjDint. Tﬂke p,, = p ’ p,,) = p 2, es 8y
d ,
=p 1 Lhere (d,y d,y eesy d_ ) is a differcnce set. Then
s+1 1 27 -t '

d.~d
P.T P, =N J and by the definition of a difference cnb (PI Pj)'s

form the matrices P, 92, ceey Pm_1 in some order. Thus thess
matrices are disjoint and Theorem 1.86 shows that PG(2. =) exists.

d1 d? ds+’i

Note that we actuallv get H =P + 1P "+ ... + P and
thus the proof is constructive.@learly we could have taken P as by

Prrm army merurle e (1 9 . m).
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DEAGDNAL PROLULTS OF MaTRICZES

2.0 INTROQUETION t

In this chepter we define o diagonel produck fFor oa
aquare matrix snd through this concnpt develop syslematicnlly
the determinants and pRrmanant: Fhizse are extended to group
eomplexas and interesting resulbs arce derived.  Thon we considar
the application of tenser product of wveclors kg permanarts and
quits a number of surprising ganaralizations to the exlsting
results on permanents are derived.  Filfgliy we sbate and preovw
Marcue's coejecture on diagonal products and pamk of positive
makricas and & rumbar of very interesting results ere dorived

from the conjucture.
2.1 DETERFINAMTS aND PERMANENTS WITH RESPECT ¥O GHOUY COMPLEXES

IV elntete) FHE Nr_l n {CR} whoro R is any commutative ring,
, C

g definc doterminant of A by

n
gat (8} = ,E (=) T wharn A= (a, ).
& g Teole) i)

n
Hero &{=) = 1 if 9 L5 an oven purnubtation and -} etheruise.

n
formanent of A is defined by Per {A) = Z i a .
. - re={r)
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Suppose G is a group complex of S . In otherwords G is
a non-empty subset of Snl Than we define dstarminant of A and

permanant of A with respect to the complex G as Follows.

il

2:2003 dety. K4)= 9%5 Els) 1_31 ®r,s(r)
n
Zedana [;}E!FG (-nu:l = SE 3 r: arts{r] .

= =
Suppose 8 .&5”' e define F"Se Tl'H by F’s = (Ei.aij}}'

With this definition, the following rssults follow zasily.

- L 3 p : L]
2.8 'IEIJtn - For s, t\EEr,1
- | T
= — =5
ZeBane pE = I:IS =P < for F;E' Sn w
8
2i6ees  P_A=(a Y and A P_ = (a, _y) if A = (a3, ).
5 5_1{i].j 5 i,s(j) ij

From 2.2 and 2,3 it is clear that detG(F'.] and ﬂerniﬂ} are multi-

1inear Functions of rows (columns) of A.

THEOREM 2.7 3 Suppose E-{:'ﬁn and n"q donotas Ehe set of all

invarses of elements of G. Than,

(2)  det, (A) = det =1 (A1)

(b) per, (A) = per -1 (')
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i

i
£ E{B} 1T EII‘,S[.T.':'

?:E G =l

n
= &= 1T a _1,
o r=1 = (rjr

SR TR 1
- 2_ €T T n for €(s7 ) = €{s).
s & =1 s

r)

PROCF 1 dat_ {n}

T

: {
P IR

1)

It we trent €(s) as 1 for 81l s &5 we got Lhe rusult (b},
n o

CORDLLARY 2.8 ¢ If L[ is closed with rospeect to taking inversos of

elemsnts (f.0. 5 = G) then
{s) det {a] = dc-tE{ﬂT;l

() pr-:t'G[-H) - perG{ﬂT}.

ROTHTION o SUppOse GCSH and © & 5, Thon we dufine 85 by

6= {59‘{}6[;} and Gs by Gr = {gﬂ‘ 4 € 53- .

It

THEGREM 2.3 : = (a} - dﬂt[; (i) = €(s) mt, (1)

i

{5) per,, (.}'Il:':%'l‘li} purrm[n}i



e
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n
BHOOF 1 PBH = {a » }. Hence dﬂtG(PEH) = Ez:‘ E(t) Tra ;
(1), tEg G r=1 & (r},t{r)

n
P B O Tt < €0 B €60 T

. n
= &{s) -tgfa E(t) r: A tle) €{z) dat . (H).

In the proof wo have usad the fact € {s) &€ (t) = €{=t) = &(ts) and
[e)7 " = s,

In a similar manmer (b) can ba proved.
CORDLLARY 2,10 ¢ (=) du]:r{fli'#‘r‘} = &= {s} detEG{H}
]
Py o= par (4.
{t) prE{H ﬂ} = pn:ﬁG{ij

PROOF 5 dat (AP _) = dot {FT MT} by Theorotw 2.7 and PT = P
kL 5] G-T 5 5 s

i
m
a—

&
I
—_—
™
=
or
!
—
I
—
iy
s

E(s) dot_.(4)
(b) 1e similarly proved.

THEOREM Z.11 1 IF & 1s any complex in En and 3 is in the mormalizerv

of G, then dutG(HEn} = detG(uUﬁJ mnc pErG{PSH] = pan(HNE}.

PROOF ¢ Ciearly =G = Gs. Henco dﬂtr{ﬂsn) & (a) et {A]

(s} dat {H} & dot {HD } and pur,. (P H} per. (n“ ] EJmllarly
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COROLLARY 2,12 ¢+ If G is a normal subyroup of 5.+ then
dot (P A} = dot, (4 ) and par (K i) = per (4 ) For every a5 .
In perticular det (Pﬂﬁ) = dot (113'8] and perr (i-}sﬂ} = par (mJS) by

wetting G = 5 .

COROLLARY 2,93 ¢+ If G is & subgroup of §  and 5 & G, thon

dﬁ._tstpaﬁ} e ﬂétﬁfhﬁs} = & (8) r:_ﬁata{l'-u} ard

parﬁfi’gﬂj = pmrE{HPE_) parﬁ(h].

Fory, in thie case, 80 = Ga3 = (5.

Uhgn [ = Sn ws gat the femillar result in doterminants and

parmanents.

THEQAREM 2,14 1 Let & be an n % n matrix with rth row =and sth
-yow ldenticel. IF a in the permutatlon just transposing r and s,

" then e @G implise dEl't.G{H} =0 whan & is a subgroup aof Sn.

PROCF 3 fy Borollary 2.13, dutG{Psh} = & (s) det.{in). But
. (W]

F’u.ﬂ. = A and € (5) = =1. Herce wn got det_(4) = - detr(H}. Thus
15 a

n‘etE{ﬁ} e (.
-1t may be interesting to mote thet, when s is NOT in G, then
: =
dat,n{.ﬂ.] nead not Wanish. For example consider o = 1 i ;i
3 4 1 l

Let G bs the subgroup il, a} where = = {1 3) in 55‘
Than detﬁ{ﬁ} = 14245 = 3,2,3 = =8 # 0, Thus, mvenkhough two rous

of A4 ara identical, dEtG[.f-'l} £ 0.
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CUROLLARY 2.15 & IF two rows of N are ldentical then there existse
s subgroup G of 5 such that ds-:-tEl:H.} = 0. For we have only to con-
sider the group G = {I, ,53- whire 5 is the tranosposition of the row
indicees of the twp identical rows of A. In Foet any group G nofe

taining 8 will do.

COROLLARY 2.6 & Suppuse & interchanges r and u. Let s € G, o

subgroup of Sn. Then datG{fl} is umplterad iFf we add to uth row any

miltipls of rth row of A,

-This follows from the multilineatity of dat.(#) as a Fun-
ctioh of rows of & snd the Theoram 2.14.
2,17 CGENERAL LAPLACE EXHANSION f

Lot G be o subgroup of 3, and 5, = Gy 1 By ¥ oaas UG bo

the right coset docompesition of 5|‘| #ith respect to G. Than

m

{a) det (A) = det.  {i).
a) det (& ; G,
m
{h) per (W) =.-§:_ por, {i}e
1=1 1

Thesa results arg guite obyious, RBut this irAocooys Toealh
containe within itsclf all the known expansions of det{u) and por{n}.

Hence tils rosult may be aptly callod tho gunersl Laplace oxpansion,

Lﬁt (11| i?| L) in] hn a ﬁﬂrmutﬂtiﬂn of {1, 2' LR r1}ﬁ

= bhe the subgroup of SP Fixing all tho lomant s

Let 1£ I‘é Ne Lut i;‘l
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HT' :".2-, wieg ir} afd 1ot Ez be the subgroup of Sn fiwing

“r+1’ YEY in}. Lot 6 = G, x G, be tho dircct product of G, and

E’Z + An eloment = of G can be unigualy writton as Sy B > whTn
ST£E1 and BZEEE' We can also asaume that 9, acts OMNLY on

{if+1, LEETY) in} afd EE acts OMLY on {i1| 121 --;| ir)-

n

n r
Thu t T =a. m = '
3 narE( ) = a y = 2 TT aits(itj

gy p Sl I LS T R

%1[1*‘} = ﬂufs “[i"f’i?"'.,irfi‘! pi2|-¢||i‘_7-|

2

r n
e TIT a
1 (i } r+T

p-ErJ'{i/'r ey lr;'"’ i.]l aay ir)- Hencw dEt-l:H} E; dﬂt (.'IJ =
i=

Zg(u ) ost (0 u] where G, = Gu, and 0 =6, UG, U ... UG is
1o i ! y m

the right cosct dacumpumtinn af S with respuct to G = Gy % B

Thus dot{n) =i€(u } %E(s] per, {P il)
1=1 5 f

iE{Ji] K_ Z El:a 5,) per_ 1 I:IJLJ i)

i=t Fiq QE G 2 i

m e
,—_E_E(ui} E_ peT_ (”ui”}[i‘r"”’irfiﬂ ...,11_7'5:(

Z - F"’-‘?FE f'-]ul'f'“i-]s*”li fiT!-”!i JE(&H
51{': L1,] 1 i r f

m
=Z e(UlJ' dfﬂt{l—]u_-"'}[H ] -*-rirf‘iqf”-rig
1

rint ':“ui-[-ij {111 sy ii‘fiT’ RN lr:..-
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;ﬁﬁinia the familiar Loplace expansion with respect bo the
polutmhg (11, 12. ...,‘ir} of A In a mimilar manner, by consi~
dgering the left cosat decomposition of Sn with cRsproct to 0 we

-get the Laplace expansion with respect to tha rows {11, auny ir)

of A. KA similar result folds for permanenis.

It is claar that by axpeessing G as a diroct product of

&k subgroups and considering ths right roset decomposition of Sﬂ
with respect to G we yet the usual expansion of detoecminants and
permanants for a column partition of B into k classesi for loft

toset decomposition we get oxpansions for row parbitions.

7.18 AN EXAMPLE 3 Let M ba the altarmating subgeoup of Sn.
Then En =~ H comsists. of all odd permutations of Ln ang SNnH l {SH_H}

is the ripght (left} cosst decomprsitlos of 5. with respect to #.

det{A] = EiﬂtH(f—"_} + dlEtE _Hf.ﬂ} = Z: E'_(&J} per {#] + E:: E{sjgarv(&}.
n 5 6 M 5 €5 H .

= E purﬁ(ﬂ.} - é . [.1u1:'5{ﬁ} = ;.rl_-rH{ﬁ} - per,_ _H[:Hj.
sEH sk 5”-H Ty

piar {n) - per,. (6] & por {(#) =
g b”aH

CORDLLARY 2,19 5 et (u)

r]“bH{H} + (e —H('U‘}
"

43

Se DEJJ?HU-‘LJ = iﬂ:pur (.'-1.} + oot I:.ll.j:.! anr] jt'Jul:'L.j *H{ﬂ} = é[pﬁr{.ﬂ] — ot {HJJ



consequently the necessary and sufficient condition that det(R) =
per (R) is that perg «H(A) = 0, or equivalently per(A) = perH(A).
n

THEOREM 2,20 3 Let G1 and G2 be two conjugate subgroups of Sn.

Then there exists an s & E such that

T
per (PS A Ps) and

per, (n)
n 1

T
datGZ(A) = detG1(Ps A pS).

PROOF ¢ Let G

L
®

-1
Gy & o Then detGZ(A) = detsG1s—1 (W)

€ (o) datsG1(P£A) = €(s) E(s) detG1(?LAPS)

. CenT
detG1(Ps A Ps).

Similarly per. (AR) = per (PT AR ).
62 G1 s s

COROLLARY 2.21 3 1f G is a normal subgroup of Sn’ than for any

T T
ey ) -
s € Sp? detG(F\) = detG(F’s A ts) and perG(A) = perG(Ps A PS).

2.22 PERMANENTS WITH RESPECT TO GROUP COMWLEXES AND TENSOR
PRODUCT OF VECTORS 3

In this section, the very highly useful methods of

Marcus and Newman Zf 12.;7 analysing permanents with the help

of tensor products are used to extend their results considerably

to permanents with respect to group complexes.
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2,23 PRELIMINARY IDEAS 3

Let V be an n-dimensional unitary spaée with an inner |
product represented by (x, y) for x, y& V. Let mm(v) be the
space of all memultilinear functions on V. In other words Mm(v)
consists of all functions F(x1, Xo9 eeey xm) from V X V X eee x V
(m factors) into the complex field with the property F(x1,..., LX)y
ceey xm) = qLF(x1, ceey xm) for «,, any complex number and

i = 1, 2’ eney m and f(x1, ooy X, + yi' X se ey xm) =

i i+1?

F(x1, crey Xip eeey xm) + F(x1, .&af X{4q? o0 xm) FOr i = 1, 2900em
and y, € V. Let v{™ be the dual space of m (V). In other words
V(m) consists of all linear functionals from Mm(V) into the com-

plex field. We definc for uie Vy i = 1, 2y «sey my a distinguished

(m)

element f of V as follous.

f uritten as u, P u, @-eer @:u, hasithe property that
for any FE Mm(V), f(F) = F(u1, Upy soey um). In otherwords we
have

(u1 ® u, & ves & um) (F) _—_.=_F(u1, Ups sees um).

. (m) . ,
This element, u, ') u, @ oo @ u_s of V is called the
tensor product of Uys Uns eeos Up and is said to bs decomposable.
These tensor products togethzor with thezir linecar combinations over
the complex field form a vector space. In fact this vector space
(m)

is V(m). We introduce an inmer product in V by defining inner

product for decomposable tensors as follows.



= 401 =

M
w [u.‘ @ UE @i-n(‘g} '-.:'mil U1 @ 'U'? @p-u@' U["l) = i:;l;{uiryi}

Let C be » complox of G

5 . Dofime a lincar oporator TG aver
{n} by dafining its affuct on amny decamposablo tensnr as Follows.

' 1
TedBeaa T ('}i A ) = ——— Z: (K . @ x --¢®'X

whars IG[ ia the cardinglity of G (aessumed to be non-—aumpty].

)
{m}

‘2,26 INNER PRODUCT AND PERMAGNENT 32

LE (]
Claarly (TE{K,] & .u@:{m]. 3.*1@... @ym}:: - 5:, 1

i
R 3N

s ¥ gy
GES i=1 L n{i)

"

(g @iy Ty (4B By, )

- Thus wa get an important result.

2,274 4e (TG [x1@”.@xm}, [y1C§:~ ...@ym].} ={fx1@ ...@xm},

> Tﬂ_,(?«,@---@‘,}-’m” =""'EJT DarE(HU}

=
“ # *
whare A = *1 iz an @ x n MakTix and B = (y“ Yor e ij
*2
X
m
-

#
isg an pn x m matrix. ¥ iy the conjugate transpose of y.
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LEMMA 2.28 3 The linear operator TG is hermitian iff G = G—1.

PROOF 3 (TG(x,‘@...@xm), (y; B - Cyy) = ((x, & oo e @xy)s
TG_1 (y1®...®ym)) = (§x1®...@xm),TG(h@.n.Oym))

if G=G"1.

Thus TG is hermitian. The converse follows from the easy fact that

TG(X1®... @xm) = TG_1(x1®.o.®xm) for all X,y X,y e=s xmé\/

implies G = G~1.

2,29 DEFINITION @ If G and H are complexes of Sm’ let GH denote
the multiset of the |G} | Hl clements of the form g for g€ G and
h& H (with proper multiplicities). Thus loHt =lc{ | Hl and in
general GH is not a set. This notation differs from the usual
definition of ﬁhe product of two complexes. For example, if G is a
subgrouplof Sn’ GG will be the multiset formed by taking each glement

of G, !Gl times. Hence
2.30... porg(R) = |6} per (A)

° T 3
THEOREM 2.31 3 Lot A & Mm,n(c)’ BEE_Nn’m (c). Then for any complexes

G and H of Sn’

2

* *
2¢32e0 per (nB) | < per (i) per _ (B B).
GH ~ 66 9 H 1H
%4 »* *
PROCF 1 Let A = . and B = (y1, sony ym).
*m
L -
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(TG(x‘l@"'@Xm)’ TH_1(y1@...®ym)) = ((x,® "'®Xm)'

T T ( ces )
Y ,y1® ®v,))

= (%@ -+ @ %) TH_1G_1(y1®...®ym)) -.--T-G—‘,—m parg, (48).

We have used the fact that T T =T which is quite obvious.
G-1 H—1 H-1 -1

Hence by Cauchy=Schuartz inequality for inner products,
2
[T @ e e @ xp)s T _1(y1 ® ...y NI
LT @ @xhs T B @, Nl x

](TH_1(y1®...®ym), L ® - Qv )l

(An*) (B*B)
per _ per _
perg (AB) BE 1 Y 1

‘” TN I T T

and

cancelling 'G’ 2 ‘H! 2 the theorem follows.

The result 2,32 is a considerable improvement over the result of

Marvin Marcus which is as followse
2033000 IF AGE'Mm’n (c) and qéE,Mn’m (c), then

. 2
tper (AB)l 5& per (MA*) per (B*B)

‘ *
COROLLARY 2434 3 In 2.32 taking A =T, B = T J where 3 is an

*
m x m matrix with all antries unity and setting TT =65 ws get
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* 2 * *
lper (t7 J)‘ & per (17 ) per (T 13
GH = GG--1 H-1H

2 :
or 'perGH(SJ) I :5; perGG_1(S) perH_1H (353).

N

1f row sums of S are Ty Toe eees T wltr\z:ri =r, then

pr— 1—1' po o
I'1 r1 o r1 r r see r
S]] = and 353 =
r2 tz se e r2 T r o r
er T  ese rm B ) S I’..

Hence perGH(SJ) = ‘G “H l r, T, <+ Tp and

‘ 2 m
peth1H(JSJ) = ‘H‘ T

2 2 m
Thus "G‘ e £y Ty ese Tp 1 €£; perGG_1 (s). 'H' r
2 2
lr1 rz oo rmi

m
r

6}
If r # 0 we get pngG'1 (s) 2;

Let Hh denote the set of all m xm positive samidefinite
hermitian matrices. Suppose G is a subgroup of Sm and SEE_Hm.
Clearly GG~1 is the eluments of G repeated ‘G ‘ timgs. Hence we
have perBG_1 (s) = lG l perG(S). Since any element of H_ can be

*
expressed as T T we have provede

THEOREM 2,35 ¢+ If SEEHm with row sums T,y Toy eses Tp and

Zi}i =t # 0y, Then parG(S)225 ‘G‘ lr1 T, eee rm‘ 2 / .
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COROLLARY 2.36 ¢  Suppose SEHm with row sums unity. If G is any
m .

subgroup of s_, then perG(S);; !G' / m. If G=5, this reduces

to per(S);; m !/mm. In particular this last result is true for

a positive semidefinite symmetric doubly stochastic m x m matrix S.

CORQLLARY 2,37 ¢ If G = I, the trivial group of identity permutat-

2
ion only and SE_Hm, then perI(S)é) 'Il lr1 T, ees rm' / " or

m
Sqq Spp **° 5mm>‘r1,r2 ces rml / r whore § = (Sij)' In parti-

cular for a doubly stochastic matrix in H we get

~m

511 522 *** Snm 2 "
COROLLARY 2.38 3 In 2.32 taking H = I and B as a matrix with unit
* *
column vectors, clearly per _, (B B) = peri(B B) = 1. Thus ws get
’ H
2 *
par.(AB) | & per (#A ). 1In particular if G is a subgroup
G =3 GG_1
f S this roduces t or (k8) | 2L ’G‘ (k6). Taking G =5
0 m s roduces to !purG( ) ’ (S ! per. . aking =5
2 *
we get lper (»B) l '-<\: m % por (MA ). If we put h =1, the unit
matrix we get ’per (8) ‘2< m !
2.39 SOME RESULTS ON PERMANENT W.R.T i GROUP

In 2.32 taking G = H = a subgroup of Sm we get

2 * *
2.40a 0 ‘ porG(AB) ! :g;perG(AA ) perG(B B)

for, in this case, GH = e~ = Wl h= 6 repeatod |G! times.



- 45 =

2
*
COROLLARY 2.41 ¢ Taking B = I we get | per, (H) ' 55; perG(HH )e

In particular, if A =T, a lower triangular matrix we get

(T) 2 (TT*) Let TT = 6. T
per. ‘ fS; perg . at = . hen,

2 2
»*
perG(S)E; 'perG(T) ‘ = ‘t11 toy see tom ‘ = det(TT )=det S.

s we can always write any SEZHm in the form 6 = TT , where T is e

lowsr triangular matrix we have proved.

THEOREM 2.42 3 If Sé}Hm, then for-any subgroup G of Sm we have

parG(é);; det (5) (Schur's Theorem).

COROLLARY 243 3 Taking G = 1, det (S);g;s11 870 *** Sun® This

is Hadamard's determinant theorem.
2.44 SOME RESULTS ON PERMANENTS W.R.T. GROUBS THAT COMMUTE s

Suppose G and H are subgroups of Sm such that GH = HG.
If K is the sot of all elements in GH, then, we know that K is also
a subgroup of Sm and the collection GH is K repeated IGf\Hi times.
Now 2.32 bucomes le\H[z ‘perK(AB)l 252 parGG_1 (AR*) PefH_1H (B*B)

Also lKl = ‘H' |G' / 1GMH} « Thus we get

1 2 1 ¥* 1 *
2445440 ’ KT porK(ﬂB) ‘ ol porG(HA Yo THY perH(B B).
* *
Teking # = T, B =T and 5 = TT we got

1 . 2 4 1
246,044 ‘TET perK(HB) ' fg'TET perG(S). TET perH(S).
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In particular if WG, thun K = G and we havs

5(5] F.é. Té"i ﬂE!‘E(SJ ‘fﬂTl‘ purH(SJ O

. . 1
Tgﬂ' ﬁarG{SJQ "—-11_1] perH{S}.
have provaed tho following.

248 IF SE Hy oni Hoand G are subgroups of 5 auch
5, then por (5)/ |G} por (S)/1M] « In particular,

Hail, prG(SJ-.@ ‘Gl 11

&

2_2, LN R Smm'

AAY 2,49 t  Suppose n&'Hm whourm m is r % 8 and

e

- ~
g Ry eee Ay

) . N whare gachh 1, . 15 an 8 ¥ 8 mabrixa.
[ on [L - ‘o [ 3
21 27 2r

* L} *ra ]

L » A ] '

] L] * e -
iﬁr_i ﬁ-rz (Y “I‘r
hama ek

o w (par {ﬂ“)] be sn T x t matrixs. Then clzarly por(8) =
-.Ef,ﬁ], whara G ia a asubgraup of order (s} LY Mopen wn qub

;{E}fr’- {sﬂr,?; per{n} f/ (sc)! or

par ().

150, 4e per (B) 2>

Eiﬁf SOME RESULTS CONMUCTING PLAMYNENTS WITH DETERMIN, TS 1

tat £ reprusant the alternating subgroupg of ! m Then

EE {8 £ ropmatad mi/2 timos {assuming > 2). Hunce
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) 2 * #* mt * *
‘perEI(uB)l 5; perEE(HA ) perII(B g) = > pGrE(AA ) perI(B 8).

0

But per(hB) porE(nB) + perg _E(AB) and
o .

det(1B)

perE(ﬂB) - persm_E(AB). Hence perE(AB) = %
[per(a8) + det(AB)_/ and it follows that,

* *
252400 l per(xB) + det(HB) ‘Zgé:mt Z*per(nu ) + dot(AA );7

* *
perI(B B). Taking B = h this rcduces to.

* * *
2.53c.. per{nh ) + det (nA )5;tn£ perI(AH ).

*
- fi - ]
Let & = AR = (Sij)° Then per (5) + det(S) $; mi S,. Syp +er Spnt

for SE& Hoo

- *
If in 2.52, K is nonsingular, setting B =A ! and AR =5

wa get the following.
2.54... 4 mt [per(s) + det(s)_7 perI(S_1).
Equivalently, mi perg (s) [por (5'1) + det (S_‘| )-72; 4.

But per (8-1) ;; det(5~1) by Schur's Theoram. Thus we get

2

]
Me 511 522 saee Smm

-1 -1
' S ar{ S 2 5
m perI( ) per( ) ;> or per( )2;

Y I3 - °, ‘
Compare this with per (S)fénu S11 S2 *** Smn°
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suppose S™1 = (577) then we get

11 24 mm -1 Z .
1 e - Sy |
mi a8 I ;2_ rarf 3 }_f:’;, — T L Trus,
1% 27 mem
Thus,
‘ 11 27 - ~ P
2-55#1- 5 5 e 5 3]1 122 &N Emm f“, i!{mnj

piaGonsl PRODUCTS aMD AsME OF MOSITIVE MATRICES 1

Maruin Marvin [ 12_7 conjocturad that the rank of g
poeit fva sguare matrix is atmost equal to the mumbur of distinct
dlegonal products of tha matrix. In this saction wo sektla this
gnnjecture afficmatively. Morsover sume surprising combinatorial
pongeguences of thils conjocture aro devoalopad. More than thae
conjecturs 1tsclf the method vscd to settlo ft-and the ¢ongd-

guences will ba Faund extromely intorosting.

PREEIMENAAY IDENT 3

Lar #* ropr . sent they set of positive real numbors. IF
En (R*), then it has n} ciogunal products. Bub those neod
not be gistinct., Let d{n) reprusont the numbor of distinct tiiagnmal
products of 4. Clearly 1§_d(1‘|]:§: nie Let (&) reprosent the rank

of the matrisx N

Marwin Marcus oonjuckurcd the Fullnwing

25640 fur néz f‘?n'nin‘?*}, v (i)l dli),



This conjecturs was verified to be true for n<5 by
Wostwick. To settle this conjecture affirmatively we prove two

theorems quite irturesting by themselves.

THEOREM 2.57 3+ Suppose {a1. ayr seer 3} an {b1, by eees b ¥
are two sets. Thaen the number of distinct gplements in the mn

sums of the form (ai + bj) 1w 1y 2y eeey M J =1y 2y a0y nis
étleast (m+n-1). The lower bound is attained if and only if either
(1) me1orn=1 or (2) my n> 1 and the a;'s arranged in
increasing order are in arithmetic progression, the bj's arranged in
the increasing order are in A.V. and the two A. P's have the same

common difference.

PROOF 3 For any multiset S, let 0(S) represent the number of
distinct elements of S. If a sat of real numbors S has the pro-
perty that the glements of S arranged in increasing ordar aro in

A.P. with a common difference K let us write SéE.AK.

Now the "if" part of theorem is quitc easy to verify.
We will prove only the "only if" part. The case m =1 or n= 1 is
gquite trivial. Hence assume that my N> 1. Without loss of
generality we can assume that a;'s and bj's are arranged in
increasing order. Let (i1, j1), (i2, jz), ceey (im+n~1’ jm+n—1)
ba called a path from (1, 1) tu (my n) in the matrix A = (ai + bj)
if i, = 1, j1 =1; i = ng and for © = 152 soeyMbn=2

1 men=t M J e
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either ip= i, and Jpgr = Jr+1 or i .4 = 1r+1 and Jepr = Ir and

1€ Lm 1L

It is clear that the entries of A on any path are
strictly increasing and hence distinct. Each path contains
(mn-1) cells. Thus atleast (m+n=1) entries of A are distinct.
If the number of distinct elements in w is (m#n=1) then all the
paths must give the samg increasing sequence. As ir+jr = r+1 it
follows that a; + bj depends only on i + j. Thus ai+1+ bj-‘l =
a; + bJ for 1K< <m—1, 2 J(ﬁ. Thus a, 4 = 2; = bj - bj—1

and the theorem follows.

€ignm
COROLLARY 2,58 @ S 1. If D .+ b, =
8 uppose my, N> A{al j '16 Jén}

T i ) .
3 1% J< n}éHK for some K. In fact if

8ip1 " 9 =bj - bj-—1 =k for 1L igm 1 iy then

.{ai |i =1y 2y eeey m}e by and {bj .j: 1y 25 eees n}EHK
1 i m
and a, + b = R,
{i J “Sis_:”fe K

COROLLARY 2.59 : Suppose m, N0 > 1. If .{ai + bj ‘1< i€ " }¢_ K
1TLikgm
for any K, then D{ai + bj ‘ . }} MmN

is men=1 then .{ai-o-b

1£‘]_€:n

THEDREN 2.60 3 Suppose {31, Bpy seey an and {b,‘, b 21 eoes bng

I 1<l< "‘}> m+n=1 .

are sets of positive numbers. Then D {
P © 1< J< n

The lower bound (m+n=1) is attained if and only if.
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githur {1) m=1 or n=1

{2) myn>1; the al's arranged in incroasing
prdar are in geomstric progression, the hj‘a gtranged in incroag=
ing order ara in gwometric progression and the two Gaﬁih tava the

game comman ratio.

. . _ el lem .
COROLLARY 2.61 12 Supposg My r‘|>‘|. If D{ai h._’r l 1; jgn} sk

then the distinct a bj's arranged in increasing ordar are in GaP.

i

COROLEARY 2.62 1 Suppoaus my n>» 1, IF ths distinct ny b}’s
arrenged in Inereaeing ordsr ars not in G.P. then thuy are atleast

{mkn} in number.

BROOGF 7 Theorem 2,60 and the Copollaries 2.61 and 2.62 follow
readily From Thaorom 2.57 and Corollaeriee 2.58 and 2.59 applled

tu the sats {lngﬁ e 194;332-, s ay lmgaam} ¢ and

{1nggh1, 1ugmb2, b lﬁguhﬂ}-aruiobseruing the Fact that the

log funttion iz monntonic increasing.

2.63 GEMNERALISATION 3

Thaoromg 2.57 and Z.60 can be pseily gafcralizod to K
sets of numbers. for oxample Thocrom Z2.60 can bo gamerallsed as

follpws.
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THEOREM 2.64 1 Suppose {a“, ayor erer 3 1} vl o= T, 24 eeny K

km,
pre k smets of pasitlve frumbers. Then D W a, I 1 . .
" 1=1 alji €hen 2

K
EE; ng = (k=1}. Tho lower bound is attained if and nnly iF
1=

githar {1} atlzast {ke1} of ths n's are unity
Gr (7) atloast two of the ﬂi'E ara not unity; For any

lﬂi

increasing order are in Gub.j all these G.H's have the samo eommon

My # 1 tho corrasponding Bigr Apge reny By arrangad in

ratio.

PRODF ¢ 8 proof by induction on k is guite siraight forward (and

is omitted hera),

let us now state s thourem which is apporently a parti-
cular casc of tho conjecturo 2.56 but ackuslly aguivalent Lo 1t,
Tha pruivalnnce will be first establishicd,  Then the thoorom will

ko provod,

r iy . ot " .
THEDREM 2.65 1 Lot J|€Nn’n|:ﬁ Y. IF (i)« (n-1), then & 1s

gingulara.
EUFLVALEMCE OF 2.50 #ND 2.65 ¢

Obylously 2.56 implles 2.65, wssums that 2.85 is true,
When d{R} = k = (n=1) cloarly 2.56 and 2.65 are the same. When

dn) = k;arh 200 ts trivially trus. MHence assuma thai
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dit) = kg (m2), Take ony {k#1) x {k+1) submatrix

. s . : ; - i, n
H[ii, izg by ll":+1 I j,‘l jzg ey Jk+1"'7 end its L.Dmplgmﬂt
Al i1| Lyy seos il-c+1 I Jgv dos seer iy ). Clmarly any diagonal
product of tha former multipliasd by any disgonal product of the

latter is & diagmpal product of W. Hence by Theorem 2.60.
d':“[if’ L I B A R e I
de(i*]' iz, aaay ik+1 ‘ j']' jzy IEEER) Jk+1]) - 15[](.'—‘!} = K.

Henoa E!(-"Jl[i;lr 12I aay ik‘+1 ’ "j'l’ .jz'l' ahay Jk+1,_7)\'§:\k'

Applying thenrom 2,65 to the matrix i 4, iy eaey 40|
_]1, J?’ runy ‘Jk+1"'7 we congludo thet it should be singular, Thus
any {k+#1} x (k+1) submatrix of 4 is singular, Huence r(H}% k and

this 1la Z.56.

Imcidentally, in vigw of the fact that Z2.56 has boen
verified fur all ndﬁ, the sbove proof shows that the copjucturo
is varifisd fur all n}ﬁ whan k{ S. Ue now provo Theoram Z.695

by induction on on,

PROOF OF THEOREM Z.65 @

Let us amsume ths truth of tho thaonrom For all meotricea
of order upts (r=1). Lot RE i'ln H(H"'}i. Lat us also assumz thet
]
the dietinct diogunal prorducts of A whon arrangod in increasing

ardar are NOT in G.V. Singe k‘::E has alroady bocen covored thore
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is no loss nf generallty in assuming k 2. Using Laplace
gxpanaion for debt & wer.t the first twe rows of 4 wo get
2.66ees dot A 2 €. . dot w102 Jgs _12_7 det A(1,2) 1, 41,)
. Jqd 1 1742
J1dj2 1°2
j1+J2+‘l

whera €;j1’jz is {-1)

dn/1s 24 Jys 3,7) = 1 claarly impliss that det 4/ 1,2 ] J,.i, /=0
Supposu d(i[h 2-‘ j1, j2_7) = 2, Than,

d(if e 2 | ape 3,70 + oa(1, 2 § g 1)) e L A(R) L (0=1) by

Theorem 2.60. Thus a(A{1, 2 { J.» 1)) o(n) - 1 (02},

1Ifr d{a(1, 2 | Jqgr 3;2}) = d{A) =1 = (=2} then by Corollary 2.61

the distinct diagonal productes of W erranged in increasing ordar
mist be in G.F. contradicting cor sesumption, Thus o{h{1,2 } jﬂsz}]
,_‘(;cl(ﬁ] - Zén—-s. {1, 2 [ Jqs jEJ is of ordor {n=2) and henco

by inductinn hypothoslas it muat ba singular and honca

det A1, 2 | 3y, J,) = 0. Mance dot AL 1,2 | dady/

dot n(1, 2 { dyv dp) = 0 Farall g ji &l i, g Thus det K =D

from the taplace axp.ansion 2.66., Hence 4 is singulér.

Let us now mssume that the k distinct diagnnal products
of 4 aro 1o G.Ps when arrangeds 1o increasing order. Considar tho
sot of &1l n % n prnesitive matrices with oxactly k{q& n=1) distinct

diagonal products. The condition that these are in Galfs will



be that certeln cuntinuous fumctioms in the entrios of A arg
gqal tn reros. Thus the conditiom that thoes ape NOT in G.2.
will be that atleast one of tho sgualitics is not satisfled. Tho
determinant vanishes whon atliesst one of the equalitiee is not
satisfied, By continuity the determipant will continuc to

vanlab svan when all the sgualities ape satisfled. Thus thae

thegorom must He true even 1ln thls case.

This completes the proof of Thecrem 2.65 and conmeagquantly

the conjecture Z.56.

Mote thet in this proof it is tacitly assumod that tha
mere conditinn that thore ars only k(< n)} distinct dlagunal
products does net foreo thom tc be in G.P, In Fact wo can aeasily
construet a positive matrix of order n with k (< n) prescribod
positive diagonal proructs dT' dz, - dkt Towards this snd
considar an n x n matrix with the First row consisting of
d1, dz. “eny ﬂk-? and dk repoatod n=k+l timgs and lot all the
other rows be Fillecd wp by unitys Clearly this satisfies our

tegqulromant .

THEDREM 2.66 ¢t If A is an n x n poeltive matrix with d(u) = kg(n—ﬂ},
gnd 1f tho distinmct diegonel products are d1. dz, wn ey dk than gach’
tiiagnnal product di nEeurs an equal number of times with positive

and nagative aigns {this mumbor mway bo different for diffesrent di'a}

in the ewpanslon of det HA.
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PROOF ¢ Suppose di DEEUES py times with positive sign and q; times

with negative sign in det A.

K ' k
Then det R = ;. (pi—qi}di = E ng di = 0 where Ny, =a, -
- i=1
Suppose W& replace the elements of A = (Eij} by their rth powers
{r =1, 2, 3, .es} and defina A = {aij]. Ubviously d(ﬂr) = A} = k

(€ n=1), Herice det "A_ = > n d? =0 forr=1y 24 «». Hence we
—— r -~ 1 i

have

[ O] o ]
d..l d? ] 'dk ﬂ1 U
z Z 2
d1 ] d? L] dk nz G
» L] LR ] L] - = (]
- . raw . . [ [
d,' d? P d:: I"Ik 0

i e - 4 et

The detsrminant of the coefFicient matrix is clearly,

11 e

d, dy eve o dy  dy eee gy £ 08 d d, ese d >0 and
- L] L] -
kel kel k=1
d,] d2 - dk

the determinant ie a wandermonde detarminant. Hence it Follows that

My, = N, & 4o =0 = 0, Thus By = 4 for 1 = 1, 2; cvay Ka

1
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OROLLARY 2.67 ¢+ If B is & positive m x n matrix and o{A) = k (gg n-1}
tharn each diagonal product of A cocurs even mumber of times in the

axpansion of per A, This follows readily from the fFact that

k K
per A = E_ {pi + qi} d; = EE: 2p; d,.
i= 1w
CORDLLARY 2.58 1 Supposs A 1s an n x n real matrix. Suppose B
has sxactly k (&£ n=1) distinct diegonal sums. Then sach diaganal
mdei pceurs the pame number of times correspanding to odd and

even paermutatians in Sn (this number may be different For diffarent

1
dy B).
EiJ
This is only Theorem 2.66 applisd to the matrix (e ~~)

wherg A = (aij}.

[ORDLLARY 2,68 3 lot A bs an n x n (D, 1) matrix, If por 4 = O
and A dogs rot hava a zaro diagonal then each positive diagomal sum

gooure an mven numbear of timees.

This follows Fram the fFact thet the diagonal sums can

only be among {El, T 24 seuy nj. IF per A = 0 and & do=s not

have a zaro diagonal then the disgonal sums can only be among

{}, 2y vy nnt} ‘. Cerollary 2.68 mow glvae tho desired result.

CORDLLARY 2,70 1 Lot A be an n x n {0, 1} matrix. If the "tarm

rank" of A, l.e., tho maximal diegonal sum of A, is atmmst (n=2),
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then sach diagonzi sum oceurg an bBwen rumber of timas.,
This ig similar to Corollary Z.69.

THEOREM 2,71 ¢+ Lot A be an m x 0 positive matrix {mgn}. If

pvary m x m submatrix of A has atwdoet k distinct diagonal products,

then r(A}_s_;k.

PROOF 1 Conaider eny m x m submatrix of A, By 2.56 its rank ie
stmost k., Hassuming thet k & m=1, every (k+1) x {k+1} submetrix
of this submatrix is singular. Thus every (k+1) x (k+1) submatrix

of A is singuler. Thua it follows that r{ﬂu]s K.

COROLLARY 2.72 t  Suppose A is an m x n real matrix (mag n).
Lat Sm dentte tho ast of all ona to onma functions From (1,2pecs,m)
]

inte {7, 2, +e., n}. For nE_Sm  tafine the diagonal sum as
L]

m
é aia{i) » Suppose W lm an o m x n {0, 1) matrix. If

8" % Elins'{;'.)?'"'?’ then every diagonal sum of A occurs an svan

mumber of timos, In particular par (A) ie even.

PROOF : The diagunal sums can ohly bo among .{2. Ty anmg m} '
Hence each diagonal sum bccurs an even number of timese in aach
m x m submatrix snd hencs in tha cntire matrix h. Por (&) is
clearly the mumbar of times the diagomal sum w pocours. Hencs

par (A} 1a oven.
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OROLLARY 2,73 &+  Supposa & is an m % n {{, 1) matrix {mg nj.
m

Fper (A) is odd than min Zig aisu}-ﬁ:z.

PADOF 1 This follows resdily from Corocllary 2.72. This rasult is
ulte strange. The mere restriction that per # is odd seems to
evg a strangle held on the minimal diagonsl sum of . In parti-
lar this meanma that ths matrix # must be quite rich in zeros

stleast {m=1) zeros).




CHAPTER=III

MUIR ALGEBRA AND ITS5 WPPLICHTIONS

+

\F

3.0 INTRODUCTION ¢

T. Muir jr3§7 introduced 2 symbolic method for expressing
permanent of & square metrix me s coefFicient of a term in a product.
He illustrsted the caleculation of puarmanant of a 3 ¥ 3 matrix ﬁx{aij}

as follows.

Let Rap Xyr %q be symbols satlefying the propertiss
2z 2 >
Xy Ky = xz x1,iu1 %g = xj Xy e XE Xo = X4y Xo u1 ® X, w D.J%Thsn

par A 1s the coefficlant of %y X5 % in the following Formal product,
(29 % + 8gp %y + agy xadayxy + 3,00 + aypxaHagy X, £ agx, + agxs)
Ho alsb adted that this was just the definition of parmanent &hly.

In this chapter we will dovelop an algebra in which Muir'we
idoas are lncorporsted. It turneg out that the elgebra so developad
gives gll thu existing formulss For avaluation of permanents and
points out a yeneral mathod of getting mew formulas. In addition
the algsbra seeme to be & very powsrful tool in combinatézica. MWe
formally develop old and new formilas for evaluation of permangnts,
formula of Iinclusion and excldsion end generating function For

pertition Function all though Mulr algobra.



- B -

31 MUTH ALGEBRA ¢

Lat Hn bs an associative, commutative algubra over the
complax flold, of dimereion 2, with a basie consisting of
Vo By Bge eeny B9 By Bop By Bre eeey By 8oy 048,050 resey
vesy @ whare 1 1s tha unit alamsnt and

En-z ﬂn-1 En| aawy 31 92

ai‘u have ths property af = 0, the zerc elamont of M For { = 1,2,00.n,

Commutativity end ths property af = [ give the completes multipli=

cative atructure of ﬂn.

Hn can also be thought of in ancthar manner. Let Fn ba
the frge commutative, msswciative algebra over the complex field
gerersted by h indeterminatas B+ By sesy & . Lot G be the sub=-
algabird, whieh is also =r ldaal; consisting of all the linsar combi-
mations of préducts of ai'a with otleast one &, oceurring with a
power groater then one., For oxample 2 a$ Ay 8, + 6 B ag a3 + 3 315333
is & typical element of G i Considsr the algebra rnfsn chtailned Fredi
Fo By *ractoring outl G.» Lot e, be the imege of a, under the
ratural homomsrphism rrum'rh anta anﬁﬂ. Then Fn/Gn with
1, 5.1 Bo sudj e, ad the gerneratotre will bs the Mulr algsbra ﬁns
Hh, considored as a veetdr gpace of dimengion 2“ can be considerad

as A unitery space of dimension 2" with the ususl lnnerproduct

written am {x, y) For Xy ¥ 6 M.
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3.2 APPLICATION OF MUIR MALGEBRA TO PEAMANENTS 32

let A = {”ij}EEF%,ntE) with meln. Let 5. be the

*

et of all ons to one Funstiongs frnm{ﬂ‘?, caey m} intn {1,2,....1‘:3- '

Than we dofine parmanent of A by

m

i T T pcal:(.ﬂl} = E . T o, 8li) *.

X c -
€S, 1=

rn
Suppoen B = E o, = P‘é” i thon it is masy to ses that
i=1

] I‘L ; :; Bl H, % #e13y Ei Fur r = 1*2,‘,-,“

A . i
11{12{...{21.1: 1 2 T

Thaes BF

fiiven # w [aiJ]EE mm’ﬁ{c) dofine r, = §i1 3 mJg;mn FOr im1,2,ses,Ma

m
Henge ( TT s ') = md pur (4} or
=1

Gm

m
3.51&! ','JE‘I-“ (ﬂ) = { Tr rif FT )
i=1 Ma

Suppose B = (a,]. By eren an}-. Lot us donote by pr(g'.i the sum of

tha products of I Ay saee 8 taken r at a timg. In otharwords

pr(_g) is thg rth elcmentary symmetric function of Aps Anr vewy B

With this notation, if £ = {aT, Gar weey un} and 8 = o 4ot ees 0,
F ’
thon @ = ti prtE} For £ = 1y 24 «asyp My IFf R = {r1, oy vees rm)

n
wharg T, o= JZ_; 3 e} Ei‘ln. then r, T, ses T o= [im(ﬁ]. Thus ws pot

ZeDs prr {H) = (I'—‘m(ﬁ}: pm(E}]‘



Let ug rnow devolop m fommuls For peomanents using colomne of A

Lot A = {aij}(:.; mm'ﬁf:} with meg
m
ir EJ m-ggg nij EiEE Nm for j= 1, 2y seey Nand L = (:1,52,...,cn]
then wo get readily the Formula.
JITIIC FEI’{A] = {pm{EJ, pm(EJj if B = [91’ UZ! ey Emjt

Formulag F.6 and 3.7 troeat rows and eclumns of o in a2

eymmatric mannﬁr(ﬁ is not necesaanrily a squero matrix;

LEMMA 3.8 1 Lot N be e Finite sot and x;, i€ N bu indutermie
natas i a field. 1IF 2“ 18 tht poyer sob of N we hove the idontity.

0 if reg |n)

F{xT,xZ,-..,an = :E::N E-1}’N1_}5!{ > xi}r =
s€2 S rt T x. iF r = |l

ient
PROOF ¢ Let us prove tho rasult For # = 3, tho genoral case boing

similar. Tako N = 41, 2, 3}
r T , . r r r r
F = (x1+x2+xa} - (x1+x2) - (x2+x3} - {x1+x3] X Xy b Xy

Putt ing X, = 0 cliarly F o= 0, varipus terms cencolling in pairs.
Thue <, le & Fasktor of F, Thus Ry Ag Xg mist Do o Factor of F.
Homee iF r<7 3, F must vanish identically. If ¢ = 3, than

. ‘ or s -
F=Kx, x, xg for a constant Ke Satting X, o®x, = x.=1,
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K=t - 3.2°% 3.1% 2 31 (the genaral result being n'- {?J{n-ﬂ e

¥ {;}{n-ﬂn vse = ), This proves Lomma 3.H.

Ciearly Lemma 3,8 is slso trus when x‘i"a aro in any

commutativo ring.
3.9 RYSER'S FURMUL: FOR Par(n)

Let I\ = (aij) E'_l"fm'n{t‘;} By 3.7, per(u} = (pm(C],pm(E)].
Let Nm denota the gt of all m subeets of N * {1, 2y wurgy n} .

Then pﬂ"{l:} = /o m Ei' Henca, using Lemma 3.8 we get
E%N i€S

m

Ta10ess mb pm{t) = Z mi TT I_";i o Z ES {__”m--!B‘[Z: Ci}m‘

SENm 185 HENm BEZ iEB

wheTe Z_ Ei iz imturproted as D.
1€ f

M5 .
Byt am s—aet of an mesat of an p=sst ocours (m s} timos as an se=set

of tho neset. Harnce 3.10 glvns

. me}B} 1B} ' m
L L] = (=1) C.
g () E%N i € 2 e

m
aut £ €. =2 R.(B)®, uhare R, (B) is thu ith rou sum of the
i€n v 4o i i i
matrix formed by the columns of A with golumn indieos in 8.

n
Hance (iﬁa Ei}m = ml {1;‘[1 Hi{B)). pml:E}.
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thus poe(A) = (p, (), p(E)) = (2o (0™ (R0 7 rrn 1(BYop (E),p ()
EE?
Thus we get the formula.
3.11.4. per {B) = Z‘N {M)m-'-lﬁl {;::g{} mTT R, (E}
HE 2 i=1

Thin 12 Ayser'sg Formule For permanent. We now prosent a similar

but new formila For permanent in tarms of cOlUumMPkesums,

3,12 4 FORAMULA FOR THE PERMANENT OF fN m x n MaTRIX IN TERMS OF
COLUMN=GIIMS ¢

Juppoen A = (aiJJ & len{E} with mg n,

Lot r‘i ﬂ; Bij EJENH Fﬂril'l, E, vavyg Me Lﬂtm'(d'E’lolim}l
e

Than per {A) = [pm(R}, pm{E]] wharo R = {r1. Typ sasy rm} and

E = (131| E"IE.. nay En]I

But ml pm(H} =m TV r ZM (—1]I‘H—IB| (z:

i=t N2 igf

n
But z . T, = C,{8) o, where C,(8) is thy jth columnesum of the

matrix formed by the rows of A whose indices are in B.

(Z: ri} = {Jzﬂl:: {8) )" and hence wo got

par(n} = cZ': (=1 )1t ‘Jif (8) 5", p,(E))

- Z'. 13" 181 o (e(8)) whare £(8) = (C,(8),6,(8)yuve C (8))
AE 2!
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Thus we get the Formule

%eee por (R) = 2. o (0™ 5 (c(a))

BE 2

CORDLLARY 3,74 1 If mwn, .13 gives

Her {#) = ZM f—‘l]m-im T“'i’ CJ(B} and 3.11 gives

EEE j::'l
n
per (n) = LU s JEWE

We now derive an intereeting formulas From Lemma 3.8,

let L m L Then 2: " -‘f}m‘lBi Z_ 0or
BE 2z ies

{z: --1}'"”"gl {Z:E (8) . }r, P, {(€£)} = 0 clearly this reduces to
BEZ jn‘l

2 0™ o (0(8)) = 0 whars €(B) = (6,(8), Ty(8)s Cy(8)yueeC (B)).
¢4

Thus we hawva proved tho following theorem.

THEOREM 3,15 1 Suppose # 1s an m x n matrix with ML Mo Then

2, (ay-te Por(n) 1f £ = m
(1) p{C(B)) =
EE2 a if 1&1‘,‘:”1.

A silmilar thegrem can b proved for now-sums. We are now

ready to prove a vary intacesting theorom.
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THEDREM 3.16 ¢ Supposa A is an n x n matrix with column suma

E1[B], EE(B}, rey Enfﬂ] For o submatrix of 4 with rows of A whose
indices are in HEZN. Then For any n complex numbors Ugs Uz ssey U
317ues por (1) = S =0 5 (c(B)=0) whero T(B)mu =

BE?2
it1i5)-u1, aeeuy cnfa)-un}.

PRODF 3 Let 1 r Me Then tha coofficiant of Uyw Uom wovy U in

S EL : {a}
EE?M {'1)'1 F‘n(':fa;'—u) = {—1}1 %N {*1}”.- Dn_r{ﬂlﬁl--uur

tr+1(B}' Er+2{B]' asip L‘h(B)) whare there aro r zoros in the lost
vector. But by Theorem 3,15 this is zero,Bn thue otherhand iF r = 0,

(-T}r ;E::N {—1]n-lﬁl pn(E{B}] = per # and tha theotom follows,
HE 2

COAQLLARY X,18 3 1f Ugr Ugy wasy W ara such that for svety Hé}?ﬂ

thare existg I such that Ei(H} = {J than par {H) = Uy eloe serg Yo

J, = ( % ) then wa can taka

In particular 1iF &

' 3 . ‘
{LI1, UE;\ saug Un} = % ,'% 1‘:_]’, weny I'_r-‘: }+« Than pare {Fﬁ} = nl fﬁnu

If it is & permutation matrix we cen toke u; = 1 for gach

is Then per (A} = 1.

We now pass an to an interosting lemma from which a

vholly nuw Formulz For parmsnent will be derived.

LEmM 3,19 3 Lot My Ko sesy X be n indsterminates in a

commutativa ring. Then we have tha idontity.
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320004 F=Z* (--1:."1""'3’i| {Z‘ ¥, = E_: X, ) = 27 1L X pdogareeX s
g ‘Eh i SEwe i 1*7 ¢ n

PROOF ¢t Proof of this is aimilar to thet of Lomma 3.8. A typlcal
proof of 3.20 tan be illuastrated by teking n = 3. Lot us assume

thet the commutativeo ring is a field.

- 3 3 3, 35
f = (x1+x2+x3} ~ (xy4 x, —-xa} - fx1mx2+x3) - (—x1+x2+x3] +

. 3 3 3 3
+ (xq-xzﬁle + (“”1*”2'“3} + (—anx2+x3} - (-x1~x?—x3 .

Claarly F = O when %, = 0 as in RaHe5. tarms camnecl 1in pails.

Thus F = k Xy Xy X For a constant ka

Taking X T My = Ny > 1 up get,

ke 3 - {f} (1]3 + (g} (-1}3 - {-3}3 =48 = 2°. 31 In the gangral caao

kma' = {7} (n=2)" + (D) (=) = it e (1) (ne2p)" To simplify
this coneider F(x) = {x+n)" - {:} (wrr=2)" 4 {;} {xtn=d )} + vay +

- . ]
(10" Getne2n)® 2 0) = Cem)” = (00 E7° Geem)” + (D) €7 ()™ Ll
whers £ is the shift woperator dofined by E F(x) = F{xst1).

s F{x) = (T~ 2" Gean)}™ = (£221)" (x=r)"s  Taking £ = E-1,

fx) = (A + 200" (xon)" = (D+2)" A" (x=m)” = (A +2)" 1t = 2Lt

ty uwaing woll krown propertiss of tho difforenco mernturzﬁ-

Putting » = 0 wo got k = 2", rb and this complotes tho proof of

the lemma.



CORDLLARY 321 1 IF n = 2r4l, {_Un—lﬁf {Z: X, = Z:G "At}n

i€ ieH
{ 2{‘-&1 IB‘ {{EEB ! - lz' i}2f+1 { 1) 1“"15] { Z i - E xl)zﬁ

+ Hence taklng ome helf of

. { 1}2:‘¢1-|E ! (z: X, - Z: ) )2“1
iga 1eD M1

the tsrme in Lemwa 3.18 we get

302204 E:N (enyirei=ol o< X, - 2. xi}'zrm w 228(2r41)8
BE 2 1@-*5 1 &8

‘EI£ r K1!}(zq¢w1.xzr+1-

I# nw 2ry in a almilar manner wa gat

32300 2 (-2 (3T x )Tk FT (D
HE 2" i€8 155 B2
IE’S ™= I8l=r
(i,;:ZE 'K - %C Ki)zr = 21‘ 1{21"0}3 l-oﬂ?r »

Hots that, in Z:N xi - 2:::: xi]h there are an guen ramber
& 2" L{EB 1 ED
{8l =r

of terms which can be arrangsad in two groupe of ENUAL terme.

e sfg now peady Lo prove an important modification of
Ryserts formula for permanant of square matrlbes which cuts the

calculation by halfe.

THEQREM 3,24 1+ Lot 4 = [aij] be an n x n matrix. Lot CyyCoyans,l
be the column sums of 4, Lot Ei{E} e tha 1th column~aum of tho

submatein of A with rows whoss indices aro 1n B& ZN.
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I
I r, = F:T By j E}J £ ﬂn' ther o 8 &5 ZN,
Ik n
L Ty _ -
AT - E e e 5. (cy(8) - ¢,(8%))e, = 3 (26 (B)-C Jo,

ieB iEB J=1 j=1

) [
Por €,(8) + C,(8) = C |,

CASE=1 = n = 2r+1. Then zzr(zrﬂ}t por (A) = (zzrizrﬂjipzrmiﬂ},

- Ze4t- 8] 2r41
Pypey ()} = ‘a%z"l (=1) (i%:e 1, - fg.ﬁ T b, ()

jalgr

- {E%N (=) o By (2C(B)C) whors © = (CyyCypenssC, )
(8 ¢

Thus we gety

2r+1
325000 27 por {n) = L (=03 T c(8) - c,)

nE 2 j=1
B

CHSE=D? ¢ e fr. This 1s similar Lo Caen 1 bt for & small

differonce. Wo pasily geb thoe Following.

- 2
3Z6res 2757 pap (8) = E:m D L TS
BE 2 Jm1 J
lBl{r
s S TRz )
F U e - T 2o o) o).
P&z =1 % J
B} =r

Farmulas 3.25 and 3.26 Involvg only EPQPN Par which
!B] 5".5. an and hencey cnmpared o Rysar's formela, those lnvolvae

loas than half tho amount of caleouwlation.
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CORDLLARY 3,27 Supposa # ls o sguars matrix with intogral
ehtriea. IF 51l the column sums ere cven, then par (A) is wwven,

For » = 2r+t, In 3.25, R.H.5 haa 22r+1 a8 a Factor and L.H.5. is

2?r per {fi) and the rosult Follows. For mo= 2r we uso 3,25 and

- £
the fact that % ;E::m {=1)" T (2¢C.(B) = cj} can bo writton as
BE. 2 Jue J
|BY =c
a similar Bum without the factor 4 by taking only ome half of thoe

identical psin in the summation. Thus again the result follows.

CORDLLARY 3.28 ¢ Suppoes 4 is a sguare, integrel matrix whoss
roua can be partitioned into {k+1} seta of rows in k of which all

the column sumw ars ovan, Thun per (A) {2 a multiplu of Ek.

This folicwe readlly from Corollary 3.27 and the general

Laplace axpansion of per (A) in terms of the sets of rows.

COROLLARY J.29 ¢ Supposs G; is tho eonllection of all mx m, {0, 1}
matrices with gach pow=sum and colump=sum equal tn r. If B & Gir.

thart per {4) 1s aven.

Thia follivws roadily from Corollary 3.27. In this

gotmection tho Fallowing eonjoeture scems to bw highly plaMeiblo.

CONJECTURE 3440 @ If & Is an n x n integral matrix such that any
r » 0 sgbmatrdx of +# has atloast one column sum odd For r=la2ieea,n

thern per (A} is odd. In particelsr por (B) # 0.
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Einca per (4) and dot (n) have the seme parity this

slsa means that det (A) 1s ndd and in particuler dot {a) # O.
Note that the converse of this conjecturo viz.

IF per (A) 1% odd thun every r x n submstrix of A has
atlesst onio column sum odd Far ¢ &= 1, 2, «esy 0 is certainly

true in viaw bF Corollary 2.

T The abcve result is a bit surprising. It scems that,
for large m, it will be rather difficult to conmstruct non=trivial
n x n integral matrices with noed permanent {or detarminant), From

the results so far derived using Mulr algebre the Fallnwing

genaral principles emorgos.
3«41 4 GENERAL PAINCIPLE 3

From atwy slgebralc axprossion for Xy Xy owan X in terma

of pelynomiels in xq Xor xawey X uE can prtract a Ffurmula for

parmancnte.

ILLUSTRATION 3.42
4 gh x, %, = (g %, +h x }2 - {gx, =-hx }E is an
gn Xy My 2 AT X 2 9 ¥4 27
identitys. Froim thia we get a formula For pormanent of 2 = o
matrices.

4 gh per (A) = (4 gh £, £,y By (E)) = (lor,+nr,)?, p(E))

7 ]
- ({gr1—hr2} ,pziﬁl}- Hermce 4 gh per (A) = per {H1}+per ﬂz whers



- 73 =

Ay {HZJ 18 8 2 x n matrix whosg identical rows arg equal to g

times tha first row of 4 plus (mious) B times the secund fow of H.

TLLUSTRATION 3.43 1

We know that L(f Xy ¥ Xy * Xp = Uy then x.13+ xg+ xgr

3“1 Xy Xy Taking Mg ® Tyy Xop Xg = Loy for a 3 = n matrix i,

L, Iy + Ly = 0 if and only iF gach column sum {8 zoro. Then
. 3 3 3
3 per (8) = (3r; 1, £y p,a(E)) = ;{ri v P4{E}) = - par i,

wheTa Hi i% the 3 ¥ n matrix pach of whose rows £3 the {th cow of O,

Eventhough illuatration 3,42 is gulito trivial, 3.43 is

rao=trivial mng interesting.

34 APRLICAHTION 7O COMPINATORTCS - IMCLUSION «— EXCLUSION FORMULA &

Lot U 1] auy 'UN bo M nb jeets with wojighta \Ll ?, ..,NN

| L A
(hll's are elements of a commutative ring). Lot Pie Poy weey P bU
attributes concorming these objects, Let # = {Eij)’ o Nox

metrix bo Jdofined by a, , = 1 1IF Ui Has tha attributs Pj and {

b n
otherwise. Lot r, = ‘Z-:aij a_jemn‘ 1= 1y 2y wxey Wy Let 8 =Z-{“J"

i iy
Let ¥ = (1, 2, seay ). For BE 2° 1ot W(B) be the sum

of the weights of Ul‘s posseasing all tha attributes DJ fur J& Ba

Lot S = ZN W{B}. Cloarly W(B) = E‘u! {[z a; 4@ J fr., Py {c))
B}EE i=1 jen
i3} =r

where r = 8]
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r
i] T.

3.45... Hance Sr x E wi f';-f*' . pr(E]}.
jal )

Elaarly U has axactly k prnnartima if angd only if “

rr (G—ri] K40 in which cass © (g - r ) =p (E). Thus if
kl (n-E}L

Wk'raprﬂsﬂnts the sum of weights of Ui"s thaving exactly k proparties,
then -

k
— r, (e - ri]
Jo86e0e W mzwi ( PEa ey Tl ph(E}}. Honce we gat

k k r1=t
D —  x H n (E i} N oxp, 8-r
Eﬂ mk % = éui{mﬂ k" ()t ' PH(E]) = ;ui(ﬂ o lrpn{E]}
. 8 (x=1)r i ¢ r
:Ewi(a . 8 i, pn[E}} - E_:: [rz e T . (x=1)F 1= (€
T T
=E'-'l':f:,{x-‘|} ‘;':.L, D(E})*Z(x-ﬂ (f.—.'-i*(r”p(E])]
i=T r=0 o =0 i=1

n
=2 _(x~1}F §_ using 3.45,
=0

L ¥

Thue ; T, = 3 (x-N" s
r
=) =

Equating coeffinient, of xk vn both sidos wa get

3.474.4 = E::,(-ﬂ}r'k (o) s

bt



H
-J
3

M
_ — "
In particular W = E (1) 5.

r=u
: n i X k n T
Putting x = y+1, Z_ W (y1} = >y 5,
k=[] r=0

Equating confficient of ].rr on toth sides we get

0 —
JidBanes EI‘ = - {r} ].I.‘k .

Lp |

Putting x ‘= 1/y and multiplying both sides by y" wa get

<~ = ek - -
2o Wy o= 2 (v} y 5

b= W (]
f n F
- . — n""‘k -W1 A - Fi-k
FU, = 8 W clearly ¥ U v " (ley)T = F Wy
n [ e 48 o Yoy T M=T
Thus ) y o= 2:{1'*?} Y Sk
kemtt T r=F

Equating coefficlonts of yn"k am both sides,

T -~
— Z: r=k  r=1 t a2 g r
3449 00s m:,-:l-c = (1) fr-k} S5 = (~1) {r-k+1j St

I Py |
Nk
; | r ,rek-1
or oguivalontly = E (=1} - ) S i "
==
AT k I r
Tho main reeult ; W, x = X. {x=1) 51:- is got alugantly
=0 r=0

fiming Moip algobra.



- TG -

3.50 AN INTERESTING OBSERVATION

The expressions {rf . pr(E}) and (r?{ﬂ - ri)n": pn(E}}
waad in ths section arv merely sxpressions for pormasnants of
gulteble motrices. Thus 1t is clearly possible to glve = proot
of the pbove roslts uslng only permansnts. Ayser gave a proof
of the formula for parmanents using the principla of inclusion -
exclusion. Here tho principle of inclusion - axclugion can be
proved using permanents ! Aut the conmeciing link is Muir algebra.
Thus Muir elgabra seems to bo more besice, The interplay of Muir
algebra with various combinstorial structures le indeed striking.
Az an exampla of thias lst us derive the genorating function for

the partition function Tn'
.51 BARTITION FUNCYIDN &

Considar an r-sot with elements B1s Ayr mevs B oo Lat Tn
reprgsent the numher of ways of partitioning the n=set. Consider

the Molr alpebrd Hn whaore 8 = By + Oy % axs ¥ B

2 e 5 -
Let ﬁ ] G-+-Er +-§T # voo m 8 =1 (this 1s a finite sum)

Consider the formal exproesion,
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Thert tho “eoofficient™ of 8,4

r
g e O in 44; gives mll
n ‘;T

the partitions of Agr Ane seny B intn ¢ parts in the exponente
of %. For axample, if n = 4 the partition of {91. 8,0 Hys.8y 3

2
{say) {a1. 52} . ,faa, aag will appsar in 1%7 na 712243394

fis wa are lnterestad only in the pumber of partitions we can ms woll

take
= (51 By b e * an) + (a152 + e + an_1an} ¥ owes # B)B,ueed
R 3 n
g ) g ¢
=8 + E? 4 ET + oreq + ;T = ﬁ

Thus 1f Tn{r) la the number of partitions of an n-sot into r parts,
ﬁi
then T”{r] = | RN {E)).

51

Tius T = ;: Tn[r] = (Eﬂ ‘E; - ()} and hence
r=1 r=1
EG—T
3[52!:‘ Tn i (B ¥ pn(E)]v
A . (Ex—Tj [# 8] xr r i - i}I'
Supposs o -1 = i u. 7T ¢ Then T’_r * (g;; v P DH(E)J

r ’
But | -E—; s by (€)) = &+ the Kronocker dolta, Thus T = u_
)

3 bl w
which maana E Tn f? - B(B -1J-1, ths gensrating Function For Tn'
="t )
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r ¥ I
oo T(2) = (&, 5 (e = (L2F L e

r
= G R Q) 6™ e e))

i |
o L F O (R @)

1
L. e

r
R o il S L A

=1

" Thum we have provad

T
1 ' rek ,Ty N
3830 T (r) = o E;_E} (15 () K

As a corollary, teking r = 1, w gat

n
1 & ‘Tn{nJ " -E—i- 2; {--'!}mk (E) i or
b

3580, ; (w1} (7} &" =l , a well-knoun result.
o




CHAPTER I

PLAMANENTS AND VANDER WAERDEN CONJECTURE

whs

*

4,0 INTRODUCTION

ﬂﬂr#;nsntu weare introduced ilnto makhematics by Ceuchy.
But gertiunents are not as wsll-bohaved adé detsrminants. But parma=
MmNt are very ygaful in combimitorice whera permutatioh pf bbjscts
in rewtricted posltions ars coreidared. Ous to the diffieulty in
gialystion af permanents the progresa in the study of permanents
was vary plow, But interest in parmanente wés revived to a large
externt by the famoug Van der Waerdens Cunjﬁﬁturn_zm192ﬁ;7 on doubly

stochastic matrices. This conjecture ls still unrosoluod,

| Tha Chapter atose cut of author's unsuccessful attaemot
éE’iﬂi%éﬁg the conjectura. But guite & number of interseting
results dema out of this attempt. Thia chapter mainly deals with
redults oo obtained. In the bsginning e characterisation of
doudbly stochastic matricée t= given. This s applied to latine-
aguares.  Then an impeartant conseguance of the result in perma=
nants is derived. Then a rumber of conjectures more powerful than
Vander Wabrdan's viz,, Tusrberg's and Djokovic ere dsalt with.
Than permanent is releted to multinomial dietribution is
atatlstice, Then a new clsss ol doubly stochastic matrices for

which vander Wsorden conjocture is true is develppod.
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§,1 CHARACTERIZATION OF DOUBLY STGCRASTIC MATRILES

Let A b an n x n roal matrlx. for 1@ ry, s« nlet f

bb B © k & submatrix of A. Let 8§ reprasent the submatrix of &
obtalnad by dmitting tho rows and columns in which B lies. For

any matrix C Let @°{C) tepresent the sum of all the antries im C.

THETREM 4,2 1 Let A be amn n x n non-nagative matrix with
(A an. Then A is doubly stochastic if end only if for some

ty, s {18 ry 8¢ n) 8ll the r x » submatrices O of A satisty the

randition

&(8) » g(8) + (n-r=s)

PROOF ¢ The condition is mecessery. To
1

grove this wa may assume without loes of B X

gonerality that 8 lise in the top left

corper of A as shown in tha figure

iB) + ) w r Fof A 1w doubly-stochastic.
€(H) + ¢r(xX) w rms

8y subtrection we gat o (B) = er(8) + {n=r=s).

The condition im aufficient., Let @{A) = n,

a"(E} » g{8) + {rren}. Lot Tye Rou eway R bo the row sums of A,



LT

Consider 2:0"'{'8] whera the summatipn is over all © % a submatricses

B aof & lying in the firat ¢ rows of A.

2:?713} - (;:1} (R, # R v cuv # R

_Za"('ﬁ} - I:fn:l‘l) {R“T $R b e ¥ R )

L : _
= { B ] (n-ﬂ.} a H.z - aaa - Hr} Fnr H1 += H.E o oLes Rﬂ- ﬁﬂ.)-n.

But O*{B) m @ (B} + (n~r-a). 1hus E{J"{ﬁ] = Zﬂ‘{ﬁ} + {:}(n-r-a}

= wes = HEJ = (;:1){H1+H"4- ee Rr)+i';}{r1-t-e}

ety }
Thue {7 ) {n-ﬂ1-H? , >

ar [{n:lj + f::::lj ':91 + Fiz $ oaws e Hr} =0 (n;'l} - {Z'J(n-r‘-s]

or  {Q) (R # Ryt civ R = (1m0) (3] =~ {rmr=s)(D) = x{)

Thus H1 + If!2 + iua + Hr = Is

But the samo srqumerdt on sry r rows of A shows that the
sum of the rowsums of any ¢ rows of A 1= r. This is possible
only if each row sum 18 1. In a3 gimiler menner conaidering a
columne of A wa ¢en show that cach column sum is also 1. BSince

A is & non=negative matrix A must bos doubly~stochastice.

Mow we prove an impartant theorem with intereeting

applications.
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THEOHREM 4.3 2 B gt of noceseary ard sufficient conditions
that an r x o matedlx B 18 g submatrix of an n x r doubly stochestid

.matrix with 16 r, s N is

{1) all row sums and column aums of 8 dre =t most 3

{SZi tf(Ei);g T 4 3 - R

ARODF ¢+ Conditien (1) de trivislly necessary, condition {2) is

nétessary, for O(B) = o (B) + (n=r—s) 2 0 in view of Thaorem 4.2.
Let us prove the sufficlsncy. Let vz construct a doubly

stochastic n x n matri{x A with B on ths tog left corner. Take

A = [E i:l uvhisrg X, Y end & sre constructed as follows,

Lat the row suma of 8 be ﬂq, RE’ anay Hr' Lat us take

all the zoluvwn veactors of X o be identical, with 1th alement

i % R | . _ (Bl r={rien]
n_g*n.é Thm% remliE o R o 1.

Thus all the columh sume of X are atmost equal to 1. Clearly cach

row sum of ['E HJ fg unity by our construction af X.

Imn &2 similar manner we can dotacdde ¥ soch all column

suris of [ 07 are unity end oseh row sum of ¥ is st most unity.

Taka wash sliwent of 2 to be m ; 0., 1t is wasily essn

that A so cohetructed is deubly stochastic.
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NOTE ¢ in Theorem 4.3 we have taken r, s« n. 1F gither r = n or

s = n then the follewing results are guite obvious.

{(a} Ap r x n non-nagative maotrix 6 (M regn) 1n &
submatrix of an n »x n doubly~-stochastic matrix {f and anly If

each row sum of B is unity and sach column sum 1s at most uynity.

{bYy #An n x 8 Aon-nagative matrix 6 {‘Ié ag’n) ia a
submateix of an n ® n doubly stochastic metrix 1f and only if

gach column sum af B is unity and sach row eum of B 13 atmost dnity.

COROLLARY 4.4 12 IF B is an ¢ % 5 rion—megative matrix with sach
row sum artd each calumn sum atmost equal to unity, then B s tha

aubmatrix of a doubly stochasstic matrix of epitabls size.

PROOF 3z From Theoram 4,3 the condition 8 should satisfy is only
U‘(E)gr + 8 = This ig certainly satisficd if n is takan
aufficlently larga.

a1 .l

EXAMFLE 3 2] carmot be & submatrix of 4 3 x 3

G2
doubly stochastic matrix, for, O(B) = .B € 2+2-3. But B 1is

certainly a submatrix of 2 4 % 4 doubly stochastic matrix, taking

[ 2 s .35-7

o . » 25 « 25
iS I3 i2 ’I?
v3 o3 o2 + 2

-ueing tha construction in Thoorem 4.3,
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4.5 APPLICATION TO LATIN SEIARES 19

Theorem 4.3 can be applied ta latin sgquares in an inter-—
sating manner. Supposs we are glvén an r % s latin roctangla on
n=aymbole, say (1, 2, «vsy ), It is A well known result that
thia latin rdttangle cen be extendsd to ah n x n latin square on
(15 2, wesy 1) if and only iF bach symbol fn 1, 2, wesy P

fecure atisest (res-n) timds in the latif MHetangle.

Wg will prove only the necessity of the condition. We
krnow that any permutation matrix {e doubly stechastic, Hernce if
we replack a particular dymbol by 1 and all other symhola by 0O,
a latin aﬂuaré becomas » parmutetion matrix. Take & particular
symbol in 1, 2, ...y 0 and replecs this wymbol by 1 in the
givan lstin rettangle and replace all the other symbols by O.
Then the }atin rectengla bscomes a part of a pormutation matrdx.
Henre osum of the entrism in this matrix must be atleast (res=n)
by Theorsm 4.3 angd this means that ths cheasn aymbol must oceur

atleaat r+e=n times in the latin rectanols.

4.6 APPLICATION TO PEAMANENTS OF DOUSLY STUCHASTIC MATRICES 1

Lot INr n be the eet of all r—subeequoncos nf {‘l‘, 2, ,..,n‘}

[
Let A = (aij)eﬁn, the sat of all n x a doubly stochastic mstricas,

We gafirme an important function sr(H) for Aé D as follous.

4eTuus Srtﬂ) = z___, per a‘h[&‘ F_7.
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1n gtharwotrds Er{ﬁ.} is the sum of the pormanente of all

r x r submattices of A. Let us alsn defins FE(H}.

4.8...  F.(A) = i% per afol| P/ O (u(dip)),
Ly
Elﬁériy any ona of the rl tarht ih par uﬂ] PJ milti=
plied by any dna of tha {narlz terms in (A(el | B)) olves s term
(A). But tha number of sueh tarms in F is clearly

in 8 4

{:} (';} ri (ri-r}z. fut the rumber 'of terma in SH1(H) is

(o) (09 (e+1}t  Thus we gt

(M) (D =t {oen)?

U Hogy) (e

Fr{ﬁi)' = srﬂinj = (rel) S

Thus we have proved.

BeTuus {1"4‘1} §r+1 b d%ﬁ] par R[A | ?__7 G.-{H(il F)}*‘
’ ran

But, as AL 0w aleo heve - (A( | P}} = or{nfal | §_/)ene2y

Hence {rei)s

e 2 pes Lo ] pTrm2ee O[] BTN

o ol :
o B I"r'h

= {n=2r)5 + E per A/l i p7 G’fﬂfﬂil FJJ
o BE mr,n

or S L2 SN L Z:_ par Hz;{ { pj ﬂ"(ﬂ[g( ] PJ} or

d'EE ir 1
riE
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: _p=2r i
410444 5r+‘1 T el S:*4";~+1 Tr (eay)

The abova result la of Fundamgntal imporiancs.

THEOREM 4411 ¢ IF AED 4 then 5:~+1(“>~§¢ 1 5,.(R) for 1 r &,

PROOF 3 T = d%lﬂ por 4/ o [ p_7 o(n/ol | /)
¥ £,h

4':: t‘ Z. per Hfu{[ p__? For O~ (afal | ?j}ﬁ T.

-
0{, FE Iﬁrjn

Hence T &* S, end From 4.10 we get

’ n-egr ,._E......._. I=F
sﬁ‘l*-'g:... re e Y Tee 5o e g

4,42 THE CASE OF EQUALITY IN 4.11 1

Enuality oeeurs iF and only if G’(iifaﬁf ﬁ_?} =t whonever
per ﬂ[& ' S_?}El. But svery doubly stochastic matrix bas abtlaast
one pomitivs disgonal. Consider thoss H_)f_a{ i E_:/' ,s which have
axectly r elgmonts of thig perticuler positive diagonal. Then
per ﬂ[t:i{ FJ}- 0 and hence we muist havae G‘{ﬁ[d.j EJ} = r. But
G/ | P = ¢ imolies F(foh | B7) = D and O 0/} BT) = 0.
This i true if and only if all the elaments other than those in the

particul ar positive diagonal are zero. This mpans # is 4 permutation

matris.
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THe ebove argument can be pasily undsrstood by taking the
poritive diagonel to be the main diagenal and this can be aluways
pchisved by a suitabla row permitation, Then, whenovor we take a
st of r rows mll the elamants outaside the r x r principal sub-
matrix of A lyinmg on theee r rows should be raro, Out overy non=
diagonal elemsnt lies putelds a suitably chosen r x r principal
submatrix., Thus mll the non=diagorel slemsnts sre zsro and hence
- tha matrix must bo the unlt matrix snd the original matrix before

row parmutetion must be a permutation matrixs

r1=p+1 {~rs1} {n—r+2)
' 517-—=‘I g 5

COROLLARY 4,13 1 sr(n]g . (eon) rd

o (Dl ) {n=r+2) ope [n=1)
Tttt \S\: . r{:—‘r] e 2 LS,

But 5, = n For A= D . Thus Er{ﬂ)g (;} and the equality holds

1

only For parmitation matrices. Hernco max Sr{A] = (:}.
HED
n
In particular, when r = n, ws gat per A = En-“':-.. 1, tha

aguality toldirg only For pormutation matricas.

4,14 APPLICATION OF COVARIANCE t

SUPDDEIE? as= (ﬂ.!l 52’ cruy En) BndE = {b1! hgp “erg bn) ara

tuy roml vecturs. We duFino covariarce between g and b by

M A b
Enufglg]ng;‘ g_bi.._;i.:'_-i zﬂ'_i

1 n
i=1



- BA =

Hbnes Lf we take pet H_['d ’ ﬁj et ﬁ'(l‘"n[ﬂ(lqp_?)

arranged in lsilcographicdl brder with respactiedand B in N

L

and form vectors F'r arid ﬂ"r of dimamelon (:} (:}. than wo have

Cov {B_, ﬂ")ﬂr"ﬁ— ‘ o= ﬁ[{:t o (0 A J
r r {rjz o PEINrm Her }P—v? [ ’ P...?
2
_ 2
(% (D?

co 1 . rz

*EE[{Hﬂ EPH*{H'H'*F}EJ
r

g . 21 [{Em'm s ) +L% DX sr_7

i 1y 2 1 T no el
() =

=T . ) . . .
But 5.:‘+1 -~ a1 Er and S:‘ aroc maximym For parmutation matrices only.

Thum Cov {Pr, o”r} is a maximum unly for permutation matricas and

hence wa get Ebﬁfpr, u*r}_s'wﬂl (n} - ‘Eﬁﬂ}- y Bguality

(N ety T (Don

holdimg good only for permotetion matrices.

4,15 TUERBERG'S COMIECTURE 1

Tvarberg 1—16__7 conjectured that For 14 rén Sr{ﬁ)
attmins the minimum valus for i = D, only =t 3 = {%}. Vander

Waerdon conjucturs is Tvarborg's conjecturn For © = n.



et us {ntrodute s mow function on D . For Y 0,
§ (r) |
05 r L define b (4) ugiﬁ-:} + When r = 0 wa dufina § (k) =1

5. (n)
e _ C 1 n
For ovary HEE_Dns Thue hﬂ{ﬁ) = 13 h1[H} = E:TEE} === 1.

- - Ln=r . :
Diokovie /  _/ tofi jectlred that EHT;:._,- Tty Bp For 1 oIy
séuality hu1ding only for i = jn‘ But this is eguivalent to the

following.

4,16 DIQKOVIC CONJECTURE 3

hﬁ#ﬁ}} h (R} for n€ D, 14 re n wquality holding

only for Jﬂ,:
Wokg that 4,16 impliue 4.15% for,
hr-t-"l) “r :b hr?rh'l ::.) hr?f1 = sr{ﬁj-—}"srmn}
4.17.44 4,78 is eguivalent to EcufPr, T I0for 1L reg m

, 2
PROOF ﬁnu[?t, Cr;} - 21“1E:£l‘ (hf+1(ﬂ) - hr(H]) and tha result

followa,

COROLLARY 4.18 s+ Since wa have already proved thet Cov (P, ¢} >0
for pecmuitation matrices 1t fullows that Dijnkovic conjecture le trus

for permutation metrlcae. This is ean elegant proof.

Wa now deriva some romarkibls ralations for hr.
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THEOREM™ 4.19 ¢ Suppose A = Eln ad pg‘[ﬂn_]. [F iﬁp=pﬂ+(‘f—p]3n
i
ay, I =T
then hn(hg’ - ; (1‘) p (1-p) hr(}l).

PROOF ¢ Calenidlio'e thoorem gives, For n x n matrices A and i,

par (AsB) -i o par n[& | pj per 8{ck| B )

ral o, P & I"r,ﬁ
S Y =R
. per (1-p)3.) (ol | P)

i ) _
-Z Prﬁﬂﬂ}hﬁr : narﬂ[d.l Fjper Jn{ﬂ,! P].
r=} ol » pEINIm

But per '{nﬂ} - hn(Hp] sn{jhj' Hanee we get

h,(4,) -é,p’rw}”" s -,i‘;h (2} p"0-p)"" n (4).

Note that in this proof we heve not usad tha Fact that A&D_ or
= é[ﬂﬂj. Ih fect the identity in 4,18 is true for any real

mateix A and eny real p. But we will be using 4,18 faor only A o,

and p /0, 1.7,

THEORER 4,20 s Suppose A€ 0, p € 0,17, 17 Ay = PR+ (1-)3,
then hr(ﬁ } -E ‘ (EJ pk{‘!up}r-k hﬁ{n} for 14 r&l n.
PY k=0 '



- g1 =

FROOF 3 Though 4.719 sooms to be s particular tese of 4.20 actusily

wa can derlive A4.20 From 4.19.

SUppose p. qE[D, 1__7. 'ﬂ"f:q = pq h + (1-pg) Jn.

But (ﬁp} =g {pt + (1=p)3 ) + (1-q)3_ = pok + (1=py) J_ = &

g g

1 .
Hance hn(f-lpq) n;}(Z} (qur[“}.-.pq_}“'r hr(rq} and

A n k M=}t
Pnllpg) = 200 @ (1=a)™™ m(A)).
Taking t = gqf{t—g) the last reosults yield

n n
n, r; £t .F t . N~r ) _ ! L .k, 9
() o) (V= p g™ hli) Ezlﬂ () GR) (g

>

=k
)" ALY ot

[§) . i
- (D) et 1= T n () = :é:u (Mt h (A~

=

Equating cosfficiant of tk nn both sides we gat
) b (i) =5 (MeT b (1) () (1ep) T ot (M) = (9
k k' p _Q"r P r k=-r =B + B £ k= T Mefiptt

Harce we get hk(Hp} o Z (i;} prh“ﬁ}k*r hrf_ﬁ].
r=(t

COROLLARY 4,21 ¢+ For p& /0,17 (5) 5¥01=p)" %> 0 and
K =

T _ i
;_ {;} pkﬁ-i:]r-k a (p+1=p)T = 1. Thus hr{Hp} is a weightsd
=0

avaraga of hk{H} for kK = 04 1, 2, .asy T and hance

mn b (ﬂ]:{_ hr(Hp}“{; max hk(ﬁ.}.
k_-s r "‘5_: r
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4,22 QOUNDsRY OF [7!1_I H

The eet En of all n % n goubly stochastic matrices with
poaitive enmtries PForme the interior of Dn' Thus tha boundary Un—En
of D eonaists of doubly stochastic matrices with atleast onmo antry
G. We will row prove that thae Djokovic conjacturs is true in D if

and only if it is trus in 0.=Z,» the boundary of D_.

We nraed a preliminary result which is guits Interesting

hy itealf,.

THEOREM 4.23 & Suppose sﬂ}. 51?-, 32’2_ see Bnd b= 8 end

n n -1 L n=2 2 ]
by =p a * () p (1=p) gy + (G} o T(1=p}agt oo # (1ep)n]

Fﬂr T = 1’ E. 3. P Hnd pE[ﬂ, 1_7- Thﬂn bl:?"' b1*}‘" bz> Y

P+ T+, s, r+1y el I v r+1
PROOF Byt = F annﬁ-( ; Ie {1-—p}a1+{ 2 o {1-p) 52_+.”+(1~p} 3

y =1
T G U DR LR o B
R LT (TS DO CR LT
55 p hr + (1=p) B, = b
r I r -1
for,n &, + (_1] p {1=p} a, ¥ «vn ; poA, + (:) pEY (1=p) By ¥ e

Thus b For © = Oy 1y 2¢ «ne ond the proof is completod.

r-+1;>*‘ br

NOTE ¢ Elaarlyf? can bg replanod by“(_ throuwghout in Theoram 4.23,
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THEQREM 4,24 1 = Djokovic conjecture is trua For Dn if and only if

it is true For Eln - Eﬁ.

PROOF t Macessity of the conditlon is cbvious. Lst us assume that

Djokovic eonjecture is true fFor E!n - In end prove sufficiency.

3 i i L} , . ] p
It A& 2, ang A # I then the 'line ssgment’ fram I to A
whan produted macts Dn - zh at some "pcint' By Clesrly, then, that
no= plt + {1<p) 3. for some p&{p, 1). In fact p can be got ae
followe., lat A = (2,,). Consider gh + {1=q) J_ = (g = *lﬂ].
' 1] ' : n i) n

1 .
Chooees 9, @s maximum g for which g Hij + —ﬁﬂ.}ﬂ For all i, J.

Cdys o 1 S Per e
Than q{ﬂij - n}} n ar 'tl,_é; 1"'”5}_} » Thus 'Elu e Ymrl in H]‘j) .
1,

Take 8 = q, # + {1~q } J . Clearly Benn-zn, for, ntlsast one

elamant of & ie 0 by our cholce of g_. Then p = 1{qn. Since
g8+ = aij}D for @ = 1, q_ must be strictly grester than

1 and thus p& (0, 1),
RS r -] w8

ho (A) az_ b8} (J) p(1=p) For £ = Oy 1, 2, sesy M
M=

If wa assume that hD{E}s; h1{EJ£ ‘s éhn{ﬂ} thert by thoorem

4,23 and its 'Note' it follows that hm{H){; hﬁn]:g ‘_.._g hn{ﬁ}.

COROLLGRY 4,28 ¢+ If Djokovic conjecture is true for an

e By thun it is trus for ell matrices in the "ssgment”

Ato J .
n
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Tha naxt theoram 1s rolatad to the wan der Weepden

oo ieetura.

I
THEDREM 4,26 1 1f n&n than (i} per n’},. (1-p, j whare
F‘I

(11} per A p” per A for pﬁ[ﬂﬂ].

Py & 1=n min Hij o2

11‘}

PROOF 1t Let the line eagmsnt jolning Jn to # maat Dn“zn at B

whon produced. Then A = p, B+ {'F-pu}tln where p_=1-n min S

is)
h{ﬂl-t (1) p 1=p J"T n (8]
rel
?__ {‘I-pu)ﬂ, the First tarm on R.H.5.
But hn(ﬂ] = per W per Jn. Thus Par H} {1 -, ] il an

KC ).}: (" D T¢tep)™T h LA p o {u).

r=l}

Cancelling per J_ we gut per (Jip};pn per A

tnfortunately thwss results aro not vary shatp as they

arg got by cmitting 2 large number of terme.

CORDLLARY 4,27 + For w€Z O (1) 5 (H)}B (3.} (1=n,)"
r ;

(ii} Er{;*']]?p Sr(H} f'UI' Ir = 1, 2’ L E N R MNe

r=5
Those reaults follow from hr{hp} = E (F ) o {1ep )} " %h (H)

and arguments similar to those usad in Thaurom 4.26.
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4,28 ODEFINITION ¢+ Let h (4} = min hr(H} and H{A)} = max hr(H}

r T
For A€z O .

THEOREM 4.29 ¢ For s O h{!'.p] is & decrpasing function of p
ang H{Hp) is an incroasing functicon of p for pEEqZ*U, [;7.
r

PROOF 1§ hr{Hp) - % (;) p(1-p)t=" h (R}, Thus

r:;n-r hy (A2 h-rfﬁp}g :Zcr h (4)

Hance min min ha{ﬂ}g min h.r(HpJ__.g max hr(f-tp}lg max  max hﬂ(n}.

TN sfr T~ B rgn tGn 8T

4.20... Thus h{ﬂ_}é h(a-tp}sj._', H{HFJ_@H(HJ-

If 0P P,y thon p, = g p, for eome g€ o, 1./,

h(ﬂp1} - h[nqu) = h{ﬂﬂg}q]; h{nsz from &.:}G

H{np ) = H(ﬂqp'z} - H{(I\P?}q]é H(ﬂpz}FrDm 4,30,

1

Thus h{HpJ is decrosaing mnd H[Hp} is incrassing with respect to

p For p€ [0, 1.7.

COROLLHAY 4,31 3 h{A) ettalns the maximum valuw 1 at I = 3, and

H{#) amttalns the minimum value 1 unigusly at A = 3,

PRDOF t+ w{A) attains the maximom value at b = J, by Theoram 4,29

an h(Jn] = 1. H{a) attains tho minimum value at 3+ We can shou
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the unigueness as Follows. We can sasily ehow that hg(.ﬁ.}>1 if

i 3+ Hence H(H};; n2{n3:> 1 and the wniguenzss follows.
That hz(ﬂ))‘ 1 for A # 3., will now bs provad.

THEOREM 4,32 ¢t IF nEﬁn and 5 # J,» then h(n) > 1.

PRODF 1 5, w» 22 ¢ 4 —L. Z:: per ﬁ[ﬂ{p_?d"(a[dip_?]

F,n
- by 4.10,

[

J = 5 2 .
Putting r = 1, 52= 5 514-2 Z,Eij' it 5$s=n. Thus

i )
5 u‘r—h'z"-l-lz Z ﬂzi But Zi laz :}(z ZF\ }Efn221
2 2 by ke i) T ety 2N e =T
J J LN
and aquelity holds in this caychy-schwsriz inequality iF and only

1 . - E .
if aij == for all 1,] umcufj; - aij = . Thusg, if A ;f»Jn

wa muat have ZZﬁzj'}‘l. Hanea S? ,'1(35_2}- + % For A # 3,
i 3

4 . 2
{n=1]" _ : - ™ My 2 ot
or Sz:br > . Dt Eztjn) : (2) {2} :E = .

Thus nz{aJ - szcn),fs?(:lh)}'t For n £ 3.

COROLLMRY 4.33 ¢ Tha function hE{H] attains the minimum wvalue 1

uriquely at A = Jn.

THEDREM 4,84 1 For & fixad ¢t = 2, 3, ...0, hr{ﬁ} has n local

minimum at A = Jn in Eln.
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PRODF | hr{Hp) :2?5% E:J po(1=p)"® h {8)

= h (8340 xh (1)=ch (1) Fep°L (S)n (a)#(D)ur(ra1) Tr. .
=1+ p~ (;J [’hi{n] - 1;?‘+ cos For h(a)ah, (4)=t.

If A o 3. then hZ{ﬂ} = 1> 0 and hence:for sufficiently amall p>» O

hr(ﬁp];}-1. Buk hZ{HD) = hz{Jn] = 1, This proves the theorom.

In particular per A has a local minimum ot 4 = Jn. In fact
per AD> per I 1f 4 is in a sufficiently small delotud neighbourhood

of 3 im D,
n n

4,35 MINIMIZING MuTRICES 1@

In0 , let i be a matrix such that per 4 = min per S.
n .
SED_

Then A 18 called a minimizing matrix, IF A = [aijl is & minimizing

mattrix Marcus ITTILJ7 has =hown that

a“} 0 impligas par H{i.[ j) = per h,

Lnnd0n<£1‘£? has shown that per w{i{| j)» par 4 for a1l (i,J).
Cnnslder the n2 pairs (Eij' por A{1] J)). Ve note that we can
arrange thong nz paire with mij's in incressing order and

per ﬁ(il 1) in docreasing nrder, fnr, Flret we cen arrangse aijﬂﬁ
that mre zoro inm such a way per H(i] i) ars docreasing. This can
ke followed by positive alj'a arrapged in incroesing order, tha

corraspnnding pur A{i | })'s baimg conatant = per H.
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Thus Cov ﬁaij; par afi | jJﬁﬁE’U with oguality L1f and only
if aithsr (i) =il aij'a aro positive o (ii) somo aij‘s are zoro but
all per A(i| })} ere equel. This fesult follows From the Fact that
if we have n pairs (a#. by} (Eé. 52]. veey Loy bn] such that
a.l‘é afg-u éaﬂ and h‘T?’ bl,,}“.;-bn than Cov (ai, bi}gﬂ
squality holding only if either all a;'e are vqual or all b, 'e ars
@gual. In our case LT all éij'a arg sgual then sach must ba % end
hence A = J_ and por A{i} 1] = per A for al2 (i, }). If some aij's

are zyro, then all per A{1lf j} must bo ogual.

In any ocese it 1s clear that for a mipimizing metoix &,
Cov. {au, par A(1] j)) = D if and only if per A(1i] j} = por A

ror all (4, 9.
Dut @ (a{i] J)} = -2 + ay g

Hance Cov { @ {A{4 ]} §}), per H(il §))} = Cov (aij.par a{1 i J)}E; 0
far any mifiimizing matrix 4. Thus Cow (-Pn_1; d‘n-—'l}'-":';ﬂ pquality
holding only when per A(L] 1} = per A for all (i, j). But Djokovic
conlacturey for ¢ = =4, la preclsely that Cov {Pﬂ-‘l’ U"‘n_,');fl

aquality holding only for A = S

At this stage it la Interesting to considar the matrix.
M= § (I+P) whore P im an n ¥ 1 permutation matrix with 1 in
positions {1, 20, {2, 3}, (3 4)s ovs » (n=1, ), (”v 1], Claarly

FIEE‘Dn. This matrix hae the poculiar property that
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per Nfi] jJ=por M= i for all {4,j). Thus hh[W] o A— ﬂT and
2 L]

. =1 2n~1 n
| n. o
hn_1(ﬁ) = = Bl Thus hn{f'l] - hn_ﬂ{ﬂ} = 0.

d : i
But oy hy(m)) = n[hn[ﬂp) - hﬁ_,i(ﬂp,]] =0 at p=1.

Thus par (Hp] e a atptionary valuo at p =1 i.a. ﬂp = M4, If
n=z 2, acktually M = Jn and the stationary valus is actuslly a

mirimum valuo. Out when ndw 2 the pormangrt function is neithar

& abaonluto maximum nor an abgoluta minimum as

= 1 i
per I = 122 ;:1:? = = Hgr Jﬂ.

e

whan n = 3, SE{M) = par M = ¢, por I, =

Q 9 .
Henca hE(M] =3 and hE(M] ==y and h1fﬂ} = hu(m] = 1.

Thus nglin ) = p° hyM) + 3p°01=p) n (M) + 3 PL1=p) b, {(M)+(1-p)°n ()

% (8+3 92 - 2 pjj.

z

]

Thus = (M ) = 2 p(1=p), =, h (M} =% (1-20}.
dp 3 p & dﬂz It

Thus at p = 1, hs(ﬁﬂ] ia & maximum. In Fact an hE{NDJmip{1 p};;,ﬂ
for piEEiZ‘h, T_?Ithws that h3(Np] iz an increasing function of p in

tha faturval /0,17,

Fricdland and Mine [ﬁ 3;? proposad the following problom,
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PROGLEM 4436 v  Find matrices A on the boundary of O other than
a parmutation metrix P or (3-0)/(n=1) s that the permansnt be

monatone on the wegmant (19} 2 + & A, N At

OF course M = (1-P}/2 when n = 3 where P =

- 0w
oD -

Thus what we Mave provad for M whan o = 3 is not ymexpected. But

s similar tosult for n = 4 will certainly be intorusting.

RESULT 4,37 ¢ Por {np} i& an incteasing Punction af p for

pﬁ[ﬂ, 1_;_?. when n = 4,
PRODF 3 Whih n = 4, h&(—“ﬁ)!hjl‘{ﬂj --?i + By sctusl calculatlon
SE{H) =~ 5i: Hence h,z(l"!] w 16/9 amd h,’{H} - hD(H] =%i Thum

hy (M) 23 (3% 207 - 5%

Lonn) e § o1y 30 ror p€ L0, 17
Tivaw h,‘{ﬂpi amd conssquently per (M ’] is en ircroasing fuction of p.
© THus we hevid glvew & axampls Por Frisdland and Minc

problam, We conjectues the Followling.

CONJECTURE 4.9 3 Per {ﬂp) i sn kreressing function of p for
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4,39 PERMANENTS AND MULTINOMIAL DISTRIBUTION 1

T .
Let A be an n x 1 nop~nagative matrix. (&t x = (x1,x2.....xn].

T .
If v = A x snd vy = ()“1| Yg1 sess afnj then

51} 17} W
x 1 x 2 x n
ﬂ.ﬂﬂ--.f :p‘ Y e ¥ = : ﬁjﬂr At 1,2,-;1,” ' It ; 1' 2[ ﬂ.,
172 n W, seld, s awve W &
wﬁNDn f 1 2 n
¥

where NO. _ is the set of ell non-decreasing n-seguances Formed from
3

1[1, 2y wnsy q} and vy is the numbar of times 1 occurs in the seaguence w.

n
Suppoen wa Lake xi;a.u for 1 = 1, 24 4549 N and_% T 1.

Than we cen writa,

. W, W tl
S 1 Z n
1 " . '
4i¢1ti| Tte Y,IY? L] y"n. Yy » x,t ><2 R ”n

y [}
uéiﬁﬂn’n Wil Wt aes WS

a={a

prr A L1 24 weny nfuf
W

[}

I
cleerly " ."' D x11 ore xnn 's rapresent multimnomlal probabilitics.

Thua n! y1y2 res ¥ im actuelly the awpectation of per 31_1,2,..., ﬁfq;?

with rgapect to this multinpomigl distribution.

Supposa R = (aij] is a column stochastie matrix, Then

n.

E yi:'z zaijsz_ﬂz Ej;_ Bijx'in

i=1 1 J ] 1

Thus yi?’_ﬂ andd Zyi = 1. Henca the max imum valus of Yq¥g - ¥

.
15 :r'; + Hunce we get



~ 102 -

. ¢
G,8240a E{pﬂ[‘ h['lg 2' Puag nfh.l_?]{ ﬂ;
— nn

ke
where £ is axpectetion with iaupact to the multinomial distribution
with parsmoters (n; Xyv Xt PR xn“). Eguality in 4.42 holds 1f and

only if each y = 1/n.

n
Supposa A 1s doubly stochastic. Then y;, = Z 85y X is &
I=

woightad average of xj‘s. Using A.M = G.M inequality, we have

n a

) . . . 1j
¥, = E a,, x ) -rr X .
i i i] i Je1
T LT
Thua Yu¥n bos ¥ _ " =TT x,. Honce we get
"2 " jut Y AT
-ﬁ-ﬂ:’rn- E{ﬂﬂ'f ﬁ[‘?,?, waug M uj););,n! 3(1 J'IE a4 xﬁ.

Therefors, if A€ b, then wifh rospect to the multinomial distri-

bution with parametors [n. Xy Xoe eesy xnj wa hava

. [
4!&31!‘ I"I! x,‘xz e !h‘é E{pEI'I‘ H[‘lpqu senyg N UJ}‘N{‘; E'r::

|

In the A.M, - G.M. iregquality, equality occurs it ahd

only if all x,'s are squel of R = I+ Thus eqguality ccours in

J

4,.4% only (f aach x iln or A = Jn. Thua

i

. n‘
E(pﬁr H[1, 2’ enwy 1 N_?J -:l"%
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only for the moltinomial distribution with parametars [ni ﬁ ,-31- gravy '}1-7

of whan A = Jr'-'

4,45 INTERPRETATION OF 4.44 1

EUDD{JBE I_,] = XE = opaw X xn ﬂ-":‘l" [ THen E{ptjr ﬁ[1‘2’i'1'n WJ* D'%
n

Expuctation being an averags, this means,

L P 1 Y min par A[Tf 2’ =y ng F‘I‘ uw 5 "rl;:-'li max por H['l.zl..-,nl an
G n w

Thuea, iIf per [‘T, 2y srayp N ' m__7 is indapendant of w, thon it
must be agual to ﬂ!.;"nn. But in this cass we cen also show that A = Jn.

For, taking u'ﬁ["i. Ty wway 1_7, we gat per ﬂ.[‘l, 2y eanyg ni wj:

n'l i
= B‘H 521 e 2 i * ug 51 i 521 331 ea J 1 = « ~Since

; 1
E a4 ™ 1 this impliss B4 i Bpq ® een = 8 =T In a similar

1 . .
manter wio . cab show thakt a” = A B cae = anj = For j= 1y, 2y svey N

2]

Thue A = J .
n

COROLLARY 4,47 ¢ 1f A # 1, than wo pave

min par A 1,2, veey nluj.{ﬂ-ri- <max per A/ 1 ,E,...,n!wj
1w ) 3 W

1 ]
Yan dor Waerden conjecture stetos that per H}ﬂﬁ if A E'Dn and A £ 3.
r
1n viow of the Corollary 4.47 1t may be thought that 1if we can show
that max pear H[1 - ni ll.f_7 = poT H['1 |‘2'iiw’hl 1j2[in|fﬂj’= par A

l
than van der Waorden conjacture will bo atonce affirmatively resolved.



- 104 ~

Unf‘nrtunat‘;uly it is not trus that max per H[hz, “hag nl ur_7 = per A
Taf

for asvary HE Dn g8 tha following counter uxample shows.

_ [11 s &
Huj-' 13 1" D | & D, ThEant‘Hnms
24 3 20>
B B 16
11 11 8
autparn[1.z,3]1.1,3_7=par1233 13 13 0 ’agﬁ
0 0 16 24

and henca max par A [T, 2 2 f wjp‘ per M.
L]
4,48 RYSER'S CONJECTURE AND JURKAT'S COUNTER €XAMPLE %

Ryeer conjectured that per (HB}émin {per A4, por 8) for
iy, E& Dn- If thie conjocture is true then vondsr Weerdon conjoctyre
is immadietely rosolved. Fox, than, per H;}_,Per (Hi!ﬂ} = por 3 for
avary R{E Dﬁ¢ Unfortunately Rysor®s ronjocture is not trus ang

Jurkat gavo the following countor oxample.

19 5 B 1 1
. 1
A= 13 11 g}, 8B=% |1 1
| B 16 a o p)
Ezlaarly Ry Ee 0, « Per HA ﬂ—"‘ig y PEE R =-’3£?—4 « Thus par HE:} per A
3 24> 24

Let ue enalyse why this happsns.

4,49 DEFINITION ¢ A non=negative p x n matrix A is sald to be

column dominating or simply cod if per A = max per Hfl-;z,..-,ﬁ [ tu_?
"}
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For w Eﬂﬁn )
'y

h Let En by the subzat of Dh, consisting of all cod

matriced.
‘ I .
THEDREM 4,50 ¢ If n, B E Dn than pat fﬁE!}‘s"_: min (per #, per B).
. . peT H.[T ’2""'“ } WJPEI' Bfllfl '1‘.2,..-,*’;_7
PRODF ¢ per (HB) = —_ .

] 1 L]
WeNDn.n I.I.I,F- Wzs s e mn;

- Par B fw 1,2,...,n_7

,55; pur A ;E::

|11 rJd 1,2 i W r B Te2yeawyn
Aut per jn = per (Jna) - Z 8 ,-[ e pl'lt ...7F‘9 [Uf 1Ly ' _7#
1 ¥

3 W, wzl vee w t

W1= wzl - I.IJI_Ii

: pEr B[h.l' k| 2 snegh
- per .Jn Z . i (F ' —7
W

I L]
UJT- - Ll.ln‘-

ZDEII' E[il : 1;2' sevy l'l__7

Ly W,]-'- i ll.l'n".

and honoe 1

and conssguently Per (:&E}gper Ao
Aleo per (#B) = per (ET ﬂT} par ElT = par 8 1if ETE Dn.
CORDLLAAY 4,%1 ¢ If per (f8)>> min {par &, per B) then sithar

ri$ Dn or B¢-Dﬁ.

Im Jurkat's axample H¢ 0



- 106 =

THEOREM 4,52 1 Van dor Wasrden conjecturs is true far Aeﬁn.

PROOF 1 Elearly 3 & 6. If i D, then per J_ a per (njn)&"

min {per W, per :In}_l. Thus par A:B-,per 3.

Rysor also conletturad thet par (AA }__‘:;; por A for wi= D
But Morris New man gava a countsr sxamplo, Nevertheless for HE,EH

the conjetturd is certsinly trua far per (AHT},‘Q mim {per A, per #) 1ir

AEZ D .

Let us ses the struckture of En now. For a permutation
matrix P clearly par P[‘l, 2y weayp N ‘ uj =0 1f w i [1,2...i,n_7.

8ut par P = 7. Hancse Pe D_. Also JHE D -

THEDREM 6,531 O, = D

2 2°

p Tp
FRODF 3 Hny glemont of I::-2 is of the Form A = far
T-p p

o€ [0, 4.7, Por 4 = pl s (1=p)% But per 4/ 12§ 117 = 2 p(1p)
and p2 + {1.',}? - 2p{1~=p) = (Zp-ﬂz} n, Thus #E= Ez. Thue ﬂzc '52.

Aot DECDZ. Hante Dz = DE .

THEOREM 4,54 1 For esch n3» 3, O, = En is nonempty.

PROOF ¢ Lot us provo the theorsm by indection om n. Feor mo= 3,

11 ] 8

13 1 0 | & D, = D, and hence O, ~ 0, is nonempty.
il B 16

i o=

i
24
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Suppose 0, - -E” is nonempty for n = m. Lot afe Drr - Em' Take

B=d®1,, the direct sym of i and tha unit matrix of order 1.

1

Por 8/ 1,2, wusy mevit | 0y o417 = par 0 1, 2, viiy wlw/

im sueh that per F[T.E, srey ”1 -;...7)

_ \ - . .
por H. HEHBBF3$EDm+T. Thus it D, = O, is nonempty then ﬂ%+1 - D

par # = Per B whore W € i3y
Mmem

ig alseo nonempty and hence by induction the thoorem follows.

THEQREM 4,55 1 for n) 3, En i pot & convex swt,

PRODF 31 Wo know that P& En g iF P 4= a permutation matrix of order n.
Almo Dn is the cornvex hull of all the permutetion matrices. IF Eﬁ im
convax tham Eﬁ:}ﬂﬁ which ip impossible for O - Eﬁ is nonmempty For

n; 3. Thus En cannot be & conwvex sot,

THEOREM 4.57 ¢ IF A€ D then WP, PHE D for any permutation matrix

P of order n.

PRODF 3+ The propocty of column domlnance is symmetric with raspact
to eolumns and syometric with respect to rows and henco the theorsm

follows,
THEOREM 4.58 : If 4 & nﬁ1 and £,& D"‘z" then “1®“;€ :.h1+n2

PROOF 3 Thare axiet ‘”1e"“n1+n1 and MZEND”?,H? such that

per Ay Vi Zsvesny | w7 > per i, and per Aul 142,500y, | wy JBx per A,

If Ez = Wy (nﬂ,nT,--4.n1}, then, clearly,
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par (HT@!:}"E} [1,2,...¢n1+n2! we ue/  per “"1@”23 = per A,
per HI for par (IFL!GH?} [1 "zii!KJpn,l“bnE' N11I.h| =peEr R1ﬁp271ll|ﬁ1‘ w1_‘j

par ﬁjZET, 2y a0uy n, I w, _7¢R

DEFINITION 4.59 ¢ If HTEE E; lot us opell « rouw~domlnating matrix
or simply rod. IF 4 is both row-dominating and culumn domineting

let us call it doubly domineting or simply dod.
jn end permutation matrices are clearly dod.
4,60 CLNSSES OF MATRICES SATISFYING VAN DER WAERDEN CONJECTURE 1

Verious suhests of Dn that satisfy vander wasrden conjecture
wats given by s number of authors. Tha most-important subset is the
ast of all positive semi~definito aymmetric doubly stochastic matricens
troated extensively 1in ths pionsering worke of Marvin Mercuse, GSaseer

and Sleter extsndsd this clase to the set of all nocmal doubly Btochastic

matrices with numericel rangs in - %% ' %%_;?. Friedland extended

thig atill Purthor to doubly stochoatic matrices with numerical range

roar
in £_;~§; ' E;';Y.

The collsction of cod and rod matrices asems t0 be a distinct
class of matricos satisfying vender weerdsn conjecturs. The structuro
of this class hea not beem throughly deturmined. In particulsr the

_ ; . : T o
cass off osquality in per (HE)S {por A, por B} for n, B E l‘.ln y has rot

at all bosn touched.




CHABDTER v

L

APPLICATION OF PERMANENTS TO GRAPH THEORY
o bt

5.0 INTHODDUCTION &

in graph tHaury & complete apt of invarlamtm of graphs
in;iikaly to be dof immemas halp and herze sttompts have baen mads
to got such e wet, * While some trivial setse are cortainly there a
ugssful set has not w0 far been found. Marary proposed charactaristis
polynomial or equivalently the apoctrum of tho adjacency matrix of &
grapht na s nuﬁﬁluts sct of invariants, But guickly non-isomorphic
grapha with the ssme spsctrum have been found. Indesd guite a lot
of work His h&nn dons on cospectral grephe. In this chapter we
mrelyws the reascne For Fallura of characteristic polynomial to bs
a complate invarient for s greph end give a modifiod polynomlel
which is }ikely to chersoterize grapha. Ineidentlly some interasting
rasults dre got. Through brute verification by hamd the polynomlal
wae Found by the author to charecterize graphs with atmost six
voerticeda, Thedigh the use computer evan graphs with sevan vertices
ware Fournd to'be characterited by the propossd polynomial. This
chapter doals with the attempt to Find tho polynomial snd the

girosperties of tha polynomisi.

.1 PRELIMINARY IDEAS @
# graph & Lsa a pair {V,E) where ¥ s s Finilts non-empty

sot [aleumanis of V' arce called vertices) end £ 1s a subset of thg
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set of all unordsrod palrs of distinct elements of V (the slamants
of € are eelled sdgoa}. & is allowed to bs ompty. Lat !VT = 0 and

(€] = a.

i grasph G can be completaly characterized by its adjacency
matrix A = (aij}, apxp, {0,1) matrix with lssding diagonal ale-

ments zern and other slemants described ae follows. Supposse

Vo= Vi ”Er trey '”'p + Then, For 4 ﬂ Js aij w1 if {Ui, UJ}EE
and ai_’f = 0 if {Uij UJ}¢E.

Eventhough this preliminary {dea of graph ie given we

arg going to take for granted quite a number of standard results
from graph theory as end when necesmsary. FAlgstraic graph theory
esdantially atarts with the adjacency matrix of a graph. #An importe
ant problem in graph theoty is the construction of a complete set

of inveriants #0r a graph. A comploteo eet of inverlants for a graph
may be defined a collectlion of numbers (ordered or unordersd) such
ttmt & graph uniguely determipoe thy collettion and ths collection
unfiquely daterminse the graph. In stherwords non=isumorphic graphs
myet hava different collecticne and isomorphic graphs must have the
same collegtidn. Such a complets set of invariants will ales =ulva

the qraph lsomorphlsm problam.

To this end, larary proposod ths characteristic polyrowmial

g
of the adjacency matrix vize dst (x 1 = ) = 3 & %', as the
r=>0
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camplete invariant polyhbmial for a graph, in the sense that

{au, Byr eues aﬂ) constitutos » eomplote ast of invariants For

g greph. But, unfortunately, the charscteristic polynomial uas
gasily shown, by counterexemples, to be an 'incomplete' invariant
polyhomial. In fact the term “cospectral graphs' denoting non=-
isomorphic graphs with the sams charecteristic polynomial or equi-
‘valently tho sams "spectrum" has bocome a standard term in graph

thaory litorature.

Lot is analyss verious candidates For tho complate in=
verispnts for s graph, IF A is tho edjacency metrix of a graph
ther det A end Por # are unsuitable candidates as they will be zero
for "sparse" adjacemcy matrices and thus cennot distinguish grapha
with very small numbor of edges. WNovorthoelsse thess are certainly
irvariante. What sbout the characteristic polynamial? Considas the
matrix xI-A. The presensa ofF a large nombar of zorns in this matrix
will advarsely affect the gotermimant of the matrix dus to consider—
able loss of information. Another factor is the cancollation of a
congldorable dumber of terms duo to the rules for sighs of each term
in s determinant. Tao obvinte this difficulty we can consider porma-
rent of xI=-A. But still the problem of zercos remainses Thuz wo are
led to a mndifisd metrix. Suppose H:(aij] is the adjacency matrix
of a graph G+ Let x be 2 ramal indeterminate (assumad ta taka} only

A .
positive valuas). Oefine B{x) = {x lJ). The sluments uf thie matrix
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are 1 and X+ Thus all the zeros are corweniently removed. In fact
A{x) ia got from A by replacing all the zeros by 1 and 1's by x.

Will per Al{x) be a complste invariant polymomial? From the complete
list of =211 graphs with atmost eix vertices glven in Harary's book
"Greph Theoty" per A{x)} was valculated. Intersstingly encugh per 4{x)
is CERTAINLY A COMPLETE INVARIANT POLYNOMIAL for graphs with atmoat

4 vertices, This was sctuelly verified by brute calculatione. For
graphs with hore than 4 vertices calculation of psrmarent, a badly
behaving Pfuretion, is gulte tedious and hence search for = counter
exampla by brute calculation wae glven up and thaorsticel attack wam

stertad,

What are the symmatries of the parmenent function and &
graph? Tho adjscency matrlces 4 and B of two isomorphlc graphs are
related by an sguality, B = PHPT for a suiltable permutation matrix P.
In Fact sych an pquality 1s a nocessary and sufficinncy condition For

imomurphism of graphs representod by A end 8, It is sasy to ses that

5eZues B m PP C:?E{x} = PR(x) P fnp evary x ¢ (0, DO).

Alen Par B{x) = Par (P A{x) ﬁr} = Par A({x) and this shows that Fur
isomorphic graphe the polynomials per #{x) indeeq coincida. But
unfortunately per {PA(x)3) = per w(x) for eny twy permutetion matricoes
P and § of suitable order even If §Q @ PT. Thus if # and PAQ, whero

O £ P, reprasent adjscancy matrices of tue non-lsomorphic graphs .

G, and Gz rospectively then Per A{x)} connot dietingulsh 6, and EE'

1



- 13 -

Thus we are icd tu the problem: cam 4 end PAG represent adlacency
matrices of tuo nun-iamm?rphic graphe E1 and 52?' Cloarly ﬂPﬁHET-QPR
inm alwp an ‘adjaecency matsis of G, if PUQ ie one. Ma product of two
permitation matricee is agkin a pormutetion matrix we are led to the

problehg

SaJianw Can A and PA represent adjacency matrices of none-iso-

morphis graphs?

THEOREM S.4 ¢+ Suppose A and PA are sdjacancy matrices of graphs
51 and EE teapoctivaly. 1t B, toneldersd as repressenting e pur—

mutation, is of cdd order then G, end 52 must be isomorphic.

PROOF s If P4 is an adjecency matrix, then it must be symmetric and

TPT - HFT for A 1l aleo symmetric. Thus 4 = PAP from

2

herce PR o A

which we get A = PAP = P ﬁPZ w ver = PPAPT = .. For all poaitive

intagral r.

2m=1

Lst P m [ for aome positive integear m. Such an m muat

exist am P {s of odd order. Then & = P" AR" and Pm(FmﬁPm]{Pm)T -
sz A e PA. Thus 1 and PA are adjacency matrices of two isomorphie

qrapha .

INTERPRETATION ¢
By parmuting rows nf an sdjacercy metrix of a graph we
cannat get annther edjacency matrix of a poneipomorphic graph if the

parmutetion is of odd order. ~
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THEOREM 5,5 1 Suppose K and PA sre adjacency matrices of graphs on

n vartices., If P represents a cycle of length n, thon 4 = 0,

PROOF ¢ Mg in the proof of Thootem 5.4 we have h = P° APT For all

positive integral r. tet P = { f; }) whars & is a eomplete cycls

iw{ }
af langkth n.

A= PP glues oy ) Sy ag Sla(n) = # - for
- s (1)s())

BVETY {i,j}. In & aimilar manmoar, From A = PrnPr we gat,

Bubuss a for every {1,]).

ij - g.w-r“hr.{j)
Alec (PR), = /7 . . moa . Hanco,
8o t 2;: é;ia(k) i T %), nee

. =B a for every (i,)) by symmetry of 4 and

~t -1 L
s (i)j 8 (JM 1e ()}
P, In particular we must have

El?I!II 0 = (pﬁ}ii = Fot gach in.

aﬂ—d(i}i = His(i}

Hence ualng 5.5 we get,

« Thus & 2t = 0 for sach 1.

5&5&-0 O= s ]
B8 et) 1a%5(4)

ilen =» ) uging 5.8. Thus we have,

s (1) o () = 0 IF o{s""(1) = o"(

L S ] =0 or a = O for each 1.
15—21‘+1{i} isZr T{i}
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Combining 5.8 ahd 5.9 ws get a . = 0 for gach i and r. If B
L 87 (1)

is 2 complotd cycle of lemgth n then for ewvery j§ thore oxists an

r such that g (1) = b Thus 2y = 0 for every {i,j). Thus A &= O.
WOTE ¢ Even iFf 8 is not a complute eyele we have aiariiﬁ » 0 for
every 1 and ¢. Suppose s, as a permotstion of (1, 2, ..., n} is
oxpressible ss e product of k disjoint cycles. Let (1,4 L1,p ous ir}
be a typical cycla. Then gy 4y =0 fora A band ab = 1, 24 esey T

a b
in vigw of the fect a = 0 for every 1 and rs Thus A ham an

B
187 (1)
r » ¢ prircipal zerc submakrix. Considering all the k cycles it is
cleay that & muat ba thae adjacency matrix of & k=packtite greph. Thus

we hava proved.

THEOREM 5.90 ¢ If 4 andd PA ace adjscency matrices of gqraphse G, and
Gz ruspoctivaly and P, conaldared as & parmutation, 1z the praoduct

of k disjoint cyclas than G1 afd 52 arn kwpartito grapha,

COUNTEREXHMPLE 5,11 1

Theoram 5.10 is guite interesting. But still there ie no
net

guarantas that G, and EE are lsomerrphic. In Fact they nead, bo

isomorphic ag tha following example shows.

7]
-
L
O L
[y
ta
]
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Both are 3-pabtite. Thwir edjscency matticed are

Gﬂ:‘lﬂ:#ﬂ 0 HER O B B
[ 3 ] R |
0 o'06 1D 1 o ;19 {1 @
Uy PR, I ) [ -
3 N 6§ f H {
A w topoorto 8 = ; P
g1 fpo! o 1 1.0 | ;10
i v 1 L I
T T T LB
1 0 ;1 01D D 0 ;0 ; o
N i L} i
g1 '0 1! 1.0 0 q
s — ; N —_——
D1 00 0 0
1 00 0 00 THar B = PhH,
Take P = 00 06100 Hare P corrcspohde to the
¢ ¢ 1voo0d permytation
(A S I T« JO I
.nﬂﬂﬂ‘fu {1 2) (3 4) (5 6},

Thim eountsr axemplo thows that Per A(x) 1a NOT & complete frwarisnt
rolynomial am 51 and G? have tho same polynomiele though they are

norelsomorphic.

The failure is meinly due to tha fact that the zerow in the
main diegunal end zeros in non=diagonal positions have diatinct mean-
ing, am far as graphs ere concerned, but are tr.stsd alike in por A{x}.
Tiwae thare is = clear nead For gistimguishing dlagonal zeros afd noh-
disgonal zercg. To this snd we define a2 new matrix From the adjacency

matrlx,
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DEFINITION 5.12 1

If A {a an adjmcency matrix of a graph, let A{%,¥) = (Eij}
uhate &4 = X, 3y, ® y if by 1 and = 1 if ay; " Hang 1 £ 4.

In ather words
LT - P Alxgy) = %1 + yA+ {2 =0 =~ 1)
where 1 ie tha ynit matelx and J ie a matrix with sach shiry unity,

A)tarnatively Afnsy) = (x=1)} I # {y=1) & + Js Wa now

propoae a conjecturs.

CONJECTURE 514 ¢
For a graph with adjacency metrix A, per A{x,y) i» a com=

plste inverisnt polynomial (in twe variables x and y).

Note that we du not have the possibility that P A{x,y) =
B{x,y} for a permutation matrix P{ & 1), For, if B{x,y} = PA{x,y)
thon

(1) L 4 {yul) 8 4.2 = P {{x—d} 1+ (y=1) A+ :}

or {x-1) 1 + {y=1) B m (x=1) P « {y=1} PA.

Fquating coePficients of x and y wa must Have I = P and B = DA

and thun & = 8 and P = I,

n L3
OEFINITION 5.51 1 Let F{Gj x,y) = par A(x,y) = }E: 2:: Cop e y'
r=0 o=0 °

Then the conjectura means that {EN | Ixsgrg n} conatitute a

complete collection of invariants for m graph G with adjacency matrix A.



- 118 =

Ug can maks the polynomial hamogenaous by introdubing

enother veriable 2 by dellning

5216854 ﬁ;'ﬂj}l’pl} = 2l 4 yRh + I{J—H-IJ
m (f32) I + (yaz) A + 23,

Then F(G3 x, yo 2) = 3. i,s C. ox"F B gt
, EE% : “rg
. X I a=

[
THECREM 5,16 1+ If G im ths complement of tha graph G, then
F(Cy %y s 2) = F(B3 x, 24 y)

" PROOF 5 IF A ls the adlacency metrix of G, then J=R=I is tha

adjscency matplx of G and thue,
F{E: Ky ¥y 2) m Pgr{xl + y{J-A=1) + zﬁ} x F{G3 x, Zy ¥)a
COROLLARY 5.97 ¢+ € (G) --pr'ristaj.

Thug 47 we know the invariant polynomial for G than that
ot G la slse immadiately known. As s conssguanc, for & eelf compla-
mentary graph G, wa have F{Gj x, ¥, 2} = F{G; %, ¥, y). In othar
words tho pdlynosiisl of G must bs symmatric in y and z. No such

property of cheracteristic polynomial is known for a gamsral graeph.
5.8 SOME ARGUMENTS IN FaYOUR GF THE COMIECTURE ;

It im quite gasy to verify the following results.

{a) E?.E is ths number of sdge® in the graphj

{n) Ez,: is twice the rumbor of trismgles in the graph.
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{a'} L, p 1% the numbsr of adgos in the complementary grephg
4
{b') L‘j o i3 twice tha numbsr of trianglee in the complemantary graph;
bt |
{c) C, 4 49 number of eutgraphs {rnot necesssrily induced) of the
o6

H ) . .
Farm plus tulce the number of sgquares in the graph.

Yl
{d) EE g = 2 {iﬁumbar of subgraphs of the form I I::n plus
»

rmumbiatr of subigraphs of thd Form I::::é;

{c'] and {d'} ara C ard € that are similar to {p) and {d) but

4,0 5,0

relate to tha complamsntery graph.

Using the invarisnts (a), (b}, {c), {d), (a'), (b'}, {2},
(d') fixed by the permansnt polynaomial we ars able to verify the
pormanent polynomial COMPLETELY CHARACTERIZES graphs with stmost &
vertices. This was actuslly farried put on the basis of the completo
liat of graphs with ztmost 6 vertices glven by Harary in hie took

"Graph Theory".

The atove varification together with verificatien of the
con jscture For graphs with 7 vertices using computor in I.1.T., Madrae
shows that theo psrmanent polynomial is much betker than the characteristic .
polynomisl in distinguishing graphs. Bul pormanent polynomial is
rather more difficult to caloulate thanm the characteristic polynomisl.

of Finding the characteristic

There seems to be ng_ go
polynomial of T from that of G if G is not rogular. But parmanent

polyromial i=s suparlor in $his respoct.
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5,19 RELATIONS AMONG Eij'a 1

The Ei J*s ars rot a)ll completely indepsndent, We shall

osteblish a faw releticns among them.

F{B3 x,ysz) = E;:_ ji:l'tij g 1T par (k1 4 ya 4 2(3-1-p))
J

F(G3 %, ¥y y) = };_: Zj: Eij xd Yi = por {xI + y{J=1})

= par (y] + (x=y)} I}

.
w3 () oet oy (e

r={]

M-

L 1=r
wly oo deer 1) {_l__-“ -
{':] ri (:_E} (<1} - [:_ij!. 2;5 i~r)}

This gives {m1) lirear squalities satiafied by Eij’a.

Thus EE: Eij ﬁ

J

t
i
=

5.20 CONSEQUENCE DF SYMMETRY OF A 3

Fre2

Consider ths cosfficiont ef x™ 2 y z namely C X Can

21"
be got only from {n-2) disqonal terms. Thus yz should be got from

e 2 x 2 prircipal submatrix., (og to eymmetry we cen gebt anly yz or z

ad henceg L., = 0. It is pasily posn that C_, = 0 is alsa sufFFficiaent

21 21

for a {0, 1) matrix & with 2oro disgonal to bs symmatric. Cpy =0

is another oguality apart Frem the (n+1} already got.

5,21 AN INTERESTING SESULT 3

Supposen A is the adjacency matrix of s graph G with n

verticos. Let R = xI + yh + z{J=I-R}. Than lot us define sr(H}
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as the sum of the permanent of sll r x r submatrices of R for
. 3 a8 . 2
r-'lr 2‘ ruwg Me Lﬂtvuax-ﬁa?*az'

THEOREM 5,22 1 S, (@) = Fper-(A) = QF{Gs xs v, 2),

PROOF 1 _a_F_ givoa the sum of the permenental cofactors of tha

o
disgonel terms ; %-:: gives the sum of the parmanmental cofactors of

8ll tho positions occupled by yi -.g-g' glves tha sum of Ltha permanental
cofactors of all the poaitions pecupled by 2. The Fact that ovetry

o .
poailtion in A is vccupied by oxactly one element from {x. ¥y z}

completes the proof.
— 1 T
COROLLARY 5,23 1 5 _ (&) = Ty WV FForo=0,% 2, ersy (n=1).

PROUF ¢ Tha only thing to be provad is the Factor rl., IFf we taks
r elemants in indepondent posltions in A then we can take rth dutl=

r
vative war.t. %, ¥y 2z in rl ways and hence v F=rl Sn-r {A).

n
If we duFine Eﬂ{.ﬁ} = -l-f v f then 5.23 holde avan for

r = n. But it is clear that So (") = 1,
B.24 ADDING AN ISOLATER POINT TO &4 GRUPH 3

Supposa G is a graph on n points with adjacency matrix A,
Let us ndd an isolated point to G and get A If B in the adjaconcy

matrix of G, 1t can bs wrlttan in tho Fform

;
o o, _ x ::J1xn

E' = r--l-l—-n-p- Thus Eﬂ “"'.l":--
D 1a 23 A

nxl ! nxTy
]
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whera jrxe ism en © x B matrix with eech entry uhity. '
= e 2 - _
Clamrly par {B) = % por (A) + 2 S e (A) {oxparding by First row).

1t per (R} = F and por {B) = F, thon we got

Bi29s r1 = xF + 12 w Fo= {.’!( + Z?v} F

CORDLLARY 5.05 1 If we add & print to G and join this point to all

the veortices of G and get 52 then the parmament polynomial F2 of Gz

. 2 _
is piven by F, = (x + y "I F.

Supposy G1 and E? ara two graphs. Lat 51 LJ GE represant
the disjoint union of thess two graphs. Let K ropresent the
completa graph on n points. Lat G1 +r EE rapresant the graph obtained
by takifg disjoint umion of G, and G, and jolning svery vartex of G,

with gvary vertex of sz 1f &° reprigents the complemsnt of G. Then

claarly 51 + G2 = {G? L} ES]C, with these notstions we have proved.

EUE?I'i f = {K + zzv} FG

GAJK,

2
-y
5-:.L|||1| FG"‘K.J =fx+"!" v}rﬂ

| __ 2 et

In general wi Mava rGU{H,uK,U ot torms) =[x+ 2°J) Fe
F . (x4 o7 ) F
E+Kn G

- -
rKﬂ,{xJ,,,,{;r}”“x

Z i)
FH!””;U--;H Lirms = {)( + 2 V} X
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5.29 f MODIFIEQ POLYNOMIAL 3

Let A be any p X n adjacency matrix. Lat B bo any n % n resl
matrixe Lot Er(ﬁ} reprasgnt the sum of all the pormanents of 2ll © x ¢
submatrices of B Fnr'lﬁgr,g;ﬁ, tat L be tho collection of all r x 1
princiwnsl submatrices of A, ODwfine

5.30,.. S {4) = 7 5, (B) for 1Cag rg mo
r EEEr

For any function F{x, vy, 2) of x, v, z writa [-F(x. Ve z}_? w F{1,1,1}
Then it is guite sasy fto ssu that Sr . (&) i= related to the function
]

por (R} = F{G, x, y, 7} in tha fullowing mannor

/fh-r+a
5.31.4. Ers{” = 7 ‘11'!7[.., 1 2 -
, (nerjisl{r=n)t [@xn-rays

By Taylar's Throrom ws alse hmwo

. ‘ r+s
5.3Zevs Flxyy,1) = 2 Zr? [ ‘] (x=1)" {y=1)®
r 5 8y

Thus, from 5.37 end 5.32 we get

n =1 ,
} 1
5,33, .. Flxey,1) = E E v -';j; sﬂ-r.a [R) rlsl{per=a)! (x-‘l}rﬁy-ﬂ
r=0 e=0 ' '

n [T

. .- c .
= E} EB;Q {ﬁﬁf“ﬂ]w ST‘I"'I',B (H) {3,.3.1] {?-U .

F{x,ys2) can be got from F{x,v,7) by multiplying oach term in

F{xyy,s1) by a suiteh)e power of 2z to make its dogres n. Thua F is
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completaly determinad by E‘urla"(ﬂ) for 1L st Lne Note that in
tha axpression of F{x,y,1) in powsre of {x=1} and (y=1) to ba valid

; "
wa heve to gefine Br m"(r} for r = 0,142, savs Me
E

f Lt =T
by ] e __F
It gan alsn by egan that Er,s {4) T_'Tr-a- 1 v (axn-r)

the conjocturs on complate sat of inuvariants takes the Following Form.
5:30,., If A is the ad)acency matrix of a graph G than.
{Er,s (A) E 1= s r g n} complutely characterizea the qraph G.
Unfartunately the polynomial Fix, v, 1) = E _ E (rer-s}i »

T 5

“5 . o (#) {x~1}" {y=1)® 1s rathor inconvenient to uss. Clearly
=Ly

Flxtty y#1,1) = 2 o (n-r=s)} Sper, s (A oy
r &

is batter for algsbralc manipulation, 1f this is homogeniesd by
Introduclng 2 the polynomizl would ba better and wo may also drop

the factor (ner=s)!

Egsantislly what we aro sugpesting is the following polynomial

n -

Z: 3::.. 5 (h) x" v 2T or oguivelently,
- I, &

r=00 &=0

n T . _
BeMaae F{x, vy, 2} -:Zg E-_ S, o (i) ' F ¢ T8,
= gex()

¥

Lot us call F{x, y, 2z} ns homogeneaus germanant polynomial

{M.P.P.)., How is this relatud to & ? Supposa w is the linsar
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gperetor on the vector space of all polynomials in 2, with
coafficienta polynomials in {x,y}, defined by the property

wlz’) = %7, 25 for r w Q, 1y 2, +aa claarly this i5 an &nvertible

linear operator with irﬂ.'ar*ener'm'--‘I dafined by m””{sz = ! 2.
Lot T = {x+2)T & (y#2) 4 & Z{I=hI) = xI + yii + 2],

Then Flxsy,z)} = wlpsr F). But par (F) = Flx+z, y+z, 2) iF

F{x,y¥ez)} = poer ﬁ. Hafcae wa havn
~ . -,
= = 1"{!,3{,2] = W iF(HZ| W2y Z?}E wF {BEY}.

In what way is f battor then F3 This Lls anrwerod by tha rdharkahle

multiplicative property of .

THEQOREM 5.37 1 Lat Gy &nd G, ba two graphs with HP.P. £,  snd
1

F respoctivoly. Than £, . =F « T N
GE GqU52 51 52

PROOF 3 Supprisa A, and ﬂz are sdjecency matrices of G, and G,

respactively, Then the mdecency matrix of G, U G, iujx’ﬂ.ng, the

dirgct aum of &, and RE. It iz easy to mes that tho following

1

convolution Formoula holds.

3
52384, 5e,e {I—H‘Hz} - ﬁ 2 Se,1 (n,y) Sk, 61 {(r,)

=0 1=0

In the sbovs conveluticn any meaningless term le inter=
ptroted as zeroe IF A 15 arn n x n adiscancy matrix Er B(H} ia
¥

mganingful omly for O s & rg ne
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n1 -l

8 _r~8
FG1 =Zr: ‘Za Sr,a {H1J x y oz

. n, =g
_ Z Z : 2 5 _I'mp
F{] = 51‘,5 (HE) x ¥z

2 r B

where rn, and n, are the number of vertices in the grephs G,

roapoctively.

Ry +n
E 2 & _t=g
51 U Z Sr,8 ‘“10‘12}* y 2

it view of the ocofvolution formula For Er,s [R1@ix2)

k k
COROLLURY 5,79 3 (&) 'fu G, = T f,
da1 i=t 4

elyarly f,, = u {pur (=1 + zJ}} » wlxpz) = xtz, Thuz if

1

u Ky = nk, wo got f = (xbz)" 3

L= 1
P | } n n
(b} an.jUG (x+z) L
{e) Par (J=I) w Poar (xI 4 21) at x==1, z = 1
= {u (rnK )§ at x=-1, 2z =1
= {w (x-hz]) at x = =1, z = 1
- wﬂz:{r} «F 2" gt x = =1y 2 =1
-

n r
} {ner)t [ nl % -{:J'.)—._
D{ (-0t (0 =t 3 4

e
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This is the well known formula for the number of darangements

of n objects.

another property of f which justifies its superiority over F
is the following theorsmsé If g and h ars homogeneous polynomials of
degree N in X,¥,Z let ud urite g<h if all the corresponding coeffi-

cignts satisfy the same inequality.

THEOREM %.40 ¢ If H is & spanning subgraph of G, then FH(F and

equality holds if and only if H is isomorphic to G.

PRODF ¢ Suppose H 1s a spanning subgraph of G, then for guitablo
1&&9111119 of H and G their adjacency matrices A, and “G gatisfy the
1nequality Ay, én (L.08.y AH[ii 3_7 A [1’ j_/ for every (1,3))

Henge, fOr any r,s (s L) S, (A )_é c, S(A ) and consequently

Z;s“ (“ D=t s r-sdzzsr, (H)x /8 L8,

mimﬁy | wuality holds if end only if s (A ) =5 (A ) for all
Ty8e ’Iﬁ vidu of the Puet that N ( A_ this can happen if and only|

4F R, w f, . This proves the thoorsme
-6

NOTE +  Supposa M emtl G aro graphs with tha sems et of RS
and fH é;f[; Theorem 5.40 does not claim ot prdve Mn%ﬂi ulwl, ! ng

subgraph of G.

Consider G, the seb of el Graphs on n verticdd, W& cun

partially ordoer G By writing H g,c {f and only if H is isomorphic
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to a spanning subgraph of G. Equality in Gn is isomorphism of

graphs. Let us also consider Pn, the f-polynomials of graphs in Gn'
We can partially order Pn by\requlrlng FH 5;2 FG if and only if FH 5£f[
In view of Theorem 5.40 we can conjucture that there is a homumnrphism
of G, into P as partially ordered sets (i.e., a mapping of G_ into Pn‘

which pﬁasenva partial order). In fact this homomorphism will turn

“out to be isomorphism if our conjocture is true.

5.41 ANODTHER FORM OF THE CONJECTURE 3

Let A represent the adjacency matrix of a graph on n vertices!
An s=chain in A is a collection of s 1's in independent positions (two
positions are said to be indopendent in a metrir if they ars in
difforent rows snd different golumns). tLet CS(A) be the collection
of all s=chains in A. For any clement a EECS (1), 1lst R(a), the
rank of &, be the number of rous in the smollest principal submatrix
of A con;l:aining all the positions occupied by a. Clearly R(a) p s if
aGCS(R“). If aé_Cs(A), thtn 2 contributas one to SR(a),s and in

n-R{a)

i g e T i ious )
genaral eontributes (r-R(a)) to 5,8 his is quite obvious from

-R(a)
o Thus S (R) = aEZC:(H) (Caiay)e In

| ()
particular SS’S (R) = aZF:.E;E,(A) (:-»R(z))' But R(a)2 & for aECS(A).

the defimition of sr
' ’

Hence Ssts(ﬂ) i{s the number of s-chains with rank exactly equal to s.
k]

Suppose tr s is the numhier of elements of Cs(h) with rank
’

oxactly equal to r. Then obvicusly we have,
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r?
¢ . EE: Nest}
582454 Sr,é (Q) = - (r~u) tU,S .

Thustre

's completoly deturmine Sr ‘s, The converse is also true.
[ .

8

- For 5.42 is sguivalent to

[~ j o o pross o
1 0 0 ... O t
ﬁ’s 8»8
Nn- Nege1
("7 Y 8 ... O
584-1,9 ts+1,a
Mg e B Mwge?
S5¢8300 ™ ( 2 ) ( 1 ) ( 5] ’) s o e .
‘ ¢ e . * e 0 - .
. * » \d » » @ . .
Sn’s_,J (m-s) (n-s-—‘l) (n-s-z) e L Lj’n,s

The (fee41) x (n—e+1) matrix is clearly non-singular and
5, s'é complotely determine tr,s's .~ Thus our conjocture takes the
, ;

following formi

CONJECTURE ‘5,44 t A graph is completely characterized by t . 's whers
.  J
LI 18 the numbér of s-chaine with rank r ln the adjscency mattix
’
of the grephi

LEMMA 5.45 1 If €S C_ (A) then s CR(s) &K 2s.

PROOF ¢ R(aj}s is quite obvious. Suppose 1 is the set of rouw

suffixes of elemsnts in the s-chain a and J, the set of column wFPRRESS.

Then |1f = fal = s. Also ‘I.U 3] = R{a). Hence
R(a) = [1U 3 {1} + 13 = 2.
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Lot us how conaider the maxiium number of non-zers tes®
L
clearly 8 r & 28 and 1€ 8 s Thus the comdination of r, ® For

whith tr mey be nonezero 18N - {{r.s) ‘ 15 s 4, sg.rg._:min{zs,.ﬁ}}

.2
For ué% the combinsticone ata {e,s8}, (e+i, B}, eua, {28, #)

For a}*g the combinatiofa ary (=,8), (841, 8}, veey {n, s ).
Thus "Nf - x:: {ae1) & z:'  [fi~mr1) = [?.4-3* s (t+1)__7
- B‘['.%J 3?[%]

| i -+f1+2+1..+n-t__7
whers t [g_? ‘

y Y (et 2 - "
' {re1} {dea) {ret) {omt41}  plan{Zt=1] # 2493t
Thus!ﬂ[ » 5 - 4 - = t=14
CASE 4t n iaevan. Then t =3 andln{'.ﬂigﬂl

EASE 2t n ie ood, Thehi ¢ w5l ang jn] - DOEAIT

Thus | &} ui‘ ﬂgém‘?a

But the sdjecdnay metrik. bk deberminac by -’li-zﬂﬂl alamante, and

[} + .E.{;H'ﬂ. = % for lerge n, Thus, if the ccnjocture is trud,
then a graph {8 cheractarized by sbout half the numbar of slemants

sy comparad i the rumber of clements roguired to construct the

ad jacency matelx,
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E.46 A PARTICULAR CASE &

Supptbe n = 2m. What ie tom.m ? Closcly e éEEm {n}

¥

contiibuting to t miet have row suffixes and column sufflxes

2, m
disjoist. Thus a typlcel elemant will pe of the form (i, J4),
(12, Jz). erus {im, jm) vhare all {'s and j's 4re different. But
such « Leih aftar introdiping the Ttransposes’ (g e 11}, {sz byds
veasy {jm. imi Will cortritwte e one=factor of the graph. Thus
dth,m im Em tihek tha numbar of onae=Factors of a graphs. Thus,;

indiructlyy the fepolyromial of & graph deturmines tha number of

ang~factorss
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