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1

Notation

N The set of natural numbers

N0 N ∪ {0}
Z The set of integers

R The set of real numbers

C The set of complex numbers

id The identity map

R(z) Real part of z

I(z) Imaginary part of z

trA Trace of matrix A

Leb(B) Lebesgue measure of B in appropriate dimension

an ∼ bn an − bn → 0 as n→ ∞
an ≈ bn

an
bn

→ 1 as n→ ∞
|x| Euclidean norm of x ∈ Rd

|z| Modulus of z ∈ C

⌊a
b ⌋ Greatest integer less or equal to a

b for a, b ∈ N

⌈a
b ⌉ Least integer greater or equal to a

b for a, b ∈ N

#A Cardinality of the set A

Fn
D→ F Distribution function Fn converges to F in distribution (weakly) as n→ ∞

∂A Topological boundary of a set A ⊂ R
n

Aη Set of all points at (euclidean) distances less than η from A
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Chapter 0

Introduction

Consider a sequence of matrices whose dimension increases to infinity. Suppose the en-

tries of this sequence of matrices are random. These matrices with increasing dimension

are called large dimensional random matrices (LDRM).

Practices of random matrices, more precisely the properties of their eigenvalues,

has emerged first from data analysis (beginning with Wishart (1928) [132]) and then

from statistical models for heavy nuclei atoms (beginning with Wigner (1955) [130]).

To insist on its physical applications, a mathematical theory of the spectrum of the

random matrices began to emerge with the work of E. P. Wigner, F. J. Dyson, M. L.

Mehta, C. E. Porter and co-workers in the 1960’s. And this established the link between

various branches of mathematics including classical analysis and number theory. Slowly

it appeared in other branches of sciences as well, like high dimensional data analysis,

communication theory, dynamical systems, finance, diffusion process and so on. The

most important papers on random matrix theory in physics from this early period are

collected in the book edited by Porter (1965) [102].

Initially enumerative combinatorics was the only, though very useful, tool to analyze

random matrices. Many other sophisticated and varied mathematical tools are now

available in the field. These includes Fredholm determinants (in the 1960’s), diffusion

processes (in the 1960’s), integrable systems (in the 1980’s and early 1990’s), and the

theory of free probability (in the 1990’s). Many of the mathematical elements of random

matrix theory which were developed in the beginning of the 1960’s has been described

in the book by Mehta (2004) [90].

One of the most important objects to study in random matrix theory is the spectra of

LDRM. The necessity of studying the spectra of LDRM, especially the Wigner matrices,

arose in nuclear physics during the 1950’s. In quantum mechanics, the energy levels

of quanta are not directly observable, but can be characterized by the eigenvalues of

a matrix of observations. However the empirical spectral distribution (ESD) of the

3
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eigenvalues of a random matrix has a very complicated form when the order of the

matrix is high. Many conjectures, e.g., the famous circular law conjecture were made

through numerical computation.

The random matrix literature is vast and evergrowing. We provide a very brief

introduction restricting ourselves to areas/results which have some relevance to the

problems considered in this thesis. For detailed information on these and for other

developments we refer to the excellent books by Mehta (2004) [90], Bai and Silverstein

(2010) [13], Anderson, Guionnet and Zeitouni (2010) [3] and the survey papers of Bai

(1999) [10], Bose, Hazra and Saha (2010) [39].

In Sections 0.1 and 0.2 we provide a brief summary of existing results on the limiting

spectral distribution and on the extremes of eigenvalues. In this thesis we study the

circulant and related random matrices. In Section 0.3 we provide some motivation to

study such matrices. In Section 0.4 we give a brief summary of the thesis.

0.1 A brief survey of existing results on limiting spectral

distribution

The research on limiting spectral analysis (LSA) of LDRM has attracted considerable

interest among mathematicians, probabilists and statisticians. Here we discuss some of

the more common matrix models that have been dealt with in the literature.

For any square matrix A, the probability distribution which puts equal mass on

each eigenvalue of A is called the Empirical Spectral Measure of A. The corresponding

distribution function is called the Empirical Spectral Distribution Function (ESD) of

A.

If λ1, λ2, ..., λn are the eigenvalues of an n×n matrix An, then the Empirical Spectral

Distribution Function (ESD) is given by

FAn(x, y) = n−1
n∑

i=1

I{R(λi) ≤ x, I(λi) ≤ y}.

Let {An}∞n=1 be a sequence of square matrices with the corresponding ESD

{FAn}∞n=1. The Limiting Spectral Distribution (LSD) of the sequence is defined as

the weak limit of the sequence {FAn}, if it exists.



5 A brief survey of existing results on limiting spectral distribution

0.1.1 Wigner matrix and the semicircular law

Wigner matrix (Wn) is a symmetric matrix and it is defined as

Wn =




x11 x12 x13 . . . x1(n−1) x1n

x12 x22 x23 . . . x2(n−1) x2n

...

x1n x2n x3n . . . x(n−1)n xnn



.

Wigner (1958) [131] assumed the entries {xij} to be i.i.d. real Gaussian, and proved

that the expected ESD of 1√
n
Wn tends to the so called semicircular law which has the

density function

pW (s) =





1
2π

√
4 − s2 if |s| ≤ 2,

0 otherwise.

It was also noted in Wigner (1958) [131] that the semicircle law is the LSD of much

more general symmetric matrix models where the entries on and above the diagonal are

independent and the entries have symmetric distribution function with variance σ2 for

the nondiagonal entries and 2σ2 for the diagonal ones and all higher moments are uni-

formly bounded. This claim motivated the interest of relaxing the conditions on entries

of the matrix to the maximum possible extent, and Grenander (1963) [72] and Arnold

(1967, 1971) [4, 5] generalized this work of Wigner in various aspects. In an important

review work on random matrix theory by Bai (1999) [10], two general assumptions were

used on the matrix model of Wigner : let Wn be n× n Hermitian matrix whose entries

above the diagonal are i.i.d. complex random variables with variance 1 and whose di-

agonal entries are i.i.d. real random variables (without any moment requirement) or let

Wn = [wij ] be n× n hermitian whose entries above the diagonal are independent com-

plex random variables with a common mean 0 and variance 1 satisfying the Lindeberg

type condition, for any δ > 0 as n→ ∞,

1

δ2n2

n∑

i,j=1

E |wij |2I(|wij |>δ
√

n) → 0.

It was shown in Bai (1999) [10] that, under either assumption, as n → ∞ with proba-

bility one the ESD of 1√
n
Wn converges weakly to the semicircular law.

Anderson and Zeitouni (2006) [2] considered an n × n symmetric random matrix

with on-or-above-diagonal terms of the form 1√
n
f( i

n ,
j
n)ξij where ξij are zero mean unit

variance i.i.d. random variables with all moments bounded and f is a continuous func-

tion on [0, 1]2 such that
∫ 1
0 f

2(x, y)dy = 1. They show that the empirical distribution of
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eigenvalues converges weakly to the semicircular law. There are other extensions which

we do not discuss here. See Banerjee and Bose (2010) [21].

0.1.2 Sample covariance S matrix and Marčenko and Pastur law

Suppose that {xij ; i, j = 1, 2, . . .} is a double array of i.i.d. complex random variables

with mean zero and variance 1. Write xk = (x1k, x2k, . . . , xpk)′ and X = (x1, x2, . . . , xn).

The sample covariance matrix is usually defined by S = 1
n

∑n
k=1(xk − x̄)(xk − x̄)∗.

However, in spectral analysis of LDRM, the sample covariance matrix is simply defined

as S = 1
n

∑n
k=1 xkx

∗
k = 1

nXX
∗.

We now describe the Marčenko-Pastur law denoted by LMPy : has a positive mass

1 − 1
y at the origin if y > 1. Elsewhere it has the density:

pMPy(x) =





1
2πxy

√
(b− x)(x− a) if a ≤ x ≤ b,

0 otherwise

(0.1.1)

where a = a(y) = (1 −√
y)2 and b = b(y) = (1 +

√
y)2.

Researchers have established the LSD of S matrix under suitable conditions on the

xij’s. Here, we state the LSD result under relatively simpler conditions. Suppose {xij}
are i.i.d. with mean zero and variance 1, p → ∞ and p/n −→ y ∈ (0,∞). Then the

ESD of S converges to LMPy a.s..

The first success in finding the LSD of S is due to Marčenko and Pastur (1967)

[87]. Subsequent work was done in Bai and Yin (1988) [16], Grenander and Silverstein

(1977) [73], Jonsson (1982) [78], Wachter (1978) [127] and Yin (1986) [134], Bai (1999)

[10]. When the entries of X are not independent, Yin and Krishnaiah (1985) [137]

investigated the LSD of S matrix when the underlying distribution is isotropic. For

further developments on S matrix see Bai and Zhou (2008) [19] and Bose, Gangopadhyay

and Sen (2010) [31].

0.1.3 Toeplitz, Hankel and related matrices

Toeplitz matrix Tn and Hankel matrix Hn are defined as follows:

Tn =




x0 x1 x2 . . . xn−2 xn−1

x1 x0 x1 . . . xn−3 xn−2

x2 x1 x0 . . . xn−4 xn−3

...

xn−1 xn−2 xn−3 . . . x1 x0



.
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Hn =




x2 x3 x4 . . . xn xn+1

x3 x4 x5 . . . xn+1 xn+2

x4 x5 x6 . . . xn+2 xn+3

...

xn+1 xn+2 xn+3 . . . x2n−1 x2n



.

The existence of limiting spectral distributions of Toeplitz and Hankel matrices were

proved by Bryc, Dembo and Jiang (2006) [47]. Hammond and Miller (2005) [75] also

proved the existence of LSD of Toeplitz matrix. Bose and Sen (2007) [43] gave a unified

approach based on the work of Bryc, Dembo and Jiang (2006) [47] to prove the existence

of LSD of different LDRM.

If the top right corner and the bottom left corner elements of a matrix are zeroes,

we call it a band matrix. The amount of banding may change with the dimension of

the matrix. The LSD of the Toeplitz, Hankel band matrices was discussed in Basak and

Bose (2009) [22], Kargin (2009) [82] and Liu and Wang (2009) [85]. For other variants

of Toeplitz and Hankel matrices, also see Bose and Sen (2008) [43] and Basak and Bose

(2010) [23].

0.1.4 I.I.D. matrix and the circular law

The most interesting problem in LDRM literature was the so called circular law conjec-

ture that the ESD of the non-symmetric random matrix with i.i.d. entries, after suitable

normalization, tends to the uniform distribution over the unit disc in complex plane.

This was first established for Gaussian entries by Mehta (1967) [89]. Girko (1984) [67]

suggested a method of proof for the general case. Bai (1997) [9] assumed smooth densi-

ties and bounded sixth moment of the entries and showed the result to be true. Götze

and Tikhomirov (2007) [68] showed the result for sub-Gaussian entries and the moment

conditions were further relaxed by Pan and Zhou (2010) [95], Götze and Tikhomirov

(2007) [71] and Tao and Vu (2008) [121]. The result in its final form was derived by

Tao, Vu and Krishnapur (2010) [122].

0.1.5 Rate of convergence

Another important aspect arose after the LSD of an LDRM was found: the convergence

rate of LSD. This is of practical interest, but had been open for decades. The first success

was made in Bai (1993a, 1993b) [7,8], in which convergence rates were established for the

expected ESD of a large Wigner matrix and sample covariance matrix respectively. Bai’s

work developed a method of discussing convergence rates of ESDs through establishing

a Berry-Esséen type inequality in terms of the Stieltjes transforms. The result was

later improved in Bai, Miao and Tsay (1999) [11] for Wigner matrices by assuming a
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slightly milder condition. Then Bai, Miao and Yao (2003) [12] improved the results of

Bai (1993b) [8] on the convergence rate of LSD of the S matrix. For other development

in this direction, see Götze and Tikhomirov (2004, 2005) [69,70].

0.2 A brief survey of existing results on extreme eigenval-

ues

Another aspect that became the focus of research was the limiting behaviour near the

“edge”: of the extreme eigenvalues, spectral norm and spectral radius. This behaviour

of the extreme eigenvalues and related quantities is very nontrivial for most random

matrices. We now give a very brief survey of results on extreme eigenvalues.

0.2.1 Extreme of S matrix

Historically, one of the first successes in the study of the extreme eigenvalues was by

Geman (1980) [63], who proved that as n → ∞ and p/n → y, the largest eigenvalue of

S matrix converges almost surely to (1 +
√
y)2 under certain growth conditions on the

moments of the entries. Yin, Bai and Krishnaiah (1988) [136] proved the same result

under the existence of the fourth moment, and Bai, Silverstein and Yin (1988) [14]

proved that the existence of the fourth moment is also necessary for the existence of the

limit. Silverstein (1989) [111] found a necessary and sufficient condition for the weak

convergence of the largest eigenvalue of S to a nonrandom limit.

It was much harder to study the convergence of the smallest eigenvalue of S. The

first breakthrough was obtained in Silverstein (1985) [110], who established that the

smallest eigenvalue of S converges to (1−√
y)2 almost surely when the entries are i.i.d.

standard normal and p/n → y, n → ∞. Bai and Yin (1993) [18] proved the almost

sure convergence of the smallest eigenvalue under finiteness of fourth moment of the

underlying distribution. As a byproduct, they also established the almost sure limit of

the largest eigenvalue of the S matrix.

Johansson (2000) [76] proved that the properly scaled largest eigenvalue of S

converges weakly to the Tracy-Widom law as n, p (dimension of Xn) tends to ∞,

n/p → γ > 0 and the entries are i.i.d. complex Gaussian. Johnstone (2001) [77]

proved a similar result when the entries are real Gaussian. Soshnikov (2002) [116] gen-

eralized these results in two directions. He proved that the joint distribution of the

upper ordered eigenvalues of Wishart matrices (after proper scaling) converges to the

joint Tracy-Widom distribution and also extended the results to non-Gaussian entries

provided n − p = O(p1/3). El Karoui (2003) [54] extended the result of Johnstone to

the case p/n → 0 or ∞. Onatski (2008) [94] showed that the joint distribution of the
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centered and scaled several largest eigenvalues of p-dimensional complex Wishart ma-

trix converges to the joint Tracy-Widom law when n and p tend to infinity so that n/p

remains in a compact subset of (0, ∞). This result was the extension of results of Baik,

Ben Arous and Péché (2005) [20] and El Karoui (2007) [55] who studied the asymptotic

distribution of the largest eigenvalue of the complex Wishart matrix as n and p go to

infinity so that n/p remains in a compact subset of [1, ∞). Péché (2009) [98] generalized

the result of Soshnikov (2002) [116] when p/n→ γ where γ ∈ (0, ∞]. For results on the

smallest singular values of n×n matrix with i.i.d. entries, see Tao and Vu (2010) [106].

They showed that the limiting distribution of the smallest singular value is universal

in the sense that it does not depend on the distribution of the entries. In particular, it

converges to the same limiting distribution as in the special case when the entries are

i.i.d. real Gaussian, and which was explicitly calculated by Edelman (1988) [52].

0.2.2 Extreme of Wigner matrix

Juhász (1981) [79] and Füredi and Komlós (1981) [61] studied the asymptotic properties

of the largest eigenvalue of W under the existence of moments of all order. Sometimes

they assume the uniform boundedness of entries. Bai and Yin (1988) [17] found nec-

essary and sufficient conditions for almost sure convergence of the largest eigenvalue of

W . Some related work can be found in Geman (1986) [64] and Bai and Yin (1986) [15].

Geman proved that the spectral radius of a square matrix of i.i.d. entries, after proper

scaling tends to one almost surely under a growth condition on the moments of the

underlying distribution. The same result is proved in Bai and Yin (1986) [15] under

only the finiteness of the fourth moment of the entries, as a by-product of a main lemma

about the limiting behaviour of the operator norm of product of random matrices.

Soshnikov (2004) [117] considered the point process based on the positive eigen-

values of appropriately scaled W with heavy tailed entries {xij} satisfying P(|xij | >
x) = h(x)x−α where h is a slowly varying function at infinity and 0 < α < 2. He

showed that it converges to an inhomogeneous Poisson random point process and from

there, he deduced the distributional convergence of the maximum eigenvalue of an

appropriately scaled W with such heavy tailed entries. The limiting distribution is

Φα(x) = exp(−x−α). A similar result was proved for sample covariance matrices in

Soshnikov (2006) [118]. These results were extended in Auffinger, Ben Arous and Péché

(2009) [6] to 2 ≤ α < 4.

Another important class of matrices related to W are the Gaussian matrix ensembles,

which are Gaussian measures on spaces of Hermitian matrices A, obtained by multiply-

ing a translation-invariant measure by the Gaussian function exp(−Tr(A2)). The three

main examples are the Gaussian orthogonal ensemble on real Hermitian matrices, the

Gaussian unitary ensemble on complex Hermitian matrices, and the Gaussian symplec-
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tic ensemble on quaternionic Hermitian matrices. These matrices are also defined by

the density of their eigenvalues. The joint probability density of the eigenvalues is given

by (see Mehta (2004) [90])

Pnβ(x1, x2, . . . , xn) = Cnβe
− 1

2
β

Pn
i=1 x2

i

∏

j<k

|xj − xk|β.

For β = 1 the matrices are n×n real Hermitian, for β = 2 the matrices are n×n complex

Hermitian, and for β = 4 the matrices are 2n × 2n self-dual Hermitian or quaternionic

Hermitian matrices. For β = 4 each eigenvalue has multiplicity two.

The distributional convergence of the largest eigenvalue of Gaussian orthogonal,

unitary and symplectic ensembles were studied by Tracy and Widom (1994, 1996) [123,

124] in a series of articles. See Tracy and Widom (2000) [125] for a brief survey of such

results. Soshnikov (1999) [115] showed that after proper scaling, the first, second, third,

etc. eigenvalues of Wigner random hermitian (respectively, real symmetric) matrix

weakly converge to the distributions established by Tracy and Widom for Gaussian

unitary (respectively, Gaussian orthogonal) cases. Péché and Soshnikov (2007) [99]

established a probabilistic upper bound on the spectral radius of W with i.i.d. bounded

centered but non-symmetrically distributed entries. Péché and Soshnikov (2008) [100],

established a probabilistic lower bound on the spectral radius of W with same type of

entries and combining both the results, they established a rate of convergence result for

the spectral radius of W . For some recent results on extreme gaps of the eigenvalues of

Gaussian unitary ensembles see Ben Arous and Bourgade (2010) [24].

0.3 Some motivation to study circulant and related ma-

trices

In the previous section we have briefly mentioned some of the more common random

matrices (Wigner, S, Toeplitz and Hankel) and the results known on their LSD and

extreme eigenvalues. All these matrices are patterened random matrices.

In this thesis we concentrate on some specific type of patterned matrices, namely,

circulant, symmetric circulant, reverse circulant, k-circulant and Toeplitz matrices. An

n× n k-circulant matrix is defined as

Ak,n =




x0 x1 x2 . . . xn−2 xn−1

xn−k xn−k+1 xn−k+2 . . . xn−k−2 xn−k−1

xn−2k xn−2k+1 xn−2k+2 . . . xn−2k−2 xn−2k−1

...

xk xk+1 xk+2 . . . xk−2 xk−1




n×n

.
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For 1 ≤ j < n− 1, its (j + 1)-th row is obtained by giving its j-th row a right circular

shift by k positions (equivalently, k mod n positions). For k = 1 and k = n − 1, it is

known as circulant matrix (Cn) and reverse circulant matrix (RCn) respectively. For

detailed description of all these matrices, see Section 1.1.

Why should one study such matrices?

Nonrandom Toeplitz matrices and the corresponding Toeplitz operators are of course

well studied objects in mathematics. Circulant matrices play a crucial role in the study

of large dimensional Toeplitz matrices with nonrandom input. See, for example, Grenan-

der and Szegő (1984) [74] and Gray (2006) [66]. Toeplitz matrices appear as the co-

variance matrix of stationary processes, in shift-invariant linear filtering and in many

aspects of combinatorics, time series and harmonic analysis. Bai (1999) [10] proposed

the study of large Toeplitz matrix with independent inputs. So, one of the motivations

to study circulant matrix is to understand the behaviour of the Toeplitz matrix.

The eigenvalues of the circulant matrices also arise crucially in time series analysis.

For instance, the periodogram of a sequence {al}l≥0 is defined as n−1|∑n−1
l=0 ale

2πij/n|2,

−⌊n−1
2 ⌋ ≤ j ≤ ⌊n−1

2 ⌋ and is a straightforward function of the eigenvalues of the cor-

responding circulant matrix. The study of the properties of the periodogram is funda-

mental in the spectral analysis of time series. See for instance Fan and Yao (2003) [58].

The maximum of the periodogram, in particular, has been studied in Davis and Mikosch

(1999) [50].

The k-circulant matrices and their block versions arise in areas such as multi-level

supersaturated design of experiment (Georgiou and Koukouvinos (2006) [65]), spectra

of De Bruijn graphs (Strok (1992) [109]) and (0, 1)-matrix solutions to Am = Jn (Wu,

Jia and Li (2002) [133]). See also Davis (1979) [49] and Pollock (2002) [101].

Patterned matrices have deep connection with free probability theory. Limiting spec-

tral distribution of such patterned matrices are related to different notions of indepen-

dence – classical independence, free independence and half independence. Researchers

studied the arbitrary product of Wigner matrices formed from a class of independent

Wigner matrices. It is well known that the trace of any such product converges and

this is tied to the idea of free independence developed by Voiculescu (1991) [126]. This

freeness in the limit is very special to the Wigner type matrices. Bose, Hazra and Saha

(2010) [38] studied the joint convergence of symmetric patterned matrices. In particu-

lar, they show that for independent copies of the Toeplitz, Hankel, symmetric circulant

and reverse circulant matrices, the tracial limits exist for any monomial formed with

these independent copies. It turns out that the symmetric circulant limit is classically

independent with Gaussian marginals. The reverse circulant limit is half independent

with symmetrized Rayleigh marginals. The Toeplitz and Hankel limits do not seem to

submit to any easy or explicit independence/dependence notions. These limits are not
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free, independent or half independent.

0.4 Plan of the thesis

We now present a guided tour of the thesis. The sequence {xi} or {xij} which will be

used to build our matrices is called the input sequence. The circulant, reverse circulant,

symmetric circulant and k-circulant matrices will together be called “circulant type

matrices”. We will investigate the following interesting aspects of (mainly) circulant

type matrices :

(i) Existence and identification of limiting spectral distribution (LSD) with indepen-

dent inputs.

(ii) Existence and identification of limiting spectral distribution (LSD) with dependent

inputs.

(iii) Distributional convergence of the spectral norm and spectral radius with light tail

inputs.

(iv) Distributional convergence of the spectral norm and spectral radius with heavy

tail inputs.

(v) Limiting behaviour of the maximum of modulus of the appropriately scaled eigen-

values with dependent inputs.

(vi) Convergence of the point process constructed from the eigenvalues of circulant

type matrices.

We now give a chapterwise brief description of this thesis. In Chapter 1 we describe the

structure of different circulant type matrices and their eigenvalues. We also give short

descriptions of other well known matrices in random matrix literature.

In Chapter 2 we deal with the limiting spectral distribution of the above mentioned

matrices. Limiting spectral distribution of the scaled eigenvalues of Toeplitz and circu-

lant type matrices are known when the input sequence is independent and identically

distributed with finite moments of suitable order. We reestablish these known limits

for circulant type matrices with lesser moment assumption on the input sequence. We

then derive the LSD of these matrices when the input sequence {xn} is a stationary,

two sided moving average process of infinite order, i.e.,

xn =

∞∑

i=−∞
aiǫn−i, where an ∈ R and

∑

n∈Z

|an| <∞. (0.4.1)
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The limits are suitable mixtures of normal, symmetric square root of the chi-square,

and other mixture distributions, with the spectral density of the process involved in

the mixtures. For instance, we prove that under some conditions on {xn}, the ESD of
1√
n
RCn (RCn is the reverse circulant) converges weakly to the distribution FR, where

FR(x) =





1 −
∫ 1/2
0 e

− x2

2πf(2πt)dt if x > 0
∫ 1/2
0 e

− x2

2πf(2πt) dt if x ≤ 0,

and f is the spectral density function of {xn}. Note that f is appearing in the limiting

distribution FR.

In Chapter 3 we digress from our main flow. There we identify the tail behaviour of

finite but arbitrary product of i.i.d. exponential random variables. Suppose

Hn(x) = P[E1E2 · · ·En > x]

where {Ei} are i.i.d. standard exponentials. We prove that

Hn(x) = Cnx
αne−nx

1
n gn(x), n ≥ 1,

where for n ≥ 1,

Cn =
1√
n

(2π)
n−1

2 , αn =
n− 1

2n
and gn(x) → 1 as x→ ∞.

As a consequence, it follows that this n fold product of i.i.d. exponentials lies in the

maximum domain of attraction of the Gumbel distribution for any n. We use this result

to derive the limiting distribution of spectral radius of k-circulant matrix in Chapter 4.

In Chapter 4 we consider the spectral norm of scaled Toeplitz, circulant, reverse

circulant, symmetric circulant and spectral radius of a class of k-circulant matrices when

the input sequence is independent and identically distributed with finite moments of

suitable order and the dimension of the matrix tends to ∞. We first review some known

results on the spectral norm of Toeplitz and Hankel matrices. Then we prove the almost

sure and the distributional convergence of the spectral norm of reverse circulant and

circulant matrices. For instance, suppose {xi} is i.i.d. with mean µ and E|xi|2+δ < ∞
for some δ > 0. Now consider the reverse circulant (RCn) matrix with inputs {xi}.

Then
‖RCn‖ − |µ|n√

n

D→ N(0, 1),

if µ 6= 0, and
‖ 1√

n
RCn‖ − dq

cq

D→ Λ
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if µ = 0, where

q = q(n) = ⌊n − 1

2
⌋, dq =

√
ln q, cq =

1

2
√

ln q

and Λ is the standard Gumbel distribution.

We then consider the joint behaviour of minimum and maximum eigenvalue of sym-

metric circulant matrix and from there we deduce the distributional convergence of the

spectral norm. We prove the distributional convergence of the spectral radius of k-

circulant matrix where n = kg + 1, g ≥ 2 and then give an idea of how to deal with the

more general case, sn = kg + 1 with some suitable condition on s. In most of the cases

after appropriate scaling and centering the limit distribution is the standard Gumbel

distribution.

In Chapter 5 we consider the distributional convergence of the spectral norm of

the scaled eigenvalues of large dimensional circulant, reverse circulant and symmetric

circulant matrices when the input sequence is independent and identically distributed

with appropriate heavy tail. For instance, suppose {Zt, t ∈ Z} is a sequence of i.i.d.

random variables with common distribution F where F is in the domain of attraction

of an α-stable random variable with 0 < α < 1. Now consider RCn with input sequence

{Zt}. Then under some conditions on {Zt}, we show that ‖b−1
n RCn‖ D→ Yα, where Yα is

distributed as Sα(C
− 1

α
α , 1, 0) and bn ≈ n1/αL0(n) for some slowly varying function L0.

Note that in this heavy tail situation the limit distribution is different from the Gumbel

distribution. We also establish the distributional convergence of the spectral norm of

circulant and symmetric circulant matrices. With such heavy tail inputs we are not able

to obtain the exact limit of the spectral norm of the Toeplitz matrix. But we provide

good upper and lower bounds in the distributional sense.

When the input sequence is a stationary two sided moving average process of infinite

order, it is difficult to derive the limiting distribution of the spectral norm. For such

an input sequence, we scale the eigenvalues of circulant type matrices by the spectral

density at appropriate ordinates and study the limiting behaviour of the maximum

of the modulus say M , in Chapter 6. There in Section 6.1 we consider stationary

two sided moving average process of infinite order based on light tail entries and show

distributional convergence of M for circulant type matrices. For instance, suppose {xn}
is the two sided moving average process as in (0.4.1) and

M(n−1/2RCn, f) = max
1≤k< n

2

|λk|√
2πf(ωk)
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where λk are the eigenvalues of n−1/2RCn and f is the spectral density of {xn}. Then

under some assumptions on {xn} we show that

M(n−1/2RCn, f) − dq

cq

D→ Λ,

where q = q(n) = ⌊n−1
2 ⌋, dq =

√
ln q and cq = 1

2
√

ln q
.

Then in Section 6.2, we again consider the maximum of the modulus of scaled

eigenvalues (M) but with heavy tail entries and establish the weak limit of M for

reverse circulant, circulant and symmetric circulant matrices.

In Chapter 7 we consider the point processes based on the eigenvalues of the reverse

circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that

they converge to Poisson random measures in vague topology. For example, let

ηn(·) =

q∑

j=0

ǫ(
ωj ,

λj−bq

aq

)(·)

be a point process based on the points {(ωj ,
λj−bq

aq
), 0 ≤ j < q} where {λj} are the

eigenvalues of n−1/2RCn and {ωj = 2πj
n } are the Fourier frequencies, aq, bq are appro-

priate scaling and centering constants and q = ⌊n
2 ⌋. Then under some conditions on the

entries we showed that ηn
D→ η, where η is a Poisson process on [0, π] × (−∞,∞] with

intensity measure π−1dt × e−xdx.

The joint convergence of upper k-ordered eigenvalues and their spacings follow from

this result of Poisson convergence. We extend these results partially to the situation

where the entries come from a two sided moving average process.

In Chapter 8 we list some open problems that arise in the context of the thesis.
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Chapter 1

Matrices and eigenvalues

In this chapter we give a brief description of the matrices of our interest. Although

some of them have been already introduced in Chapter 0, for the sake of completeness,

we again discuss them here. Then we describe their eigenvalues whenever they can

be obtained in some explicit form. In Section 1.1, we first describe the circulant type

matrices, and the Toeplitz and the Hankel matrix. In later chapters we deal mainly with

these matrices. At the end of this section we give a brief description of two other well

known matrices, namely, the Wigner matrix and the sample covariance type matrix.

In Section 1.2, we describe the structure of the eigenvalues of circulant type matrices,

which will be used extensively in later chapters.

1.1 Some LDRMs of interest

The sequence of variables which will be used to construct the matrices is called the

input sequence. It shall be of the form {xi; i ≥ 0} or {xij; i, j ≥ 1}.

Circulant matrix: The circulant matrix is defined as

Cn =




x0 x1 x2 . . . xn−2 xn−1

xn−1 x0 x1 . . . xn−3 xn−2

xn−2 xn−1 x0 . . . xn−4 xn−3

...

x1 x2 x3 . . . xn−1 x0




n×n

.

For 1 ≤ j < n− 1, its (j + 1)-th row is obtained by giving its j-th row a right circular

shift by one positions and the (i, j)-th element of the matrix is x(j−i+n) mod n.

17
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Symmetric circulant matrix: The symmetric version of the usual circulant is defined

as

SCn =




x0 x1 x2 . . . x2 x1

x1 x0 x1 . . . x3 x2

x2 x1 x0 . . . x2 x3

...

x1 x2 x3 . . . x1 x0




n×n

.

The first row (x0 x1 x2 . . . x2 x1) is a palindrome and the (j + 1)-th row is obtained by

giving its j-th row a right circular shift by one position. Its (i, j)-th element is given by

xn/2−|n/2−|i−j||.

Reverse circulant matrix: The reverse circulant matrix is given by

RCn =




x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 x0

x2 x3 x4 . . . x0 x1

...

xn−1 x0 x1 . . . xn−3 xn−2




n×n

.

For 1 ≤ j < n − 1, its (j + 1)-th row is obtained by giving its j-th row a left circular

shift by one position. This is a symmetric matrix and its (i, j)-th element is given by

x(i+j−2) mod n.

k-circulant matrix: This is a generalization of the usual circulant matrix. For positive

integers k and n, the n× n k-circulant matrix is defined as

Ak,n =




x0 x1 x2 . . . xn−2 xn−1

xn−k xn−k+1 xn−k+2 . . . xn−k−2 xn−k−1

xn−2k xn−2k+1 xn−2k+2 . . . xn−2k−2 xn−2k−1

...

xk xk+1 xk+2 . . . xk−2 xk−1




n×n

.

We emphasize that all subscripts appearing above are calculated modulo n. For

1 ≤ j < n − 1, its (j + 1)-th row is obtained by giving its j-th row a right circular

shift by k positions (equivalently, k mod n positions). Observe that the circulant and

the reverse circulant are special cases of the k-circulant when we let k = 1 and k = n−1

respectively.
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Toeplitz matrix and palindromic Toeplitz matrix: The Toeplitz matrix is a

symmetric matrix and its (i, j)-th element is x|i−j|. So it is given by

Tn =




x0 x1 x2 . . . xn−2 xn−1

x1 x0 x1 . . . xn−3 xn−2

x2 x1 x0 . . . xn−4 xn−3

...

xn−1 xn−2 xn−3 . . . x1 x0




n×n

.

Nonrandom Toeplitz matrices have been around in mathematics for a long time and

their properties are well understood. See for example the classic book by Grenander

and Szegő (1984) [74]. Recent information on this matrix may be found in Böttcher

and Silbermann (1999) [45].

The palindromic Toeplitz matrix is the palindromic version of the usual symmetric

Toeplitz matrix. It is defined as (see Massey, Miller and Sinsheimer (2006) [88]),

PTn =




x0 x1 x2 . . . x2 x1 x0

x1 x0 x1 . . . x3 x2 x1

x2 x1 x0 . . . x4 x3 x2

...

x1 x2 x3 . . . x1 x0 x1

x0 x1 x2 . . . x2 x1 x0




n×n

.

Observe that the n× n principal minor of PTn+1 is SCn. So PTn is close to SCn.

Hankel matrix: The (i, j)-th entry of the n× n random Hankel matrix Hn is xi+j−2.

It is closely related to the Toeplitz matrix and is given by

Hn =




x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 xn

x2 x3 x4 . . . xn xn+1

...

xn−1 xn xn+1 . . . x2n−2 x2n−1




n×n

.

For detailed properties of Hankel matrices see the references cited above for the Toeplitz

matrices.

Now, we give brief description of a few well known matrices in random matrix liter-

ature though we shall not use them later.
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Wigner matrix: A Wigner matrix (see Wigner (1955,1958) [130,131]) of order n and

scale parameter σ is a Hermitian matrix of order n, whose entries above the diagonal

are independent complex random variables with zero mean and variance σ2, and whose

diagonal elements are i.i.d. real random variables. So this matrix is given by

Wn =




w11 w12 w13 . . . w1(n−1) w1n

w21 w22 w23 . . . w2(n−1) w2n

w31 w32 w33 . . . w3(n−1) w3n

...

wn1 wn2 wn3 . . . wn(n−1) wnn




n×n

where wkj = wjk for j < k.

Sample covariance type matrices: Suppose {xjk, j, k = 1, 2, . . .} is a double array

of i.i.d. complex random variables with mean zero and variance one. Write xk =

(x1k, . . . , xpk)′ and let Xn = [x1 x2 · · · xn]. In LDRM literature, the matrix

Sn = n−1XnX
∗
n

is called a sample covariance matrix (in short an S matrix). As a concrete example, if

{xij} are real normal random variable with mean zero and variance one, then Sn is a

Wishart matrix. Note that we do not centre the matrices at the sample means as is the

convention in defining the sample covariance matrix in the statistics literature. This

however, does not effect the LSD.

Now let Y
1/2
n be any p× p Hermitian matrix, independent of Xn. Define

Bn = n−1Y 1/2
n XnX

∗
nY

1/2
n .

The matrices Bn are called sample covariance type matrices.

Matrix with i.i.d. entries: The matrix with i.i.d. entries (real or complex) has

also received considerable attention in the literature and has given rise to the so called

circular law conjecture. It is given by

Un =




x0 x1 x2 . . . xn−2 xn−1

xn xn+1 xn+2 . . . x2n−2 x2n−1

x2n x2n+1 x2n+2 . . . x3n−2 x3n−1

...

xn2−n xn2−n+1 xn2−n+2 . . . xn2−2 xn2−1




n×n

.
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1.2 Description of eigenvalues

For most of the matrices in LDRM literature, explicit expression of the eigenvalues are

not known. Below we give brief descriptions of the eigenvalues of circulant type matrices

and we will use these descriptions very often in the later chapters. Define

ωk =
2πk

n
for 0 ≤ k ≤ n− 1. (1.2.1)

1.2.1 Circulant matrix

Its eigenvalues {λk, 0 ≤ k ≤ n−1} are given by (see, for example, Brockwell and Davis

(1991) [46]):

λk =

n−1∑

j=0

xj exp(iωkj) =

n−1∑

j=0

xj cos(ωkj) + i

n−1∑

j=0

xj sin(ωkj), 0 ≤ k ≤ n− 1.

1.2.2 Symmetric circulant matrix

The eigenvalues {λk, 0 ≤ k ≤ n− 1} of SCn are given by:

(a) for n odd:

λ0 = x0 + 2

⌊n
2
⌋∑

j=1

xj

λk = x0 + 2

⌊n
2
⌋∑

j=1

xj cos(ωkj), 1 ≤ k ≤ ⌊n
2
⌋

with λn−k = λk for 1 ≤ k ≤ ⌊n
2 ⌋.

(b) for n even:

λ0 = x0 + 2

n
2
−1∑

j=1

xj + xn/2

λk = x0 + 2

n
2
−1∑

j=1

xj cos(ωkj) + (−1)kxn/2, 1 ≤ k ≤ n

2

with λn−k = λk for 1 ≤ k ≤ n
2 .



Chapter 1: Matrices and eigenvalues 22

1.2.3 Reverse circulant matrix

The eigenvalues {λk, 0 ≤ k ≤ n− 1} are given by (Bose and Mitra (2002) [41]):

λ0 =

n−1∑

j=0

xj

λn
2

=
n−1∑

j=0

(−1)jxj, if n is even

λk = −λn−k = |
n−1∑

j=0

xj exp(iωkj)|, 1 ≤ k ≤ ⌊n− 1

2
⌋.

1.2.4 k-circulant matrix

Here we give a brief description of the eigenvalues of the general k-circulant matrix. A

more detailed analysis of the eigenvalues, useful in deriving the limiting distribution of

the spectral radius for a specific class of k-circulant matrices, has been developed in

Section 4.4.2. For further information on the properties of these eigenvalues, see Bose,

Mitra and Sen (2008) [44]. Let

ν = νn := cos(2π/n) + i sin(2π/n) and λk =
n−1∑

l=0

xlν
kl, 0 ≤ j < n. (1.2.2)

For any positive integers k, n, let p1 < p2 < . . . < pc be all their common prime factors

so that,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏

q=1

p
αq
q . (1.2.3)

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. For any positive integer s,

let

Zs = {0, 1, 2, . . . , s − 1}.

Now for fixed k and n, define the following sets

S(x) = {xkb mod n′ : b ≥ 0}, (1.2.4)

where 0 ≤ x < n′ and n′ is as in (1.2.3). For any set A, let #A denote its cardinality.

Let gx = #S(x) and

υk,n′ = #{x ∈ Zn′ : gx < g1}. (1.2.5)

We observe the following about the sets S(x).

1. S(x) = {xkb mod n′ : 0 ≤ b < #S(x)}.
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2. For x 6= u, either S(x) = S(u) or S(x)∩ S(u) = ∅. As a consequence, the distinct

sets from the collection {S(x) : 0 ≤ x < n′} forms a partition of Zn′ .

We shall call {S(x)} the eigenvalue partition of {0, 1, 2, . . . , n − 1} and we will denote

the partitioning sets and their sizes by

{P0 = {0},P1, . . . ,Pl−1}, and ni = #Pi, 0 ≤ i < l. (1.2.6)

Define

yj :=
∏

t∈Pj

λty, j = 0, 1, . . . , l − 1 where y = n/n′. (1.2.7)

The following theorem provides the formula solution for the eigenvalues of Ak,n. In

what follows, χ(A)(λ) stands for the characteristic polynomial of the matrix A evaluated

at λ but for ease of notation, we shall often suppress the argument λ and write simply

χ(A).

Theorem 1.2.1 (Zhou (1996) [138]). The characteristic polynomial of Ak,n is given by

χ (Ak,n) (λ) = λn−n′
ℓ−1∏

j=0

(λnj − yj) , (1.2.8)

where yj is as defined in (1.2.7).

Proof of the above theorem is available in Zhou (1996) [138](Chinese article) and

also in Bose, Mitra and Sen (2008) [44]. For sake of completeness we reproduce the

proof given in Bose, Mitra and Sen (2008) [44]. Here recall {αq} and {βq} from (1.2.3)

and define

m := max
1≤q≤c

⌈βq/αq⌉, [t]m,b := tkm mod b, b is a positive integer. (1.2.9)

Let em,d be a d× 1 vector whose only non-zero element is 1 at (m mod d)-th position,

Em,d be the d× d matrix with ejm,d, 0 ≤ j < d as its columns and for dummy symbols
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δ0, δ1, . . ., let ∆m,b,d be a diagonal matrix as given below.

em,d =




0
...

0

1

0
...

0




d×1

, (1.2.10)

Em,d =
[
e0,d em,d e2m,d . . . e(d−1)m,d

]
, (1.2.11)

∆m,b,d = diag
[
δ[0]m,b

, δ[1]m,b
, . . . , δ[j]m,b

, . . . , δ[d−1]m,b

]
. (1.2.12)

Note that

∆0,b,d = diag
[
δ0 mod b, δ1 mod b, . . . , δj mod b, . . . , δd−1 mod b

]
.

We need the following lemma for the main proof.

Lemma 1.2.2. Let π = (π(0), π(1), . . . , π(b−1)) be a permutation of (0, 1, . . . , b−1).

Let

Pπ =
[
eπ(0),b eπ(1),b . . . eπ(b−1),b

]
.

Then, Pπ is a permutation matrix and the (i, j)th element of P T
π Ek,b∆0,b,bPπ is given

by

(P T
π Ek,b∆0,b,bPπ)i,j =

{
δt if (i, j) = (π−1(kt mod b), π−1(t)), 0 ≤ t < b

0 otherwise.

The proof is easy and we omit it.

Lemma 1.2.3. Let k and b be positive integers. Then

χ (Ak,b) = χ (Ek,b∆0,b,b) . (1.2.13)

where, δj =
∑b−1

l=0 alω
jl, 0 ≤ j < b, ω = cos(2π/b) + i sin(2π/b), i2 = −1.

Proof. Define the b× b permutation matrix

Pb =

[
0 Ib−1

1 0T

]
.

Observe that for 0 ≤ j < b, the j-th row of Ak,b can be written as aTP jk
b where P jk

b
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stands for the jk-th power of Pb. From direct calculation, it is easy to verify that

Pb = UDU∗ is a spectral decomposition of Pb where

D = diag(1, ω, . . . , ωb−1), (1.2.14)

U = [u0 u1 · · · ub−1] with (1.2.15)

uj = b−1/2(1, ωj , ω2j , . . . , ω(b−1)j)T , 0 ≤ j < b.

Note that δj = aTuj , 0 ≤ j < b. From easy computations, it now follows that

U∗Ak,bU = Ek,b∆0,b,b,

so that, χ (Ak,b) = χ (Ek,b∆0,b,b), proving the lemma. 2

Lemma 1.2.4. Let k and b be positive integers and, x = b/gcd(k, b). Let for dummy

variables γ0, γ1, γ2, . . . , γb−1,

Γ = diag (γ0, γ1, γ2, . . . , γb−1) .

Then

χ (Ek,b × Γ) = λb−xχ
(
Ek,x × diag

(
γ0 mod b, γk mod b, . . . , γ(x−1)k mod b

))
(1.2.16)

Proof. Define the following matrices

Bb×x =
[
e0,b ek,b e2k,b . . . e(x−1)k,b

]
and P = [B Bc]

where Bc consists of those columns (in any order) of Ib that are not in B. This makes

P a permutation matrix.

Clearly, Ek,b = [B B · · · B] which is a b× b matrix of rank x, and we have

χ (Ek,bΓ) = χ
(
P TEk,bΓP

)
.
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Note that,

P TEk,bΓP =

[
Ix Ix . . . Ix

0(b−x)×x 0(b−x)×x . . . 0(b−x)×x

]
ΓP

=

[
C

0(b−x)×b

]
P

=

[
C

0(b−x)×b

]
[B Bc] =

[
CB CBc

0 0

]

where,

C = [Ix Ix · · · Ix] Γ

= [Ix Ix · · · Ix] × diag(γ0, γ1, . . . , γb−1).

Clearly, the characteristic polynomial of P TEk,bΓP does not depend on CBc, explaining

why we did not bother to specify the order of columns in Bc. Thus we have,

χ (Ek,bΓ) = χ
(
P TEk,bΓP

)
= λb−xχ (CB) .

It now remains to show that

CB = Ek,x × diag
(
γ0 mod b, γk mod b, γ2k mod b, . . . , γ(x−1)k mod b

)
.

Note that, the j-th column of B is ejk,b. So, j-th column of CB is actually the

(jk mod b)-th column of C. Hence, (jk mod b)-th column of C is γjk mod b ejk mod x.

So,

CB = Ek,x × diag
(
γ0 mod b, γk mod b, γ2k mod b, . . . , γ(x−1)k mod b

)

and the Lemma is proved completely. 2

Proof. of Theorem 1.2.1. We first prove the Theorem for Ak,n′. Since k and n′ are

relatively prime, by Lemma 1.2.3,

χ(Ak,n′) = χ(Ek,n′∆0,n′,n′).

Get the partitioning sets P0, P1, . . . of {0, 1, . . . , n′− 1}, as in (1.2.6) where Pj = {rjkx

mod n′, 0 ≤ x < #Pj} for some integer rj. Let N0 = 0 and Nj =
∑j

i=1 ni where

ni = #Pi. Define a permutation π on the set Zn′ as follows:

π(0) = 0 and π(Nj + t) = rj+1k
t−1 mod n′ for 1 ≤ t ≤ nj+1 and j ≥ 0.
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This permutation π automatically yields a permutation matrix Pπ as in Lemma 1.2.2.

Consider the positions of δv for v ∈ Pj in the product P T
π Ek,n′∆0,n′,n′Pπ. We know,

v = rjk
t−1 mod n′ for some 1 ≤ t ≤ nj. Thus,

π−1
(
rjk

t−1 mod n′
)

= Nj−1 + t, 1 ≤ t ≤ nj

so that, position of δv for v = rjk
t−1 mod n′, 1 ≤ t ≤ nj in P T

π Ek,n′∆0,n′Pπ is given by

(
π−1(rjk

t mod n′), π−1(rjk
t−1 mod n′)

)
=

{
(Nj−1 + t + 1, Nj−1 + t) if, 1 ≤ t < nj

(Nj−1 + 1, Nj−1 + nj) if, t = nj

Hence,

P T
π Ek,n′∆0,n′,n′Pπ = diag (L0, L1, . . .)

where, for j ≥ 0, if nj = 1 then Lj =
[
δrj

]
is a 1 × 1 matrix, and if nj > 1, then,

Lj =




0 0 0 . . . 0 δ
rjknj−1 mod n′

δrj mod n′ 0 0 . . . 0 0

0 δrjk mod n′ 0 . . . 0 0
...

0 0 0 . . . δrjknj−2 mod n′ 0.




Clearly, χ(Lj) = λnj − yj . Now the result follows from the identity

χ
(
Ek,n′∆0,n′,n′

)
=
∏

j≥0

χ(Lj) =
∏

j≥0

(λnj − yj).

Now let us prove the results for the general case. Recall that n = n′ × Πc
q=1p

βq
q . Then

again using Lemma 1.2.3,

χ(Ak,n) = χ(Ek,n∆0,n,n).

Recalling Equation (1.2.9), Lemma 1.2.3 and using Lemma 1.2.4 repeatedly with y =

n/n′,

χ(Ak,n) = χ(Ek,n∆0,n,n)

= λn−n′
χ(Ek,n′∆m,n,n′)

= λn−n′
χ(Ek,n′∆m+j,n,n′) [ for all j ≥ 0]

= λn−n′
χ
(
Ek,n′ × diag

(
δ[0]0,n

, δ[y]0,n
, δ[2y]0,n

, . . . , δ[(n′−1)y]0,n

))
.

Replacing ∆0,n′,n′ by diag
(
δ[0]0,n

, δ[y]0,n
, δ[2y]0,n

, . . . , δ[(n′−1)y]0,n

)
, we can mimic the rest

of the proof given for Ak,n′ , to complete the proof in the general case. 2
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Chapter 2

Limiting spectral distribution of

circulant type matrices

In this chapter we establish the limiting spectral distribution of circulant type random

matrices with dependent inputs. Bose and Mitra (2002) [41] first established the LSD

of reverse circulant matrix with i.i.d. input under finite third moment assumption and

Bose and Sen (2008) [43]) relaxed the moment assumption using a different approach.

Sen (2006) [108] established the LSD of the usual circulant matix under finite third

moment assumption of i.i.d. inputs. Recently Bose, Mitra and Sen (2008) [44] establish

LSD for some specific type of k-circulant matrices with i.i.d. entries. Thus most of the

existing work on LSD of circulant type matrices assumes the input sequence {xi} to be

independent.

It is interesting to see what happens to the LSD results of circulant type matrices if

dependent inputs are allowed. There are very few works dealing with dependent inputs

for random matrices. For instance, Bose and Sen (2008) [43] established LSD for some

specific type of dependent entries for the Toeplitz and Hankel matrices. Bai and Zhou

(2008) [19] established the LSD of large sample covariance matrices with AR(1) entries.

With the current methods used to establish LSD, such as the moment method or the

Stieltjes transform method, it does not appear to be easy to extend the known results

on LSD to general dependent situations for circulant type matrices. So we restrict

ourselves to a specific type of dependent inputs.

We assume that {xi} is a stationary linear process. Stationary linear process is an

important class of dependent sequence. For instance the widely used stationary time

series models such as AR, MA, ARMA are all linear processes. Under very modest

conditions on the process, we are able to establish the LSD for circulant type matrices.

These LSD are functions of the spectral density of the process.

Here is an outline of this chapter. In Section 2.1 we give a few basic definitions related

29
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to limiting spectral distribution of large dimensional random matrices. In Section 2.2

we briefly describe three methods of establishing LSD’s of different LDRM. Then in

Section 2.3 we deal with the LSD of circulant type matrices with independent entries

and in Section 2.4 we state and prove results on the LSD for dependent entries. In

Section 2.5 we report some simulation which demonstrate our theoretical results.

Throughout the chapter c and C will denote generic constants depending only on

dimension, d of the corresponding Euclidean space.

The results of Bose, Hazra and Saha (2009) [33] are based on this chapter.

2.1 Basic definitions

Unless otherwise stated, the entries of all matrices are real in general.

Definition 2.1.1. For any square matrix A, the probability distribution which puts equal

mass on each eigenvalue of A is called the Empirical Spectral Measure of A. The

corresponding distribution function is called the Empirical Spectral Distribution

Function (ESD) of A.

If λ is an eigenvalue of an n× n matrix An with multiplicity m, then the Empirical

Spectral Measure of An puts mass m/n at λ. Note that if the entries of A are random

then it is a random probability measure. If λ1, λ2, ..., λn are the eigenvalues, then the

Empirical Spectral Distribution Function (ESD) of An is given by

FAn(x, y) = n−1
n∑

i=1

I{R(λi) ≤ x, I(λi) ≤ y}.

If the eigenvalues are all real then the Empirical Spectral Distribution Function

(ESD) of An is given by

FAn(x) = n−1
n∑

i=1

I{λi ≤ x}.

The expected spectral distribution function of An is defined as E(Fn(·)). This ex-

pectation always exists and is a distribution function. The corresponding probability

distribution is often known as the expected spectral measure.

Definition 2.1.2. Let {An}∞n=1 be a sequence of square matrices with the correspond-

ing ESD {FAn}∞n=1. The Limiting Spectral Distribution (LSD) of the sequence is

defined as the weak limit of the sequence {FAn}, if it exists. If {An} are random, the

limit is understood to be in some probabilistic sense, such as “almost surely” or “in L2”

or “in probability”.
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Suppose elements of {An} are defined on some probability space (Ω,F ,P), that

is, {An} are random. Then {FAn(·)} are random and are functions of ω ∈ Ω but we

suppress this dependence. Let F be a nonrandom distribution function. We say the

ESD of An converges to F almost surely if for almost every ω ∈ Ω and at all continuity

points (x, y) of F

FAn(x, y) → F (x, y) as n→ ∞.

We say the ESD of An converges to F in L2 if at all continuity points (x, y) of F ,

∫

Ω

[
FAn(x, y) − F (x, y)

]2
dP(ω) → 0 as n→ ∞.

The ESD of An converges to F in probability if for ǫ > 0 and at all continuity points

(x, y) of F ,

P(|FAn(x, y) − F (x, y)| > ǫ) → 0 as n→ ∞.

It is easy to see that in this case,

convergence almost surely ⇒ convergence in L2 ⇔ convergence in probability .

2.2 Methods used in establishing LSD

Several methods to establish the LSD of LDRM are known in the literature. Out

of these, the two most common methods are the moment method and the Stieltjes

transform method. Though, in this thesis we will not use any of them, for sake of

completeness we briefly explain these two methods below. Then we explain the method

of normal approximation which is most suited for circulant type matrices. This will be

our method of choice in this thesis.

2.2.1 Moment method

Suppose {Yn} is a sequence of real valued random variables with distribution functions

{Fn} such that E(Y h
n ) → βh for every positive integer h where {βh} satisfies Carleman’s

condition: ∞∑

h=1

β
−1/2h
2h = ∞. (2.2.1)

Then there exists a distribution function F , such that for all h

β(h) = βh(F ) =

∫
xhdF (x).

and Yn converges to F in distribution.
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For any positive integer h, the h-th moment of the ESD of a real symmetric n × n

matrix A, with eigenvalue λ1, λ2, . . . , λn has the following nice form:

h-th moment of the ESD of A =
1

n

n∑

i=1

λh
i =

1

n
tr(Ah) = βh(A), say.

Now, suppose {An} is a sequence of n× n real symmetric random matrices such that

βh(An) → βh.

Here the convergence takes place either “in probability” or “almost surely” and {βh}
are nonrandom. If {βh} satisfies Carleman’s condition then we can say that the LSD of

the sequence {An} exists and is some distribution function F (in the corresponding “in

probability” or “almost sure” sense).

If convergence of the empirical moments takes place almost surely, then

ω ∈ {ω ∈ Ω : βh(An)(ω) → βh, for all h} ⇒ Fn(ω)
D→ F,

where Fn is the ESD of An. That is, Fn
D→ F a.s.

Note that the computation of βh(An) involves computing the trace of Ah
n or at least

its leading term. This ultimately reduces to counting the number of contributing terms

in the following expansion, (aij denotes the (i, j)-th entry of A):

tr(Ah) =
∑

1≤i1,i2,...,ih≤n

ai1i2ai2i3 · · · aih−1ihaihi1.

The method, though straightforward, is not practically manageable in most cases. The

combinatorial arguments involved become quite unwieldy and even practically impossi-

ble as h and n increase.

However, this method has been successfully applied to Wigner matrix, sample co-

variance matrix and F matrix and recently to symmetric Toeplitz, Hankel, Markov,

reverse circulant and symmetric circulant matrices. See Bai (1999) [10] for some of the

arguments in connection with Wigner, sample covariance and F matrices. For the ar-

guments concerning Toeplitz, Hankel and Markov matrices see Bryc, Dembo and Jiang

(2006) [47] and Hammond and Miller (2005) [75]. For palindromic Toeplitz and circu-

lant matrices, see Massey, Miller and Sinsheimer (2007) [88] and for reverse circulant

and symmetric circulant matrices, see Bose and Sen (2008) [43].
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2.2.2 Stieltjes transform method

Stieltjes transforms play an important role in deriving LSDs. They have also been used

in studying rates of convergence.

Definition 2.2.1. For any function G of bounded variation on the real line, its Stieltjes

transform sG is defined on {z : u+ iv, v 6= 0} as

sG(z) =

∫ ∞

−∞

1

x− z
G(dx).

We shall be concerned with cases where G is the cumulative distribution function

of some probability distribution on real line. If A has real eigenvalues λi, 1 ≤ i ≤ n,

then the Stieltjes transform of the ESD of A is

sA(z) =
1

n

n∑

i=1

1

λi − z
=

1

n
tr[(A− zI)−1].

Let {An} be a sequence of random matrices with real eigenvalues and let the corre-

sponding sequence of Stieltjes transform be {mn}. If mn → m in some suitable manner,

where m is a Stieltjes transform, then the LSD of the sequence {An} is the unique prob-

ability on the real line whose Stieltjes transform is the function m. The convergence

of the sequence {mn} is verified by first showing that it satisfies some (approximate)

recursion equation. Solving the limiting form of this equation identifies the Stieltjes

transform of the LSD.

For detailed developments of the properties of Stieltjes transform see Silverstein

(2009) [113]. The method has been successfully applied to the Wigner and the sample

covariance type matrices. See Bai (1999) [10] for details on the use of this transform to

derive the convergence of the ESD. For its application in the study of rate of convergence

of ESD see Bai (1999) [10], Bai, Miao and Yao (2003) [12] and Götze and Tikhomirov

(2004, 2005) [69,70].

2.2.3 Method of normal approximation

This method is most suited for the circulant type matrices. To apply this method

fruitfully, one has to know the explicit formula of the eigenvalues. For most of the

matrices in the literature, it is very difficult to compute the eigenvalues. However, as

we have seen, for circulant type matrices the eigenvalue formula is known explicitly.

This makes the normal approximation method ideally suited for those matrices. Bose

and Mitra (2002) [41] first used this method to find the LSD of reverse circulant and

symmetric circulant matrices with i.i.d. entries. Recently Bose, Mitra and Sen (2008)



Chapter 2: Limiting spectral distribution of circulant type matrices 34

[44] used this to establish the LSD for some specific type of k-circulant matrices with

i.i.d. entries.

We use this method to prove the LSD results of circulant type matrices with inde-

pendent and dependent inputs. This method is explained in details later in Sections 2.3

and 2.4.

2.3 Results on LSD with independent inputs

First recall that the ESD of An converges to F in L2, where F is a distribution function,

if at all continuity points (x, y) of F ,

∫

Ω

[
FAn(x, y) − F (x, y)

]2
dP(ω) → 0 as n→ ∞. (2.3.1)

Note that the above relation holds if

E[FAn(x, y)] → F (x, y) and V [FAn(x, y)] → 0 (2.3.2)

at all continuity points (x, y) of F . We often write Fn for FAn when the sequence of

matrices under consideration is clear from the context.

As mentioned earlier we use the method of normal approximation to prove our

results. For this we first state the following result on normal approximation (Berry-

Esséen bound).

Lemma 2.3.1. Let X1, . . . ,Xk be independent random vectors with values in R
d, having

zero means and an average positive-definite covariance matrix Vk = k−1
∑k

j=1Cov(Xj).

Let Gk denote the distribution of k−1/2Tk(X1 + · · · + Xk), where Tk is the symmetric,

positive-definite matrix satisfying T 2
k = V −1

k , n ≥ 1. If for some δ > 0, E ‖Xj‖(2+δ) <

∞, then there exists C > 0 (depending only on d), such that

(i)

sup
B∈C

|Gk(B) − Φd(B)| ≤ Ck−δ/2[λmin(Vk)]−(2+δ)ρ2+δ

(ii) for any Borel set A,

|Gk(A) − Φd(A)| ≤ Ck−δ/2[λmin(Vk)]−(2+δ)ρ2+δ + 2 sup
y∈Rd

Φd((∂A)η − y)

where Φd is the standard d dimensional normal distribution function, C is the class

of all Borel measurable convex subsets of Rd, ρ2+δ = k−1
∑k

j=1 E ‖Xj‖(2+δ) and η =

Cρ2+δn
−δ/2.

Proof of Lemma 2.3.1 follows easily from Corollary 18.1, page 181 and Corollary
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18.3, page 184 of Bhattacharya and Rao (1976) [28]. We omit its proof. Now consider

the following assumption.

Assumption 2.3.2. {xi} are independent, E(xi) = 0, V (xi) = 1 and supi E |xi|2+δ <

∞.

We are now ready to establish the LSD of different circulant type matrices with

independent inputs satisfying Assumption 2.3.2. Most of the results in this section are

known in the literature but in all cases at least finiteness of third moment of i.i.d. inputs

had been assumed. Here by using a better Berry-Esséen bound we reduce the moment

condition to (2 + δ) for some δ > 0. These results are also precursor to the new results

on the LSD for dependent inputs derived in the later sections.

The first theorem is on the LSD of usual circulant matrix with independent inputs.

Theorem 2.3.3. If Assumption 2.3.2 is satisfied then the ESD of 1√
n
Cn converges in

L2 to the two-dimensional normal distribution given by N(0,D) where D is a 2 × 2

diagonal matrix with diagonal entries 1/2.

Remark 2.3.4. Sen (2006) [108] proves the same result under finite third moment

assumption. Meckes (2009) [91] shows similar type of result for independent complex

entries. In particular, if E(xj) = 0, E |xj |2 = 1 and

lim
n→∞

1

n

n−1∑

j=0

E(|xj |2I|xj |>ǫ
√

n) = 0

for every ǫ > 0, then the ESD converges in L2 to the standard complex normal distri-

bution.

Proof of Theorem 2.3.3. First recall the eigenvalues of circulant matrices from Section

1.2.1 and then observe that we may ignore the eigenvalue λn and also λn/2 whenever n

is even since they contribute atmost 2/n to the ESD Fn(x, y). So for x, y ∈ R,

E[Fn(x, y)] ∼ n−1
n−1∑

k=1,k 6=n/2

P(bk ≤ x, ck ≤ y),

where

bk =
1√
n

n−1∑

j=0

xj cos(ωkj), ck =
1√
n

n−1∑

j=0

xj sin(ωkj), ωk =
2πk

n
. (2.3.3)

Recall from (2.3.2) that it is enough to show

E[Fn(x, y)] → Φ0,D(x, y) and V [Fn(x, y)] → 0.
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To show E[Fn(x, y)] → Φ0,D(x, y), define for 1 ≤ k ≤ n − 1, (except for k = n/2) and

0 ≤ l ≤ n− 1,

Xl,k =
(√

2xl cos(ωkl),
√

2xl sin(ωkl)
)′
.

Note that

E(Xl,k) = 0 (2.3.4)

n−1
n−1∑

l=0

Cov(Xl,k) = I (2.3.5)

sup
n

sup
1≤k≤n

[n−1
n−1∑

l=0

E ‖ Xlk ‖(2+δ)] ≤ C <∞. (2.3.6)

For k 6= n/2

(bk ≤ x, ck ≤ y) =
{
n−1/2

n−1∑

l=0

Xl,k ≤ (
√

2x,
√

2y)′
}
.

Since {(r, s) : (r, s)′ ≤ (
√

2x,
√

2y)′} is a convex set in R2 and {Xl,k, l = 0, 1, . . . (n−1)}
satisfies (2.4.9)–(2.4.11), we can apply Part (i) of Lemma 2.3.1 for k 6= n/2 to get

∣∣P
(
n−1/2

n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′
)
− P

(
(N1, N2)′ ≤ (

√
2x,

√
2y)′

)∣∣

≤ Cn−δ/2[n−1
n−1∑

l=0

E ‖Xlk‖(2+δ)] ≤ Cn−δ/2 → 0, as n→ ∞.

Therefore

lim
n→∞

E[Fn(x, y)] = lim
n→∞

1

n

n−1∑

k=1,k 6=n/2

P
(
bk ≤ x, ck ≤ y

)

= lim
n→∞

1

n

n−1∑

k=1,k 6=n/2

(N1, N2)′ ≤ (
√

2x,
√

2y)′
)

= Φ0,D(x, y). (2.3.7)

Now, to show V [Fn(x, y)] → 0, it is enough to show that

1

n2

n∑

k 6=k′;k,k′=1

Cov(Jk, Jk′) =
1

n2

n∑

k 6=k′;k,k′=1

[E(Jk, Jk′) − E(Jk) E(Jk′)] → 0. (2.3.8)
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where for 1 ≤ k ≤ n, Jk is the indicator that {bk ≤ x, ck ≤ y}. Now as n→ ∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk) E(Jk′) =
[ 1

n

n∑

k=1

E(Jk)
]2 − 1

n2

n∑

k=1

[
E(Jk)

]2 →
[
Φ0,D(x, y)]2.

So to show (2.3.8), it is enough to show as n→ ∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk, Jk′) →
[
Φ0,D(x, y)

]2
.

Along the lines of the proof used to show (2.3.7) one may now extend the vectors of two

coordinates defined above to ones with four coordinates and proceed exactly as above

to verify this. We omit the routine details. This completes the proof of Theorem 2.3.3.

2

In the following two theorems we state the LSD results for symmetric circulant and

reverse circulant matrices with independent entries. Idea of the proof is similar to the

previous proof, so we skip it.

Theorem 2.3.5. If {xi} satisfies Assumption 2.3.2, then the ESD of 1√
n
SCn converges

weakly in L2 to the standard normal distribution.

Theorem 2.3.6. If {xi} satisfies Assumption 2.3.2 then the ESD of 1√
n
RCn converges

weakly in L2 to F , which is the symmetric square root of the chi-square with two degrees

of freedom, having density

f(x) = |x| exp(−x2), −∞ < x <∞. (2.3.9)

This limiting distribution is also known as the symmetrized Rayleigh distribution.

Remark 2.3.7. Bose and Mitra (2002) [41] prove similar results for symmetric circu-

lant and reverse circulant matrices with finite third moment assumption on i.i.d. inputs.

Here by using better Berry-Esséen bound we reduce the moment condition.

Remark 2.3.8. One can derive the LSD of the palindromic Toeplitz matrix using The-

orem 2.3.5. For this, we use Cauchy’s interlacing inequality (see Bhatia (1997) [27],

page 59):

Interlacing inequality: Suppose A is an n× n symmetric real matrix with eigen-

values λn ≥ λn−1 ≥ . . . ≥ λ1. Let B be the (n − 1) × (n − 1) principal submatrix of A

with eigenvalues µn−1 ≥ . . . ≥ µ1. Then

λn ≥ µn−1 ≥ λn−1 ≥ µn−2 ≥ . . . ≥ λ2 ≥ µ1 ≥ λ1.
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As a consequence

‖FA − FB‖∞ ≤ 1

n

where FA denote the ESD of the matrix A and ‖f‖∞ = supx |f(x)|.

By using interlacing inequality, if {xi} satisfies Assumption 2.3.2, then the ESD of
1√
n
PTn converges weakly in L2 to the standard normal distribution.

2.3.1 k-circulant matrix

Now we come to the k-circulant matrix. Establishing the LSD for general k-circulant

matrices appears to be a difficult problem. From the formula solution of the eigenvalues

of k-circulant matrix, given in Section 1.2.4 it is clear that for many combinations of

k and n, a lot of eigenvalues are zero. For example, if k is prime and n = m × k

where gcd(m,k) = 1, then 0 is an eigenvalue with multiplicity (n −m). To avoid this

degeneracy and to keep our exposition simple, we primarily restrict our attention to the

case when gcd(k, n) = 1.

In general, the structure of the eigenvalues depend on the number theoretic relation

between k and n. If we keep k (other than 1) fixed and let n tends to infinity, then LSD

may not exist. For example, the LSD of usual circulant matrices n−1/2A1,n is bivariate

normal. The ESD of 2-circulant matrix n−1/2A2,n looks like a solar ring with no mass at

zero for n large odd whereas if n is even the LSD has mass at zero (see Figures 2.1 and

2.2). Similarly, if k = 3 then the behaviour of the ESD depends on whether n is multiple

of 3 or not a multiple of 3 (see Figures 2.2 and 2.3). So, for a fixed value of k(6= 1)

the LSD may exist if we let n goes to infinity only along a subsequence depending on

k. LSD in a few special cases are derived in Bose, Mitra and Sen (2008) [44] for i.i.d.

inputs. The next theorem of Bose, Mitra and Sen (2008) [44] tells us that the radial

component of the LSD of k-circulants with k ≥ 2 is always degenerate, at least when

the input sequence is i.i.d. normal, as long as k = no(1) and gcd(k, n) = 1. Observe

that, in this case also n tends to infinity along a subsequence and it is determined by

the condition gcd(k, n) = 1.

Theorem 2.3.9 (Bose, Mitra and Sen (2008) [44]). Suppose {xi}i≥0 is an i.i.d. se-

quence of N(0, 1) random variables. Let k ≥ 2 be such that k = no(1) and n → ∞ with

gcd(n, k) = 1. Then Fn−1/2Ak,n
converges weakly in probability to the uniform distri-

bution over the circle with center at (0, 0) and radius r = exp(E[log
√
E]), E being an

exponential random variable with mean one.

In some special cases Bose, Mitra and Sen (2008) [44] prove the LSD with indepen-

dent entries. In particular, suppose {xi} are independent satisfying Assumption 2.3.2.

Let {Ei} be i.i.d. Exp(1), U1 be uniformly distributed over (2g)-th roots of unity, U2 be
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uniformly distributed over the unit circle where {Ui}, {Ei} are mutually independent.

Then the following results are established there.

Theorem 2.3.10 (Bose, Mitra and Sen (2008) [44]). Suppose {xl}l≥0 satisfies Assump-

tion 2.3.2. Fix g ≥ 1 and let p1 be the smallest prime divisor of g.

(i) Suppose kg = −1 + sn where s = 1 if g = 1 and s = o(np1−1) if g > 1. Then

Fn−1/2Ak,n
converges weakly in probability to U1(

∏g
j=1Ej)

1/2g as n→ ∞.

(ii) Suppose kg = 1+sn where s = 0 if g = 1 and s = o(np1−1) if g > 1. Then Fn−1/2Ak,n

converges weakly in probability to U2(
∏g

j=1Ej)
1/2g as n→ ∞.

2.4 Result on LSD with dependent inputs

In this section we investigate the existence of the LSD of circulant type matrices under

the following dependent situation.

Assumption 2.4.1. {xn, n ≥ 0} is a two sided moving average process

xn =

∞∑

i=−∞
aiǫn−i, where an ∈ R and

∑

n∈Z

|an| <∞. (2.4.1)

Assumption 2.4.2. {ǫi, i ∈ Z} are i.i.d. random variables with mean zero, variance

one and E |ǫi|2+δ <∞ for some δ > 0.

We show that the LSD of circulant type matrices continue to exist in this depen-

dent situation under appropriate conditions on the spectral density of the process. The

LSD turn out to be appropriate mixtures of the normal distribution, the symmetrized

Rayleigh distribution, and some other related distributions. Quite expectedly, the spec-

tral density of the process is involved in these mixtures. These results also reduce to

the results given in Section 2.3 when we specialize to i.i.d. inputs.

2.4.1 Spectral density and some notation

Under Assumptions 2.4.1 and 2.4.2, γh = Cov (xt+h, xt) is finite and
∑

j∈Z
|γj | < ∞.

The spectral density function f of {xn} exists, is continuous, and is given by

f(ω) =
1

2π

∑

k∈Z

γk exp(ikω) =
1

2π

[
γ0 + 2

∑

k≥1

γk cos(kω)
]

for ω ∈ [0, 2π].

Let

In(ωk) =
1

n

∣∣
n−1∑

t=0

xte
−itωk

∣∣2, k = 0, 1, . . . , n− 1, (2.4.2)
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denote the periodogram of {xi} where ωk = 2πk/n are the Fourier frequencies.

Define

ψ(eiω) =

∞∑

j=−∞
aje

ijω, ψ1(eiω) = R[ψ(eiω)], ψ2(eiω) = I[ψ(eiω)], (2.4.3)

where ai’s are as in (2.4.1). It is easy to see that

|ψ(eiω)|2 = [ψ1(eiω)]2 + [ψ2(eiω)]2 = 2πf(ω).

Let

B(ω) =

(
ψ1(eiω) −ψ2(eiω)

ψ2(eiω) ψ1(eiω)

)
and for g ≥ 2,

B(ω1, ..., ωg) =




ψ1(eiω1) −ψ2(eiω1) 0 0 · · · 0

ψ2(eiω1) ψ1(eiω1) 0 0 · · · 0

0 0 ψ1(eiω2) −ψ2(eiω2) · · · 0

0 0 ψ2(eiω2) ψ1(eiω2) · · · 0

0 0 0 0
... 0

0 0 0 · · · ψ1(eiωg ) −ψ2(eiωg )

0 0 0 · · · ψ2(eiωg ) ψ1(eiωg )




.

The above sets, functions and matrices will play a crucial role in the statements and

proofs of the main results later.

2.4.2 Circulant matrix with dependent input

Define for (x, y) ∈ R
2 and ω ∈ [0, 2π],

HC(ω, x, y) =

{
P
(
B(ω)(N1, N2)′ ≤

√
2(x, y)′

)
if f(ω) 6= 0,

I(x ≥ 0, y ≥ 0) if f(ω) = 0,

where N1 and N2 are i.i.d. standard normal variables.

Let

C0 = {t ∈ [0, 1] : f(2πt) = 0}.

Lemma 2.4.3. (i) For fixed x, y, HC is a bounded continuous function in ω.

(ii) FC defined as follows is a proper distribution function.

FC(x, y) =

∫ 1

0
HC(2πs, x, y)ds. (2.4.4)
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(iii) If Leb(C0) = 0 then FC is continuous everywhere and can be expressed as

FC(x, y) =

∫∫
I{(v1,v2)≤(x,y)}

[ ∫ 1

0

1

2π2f(2πs)
e
− v2

1+v2
2

2πf(2πs) ds
]
dv1dv2. (2.4.5)

Further, FC is bivariate normal if and only if f is constant almost everywhere

(Lebesgue).

(iv) If Leb(C0) 6= 0 then FC is discontinuous only on D1 = {(x, y) : xy = 0}.

The proof of the Lemma is easy and we omit it. We just show how the normality

claim in (iii) follows by applying Cauchy-Schwarz inequality to compare the fourth

moment and square of the variance and using the fact that for the normal distribution

their ratio equals 3.

Proof of 2.4.3 (iii). If f is constant it easy to see that FC is bivariate normal. Now sup-

pose FC is bivariate normal. Let (X,Y ) be a random vector defined on some probability

space with distribution function FC . Now it is easy to see that

E(X) = 0, E(X2) = π

∫ 1

0
f(2πs)ds and E(X4) = 3π2

∫ 1

0
f2(2πs)ds.

Since (X,Y ) is bivariate normal, X is a normal random variable and hence

E(X4) = 3[E(X2)]2

⇒ 3π2

∫ 1

0
f2(2πs)ds = 3π2

(∫ 1

0
f(2πs)ds

)2

. (2.4.6)

Now (2.4.6) holds if and only if f is constant almost everywhere. 2

Theorem 2.4.4 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions 2.4.1 and

2.4.2 hold. Then the ESD of 1√
n
Cn converges in L2 to FC(·) given in (2.4.4)–(2.4.5).

Remark 2.4.5. If {xi} are i.i.d with finite (2 + δ) moment, then f(ω) ≡ 1/2π, and FC

reduces to the bivariate normal distribution whose covariance matrix is diagonal with

entries 1/2 each. This agrees with the conclusion in Theorem 2.3.3.

Before going into the proof of Theorem 2.4.4, we observe a general fact which will

be used in the proofs.

Lemma 2.4.6. Suppose {λn,k}1≤k≤n is a triangular sequence of R
d-valued random vari-

ables such that λn,k = ηn,k + yn,k for 1 ≤ k ≤ n. Assume the following holds:

(i) limn→∞
1
n

∑n
k=1 P(ηn,k ≤ x̃) = F (x̃) for x̃ ∈ Rd,
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(ii) limn→∞ 1
n2

∑n
k,l=1 P(ηn,k ≤ x̃, ηn,l ≤ ỹ) = F (x̃)F (ỹ), for x̃, ỹ ∈ R

d,

(iii) for any ǫ > 0, max1≤k≤n P(|yn,k| > ǫ) → 0 as n→ ∞.

Then,

(a) limn→∞ 1
n

∑n
k=1 P(λn,k ≤ x̃) = F (x̃).

(b) limn→∞
1
n2

∑n
k,l=1 P(λn,k ≤ x̃, λn,l ≤ ỹ) = F (x̃)F (ỹ).

Proof. We define new random variables Λn with P(Λn = λn,k) = 1/n for k = 1, . . . , n.

Then

P(Λn ≤ x̃) =
1

n

n∑

k=1

P(λn,k ≤ x̃).

Similarly define En (on the same probability space) with P(En = ηn,k) = 1/n for

1 ≤ k ≤ n and Yn with P(Yn = yn,k) = 1/n for 1 ≤ k ≤ n. Now observe that

Λn = En + Yn and for any ǫ > 0,

P(|Yn| > ǫ) =
1

n

n∑

k=1

P(|yn,k| > ǫ) → 0, as n→ ∞

by Assumption (iii). Therefore Λn and En have the same limiting distribution. Now as

n→ ∞,

P(En ≤ x̃) =
1

n

n∑

k=1

P(ηn,k ≤ x̃) → F (x̃), (by Assumption (i)).

Therefore as n→ ∞,

1

n

n∑

k=1

P(λn,k ≤ x̃) = P(Λn ≤ x̃) → F (x̃)

and this is conclusion (a).

To prove (b) we use a similar type of argument. Here we define new random variables

Λ̃n with P(Λ̃n = (λn,k, λn,l)) = 1/n2 for 1 ≤ k, l ≤ n. Similarly define Ẽn and Ỹn. Again

Λ̃n = Ẽn + Ỹn and

P(‖Yn‖ > ǫ) =
1

n2

n∑

k,l=1

P(‖(yn,k, yn,l)‖ > ǫ) → 0, as n→ ∞.

So Λ̃n and Ẽn will have same limiting distribution and hence conclusion (b) holds. 2

Now we move to the main proof. This proof mainly depends on Lemma 2.3.1 which

helps us to use normal approximation, and Lemma 2.4.7 given below which allows us
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to approximate the eigenvalues by appropriate partial sums of independent random

variables. The latter follows easily from Fan and Yao (2003) [58] (Theorem 2.14(ii),

page 63). We provide a proof for sake of completeness. For k = 1, 2, · · · , n, define

ξ2k−1 =
1√
n

n−1∑

t=0

ǫt cos(ωkt), ξ2k =
1√
n

n−1∑

t=0

ǫt sin(ωkt).

Lemma 2.4.7. Suppose Assumption 2.4.1 holds and {ǫt} are i.i.d random variables

with mean 0, variance 1. For k = 1, 2, · · · , n, write

λk =
1√
n

n−1∑

l=0

xle
iωkl = ψ(eiωk )[ξ2k−1 + iξ2k] + Yn(ωk).

Then

max
0≤k<n

E |Yn(ωk)| → 0 as n→ ∞.

Proof.

λk =
1√
n

n−1∑

t=0

xte
iωkt

=
1√
n

∞∑

j=−∞
aje

iωkj
n−1∑

t=0

ǫt−je
iωk(t−j)

=
1√
n

∞∑

j=−∞
aje

iωkj

(
n−1∑

t=0

ǫte
iωkt + Unj

)

= ψ(eiωk )[ξ2k−1 + iξ2k] + Yn(ωk),

where

Unj =

n−1−j∑

t=−j

ǫte
iωkt −

n−1∑

t=0

ǫte
iωkt, Yn(ωk) = n−1/2

∞∑

j=−∞
aje

iωkjUnj .

Note that if |j| < n, Unj is a sum of 2|j| independent random variables, whereas if

|j| ≥ n, Unj is a sum of 2n independent random variables. Thus E |Unj |2 ≤ 2 min(|j|, n).
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Therefore, for any fixed positive integer l and n > l,

E |Yn(ωk)| ≤ 1√
n

∞∑

j=−∞
|aj |(EU2

nj)
1/2

≤
√

2

n

∞∑

j=−∞
|aj |{min(|j|, n)}1/2

≤
√

2


 1√

n

∑

|j|≤l

|aj||j|1/2 +
∑

|j|>l

|aj |


 .

The right side of the above expression is independent of k and as n → ∞, it can be

made smaller than any given positive constant by choosing l large enough. Hence,

max1≤k≤n E |Yn(ωk)| → 0. 2

Now we are ready to prove Theorem 2.4.4. As pointed out earlier in Section 2.3, to

prove that Fn converges to F (say) in L2, it is enough to show that

E[Fn(x, y)] → F (x, y) and V [Fn(x, y)] → 0 (2.4.7)

at all continuity points (x, y) of F . This is what we show here and in every proof later

on.

Proof of Theorem 2.4.4: First assume Leb(C0) = 0. Recall the eigenvalues of circulant

matrix from Section 1.2.1 and note that we may ignore the eigenvalue λn and also λn/2

whenever n is even, since they contribute atmost 2/n to the ESD Fn(x, y). So for

x, y ∈ R,

E[Fn(x, y)] ∼ n−1
n−1∑

k=1,k 6=n/2

P(bk ≤ x, ck ≤ y),

where

bk =
1√
n

n−1∑

j=0

xj cos(ωkj), ck =
1√
n

n−1∑

j=0

xj sin(ωkj), ωk =
2πk

n
.

Define for k = 1, 2, · · · , n,

ηk = (ξ2k−1, ξ2k)′, Y1n(ωk) = R[Yn(ωk)], Y2n(ωk) = I[Yn(ωk)],

where Yn(ωk) are same as defined in Lemma 2.4.7. Then (bk, ck)′ = B(ωk)ηk +

(Y1n(ωk), Y2n(ωk))′. Now in view of Lemma 2.4.6 and Lemma 2.4.7, to show
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E[Fn(x, y)] → FC(x, y) it is sufficient to show that

1

n

n−1∑

k=1,k 6=n/2

P
[
B(ωk)ηk ≤ (x, y)′

]
→ FC(x, y). (2.4.8)

To show this, define for 1 ≤ k ≤ n− 1, (except for k = n/2) and 0 ≤ l ≤ n− 1,

Xl,k =
(√

2ǫl cos(ωkl),
√

2ǫl sin(ωkl)
)′
.

Note that

E(Xl,k) = 0, (2.4.9)

n−1
n−1∑

l=0

Cov(Xl,k) = I, (2.4.10)

sup
n

sup
1≤k≤n

[n−1
n−1∑

l=0

E ‖ Xl,k ‖(2+δ)] ≤ C <∞. (2.4.11)

For k 6= n/2

{
B(ωk)ηk ≤ (x, y)′

}
=
{
B(ωk)(n−1/2

n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′
}
.

Since {(r, s) : B(ωk)(r, s)′ ≤ (
√

2x,
√

2y)′} is a convex set in R
2 and {Xl,k, l =

0, 1, . . . , (n − 1)} satisfies (2.4.9)–(2.4.11), we can apply Part (i) of Lemma 2.3.1 for

k 6= n/2 to get

∣∣P
(
B(ωk)(n−1/2

n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′
)
− P

(
B(ωk)(N1, N2)′ ≤ (

√
2x,

√
2y)′

)∣∣

≤ Cn−δ/2[n−1
n−1∑

l=0

E ‖Xlk‖(2+δ)] ≤ Cn−δ/2 → 0, as n→ ∞.

Therefore, since by Lemma 2.4.3(i), HC is bounded continuous for every fixed (x, y),

lim
n→∞

1

n

n−1∑

k=1,k 6=n/2

P
(
B(ωk)ηk ≤ (x, y)′

)
= lim

n→∞
1

n

n−1∑

k=1,k 6=n/2

HC(
2πk

n
, x, y)

=

∫ 1

0
HC(2πs, x, y)ds = FC(x, y).
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Hence by (2.4.8)

E[Fn(x, y)] →
∫ 1

0
HC(2πs, x, y)ds = FC(x, y). (2.4.12)

To show V [Fn(x, y)] → 0, it is enough to show that

1

n2

n∑

k 6=k′;k,k′=1

Cov(Jk, Jk′) =
1

n2

n∑

k 6=k′;k,k′=1

[E(Jk, Jk′) − E(Jk) E(Jk′)] → 0. (2.4.13)

where for 1 ≤ k ≤ n, Jk is the indicator that {bk ≤ x, ck ≤ y}. As n→ ∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk) E(Jk′) =
[ 1

n

n∑

k=1

E(Jk)
]2− 1

n2

n∑

k=1

[
E(Jk)

]2 →
[ ∫ 1

0
HC(2πs, x, y)ds

]2
.

So to show (2.4.13), it is enough to show as n→ ∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk, Jk′) →
[ ∫ 1

0
HC(2πs, x, y)ds

]2
.

Along the lines of the proof used to show (2.4.12) one may now extend the vectors of

two coordinates defined above to ones with four coordinates and proceed exactly as

above to verify this. We omit the routine details. This completes the proof for the case

Leb(C0) = 0.

When Leb(C0) 6= 0, we have to show (2.4.7) only on Dc
1 (of Lemma 2.4.3). All the

above steps in the proof will go through for all (x, y) in Dc
1. Hence if Leb(C0) 6= 0, we

have our required LSD. This completes the proof of Theorem 2.4.4. 2

2.4.3 Symmetric circulant matrix with dependent input

For x ∈ R and ω ∈ [0, π] define,

HS(ω, x) =

{
P
(√

2πf(ω)N(0, 1) ≤ x) if f(ω) 6= 0,

I(x ≥ 0) if f(ω) = 0.
(2.4.14)

Let

C ′0 = {t ∈ [0, 1/2] : f(2πt) = 0}.

The following Lemma is analogous to Lemma 2.4.3. We omit the proof.

Lemma 2.4.8. (i) For fixed x, HS is a bounded continuous function in ω and

HS(ω, x) +HS(ω,−x) = 1.
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(ii) FS defined below is a proper distribution function and FS(x) + FS(−x) = 1.

FS(x) = 2

∫ 1/2

0
HS(2πs, x)ds. (2.4.15)

(iii) If Leb(C ′0) = 0 then FS is continuous everywhere and may be expressed as

FS(x) =

∫ x

−∞

[ ∫ 1/2

0

1

π
√
f(2πs)

e
− t2

4πf(2πs) ds
]
dt. (2.4.16)

Further, FS is normal if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C ′0) 6= 0 then FS is discontinuous only at x = 0.

Theorem 2.4.9 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions 2.4.1 and

2.4.2 hold and

lim
n→∞

1

n2

⌊np/2⌋∑

k=1

[
f(

2πk

n
)
]−3/2 → 0 for all 0 < p < 1. (2.4.17)

Then the ESD of 1√
n
SCn converges in L2 to FS given in (2.4.15)–(2.4.16). The same

limit continues to hold for PTn.

Remark 2.4.10. (i) Condition (2.4.17) is satisfied if infω f(ω) > 0. If we do not

assume (2.4.17), it is not clear whether the LSD result will be true.

(ii) It is easy to check that the variance, µ2 and the fourth moment µ4 of FS equal∫ 1/2
0 4πf(2πs)ds and

∫ 1/2
0 24π2f2(2πs)ds respectively. By Cauchy-Schwarz inequality it

follows that µ4

µ2
2
≥ 3 and equal to 3 iff f ≡ 1

2π . In the latter case, FS is standard normal

distribution function. This agrees with the conclusion of Theorem 2.3.5.

We prove the result for symmetric circulant matrix only for odd n = 2m + 1. The

even case follows by appropriate easy changes in the proof. First recall the eigenvalues of

symmetric circulant matrix from Section 1.2.2. The partial sum approximation (Lemma

2.4.7) that has been used in the proof of Theorem 2.4.4 now takes the following form.

Lemma 2.4.11. Suppose Assumption 2.4.1 holds and {ǫt} are i.i.d random variables

with mean 0, variance 1. For n = 2m + 1 and k = 1, 2, · · · ,m, write

1√
n

m∑

t=1

xt cos
2πkt

n
= ψ1(eiωk)

1√
n

m∑

t=1

ǫt cos
2πkt

n
− ψ2(eiωk)

1√
n

m∑

t=1

sin
2πkt

n
+ Yn,k,

where ψ1(eiωk), ψ2(eiωk) are same as defined in (2.4.3). Then max0≤k≤m E(Yn,k) → 0

as n→ ∞.
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Proof.

1√
n

m∑

t=1

xt cos
2πkt

n

=
1√
n

m∑

t=1

∞∑

j=−∞
ajǫt−j

[
cos

2πk(t − j)

n
cos

2πkj

n
− sin

2πk(t− j)

n
sin

2πkj

n

]

=
ψ1(eiωk)√

n

m∑

t=1

ǫt cos
2πkt

n
− ψ2(eiωk)√

n

m∑

t=1

sin
2πkt

n
+ Yn,k,

where

Yn,k =
1√
n

∞∑

j=−∞
aj

[
cos

2πkj

n
Uk,j − sin

2πkj

n
Vk,j

]
,

Uk,j =

m∑

t=1

[
ǫt−j cos

2πk(t− j)

n
−ǫt cos

2πkt

n

]
, Vk,j =

m∑

t=1

[
ǫt−j sin

2πk(t− j)

n
−ǫt sin

2πkt

n

]
.

Note that if |j| < m, Uk,j, U
′
k,j are sums of 2|j| independent random variables, whereas

if |j| ≥ m, Uk,j, U
′
k,j are sums of 2m independent random variables. Thus E |Uk,j|2 ≤

2 min(|j|,m). Therefore, for any fixed positive integer l and m > l,

E |Yn,k| ≤ 1√
n

[ ∞∑

j=−∞
|aj |E(U2

k,j)
1/2 +

∞∑

j=−∞
|aj|(E V 2

k,j)
1/2
] (

∵

∞∑

−∞
|aj | <∞

)

≤ 2
√

2√
n

∞∑

j=−∞
|aj |{min(|j|,m)}1/2

≤ 2
√

2
( 1√

n

∑

|j|≤l

|aj||j|1/2 +
∑

|j|>l

|aj |
)
.

The right side of the above expression is independent of k and as n → ∞, it can be

made smaller than any given positive constant by choosing l large enough. Hence,

max1≤k≤m E(Yn,k) → 0. 2

Proof of Theorem 2.4.9: Note that all eigenvalues {λk, 0 ≤ k ≤ n− 1} are real in this

case. As before, we provide the detailed proof only when Leb(C ′0) = 0. Note that we

may ignore the eigenvalue λ0 since it contributes 1/n to the ESD Fn(·). Further, the

term x0√
n

can be ignored from the eigenvalue {λk}. So for x ∈ R,

E[Fn(x)] ∼
2

n

m∑

k=1

P(
1√
n
λk ≤ x) ∼

2

n

m∑

k=1

P
( 1√

n

m∑

t=1

2xt cos
2πkt

n
≤ x

)
.
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Following the argument given in the circulant case and using Lemma 2.4.6 and Lemma

2.4.11, it is sufficient to show that

2

n

m∑

k=1

P
[
ψ1(eiωk)

2

n

m∑

t=1

ǫt cos
2πkt

n
− ψ2(eiωk)

2√
n

m∑

t=1

sin
2πkt

n
≤ x

]

=
2

n

m∑

t=1

P
{
m−1/2

m∑

l=1

Xl,k ∈ Ck

}
→ FS(x)

where

Xl,k =
(
2σ−1

n ǫl cos
2πkl

n
, 2δ−1

n ǫl sin
2πkl

n

)
, σ2

n = 2 − 1/m, δ2n = 2 + 1/m,

Ck =
{

(u, v) : σnψ1(eiωk)u+ δnψ2(eiωk)v ≤
√
n/mx

}
.

Note that

E(Xl,k) = 0,
1

m

m∑

l=1

Cov(Xl,k) = Vk and sup
m

sup
1≤k≤m

m−1
m∑

l=1

E ‖Xl,k‖2+δ ≤ C <∞

(2.4.18)

where

Vk =

(
1 − 1√

4m2−1
tan kπ

2m+1

− 1√
4m2−1

tan kπ
2m+1 1

)
.

Let αk be the minimum eigenvalue of Vk. Then αk ≥ αm for 1 ≤ k ≤ m and

αm = 1 − 1√
4m2 − 1

tan
mπ

2m+ 1
≈ 1 − 2m + 1

mπ
≈ 1 − 2

π
= α, say.

Since {Xl,k} satisfies (2.4.18) and Ck is a convex set in R2, we can apply Part (i) of

Lemma 2.3.1 for k = 1, 2, · · · ,m to get

∣∣∣ 2
n

m∑

k=1

[
P
{
m−1/2

m∑

l=1

Xl,k ∈ Ck

}
− Φ0,Vk

(Ck)
]∣∣∣ ≤ Cm−δ/2 2

n

m∑

k=1

α
−3/2
k

≤ Cm−δ/2α−3/2 → 0.

where Φ0,Vk
is a bivariate normal distribution with mean zero and covariance matrix Vk.

Note that for large m, σ2
n ≈ 2 and δ2n ≈ 2. Hence C ′k =

{
(u, v) : ψ1(eiωk)u+ψ2(eiωk)v ≤√

x
}

serves as a good approximation to Ck and we get

2

n

m∑

k=1

Φ0,Vk
(Ck) ∼ 2

n

m∑

k=1

Φ0,Vk
(C ′k) =

2

n

m∑

k=1

P(µkN(0, 1) ≤ x),

where µ2
k = ψ1(eiωk)2 + ψ2(eiωk)2 + 2ψ1(eiωk)ψ2(eiωk) 1√

4m2−1
tan kπ

2m+1 . Define
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ν2
k = ψ1(eiωk)2 + ψ2(eiωk)2. Now we show that

lim
n→∞

∣∣∣ 2
n

m∑

k=1

[
P(µkN(0, 1) ≤ x) − P(νkN(0, 1) ≤ x)

]∣∣∣ = 0. (2.4.19)

Let 0 < p < 1. Now as n→ ∞, using Assumption (2.4.17),

2

n

∣∣∣
⌊mp⌋∑

k=1

[
P(µkN(0, 1) ≤ x) − P(νkN(0, 1) ≤ x)

]∣∣∣ =
2

n

⌊mp⌋∑

k=1

∣∣∣
∫ x/µk

x/νk

1√
2π
e−

t2

2 dt
∣∣∣

≤ 2|x|
n

⌊mp⌋∑

k=1

∣∣∣ µ2
k − ν2

k

µkνk(µk + νk)

∣∣∣

≤ 2|x| tan pπ
2

m2

⌊mp⌋∑

k=1

1

ν3
kα(1 + α)

→ 0.

On the other hand, for every n,

2

n

∣∣∣
m∑

⌊mp⌋+1

[
P(µkN(0, 1) ≤ x) − P(νkN(0, 1) ≤ x)

]∣∣∣ ≤ 4(1 − p).

Therefore, by first letting n→ ∞ and then letting p→ 1, (2.4.19) holds. Hence

lim
n→∞

2

n

m∑

k=1

P
(
νkN(0, 1) ≤ x

)
= lim

n→∞
2

n

m∑

k=1

P
(√

2πf(2πk/n)N(0, 1) ≤ x
)

−→ 2

∫ 1/2

0
HS(2πs, x)ds.

Rest of the argument in the proof is same as in the proof of Theorem 2.4.4.

2

2.4.4 Reverse circulant matrix with dependent input

Define HR(ω, x) on [0, 2π] × R as

HR(ω, x) =

{
G
(

x2

2πf(ω)

)
if f(ω) 6= 0

1 if f(ω) = 0,

where G(x) = 1 − e−x for x > 0, is the standard exponential distribution function.

The proof of the next lemma is omitted.
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Lemma 2.4.12. (i) For fixed x, HR(ω, x) is bounded continuous on [0, 2π].

(ii) FR defined below is a valid symmetric distribution function.

FR(x) =

{
1
2 +

∫ 1/2
0 HR(2πt, x)dt if x > 0

1
2 −

∫ 1/2
0 HR(2πt, x)dt if x ≤ 0.

(2.4.20)

(iii) If Leb(C ′0) = 0 then FR is continuous everywhere and can be expressed as

FR(x) =





1 −
∫ 1/2
0 e

− x2

2πf(2πt) dt if x > 0
∫ 1/2
0 e

− x2

2πf(2πt)dt if x ≤ 0.
(2.4.21)

Further, FR is the distribution of the symmetric version of the square root of chi-square

variable with two degrees of freedom if and only if f is constant almost everywhere

(Lebesgue).

(iv) If Leb(C ′0) 6= 0 then FR is discontinuous only at x = 0.

Theorem 2.4.13 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions 2.4.1 and

2.4.2 hold. Then the ESD of 1√
n
RCn converges in L2 to FR given in (2.4.20)–(2.4.21).

Remark 2.4.14. If {xi} are i.i.d, with finite (2 + δ) moment, then f(ω) = 1/2π for all

ω ∈ [0, 2π] and the LSD FR(·) agrees with (2.3.9) given earlier.

We now need the following Lemma to approximate the eigenvalues by appropriate

partial sums of independent random variables. Its proof is given in Fan and Yao (2003)

[58] (Theorem 2.14(ii), page 63).

Lemma 2.4.15. Suppose Assumption 2.4.1 holds and {ǫt} are i.i.d random variables

with mean 0, variance 1. For k = 1, 2, · · · , ⌊n−1
2 ⌋, write

In(ωk) = Ln(ωk) +Rn(ωk), where Ln(ωk) = 2πf(ωk)(ξ22k−1 + ξ22k)

and In(ωk) is as in (2.4.2). Then max1≤k≤⌊n−1
2
⌋ E |Rn(ωk)| → 0 as n→ ∞.

Proof of Theorem 2.4.13: As earlier, we give the proof only for the case Leb(C ′0) = 0.

From the structure of the eigenvalues {λk, 0 ≤ k ≤ n−1} of RCn (see Section 1.2.3), the

LSD, if it exists, is going to be a symmetric distribution. So, it is enough to concentrate

on the case x > 0. As before we may ignore the two eigenvalues λ0 and λn/2. Hence for

x > 0,

E[Fn(x)] ∼ 1/2 + n−1

⌊n−1
2
⌋∑

k=1

P(
1

n
λ2

k ≤ x2) = 1/2 + n−1

⌊n−1
2
⌋∑

k=1

P(In(ωk) ≤ x2), (2.4.22)
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where In(ωk) is as in (2.4.2). Along the same lines as in the proof of Theorem 2.4.4,

using Lemma 2.4.6 and Lemma 2.4.15, it is sufficient to show that

1

n

⌊n−1
2
⌋∑

k=1

P
(
Ln(ωk) ≤ x2

)
→
∫ 1/2

0
HR(2πt, x)dt

where Ln(ωk) is same as in Lemma 2.4.15. Define for k = 1, 2, · · · , ⌊n−1
2 ⌋ and l =

0, 1, 2, · · · , n− 1,

Xl,k =
(√

2ǫl cos(lωk),
√

2ǫl sin(lωk)
)′
, Akn =

{
(r1, r2) : πf(ωk)(r21 + r22) ≤ x2

}
.

Note that {Xl,k} satisfies (2.4.9)–(2.4.11) and
{
Ln(ωk) ≤ x2

}
=
{
n−1/2

∑n−1
l=0 Xl,k ∈

Akn

}
. Since Akn is a convex set in R

2, we can apply Part (i) of Lemma 2.3.1 to get, as

n→ ∞
1

n

⌊n−1
2
⌋∑

k=1

|P(Ln(ωk) ≤ x2) − Φ0,I(Akn)| ≤ Cn−δ/2 → 0.

But

1

n

⌊n−1
2
⌋∑

k=1

Φ0,I(Akn) =
1

n

⌊n−1
2
⌋∑

k=1

HR(
2πk

n
, x) →

∫ 1/2

0
HR(2πt, x)dt.

Hence for x ≥ 0,

E[Fn(x)] → 1

2
+

∫ 1/2

0
HR(2πt, x)dt = FR(x).

Now the rest of the argument in the proof is same as in the proof of Theorem 2.4.4. 2

2.4.5 k-circulant matrix with dependent input

First recall the eigenvalues of the k-circulant matrix Ak,n and related notation from

Section 1.2.4. For any positive integers k, n, let p1 < p2 < . . . < pc be all their common

prime factors so that,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏

q=1

p
αq
q .

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. Then the charectaristic

polynomial of Ak,n is given by

χ (Ak,n) = λn−n′
ℓ−1∏

j=0

(λnj − yj) , (2.4.23)
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where yj , nj are as defined in Section 1.2.4. This provides a formula solution for the

eigenvalues. Also recall

S(x) = {xkb mod n′ : b ≥ 0}, 0 ≤ x < n′; gx = #S(x), υk,n′ = #{x ∈ Zn′ : gx < g1}.

As mentioned before, it appears difficult to prove a general result on LSD for all possible

pairs (k, n). We investigate LSD for two subclasses of the k-circulant matrix, where

(k, n) satisfies either n = kg + 1 or n = kg − 1 and g ≥ 2. Note that in both the cases

gcd(n, k) = 1 and hence, n′ = n in (2.4.23).

Before going into the main results we state a lemma from Bose, Mitra and Sen

(2008) [44] which we shall use in the proof of the following theorems and also in Chapters

4 and 7. Here we skip the proof.

Lemma 2.4.16. (i) Fix g ≥ 1. Suppose kg = −1 + sn, n→ ∞ with s = 1 if g = 1 and

s = o(np1−1) if g > 1 where p1 is the smallest prime divisor of g. Then g1 = 2g for all

but finitely many n and
υk,n

n → 0.

(ii) Suppose kg = 1 + sn, g ≥ 1 fixed, n → ∞ with s = 0 if g = 1 and s = o(np1−1)

where p1 is the smallest prime divisor of g. Then g1 = g for all but finitely many n and
υk,n

n → 0.

We consider two types of k-circulant matrix, namely, k-circulant with n = kg + 1

and k-circulant with n = kg − 1 for some g ≥ 2.

Type I. n = kg + 1 for some fixed g ≥ 2.

Suppose n = kg + 1 and g ≥ 2. We observe a simple but crucial property of eigenvalue

partitioning {Pj} of Zn (see (1.2.6)). For every integer t ≥ 0, tkg = (−1 + n)t = −t
mod n. Hence λt and λn−t belong to the same partition block S(t) = S(n − t). Thus

each S(t) contains an even number of elements, except for t = 0, n
2 . Hence the eigenvalue

partitioning sets Pj are self conjugate. So, we can find sets Aj ⊂ Pj such that

Pj = {x : x ∈ Aj or n− x ∈ Aj} and #Aj =
1

2
#Pj . (2.4.24)

However, it follows from Lemma 2.4.16 that for n = kg + 1, g1 = 2g and υk,n/n → 0.

For g = 2, it is easy to check that S(1) = {1, k, n − 1, n − k}, hence, g1 = 4, and

υk,n = {x ∈ Zn : gx < g1} =

{
{0, n/2} if n is even

{0} if n is odd.
(2.4.25)

As a consequence, υk,n/n ≤ 2/n → 0.
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For any d ≥ 1, let

Gd(x) = P
( d∏

i=1

Ei ≤ x
)
,

where {Ei} are i.i.d. Exp(1). Note that Gd is continuous. For any integer d ≥ 1, define

Hd(ω1, . . . , ωd, x) on [0, 2π]d × R≥0 as

Hd(ω1, . . . , ωd, x) =





Gd

(
x2d

(2π)d
Qd

i=1 f(ωi)

)
if

∏d
i=1 f(ωi) 6= 0

1 if
∏d

i=1 f(ωi) = 0.

The proof of the following lemma is omitted.

Lemma 2.4.17. (i) For fixed x, Hd(ω1, . . . , ωd, x) is bounded continuous on [0, 2π]d.

(ii) Fd defined below is a valid continuous distribution function.

Fd(x) =

∫ 1

0
· · ·
∫ 1

0
Hd(2πt1, . . . , 2πtd, x)

d∏

i=1

dti for x ≥ 0. (2.4.26)

Theorem 2.4.18 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions 2.4.1 and

2.4.2 hold. Suppose n = kg + 1 for some fixed g ≥ 2. Then as n → ∞, Fn−1/2Ak,n

converges in L2 to the LSD U1(
∏g

i=1Ei)
1/2g where {Ei} are i.i.d. with distribution

function Fg given in (2.4.26) and U1 is uniformly distributed over the (2g)-th roots of

unity, independent of the {Ei}.

Remark 2.4.19. If {xi} are i.i.d, then f(ω) = 1/2π for all ω ∈ [0, 2π] and the LSD

is U1(
∏g

i=1Ei)
1/2g where {Ei} are i.i.d. Exp(1), U1 is as in Theorem 2.4.18 and inde-

pendent of {Ei}. This limit agrees with Theorem 2.3.10(i).

Remark 2.4.20. Using the expression (2.4.23) for the characteristic polynomial, it

is then not difficult to manufacture {k = k(n)} such that the LSD of n−1/2Ak,n has

some positive mass at the origin. For example, suppose the sequences k and n satisfy

kg = −1+sn where g ≥ 1 is fixed and s = o(n1/3). Fix primes p1, p2, . . . , pt and positive

integers β1, β2, . . . , βt. Define

ñ = pβ1
1 p

β2
2 . . . pβt

t n.

Suppose k = p1p2 . . . ptm → ∞. Then the ESD of ñ−1/2Ak,en converges weakly in prob-

ability to the LSD which has 1 −
(

Πt
s=1p

βs
s

)−1
mass at zero, and rest of the probability

mass is distributed as U1(
∏g

i=1Ei)
1/2g where U1 and {Ei} are as in Theorem 2.4.18.

Proof of Theorem 2.4.18: The proof is also based on the method of normal approxima-

tion and uses the eigenvalue description given in Section 1.2.4.
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For simplicity we first prove the result when g = 2. Note that gcd(k, n) = 1 and

hence in this case n′ = n in (1.2.8). Recall that vk,n is the total number of eigenvalues γj

of Ak,n such that j ∈ Pl and |Pl| < g1. In view of Lemma 2.4.16(i), we have vk,n/n→ 0

and hence these eigenvalues do not contribute to the LSD. Hence it remains to consider

only the eigenvalues corresponding to the sets Pl which have size exactly equal to g1.

Note that S(1) = {1, k, n − 1, n − k} and hence g1 = 4. Recall the quantities

nj = #Pj , yj =
∏

t∈Pl
λt, where λj =

∑n−1
l=0 xlν

jl, 0 ≤ j < n given in (1.2.2). Also, for

every integer t ≥ 0, tk2 = −t mod n, so that, λt and λn−t belong to the same partition

block S(t) = S(n− t). Thus each yt is real. Let us define

In = {l : #Pl = 4}.

It is clear that n
#In

→ 4. Without any loss, let In = {1, 2, ...,#In}.
Let 1, ω, ω2, ω3 be all the fourth roots of unity. Note that for every j, the eigenvalues

of Ak,n corresponding to the set Pj are: y
1/4
j , y

1/4
j ω, y

1/4
j ω2, y

1/4
j ω3. Hence it suffices to

consider only the modulus of eigenvalues y
1/4
j as j varies: if these have an LSD F ,

say, then the LSD of the whole sequence will be (r, θ) in polar coordinates where r is

distributed according to F and θ is distributed uniformly across all the fourth roots of

unity and r and θ are independent. With this in mind and remembering the scaling√
n, we consider for x > 0,

Fn(x) =
1

#In

#In∑

i=1

I

([ yj

n2

] 1
4 ≤ x

)
.

Since the set of λ values corresponding to any Pj is closed under conjugation, there

exists a set Ai ⊂ Pi of size 2 (see (2.4.24)) such that

Pi = {x : x ∈ Ai or n− x ∈ Ai}.

Combining each λj with its conjugate, we may write yj in the form,

yj =
∏

t∈Aj

(nb2t + nc2t )

where {bt} and {ct} are given in (2.3.3). Note that for x > 0,

E[Fn(x)] =
1

#In

#In∑

j=1

P
( yj

n2
≤ x4

)
.
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Now our aim is to show

1

#In

#In∑

j=1

P
( yj

n2
≤ x4

)
→ F2(x),

where F2(x) is as in (2.4.26) with d = 2. We can write
yj

n2 = Ln,j +Rn,j for 1 ≤ j ≤ #In,

where

Ln,j = 4π2fj

yj

n2
, yj =

∏

t∈Aj

(nξ22t−1 + nξ22t), fj =
∏

t∈Aj

f(ωt), 1 ≤ j ≤ #In,

Rn,j = Ln(ωj1)Rn(ωj2) + Ln(ωj2)Rn(ωj1) +Rn(ωj1)Rn(ωj2),

Ln(ωjk
) = 2πf(ωjk

)(ξ22jk−1 + ξ22jk
), k = 1, 2.

Now using Lemma 2.4.15 it is easy to see that for any ǫ > 0, max1≤j≤#In E(|Rn,j| >
ǫ) → 0 as n→ ∞. So in view of Lemma 2.4.6 it is enough to show

1

#In

#In∑

j=1

P
(
Ln,j ≤ x4

)
→ F2(x). (2.4.27)

We show this in two steps.

Step I. Normal approximation:

∣∣∣∣∣∣
1

#In

#In∑

j=1

[
P
(
Ln,j ≤ x4

)
− Φ4(An,j)

]
∣∣∣∣∣∣
→ 0 as n→ ∞, (2.4.28)

where

An,j =
{

(x1, y1, x2, y2) ∈ R
4 :

2∏

i=1

[2−1(x2
i + y2

i )] ≤ x4

4π2fj

}
, 1 ≤ j ≤ #In.

Step II.

lim
n→∞

1

#In

#In∑

j=1

Φ4(An,j) = F2(x). (2.4.29)

Proof of Step I. It is important to note that An,j is non-convex. So we have to apply

care while using the normal approximation. Define

Xl,j = 21/2

(
ǫl cos

(
2πtl

n

)
, ǫl sin

(
2πtl

n

)
, t ∈ Aj

)
, 0 ≤ l < n, 1 ≤ j ≤ #In,
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Note that {Xl,j} satisfies (2.4.9)–(2.4.11) and

{
Ln,j ≤ x4

}
=
{
n−1/2

n−1∑

l=1

Xl,j ∈ An,j

}
.

For (2.4.28), it suffices to show that for every ǫ > 0, there exists N = N(ǫ) such that

for all n ≥ N(ǫ)

sup
j∈In

∣∣∣P
(
Ln,j ≤ x4

)
− Φ4(An,j)

∣∣∣ ≤ ǫ.

Fix ǫ > 0. Find M1 > 0 large such that Φ([−M1,M1]c) ≤ ǫ/16. By Assumption

2.4.2, E(n−1/2
∑n−1

l=0 ǫl cos 2πlt
n )2 = E(n−1/2

∑n−1
l=0 ǫl sin 2πlt

n )2 = 1/2 for any n ≥ 1 and

0 < t < n. Now by Chebyshev bound, we can find M2 > 0 such that for each n ≥ 1 and

for each 0 < t < n,

P
(
|n−1/2

n−1∑

l=0

ǫl cos
2πlt

n
| ≥M2

)
≤ ǫ/16 and P

(
|n−1/2

n−1∑

l=0

ǫl sin
2πlt

n
| ≥M2

)
≤ ǫ/16.

Set M = max{M1,M2}. Define the set B :=
{

(x1, y1, x2, y2) ∈ R4 : |xj |, |yj | ≤M ∀j
}

.

Then for all j ∈ In,

∣∣∣∣∣P
(
n−1/2

n−1∑

l=0

Xl,j ∈ An,j

)
− Φ4(An,j)

∣∣∣∣∣

≤
∣∣∣∣∣P
(
n−1/2

n−1∑

l=0

Xl,j ∈ An,j ∩B
)
− Φ4(An,j ∩B)

∣∣∣∣∣+ ǫ/2.

Since An,j is a non-convex set, we now apply Part (ii) of Lemma 2.3.1 for An,j ∩ B to

obtain

sup
j∈In

∣∣∣∣∣P
(
n−1/2

n−1∑

l=0

Xl,j ∈ An,j ∩B
)
− Φ4(An,j ∩B)

∣∣∣∣∣

≤ C1n
−δ/2ρ2+δ + 2 sup

j∈In

sup
z∈R4

Φ4

(
(∂(An,j ∩B))η − z

)

where

ρ2+δ = sup
j∈In

n−1
n−1∑

l=0

E ‖Xl,j‖2+δ and η = η(n) = C2ρ2+δn
−δ/2.

Note that ρ2+δ is uniformly bounded in n by Assumption 2.4.2.

It thus remains to show that

sup
j∈In

sup
z∈R4

Φ4

(
(∂(An,j ∩B))η − z

)
≤ ǫ/8
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for all sufficiently large n. Note that ∂(An,j ∩B) ⊆ ∂An,j ∩ ∂B ⊆ ∂B and hence

sup
j∈In

sup
z∈R4

Φ2g

(
(∂(An,j ∩B))η − z

)

= sup
j∈In

sup
z∈R4

∫

(∂(An,j∩B))η

φ(x1 − z1) . . . φ(y2 − z4)dx1 . . . dy2

≤ sup
z∈R4

∫

(∂B)η

φ(x1 − z1) . . . φ(y2 − z4)dx1 . . . dy2

≤
∫

(∂B)η

dx1 . . . dy2.

Finally note that ∂B is a compact 3-dimensional manifold which has zero measure under

the 4-dimensional Lebesgue measure. By compactness of ∂B, we have

(∂B)η ↓ ∂B as η → 0, and the claim follows by Dominated Convergence Theorem.

Therefore

E[Fn(x)] =
1

#In

#In∑

j=1

P
( yj

n2
≤ x4

)
∼

1

#In

#In∑

j=1

P
(
Ln,j ≤ x4

)
∼

1

#In

#In∑

j=1

Φ4(An,j).

Proof of Step II. To identify the limit, recall the structure of the sets S(x),Pj ,Aj and

their properties. Since #In/n→ 1/4, vk,n ≤ 2 and either S(x) = S(u) or S(x)∩S(u) =

∅, we have

lim
n→∞

1

#In

#In∑

j=1

Φ4(An,j) = lim
n→∞

1

n

n∑

j=1,|Aj |=2

Φ4(An,j). (2.4.30)

Also for n = k2 + 1 we can write {1, 2, . . . , n− 1} as {ak+ b; 0 ≤ a ≤ k− 1, 1 ≤ b ≤ k}
and using the construction of S(x) we have (except for at most two values of j)

Aj = {ak + b, bk − a} for j = ak + b; 0 ≤ a ≤ k − 1, 1 ≤ b ≤ k.

Recall that for fixed x, H2(ω, ω′, x) is uniformly continuous on [0, 2π]× [0, 2π], . There-

fore given any positive number ρ we can choose N large enough such that for all

n = k2 + 1 > N ,

sup
0≤a≤k−1, 1≤b≤k

∣∣∣H2

(2π(ak + b)

n
,
2π(bk − a)

n
, x
)
−H2

(2πa√
n
,

2πb√
n
, x
)∣∣∣ < ρ. (2.4.31)
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Finally using (2.4.30), (2.4.31) we have

lim
n→∞

1

#In

#In∑

j=1

Φ4(An,j) = lim
n→∞

1

n

n∑

j=1

Φ4(An,j)

= lim
n→∞

1

n

n∑

j=1

G2

( x4

4π2fj

)

= lim
n→∞

1

n

⌊√n⌋∑

b=1

⌊√n⌋∑

a=0

H2

(2π(ak + b)

n
,

2π(bk − a)

n
, x
)

= lim
n→∞

1

n

⌊√n⌋∑

b=1

⌊√n⌋∑

a=0

H2

(2πa√
n
,

2πb√
n
, x
)

=

∫ 1

0

∫ 1

0
H2(2πs, 2πt, x)ds dt = F2(x).

To show that V [Fn(x)] → 0, since the variables involved are all bounded, it is enough

to show that

n−2
∑

j 6=j′

Cov
(

I
( yj

n2
≤ x4

)
, I
(yj′

n2
≤ x4

))
→ 0.

Along the lines of the proof used to show E[Fn(x)] → F2(x), one may now extend

the vectors with 4 coordinates defined above to ones with 8 coordinates and proceed

exactly as above to verify this. We omit the routine details. This completes the proof

the Theorem for g = 2.

The above argument can be extended to cover the general (g > 2) case. We highlight

only a few of the technicalities and omit the other details. For general g we need the

following lemma.

Lemma 2.4.21. Suppose Ln(ωj), Rn(ωj) are as defined in Lemma 2.4.15. Then given

any ǫ, η > 0 there exist an N ∈ N such that

P
(∣∣

s∏

i=1

Ln(ωji)

g∏

i=s+1

Rn(ωji)
∣∣ > ǫ) < η for all n ≥ N .

Proof. Note that

P
(∣∣

s∏

i=1

Ln(ωji)

g∏

i=s+1

Rn(ωji)
∣∣ > ǫ

)
≤ P

(∣∣Ln(ωj1)
∣∣ ≥Mǫ

)

+P
(∣∣

s∏

i=2

Ln(ωji)

g∏

i=s+1

Rn(ωji)
∣∣ > 1/M

)
,
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and iterating this argument,

P
(∣∣

s∏

i=1

Ln(ωji)

g∏

i=s+1

Rn(ωji)
∣∣ > ǫ

)
≤ P

(∣∣Ln(ωj1)
∣∣ ≥Mǫ

)
+

s∑

i=2

P
(∣∣Ln(ωji)

∣∣ ≥M
)

+P
(∣∣

g∏

i=s+1

Rn(ωji)
∣∣ > 1/M s

)
.

Further note that

P
(∣∣

g∏

i=s+1

Rn(ωji)
∣∣ > 1/M s

)
≤ P

(∣∣
g∏

i=s+2

Rn(ωji)
∣∣ > 1/M s

)
+ P

(∣∣Rn(ωjs+1)
∣∣ > 1

)

≤ P
(∣∣Rn(ωjg)

∣∣ > 1/M s
)

+

g−1∑

i=1

P
(∣∣Rn(ωji)

∣∣ > 1
)

≤
(
M s + g − s− 1

)
max

1≤k≤n
E |Rn(ωk)|.

Combining all the above we get

P
(∣∣

s∏

i=1

Ln(ωji)

g∏

i=s+1

Rn(ωji)
∣∣ > ǫ

)
≤ P

(∣∣Ln(ωj1)
∣∣ ≥Mǫ

)
+

s∑

i=2

P
(∣∣Ln(ωji)

∣∣ ≥M
)

+
(
M s + g − s− 1

)
max

1≤k≤n
E |Rn(ωk)|

≤ 1

M
(s− 1 + 1/ǫ)4π max

ω∈[0,2π]
f(ω)

+
(
M s + g − s− 1

)
max

1≤k≤n
E |Rn(ωk)|.

First term in the right side can be made smaller than η/2 by choosing M large enough

and since max1≤k≤n E |Rn(ωk)| → 0 as n → ∞, we can choose N ∈ N such that the

second term is less than η/2 for all n ≥ N , proving the lemma. 2

Now return to the main proof for general g ≥ 2. As before, n′ = n and vk,n/n→ 0.

Hence it remains to consider only the eigenvalues corresponding to the sets Pl which

have size exactly equal to g1 and it follows from Lemma 2.4.16(i) that g1 = 2g. We can

now proceed as in g = 2 case. First we show

1

#In

#In∑

j=1

P
( yj

ng
≤ x2g

)
→ Fg(x). (2.4.32)
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Now write
yj

ng as follows

yj

ng
= Ln,j +Rn,j for 1 ≤ j ≤ #In, where Ln,j =

∏

t∈Aj

Ln(ωt) = (2π)gfj

yj

ng
.

Using Lemma 2.4.21 it is easy show that for any ǫ > 0, max1≤j≤#In P(|Rn,j| > ǫ) → 0

as n→ ∞. So, by Lemma 2.4.6, to show (2.4.32) it is sufficient to show that

1

#In

#In∑

j=1

P
(
Ln,j ≤ x2g

)
→ Fg(x).

We prove this in two steps (Step I and Step II) as we did for g = 2. Define

Ān,j =
{

(xi, yi, i = 1, 2, .., g) ∈ R
2g :

g∏

i=1

[2−1(x2
i + y2

i )] ≤ x2g

(2π)gfj

}
.

Now, in Step I, for fixed ǫ > 0 we find M1 > 0 large such that Φ([−M1,M1]c) ≤ ǫ/(8g)

and M2 > 0 such that

P
(
|n−1/2

n−1∑

l=0

ǫl cos
2πlt

n
| ≥M2

)
≤ ǫ/(8g) and P

(
|n−1/2

n−1∑

l=0

ǫl sin
2πlt

n
| ≥M2

)
≤ ǫ/(8g).

Set M = max{M1,M2} and define B :=
{

(xj, yj ; 1 ≤ j ≤ g) ∈ R2g : |xj|, |yj | ≤M ∀j
}

.

Note that, ∂B is a compact (2g−1)-dimensional manifold which has zero measure under

the 2g-dimensional Lebesgue measure. Now proceeding as before we have

∣∣∣∣∣
1

#In

#In∑

l=1

P
(
Ln,j ≤ x4

)
− 1

#In

#In∑

l=1

Φ4(Ān,j)

∣∣∣∣∣→ 0.

Now note that for n = kg + 1 we can write {1, 2, . . . , n− 1} as {b1kg−1 + b2k
g−2 + · · · +

bg−1k + bg; 0 ≤ bi ≤ k − 1, for 1 ≤ i ≤ k − 1; 1 ≤ bg ≤ k}. So we can write the sets

Aj (see, 2.4.24) explicitly using this decomposition of {1, 2, . . . , n− 1} as done in g = 2

case, that is, n = k2 + 1 case. For example if g = 3, Aj = {b1k2 + b2k+ b3, b2k
2 + b3k−

b1, b3k
2 − b1k− b2} for j = b1k

2 + b2k+ b3 (except for finitely many j, bounded by vk,n

and they do not contribute to this limit). Using this fact and proceeding as before we

conclude that the LSD is now Fg(·), proving Theorem 2.4.18 completely. 2

Type II. n = kg − 1 for some g ≥ 2.
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For zi, wi ∈ R, i = 1, 2, .., g, and with {Ni} i.i.d. N(0, 1), define

Hg(ωi, zi, wi, i = 1, . . . , g) = P
(
B(ω1, ω2, .., ωg)(N1, ..., N2g)′ ≤ (zi, wi, i = 1, 2, .., g)′

)
.

Proof of the following lemma is omitted.

Lemma 2.4.22. (i) For fixed {zi, wi, i = 1, . . . , g}, Hg is bounded continuous in

(ω1, . . . , ωg).

(ii) Fg defined below is a proper distribution function.

Fg(zi, wi, i = 1, . . . , g) =

∫ 1

0
· · ·
∫ 1

0
Hg(2πti, zi, wi, i = 1, . . . , g)

∏
dti. (2.4.33)

(iii) If Leb(C0) = 0 then Fg is continuous everywhere and may be expressed as

Fg(zi, wi, i = 1, .., g)

=

∫
·
∫

I{t≤(zk,wk,k=1,.,g)}
[ ∫ 1

0
·
∫ 1

0

I{
Q

f(2πui)6=0}
(2π)g

∏g
i=1[πf(2πui)]

g∏

i=1

e
− 1

2

t22i−1+t22i
πf(2πui)

∏
dui

]
dt.

where t = (t1, t2, . . . , t2g−1, t2g) and dt =
∏
dti. Further Fg is multivariate normal (with

independent components) if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C0) 6= 0 then Fg is discontinuous only on Dg = {(zi, wi, i = 1, . . . , g) :∏g
i=1 ziwi = 0}.

Theorem 2.4.23 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions 2.4.1 and

2.4.2 hold. Suppose n = kg − 1 for some g ≥ 2. Then as n → ∞, Fn−1/2Ak,n
converges

in L2 to the LSD (
∏g

i=1Gi)
1/g where (R(Gi),I(Gi); i = 1, 2, . . . g) has the distribution

Fg given in (2.4.33).

Remark 2.4.24. If {xi} are i.i.d, with finite (2 + δ) moment, then f(ω) ≡ 1/2π and

the LSD simplifies to U2(
∏g

i=1Ei)
1/2g where {Ei} are i.i.d. Exp(1) and U2 is uniformly

distributed over the unit circle independent of {Ei}. This agrees with the conclusion in

Theorem 2.3.10(ii).

Proof of Theorem 2.4.23. First we assume Leb(C0) = 0. Note that gcd(k, n) = 1. Since

kg = 1 + n = 1 mod n, we have g1|g. If g1 < g, then g1 ≤ g/α where α = 2 if g is even

and α = 3 if g is odd. In either case, it is easy to check that

kg1 ≤ kg/α ≤ (1 + n)1/α = o(n).

Hence, g = g1. By Lemma 2.4.16(ii), the total number of eigenvalues γj of Ak,n such

that j ∈ Al and |Al| < g is asymptotically negligible.
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Unlike the previous theorem, here the partition sets Al are not necessarily self-

conjugate. However, the number of indices l such that Al is self-conjugate is asymptot-

ically negligible compared to n. To show this, we need to bound the cardinality of the

following set for 1 ≤ l < g:

Dl = {t ∈ {1, 2, . . . , n} : tkl = −t mod n} = {t ∈ {1, 2, . . . , n} : n|t(kl + 1)}.

Note that t0 = n/ gcd(n, kl + 1) is the minimum element of Dl and every other element

is a multiple of t0. Thus

|Dl| ≤
n

t0
≤ gcd(n, kl + 1).

Let us now estimate gcd(n, kl + 1). For l > [g/2],

gcd(n, kl + 1) ≤ gcd(kg − 1, kl + 1) = gcd
(
kg−l(kl + 1) − (kg−l − 1), kl + 1

)
≤ kg−l,

which implies gcd(n, kl + 1) ≤ k[g/2] for all 1 ≤ l < g. Therefore,

gcd(n, kl + 1)

n
=

k[g/2]

(kg − 1)
≤ 2

k[(g+1)/2]
≤ 2

((n)1/g)[(g+1)/2]
= o(1).

So, we can ignore the partition sets Pj which are self-conjugate. For other Pj,

yj =
∏

t∈Pj

(
√
nbt + i

√
nct)

will be complex.

Now for simplicity we will provide the detailed argument assuming that g = 2. Then,

n = k2 − 1 and we can write {0, 1, 2, . . . , n} as {ak + b; 0 ≤ a ≤ k − 1, 0 ≤ b ≤ k − 1}
and using the construction of S(x) we have Pj = {ak + b, bk + a} and #Pj = 2 for

j = ak + b; 0 ≤ a ≤ k − 1, 0 ≤ b ≤ k − 1 (except for finitely many j and hence such

indices do not contribute to the LSD). Let us define

In = {j : #Pj = 2}.

It is clear that n/#In → 2. Without any loss, let In = {1, 2, . . . ,#In}. Suppose

Pj = {j1, j2}. We first find the limiting distribution of the empirical distribution of
1√
n

(
√
nbj1 ,

√
ncj1 ,

√
nbj2,

√
ncj2) for those j for which #Pj = 2 and show the convergence

in L2. Let Fn(x, y, z, w) be the ESD of {(bj1 , cj1 , bj2 , cj2)}, that is

Fn(z1, w1, z2, w2) =
1

#In

#In∑

j=1

I
(
bjk

≤ zk, cjk
≤ wk, k = 1, 2

)
.
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We show that for z1, w1, z2, w2 ∈ R,

E[Fn(z1, w1, z2, w2)] → F2(z1, w1, z2, w2) and V [Fn(z1, w1, z2, w2)] → 0. (2.4.34)

Define for j = 1, 2, · · · , n,

ηj = (ξ2j1−1, ξ2j1 , ξ2j2−1, ξ2j2)′,

and let Y1n(ωj) = R(Yn(ωj)), Y2n(ωj) = I(Yn(ωj)), where Yn(ωj) is same as defined in

Lemma 2.4.7. Define

Yn,j =
(
Y1n(ωj1), Y2n(ωj1), Y1n(ωj2), Y2n(ωj2)

)
.

Then (bj1 , cj1 , bj2 , cj2) = B(ωj1, ωj2)ηj + Y ′n,j. Note that by Lemma 2.4.7, for any ǫ >

0, max1≤j≤n P(‖Yn,j‖ > ǫ) → 0 as n → ∞. So in view of Lemma 2.4.6 to show

E[Fn(z1, w1, z2, w2)] → F2(z1, w1, z2, w2) it is enough to show that

1

#In

#In∑

j=1

P(B(ωj1, ωj2)ηj ≤ (z1, w1, z2, w2)′) → F2(z1, w1, z2, w2).

For this we use normal approximation and define

Xl,j = 21/2

(
ǫl cos

(2πj1l

n

)
, ǫl sin

(2πj1l

n

)
, ǫl cos

(2πj2l

n

)
, ǫl sin

(2πj2l

n

))′
,

and N =
(
N1, N2, N3, N4

)′
, where {Ni} are i.i.d. N(0, 1). Note

{
B(ωj1, ωj2)ηj ≤ (z1, w1, z2, w2)′

}

=
{
B(ωj1, ωj2)(n−1/2

n−1∑

l=0

Xl,j) ≤ (
√

2z1,
√

2w1,
√

2z2,
√

2w2)′
}
.

Since
{

(r1, r2, r3, r4) : B(ωj1, ωj2)(r1, r2, r3, r4)′ ≤ (
√

2z1,
√

2w1,
√

2z2,
√

2w2)′
}

is a con-

vex set in R
4 and {Xl,j ; l = 0, 1, . . . , (n − 1)} satisfies (2.4.9)–(2.4.11), we can show

using Part (i) of Lemma 2.3.1 that

1

#In

#In∑

j=1

∣∣P(B(ωj1, ωj2)ηj ≤ (z1, w1, z2, w2)′)

−P(B(ωj1, ωj2)N ≤ (
√

2z1,
√

2w1,
√

2z2,
√

2w2)′)
∣∣→ 0,
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as n→ ∞. Hence

lim
n→∞

1

#In

#In∑

j=1

P(B(ωj1, ωj2)ηj ≤ (z1, w1, z2, w2)′)

= lim
n→∞

1

#In

#In∑

j=1

P(B(ωj1, ωj2)N ≤ (
√

2z1,
√

2w1,
√

2z2,
√

2w2)′)

= lim
n→∞

1

n

n∑

j=1

P(B(ωj1, ωj2)N ≤ (
√

2z1,
√

2w1,
√

2z2,
√

2w2)′)

= lim
n→∞

1

n

n∑

j=1

H2(ωj1, ωj2, z1, w1, z2, w2)

= lim
n→∞

1

n

⌊√n⌋∑

a=0

⌊√n⌋∑

b=0

H2

(2π(ak + b)

n
,

2π(bk + a)

n
, z1, w1, z2, w2

)

= lim
n→∞

1

n

⌊√n⌋∑

a=0

⌊√n⌋∑

b=0

H2

(2πa√
n
,

2πb√
n
, z1, w1, z2, w2

)

=

∫ 1

0

∫ 1

0
H2(2πs, 2πt, z1, w1, z2, w2)ds dt = F2(z1, w1, z2, w2).

Similarly we can show V [Fn(x)] → 0 as n→ ∞.

Hence the empirical distribution of yj for those j for which #Pj = 2 converges to the

distribution of
∏2

i=1Gi such that (R(Gi),I(Gi); i = 1, 2) has distribution F2. Hence

the LSD of n−1/2Ak,n is
(∏2

i=1Gi

)1/2
, proving the result when g = 2 and Leb(C0) = 0.

When Leb(C0) 6= 0, we have to show (2.4.34) only on Dc
2 (of Lemma 2.4.22). All

the above steps in the proof will go through for all (zi, wi; i = 1, 2) in Dc
2. Hence if

Leb(C0) 6= 0, we have our required LSD. This proves the Theorem when g = 2.

For general g > 2, note that we can write {0, 1, 2, . . . , n} as {b1kg−1 + b2k
g−2 + · · ·+

bg−1k + bg; 0 ≤ bi ≤ k − 1, for 1 ≤ i ≤ k}. So we can write the sets Aj explicitly

using this decomposition of {0, 1, 2, . . . , n} as done in n = k2 − 1 case. For example if

g = 3, Aj = {b1k2 + b2k + b3, b2k
2 + b3k + b1, b3k

2 + b1k + b2} for j = b1k
2 + b2k + b3

(except for finitely many j, bounded by vk,n and they do not contribute to this limit).

Using this fact and proceeding as before we will have the LSD as
(∏g

i=1Gi

)1/g
such

that (R(Gi),I(Gi); i = 1, 2, . . . g) has distribution Fg. 2



Chapter 2: Limiting spectral distribution of circulant type matrices 66

2.5 Simulations

2.5.1 I.I.D inputs

In Figure 2.1–2.4, we have plotted eigenvalues of k-circulant matrices for different com-

bination of k and n when the input sequence is i.i.d.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2 0 2
−2

−1

0

1

2

Figure 2.1: Eigenvalues of 10 realizations of n−1/2Ak,n with xi i.i.d. N(0, 1) when (i) (left) k =
1, n = 2000 and (ii) (right) k = 2, n = 2000.
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Figure 2.2: Eigenvalues of 10 realizations of n−1/2Ak,n with xi i.i.d. N(0, 1) when (i) (left) k =
2, n = 2001 and (ii) (right) k = 3, n = 2001.
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Figure 2.3: Eigenvalues of 10 realizations of n−1/2Ak,n with xi i.i.d. N(0, 1) when (i) (left) k =
3, n = 2002 and (ii) (right) k = 3, n = 2003.
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Figure 2.4: Eigenvalues of 10 realizations of n−1/2Ak,n with xi i.i.d. N(0, 1) when (i) (left) n =
k3 + 1, k = 10 and (ii) (right) n = k3 − 1, k = 10.

2.5.2 Linear process inputs

To demonstrate the limits we did some simulations with MA(1) and MA(2) processes.

A process {Xt, t ∈ Z} is said to be a moving average process of order q (MA(q)) if

Xt = Zt + a1Zt−1 + a2Zt−2 + · · · + aqZt−q

where {ai} is a sequence of real numbers and {Zt, t ∈ Z} is a process with zero mean

and covariance function E(ZtZt+h) = I{h = 0}σ2.

We performed numerical integration to obtain the LSD. In case of k-circulant (n =

k2 + 1), we have plotted the density of F2 defined in (2.4.26).
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symmetric circulant

Figure 2.5: (i) (left) dashed line represents the density of F2 when f(ω) = 1
2π

(1.25 + cos x) and
the continuous line represents the same with f ≡ 1

2π
. (ii) (right) dashed line represents the LSD of

symmetric circulant matrix with entries xt = 0.3ǫt + ǫt+1 + 0.5ǫt+2 where {ǫi} i.i.d. N(0, 1) and the
continuous line represents the kernel density estimate of the ESD of the same matrix of order 5000×5000
and same {xt}.
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Figure 2.6: (i) (left) dashed line represents the LSD of the reverse circulant matrix with entries
xt = 0.3ǫt + ǫt+1 + 0.5ǫt+2 where {ǫi} i.i.d. N(0, 1). The continuous line represents the kernel density
estimate of ESD of the same matrix of order 5000×5000 with same {xt}. (ii) same graphs with centered
and scaled Bernoulli(1, 0.5).



Chapter 3

Tail of product and extreme

values

In this chapter we digress from random matrix theory. Here we identify the tail be-

haviour of finite but arbitrary product of i.i.d. exponential random variables. As a

consequence, it follows that this n fold product lies in the maximum domain of attrac-

tion of the Gumbel distribution for any n. We use this result in the next chapter to

derive the limit of spectral radius of k-circulant matrices.

Several researchers have studied the distributional properties of the product of

independent and identically distributed (i.i.d.) random variables. See for instance

Springer and Thompson (1970) [119], Lomnicki (1967) [86] and Galambos and Simonelli

(2004) [62]. However, there does not seem to be in the literature any result quantifying

the nature of the tail behaviour of product beyond two or three fold product of i.i.d.

exponentials.

Here is an outline of this chapter. In Section 3.1.1 we describe a few known methods

for product of two exponentials. In Section 3.1.2 we derive explicitly the tail behaviour of

the n fold product of exponentials (Theorem 3.1.2) by making judicious use of Laplace’s

asymptotic. Then in Section 3.2, using this result on tail behaviour we show that the

1/2g-th root of product of g-many i.i.d. exponentials belongs to the max domain of

attraction of the Gumbel distribution.

Some of the results of Bose, Hazra and Saha (2010) [37] are based on this chapter.

3.1 Tail of product

Let {Ei} be i.i.d. standard exponentials. Define

Hn(x) = P[E1E2 · · ·En > x]. (3.1.1)

69
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What is the behaviour of Hn(x) as x → ∞? It is easy to see that this tail becomes

heavier as n increases but there does not appear to be any results in the literature

quantifying the nature of the tail beyond the case n = 2.

3.1.1 Various methods for two fold product

There are several possible approaches that come to mind to solve this problem:

(a) Mellin Transform: The Mellin transform of any non-negative function f(x), x ≥ 0,

is defined as (see Springer and Thompson (1970) [119])

M (f(·)|s) =

∫ ∞

0
xs−1f(x)dx.

Under certain regularity conditions, this transform, considered as a function of the

complex variable s, admits an inversion integral:

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sM(f(·)|s)ds,

where the path of integration is a line parallel to the imaginary axis and to the right of

the origin. If X and Y are non-negative independent random variables with p.d.f. f(·)
and g(·) respectively and if h(·) is the p.d.f. of Z = XY , then

M (h(·)|s) = M (f(·)|s)M (g(·)|s) .

Thus the Mellin transform for the product plays a role similar to that played by the

Fourier transform for sum. It can be easily seen that

M(F (·)|s) = s−1M(f(·)|s + 1), where F (x) = P[X > x]. (3.1.2)

Using (3.1.2) and appropriate complex integration, Lomnicki (1967) [86] showed that,

M(Hn(·)|s) = s−1[Γ(s+ 1)]n and Hn(x) =
1

2πi

∫ c+i∞

c−i∞
x−ss−1[Γ(s+ 1)]nds.

He also derived the following series representations of the above integral for n = 2 and

n = 3.

H2(x) = 1 −
∞∑

j=1

xj

j{j − 1!}2
{− log x+ 2ψ(j) + j−1}, and

H3(x) = 1− 1

2

∞∑

j=1

xj(−1)j−1

j{(j − 1)!}3

[
{− log x+ 3ψ(j) + j−1}2 + 3{ψ′(1) +

j−1∑

k=1

k−2} + j−2

]
,
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where ψ(·) is the Euler psi function (digamma function) and ψ′(·) it’s first derivative.

For the special case of n = 2, comparing the above series with the series expansion

of the modified Bessel function of the second kind K0(x), it can be easily shown that

H2(x) ∼ √
πx

1
4 e−2x1/2

as x→ ∞.

However, this method does not seem to be easy to extend to other values of n.

(b) Differential Equation: The following differential equation can be easily derived

for H2(·) (see Bose, Mitra and Sen (2008) [44])

x
d2

dx2
H2(x) −H2(x) = 0, H2(0) = 0 and H2(∞) = 1.

Standard theory of second order differential equations implies that the solution can be

expressed in terms of the modified Bessel function of second kind and the tail behaviour

follows from that. For n ≥ 3 we obtain higher order differential equations and their

solutions appear to be intractable.

(c) Real analysis: Tang (2008) [120] obtained a nice formula for H2(x) using simple

integral substitutions. We reproduce the result and its proof since this will be useful to

motivate our result for arbitrary n.

Lemma 3.1.1.

H2(x) = e−2x1/2

∫ ∞

0

e−z

√
z

z + 2x1/2

√
z2 + 4zx1/2

dz ∼ √
πe−2x1/2

x1/4g2(x),

where g2(x) → 1 as x→ ∞.

Proof. First note that,

H2(x) =

∫ ∞

0
e−ye−x/ydy =

∫ x1/2

0
e
−(y+ x

y
)
dy +

∫ ∞

x1/2
e
−(y+ x

y
)
dy.

Let A(y) = y + x
y . Then

A′(y) = 1 − x

y2
> 0 if y > x1/2

< 0 if y < x1/2.

Hence in these two regions, consider separately, the monotone substitution A(y) = t.
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Let the corresponding unique solutions (inverses), be yi(t), i = 1, 2, so that

y1(t) < x1/2 < y2(t).

Observing that both the ranges transform to (2x1/2, ∞), we obtain,

H2(x) =

∫ ∞

2x1/2

e−t

[(
1 − x

y2
2(t)

)−1

+

(
x

y2
1(t)

− 1

)−1
]
dt.

Since yi = t, i = 1, 2 are the two solutions of the quadratic equation A(y) = t, it is easy

to see that [(
1 − x

y2
2(t)

)−1

+

(
x

y2
1(t)

− 1

)−1
]

=
t√

(t2 − 4x)
.

Now, making a further substitution t = z + 2x1/2 we get,

H2(x) = e−2x1/2

∫ ∞

0

e−z

√
z

z + 2x1/2

√
z2 + 4zx1/2

dz

=
√
πe−2x1/2

x1/4 1√
π

∫ ∞

0

e−z

√
z

(
1 + z/2x1/2

√
1 + z/4x1/2

)
dz.

︸ ︷︷ ︸
g2(x)

Now a straightforward application of the Dominated Convergence Theorem (DCT) im-

plies

lim
x→∞

g2(x) =
1√
π

∫ ∞

0
e−zz−1/2dz = 1.

This proves the Lemma. 2

3.1.2 Tail behaviour for n fold product

The following theorem provides the tail behaviour of the product of n many i.i.d. stan-

dard exponentials.

Theorem 3.1.2 (Bose, Hazra and Saha (2010) [37]). There exists constants {Cn, αn}
such that

Hn(x) = Cnx
αne−nx

1
n gn(x), n ≥ 1, (3.1.3)

where for n ≥ 1,

Cn =
1√
n

(2π)
n−1

2 , αn =
n− 1

2n
and gn(x) → 1 as x→ ∞.

We shall prove the theorem using method of induction and Laplace’s method to find
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the integral asymptotics. First we give a brief description of Laplace’s method.

Integral asymptotics: Laplace’s method. Consider the following integral

I(x) =

∫ b

a
f(t)e−xg(t)dt

where g(t) is a real valued function of the real variable t, f(t) is real or complex valued

function and x is a large positive variable. The Laplace principle is that, the major

contribution to the value of the integral I(x) arises from the immediate vicinity of those

points of the interval a ≤ t ≤ b at which g(t) assumes its minimum value.

Suppose f(t) is continuous, g(t) is twice continuously differentiable and g(t) reaches

its (strict) minumum over [a, b] at an interior point c, so that g(c) < g(t) for a ≤ t < c

and c < t ≤ b. Then as x→ ∞,

I(x) = e−xg(c)f(c)

√
2π

xg′′(c)
(1 + o(1)) (3.1.4)

and this is known as Laplace’s asymptotic. If g(t) attains its minimum at a boundary

point say, at t = a then Laplace’s asymptotic takes the following form

I(x) = e−xg(a)f(a)

√
π

2xg′′(a)
(1 + o(1)). (3.1.5)

If g(t) has finite number of minimum, we may break up the integral in a finite number

of integrals so that in each integral g(t) attains its minimum only at one point and no

other point, and then can apply Laplace’s method to each integral. For detail discussion

on Laplace’s method see Section 2.4 of Erdélyi (1956) [57].

Proof of Theorem 3.1.2. We shall use the method of induction. Note, H1(x) = P[E1 >

x] = e−x. So, C1 = 1, α1 = 0 and g1(x) = 1 for all x. Hence the result is true for

n = 1. Now

H2(x) =

∫ ∞

0
e−ye−x/ydy

= x1/2

∫ ∞

0
e−x1/2(t+ 1

t
)dt (subtituting y = tx1/2)

= x1/2

∫ ∞

0
f(t)e−x1/2g(t)dt,

where f(t) = 1 and g(t) = t + 1
t . Note that g assumes a strict minimum at t = 1 and
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f(1) = 1 6= 0. So applying Laplace’s asymptotic (3.1.4) we have

H2(x) = x1/2e−x1/2g(1)f(1)

√
2π

x1/2g′′(1)
g2(x)

=
√
πx1/4e−2x1/2

g2(x)

where g2(x) → 1 as x→ ∞. Hence C2 =
√
π = 1√

2
(2π)1/2 and αk = 1. So the result is

true for n = 2.

Now suppose (3.1.3) is true for n = k. We shall prove it for n = k + 1.

Hk+1(x)

=

∫ ∞

0
e−yHk(

x

y
)dy

= Ck

∫ ∞

0
e−y(

x

y
)αke

−k(x
y
)1/k

gk(
x

y
)dy

= xkCk

∫ ∞

0
e
−(ks+ x

sk )
skαk−k−1gk(sk)ds (substituting x/y = sk )

= x
kαk+1

k+1 kCk

∫ ∞

0
e
−(kt+ 1

tk
)x

1
k+1

tkαk−k−1gk(tkx
k

k+1 )dt (substituting s = x
1

k+1 t )

= x
kαk+1

k+1 kCk

∫ ∞

0
f(t)e−x

1
k+1 g(t)dt

where

f(t) = tkαk−k−1gk(tkx
k

k+1 ) and g(t) = kt+
1

tk
.

Note that g assumes a strict minimum at t = 1 and f(1) = gk(x
k

k+1 ) 6= 0, g′′(1) =

k(k + 1). Again applying Laplace’s asymptotic (3.1.4) we have

Hk+1(x) = x
kαk+1

k+1 kCke
−x

1
k+1 g(1)f(1)

√
2π

x
1

k+1 g′′(1)
h(x)

= x
kαk+1

k+1 kCke
−(k+1)x

1
k+1

gk(x
k

k+1 )

√
2π

x
1

k+1k(k + 1)
h(x)

where h(x) → 1 as x→ ∞. Subtituting the values of αk and Ck we get

Hk+1(x) = x
k

2(k+1)
1√
k + 1

(2π)k/2e−(k+1)x
1

k+1
gk(x

k
k+1 )h(x)

= Ck+1x
αk+1e−(k+1)x

1
k+1

gk+1(x)

where

αk+1 =
k

2(k + 1)
, Ck+1 =

1√
k + 1

(2π)k/2, gk+1 = gk(x
k

k+1 )h(x)
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and gk+1(x) → 1 as x → ∞. Hence the result is true for n = k + 1 and this completes

the proof. 2

3.2 Extreme values

We start this section with the definition of the Gumbel distribution.

Definition 3.2.1. A probability distribution is said to be Gumbel with parameter θ > 0

if its cumulative distribution function is given by

Λθ(x) = exp{−θ exp(−x)}, x ∈ R.

Λ ≡ Λ1 is known as the (standard) Gumbel distribution.

The next theorem is an easy consequence of standard calculations in extreme value

theory as found in Rootzèn (1986) [105], Embrechts, Kluppelberg and Mikosch (1997)

[56].

Theorem 3.2.2 (Bose, Hazra and Saha (2010) [37]). Let {Xn} be a sequence of i.i.d.

non-negative random variables with distribution F and let F (n) = max1≤i≤nXi. If

1 − F (x) ∼ Cxbe−ax2
as x→ ∞, then

F (n) − dn

cn

D−→ Λ1,

where

cn =
1

2a1/2(lnn)1/2
and dn =

lnC − b
2 ln a

2a1/2(lnn)1/2
+

(
lnn

a

)1/2 [
1 +

b ln lnn

4 ln n

]
.

Proof. Let F = 1 − F . Then

F (x) = θ(x)F#(x) where θ(x) → θ = Ce−a and F#(x) = xb exp(−a(x2−1)). (3.2.1)

By invoking Proposition 1.1 given in Resnick (1987) [103] , it is now enough to show

that, there exists some x0 and a function f such that f(y) > 0 for y > x0 and such that

f has an absolute continuous density with f ′(x) → 0 as x→ ∞ so that

1 − F#(x) = exp
(
−
∫ x

x0

(1/f(y))dy
)
, x > x0. (3.2.2)

Further, a choice for the normalizing constants cn and dn is then given by

d∗n =
(

1/(F#)
)−1

(n), c∗n = f(d∗n). (3.2.3)
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Comparing the two representations of F# given in (3.2.1) and (3.2.2) implies that we

may choose

f(x) =
x

2ax2 − b
∼ 1

2ax
as x→ ∞.

Hence we have (noting that d∗n → ∞),

c∗n = f(d∗n) ∼ 1

2ad∗n
.

On the other hand, since F#(d∗n) = 1
n , we have

(d∗n)b exp(−a((d∗n)2 − 1)) =
1

n
.

Taking logarithms on both sides we have

ad∗n
2 − b ln d∗n − a = lnn. (3.2.4)

Since d∗n → ∞, d∗n ∼
(

ln n
a

)1/2
. Let d∗n =

(
ln n
a

)1/2
(1 + δn). Using this in (3.2.4) we get

δn =
b
2 ln lnn+ ǫn

2 lnn
+ O

(
(ln lnn)2

(lnn)2

)
,

where ǫn = −b ln(1 + δn) − b
2 ln a+ a. So we get

d∗n =

(
lnn

a

)1/2

(1 + δn)

=

(
lnn

a

)1/2
[

1 +
b

4

ln lnn

lnn
+
a− b

2 ln a− b ln(1 + δn)

2 lnn

]
+ O

(
(ln lnn)2

(lnn)3/2

)
.

Neglecting the lower order terms and denoting

d̂n =

(
lnn

a

)1/2
[

1 +
b

4

ln lnn

lnn
+
a− b

2 ln a

2 lnn

]
and ĉn =

1

2a1/2(lnn)1/2

we have
F (n) − d̂n

ĉn

D→ ΛCe−a .

Now letting cn = ĉn and dn = cn ln(Ce−a) + d̂n and using convergence of types result,

we have
F (n) − dn

cn

D→ Λ1.

2
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The following corollary and lemma follow immediately using Theorem 3.1.2.

Corollary 3.2.3. Let {Xn} be a sequence of i.i.d. random variables where Xi
D
=

(E1E2 . . . Ek)1/2k and {Ei}1≤i≤k are i.i.d. Exp(1) random variables. Then

max1≤i≤nXi − dn

cn

D→ Λ1,

where

cn =
1

2k1/2(lnn)1/2
, dn =

lnCk − k−1
2 ln k

2k1/2(lnn)1/2
+

(
lnn

k

)1/2 [
1 +

(k − 1) ln lnn

4 lnn

]
,

Ck =
1√
k

(2π)
k−1

2 .

Lemma 3.2.4. Let {Ei}, cn and dn be as in Corollary 3.2.3. Let σ2
n = n−c, c > 0.

Then there exists some positive constant K = K(x), such that for all large n we have

P
(

(E1E2 . . . Ek)1/2k > (1 + σ2
n)−1/2(cnx+ dn)

)
≤ K

n
, x ∈ R.

This lemma will be useful in the proof of Lemma 4.4.8 in Chapter 4.
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Chapter 4

Spectral norm and radius of

circulant type matrices with light

tail

In this chapter we deal with spectral norm or spectral radius of circulant type random

matrices and Toeplitz and Hankel matrices when the input sequence is independent and

identically distributed. For any matrix A, its spectral radius sp(A) is defined as

sp(A) := max
{
|λ| : λ is an eigenvalue of A

}
,

where |z| denotes the modulus of z ∈ C.

A related quantity is the spectral norm. For any matrix A with possible complex

entries, its spectral norm ‖A‖ is the square root of the largest eigenvalue of the positive

semi-definite matrix A∗A:

‖A‖ =
√
λmax(A∗A)

where A∗ denotes the conjugate transpose of A. Therefore if A is an n×n real symmetric

matrix or A is a normal matrix, with eigenvalues λ1, λ2, . . . , λn, then

‖A‖ = sp(A) = max
1≤i≤n

|λi|.

The spectral radius and spectral norm have been important objects of study in

random matrix theory. For the n × n matrix with all i.i.d. complex Gaussian entries

having zero mean and variance 1/n, Kostlan (1992) [81] gave an upper bound for the

spectral radius and then Rider (2003) [104] showed that the spectral radius converges to

a Gumbel distribution with appropriate scaling and centering. Silverstein (1994) [112]

considered the n × n matrix with i.i.d. entries of non-zero mean and finite fourth

79
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moment, and showed that its spectral radius converges almost surely to a real value

and converges weakly to the normal distribution after proper scaling and centering. For

some work on spectral norm of (symmetric) Toeplitz matrices, see Meckes (2007) [92],

Adamczak (2008) [1] and Bose and Sen (2007) [42]. For result on the spectral norm of

symmetric circulant matrix, see Bryc and Sethuraman (2009) [48].

For symmetric or normal matrices, we prove results on spectral norm (hence spectral

radius) and for other matrices we consider only the spectral radius. Since RCn, SCn are

symmetric and Cn is normal, we consider their spectral norm. For n = kg + 1, g ≥ 2,

k-circulant matrices are not normal, and hence we consider their spectral radius. Here

is an outline of the chapter.

In this chapter we deal with i.i.d. light tail inputs. In Section 4.1 we review some

known results on spectral norm of Toeplitz and Hankel matrices (which are close cousins

of the circulant matrix and the reverse circulant matrix respectively). In Section 4.2 we

prove almost sure and distributional convergence of spectral norm of reverse circulant

and circulant matrices. In Section 4.3 we consider the joint behaviour of the minimum

and maximum eigenvalue of the symmetric circulant matrix and from there we deduce

the distributional convergence of the spectral norm. In Section 4.4 we review a known

result on the spectral radius of the k-circulant matrix when n = k2 + 1. Then we prove

the distributional convergence of the spectral radius of the k-circulant matrix where

n = kg + 1, g > 2 and in Section 4.4.5 give an idea to deal with the more general case,

sn = kg +1 with some suitable condition in s. Finally in Section 4.5 we pose some open

questions. Throughout the chapter, c and C will denote a generic constant.

Some of the results of Bose, Hazra and Saha (2009, 2010) [34,37] are based on this

chapter.

4.1 Toeplitz and Hankel with light tail entries

First we state a known result for Toeplitz and Hankel matrices. Let

un = n−1/2(1, 1, . . . , 1)T . (4.1.1)

Theorem 4.1.1 (Bose and Sen (2007) [42]). Let {xi} be i.i.d. with E(x0) = µ > 0

and V ar(x0) = 1 and let Tn be the symmetric Toeplitz matrix ((x|i−j|)). Let T 0
n =

Tn − µnunu
T
n . Then

(i)
‖Tn‖
n

→ µ almost surely and ‖ T 0
n

‖Tn‖
‖ → 0 almost surely.

(ii) If E(x4
0) < ∞, then for Mn = ‖Tn‖ or Mn = λn(Tn), the maximum eigenvalue of
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Tn,
Mn − µn√

n
→ N(0, 4/3) in distribution.

(iii) If Tn and T 0
n are replaced by the corresponding symmetric Hankel matrices Hn and

H0
n, then (i) holds. Further, (ii) holds with the limiting variance being changed from

4/3 to 2/3.

Remark 4.1.2. When {xi} are independent and centered random variables, the follow-

ing results are known for the Toeplitz matrix. Meckes (2007) [92] showed that if xi’s

are independent and centered uniformly subgaussian then E‖Tn‖ ≤ C
√
n lnn. He also

showed that if for all j and for some constant A, |xj| ≤ A or, if {xj} satisfy logarithmic

Sobolev inequality with constant A, that is,

E
[
f2(xj) log f2(xj)

]
≤ 2AE

[
f ′(xj)

2
]

for every smooth f such that E f2(xj) = 1,

then with probability 1

lim sup
n

‖Tn‖√
n lnn

≤ C,

where C depends only on A.

These results were further improved in Adamczak (2010) [1], where it was shown that

for {xi} i.i.d. mean zero and finite variance,

lim
n→∞

‖Tn‖
E‖Tn‖

= 1 a.s.

Further,

lim sup
‖Tn‖√
n lnn

<∞ a.s. if and only if Ex0 = 0 and Ex2
0 <∞.

4.2 Circulant and reverse circulant with light tail entries

Results similar to Toeplitz and Hankel matrices can be established for reverse circulant,

symmetric circulant and circulant matrices. In fact we shall show that in each case, the

spectral norm converges in distribution when centered and scaled appropriately. Recall

the eigenvalues of Cn and RCn and, observe that ‖Cn‖ = ‖RCn‖. Hence the spectral

norm for these two matrices do not have to be dealt with separately. Some results

about the maximum of the singular values of circulant matrices with standard complex

normal entries is known from the form of the eigenvalues. See for example Corollary 5

of Meckes (2009) [91].

We start with a result on the reverse circulant which follows easily from the existing

literature.
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Theorem 4.2.1 (Bose, Hazra and Saha (2009) [34]). Suppose {xi} is i.i.d. with E(x0) =

µ and V ar(x0) = 1. Suppose RCn is the reverse circulant matrix formed by the {xi}.
Let RC0

n = RCn − µnunu
T
n where un is as given in (4.1.1). If µ > 0, then

‖RCn‖
n

→ µ almost surely and ‖ RC0
n

‖RCn‖
‖ → 0 almost surely.

Similar results hold for Cn also.

Proof. The proof follows in a straightforward manner from arguments for Toeplitz and

Hankel matrices given in Theorem 3 and Lemma 1(i) of Bose and Sen (2007) [42]. We

omit the details. 2

Remark 4.2.2. If we assume E(x4
0) < ∞, then the distributional convergence when

µ > 0 can also be proved following the proof of Bose and Sen (2007) [42]. However,

below we establish the distributional convergence under the assumption E|x0|2+δ <∞.

Theorem 4.2.3 (Bose, Hazra and Saha (2009) [34]). Suppose {xi}i≥0 is i.i.d. with

mean µ and E|xi|2+δ < ∞ for some δ > 0. Consider the reverse circulant (RCn) and

circulant (Cn) matrices with the input {xi}.

(i) If µ 6= 0 then,
‖RCn‖ − |µ|n√

n

D→ N(0, 1).

(ii) If µ = 0 then,
‖ 1√

n
RCn‖ − dq

cq

D→ Λ

where

q = q(n) = ⌊n− 1

2
⌋, dq =

√
ln q, cq =

1

2
√

ln q

and Λ is the standard Gumbel distribution defined in Section 3.2. The above conclusions

continue to hold for Cn also.

Proof. As pointed out earlier, it is enough to deal with only RCn. Let λ0, λ1, . . . , λn−1

be the eigenvalues of n−1/2RCn. These eigenvalues are given by (see Section 1.2.3):





λ0 = n−1/2
∑n−1

t=0 xt

λn/2 = n−1/2
∑n−1

t=0 (−1)txt, if n is even

λk = −λn−k =
√
Ix,n(ωk), 1 ≤ k ≤ ⌊n−1

2 ⌋
(4.2.1)

where

Ix,n(ωk) =
1

n
|
n−1∑

t=0

xte
−itωk |2 and ωk =

2πk

n
.
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Note that {|λk|2; 1 ≤ k < n/2} is the periodogram of {xi} at the frequencies {2πk
n ; 1 ≤

k < n/2}. If µ = 0 then under the given conditions, Theorem 2.1 of Davis and Mikosch

(1999) [50] yields

max
1≤k< n

2

Ix,n(ωk) − ln q
D→ Λ. (4.2.2)

Therefore

max
1≤k<n/2

|λk|2 − ln q
D→ Λ. (4.2.3)

Define g(x) =
√
x. Then by mean value theorem,

g( max
1≤k<n/2

|λk|2) − g(ln q) = g′(ξn)

(
max

1≤k<n/2
|λk|2 − ln q

)

where ξn lies between max1≤k<n/2 |λk|2 and ln q. From (4.2.3) we have

max1≤k<n/2 |λk|2
ln q

P→ 1.

Therefore ξn

ln q
P→ 1. Now

g′(ξn)

g′(ln q)
=

(
ln q

ξn

)1/2
P→ 1

and therefore

g(max1≤k<n/2 |λk|2) − g(ln q)

g′(ln q)
=

g′(ξn)

g′(ln q)

(
max

1≤k<n/2
|λk|2 − ln q

)
D→ Λ.

So if {xi} are i.i.d. with mean zero, variance 1 and E|xi|2+δ <∞, then

max1≤k< n
2
|λk| −

√
ln q

1
2
√

ln q

D→ Λ. (4.2.4)

Observe that we have left out λ0 and λn/2 (if n is even) where

λ0 =
1√
n

n−1∑

t=0

xt and λn/2 =
1√
n

n−1∑

t=0

(−1)txt.

Now suppose that mean of {xi} is µ > 0. For 1 ≤ k < n/2,

|λk| =
1√
n

∣∣
n−1∑

t=0

xte
itωk
∣∣ =

1√
n

∣∣
n−1∑

t=0

(xt − µ)eitωk
∣∣,

and (xt − µ) has mean zero and variance 1. Therefore even when E(xi) > 0, (4.2.4)
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holds. Note that by CLT √
nλ0 − µn√

n

D→ N(0, 1). (4.2.5)

(4.2.5) implies λ0
P→ ∞ and hence

|λ0| − µ
√
n
D→ N(0, 1).

Let An = max1≤k<q |λk|. From (4.2.4) and (4.2.5)

An√
ln q

P→ 1 and
λ0

µ
√
n

P→ 1

and so it follows that

P
[

max(An, |λ0|) − µ
√
n > x

]
→ P

[
N(0, 1) > x

]
,

proving (i) for odd n. Since for even n,

λn/2 = n−1/2
n−1∑

t=0

(−1)txt
D→ N(0, 1),

this can also be neglected as before, and hence (i) holds also for even n. Similar proof

works when µ < 0. This proves (i) completely.

(ii) Now assume µ = 0. In contrast to the previous case, here An dominates |λ0|, since

|λ0| is tight and
|λ0| −

√
ln q

(ln q)−1/2

P→ −∞.

Hence in this case
‖ 1√

n
RCn‖ −

√
ln q

1
2
√

ln q

D→ Λ.

2

4.3 Symmetric circulant with light tail entries

The spectral norm of the symmetric circulant matrices behaves quite similar to reverse

circulant matrices but the normalizing constants change. The following normalizing

constants, well known in the context of maxima of i.i.d. normal variables, will be
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repeatedly used in the statements of our following results.

an = (2 ln n)−1/2 and bn = (2 ln n)1/2 − ln lnn+ ln 4π

2(2 ln n)1/2
. (4.3.1)

We need the following Lemmata which are well known and hence we omit their proofs.

The first Lemma is on the joint behaviour of maxima and minima of i.i.d normal random

variables.

Lemma 4.3.1. Let {Ni} be i.i.d. N(0, 1). If mn = min1≤i≤nNi and Mn =

max1≤i≤nNi, then with an and bn as in (4.3.1),

(−mn − bn
an

,
Mn − bn

an

) D−→ Λ ⊗ Λ,

where Λ ⊗ Λ denotes joint distribution of two independent standard Gumbel random

variables.

The statement of Lemma 4.3.2 is taken from Einmahl (1989) [53] Corollary 1(b),

page 31, in combination with his Remark on page 32.

Lemma 4.3.2. Let {ψi} be independent random vectors with mean zero and values

in R
d. Assume that the moment generating functions of ψi, 1 ≤ i ≤ n, exist in a

neighbourhood of the origin and that

Cov(ψ1 + ψ2 + ...+ ψn) = BnId,

where Bn > 0 and Id denotes the d-dimensional identity matrix. Let ηk be independent

N(0, σ2Cov(ψk)) random vectors, k = 1, 2, ...n, independent of {ψk} and σ2 ∈ (0, 1].

Let ψ∗k = ψk + ηk, k = 1, 2, ...n and write p∗n for the density of B
−1/2
n

∑n
k=1 ψ

∗
k. Choose

α ∈ (0, 1
2) such that

α

n∑

k=1

E|ψk|3 exp(α|ψk|) ≤ Bn,

where |x| denotes the Euclidean norm in R
d. Let

βn = βn(α) = B−3/2
n

n∑

k=1

E|ψk|3 exp(α|ψk|).

If |x| ≤ c1αB
1/2
n , σ2 ≥ −c2β2

n lnβn and Bn ≥ c3α
−2, where c1, c2, c3 are constants

depending only on d, then

p∗n(x) = φ(1+σ2)Id
(x) exp(T̄n(x)) with |T̄n(x)| ≤ c4βn(|x|3 + 1),



Chapter 4: Spectral norm and radius of circulant type matrices with light tail 86

where φc is the density of a d-dimensional centered Gaussian vector with covariance

matrix c and c4 is a constant depending on d.

We shall use the above Lemma now to derive a normal approximation result which

shall be used in the proof of Theorem 4.3.4 and again in Section 7.1.2. Define

x̄t = xtI(|xt| ≤ (1 + 2j)1/s) − E[xtI(|xt| ≤ (1 + 2j)1/s)]. (4.3.2)

For 1 ≤ i1 < i2 < ... < id < j let

vd(0) =
√

2(1, 1, ..., 1), vd(t) = 2

(
cos

2πi1t

2j + 1
, cos

2πi2t

2j + 1
, ..., cos

2πidt

2j + 1

)
for 1 ≤ t ≤ j.

Lemma 4.3.3. Let n = 1 + 2j and σ2
j = (1 + 2j)−c for some c > 0 and let {xt} be

i.i.d mean zero with Ex2
0 = 1 and E|x0|s < ∞ for some s > 2. Suppose Nt’s are i.i.d.

N(0, 1) random variables independent of {xt} and p̃j(x) is the density of

1√
1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t).

Then for any measurable subset E of Rd,

∣∣∣
∫

E
p̃j(x)dx−

∫

E
φ(1+σ2

j )Id
(x)dx

∣∣∣ ≤ ǫj

∫

E
φ(1+σ2

j )Id
(x)dx+O(exp(−(1 + 2j)η))

where ǫj → 0 as j → ∞, η > 0 and the above holds uniformly over d-tuples 1 ≤ i1 <

i2 < ... < id < j.

Proof. Let Sj,x̄ =
∑j

t=0 x̄tvd(t) and let s = 2 + δ. Then observe that Cov(Sj,x̄) = BjId

where, Bj = (2j+ 1)V ar(x̄t) and Id is the d×d identity matrix. Since {x̄tvd(t)}0≤t≤j is

an independent collection of mean zero random vectors in Rd, we can use Lemma 4.3.2.

By choosing α = c5(1+2j)−
1
s

2
√

d
, it can be easily shown that,

α

j∑

t=0

E|x̄tvd(t)|3 exp(α|xtvd(t)|) < Bj .

If we define β̃j = B
−3/2
j

∑j
t=0E|x̄tvd(t)|3 exp(α|x̄tvd(t)|), then it follows that

β̃j ≤ C(1 + 2j)−( 1
2
− 1−δ

s
).

Let c = 1
2 − 1−δ

s > 0. Now choose |x| ≤ c1αB
1/2
j ≈ c2(1 + 2j)

1
2
− 1

s and σ2
j satisfying,

1 ≥ σ2
j ≥ c3(ln(2j + 1))(2j + 1)−2c.
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Clearly Bj ≥ c4α
−2 and Bj ≈ (1 + 2j). We mention here that c1, c2, c3, c4 are constants

depending only on d. Then Lemma 4.3.2 implies that,

p̃j(x) = φ(1+σ2
j )Id

(x) exp(|Tj(x)|)

with |Tj(x)| ≤ c5β̃j(|x|3 + 1). Note that, |Tj(x)| → 0 uniformly for |x|3 = o{min((1 +

2j)−c, (1 + 2j)
1
2
− 1

s )}. For the choice of σ2
j = (1 + 2j)−c the above condition can be seen

to be satisfied. Now it follows from Corollary 1 of [44] that for any measurable subset

E of R
d,

∣∣
∫

E
p̃j(x)dx−

∫

E
φ(1+σ2

j )Id
(x)dx

∣∣ ≤ ǫj

∫

E
φ(1+σ2

j )Id
(x)dx+O(exp(−(1 + 2j)η))

where ǫj → 0 as j → ∞. 2

For the reverse circulant, leaving out the eigenvalues λ0 and λn/2, the maximum

and minimum eigenvalues are equal in magnitude. This is not the case for symmetric

circulant. Hence we now look at the joint behaviour of the maximum and minimum of

the eigenvalues.

Theorem 4.3.4 (Bose, Hazra and Saha (2009) [34]). Suppose {λk, 0 ≤ k ≤ n − 1}
are the eigenvalues of 1√

n
SCn. Let q = ⌊n

2 ⌋ and Mq,x = max1≤k≤q λk and mq,x =

min1≤k≤q λk. If {xi} are i.i.d. with Ex0 = 0 , Ex2
0 = 1 and E|x0|s <∞ for some s > 2

then we have, (−mq,x − bq
aq

,
Mq,x − bq

aq

) D−→ Λ ⊗ Λ,

where aq and bq are given by (4.3.1). The same limit continues to hold if the eigenvalue

λ0 is included in the definition of max and min above.

Proof. First assume n = 2j + 1, odd and let s = 2 + δ. The proof may be broken down

into four steps. We use truncation and normal approximation (Lemma 4.3.3) along with

Bonferroni Inequality.

Step 1: Truncation. Let x̄t be as in (4.3.2) and

x̃t = xtI(|xt| ≤ (1 + 2j)1/s).

We show that it is enough to deal with the truncated random variables {x̄t} (see (4.3.3)).

If λ̄k and λ̃k denote the eigenvalues of symmetric circulant matrices with entries x̄t and

x̃t respectively, then λ̄k = λ̃k. By Borel-Cantelli lemma,
∑∞

t=1 |xt|I(|xt| > (1 + 2j)1/s)

is bounded with probability 1 and consists of only a finite number of non-zero terms.
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Thus there exists a positive integer N(ω) (depending on sample point ω) such that

j∑

t=0

|xt − x̃t| =

j∑

t=0

|xt|I(|xt| > (1 + 2j)1/s)

≤
∞∑

t=0

|xt|I(|xt| > (1 + 2j)1/s)

=

N(ω)∑

t=0

|xt|I(|xt| > (1 + 2j)1/s).

It follows that for 2j+1 ≥ {N(ω), |x1|s, . . . , |xN(ω)|s} the left side is zero. Consequently,

for all j sufficiently large, λ̃k = λk a.s. for all k. Therefore for all j sufficiently large,

(−mj,x − bj
aj

,
Mj,x − bj

aj

) D
=
(−mj,x̄ − bj

aj
,
Mj,x̄ − bj

aj

)
(4.3.3)

where mj,x̄ = min1≤k≤j λ̄k and Mj,x̄ = max1≤k≤j λ̄k.

Step 2: Application of Bonferroni Inequality.

Define for 1 ≤ k ≤ j,

λ̄
′

k =
1√

2j + 1

(√
2x̄0 + 2

j∑

t=1

x̄t cos
2πkt

2j + 1

)
,

¯̄λ′k = λ̄′k +
σj√

1 + 2j

(√
2N0 + 2

j∑

t=1

Nt cos
2πkt

n

)

= λ̄′k + σjN
′
j,k.

where σ2
j = (1 + 2j)−c for some c > 0. Observe N ′j,k are i.i.d. N(0, 1) for k = 1, 2, · · · j.

Define

Mj,x̄+σN = max
1≤k≤j

¯̄λ
′

k and mj,x̄+σN = min
1≤k≤j

¯̄λ
′

k.

Let

A =
(−mj,x̄+σN − bj

aj
> x,

Mj,x̄+σN − bj
aj

> y
)
,

B = P
(−min1≤k≤j(1 + σ2

j )Nk − bj

aj
> x,

max1≤k≤j(1 + σ2
j )Nk − bj

aj
> y

)
.

Claim:

lim
j→∞

[P(A) − P(B)] = 0. (4.3.4)
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We approximate P(A) by P(B) as follows:

P(A) = P
(−mj,x̄+σN − bj

aj
> x,

Mj,x̄+σN − bj
aj

> y
)

= P
(
mj,x̄+σN < −ajx− bj,Mj,x̄+σN > ajy + bj

)

= P
(
∪j

k=1 {¯̄λ
′

k < −ajx− bj} ∩ ∪j
k=1{¯̄λ

′

k > ajy + bj}
)

= P
(
∪j

k=1 {¯̄λ
′

k ∈ Ij
x,y}

)
= P

(
∪j

k=1 Ak,j

)

where, Ij
x,y = (ajy + bj,−ajx − bj) and Ak,j = {¯̄λ

′

k ∈ Ij
x,y}. Now by Bonferroni’s

inequality,
2k∑

t=1

(−1)t−1Ãt,j ≤ P(A) ≤
2k−1∑

t=1

(−1)t−1Ãt,j (4.3.5)

where

Ãt,j =
∑

1≤i1<i2<···<it≤j

P
(
Ai1,j ∩ .. ∩Ait,j

)
.

P(B) = P
(−min1≤k≤j(1 + σ2

j )Nk − bj

aj
> x,

max1≤k≤j(1 + σ2
j )Nk − bj

aj
> y

)

= P
(
∪j

k=1 {(1 + σ2
j )1/2Nk ∈ Ij

x,y}
)

= P
(
∪j

k=1 Bk,j

)

where Bk,j = {(1 + σ2
j )1/2Nk ∈ Ij

x,y}. Again by Bonferroni’s inequality,

2k∑

t=1

(−1)t−1B̃t,j ≤ P(B) ≤
2k−1∑

t=1

(−1)t−1B̃t,j (4.3.6)

where

B̃t,j =
∑

1≤i1<i2<···<it≤j

P
(
Bi1,j ∩Bi2,j ∩ .. ∩Bit,j

)
.

From (4.3.5) and (4.3.6) we get

2k∑

t=1

(−1)t−1(Ãt,j − B̃t,j) − B̃2k+1,j ≤ P(A) − P(B) ≤
2k−1∑

t=1

(−1)t−1(Ãt,j − B̃t,j) + B̃2k,j.

(4.3.7)
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Now note that,

B̃t,j =
∑

1≤i1<i2···<it≤j

P
(
Bi1,j ∩Bi2,j ∩ . . . ∩Bit,j

)

=
∑

1≤i1<i2···<it≤j

P
(
(1 + σ2

j )1/2Nil ∈ Ij
x,y; l = 1, 2, .., t

)

=
∑

1≤i1<i2···<it≤j

Pt
(
(1 + σ2

j )1/2Nil ∈ Ij
x,y

)
.

Note here that

P
(
(1 + σ2

j )1/2N1 ∈ (ajy + bj,−ajx− bj)
)

≤ P
(
(1 + σ2

j )1/2N1 > ajy + bj
)

= P
(
N1 > (ajy + bj)(1 + σ2

j )−1/2
)

≤ P
(
N1 > (ajy + bj)(1 − 1

2
σ2

j )
)
.

Now (ajy + bj)(1 − σ2
j

2 ) ≈ bj + o(1) and P(N1 > bj) ≈ 1
j . Therefore

P
(
N1 > (1 − 1

2
σ2

j )(ajy + bj)
)
≤ K

j

and hence

B̃t,j ≤
(
j

t

)
Kt

jt
≤ Kt

t!
.

Thus

lim
t→∞

lim
j→∞

B̃t,j = 0.

On the other hand, fixing t ≥ 1 we get,

P(Ai1,j ∩Ai2,j ∩ ... ∩Ait,j) = P(
1√

1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t) ∈ Et),

where Et = {(x1, x2, ..., xt) : xi ∈ Ij
x,y}. So by Lemma 4.3.3 we have that uniformly over

all d-tuples 1 ≤ i1 < i2 < ... < id ≤ j,

∣∣∣P(
1√

1 + 2j

j∑

t=0

(x̄t + σjNt)vd(t) ∈ Et) − P((1 + σ2
j )1/2Nil ∈ Ij

x,y, 1 ≤ l ≤ t)
∣∣∣

≤ ǫjP((1 + σ2
j )1/2Nil > ajy + bj, 1 ≤ l ≤ t) +O(exp(−(1 + 2j)η)).

So as j → ∞ we get,

|Ãt,j − B̃t,j| ≤ ǫjB̃t,j +

(
j

t

)
O(exp(−(1 + 2j)η)) → 0.
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Therefore,

lim
j→∞

|P(A) − P(B)| ≤ lim
j→∞

B̃2k+1,j + lim
j→∞

B̃2k,j

and letting k → ∞ we get,

lim
j→∞

[P(A) − P(B)] = 0.

This proves the claim (4.3.4) completely.

Step 3: Claim:

(−mj,x̄+σN − bj
aj

,
Mj,x̄+σN − bj

aj

) D−→ Λ ⊗ Λ. (4.3.8)

As max1≤k≤j Nk = Op((ln j)1/2), it follows that,

∣∣∣
(1 + σ2

j )1/2 max1≤k≤j Nk − bj

aj
− max1≤k≤j Nk − bj

aj

∣∣∣ ≤ σj max1≤k≤j |Nk|
aj

P→ 0.

Therefore
(1 + σ2

j )1/2 max1≤k≤j Nk − bj

aj

D−→ Λ.

Since −min1≤k≤j(1 + σ2
j )1/2Nk = max1≤k≤j

(
− (1 + σ2

j )1/2Nk

)
and −(1 + σ2

j )1/2Nk
D
=

(1 + σ2
j )1/2Nk we get

min1≤k≤j −(1 + σ2
j )1/2Nk − bj

aj

D−→ Λ.

Since (1+σ2
j )1/2Ni are i.i.d. symmetric distributions, by Resnick (1987) [103] (Exercise

5.5.2)

(min1≤k≤j −(1 + σ2
j )1/2Nk − bj

aj
,
max1≤k≤j(1 + σ2

j )1/2Nk − bj

aj

) D−→ Λ ⊗ Λ. (4.3.9)

Therefore combining (4.3.4) and (4.3.9) we get,

(−mj,x̄+σN − bj
aj

,
Mj,x̄+σN − bj

aj

) D−→ Λ ⊗ Λ.

This completes the proof of (4.3.8).

Step 4: Claim: (−mj,x̄ − bj
aj

,
Mj,x̄ − bj

aj

) D−→ Λ ⊗ Λ. (4.3.10)



Chapter 4: Spectral norm and radius of circulant type matrices with light tail 92

We prove this using (4.3.8). Note

∣∣max(¯̄λ′k)

aj
− max(λ̄′k)

aj

∣∣ ≤ σj

aj
max |N ′j,k|

P−→ 0.

Similarly −¯̄λ′k = −λ̄′k − σN ′j,k and

∣∣max(−¯̄λ′k)

aj
− max(−λ̄′k)

aj

∣∣ ≤ σj

aj
max |N ′j,k|

P−→ 0.

Now if we denote m′j,x̄ = min1≤k≤j λ̄
′
k and M ′j,x̄ = max1≤k≤j λ̄

′
k then,

∣∣(−mj,x̄+σN − bj
aj

,
Mj,x̄+σN − bj

aj

)
−
(−m′j,x̄ − bj

aj
,
M ′j,x̄ − bj

aj

)∣∣

≤ C
[∣∣−mj,x̄+σN − (−m′j,x̄)

aj

∣∣+
∣∣Mj,x̄+σN −M ′j,x̄

aj

∣∣
]

≤ C
[∣∣max(−¯̄λ′k) − max(−λ̄′k)

aj

∣∣+
∣∣max(¯̄λ′k) − max(λ̄′k)

aj

∣∣
]
P−→ 0.

Therefore using (4.3.8), we hwve

(−m′j,x̄ − bj

aj
,
M ′j,x̄ − bj

aj

) D−→ Λ ⊗ Λ. (4.3.11)

Again λ̄k = λ̄′k + (1−
√

2)√
2j+1

x̄0, therefore

∣∣M
′
j,x̄ − bj

aj
− Mj,x̄ − bj

aj

∣∣ P−→ 0,

and
∣∣−mj,x̄ − bj

aj
−

−m′j,x̄ − bj

aj

∣∣ P−→ 0.

Hence using (4.3.11), we have

(−mj,x̄ − bj
aj

,
Mj,x̄ − bj

aj

) D−→ Λ ⊗ Λ

This completes the proof of (4.3.10).

Now we get back to the proof of the main theorem. Combining (4.3.3) and (4.3.10),

we can conclude that

(−mj,x − bj
aj

,
Mj,x − bj

aj

)
D−→ Λ ⊗ Λ.
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This proves the theorem when n is odd.

For the even case say n = 2j it should be noted that if we work with λ′k =
√

2x0 +√
2(−1)kxj + 2

∑j−1
t=1 xt cos 2πkt

2j then similar normal approximations can be done and

the subsequent calculations follow after that. We omit the obvious details. This proves

the theorem completely. 2

The next theorem follows by calculations similar to those used in the proof of The-

orem 4.2.3.

Theorem 4.3.5 (Bose, Hazra and Saha (2009) [34]). Suppose {xi}i≥0 is an i.i.d. se-

quence with mean µ and E|xi|2+δ < ∞ for some δ > 0. Consider the symmetric

circulant matrix (SCn) with these {xi}.

(i) If µ = 0 then,
‖ 1√

n
SCn‖ − bq − aq ln 2

aq

D→ Λ

where q = q(n) ≈ n
2 and aq and bq are as in equation (4.3.1).

(ii) If µ 6= 0 then,
‖SCn‖ − |µ|n√

n

D→ N(0, 2).

Proof. To prove (i), since mean µ = 0, λ0
D−→ N(0, 2). So we can neglect this as was

done in proof of Theorem 4.2.3. Therefore, for large n with arbitrarily large probability,

‖ 1√
n
SCn‖ = max{− min

1≤i≤⌊n
2
⌋
λi, max

1≤i≤⌊n
2
⌋
λi}.

Hence

P
(
‖ 1√

n
SCn‖ ≤ aqx+ bq

)
= P

(−minλi − bq
aq

≤ x,
maxλi − bq

aq
≤ x

)

D→ Λ(x)Λ(x) = Λ(x+ ln
1

2
).

Now by convergence of types

P
(‖ 1√

n
SCn‖ − b̃q

ãq
≤ x

)
D→ Λ(x)

where, ãq = aq and b̃q = bq + aq ln 2. This proves (i).

In part (ii), λ0 dominates and the proof proceeds as in the proof given for Theorem

4.2.3. We omit the details. 2
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4.4 k-circulant with light tail entries

It appears difficult to establish distributional convergence of spectral norm or spectral

radius for k-circulant matrix for all possible values of (k, n). A special case (n = k2 + 1)

was tackled in Bose, Mitra and Sen (2009) [44].

Theorem 4.4.1 (Bose, Mitra and Sen (2009)). Suppose {xi}i≥0 is an i.i.d. sequence

with mean zero and variance 1 and E|xi|2+δ <∞ for some δ > 2. If n = k2 + 1 then

sp(n−1/2Ak,n) − dq

cq

D→ Λ

as n→ ∞ where q = q(n) = ⌊n
4 ⌋ and

cn = (8 ln n)−1/2 and dn =
(ln n)1/2

√
2

(
1 +

1

4

ln lnn

lnn

)
+

1

2(8 ln n)1/2
ln
π

2
. (4.4.1)

We now state the following significant generalisation of the above result.

Theorem 4.4.2 (Bose, Hazra and Saha (2010) [37]). Suppose {xi}i≥0 is an i.i.d. se-

quence of random variables with mean zero and variance 1 and E |xi|γ < ∞ for some

γ > 2. If n = kg + 1 for some fixed positive integer g, then as n→ ∞,

sp(n−1/2Ak,n) − dq

cq

D→ Λ

where q = qn = n
2g and the normalizing constants cn and dn can be taken as follows

cn =
1

2g1/2(lnn)1/2
, dn =

lnCg − g−1
2 ln g

2g1/2(lnn)1/2
+

(
lnn

g

)1/2 [
1 +

(g − 1) ln lnn

4 ln n

]
,

and Cg =
1√
g

(2π)
g−1
2 .

The proof of the above theorem is long and is developed in the following sections.

It involves some intricate study of the structure of the eigenvalues, the behaviour of the

tail of product of i.i.d. standard exponential random variables Hn(·) from Chapter 3

and some normal approximation methods. In Section 4.4.5, we remark about the case

sn = kg + 1.

Here is an outline of the proof of Theorem 4.4.2. In Section 4.4.1 we discuss some

distributional properties of the eigenvalues of k-circulant matrix when the input se-

quence is i.i.d. Gaussian. In Section 4.4.2 we provide more detailed description of the

eigenvalues of k-circulant matrix for n = kg + 1. Section 4.4.3 has two preparatory

Lemmas on truncation and normal approximation. Drawing on the developments of
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Section 3.2 of Chapter 3 and of Sections 4.4.2 and 4.4.3, we derive the limit behaviour

of the spectral radius of k-circulant matrices when n = kg + 1 → ∞ (g being an integer

held fixed) in Section 4.4.4. We show that the spectral radius, when scaled and centered

appropriately, converges in distribution to the Gumbel distribution.

4.4.1 Properties of eigenvalues of Gaussian k-circulant for fixed n

For 1 ≤ t < n, let us split λt into real and complex parts as λt = at,n + ibt,n, that is,

at,n =

n−1∑

l=0

xl cos

(
2πtl

n

)
, bt,n =

n−1∑

l=0

xl sin

(
2πtl

n

)
. (4.4.2)

For z ∈ C, z̄ denotes its complex conjugate. For all 0 < t, t′ < n, the following identities

can easily be verified using the orthogonality relations of sine and cosine functions.

E(at,nbt,n) = 0, and E(a2
t,n) = E(b2t,n) = n/2,

λ̄t = λn−t, E(λtλt′) = nI(t+ t′ = n), E(|λt|2) = n.

The following Lemma is due to Bose, Mitra and Sen (2009) [44].

Lemma 4.4.3. (Bose, Mitra and Sen (2009) [44]) Fix k and n. Suppose that {xl}0≤l<n

are i.i.d. standard normal random variables.

(a) For every n, n−1/2at,n, n
−1/2bt,n, 0 ≤ t ≤ n/2 are i.i.d. normal with mean zero and

variance 1/2. Consequently, any sub-collection {yj1, yj2, . . .} of {yj}0≤j<ℓ, so that no

member of the corresponding partition blocks {Pj1 ,Pj2 , . . .} is a conjugate of any other,

are mutually independent.

(b) Suppose 1 ≤ j < ℓ and Pj = {n − i : i ∈ Pj} and n/2 6∈ Pj . Then n−nj/2yj are

distributed as (nj/2)-fold product of i.i.d. exponential random variables with mean one.

4.4.2 Additional description of eigenvalues of k-circulant when n =

k
g
+ 1

We need some additional facts about the eigenvalues since we are dealing with spectral

radius instead of LSD. Recall the eigenvalue structure of k-circulant matrices from

Section 1.2.4. Also recall that gx = #S(x) and S(x) = {xkb mod n′ : 0 ≤ b < gx}. We

call gx the order of x. Note that g0 = 1. It is easy to see that

gx = min{b > 0 : b is an integer and xkb = x mod n′}. (4.4.3)
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Recall from (1.2.7)

yj :=
∏

t∈Pj

λty, j = 0, 1, . . . , l − 1 where y = n/n′.

Define

Zn = {0, 1, 2, . . . , n− 1},

Jk := {Pi : #Pi = k}, nk := #Jk, X(k) := {x : x ∈ Zn and x has order k},

υk,n = #{x : x ∈ Zn and gx < g1}. (4.4.4)

Lemma 4.4.4. The eigenvalues {ηi} of the k-circulant with n = kg + 1, g ≥ 2, satisfy

the following:

(a) η0 =
∑n−1

t=0 xt, is always an eigenvalue and if n is even, then ηn
2

=
∑n−1

t=0 (−1)txt,

is also an eigenvalue and both have multiplicity one.

(b) For x ∈ Zn r {0, n
2 }, gx = g1 or g1

b for some b ≥ 2 and g1

2b is an integer.

(c) For all large n, g1 = 2g . Hence from (b), for x ∈ Zn r {0, n
2 }, gx = 2g or 2g

b . The

total number of eigenvalues corresponding to J2g is

2g × #J2g = #X(2g) ≈ n.

(d) X(2g
b ) = ∅ for 2 ≤ b < g, b even. If g is even then X(2g

g ) = X(2) is either empty

or contains exactly two elements with eigenvalues

ηl = |λl|, ηn−l = −|λl|, for some 1 ≤ l ≤ n

2
.

(e) Suppose b is odd, 3 ≤ b ≤ g and g
b is an integer. For each Pj ∈ J 2g

b
there are 2g

b

eigenvalues given by the 2g
b -th roots of yj. Total number of eigenvalues corresponding

to the set J 2g
b

is

2g

b
× #J 2g

b
= #X(

2g

b
) ≈ (kg/b + 1)(1 + n−a) for some a > 0.

There are no other eigenvalues.

Proof. Since n = kg + 1, n and k are relatively prime, we have n′ = n.

(a) P0 = S(0) = {0} and the corresponding eigenvalue is η0 =
∑n−1

t=0 xt with multiplicity

one. Similarly if n is even then k is odd and hence S(n/2) = {n
2 }, and the corresponding

eigenvalue is ηn
2

=
∑n−1

t=0 (−1)txt of multiplicity one.

(b) From (4.4.3) it is easy to see that gx divides g1 and hence gx = g1 or gx = g1

b for
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some b ≥ 2. Also for every integer t ≥ 0, tkg = (−1 + n)t = −t mod n. Hence λt

and λn−t belong to same partition block S(t) = S(n− t). Thus each S(t) contains even

number of elements, except for t = 0, n
2 . Hence g1

b must be even, that is, g1

2b must be an

integer.

(c) From Lemma 2.4.16(i), g1 = 2g for all but finitely many n and υk,n/n → 0 as

n → ∞. For each Pj ∈ J2g we have 2g many eigenvalues which are 2g-th roots of Πj .

Now the result follows from the fact that

n = 2g#J2g + υk,n.

(d) Suppose b = 2 and x ∈ X(g1

2 ) = X(2g
2 ). Then xk

g1
2 = xkg = x mod n. But

kg = −1 mod n and so, xkg = −x mod n. Therefore 2x = 0 mod n and x can be

either 0 or n/2. But we have already seen in part (a) that g0 = gn/2 = 1. Hence

X(2g
2 ) = ∅.

Now suppose b > 2, even. From Lemma 3(ii) Bose, Mitra and Sen (2008) [44],

#X(2g
b ) ≤ gcd(k2g/b − 1, kg + 1) for b ≥ 3. Now observe that for b even,

gcd(k2g/b − 1, kg + 1) =

{
1 if k even,

2 if k odd.

So we have #X(2g
b ) ≤ 2 for b > 2 and b even.

Suppose if possible, there exist x ∈ Zn such that gx = 2g
b . Then #S(x) = 2g

b and

for all y ∈ S(x), gy = 2g
b . Hence

#

{
y : gy =

2g

b

}
≥ 2g

b
> 2 for g > b > 2, b even.

This contradicts the fact that #X(2g
b ) ≤ 2 for g > b > 2 , b even. Hence X(2g

b ) = ∅ for

b even and g > b > 2.

If b = g and it is even, then from previous discussion #X(2g
g ) = 0 or 2. In the latter

case there are exactly two elements in Zn whose order is 2 and there will be only one

partitioning set containing them. So corresponding eigenvalues will be

ηl = |λl|, ηn−l = −|λl|, for some 1 ≤ l ≤ n

2
.

(e) We first show that for b odd,

(kg/b + 1) −
∑

bi>b, bi odd,
g
bi

integer

(kg/bi + 1) ≤ #X(
2g

b
) ≤ kg/b + 1.
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Note that (e) is a simple consequence of this. Let

Zn,b =
{
x : x ∈ Zn and xk2g/b = x mod (kg + 1)

}
.

Then it is easy to see that

X(
2g

b
) ⊆ Zn,b. (4.4.5)

Let x ∈ Zn,b and g
b = m. Then

kg + 1 | x(k2g/b − 1)

⇒ kbm + 1 | x(k2m − 1)

⇒ k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1 | x(km − 1).

But gcd(km − 1, k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1) = 1, and therefore x is a

multiple of (k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1). Hence

#Zn,b =

⌊
kbm + 1

(k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1)

⌋

= km + 1 = kg/b + 1

and combining with (4.4.5),

#X(
2g

b
) ≤ #Zn,b = kg/b + 1.

On the other hand, if x ∈ Zn,b then either gx = 2g
b or gx < 2g

b . For the second case

gx = 2g
bi

for some bi > b, bi odd and therefore x ∈ Zn,bi
. Hence

#X(
2g

b
) ≥ #Zn,b −

∑

bi>b, bi odd,
g
bi

integer

#Zn,bi

≥ (kg/b + 1) −
∑

bi>b, bi odd,
g
bi

integer

(kg/bi + 1).

2
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4.4.3 Final preparatory lemmas: truncation and normal approxima-

tion

Truncation:

From Section 4.4.2, n = n′ and S(t) = S(n − t) except for t = 0, n/2. So for Pj 6=
S(0), S(n/2), we can define Aj such that

Pj = {x : x ∈ Aj or n− x ∈ Aj} and #Aj =
1

2
#Pj . (4.4.6)

For any sequence of random variables b = {bl}l≥0, define for Pj ∈ J2k

βb,k(j) =
∏

t∈Aj

∣∣∣∣∣
1√
n

n−1∑

l=0

blω
tl

∣∣∣∣∣

2

, where ω = exp

(
2πi

n

)
. (4.4.7)

Suppose {xl}l≥0 are independent, mean zero and variance one random variables. For

each n ≥ 1, define a triangular array of centered random variables {x̄(n)
l }0≤l<n by

x̄l = x̄
(n)
l = xlI|xl|≤n1/γ − ExlI|xl|≤n1/γ .

Now, recall from Lemma 4.4.4, #J2g = n2g ≈ n
2g for n = kg + 1. Without loss of

generality, assuming that Pj ∈ J2g for 1 ≤ j ≤ q = n
2g , we prove the following lemma.

Lemma 4.4.5. Assume E|xl|γ <∞ for some γ > 2. Then, almost surely,

max
1≤j≤q

(βx,g(j))1/2g − max
1≤j≤q

(βx̄,g(j))1/2g = o(1).

Proof. Since
∑n−1

l=0 ω
tl = 0 for 0 < t < n, it follows that βx̄,n(j) = βx̃,n(j) where

x̃l = x̃
(n)
l = x̄l + ExlI|xl|≤n1/γ = xlI|xl|≤n1/γ .

By Borel-Cantelli lemma,
∑∞

t=0 |xt|I|xt|>t1/γ is finite a.s. and has only finitely many

non-zero terms. Thus there exists a positive integer N(ω) such that

n∑

t=0

|xt − x̃t| =
n∑

t=0

|xt|I|xt|>n1/γ ≤
∞∑

t=0

|xt|I|xt|>t1/γ =

N(ω)∑

t=0

|xt|I|xt|>t1/γ . (4.4.8)

It follows that for n ≥ {N(ω), |x1|γ , . . . , |xN(ω)|γ} the left side of (4.4.8) is zero. Conse-

quently, for all n sufficiently large,

βx,n(j) = βx̃,n(j) = βx̄,n(j) a.s. for all j (4.4.9)
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and the assertion follows immediately. 2

Normal approximation:

For d ≥ 1, and any distinct integers i1, i2, . . . , id, from
{

1, 2, . . . , ⌈n−1
2 ⌉
}

, define

v2d(l) =

(
cos

(
2πij l

n

)
, sin

(
2πij l

n

)
: 1 ≤ j ≤ d

)T

, l ∈ Zn.

Let φΣ(·) denote the density of the 2d-dimensional Gaussian vector having mean zero

and covariance matrix Σ and let I2d be the identity matrix of order 2d. The following

Lemma is from Davis and Mikosch (1999) [50] and it follows from strong approximation

results of Einmahl (1989) [53].

Lemma 4.4.6 (Davis and Mikosch (1999) [50]). Let {xt} be i.i.d random variables with

E[x0] = 0, E[x0]2 = 1 and E[x0]γ < ∞ for some γ > 2. Let p̃n be the density function

of

21/2n−1/2
n∑

t=1

(x̄t + σnNt)vd(t),

where {Nt} is independent of {xt} and σ2
n = Var(x̄t)s

2
n, for some sequence {sn}. If

n−2c lnn < s2n ≤ 1 with c = 1/2 − (1 − δ)/γ for arbitrarily small δ > 0, then uniformly

for |x|3 = od(min (nc, n1/2−1/s)),

p̃n(x) = φ(1+σ2
n)I2d

(x)(1 + o(1)).

We shall use this lemma also in Section 7.1.1. Now we have the following corollary

which is similar to Lemma 4.3.3.

Corollary 4.4.7. Let γ > 2 and σ2
n = n−c where c is as in Lemma 4.4.6. Then for any

measurable B ⊆ R
2d,

∣∣∣∣
∫

B
p̃n(x)dx−

∫

B
φ(1+σ2

n)I2d
(x)dx

∣∣∣∣ ≤ ǫn

∫

B
φ(1+σ2

n)I2d
(x)dx +Od(exp(−nη)),

where ǫn → 0 as n → ∞ and η > 0. The above holds uniformly over all the d-tuples of

distinct integers 1 ≤ i1 < i2 < . . . < id ≤ ⌈n−1
2 ⌉.

4.4.4 Proof of Theorem 4.4.2

To establish the theorem we shall use the following lemmas whose proofs are given

later. Recall that {βx,g(t)1/2g} are the eigenvalues corresponding to the set of partitions

having cardinality 2g. We derive the behaviour of the maximum of these eigenvalues in



101 k-circulant with light tail entries

Lemma 4.4.8. Then using the results of Lemma 4.4.9, we show that the maximum of

the remaining eigenvalues is negligible compared to the above.

Lemma 4.4.8.
max1≤t≤q βx,g(t)1/2g − dq

cq

D→ Λ (4.4.10)

where dq, cq are as in Corollary 3.2.3, q = qn = n
2g − kn and kn

n → 0 as n→ ∞. As a

consequence,
max1≤t≤q βx,g(t)1/2g − dn/2g

cn/2g

D→ Λ. (4.4.11)

The next Lemma is technical and is required in the proof of Theorem 4.4.2. Let

cn(l) =
1

2l1/2(ln n)1/2
, dn(l) =

lnCl − l−1
2 ln l

2l1/2(ln n)1/2
+

(
lnn

l

)1/2 [
1 +

(l − 1) ln lnn

4 lnn

]
,

Cl =
1√
l
(2π)

l−1
2 , and

cn2j = cn2j (j), dn2j = dn2j (j), cn/2g = cn/2g(g) and dn/2g = dn/2g(g).

Lemma 4.4.9. Let n = kg +1. If j < g and for some a > 0, 2jn2j = (kj +1)(1+n−a) ≈
n

j
g or is finite, then there exists a constant K = K(j, g) ≥ 0 such that,

cn/2g

cn2j

→ K and
dn/2g − dn2j

cn2j

→ ∞ as n→ ∞.

Now we prove Theorem 4.4.2 using Lemmas 4.4.8 and 4.4.9. Then we shall prove

the lemmas.

Proof of Theorem 4.4.2. If #Pi = j, then the eigenvalues corresponding to Pi’s are the

j-th roots of Πi and hence these eigenvalues have the same modulus. From Lemma

4.4.4, the possible values of #Pi are {1, 2, 2g and 2g/b, 3 ≤ b < g, b odd, g
b ∈ Z}.

Recall from (4.4.7) that βx,j(i) is the modulus of the eigenvalue associated with the

partition set Pi, where #Pi = 2j.

In case of Gaussian entries it easily follows that βx,j(i) is the product of j exponential

random variables and they are independent as i takes n2j many distinct values. So from

Corollary 3.2.3, if n2j → ∞ then the maximum of βx,j(k)1/2j has a Gumbel limit. For

more general entries the method as in the proof of Lemma 4.4.8 can be adopted to get

the following limit:

max
1≤k≤n2j

βx,j(k)1/2j − dn2j

cn2j

D→ Λ, as n2j → ∞, (4.4.12)
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where cn2j and dn2j are as above.

Let

xn = cnx+ dn, q = q(n) =
n

2g
and B = {b : b odd, 3 ≤ b < g,

g

b
∈ Z}.

Then

P
(
sp(n−1/2Ak,n) > xq

)
≥ P

(
max

j:Pj∈J2g

βx,g(j)1/2g > xq

)

and

P
(
sp(n−1/2Ak,n) > xq

)

≤ P

(
max

j:Pj∈J2g

βx,g(j)1/2g > xq

)
+
∑

b∈B
P


 max

j:Pj∈J 2g
b

βx, g
b
(j)b/2g > xq




+P

(
|n−1/2

n−1∑

l=0

al| > xq

)
+ P

(
|n−1/2

n−1∑

l=0

(−1)lxl| > xq

)

+P

(
max

j:Pj∈J2

βx,2(j)1/2 > xq)

)

=: A+B + C +D + E.

From Lemma 4.4.4, the term D appears only when n
2 ∈ Z and the term E appears only

if g is even and in that case J2 contains only one element. It is easy to see that C,D

and E tend to zero since we are taking maximum of single element.

Note that B is a sum of finitely many terms. Now suppose for b ∈ B, we have some

finite Kb such that

cn/2g

cn2g/b

→ Kb and
dn/2g − dn2g/b

cn2g/b

→ ∞ as n→ ∞. (4.4.13)

Then from observation (4.4.12) and (4.4.13) we get that B goes to zero. So it remains

to check that whether (4.4.13) holds for b ∈ B. But (4.4.13) holds from Lemma 4.4.4(e)

and Lemma 4.4.9.

Now the limit in A follows from Lemma 4.4.8, proving the theorem. 2

Now we prove Lemmas 4.4.8 and 4.4.9.

Proof of Lemma 4.4.8. First assume that {xl}l≥0 are i.i.d. standard normal. Let

{Ej}j≥1 be i.i.d. standard exponentials. By Lemma 4.4.3, it easily follows that

P
(

max
1≤t≤q

(βx,g(t))1/2g > cqx+ dq

)

= P
((
Eg(j−1)+1Eg(j−1)+2 · · ·Egj

)1/2g
> cqx+ dq for some 1 ≤ j ≤ q

)
.
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The Lemma then follows in this special case from Corollary 3.2.3.

For the general case we break the proof into the following three steps and make use

of the two results from Section 4.4.3. Fix x ∈ R.

Step 1: Claim:

lim
n→∞

[Q
(n)
1 −Q

(n)
2 ] = 0, (4.4.14)

where

Q
(n)
1 := P

(
max
1≤j≤q

(βx̄+σnN,g(j))1/2g > cqx+ dq

)
,

Q
(n)
2 := P

(
max
1≤j≤q

(1 + σ2
n)
(
Eg(j−1)+1Eg(j−1)+2 · · ·Egj

)1/2g
> cqx+ dq

)
,

and {Nl}l≥0 is a sequence of i.i.d. standard normal random variables.

Step 2: Claim:

max1≤j≤q(βx̄+σnN,g(j))1/2g − dq

cq

D→ Λ. (4.4.15)

Step 3: Claim:
max1≤t≤q βx̄,g(t)1/2g − dq

cq

D→ Λ. (4.4.16)

We shall prove the above three steps later.

Now combining Lemma 4.4.5 and (4.4.16) we can conclude that

max1≤t≤q βx̄,g(t)1/2g − dq

cq

D→ Λ.

This completes the proof of first part, (4.4.10) of the lemma. By convergence of type

theorem, the second part, (4.4.11) follows since the following hold. We omit the tedious

algebraic details.
cq
cn/2g

→ 1 and
dq − dn/2g

cq
→ 0 as n→ ∞. (4.4.17)

Proof of Step 1: We approximate Q
(n)
1 by the simpler quantity Q

(n)
2 using Bonferroni’s

inequality. By Bonferroni’s inequality, for all m ≥ 1,

2m∑

j=1

(−1)j−1Sj,n ≤ Q
(n)
1 ≤

2m−1∑

j=1

(−1)j−1Sj,n, (4.4.18)
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where

Sj,n =
∑

1≤t1<t2<...<tj≤q

P
(

(βx̄+σnN,g(ti))
1/2g > cqx+ dq, i = 1, . . . , j

)
.

Similarly, we have

2m∑

j=1

(−1)j−1Tj,n ≤ Q
(n)
2 ≤

2m−1∑

j=1

(−1)j−1Tj,n, (4.4.19)

where

Tj,n =
∑

1≤t1<t2<...<tj≤q

P
(

(1+σ2
n)
(
Eg(ti−1)+1Eg(ti−1)+2 · · ·Egti

)1/2g
> cqx+dq, i = 1, ., j

)
.

Therefore, the difference between Q
(n)
1 and Q

(n)
2 can be bounded as follows:

2m∑

j=1

(−1)j−1(Sj,n − Tj,n) − T2m+1,n ≤ Q
(n)
1 −Q

(n)
2 ≤

2m−1∑

j=1

(−1)j−1(Sj,n − Tj,n) + T2m,n,

(4.4.20)

for each m ≥ 1. By independence and Lemma 3.2.4, there exists K = K(x) such that

Tj,n ≤
(
n

j

)
Kj

nj
≤ Kj

j!
for all n, j ≥ 1. (4.4.21)

Consequently, limj→∞ lim supn Tj,n = 0.

Now fix j ≥ 1. Let us bound the difference between Sj,n and Tj,n. Let At defined in

(4.4.6) be represented as At = {e1t , e2t , . . . , egt }. Also note e1t , e
2
t , . . . , e

g
t ∈ {1, 2, . . . , ⌊n

2 ⌋}.

For 1 ≤ t1 < t2 < . . . < tj ≤ q, define

v2gj(l)

=

(
cos

(
2πle1tk
n

)
, sin

(
2πle1tk
n

)
, cos

(
2πle2tk
n

)
, . . . , , sin

(
2πlegtk
n

)
; 1 ≤ k ≤ j

)
.

Note that {e1tk , . . . , e
g
tk

: 1 ≤ k ≤ j} is a set of distinct integers in {1, 2, . . . , ⌊n
2 ]⌋}. Then,

P
(

(βx̄+σnN,g(ti))
1/2g > cqx+dq, i = 1, . . . , j

)
= P

(
21/2n−1/2

n−1∑

l=0

(x̄l+σnNl)v2gj(l) ∈ B(j)
n

)
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where

B(j)
n :=

{
y ∈ R

2gj :

g∏

l=1

(y2
2gt+2l−1 + y2

2gt+2l)
1/2g > 21/2(cqx+ dq); 0 ≤ t < j

}
.

By Corollary 4.4.7 and the fact N2
1 +N2

2
D
= 2E1, we deduce that uniformly over all the

d-tuples 1 ≤ t1 < t2 < . . . < tj ≤ q,

∣∣∣P
(

21/2n−1/2
n−1∑

l=0

(x̄l + σnNl)v2gj(l) ∈ B(j)
n

)

−P
(

(1 + σ2
n)1/2

( g∏

i=1

Eg(tm−1)+i

)1/2g
> cqx+ dq, 1 ≤ m ≤ j

)∣∣∣

≤ ǫn P
(

(1 + σ2
n)1/2

(
Eg(tm−1)+1Eg(tm−1)+2 · · ·Egtm

)1/2g
> cqx+ dq, 1 ≤ m ≤ j

)

+O(exp(−nη)).

Therefore, as n→ ∞,

|Sj,n − Tj,n| ≤ ǫnTj,n +

(
n

j

)
O(exp(−nη)) ≤ ǫn

Kj

j!
+ o(1) → 0, (4.4.22)

where O(·) and o(·) are uniform over j. Hence using (4.4.18), (4.4.19), (4.4.21) and

(4.4.22), we have

lim sup
n

|Q(n)
1 −Q

(n)
2 | ≤ lim sup

n
T2m+1,n + lim sup

n
T2m,n for each m ≥ 1.

Letting m→ ∞, we conclude

lim
n→∞

[Q
(n)
1 −Q

(n)
2 ] = 0.

This completes the proof of Step 1.

Proof of Step 2: Since by Corollary 3.2.3,

max
1≤j≤q

(
Eg(j−1)+1Eg(j−1)+2 · · ·Egj

)1/2g
= Op((ln n)1/2) and σ2

n = n−c,

it follows that

(1 + σ2
n)1/2 max1≤j≤q

(
Eg(j−1)+1Eg(j−1)+2 · · ·Egj

)1/2g − dq

cq

D→ Λ
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and consequently,

max1≤j≤q(βx̄+σnN,g(j))1/2g − dq

cq

D→ Λ.

This completes the proof of Step 2.

Proof of Step 3: In view of (4.4.15), it suffices to show that

max
1≤j≤q

(βx̄+σnN,g(j))1/2g − max
1≤j≤q

(βx̄,g(j))1/2g = op(cq).

Note that

βx̄+σnN,g(j) =

g∏

k=1

∣∣∣∣∣
1√
n

n−1∑

l=0

(x̄l + σnNl)ω
lek

j

∣∣∣∣∣

2

=

g∏

k=1

∣∣αj,k

∣∣2, say,

and

βx̄,g(j) =

g∏

k=1

∣∣∣∣∣
1√
n

n−1∑

l=0

x̄lω
lek

j

∣∣∣∣∣

2

=

g∏

k=1

∣∣γj,k

∣∣2, say.

Now by the inequality

|
g∏

i=1

ai −
g∏

i=1

bi| ≤
g∑

j=1

(

j−1∏

i=1

bi)|aj − bj|(
g∏

i=j+1

ai) (4.4.23)

for non-negative numbers {ai} and {bi}, we have

|βx̄+σnN,g(j) − βx̄,g(j)| ≤
g∑

k=1

∣∣γj,1

∣∣2 · · ·
∣∣γj,k−1

∣∣2∣∣|αj,k|2 − |γj,k|2
∣∣∣∣αj,k+1

∣∣2 · · ·
∣∣αj,g

∣∣2.

For any sequence of random variables {Xn}n≥0, define

Mn(X) := max
1≤t≤n

∣∣∣∣∣n
−1/2

n−1∑

l=0

Xlω
tl

∣∣∣∣∣ .

As a trivial consequence of Theorem 2.1 of Davis and Mikosch (1999) [50], we have

M2
n(σnN) = Op(σn lnn) and M2

n(x̄+ σnN) = Op(ln n).

Therefore
∣∣αj,k

∣∣ = Op(
√

lnn). Now,

∣∣γj,k

∣∣ ≤
∣∣αj,k

∣∣+ σn

∣∣ 1√
n

n−1∑

l=0

Nlω
lek

j
∣∣
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and therefore
∣∣γj,k

∣∣ = (1 + σn)Op(
√

lnn) = Op(
√

lnn). So we have

∣∣∣∣max
1≤j≤q

βx̄+σnN,g(j) − max
1≤j≤q

βx̄,g(j)

∣∣∣∣ ≤ max
1≤j≤q

|βx̄+σnN,g(j) − βx̄,g(j)|

≤ max
1≤j≤q

g∑

k=1

(Op(lnn))g−1
∣∣αj,k − γj,k

∣∣ (|αj,k| + |γj,k|)

≤ Op(lnn)g−1Op(
√

lnn) max
1≤j≤q

g∑

k=1

∣∣αj,k − γj,k

∣∣

≤ Op(lnn)g− 1
2 gσnMn(N)

≤ op

(
n−c/4(lnn)g

)
.

Hence
∣∣∣∣max
1≤j≤q

(βx̄+σnN,g(j))1/2g − max
1≤j≤q

(βx̄,g(j))1/2g

∣∣∣∣ ≤
∣∣∣∣max
1≤j≤q

βx̄+σnN,g(j) − max
1≤j≤q

βx̄,g(j)

∣∣∣∣
1

ξ1/2g

where ξ lies between max1≤j≤q βx̄+σnN,g(j) and max1≤j≤q βx̄,g(j). We know that

max1≤j≤q βx̄+σnN,g(j)

(ln n)g

P→ 1 and

∣∣max1≤j≤q βx̄+σnN,g(j) − max1≤j≤q βx̄,g(j)
∣∣

(lnn)g

P→ 0.

Therefore

max1≤j≤q βx̄,g

(lnn)g
=

max1≤j≤q βx̄+σnN,g(j)

(lnn)g
+

max1≤j≤q βx̄,g(j) − max1≤j≤q βx̄+σnN,g(j)

(ln n)g

P→ 1.

Hence
ξ

(lnn)g

P→ 1 ⇒ ξ1−1/2g

(lnn)g(1−1/2g)

P→ 1 ⇒ 1

ξ1−1/2g
= Op

(
(ln n)

1
2
−g
)
.

Combining all these we have

∣∣∣∣max
1≤j≤q

βx̄+σnN,g(j)1/2g − max
1≤j≤q

βx̄,g(j)1/2g

∣∣∣∣ ≤ op

(
n−c/4(ln n)g

)
+Op

(
(lnn)

1
2
−g
)

≤ op(cq).

This completes the proof of Step 3 and hence completes the proof of Lemma 4.4.8. 2

Proof of Lemma 4.4.9. First observe that if nj is finite then the result holds trivially.

If n2j = (kj+1)(1+n−a)
2j then

lnn2j = j ln k +

(
1

na
+

1

nj/g

)
(1 + o(1)) − ln 2j
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for some a > 0 and since k = (n− 1)
1
g we have

cn/2g

cn2j

→ j

g
as n→ ∞.

Similarly we get for some a0 > 0,

ln lnn2j = ln lnn
j
g +

(
1

na0 lnn

)
(1 + o(1)) − ln 2j.

Now observe that
dn/2g−dn2j

cn2j
can be broken into the following three parts say Ji, i =

1, 2 or 3.

J1 = 2j1/2(lnn2j)
1/2

[
lnCg − g−1

2 ln g

2g1/2(ln n
2g )1/2

− lnCj − j−1
2 ln j

2j1/2(lnn2j)1/2

]
→ m1 (finite constant).

J2 = 2j1/2(lnn2j)
1/2

[(
lnn/2g

g

)1/2

−
(

lnn2j

j

)1/2
]
→ m2 (finite constant).

J3 = 2j1/2(lnn2j)
1/2

[
(g − 1) ln lnn/2g

4(g lnn/2g)1/2
− (j − 1) ln lnn2j

4(j lnn2j)1/2

]

= 2j1/2(lnn2j)
1/2

[
(g − 1) ln lnn/2g

4(g lnn/2g)1/2
− (j − 1)

√
g ln lnn2j

4j(ln n/2g)1/2
+ o(1)

]

=
j1/2(ln n2j)

1/2

2(g lnn/2g)1/2

[
(g − 1) ln lnn/2g − (j − 1)g

j
ln lnn2j + o(1)

]

=
j1/2(ln n2j)

1/2

2(g lnn/2g)1/2

[(
(g − 1) − g(j − 1)

j

)
ln lnn/2g + o(1)

]
→ ∞ (since g > j).

Hence Lemma 4.4.9 is proved. 2

4.4.5 Remark on k circulants with sn = kg + 1

Bose, Mitra and Sen (2008) [44] show existence of the limiting spectral distribution of

the k circulant matrix with kg = sn − 1 assuming that s = o(np1−1) where p1 was

the smallest prime factor of g. To derive the limit of the spectral radius, we need a

slightly stronger assumption that s = o(np1−1−ǫ) for some 0 < ǫ < p1 and s > 1. This

is essential since s = o(np1−1) implies υk,n/n → 0 which is not enough to deal with the

maximum. We need the stronger result
υk,n

n = o(n−a1) for some a1 > 0, so that these

terms are negligible in the log scale that we have. Note that with the above conditions

s = o(np1−1) and υk,n = O(n−ǫ/p1).
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Since s > 1 it easy to see from Lemma 3 in Bose, Mitra and Sen (2008) [44] that

#X(
2g

b
) ≤ gcd(k2g/b − 1,

kg + 1

s
) ≤ gcd(k2g/b − 1, kg + 1). (4.4.24)

Also observe that,

#

{
x : x ∈ Zn and xk2g/b = x mod (

kg + 1

s
)

}
≥ #Zn,b. (4.4.25)

From observations (4.4.24) and (4.4.25) it easily follows that Lemma 4.4.4(d) remains

valid in this case. Further, for some α > 0 we get that

1 ≥ #X(2g
b )

kg/b + 1
≥ 1 − k−gα(1 + o(1)) = 1 − (sn)−α(1 + o(1)) ≥ 1 − n−α(1 + o(1)).

Hence from the above discussions we have the following Theorem.

Theorem 4.4.10 (Bose, Hazra and Saha (2010) [37]). Suppose {xl}l≥0 is an i.i.d.

sequence of random variables with mean zero and variance 1 and E |xl|γ <∞ for some

γ > 2. If s ≥ 1 and sn = kg + 1 where s = o(np1−1−ǫ), 0 < ǫ < p1, and p1 is the

smallest prime factor of g, then as n→ ∞,

sp(n−1/2Ak,n) − dq

cq

D→ Λ

where q = q(n) = n
2g and cn and dn can be taken as follows

dn =
lnCg − g−1

2 ln g

2g1/2(lnn)1/2
+

(
lnn

2g

)1/2 [
1 +

(g − 1) ln lnn

4 lnn

]
, Cg =

1√
g

(2π)
g−1
2

and

cn =
1

2g1/2(lnn)1/2
.

4.5 Few remarks

In Theorems 4.2.3 and 4.3.5 we saw that the nature of the limiting distribution depends

on whether the input sequence has mean zero or not. Results from Adamczak (2008) [1]

and Bose and Sen (2007) [42] suggest that the same should happen for the Toeplitz

matrix. It would be interesting to find out the limiting distribution of the spectral

norm of the Toeplitz matrix in general. Since our main focus is circulant type matrices,

we have not pursued it in this thesis. Incidentally, there does not seem to be an easy

answer to this question.

Theorem 4.3.4 shows that the joint distribution of the maximum and minimum of
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the eigenvalues of SCn behave like the maximum and minimum of i.i.d. standard normal

entries. It follows that the distribution of the range of the spectrum is the convolution

of two Gumbel distributions. So one can ask a very natural question: what happens in

general to the spectral gaps. We shall address this question in Chapter 7.



Chapter 5

Spectral norm of circulant type

matrices with heavy tail

In this chapter we focus on spectral norm of circulant, reverse circulant, symmetric

circulant and Toeplitz matrices when the input sequence is heavy tailed.

There are a few results in the literature for matrices with heavy tailed entries.

Soshnikov (2004) [117] shows the distributional convergence of the maximum eigenvalue

of appropriately scaled Wigner matrix with heavy tailed entries {xij} satisfying P(|xij | >
x) = h(x)x−α where h is a slowly varying function at infinity (that is, h(tx)/h(x) → 1

as n → ∞) and 0 < α < 2. The limiting distribution is Φα(x) = exp(−x−α). A similar

result was proved for sample covariance matrices in Soshnikov (2006) [118] with Cauchy

entries. These results on the Wigner and sample covariance matrices were extended in

Auffinger, Ben Arous and Peche (2009) [6] to 2 ≤ α < 4.

Here we focus on the circulant, reverse circulant, symmetric circulant and Toeplitz

matrices when the input sequence is heavy tailed with tail index 0 < α < 1. In Section

5.1 we describe the input sequence of the matrices and define a few related notions. In

Sections 5.2–5.3 we establish the distributional convergence of the spectral norm and

hence of the spectral radius of the three circulant matrices. Though we are unable

to obtain the exact limit in the Toeplitz case, we provide upper and lower bounds in

Section 5.4. Our approach is to exploit the structure of the matrices and use existing

methods on the study of the maximum of periodograms for heavy tailed sequences. This

approach is totally different from the methods used to derive the results in Chapter 4

with light tailed entries.

The results of Bose, Hazra and Saha (2010) [36] are based on this chapter.

111
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5.1 Input sequence of the matrices and scaling sequence

Let {Zt, t ∈ Z} be a sequence of i.i.d. random variables with common distribution F

where F is in the domain of attraction of an α-stable random variable with 0 < α < 1.

Thus, there exist p, q ≥ 0 with p+ q = 1 and a slowly varying function L(x), such that

lim
x→∞

P(Z1 > x)

P(|Z1| > x)
= p, lim

x→∞
P(Z1 ≤ −x)

P(|Z1| > x)
= q and P(|Z1| > x) ≈ x−αL(x) as x→ ∞.

(5.1.1)

A random variable Yα is said to have a stable distribution Sα(σ, β, µ) if there are pa-

rameters 0 < α ≤ 2, σ ≥ 0,−1 ≤ β ≤ 1 and µ real such that its characteristic function

has the form

E[exp(itYα)] =

{
exp{iµt− σα|t|α(1 − iβ sgn(t) tan(πα/2))}, if α 6= 1,

exp{iµt− σ|t|(1 + (2iβ/π) sgn(t) ln |t|)}, if α = 1.

If β = µ = 0, then Yα is symmetric α-stable (SαS). For details on stable processes see

Samorodnitsky and Taqqu (1994) [107].

In the description of our results, we shall need the following: let {Γj}, {Uj} and

{Bj} be three independent sequences defined on the same probability space where {Γj}
is the arrival sequence of a unit rate poisson process on R, Uj are i.i.d. U(0, 1) and Bj

are i.i.d. satisfying

P(B1 = 1) = p and P(B1 = −1) = q, (5.1.2)

where p and q are as defined in (5.1.1). We also define

Yα =

∞∑

j=1

Γ
−1/α
j

D≃ Sα(C
− 1

α
α , 1, 0) where Cα =

(∫ ∞

0
x−α sinxdx

)−1

. (5.1.3)

For a non-decreasing function f on R, let f←(y) = inf{s : f(s) > y}. Then the scaling

sequence {bn} is defined as

bn =

(
1

P[|Z1| > ·]

)←
(n) ≈ n1/αL0(n) for some slowly varying function L0.

Define

ωk =
2πk

n
for 0 ≤ k ≤ n.
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5.2 Reverse circulant and circulant with heavy tailed en-

tries

Recall the eigenvalues {λk, 0 ≤ k ≤ n− 1} of b−1
n RCn are given by (see Section 1.2.3):





λ0 = b−1
n

∑n−1
t=0 Zt

λn/2 = b−1
n

∑n−1
t=0 (−1)tZt, if n is even

λk = −λn−k =
√
In(ωk), 1 ≤ k ≤ ⌊n−1

2 ⌋,
(5.2.1)

where

In(ωk) =
1

b2n
|
n−1∑

t=0

Zte
−itωk |2.

The eigenvalues of b−1
n Cn are given by

λj = b−1
n

n∑

t=1

Zte
itωj , 0 ≤ j ≤ n− 1.

Note that {|λk|2; 1 ≤ k < n/2} is the periodogram of {Zi} at the frequencies {ωk; 1 ≤
k < n/2}. From the eigenvalue structure of Cn and RCn, it is clear that ‖b−1

n Cn‖ =

‖b−1
n RCn‖ and therefore they have identical limiting behaviour which is stated in the

following result.

Theorem 5.2.1 (Bose, Hazra and Saha (2010) [36]). Consider {Zt} satisfying (5.1.1).

Then for α ∈ (0, 1), ‖b−1
n Cn‖ D→ Yα and ‖b−1

n RCn‖ D→ Yα, where Yα is as in (5.1.3).

The main idea for the proof of the above result is taken from Mikosch, Resnick and

Samorodnitsky (2000) [93] who show weak convergence of maximum of the periodogram

based on heavy tailed sequence for α < 1. Let ǫx(·) denote the point measure which

gives unit mass to any set containing x and let E = [0, 1]× ([−∞,∞]\{0}). Let Mp(E)

be the set of point measures on E, topologized by vague convergence. The following

convergence result follows from Proposition 3.21 of Resnick (1987) [103]:

Nn :=
n∑

k=1

ǫ(k/n,Zk/bn)
D→ N :=

∞∑

j=1

ǫ
(Uj ,BjΓ

−1/α
j )

in Mp(E). (5.2.2)

Suppose f is a bounded continuous complex valued function defined on R and without

loss of generality assume |f(x)| ≤ 1 for all x ∈ R. Now pick η > 0 and define Tη :

Mp(E) −→ C[0,∞) as follows:

(Tηm)(x) =
∑

j

vj1{|vj |>η}f(2πxtj)
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if m =
∑

j ǫ(tj ,vj) ∈ Mp(E) and vj’s are finite. Elsewhere, set (Tηm)(x) = 0. The fol-

lowing Lemma was proved by Mikosch, Resnick and Samorodnitsky (2000) [93] (Lemma

2.3) using the function f(x) = exp(−ix). The same proof works in our case. For sake

of completeness we give the details.

Lemma 5.2.2. Tη : Mp(E) −→ C[0,∞) is continuous a.s. with respect to the distribu-

tion of N .

Proof. It is enough to show that if xn → x ≥ 0 and mn
v→ m in Mp(E), where

m{∂([0, 1] × {|v| ≥ η}) ∩ [0, 1] × {−∞,∞}} = 0,

then (Tηmn)(xn) → (Tηm)(x). To do this denote

mn =
∑

j

ǫ(
t
(n)
j ,v

(n)
j

) and m =
∑

j

ǫ(tj ,vj).

Consider the set

Kη := [0, 1] × {v : |v| ≥ η}.

Kη is compact in E with m(∂Kη) = 0. Since mn
v→ m, we can find an n0 such that for

n ≥ n0

mn(Kη) = m(Kη) =: l,

say and there is an enumeration of the points in Kη such that

((
t
(n)
k , v

(n)
k

)
, 1 ≤ k ≤ l

)
→
(
(tk, vk), 1 ≤ k ≤ l

)
.

Without loss of generality we can assume that for given ξ > 0

sup
n≥n0

|xn| ∨ sup
1≤k≤l

|v(n)
k | ≤ ξ.

Therefore

|(Tηmn)(xn) − (Tηm)(x)| =
∣∣

l∑

k=1

v
(n)
k f(−2πxnt

(n)
k ) −

l∑

k=1

vkf(−2πxtk)
∣∣

≤
l∑

k=1

∣∣v(n)
k f(−2πxnt

(n)
k ) − vkf(−2πxtk)

∣∣

≤
l∑

k=1

∣∣v(n)
k − vk

∣∣+

l∑

k=1

|vk|
∣∣f(−2πxnt

(n)
k ) − f(−2πxtk)

∣∣,
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so

lim
n→∞

|(Tηmn)(xn) − (Tηm)(x)| = 0.

This completes the proof of the Lemma. 2

The proof of the following lemma is similar to the proof of Proposition 2.2 of Mikosch,

Resnick and Samorodnitsky (2000) [93]. We briefly sketch the proof in our case.

Lemma 5.2.3. For 0 < α < 1, as n→ ∞ the following convergence holds in C[0,∞):

Jn,Z(x/n) :=

n∑

j=1

Zj

bn
f(2πxj/n)

D→ J∞(x) :=

∞∑

j=1

BjΓ
−1/α
j f(2πxUj), 0 ≤ x <∞.

Proof. Applying Lemma 5.2.2 on (5.2.2) we have

J
(η)
n,Z(x/n) :=

n∑

j=1

Zj

bn
f(2πxj/n)1{|Zj |>ηbn}

D→
∞∑

j=1

BjΓ
−1/α
j f(2πxUj)1{Γ−1/α

j >η} := J (η)
∞ (x) in C[0,∞).

Also, as η → 0 by dominated convergence theorem we have

J (η)
∞ (x)

D→ J∞(x) :=

∞∑

j=1

BjΓ
−1/α
j f(2πxUj).

So using Theorem 3.2 of Billingsley (1999) [29], the proof will be complete if for any

ǫ > 0,

lim
η→0

lim sup
n→∞

P
(
‖J (η)

n,Z − Jn,Z‖ > ǫ
)

= 0, (5.2.3)

where ‖x(·) − y(·)‖∞ is the metric distance in C[0,∞) given by

‖x(·)− y(·)‖∞ =
∞∑

n=1

1

2n
[‖x(·) − y(·)‖n ∧ 1] , where ‖x(·)− y(·)‖n = sup

t∈[0,n]
|x(t)− y(t)|.

Now

lim
η→0

lim sup
n→∞

P
(
‖J (η)

n,Z − Jn,Z‖ > ǫ
)

≤ lim
η→0

lim sup
n→∞

P
( n∑

j=1

∣∣Zj

bn

∣∣1{|Zj |≤ηbn} > ǫ
)

≤ lim
η→0

lim sup
n→∞

nǫ−1 E
(∣∣Z1

bn

∣∣1{|Zj |≤ηbn}
)
.

By an application of Karamata’s theorem (see Resnick (1987) [103] Exercise 0.4.2.8) we
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get that

nE
(∣∣Z1

bn

∣∣1{|Zj |≤ηbn}
)

≈ α

1 − α
nηP(|Z1| > ηbn) ≈ α

1 − α
η1−α.

and α
1−αη

1−α → 0 as η → 0. This completes the proof of the lemma. 2

Proof of Theorem 5.2.1. We use Lemma 5.2.2 and Lemma 5.2.3 with f(x) = exp(−ix).

It is immediate that

b−1
n ‖Cn‖ ≤ b−1

n

n∑

t=1

|Zt|. (5.2.4)

It is well known (cf. Feller (1971) [59]) that

b−1
n

n∑

t=1

|Zt| D→ Yα =

∞∑

j=1

Γ
−1/α
j

D≃ Sα(C−1/α
α , 1, 0). (5.2.5)

Hence it remains to show that for γ > 0,

lim inf
n→∞

P(b−1
n ‖Cn‖ > γ) ≥ P(Yα > γ). (5.2.6)

Now observe that for any integer K and sufficiently large n,

P
(

sup
j=1,...,⌊n

2
⌋
|Jn,Z(j/n)| > γ

)
≥ P

(
sup

j=1,...,K
|Jn,Z(j/n)| > γ

)
.

Now from Lemma 5.2.3 we have

(
Jn,Z(j/n), 1 ≤ j ≤ K

) D→
(
J∞(j), 1 ≤ j ≤ K

)

in R
k. Hence

sup
j=1,...,K

|Jn,Z(j/n)| D→ sup
j=1,...,K

|J∞(j)|

and so letting K → ∞,

lim inf
n→∞

P
(

sup
j=1,...,⌊n

2
⌋
|Jn,Z(j/n)| > γ

)
≥ P

(
sup

j=1,...,∞
|J∞(j)| > γ

)
.

Now the theorem follows from Lemma 5.2.4 given below. 2

Lemma 5.2.4.

sup
j=1,...,∞

|J∞(j)| = sup
j=1,...,∞

∣∣
∞∑

t=1

BtΓ
−1/α
t exp(−2πijUt)

∣∣ = Yα a.s.
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Proof. Define

Ω0 =
{
ω ∈ Ω :

∞∑

j=1

Γ
−1/α
j (ω) <∞ and for all m ≥ 1,

(U1(ω), . . . , Um(ω)) are rationally independent
}
.

Then P(Ω0) = 1. Let x denote the fractional part of x. For any ω ∈ Ω0, by Weyl

(1916) [129], (
nU1(ω), . . . , nUm(ω)

)
, n ∈ N

is dense in [0, 1]m. Fix any ω ∈ Ω0 and ǫ > 0. Then there exist an N ∈ N such that∑∞
j=N+1 Γ

−1/α
j (ω) < ǫ and from Weyl’s result there exist an N0 ∈ N such that

Real
(
Bj exp(−2πiN0Uj)

)
≥ 1 − ǫ

NΓ
−1/α
j

, j = 1, . . . , N.

Then we have

sup
j=1,...,∞

∣∣
∞∑

t=1

BtΓ
−1/α
t exp(−2πijUt)

∣∣

≥ sup
j=1,...,∞

∣∣
N∑

t=1

BtΓ
−1/α
t exp(−2πijUt)

∣∣−
∞∑

t=N+1

Γ
−1/α
t

≥
∣∣

N∑

t=1

BtΓ
−1/α
t exp(−2πiN0Ut)

∣∣− ǫ

≥ Real
( N∑

t=1

BtΓ
−1/α
t exp(−2πiN0Ut)

)
− ǫ

≥
N∑

t=1

(
1 − ǫ

NΓ
−1/α
t

)
Γ
−1/α
t − ǫ =

N∑

t=1

Γ
−1/α
t − 2ǫ.

Letting first N → ∞ and then ǫ → 0, we get supj=1,...,∞ |J∞(j)| ≥ Yα. Trivially

supj=1,...,∞ |J∞(j)| ≤ Yα. This completes the proof. 2

5.3 Symmetric circulant with heavy tailed entries

The eigenvalues {λk, 0 ≤ k ≤ n− 1} of b−1
n SCn are given by (see Section 1.2.2):

(i) for n odd:

{
λ0 = b−1

n

[
Z0 + 2

∑⌊n
2
⌋

j=1 Zj

]

λk = b−1
n

[
Z0 + 2

∑⌊n
2
⌋

j=1 Zj cos(ωkj)
]
, 1 ≤ k ≤ ⌊n

2 ⌋
(5.3.1)
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(ii) for n even:

{
λ0 = b−1

n

[
Z0 + 2

∑n
2
−1

j=1 Zj + Zn/2

]

λk = b−1
n

[
Z0 + 2

∑n
2
−1

j=1 Zj cos(ωkj) + (−1)kZn/2

]
, 1 ≤ k ≤ n

2

(5.3.2)

with λn−k = λk in both cases.

Theorem 5.3.1 (Bose, Hazra and Saha (2010) [36]). Assume that the input sequence

is i.i.d. {Zt} satisfying (5.1.1). Then for α ∈ (0, 1), ‖b−1
n SCn‖ D→ 21−1/αYα, where Yα

is as in (5.1.3).

Proof. The proof is similar to the proof of Theorem 5.2.1. We provide the proof for n

odd, and for n even, the changes needed are minor. Define

Jn,Z(x) := 2b−1
n

q∑

t=1

Zt cos(2πxt) and Mn,Z := max
0≤k≤q

∣∣Jn,Z(k/n)
∣∣, (5.3.3)

where q = q(n) = ⌊n
2 ⌋. Since

∣∣‖b−1
n SCn‖−Mn,Z

∣∣→ 0 almost surely, it is enough to show

Mn,Z
D→ 21−1/αYα. Note that (5.2.2) holds with [0, 1] replaced by [0, 1/2], and letting

Nn =
∑q

k=1 ǫ(k/n,Zk/bq), N =
∑∞

j=1 ǫ(Uj ,BjΓ
−1/α
j )

and Uj to be i.i.d. U [0, 1/2]. Now

following the argument given in Lemma 5.2.2, Lemma 5.2.3 and taking f(x) = cos x it

is easy to establish that

Jn,Z(x/n) = 2b−1
n

q∑

k=1

Zk cos
2πkx

n

D→ 21−1/α
∞∑

j=1

BjΓ
−1/α
j cos(2πxUj) := J∞(x).

(5.3.4)

It is obvious that

Mn,Z ≤ 2b−1
n

q∑

t=1

|Zt| D→ 21−1/α
∞∑

j=1

Γ
−1/α
j = 21−1/αYα.

It remains to show that for η > 0,

lim inf
n→∞

P(Mn,Z > η) ≥ P(21−1/αYα > η).

Now following the arguments given to prove (5.2.6), we can establish this relation. This

completes the proof of the theorem. 2

Remark 5.3.2. (i) Theorem 5.2.1 and 5.3.1 are rather easy to derive when p = 1, that

is, when the left tail is negligible compared to the right tail. Let us consider ‖b−1
n RCn‖
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and note from the eigenvalue structure that,

‖b−1
n RCn‖ ≤ b−1

n

n∑

t=1

|Zt|.

For the lower bound note that

P(‖b−1
n RCn‖ > x) ≥ P(λ0 > x) = P(b−1

n

n∑

t=1

Zt > x).

Now since P(|Z1| > x) ≈ P(Z1 > x) as x → ∞, the upper and lower bound converge

with the same scaling constant and hence Theorem 5.2.1 holds. The details on these

convergence can be found in Chapter 1 of Samorodnitsky and Taqqu (1994) [107]. Sim-

ilar conclusion can be drawn for the symmetric circulant matrices too when p = 1.

(ii) When the input sequence {Zi} are i.i.d. nonnegative and satisfies (5.1.1) with

α ∈ (1, 2) then from above it is easy to derive the distributional behaviour of the spectral

norm. In particular if kj = α
α−1

(
j

α−1
α − (j − 1)

α−1
α

)
and Ỹα =

∑∞
j=1(Γj − kj)

D∼

Sα(C
− 1

α
α , 1, 0) then,

P

(‖RCn‖ − nE[Z1]

bn
> x

)
→ P(Ỹα > x) as n→ ∞,

and

P

(‖SCn‖ − nE[Z1]

bn
> x

)
→ P(21−1/αỸα > x) as n→ ∞.

When α = 1, and {Zi} are non negative

P

(
‖RCn‖ − nbn

∫∞
0 sin( x

bn
)P(Z1 ∈ dx)

bn
> x

)
→ P(

˜̃
Yα > x),

where
˜̃
Yα is a S1(2/π, 1, 0) random variable. Similar results hold for symmetric circulant

matrices.

5.4 Toeplitz matrix with heavy tailed entries

Resolving the question of the exact limit of the Toeplitz spectral norm seems to be very

difficult. Here we provide a good upper and lower bound in the distribution sense.

Theorem 5.4.1 (Bose, Hazra and Saha (2010) [36]). Suppose that the input sequence
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is i.i.d. {Zt} satisfying (5.1.1). Then for γ > 0,

P
(
2
∞∑

j=1

(1 − Uj)Γ
−1/α
j > γ

)
≤ lim inf

n
P
(
b−1
n ‖Tn‖ > γ

)

≤ lim sup
n

P
(
b−1
n ‖Tn‖ > γ

)
≤ P

(
2

∞∑

j=1

Γ
−1/α
j > γ

)
.

Proof. Following Meckes (2007) [92], Tn is a sub-matrix of the infinite Laurent matrix

Ln =
[
Z|j−k|I|j−k|≤n−1

]
j,k∈Z

so ‖Tn‖ ≤ ‖Ln‖ , where ‖Ln‖ denotes the operator norm of Ln acting in the standard

way on l2(Z). If we use the Fourier basis to identify l2(Z) with L2[0, 1], it turns out

that Ln corresponds to a multiplication operator, with the multiplier

g(x) =
n−1∑

j=−(n−1)

Z|j|e
2πijx = Z0 + 2

n−1∑

j=1

cos(2πjx)Zj .

Therefore

‖Tn‖ ≤ ‖Ln‖ = ‖g‖∞ = sup
0≤x≤1

|g(x)|.

Hence as n→ ∞,

b−1
n ‖Tn‖ ≤ b−1

n

[
|Z0| + 2

n−1∑

j=0

|Zj |
] D→ 2

∞∑

j=1

Γ
−1/α
j

and we have for γ > 0

lim sup
n

P
(
b−1
n ‖Tn‖ > γ

)
≤ P

(
2
∞∑

j=1

Γ
−1/α
j > γ

)
.

By another argument of Meckes (2007) [92], we get the following estimate

‖Tn‖ = sup
v∈Cn\{0}

〈Tnv, v〉
〈v, v〉 ≥ sup

0≤x≤1

1

n
|〈Tnvx, vx〉|,

where vx ∈ Cn is defined as (vx)j = e2πixj for j = 1, 2, . . . , n and 〈·, ·〉 is the standard
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inner product on C
n. Therefore

‖Tn‖ ≥ 1

n
sup

0≤x≤1

∣∣
n∑

j,k=1

Z|j−k|e
2πi(j−k)x

∣∣

=
1

n
sup

0≤x≤1

∣∣
n−1∑

j=−(n−1)

(n− |j|)Z|j|e2πijx
∣∣

= sup
0≤x≤1

∣∣Z0 + 2

n−1∑

j=1

(
1 − j

n

)
Zj cos(2πjx)

∣∣.

Now

lim inf
n

P
(
b−1
n ‖Tn‖ > γ

)
≥ lim inf

n
P
(
b−1
n sup

0≤x≤1

∣∣Z0 + 2

n−1∑

j=1

(
1 − j

n

)
Zj cos(2πjx)

∣∣ > γ
)

= lim
n

P
(
b−1
n sup

0≤x≤1

∣∣2
n−1∑

j=1

(
1 − j

n

)
Zj cos(2πjx)

∣∣ > γ
)
.

To find the limit in the last expression, pick η > 0 and define Tη : Mp(E) −→ C[0,∞),

as follows:

(Tηm)(x) =

{ ∑
j(1 − tj)vj cos(2πxtj)1(|vj | > η) if m =

∑
j ǫ(tj ,vj), all v′js are finite

0 otherwise.

Following the argument given in Lemma 5.2.2, it is easy to see that Tη is continuous a.s.

with respect to the distribution of N and then using an argument from Lemma 5.2.3,

we can show that for fixed x

2b−1
n

n−1∑

j=1

(1 − j/n)Zj cos(2πjx/n)
D→ 2

∞∑

j=1

(1 − Uj)BjΓ
−1/α
j cos(2πxUj). (5.4.1)

Now for any fixed T where n > T > 0, using (5.4.1),

sup
0≤x≤1

∣∣2b−1
n

n−1∑

j=1

(
1 − j

n

)
Zj cos(2πjx)

∣∣ = sup
0≤x≤n

∣∣2b−1
n

n−1∑

j=1

(
1 − j

n

)
Zj cos

2πjx

n

∣∣

≥ sup
0≤x≤T

∣∣2b−1
n

n−1∑

j=1

(
1 − j

n

)
Zj cos

2πjx

n

∣∣

D→ sup
0≤x≤T

∣∣2
∞∑

j=1

(1 − Uj)BjΓ
−1/α
j cos(2πxUj)

∣∣,
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and hence

lim inf
n

P
(
b−1
n ‖Tn‖ > γ

)
≥ P

(
sup

0≤x≤T

∣∣2
∞∑

j=1

(1 − Uj)BjΓ
−1/α
j cos(2πxUj)

∣∣ > γ
)
.

Since this is true for any T , we obtain

lim inf
n

P
(
b−1
n ‖Tn‖ > γ

)
≥ P

(
sup

0≤x<∞

∣∣2
∞∑

j=1

(1 − Uj)BjΓ
−1/α
j cos(2πxUj)

∣∣ > γ
)
.

To identify the distribution of the random variable appearing in the right side, we follow

the proof of Lemma 5.2.4. Here we use the fact
{

(xU1(ω), . . . , xUm(ω)), x ≥ 0
}

is dense

in [0, 1]m and we get

sup
0≤x<∞

∣∣2
∞∑

j=1

(1 − Uj)BjΓ
−1/α
j cos(2πxUj)

∣∣ =

∞∑

j=1

(1 − Uj)Γ
−1/α
j a.s.

This completes the proof. 2

Remark 5.4.2. The assumption of α < 1 is crucially used only in the lower bound

argument. It is clear from the above proof that the upper bound can be derived when

α ∈ (1, 2). Indeed, it easily follows that if α ∈ (1, 2) then

lim sup
n→∞

P

(‖Tn‖ − 2nE[|Z1|]
bn

> x

)
≤ P(2Ỹα > x),

where Ỹα is as in Remark 5.3.2 (ii).

Remark 5.4.3. The case when α ∈ [1, 2) and p 6= 1 and {Zi} are not necessarily

nonnegative appears to be nontrivial. In the reverse circulant case we saw that the

eigenvalue structure is similar to the square root of the periodogram and the maximum

of the periodogram is not tight with the scaling b
1/α
n when α ≥ 1 (even with input sequence

as i.i.d. SαS random variables). Instead it is tight with a different scaling (see Mikosch,

Resnick and Samorodnitsky (2000) [93], Section 3 for details).



Chapter 6

Distribution of maximum of

scaled eigenvalues: dependent

input

In this chapter we try to generalize the results on spectral norm of Chapters 4 and 5 when

the input sequence is dependent. We take {xn} to be an infinite order moving average

process, xn =
∑∞

i=−∞ aiǫn−i, where {an;n ∈ Z} are non-random with
∑

n |an| < ∞,

and {ǫi; i ∈ Z} are i.i.d. It seems to be a nontrivial problem to derive properties of

the spectral norm in this case. This is due to unequal variance of the eigenvalues.

So, we resort to scaling each eigenvalue by an appropriate quantity and then consider

distributional convergence of maximum of these scaled eigenvalues of different circulant

matrices. Now we give an outline of this chapter.

In Section 6.1 we consider infinite order moving average process with light tail entries,

that is {ǫi; i ∈ Z} are i.i.d. with E(ǫi) = 0 and V (ǫi) = 1. We scale the eigenvalues by

the spectral density at the appropriate ordinate as described below and then consider

their maximum. This scaling has the effect of (approximately) equalizing the variance

of the eigenvalues. Similar scaling has been used in the study of periodograms (see

Walker (1965) [128], Davis and Mikosch (1999) [50], Lin and Liu (2009) [84]).

For any circulant type matrix An we define

M(An, f) = max
1≤k≤n

|λk|√
2πf(ωk)

where f is the spectral density corresponding to {xn}, {λk} are eigenvalues of An and

ωk = 2πk
n is the Fourier frequency. This rescaling by the spectral density makes the

eigenvalues approximately of same variance and that makes it relatively easy to handle

their maxima. We show in Theorem 6.1.3 and Theorem 6.1.16 that M(n−1/2RCn, f)

123



Chapter 6: Distribution of maximum of scaled eigenvalues: dependent input 124

and M(n−1/2Ak,n, f) converge to the Gumbel distribution after proper centering and

scaling. For the symmetric circulant, in Theorem 6.1.7 we show that M(n−1/2SCn, f)

converges to the same limit as above when we impose the extra condition aj = a−j for all

j. Without this condition, it is difficult to conclude the distributional convergence even

if ǫi’s are i.i.d N(0, 1). The convergence in probability of M(n−1/2SCn, f) is discussed

in Lemma 6.1.9 and Theorem 6.1.12.

In Section 6.2 we consider the infinite order moving average process based on heavy

tail entries. Here also we resort to scaling each eigenvalue by the power transfer function

f (defined in Section 6.2) at the appropriate ordinate and then consider their maximum.

We show the distributional convergence of M(An, f) for the three circulant matrices.

These follow easily from the results on the spectral norm of their i.i.d. counterparts.

Some of the results of Bose, Hazra and Saha (2009, 2010) [34,36] are based on this

chapter.

6.1 Dependent input with light tail

Now let {xn;n ≥ 0} be a two sided moving average process,

xn =

∞∑

i=−∞
aiǫn−i (6.1.1)

where {an;n ∈ Z} are non-random and
∑

n |an| < ∞, and {ǫi; i ∈ Z} are i.i.d. random

variables. Let f(ω), ω ∈ [0, 2π] be the spectral density of {xn}. Note that if {xn} is

i.i.d. with mean 0 and variance σ2, then f ≡ σ2

2π . We make the following assumption.

Assumption 6.1.1. {ǫi, i ∈ Z} are i.i.d. with E(ǫi) = 0, E(ǫ2i ) = 1, E|ǫi|2+δ <∞ for

some δ > 0 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π].

6.1.1 Reverse circulant and circulant: dependent input with light tail

Define M(·, f) for the reverse circulant matrix as follows:

M(n−1/2RCn, f) = max
1≤k< n

2

|λk|√
2πf(ωk)

where λk are the eigenvalues of n−1/2RCn (see Section 1.2.3). Note that M(n−1/2Cn, f)

for the circulant matrix defined similarly satisfies M(n−1/2RCn, f) = M(n−1/2Cn, f).

Note that λ0 is included in the definition of M(·, f). When E(ǫ0) = µ = 0, this is
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immaterial. However if µ 6= 0, see Remark 6.1.4.

The following lemma is an approximation result which is a stronger version of The-

orem 3 of Walker (1965) [128]. We will use this result in Theorem 6.1.3 but not in full

force. We will again use it in Section 6.1.3.

Lemma 6.1.2. Let {xn} be the two sided moving average process defined in (6.1.1) and

which satisfies Assumption 6.1.1. Then

max
1≤k< n

2

∣∣∣ Ix,n(ωk)

2πf(ωk)
− Iǫ,n(ωk)

∣∣∣ = op(n−1/4
√

lnn),

where

Ix,n(ωk) =
1

n
|
n−1∑

t=0

xte
itωk |2, Iǫ,n(ωk) =

1

n
|
n−1∑

t=0

ǫte
itωk |2 and ωk =

2πk

n
.

Proof. First observe that minω∈[0,2π] f(ω) > α > 0. Now for any r,

|
r∑

t=1

ǫte
iωt|2 =

r∑

s=−r

eiωs

r−|s|∑

t=1

ǫtǫt+|s| ≤
r∑

s=−r

|
r−|s|∑

t=1

ǫtǫt+|s||.

Hence

E
[

max
0≤ω≤π

|
r∑

t=1

ǫte
iωt|2

]
≤ E

( r∑

t=1

ǫ2t
)

+ 2
r−1∑

s=1

[
E(

r−s∑

t=1

ǫtǫt+s)
2
]1/2

= r + 2
r−1∑

s=1

(r − s)1/2 ≤ r + 2

∫ r

1
x1/2dx

≤ Kr3/2 (6.1.2)

where K is a constant independent of r. So

E
[

max
0≤ω≤π

|
r∑

t=1

ǫte
iωt|
]
≤ K1/2r3/4. (6.1.3)

Note that (6.1.3) still holds if the limits of summation with respect to t are replaced by

1 + p and r + p, where p is an arbitrary (positive or negative) integer. Let

Jx,n =
1√
n

n−1∑

t=0

xte
iωt, Jǫ,n =

1√
n

n−1∑

t=0

ǫte
iωt, Rn(ω) = Jx,n(ω) −A(ω)Jǫ,n(ω),

Tn(ω) = Ix,n(ω) − |A(ω)|2Iǫ,n(ω) and A(ω) =

∞∑

j=−∞
aje

iωj .
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Then it is easy to see that 2πf(ω) = |A(ω)|2 and

Tn(ω) = |Rn(ω) +A(ω)Jǫ,n(ω)|2 − |A(ω)|2Iǫ,n(ω)

= Rn(ω)Ā(ω)J̄ǫ,n(ω) + R̄n(ω)A(ω)Jǫ,n(ω) + |Rn(ω)|2.

Now

Rn(ω) = Jx,n(ω) −A(ω)Jǫ,n(ω)

=
1√
n

n−1∑

j=0

( ∞∑

t=−∞
atǫj−t

)
eiωj − 1√

n

∞∑

t=−∞
ate

iωt
n−1∑

j=0

ǫje
iωj

=
1√
n

∞∑

t=−∞
ate

iωt
[ n−1∑

j=0

ǫj−te
iω(j−t) −

n−1∑

j=0

ǫje
iωj
]

=
1√
n

∞∑

t=−∞
ate

iωt
[( n−1−t∑

j=−t

−
n−1∑

j=0

)
ǫje

iωj
]

=
1√
n

∞∑

t=−∞
ate

iωtZn,t(ω), say.

Observe that

|Zn,t(ω)| ≤





|∑−1
j=−t ǫle

iωj | + |∑n−1
j=n−t ǫje

iωj |, 1 ≤ t < n

|∑n−1−t
j=n ǫje

iωj | + |∑−t−1
l=0 ǫje

iωj |, −n < t ≤ −1

|∑n−1−t
−t ǫje

iωj | + |∑n−1
0 ǫje

iωj |, |t| ≥ n

(6.1.4)

and |Zn,0(ω)| = 0. Therefore using (6.1.3) and (6.1.4) we get

E( max
0≤ω≤π

|Rn(ω)|) ≤ 2K
1
2√
n

[ n−1∑

t=1

|at|t
3
4 +

−1∑

t=−n+1

|at||t|
3
4 +

∞∑

t=n

|at|n
3
4 +

−n∑

t=−∞
|at|n

3
4
]

=
2K

1
2√
n

[ ∑

1≤|t|≤n−1

|at||t|
3
4 +

∑

|t|≥n

|at|n
3
4
]

< 2K
1
2n−

1
4
[ ∑

1≤|t|≤n−1

|at||t|
1
2 (|t|/n)

1
4 +

∑

|t|≥n

|at||t|
1
2
]

= o(n−1/4) (6.1.5)

since the second sum goes to zero as n→ ∞ and the first sum is not greater than

∑

k(n)<|t|≤n−1

|t|1/2|at| + {k(n)/n)}1/4
∑

1≤|j|≤k(n)

|j|1/2|aj |,

where k(n) is such that limn→∞{k(n)/n} = 0 and limn→∞ k(n) = ∞.
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Also it is known from Davis and Mikosch (1999) [50] that under the conditions on {ǫt},

max
1≤k≤n

|Iǫ,n(ωk)| = Op(lnn)

and hence

max
1≤k≤n

|Jǫ,n(ωk)| = Op(
√

lnn). (6.1.6)

Finally using (6.1.5) and (6.1.6)

max
1≤k< n

2

∣∣∣ Ix,n(ωk)

2πf(ωk)
− Iǫ,n(ωk)

∣∣∣ ≤ 1

2πα
max

1≤k< n
2

|Tn(ωk)|

≤ 1

2πα

[
2 max

0≤ω≤π
|Rn(ω)| max

0≤ω≤π
|A(ω)| max

1≤ωk< n
2

|Jǫ,n(ωk)|

+{ max
0≤ω≤π

|Rn(ω)|}2
]

= op(n−1/4
√

lnn). (6.1.7)

2

Theorem 6.1.3 (Bose, Hazra and Saha (2009) [34]). Let {xn} be the two sided moving

average process defined in (6.1.1) satisfying Assumption 6.1.1. Then

M(n−1/2RCn, f) − dq

cq

D→ Λ,

where q = q(n) = ⌊n−1
2 ⌋, dq =

√
ln q and cq = 1

2
√

ln q
. Same result continues to hold

for M(n−1/2Cn, f).

Proof. From Lemma 6.1.2, we have

max
1≤k< n

2

∣∣∣ Ix,n(ωk)

2πf(ωk)
− Iǫ,n(ωk)

∣∣∣ = op(1) (6.1.8)

where

Ix,n(ωk) =
1

n
|
n−1∑

t=0

xte
−itωk |2 and Iǫ,n(ωk) =

1

n
|
n−1∑

t=0

ǫte
−itωk |2.

Combining this with Theorem 2.1 of Davis and Mikosch (1999) [50] we have

max
1≤k< n

2

Ix,n(ωk)

2πf(ωk)
− ln q

D→ Λ.
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Now proceeding as in the proof of Theorem 4.2.3, we can conclude that

M(n−1/2RCn, f) − dq

cq

D→ Λ.

2

Remark 6.1.4. If we include λ0 in the maximum and define M(n−1/2RCn, f) =

max0≤k<n/2
|λk|√

2πf(ωk)
then different limits may appear depending on mean µ′ of the pro-

cess {xn}. If mean µ of ǫ0 is 0 then by Theorem 7.1.2 of Brockwell and Davis (2002) [46]

it follows that λ0√
2πf(0)

D→ N(0, 1). So by arguments similar to Theorem 4.2.3 we have

M(n−1/2RCn, f) − dq

cq

D→ Λ.

When µ 6= 0 then,

M(n−1/2RCn, f) − |µ|√n D→ N(0, 1).

Remark 6.1.5. It appears that by the results of Lin and Liu (2009) [84], if {xn} is the

two sided moving average process (6.1.1) where E(ǫ0) = 0, E(ǫ20) = 1, E[ǫ20I{|ǫ| ≥ n}] =

o(1/ ln n) and ∑

|j|≥n

|aj | = o(1/ ln n) and min
ω∈[0,2π]

f(ω) > 0,

then also
M(n−1/2RCn, f) − dq

cq

D→ Λ,

where cq, dq are as in Theorem 6.1.3.

6.1.2 Symmetric circulant: dependent input with light tail

We now come to the symmetric circulant case. First we prove the following result similar

to Lemma 6.1.2. It will be used in the proof of Theorem 6.1.7.

Lemma 6.1.6. Let {xn} be the two sided moving average process (6.1.1) where E(ǫi) =

0, E(ǫ2i ) = 1 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π].
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Then we have,

max
1≤k≤⌊n

2
⌋

∣∣ λk√
2πf(ωk)

− 2
Ak√
n

⌊n
2
⌋∑

t=1

ǫt cos(
2πkt

n
) + 2

Bk√
n

⌊n
2
⌋∑

t=1

ǫt sin(
2πkt

n
)
∣∣ = op(n−1/4)

(6.1.9)

where

√
2πf(ωk)Ak =

∞∑

j=−∞
aj cos(

2πkj

n
) and

√
2πf(ωk)Bk =

∞∑

j=−∞
aj sin(

2πkj

n
).

Proof. First observe that minω∈[0,2π] f(ω) > α > 0. Consider n = 2m+ 1 for simplicity.

For n = 2m calculations are similar.

λk√
2πf(ωk)

− 2
Ak√
n

m∑

t=1

ǫt cos(
2πkt

n
) + 2

Bk√
n

m∑

t=1

ǫt sin(
2πkt

n
) = Yn,k

where

Yn,k =
1

√
n
√

2πf(ωk)

∞∑

j=−∞
aj

[
cos

2πkj

n
Uk,j − sin

2πkj

n
Vk,j

]
,

Uk,j =

m∑

t=1

[
ǫt−j cos

2πk(t− j)

n
−ǫt cos

2πkt

n

]
, Vk,j =

m∑

t=1

[
ǫt−j sin

2πk(t− j)

n
−ǫt sin

2πkt

n

]
.

Note that

|Uk,j| ≤





|∑0
t=1−j ǫt cos 2πkt

n | + |∑m
t=m−j+1 ǫt cos 2πkt

n | if |j| < m, j ≥ 0

|∑|j|t=1 ǫt cos 2πkt
n | + |∑m+|j|

t=m+1 ǫt cos 2πkt
n | if |j| < m, j < 0

|∑m−j
t=1−j ǫt cos 2πkt

n | + |∑m
t=1 ǫt cos 2πkt

n | if |j| ≥ m, j ≥ 0

|∑|j|+m
t=|j|+1 ǫt cos 2πkt

n | + |∑m
t=1 ǫt cos 2πkt

n | if |j| ≥ m, j < 0.

Now for any r > 1,

|
r∑

t=1

ǫt cos
2πkt

n
|2 ≤ |

r∑

t=1

ǫte
i2πkt

n |2 ≤
r∑

s=−r

|
r−|s|∑

t=1

ǫtǫt+|s||.

Hence by equation (6.1.2),

E{max
k

|
r∑

t=1

ǫt cos
2πkt

n
|2} ≤ Kr

3
2 .

Therefore

E{max
k

U2
k,j} ≤

{
4K|j|3/2 if |j| < m,

4Km3/2 if |j| ≥ m.
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Similarly

E{max
k

V 2
k,j} ≤

{
4K|j|3/2 if |j| < m,

4Km3/2 if |j| ≥ m.

Now

E{max
k

|Yn,k|} ≤ 1√
2πα

1√
n

∞∑

j=−∞
|aj |
[
E{max

k
|Uk,j|} + E{max

k
|Vk,j|}

]

≤ 2K1/2

√
2πα

1√
n

[ ∑

|j|<m

|aj||j|3/4 +
∑

|j|≥m

|aj |m3/4
]

≤ 2K1/2

√
2πα

1

n1/4

[ ∑

|j|<m

|j|1/2|aj |(j/n)1/4 +
∑

|j|≥m

j1/2|aj |
]

= o(n−1/4)

since the second sum goes to zero as n→ ∞ and the first sum is not greater than

∑

k(n)<|j|<m

|j|1/2|aj | + {k(n)/n)}1/4
∑

0≤|j|≤k(n)

|j|1/2|aj |,

where k(n) is such that lim
n→∞

{k(n)/n} = 0 and lim
n→∞

k(n) = ∞. 2

Define M(·, f) for the symmetric circulant matrix as was done for the reverse circu-

lant matrix:

M(n−1/2SCn, f) = max
1≤k< n

2

|λk|√
2πf(ωk)

where λk are the eigenvalues of n−1/2SCn as defined in Section 1.2.2. Under the addi-

tional restriction of aj = a−j, for all j, the following result is easy to prove.

Theorem 6.1.7 (Bose, Hazra and Saha (2009) [34]). Let {xn} be the two sided moving

average process defined in (6.1.1) with aj = a−j and satisfies Assumption 6.1.1. Then

M(n−1/2SCn, f) − bq − aq ln 2

aq

D→ Λ

where q = q(n) = ⌊n
2 ⌋ ≈ n

2 and aq and bq are as in equation (4.3.1).

As in Remark 6.1.4 if λ0 is included in the definition of M(n−1/2SCn, f) then the

result changes only when µ 6= 0.

Proof of Theorem 6.1.7. Note that if aj = a−j then in Lemma 6.1.6, Bk = 0 and hence



131 Dependent input with light tail

from the same lemma, it is easy to see that,

max
1≤k≤⌊n

2
⌋

∣∣∣ λk√
2πf(ωk)

− λk,ǫ

∣∣∣ = op(n−1/4) (6.1.10)

where λk,ǫ denote eigenvalue of symmetric circulant matrix with {xi} replaced by {ǫi}.

Combining this with part (ii) of Theorem 4.3.5 we have

M(n−1/2SCn, f) − bq − aq ln 2

aq

D→ Λ.

2

In Theorem 6.1.7, we assume that aj = a−j and this condition reduces {xn} to a

one sided moving average process. Now we focus on the case where aj is not necessarily

equal to a−j. For reasons to be discussed later (see Remark 6.1.15), in this case we can

deal with maximum over two different subsets L1
n and L2

n (see (6.1.12)) of {1 ≤ k ≤ ⌊n
2 ⌋}

separately. We first define some notation which will be used in our further developments.

For 0 < δ1 < 1/2, define

pn = (1 − 1

n1/2+δ1
) and Ln = {k : 1 ≤ k ≤ ⌊npn/2⌋}, (6.1.11)

L1
n = {k ∈ Ln : k is even} and L2

n = {k ∈ Ln : k is odd}. (6.1.12)

Let

σ2
k = 1 +

AkBk

n
tan(

πk

n
), νk,k′ =

Dk,k′

n
tan

π(k + k′)
2n

+
Ek,k′

n
tan

π(k′ − k)

2n
, (6.1.13)

Dk,k′ = AkBk′ +Ak′Bk and Ek,k′ = Ak′Bk −AkBk′ ,

where Ak, Bk are as in Lemma 6.1.6.

The following lemma from Dai and Mukherjea (2001) [51] (Theorem 2.1) is an ana-

logue of Mill’s ratio in higher dimension.

Lemma 6.1.8 (Dai and Mukherjea (2001) [51]). Let (X1,X2, ...Xn) be multivariate

normal with zero means and a positive definite covariance matrix Σ. Let σ̃1 ≥ σ̃2 ≥ ... ≥
σ̃n denote the variances and let I(t) = P(Xi ≥ t, 1 ≤ i ≤ n). If α = (α1, α2, ..., αn) =

~1Σ−1 where ~1 = (1, 1, ..., 1) with αi > 0 then

I(t) ≈ 1

(
√

2π)n
√

|Σ|(∏n
i=1 αi)tn

exp(−1

2
t2~1Σ−1~1T ).

We first look at the special case where {ǫi} are standard normal random variables.
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Lemma 6.1.9. Let {Ni} be i.i.d. N(0, 1) and let

λk,N =

√
2AkN0√
n

+
1√
n

⌊n
2
⌋∑

t=1

Nt

(
2Ak cos(

2πkt

n
) − 2Bk sin(

2πkt

n
)

)
.

Then
maxk∈L1

n
λk,N − bq

aq

D−→ Λ (6.1.14)

and
maxk∈L2

n
λk,N − bq

aq

D−→ Λ (6.1.15)

where q = q(n) = ⌊n
4 ⌋ and an and bn are as in (4.3.1).

In particular,
max1≤k≤⌊n

2
⌋ λk,N√

lnn

P−→ 1. (6.1.16)

Proof. We shall prove (6.1.14) only. Proof of (6.1.15) is similar. Finally using these two

results we shall prove (6.1.16).

Proof of (6.1.14): Consider the case n = 2m + 1. For n = 2m, calculations will

be similar with minor changes. First observe that V ar(λk,N ) = σ2
k and for k′ > k

we have Cov(λk,N , λk′,N) = νk,k′ where σk and νk,k′ are defined in (6.1.13). Let

xq = aqx+ bq ≈ √
2 ln q. By Bonferroni inequalities we have for j > 1

2j∑

d=1

(−1)d−1B̃d ≤ P(max
k∈L1

n

λk,N > xq) ≤
2j−1∑

d=1

(−1)d−1B̃d,

where

B̃d =
∑

i1,i2,...,id∈L1
n, all distinct

P(λi1,N > xq, ...λid,N > xq)

Observe by the choice of pn we have,

1

n
tan(

πpn

2
) ≈ 2n1/2+δ1

πn
→ 0.

Hence for some ǫ > 0, for large n we have 1 − ǫ < σ2
k < 1 + ǫ and for any k, k′ ∈ L1

n (or

L2
n) we have |νk,k′ | → 0 as n→ ∞. We shall use this simple observation very frequently

in the proof. Next we make the following claim.

Claim:

∑

ii,i2,...,id∈L1
n, all distinct

P(λi1,N > xq, ...λid,N > xq) ≈ qd exp(−x2
qd

2 )

d!xd
q(
√

2π)d
, for d ≥ 1. (6.1.17)
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To avoid notational complications we show the above claim for d = 1 and d = 2 and

indicate what changes are necessary for higher dimension.

d=1: Using the fact that
σ2

k

x2
q

→ 0 and for x > 0,

(
1 − 1

x2

)
exp(−x2/2)√

2πx
≤ P(N(0, 1) > x) ≤ exp(−x2/2)√

2πx

it easily follows that,

∑

k∈L1
n

P(N(0, 1) > xq/σk) ≈
∑

k∈L1
n

σk√
2πxq

exp(−
x2

q

2σ2
k

).

Observe that

∑
k∈L1

n

σk√
2πxq

exp(− x2
q

2σ2
k
)

qpn√
2πxq

exp(−x2
q

2 )
=

1

qpn

∑

k∈L1
n

σk exp(−
x2

q

2
(

1

σ2
k

− 1))

=
1

qpn

∑

k∈L1
n

σk exp(−
x2

q

2σ2
k

AkBk

n
tan(

πk

n
)).

Now using the facts that
AkBkx2

q

nσ2
k

tan(πpn

n ) → 0, supk∈L1
n
σ2

k → 1 and |{k : k ∈ L1
n}| ≈

qpn, it is easy to see that the last term above goes to 1. Since pn ≈ 1 the claim is proved

for d = 1.

d=2: We shall use Lemma 6.1.8 for this case. Without loss of generality assume

that σ2
k > σ2

k′ . Let α = (α1, α2) where α = ~1V −1 and

V =

[
σ2

k νk,k′

νk,k′ σ2
k′

]
.

Hence (α1, α2) =

(
σ2

k′
−νk,k′

|V | ,
σ2

k−νk,k′

|V |

)
. For any 0 < ǫ < 1 it easily follows that αi >

1−ǫ
|V |

for large n and for i = 1, 2. Hence from Lemma 6.1.8 it follows that as n→ ∞,

∑

k,k′∈L1
n

P(λk,N > xq, λk′,N > xq) ≈
∑

k,k′∈L1
n

1

2π
√

|V |
exp(−1

2x
2
q
~1V −1~1T )

α1α2x2
q

.
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Now denote

ψk,k′ =
1

|V |
[
− AkBk

n
tan(

πk

n
) − Ak′Bk′

n
tan(

πk′

n
)

+
AkBk

n
tan(

πk

n
)
Ak′Bk′

n
tan(

πk′

n
) − 2νk,k′ + 2ν2

k,k′

]

and observe

|x2
qψk,k′ | ≤ C

x2
q

n
tan(

πpn

2
) → 0 as n→ ∞.

∑
k,k′∈L1

n

1

2π
√
|V |α1α2x2

q

exp(−1
2x

2
q
~1V −1~1T )

q2 exp(−x2
q)

2!x2
q2π

=
2

q2

∑

k,k′∈L1
n

1√
|V |α1α2

exp

(
−1

2
x2

q(α1 + α2) + x2
q

)

=
2

q2

∑

k,k′∈L1
n

|V |3/2

(σ2
k′ − νk,k′)(σ2

k − νk,k′)
exp

(
−
x2

q

2
(α1 + α2 − 2)

)

≤ 2

q2

∑

k,k′∈L1
n

|V |3/2

(1 − ǫ)2
exp(−

x2
q

2
ψk,k′) → 1 as n→ ∞ and as ǫ→ 0.

Similarly the lower bound can be obtained to show that the claim is true for d = 2.

d > 2 : Now the probability inside the sum in claim (6.1.17) is P(N(0, Vn) ∈ En)

where En = {(y1, y2, ..., yd) : yi > xq, i = 1, 2..., d}, and Vn denotes covariance ma-

trix {Vn(s, t)}d
s,t=1 with Vn(s, s) = σ2

is and for s 6= t, Vn(s, t) = νisit , where σis , νisit are

as in (6.1.13). Without loss of generality assume that σi1 ≥ σi2 ≥ ... ≥ σid , since we can

always permute the original vector to achieve this and the covariance matrix changes

accordingly. Note that as n→ ∞ we get

‖Vn − Id‖∞ → 0,

where ‖A‖∞ = max |ai,j|. As V −1
n =

∑∞
j=0(Id −Vn)j we have α = ~1 +

∑∞
j=1

~1(Id −Vn)j .

Now since ‖Id −Vn‖∞ → 0 so ‖(Id − Vn)j‖∞ → 0 and hence elements of (Id −Vn)j goes

to zero for all j. So we get that αi ∈ (1 − ǫ, 1 + ǫ) for i = 1, 2, ..., d and 0 < ǫ < 1 and

hence we can again apply Lemma 6.1.8. For further calculations it is enough to observe

that for |x| 6= 0,

xVnx
T

|x|2 = 1 +
1

|x|2
d∑

k=1

xk
2AikBik

1

n
tan(

πik
n

) +
1

|x|2
d∑

1≤k 6=k′≤d

xkxk′νik,ik′
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Since the last two term goes to zero in their modulus so given any ǫ > 0, we get for

large n

1 − ǫ ≤ λmin(Vn) ≤ λmax(Vn) ≤ 1 + ǫ,

where λmin(Vn) and λmax(Vn) denote the minimum and maximum eigenvalue of Vn.

Rest of the calculation is similar to d = 2 case. This proves the claim completely.

Back to the proof of (6.1.14). Using the fact that an and bn are normalizing

constants for maxima of standard normal it follows that,

qd exp(−x2
qd

2 )

d!xd
q(
√

2π)d
≈ 1

d!
exp(−dx).

So from the Bonferroni inequalities and observing exp(− exp(−x)) =
∑∞

d=0
(−1)d

d! exp(−dx)

it follows that

P(max
k∈L1

n

λk,N > xq) → exp(− exp(−x)),

proving (6.1.14) completely. For (6.1.15) calculations are similar to the proof of (6.1.14)

and we omit the details.

Proof of (6.1.16): We first observe that,

n/2∑

k=npn/2

P(N(0, 1) > xq/σk) ≤ n

2
(1 − pn)P(N(0, 1) >

xq√
2

),

since σ2
k ≤ 2 for k ≤ n/2. Expanding the expressions for an and bn we get,

x2
q

4
=

1

4
(aqx+ bq)2 = o(1) +

ln q

2
− 1

4
ln(4π ln q) +

x

2
.

Now

n(1 − pn)

2
P(N(0, 2) > xq) ≤ C

n(1 − pn)

2

exp(−x2
q

4 )

xq

≈ Cn−1/2n(1 − pn)

2
√

ln q

≈ C
1

nδ1
√

ln q
→ 0 as n→ ∞.

Breaking up the set L1 = {k : 1 ≤ k ≤ ⌊n
2 ⌋ and k is even } into L1

n and
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L̃1
n = {k : ⌊npn/2⌋ < k < ⌊n

2 ⌋ and k is even} we get,

P(max
k∈L1

λk,N > xq) = P(max(max
k∈L1

n

λk,N ,max
k∈L̃1

n

λk,N) > xq)

≤ P(max
k∈L1

n

λk,N > xq) + P(max
k∈L̃1

n

λk,N > xq)

≤ P(max
k∈L1

n

λk,N > xq) +

⌊n
2
⌋∑

t=⌊npn/2⌋
P(N(0, σ2

k) > xq)

= P(max
k∈L1

n

λk,N > xq) + o(1).

Hence the upper bound is obtained. The lower bound easily follows from (6.1.14).

Similar calculations for the set L2 = {k : 1 ≤ k < ⌊n
2 ⌋ and k is odd} can be done. To

complete the proof it is enough to observe that,

P(
max1≤k<⌊n

2
⌋ λk,N√

lnn
> 1 − ǫ) ≤ P(

maxk∈L1 λk,N√
lnn

> 1 − ǫ) + P(
maxk∈L2 λk,N√

lnn
> 1 − ǫ)

and the last two probabilities go to zero. This completes the proof of the Lemma. 2

Remark 6.1.10. By calculations similar to above, it can be shown that for σ2 = n−c

where c > 0,

∑

ii,i2,...,id∈L1
n, all distinct

P((1 + σ2)1/2λi1,N > xq, ..., (1 + σ2)1/2λid,N > xq) ≤ Kd

d!
(6.1.18)

for some constant K > 0. This will be used in the proof of Theorem 6.1.11.

We now consider the symmetric circulant matrix with the general moving average

process {xn}. We shall use the result already proved for normal entries (Lemma 6.1.9).

Theorem 6.1.11 (Bose, Hazra and Saha (2009) [34]). Let SCn be the symmetric cir-

culant matrix with entries from {xn}, the two sided moving average process defined in

(6.1.1) which satisfies Assumption 6.1.1. If λk,x denote the eigenvalues of 1√
n
SCn with

input {xi} then
maxk∈L1

n
λk,x − bq

aq

D−→ Λ (6.1.19)

and
maxk∈L2

n
λk,x − bq

aq

D−→ Λ (6.1.20)

where q = q(n) = ⌊n
4 ⌋ and an and bn are as in (4.3.1).

Proof. We shall prove (8.2) only. Proof of (8.2) is similar. Again for simplicity we

assume that n = 2m+ 1. We break the proof into four steps.
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Step 1: Truncation: Define

ǫ̃t = ǫtI(|ǫt| ≤ n
1

2+δ ), ǫt = ǫ̃t − Eǫ̃t, x̃t =

∞∑

j=−∞
aj ǫ̃t−j , xt =

∞∑

j=−∞
ajǫt−j ,

λk,x̃ =
1√
n

[x̃0 + 2

m∑

t=1

x̃t cos
2πkt

n
], λk,x̄ =

1√
n

[x0 + 2

m∑

t=1

xt cos
2πkt

n
].

Claim: To prove (8.2) it is enough to show that,

maxk∈L1
n
λk,ǫ − bq

aq

D→ Λ, (6.1.21)

where

λk,ǫ =

√
2Akǫ0√
n

+
2Ak√
n

m∑

t=1

ǫt cos(
2πkt

n
) − 2Bk√

n

m∑

t=1

ǫt sin(
2πkt

n
).

To prove the claim first note that

√
nλk,x̄ = x0 + 2

m∑

t=1

xt cos
2πkt

n

= x̃0 + 2

m∑

t=1

x̃t cos
2πkt

n
+

∞∑

j=−∞
ajE(ǫ̃−j) + 2

m∑

t=1

[

∞∑

j=−∞
ajE(ǫ̃t−j)] cos

2πkt

n

=
√
nλk,x̃ + [

∞∑

j=−∞
ajE(ǫ̃j)][1 + 2

m∑

t=1

cos
2πkt

n
]

=
√
nλk,x̃.

Choose η such that (1
2 − 1

2+δ − η) > 0 and observe

nηE[ max
1≤k≤⌊n

2
⌋
|λk,x̄ − λk,x|] = nηE[ max

1≤k≤⌊n
2
⌋
|λk,x̃ − λk,x|]

≤ 2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |E(|ǫt−j |I(|ǫt−j | > n

1
2+δ ))

≤ 2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |
[
n

1
2+δ P(|ǫt−j | > n

1
2+δ )

+

∫ ∞

n
1

2+δ

P(|ǫt−j | > u)du
]

= I1 + I2, say,
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and

I1 =
2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |n

1
2+δ P(|ǫt−j | > n

1
2+δ )

≤ 2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |n

1
2+δ

1

n
E(|ǫt−j |2+δ)

≤ E(|ǫ0|2+δ)

n
1
2
− 1

2+δ
−η

∞∑

j=−∞
|aj| → 0,

as n→ ∞ since
∑∞

j=−∞ |aj | <∞. Similarly

I2 =
2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |

∫ ∞

n
1

2+δ

P(|ǫt−j | > u)du

≤ 2

n1/2−η

m∑

t=0

∞∑

j=−∞
|aj |

∫ ∞

n
1

2+δ

E(|ǫt−j |2+δ)

u2+δ
du

≤ 2E(|ǫ0|2+δ)

(2 + δ − 1)n1/2−η

m∑

t=0

∞∑

j=−∞
|aj|

1

n1− 1
2+δ

≤ E(|ǫ0|2+δ)

(1 + δ)n
1
2
− 1

2+δ
−η

∞∑

j=−∞
|aj | → 0,

as n→ ∞ for above choice of η. Hence

max
1≤k≤⌊n

2
⌋
|λk,x̄ − λk,x| = op

(
n−η

)
. (6.1.22)

Also from Lemma 6.1.6 we have

max
k∈L1

n

∣∣ λk,x̄

aq

√
2πf(ωk)

− 2Ak√
naq

m∑

t=1

ǫt cos(
2πkt

n
) +

2Bk√
naq

m∑

t=1

ǫt sin(
2πkt

n
)
∣∣ = op(

√
lnn

nδ1
).

(6.1.23)

Now from (6.1.22) and (6.1.23) it follows that, to prove (8.2) it is enough to show

maxk∈L1
n
λk,ǫ − bq

aq

D→ Λ.

This proves the claim in Step 1 completely.
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Step 2: Normal Approximation: This is an intermediate step to approximate λk,ǫ

by λk,N , where λk,N is defined in Lemma 6.1.9. Define

λk,ǫ+σN =

√
2Ak√
n

(ǫ0+σN0)+
2Ak√
n

m∑

t=1

(ǫt+σNt) cos(
2πkt

n
)−2Bk√

n

m∑

t=1

(ǫt+σNt) sin(
2πkt

n
).

Claim:

∣∣P(max
k∈L1

n

λk,ǫ+σN > xq) − P(max
k∈L1

n

(1 + σ2)1/2λk,N > xq)
∣∣→ 0, (6.1.24)

where λk,N is defined in Lemma 6.1.9.

Proof of this claim is similar to the proof of Lemma 4.3.3. We use Lemma 4.3.2 to do

so. Let d ≥ 1 and i1, i2, ...id be d distinct numbers from L1
n.

vd(0) =
√

2(Ai1 , ..., Aid ) and

vd(t) = 2

(
Ai1 cos(

2πi1t

n
) −Bi1 sin(

2πi1t

n
), ..., Aid cos(

2πidt

n
) −Bid sin(

2πidt

n
)

)
.

Let Sn =
∑m

t=0 ǫtvd(t), and observe that Cov(Sn) = Vn where Vn is the covariance matrix

with diagonal entries Vn(k, k) = Bnσ
2
ik

and off-diagonal entries Vn(k, k′) = Bnνik,ik′ and

Bn = V ar(ǫt)n ≈ n. We have in fact already seen in the proof of Lemma 6.1.9 that,

‖ Vn

Bn
− Id‖∞ → 0.

To apply Lemma 4.3.2 we define

ǫ′t = Bn
1/2V −1/2

n ǫtvd(t) for 0 ≤ t ≤ ⌊n
2
⌋ and S′n =

m∑

t=0

ǫ′t.

It is easy to see that Cov(S′n) = BnId. Also note the since ‖( Vn
Bn

)−1 − Id‖∞ < c′ for

some constant c′ > 0 and hence for large n we get that |ǫ′t| < 2dCn
1

2+δ for some

constant C . Hence {ǫ′t} is a sequence of independent, mean zero random vectors with

moment generating function finite in a neighborhood of zero. For verification of the

other conditions choose α̃ = c1

n
1

2+δ 2dC
, where c1 is a constant to be chosen later. Hence,

α̃

m∑

t=0

E|ǫ′t|3 exp(α̃|ǫ′t|) ≤ α̃B3/2
n |Vn|−3/2(2d)3

m∑

t=0

E|ǫt|3 exp(c1)

≤ 4c1 exp(c1)C2d2n(1− 1
2+δ

)E|ǫt|3

≤ 4c1 exp(c1)C2d2n(1− δ2
2+δ

)E|ǫt|2+δ2 ,
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where δ2 ∈ (0, 1) such that E|ǫt|2+δ2 < ∞. Now choose c1 such that the required

condition is satisfied. Similar calculations show that

βn = B−3/2
n

m∑

t=0

E|ǫ′t|3 exp(α̃|ǫ′t|) ≤ Cn−c3,

where c3 = 1
2 − 1−δ2

2+δ > 0. Rest of the calculation is similar to the proof of Lemma 4.3.3.

Let σ̄2 = n−c3 and if N ′t are i.i.d. N(0, σ̄2Cov(ǫ′t)) independent of ǫ′t and p̃n be density

of S∗n = 1√
Bn

∑m
t=0(ǫ′t +N ′t), then,

p̃n(x) = φ(1+σ̄2)Id
(x)(1 + o(1)),

uniformly for all x such that |x|3 = o(n( 1
2
− 1

2+δ
)). Here φC denotes the d-dimensional

normal density with covariance matrix C.

Let σ2 = V ar(ǭ)σ̄2 ≈ n−c3 and observe that N ′t
D
= B

1/2
n V

−1/2
n σNtvd(t), where Nt are

i.i.d. N(0, 1) for t = 0, 1, ...,m.

For x ∈ R
d, let ‖x‖0 = min1≤i≤d xi. Recall | · | denotes the Euclidean norm and

observe that ‖x + y‖0 ≤ ‖x‖0 + |y|. Let Sn = 1√
n

∑m
t=0(ǫt + Nt)vd(t). Then note that

S∗n = B
1/2
n V

−1/2
n Sn.

Let rn = o(n( 1
2
− 1

2+δ
)) and denote Kn = {y ∈ Rd : ‖B−1/2

n V
1/2
n y‖0 > xq} and break it

into the following two sets K1,n = {y ∈ Rd : ‖B−1/2
n V

1/2
n y‖0 > xq, |y| > rn} and K2,n =

{y ∈ R
d : ‖B−1/2

n V
1/2
n y‖0 > xq, |y| ≤ rn}. Then

P(‖Sn‖0 > xq)

≤ P(‖B−1/2
n V 1/2

n S∗n‖0 > xq)

=

∫

Kn

p̃n(y)dy

=

∫

K2,n

p̃n(y)dy +

∫

K1,n

p̃n(y)dy

= (1 + o(1))

∫

K2,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy

= (1 + o(1))

∫

Kn

φ(1+σ2)Id
(y)dy − (1 + o(1))

∫

K1,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy

= (1 + o(1))P(‖(1 + σ2)1/2 1√
n

m∑

t=0

Ntvd(t)‖0 > xq)

−(1 + o(1))

∫

K1,n

φ(1+σ2)Id
(y)dy +

∫

K1,n

p̃n(y)dy.
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The third integral is less than

P

(
| 1√
n

m∑

t=0

B1/2
n V −1/2

n (ǫt + σNt)vd(t)| > rn

)
.

Now using the fact that ‖( Vn
Bn

)−1/2‖∞ ≤ C5 for some constant C5 > 0 and using cal-

culations similar to Corollary 1 of Bose, Mitra and Sen (2009) [44] we conclude that

the third integral is bounded by K1 exp(−K2n
δ3) for some constant K1,K2 > 0 and

depending only on d and δ3 > 0. Similarly the integral in the second term is bounded

by ∫

|y|>rn

φ(1+σ2)Id
(y)dy ≤ 2d exp(−rn

2d
).

From all the above observations it is easy to conclude that, for ǫn → 0 we get uniformly

over d distinct tuples i1, i2, ...id ∈ L1
n that

∣∣P(‖Sn‖0 > xq) − P(‖(1 + σ2)
1√
n

m∑

t=0

Ntvd(t)‖0 > xq)
∣∣

≤ ǫnP (‖(1 + σ2)
1√
n

m∑

t=0

Ntvd(t)‖0 > xq) +K3 exp(−K4n
δ3), (6.1.25)

where K3,K4 are constants depending on d.

Now by arguments similar to Step 2 of the proof of Theorem 4.3.4 and using (6.1.18)

and (6.1.25) it follows that,

∣∣P(max
k∈L1

n

λk,ǫ+σN > xq) − P(max
k∈L1

n

(1 + σ2)1/2λk,N > xq)
∣∣→ 0.

This proves the claim (6.1.24) in Step 2 completely.

Step 3: Claim:

lim
n→∞

P(max
k∈L1

n

λk,ǫ+σN > xq) = Λ(x). (6.1.26)

Proof of this step is similar to Step 3 of the proof of Theorem 4.3.4. Now since

maxk∈L1
n
λk,N = OP (

√
lnn) (see Lemma 6.1.9) and σ2 = n−c3 we get as n→ ∞,

P

(
max
k∈L1

n

(1 + σ2)1/2λk,N > xq

)
→ Λ(x).

Combining this with (6.1.24) we get,

lim
n→∞

P(max
k∈L1

n

λk,ǫ+σN > xq) = Λ(x).
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This completes the proof of Step 3.

Step 4: In this step we shall prove (6.1.21). Observe that

∣∣∣
maxk∈L1

n
λk,ǫ+σN − bq

aq
−

maxk∈L1
n
λk,ǫ − bq

aq

∣∣∣ ≤
σmaxk∈L1

n
λk,N

aq

P→ 0.

Now using (6.1.26) it follows that

maxk∈L1
n
λk,ǫ − bq

aq

D→ Λ.

This completes the proof of Step 4.

Hence from the claim in Step 1 it follows that

maxk∈L1
n
λk,x − bq

aq

D−→ Λ

proving (8.2) completely. For (8.2) calculations are similar to the proof of (8.2) and we

omit the details. This completes the proof of the theorem. 2

Theorem 6.1.12 (Bose, Hazra and Saha (2009) [34]). If {λk,x} are the eigenvalues of
1√
n
SCn then under the assumptions of Theorem 6.1.11,

max1≤k≤⌊n
2
⌋

λk,x√
2πf(wk)√

lnn

P→ 1 where ωk =
2πk

n
.

Proof. As before we assume n = 2m+ 1. It is now easy to see from the truncation part

of Theorem 6.1.11 and Lemma 6.1.6 that it is enough to show that,

max1≤k≤⌊n
2
⌋ λk,ǫ√

lnn

P→ 1,

where,

λk,ǫ =

√
2Akǫ0√
n

+
2Ak√
n

m∑

t=1

ǫt cos(
2πkt

n
) − 2Bk√

n

m∑

t=1

ǫt sin(
2πkt

n
),

and ǫt = ǫtI(|ǫt| ≤ n1/s)−EǫtI(|ǫt| ≤ n1/s). The steps are same as the steps required to

prove (6.1.16) in Lemma 6.1.9 and observe from there that to complete the proof it is

enough to show,
⌊n

2
⌋∑

k=⌊npn/2⌋+1

P(λk,ǫ > xq) → 0 as n→ ∞. (6.1.27)
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Denote

m = ⌊n
2
⌋, v1(0) =

√
2Ak and v1(t) = 2Ak cos(

2πkt

n
) − 2Bk sin(

2πkt

n
).

Since {ǫtv1(t)} is a sequence of bounded independent mean zero random variable, by

applying Bernstein’s inequality we get

P(
1√
m

m∑

t=0

ǫtv1(t) > xq) ≤ P(|
m∑

t=0

ǫtv1(t)| > √
mxq)

= P(|
m∑

t=0

ǫtv1(t)| > m
xq√
m

)

≤ 2 exp
(
−

mx2
q

2
∑m

t=0 V ar(ǫtv1(t)) + 2
3Cn

1/sm
xq√
m

)
.

Denote by Ck = AkBk and observe

D :=
mx2

q

2
∑m

t=0 V ar(ǫtv1(t)) + 2
3Cn

1/sm
xq√
m

≥
x2

q

4 1
n

∑m
t=0 V ar(ǫtv1(t)) + 4

3Cn
1/s−1/2xq

=
x2

q

4(1 + Ck
n tan πk

n ) + 4
3

Cxq

n1/2−1/s

≥
x2

q

4(1 + 2
π ) + o(1)

≥
x2

q

8
.

Therefore

P(|
m∑

t=0

ǫtv1(t)| > √
mxq) ≤ 2 exp(−

x2
q

8
),

and hence

⌊n
2
⌋∑

t=⌊npn/2⌋
P(

1√
n
|

m∑

t=0

ǫtv1(t)| > xq) ≤ n(1 − pn) exp(−
x2

q

4
) ≤ C

nδ1(lnn)1/4
−→ 0.

This completes the proof of (6.1.27) and hence the proof of the theorem. 2

Remark 6.1.13. Note that the above calculation can be imitated with ease to conclude

that under the conditions of Theorem 6.1.12,

max1≤k≤⌊n
2
⌋
|λk,x|√
2πf(ωk)√

lnn

P→ 1.
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The proof is same, with only the normalizing constants changed suitably.

Remark 6.1.14. If we include λ0 in the definition M(n−1/2SCn, f) that is, if

M(n−1/2SCn, f) = max0≤k≤⌊n
2
⌋

|λk|√
2πf(ωk)

then it is easy to see that under Assumption

6.1.1 except that mean µ of {ǫi} is now non-zero,

M(n−1/2SCn, f) − |µ|√n D→ N(0, 2).

Remark 6.1.15. In Theorem 6.1.11 we were unable to consider the convergence over

L1
n ∪ L2

n. It is not clear if the maximum over the two subsets are asymptotically inde-

pendent and hence it is not clear if we would continue to obtain the same limit. Observe

that for example, if k is odd and k′ is even then

Cov(λk,x, λk′,x) =
−Dk,k′

n
cot

π(k + k′)
2n

− Ek,kk′

n
cot

π(k′ − k)

2n
.

So for this covariance terms to tend to zero, we have to truncate the index set from below

appropriately. For instance, in the Gaussian case we may consider the set L′ = {(k, k′) :

1 < k < ⌊npn/2⌋, k + ⌊nqn/2⌋ < k′ < ⌊npn/2⌋} with qn → 0, and can approximate

it by the i.i.d. counterparts since supk,k′∈L′ |Cov(λk,x, λk′,x)| → 0 as n → ∞. The

complication comes when dealing with the complement of L′ since it has no longer small

cardinality.

6.1.3 k-circulant: dependent input with light tail

First recall the eigenvalues of k-circulant matrix Ak,n from Section 1.2.4. For any

positive integers k, n, let p1 < p2 < . . . < pc be all their common prime factors so that,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏

q=1

p
αq
q .

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. Then the characteristic

polynomial of Ak,n is given by

χ (Ak,n) = λn−n′
ℓ−1∏

j=0

(λnj − yj) , (6.1.28)

where yj, nj are as defined in Section 1.2.4.

k-circulant for n = k2 + 1.

We first consider k-circulant matrix with n = k2 + 1. In this case, clearly n′ = n and

k′ = k. From Lemma 2.4.16(i), g1 = 4 and the eigenvalue partition of {0, 1, 2, . . . , n−1}
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contains exactly q = ⌊n
4 ⌋ sets of size 4, say {P1,P2, . . . ,P⌊n

4
⌋}. Since each Pi is self-

conjugate, we can find a set Ai ⊂ Pi of size 2 such that

Pj = {x : x ∈ Aj or n− x ∈ Aj}.

Since we shall be using the bounds from Lemma 6.1.2 we define a few relevant notation

for convenience. Define,

Ix,n(ωj) =
1

n

∣∣∣
n∑

l=1

xle
iωj l
∣∣∣
2
, Iǫ,n(ωj) =

1

n

∣∣∣
n∑

l=1

ǫle
iωj l
∣∣∣
2
,

Jx,n(ω) =
1√
n

n∑

l=1

xle
iωj l, Jǫ,n(ω) =

1√
n

n∑

l=1

ǫle
iωj l,

βx,n(t) =
∏

j∈At

Ix,n(ωj), βǫ,n(t) =
∏

j∈At

Iǫ,n(ωj),

A(ωj) =

∞∑

t=−∞
ate

iωjt, Tn(ωj) = Ix,n(ωj) − |A(ωj)|2Iǫ,n(ωj),

β̃x,n(t) :=
βx,n(t)∏

j∈At
2πf(ωj)

and M(n−1/2Ak,n, f) = max
1≤t≤q

(
β̃x,n(t)

)1/4
.

Theorem 6.1.16 (Bose, Hazra and Saha (2009) [34]). Let {xn} be the two sided moving

average process defined in (6.1.1) and satisfies Assumption 6.1.1. Then for n = k2 + 1,

M(n−1/2Ak,n, f) − dq

cq

D→ Λ

as n→ ∞ where q = q(n) = ⌊n
4 ⌋ and cq, dq are same as defined in Theorem 4.4.1.

Proof. Observe that,

β̃x,n(t) :=
βx,n(t)∏

j∈At
2πf(ωj)

= βǫ,n(t) +Rn(t),

where

Rn(t) = Iǫ,n(ωt1)
Tn(ωt2)

2πf(ωt2)
+ Iǫ,n(ωt2)

Tn(ωt1)

2πf(ωt1)
+

Tn(ωt1)

2πf(ωt1)

Tn(ωt2)

2πf(ωt2)
.

Let q = ⌊n
4 ⌋. Recall that,

‖n−1/2Ak,n‖ = max
1≤t≤q

(
βx,n(t)

)1/4
and M(n−1/2Ak,n, f) = max

1≤t≤q

(
β̃x,n(t)

)1/4
. (6.1.29)
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We shall show max1≤t≤q |β̃x,n(t) − βǫ,n(t)| → 0 in probability.

Now

|β̃x,n(t) − βǫ,n(t)| ≤ |Iǫ,n(ωt1)
Tn(ωt2)

2πf(ωt2)
| + |Iǫ,n(ωt2)

Tn(ωt1)

2πf(ωt1)
| + | Tn(ωt1)

2πf(ωt1)

Tn(ωt2)

2πf(ωt2)
|,

Note that

max
1≤t≤q

|Iǫ,n(ωt1)
Tn(ωt2)

2πf(ωt2)
| ≤ 1

2πα
max

1≤t< n
2

|Iǫ,n(ωt)| max
1≤t< n

2

|Tn(ωt)|.

From (6.1.7) we get

max
1≤t≤n

|Tn(ωt)| = Op(n−1/4(ln n)1/2).

Therefore

max
1≤t≤q

|Iǫ,n(ωt1)
Tn(ωt2)

2πf(ωt2)
| = Op(n−1/4(ln n)3/2)

and

max
1≤t≤q

| Tn(ωt1)

2πf(ωt1)

Tn(ωt2)

2πf(ωt2)
| = Op(n−1/2 lnn).

Combining all this we have

max
1≤t≤q

|Rn(t)| = max
1≤t≤q

|β̃x,n(t) − βǫ,n(t)| = Op(n−1/4(lnn)3/2).

Note that

(
βǫ,n(t)

)1/4 − |Rn(t)|1/4 ≤
(
β̃x,n(t)

)1/4 ≤
(
βǫ,n(t)

)1/4
+ |Rn(t)|1/4

and hence

∣∣ max
1≤t≤q

(
β̃x,n(t)

)1/4 − max
1≤t≤q

(
βǫ,n(t)

)1/4∣∣ = Op(n−1/16(ln n)3/8). (6.1.30)

From Theorem 4.4.1 we know

max1≤t≤q

(
βǫ,n(t)

)1/4 − dq

cq

D→ Λ. (6.1.31)

Hence from (6.1.29), (6.1.30) and (6.1.31) it follows that,

M(n−1/2Ak,n, f) − dq

cq

D→ Λ.

2
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k-circulant with n = kg + 1, g > 2.

Now we extend Theorem 6.1.16 for n = kg + 1 where g > 2. Here, we use slightly

different notation to use the developments of Sections 4.4.2–4.4.4. Define,

β̃x,j(t) :=
βx,j(t)∏

l∈At
2πf(ωl)

and M(n−1/2Ak,n, f) = max
l

max
j:Pj∈Jl

(
β̃x,l(j)

)1/2l
.

Theorem 6.1.17 (Bose, Hazra and Saha (2009) [34]). Let {xn} be the two sided moving

average process defined in (6.1.1) and satisfies Assumption 6.1.1. Then for n = kg +

1, g > 2,
M(n−1/2Ak,n, f) − dq

cq

D→ Λ

as n→ ∞ where q = q(n) = n
2g and cq, dq are as defined in Theorem 4.4.2.

Proof. The line of argument is similar as g = 2 case. To prove the result we use following

two facts:

(i) From (6.1.7),

max
1≤t< n

2

|Tn(ωt)| = op(n−1/4(lnn)1/2).

(ii) From Davis and Mikosch (1999) [50],

max
1≤t< n

2

|Iǫ,n(ωt)| = Op(lnn) and max
1≤t< n

2

|Ix,n(ωt)| = Op(lnn).

Using these and inequality (4.4.23), it is easy to see that, for some δ0 > 0

max
l

max
j:Pj∈Jl

∣∣β̃x,l(t) − βǫ,l(t)
∣∣ = op(n−δ0). (6.1.32)

Now the results follows from Theorem 4.4.2 and (6.1.32). 2

6.2 Dependent input with heavy tail

Now suppose that the input sequence is a linear process {Xt, t ∈ Z} given by

Xt =

∞∑

j=−∞
ajZt−j , t ∈ Z, where

∞∑

j=−∞
|aj |α−ǫ <∞ for some 0 < ǫ < α. (6.2.1)
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Suppose that {Zi} are i.i.d random variables satisfying (5.1.1) with 0 < α < 1. Using

E |Z|α−ǫ <∞ and the assumption on the {aj} we have,

E |Xt|α−ǫ ≤
∞∑

j=−∞
|aj |α−ǫ E |Zt−j |α−ǫ = E |Z1|α−ǫ

∞∑

j=−∞
|aj |α−ǫ <∞.

Hence Xt is finite a.s. Let

ψ(x) =

∞∑

j=−∞
aj exp(−i2πxj), x ∈ [0, 1]

be the transfer function of the linear filter {aj} and fX(x) be the power transfer function

of {Xt}. Then

fX(x) = |ψ(x)|2.

Define

M(RCn, fX) = max
0≤k< n

2

|λk|√
fX(k/n)

, M(Cn, fX) = max
0≤k< n

2

|λk|√
fX(k/n)

,

M(SCn, fX) = max
0≤k< n

2

|λk|√
fX(k/n)

,

where in each case {λk} are the eigenvalues of the corresponding matrix. From the

eigenvalue structure of Cn and RCn, M(Cn, fX) = M(RCn, fX).

Theorem 6.2.1 (Bose, Hazra and Saha (2010) [36]). Assume that {Xn} and {aj}
satisfy (6.2.1) and {Zt} is i.i.d satisfying (5.1.1). Suppose fX is strictly positive on

[0, 1/2]. Then

(a) M(b−1
n Cn, fX)

D→ Yα and M(b−1
n RCn, fX)

D→ Yα.

(b) Further, if aj = a−j, then M(b−1
n SCn, fX)

D→ 21−1/αYα.

Proof. (a) The proof is along the lines of the proof of Lemma 2.6 in Mikosch, Resnick

and Samorodnitsky (2000) [93]. Let Ĉn be the circulant matrix formed with independent

entries {Zi}. To prove the result it is enough to show that

∣∣M(b−1
n Cn, fX) − ‖b−1

n Ĉn‖
∣∣ P−→ 0.
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Let Jn,Z(x) = b−1
n

∑n
t=1 Zt exp(−i2πxt). Note

∣∣M(b−1
n Cn, fX) − ‖b−1

n Ĉn‖
∣∣ =

∣∣ sup
1≤k≤n

(fX(k/n))−1/2|Jn,X(k/n)| − sup
1≤k≤n

|Jn,Z(k/n)|
∣∣

≤ sup
1≤k≤n

∣∣|ψ(k/n)−1Jn,X(k/n)| − |Jn,Z(k/n)|
∣∣

≤ sup
1≤k≤n

∣∣ψ(k/n)−1Jn,X(k/n) − Jn,Z(k/n)
∣∣

and

Jn,X(x) = b−1
n

n∑

t=1

Xt exp(−i2πxt)

= b−1
n

∞∑

j=−∞
aj exp(−i2πxj)

( n∑

t=1

Zt exp(−i2πxt) + Vn,j

)

= ψ(x)Jn,Z(x) + Yn(x), (6.2.2)

where

Vn,j =

n−j∑

t=1−j

Zt exp(−i2πxt)−
n∑

t=1

Zt exp(−i2πxt), Yn(x) = b−1
n

∞∑

j=−∞
aj exp(−i2πxj)Vn,j .

Since fX is bounded away from 0 and (6.2.2) holds, it is enough to show that

max1≤k≤n |Yn(k/n)| P→ 0. Now

Yn(x) = b−1
n

∞∑

j=n+1

aj exp(−i2πxj)Vn,j + b−1
n

n∑

j=1

aj exp(−i2πxj)Vn,j

+ b−1
n

−n−1∑

j=−∞
aj exp(−i2πxj)Vn,j + b−1

n

−1∑

j=−n

aj exp(−i2πxj)Vn,j

= S1(x) + S2(x) + S3(x) + S4(x).

Now following an argument similar to that given in the proof of Lemma 2.6 in Mikosch,

Resnick and Samorodnitsky (2000) [93], we can show that

max
1≤k≤n

|Si(k/n)| P→ 0 for i = 1, 2.

The behaviour of S3(x) and S4(x) are similar to S1(x) and S2(x) respectively. There-

fore, following similar argument we can show that max1≤k≤n |Sj(k/n)| P→ 0 for j = 3, 4.

This completes the proof of part (a).

(b) Let ŜCn be the symmetric circulant matrix formed with independent entries {Zi}.
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In view of Theorem 5.3.1, it is enough to show that

∣∣M(b−1
n SCn, fX) − ‖b−1

n ŜCn‖
∣∣ P→ 0.

Let q = q(n) = ⌊n
2 ⌋ and

Jn,Z(x) := 2b−1
n

q∑

t=1

Zt cos(2πxt)

= b−1
n

q∑

t=1

Zt exp(i2πxt) + b−1
n

q∑

t=1

Zt exp(−i2πxt).

Then using aj = a−j we have

Jn,X(x) := b−1
n

q∑

t=1

Xt exp(i2πxt) + b−1
n

q∑

t=1

Xt exp(−i2πxt)

= b−1
n

∞∑

j=−∞
aj exp(−i2πxj)

( q∑

t=1

Zt exp(i2πxt) + Un,j

)

+b−1
n

∞∑

j=−∞
aj exp(−i2πxj)

( q∑

t=1

Zt exp(−i2πxt) + Vn,j

)

= ψ(x)Jn,Z(x) + Y1n(x) + Y2n(x),

where

Un,j =

q+j∑

t=1+j

Zt exp(i2πxt) −
q∑

t=1

Zt exp(i2πxt),

Vn,j =

q−j∑

t=1−j

Zt exp(−i2πxt) −
q∑

t=1

Zt exp(−i2πxt),

Y1n = b−1
n

∞∑

j=−∞
aj exp(−i2πxj)Un,j , Y2n = b−1

n

∞∑

j=−∞
aj exp(−i2πxj)Vn,j .

Since fX is bounded away from 0, it is enough to show that

sup
1≤k≤q

∣∣Jn,X(k/n) − ψ(k/n)Jn,Z(k/n)
∣∣ ≤ sup

1≤k≤q

∣∣Y1n(k/n)
∣∣ + sup

1≤k≤q

∣∣Y2n(k/n)
∣∣ P→ 0.
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Now

Y1n(x) = b−1
n

∞∑

j=−∞
aj exp(−i2πxj)Un,j

= b−1
n

∞∑

j=q+1

aj exp(−i2πxj)Un,j + b−1
n

q∑

j=1

aj exp(−i2πxj)Un,j

+ b−1
n

−q−1∑

j=−∞
aj exp(−i2πxj)Un,j + b−1

n

−1∑

j=−q

aj exp(−i2πxj)Un,j

= S1(x) + S2(x) + S3(x) + S4(x).

Again following an argument similar to that in the proof of Lemma 2.6 in [93], we can

show that sup1≤k≤q

∣∣Si(k/n)
∣∣ P→ 0 for 1 ≤ i ≤ 4. Hence sup1≤k≤q

∣∣Y1n(k/n)
∣∣ P→ 0.

Similarly sup1≤k≤q

∣∣Y2n(k/n)
∣∣ P→ 0. This completes the proof of part (b). 2
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Chapter 7

Poisson convergence of

eigenvalues of circulant type

matrices

In this chapter we deal with weak convergence of point process based on the eigenvalues

of circulant type random matrices. There appears to have been only limited studies

on the weak convergence of point process based on the eigenvalues of random matrices.

Soshnikov (2004) [117] considers the point process based on the positive eigenvalues of an

appropriately scaled Wigner matrix with heavy tailed entries {xij} satisfying P(|xij | >
x) = h(x)x−α where h is a slowly varying function at infinity and 0 < α < 2. He

showed that it converges to an inhomogeneous Poisson random point process. A similar

result was proved for sample covariance matrices with Cauchy entries in Soshnikov

(2006) [118]. These results on Wigner and sample covariance matrices were extended

in Auffinger, Ben Arous and Peche (2009) [6] to 2 ≤ α < 4.

On the other hand, in Chapter 4 we have established the distributional convergence

of the maximum of the modulus of the eigenvalues of circulant type matrices. The

same result for k-circulant matrix for n = k2 + 1 was also derived in Bose, Mitra and

Sen (2008) [44]. The main tool for proving such a result was the strong approximation

theorem of Einmahl (1989) [53] for i.i.d random vectors. It seems then natural to study

the joint distribution of the ordered eigenvalues of circulant type matrices.

Here is an outline of this chapter. In Section 7.1 we deal with circulant type ma-

trices with i.i.d. light tailed entries and consider the point process based on the points

{(ωk,
λk−bq

aq
), 0 ≤ k < n} where {λk} are the eigenvalues as given in Section 1.2 and

{ωk = 2πk
n } are the Fourier frequencies, and aq, bq are appropriate scaling and centering

constants appearing in the weak convergence of the spectral radius in Chapter 4. We

show that the limit measure is Poisson. In particular this yields the distributional con-

153
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vergence of any k-upper ordered eigenvalues of these matrices and also yields the joint

distributional convergence of any k spacings of the upper ordered eigenvalues. Then in

Section 7.2 we extend these results partially to two sided moving average process entries

under certain restriction on the process.

The results of Bose, Hazra and Saha (2010) [35] are based on this chapter.

7.1 Results for i.i.d. input

We first recall the definition of point process and simple point process. Let Mp(E) be the

space of all point measures on E equipped with an appropriate sigma algebra Mp(E).

Definition 7.1.1. A point process on E is a measurable map

N : (Ω,F ,P) → (Mp(E),Mp(E)).

A point process N is simple if

P(N({x}) ≤ 1, x ∈ E) = 1.

We initially assume that the input sequence {xi} is a sequence of i.i.d. random

variables. Recall the eigenvalues of circulant type matrices from Section 1.2. We use a

little different notation for their eigenvalues in this chapter. Necessity of using this will

be clear as we go along.

7.1.1 Reverse circulant

Let λn,x(ω0), λn,x(ω1), . . . , λn,x(ωn−1) be the eigenvalues of n−1/2RCn. The subscript x

in the eigenvalues keeps track of the fact that the input sequence is {xi}. This notation

will come in handy later on when we have the need to consider matrices with different

input sequences. These eigenvalues are given by (see Section 1.2.3):





λn,x(ω0) = n−1/2
∑n−1

t=0 xt

λn,x(ωn/2) = n−1/2
∑n−1

t=0 (−1)txt, if n is even

λn,x(ωk) = −λn,x(ωn−k) =
√
In,x(ωk), 1 ≤ k ≤ ⌊n−1

2 ⌋.
(7.1.1)

where

In,x(ωk) =
1

n
|
n−1∑

t=0

xte
−itωk |2 and ωk =

2πk

n
.

Note that {|λn,x(ωk)|2; 1 ≤ k < n/2} is the periodogram of {xi} at the frequencies

{ωk = 2πk
n ; 1 ≤ k < n/2}. This explains our notation of using ωk as an argument of the

eigenvalues λn,x. Since the eigenvalues occur in pairs with opposite signs (except for
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perhaps one eigenvalue), it suffices for our purposes to define our point process based on

the points (ωk,
λn,x(ωk)−bq

aq
) for k = 0, 1, 2, . . . , ⌊n

2 ⌋. Let ǫx(·) denote the point measure

which gives unit mass to any set containing x. With q = q(n) = ⌊n
2 ⌋, aq = 1

2
√

ln q
and

bq =
√

ln q, define

ηn(·) =

q∑

j=0

ǫ(
ωj ,

λn,x(ωj)−bq

aq

)(·). (7.1.2)

Let Mp([0, π]×(−∞,∞]) denote the set of all point measures on the set [0, π]×(−∞,∞]

endowed with the topology of vague convergence. Let
D→ denote the convergence in

distribution relative to the vague topology. Now consider the following assumption.

Assumption 7.1.2. {xi} are i.i.d., E[x0] = 0, E[x0]2 = 1 and E |x0|s < ∞ for some

s > 2.

We then have the following Theorem.

Theorem 7.1.3 (Bose, Hazra and Saha (2010) [35]). Let {xi} be i.i.d. random variables

which satisfy Assumption 7.1.2. Then for the sequence of point processes ηn defined in

(7.1.2), we have ηn
D→ η, where η is a Poisson process on [0, π]×(−∞,∞] with intensity

measure π−1dt × e−xdx.

Before going into the proof of Theorem 7.1.3 we state a result which plays a key role

in the proof and which will also be used later.

Lemma 7.1.4 provides a criterion for convergence. Its proof is available in Kallenberg

(1983) [80], Resnick (1987) [103] and Embrechts, Kluppelberg and Mikosch (1997) [56].

Lemma 7.1.4. Let {Nn} be a sequence of point process and N be a simple point process

on a complete separable metric space E. Let T be a basis of relatively compact open sets

such that T is closed under finite unions and intersections and for I ∈ T , P[N(∂I) =

0] = 1. If lim
n→∞

P[Nn(I) = 0] = P[N(I) = 0] and lim
n→∞

E[Nn(I)] = E[N(I)] < ∞ then

Nn
D→ N in Mp(E).

Now first suppose that the input sequence is i.i.d. normal. Then the eigenval-

ues (apart from negative eigenvalues) are independent square root of exponentials (see

Lemma 4.4.3) and in this case the Poisson process result is easy to derive. As we have

already seen when the entries are not normal, the eigenvalues are asymptotically un-

correlated and asymptotically distributed as square root of exponential. This is also

easy to see using central limit theorem for independent random variables. The rate of

convergence is sharp provided the (2 + δ) moment is finite.

Recall the sophisticated normal approximation result given in Lemma 4.4.6 which

allows us to replace the variables by appropriate normal variables. But it is available
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only after appropriate truncations. Thus let the truncated and centered i.i.d. random

variables be

xt = xtI(|xt| < n1/s) − E[xtI(|xt| < n1/s)].

Let {Nt} be a sequence of i.i.d N(0, 1) random variables and φCd
be the density of d

dimensional centered Gaussian vector with covariance matrix Cd. Define for d ≥ 1,

vd(t) = (cos(ωi1t), sin(ωi2t), ..., cos(ωidt), sin(ωidt))
′ (7.1.3)

where ωi1, ..., ωid are any distinct Fourier frequencies.

A sketch of the proof: Suppose for a moment that the entries are i.i.d. standard

normal random variables. Then it is easy to see from Lemma 4.4.3 of Chapter 4 that

the eigenvalues are independent and distributed as symmetric square root
√
E1 where

E1 is a standard exponential random variable. In this case the Poisson convergence

result is immediate.

Now consider the reverse circulant matrices with the input sequences {x̄t + σnNt}
and {x̄t}. Let η∗n and η̄n be the respective point processes ηn but with the above input

sequences.

In Step 1 we show that η∗n converges to the required Poisson process. For technical

convenience, to define η∗n, we just consider the distinct eigenvalues and also leave out

λ0. In Step 2 we show that η∗n and η̄n are close in probability. Finally using some

inequalities we show that the original point process ηn and η̄n are close.

This is essentially the programme that is carried out for other matrices also. Finally,

the dependent case is reduced to the independent case by an appropriate approximation

result (such as Lemma 6.1.2 for reverse circulant matrix).

Proof of Theorem 7.1.3. Step 1: We first show that η∗n
D→ η where

η∗n(·) =

q∑

j=1

ǫ(
ωj ,

λn,x̄+σnN (ωj)−bq

aq

)(·)

and λn,x̄+σnN (ωk) are the eigenvalues of n−1/2RCn with entries {x̄t + σnNt} with σ2
n =

n−c and c is as in Lemma 4.4.6. First note that if we define the set

Ad
q = {(x1, y1, ..., xd, yd)′ :

√
x2

i + y2
i > 2zq}
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where zq = aqx+ bq, it easily follows that

P (λn,x̄+σnN (ωi1) > zq, ..., λn,x̄+σnN (ωid) > zq)

= P
(
21/2n−1/2

n∑

t=1

(xt + σnNt)vd(t) ∈ Ad
q

)

=

∫

Ad
q

φ(1+σ2
n)I2d

(x)(1 + o(1))dx

= q−d exp(−dx)(1 + o(1)). (7.1.4)

Since the limit process η is simple, to show η∗n
D→ η it suffices to show (see Lemma 7.1.4)

that

E η∗n((a, b] × (x, y]) → E η((a, b] × (x, y]) =
b− a

π
(e−x − e−y) (7.1.5)

for all 0 ≤ a < b ≤ π and x < y and for all k ≥ 1,

P(η∗n((a1, b1] ×R1) = 0, . . . , η∗n((ak, bk] ×Rk) = 0)

→ P(η((a1, b1] ×R1) = 0, . . . , η((ak, bk] ×Rk) = 0), (7.1.6)

where 0 ≤ a1 < b1 < · · · < ak < bk ≤ π and R1, . . . , Rk are bounded Borel sets, each

consisting of a finite union of intervals on (−∞,∞].

Proof of (7.1.5): It is established as follows:

E η∗n((a, b] × (x, y]) =
∑

ωj∈(a,b]

P(aqx+ bq < λn,x̄+σnN (ωj) ≤ aqy + bq)

(by (7.1.4)) ∼ (b− a)n

2π
q−1(e−x − e−y) → (b− a)

π
(e−x − e−y).

Proof of (7.1.6): Set nj := #{i : ωi ∈ (aj , bj ]} ∼ n(bj − aj). Then the complement of

the event in (7.1.6) is the union of m = n1 + . . .+ nk events, that is,

1 − P(η∗n((a1, b1] ×R1) = 0, . . . , η∗n((ak, bk] ×Rk) = 0)

= P
(
∪k

j=1 ∪ωi∈(aj ,bj ]{
λn,x̄+σnN (ωi) − bq

aq
∈ Rj}

)
. (7.1.7)

Now for any choice of d distinct integers i1, . . . , id ∈ {1, . . . , q} and integers j1, . . . , jd ∈
{1, . . . , k} we have from (7.1.4) that

P
(
∩d

r=1 {
λn,x̄+σnN (ωir) − bq

aq
∈ Rjr}

)
= q−d

d∏

r=1

λ(Rjr)(1 + o(1)), (7.1.8)
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where λ(·) is the measure on (−∞,∞] given by e−xdx and the relation is uniform over

all d-tuples i1, . . . , id. Using elementary counting argument and (7.1.8), the sum of the

probabilities of all collections of d distinct sets from the m sets that comprise the union

in (7.1.7) is given by

Sd =
∑

(u1,...,uk),

u1+···+uk=d

(
n1

u1

)
· · ·
(
nk

uk

)
q−u1λu1(R1) · · · q−ukλuk(Rk)(1 + o(1))

=
∑

(u1,...,uk),

u1+···+uk=d

1

u1!u2! · · · uk!πd
((b1 − a1)λ(R1))u1 · · · ((bk − ak)λ(Rk))uk(1 + o(1))

→ (d!)−1π−d((b1 − a1)λ(R1) + · · · + (bk − ak)λ(Rk))d.

Now it follows that,

2s∑

j=1

(−1)j−1Sj
n→∞−→

2s∑

j=1

(−1)j−1

j!πj
((b1 − a1)λ(R1) + . . .+ (bk − ak)λ(Rk))j

s→∞−→ 1 − exp
(
−

k∑

j=1

(bj − aj)π
−1λ(Rj)

)
,

which by Bonferroni inequality and (7.1.7), proves (7.1.6).

Step 2: It remains to transfer the convergence of η∗n onto ηn. First define the point

process

η̄n(·) =

q∑

j=1

ǫ(
ωj ,

λn,x̄(ωj)−bq

aq

)(·) and η′n(·) =

q∑

j=1

ǫ(
ωj ,

λn,x(ωj )−bq

aq

)(·).

It then suffices to show that (see Theorem 4.2 of Kallenberg (1983) [80])

η̄n − η∗n
P−→ 0, (7.1.9)

η̄n − η′n
P−→ 0 (7.1.10)

and

η′n − ηn
P−→ 0. (7.1.11)

Equivalently, that for any continuous function f on [0, π] × (−∞,∞] with compact

support,

η̄n(f) − η∗n(f)
P−→ 0 , η̄n(f) − η′n(f)

P−→ 0, and η′n(f) − ηn(f)
P−→ 0
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where the notation η(f) denotes
∫
fdη. Suppose the compact support of f is contained

in the set [0, π] × [K + γ0,∞) for some γ0 > 0 and K ∈ R. Since f is uniformly contin-

uous , ω(γ) := sup{|f(t, x) − f(t, y)|; t ∈ [0, π], |x− y| ≤ γ} → 0 as γ → 0.

Proof of (7.1.9): On the set An = {maxj=1,...,q |λn,x̄+σnN (ωj)
aq

− λn,x̄(ωj)
aq

| ≤ γ}, we

have for γ < γ0,

∣∣f(ωj,
λn,x̄+σnN (ωj) − bq

aq
)− f(ωj,

λn,x̄(ωj) − bq
aq

)
∣∣ ≤

{
ω(γ) if

λn,x̄+σnN (ωj)−bq

aq
> K

0 if
λn,x̄+σnN (ωj)−bq

aq
≤ K.

(7.1.12)

Also note

1

aq
max
1≤j≤q

|λn,x̄+σnN (ωj) − λn,x̄(ωj)|

≤ 1

aq
max
1≤j≤q

| σn√
n

n∑

t=1

Nte
iωjt|

≤ σn

aq
max
1≤j≤q

√√√√ 1

n

( n∑

t=1

Nt cos
2πkt

n

)2
+

1

n

( n∑

t=1

Nt sin
2πkt

n

)2

≤ σn

aq
max
1≤j≤q

√
X2

1j +X2
2j

where {X1j ,X2j ; 1 ≤ j ≤ q} are i.i.d. N(0, 1). Now σn
aq

max1≤j≤q

√
X2

1j +X2
2j =

OP (σn lnn). Therefore limn→∞P(Ac
n) = 0. For any ǫ > 0, choose γ sufficiently small

that γ < γ0. Define Bn = {|η̄n(f) − η∗n(f)| > ǫ}. Then

lim sup
n→∞

P(Bn) ≤ lim sup
n→∞

(P(Bn ∩An) + P(Ac
n))

≤ lim sup
n→∞

P(ω(γ)η∗n([0, π] × [K,∞)) > ǫ) + lim sup
n→∞

P(Ac
n)

≤ lim sup
n→∞

E η∗n([0, π] × [K,∞))ω(γ)/ǫ

≤ e−Kω(γ)/ǫ.

Since ω(γ) → 0 as γ → 0, (7.1.9) follows.

Proof of (7.1.10): This is essentially identical to the argument given for (7.1.9).

For completeness we give the details. Define Cn = {max1≤j≤q |λn,x(ωj)
aq

− λn,x̄(ωj)
aq

| < γ}.

Again on the set Cn, we have for γ < γ0

∣∣f(ωj,
λn,x(ωj) − bq

aq
)−f(ωj,

λn,x̄(ωj) − bq
aq

)
∣∣ ≤

{
ω(γ) if

λn,x̄(ωj)−bq

aq
> K

0 if
λn,x̄(ωj)−bq

aq
≤ K.

(7.1.13)
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Now

|λn,x(ωj) − λn,x̄(ωj)| = | 1√
n

n∑

t=1

xtI(|xt| > n1/s)eiωjt|

and hence

1

aq
E{ max

1≤j≤q
|λn,x(ωj) − λn,x̄(ωj)|} ≤ 1

aq
E{ max

1≤j≤q
| 1√
n

n∑

t=1

xtI(|xt| > n1/s)eiωj t|}

≤
√

lnn√
n

E{
n∑

t=1

|xt|I(|xt| > n1/s)}

≤
√
n lnnE |x1|I(|x1| > n1/s)

=
√
n lnn

[
n1/s P(|x1| > n1/s) +

∫ ∞

n1/s

P(X1 > x)dx
]

≤
√
n lnn

[
n1/s E |x1|s

n
+

E |x1|s
n1−1/s

]

≤ 2
lnn

n1/2−1/s
E |x1|s → 0, as n→ ∞.

Therefore P(Cc
n) → 0. Now for any ǫ > 0, choose γ sufficiently small that γ < γ0. Then

by intersecting the event {|ηn(f) − η̄n(f)| > ǫ} with Cn and Cc
n, respectively and using

(7.1.13) and (7.1.5), we obtain

lim sup
n→∞

P(|η̄n(f) − η′n(f)| > ǫ) ≤ lim sup
n→∞

(P(ω(γ)η̄n([0, π] × [K,∞)) > ǫ) + P(Cc
n))

≤ lim sup
n→∞

E η̄n([0, π] × [K,∞))ω(γ)/ǫ

≤ e−Kω(γ)/ǫ.

Since ω(γ) → 0 as γ → 0, (7.1.10) follows.

Proof of (7.1.11): Finally for any ǫ > 0

P(|η′n(f) − ηn(f)| > ǫ) = P(|f(0,
λn,x(ω0) − bq

aq
)| > ǫ)

≤ P(
λn,x(ω0) − bq

aq
≥ K)

= P(
1√
n

n−1∑

l=0

xl > Kaq + bq) → 0, as n→ ∞.

Therefore ηn − η′n
P→ 0, that is (7.1.11) holds.

Since Step 1 and Step 2 are completely proved, the proof of Theorem 7.1.3 is over.

2
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The relation ηn
D→ η immediately yields the joint weak convergence of a finite vector

of k upper ordered eigenvalues. To be precise, we introduce for every n the ordered

version of the eigenvalues λn,x(ωj), j = 0, 1, . . . , n− 1,

λn,(q) ≤ · · · ≤ λn,(2) ≤ λn,(1).

Let xk < · · · < x1 be any real numbers, and write Ni,n = ηn([0, π] × (xi,∞)) for the

number of exceedances of xi by
λn,x(ωj)−bq

aq
, j = 1, . . . , q. Then

{
λn,(1) − bq

aq
≤ x1, . . . ,

λn,(k) − bq

aq
≤ xk} = {N1,n = 0, N2,n ≤ 1, . . . , Nk,n ≤ k − 1}.

Then the joint limit distribution of the vector of the k upper ordered eigenvalues λn,x(ωj)

as well as their spacings can be derived from Theorem 7.1.3.

Corollary 7.1.5. Under the assumption of Theorem 7.1.3,

(i) for any real numbers xk < · · · < x2 < x1,

P

(
λn,(1) − bq

aq
≤ x1, · · · ,

λn,(k) − bq

aq
≤ xk

)
→ P(Y(1) ≤ x1, · · · , Y(k) ≤ xk),

where (Y(1), · · · , Y(k)) has the density exp(− exp(−xk) − (x1 + · · · + xk−1)).

(ii)
(

λn,(i)−λn,(i−1)

aq

)
i=1,...,k

D−→ (i−1Ei)i=1,...,k where {Ei} is an i.i.d standard exponential

sequence.

Proof. The proof is similar to the proof of Theorem 4.2.8 of Embrechts, Kluppelberg

and Mikosch (1997) [56]. We just briefly sketch the steps. We have already seen that

for finite k,

P(
λn,(1) − bq

aq
≤ x1, . . . ,

λn,(k) − bq

aq
≤ xk) = P(N1,n = 0, N2,n ≤ 1, . . . , Nk,n ≤ k − 1)

→ P(N1 = 0, N2 ≤ 1, · · · , Nk ≤ k − 1),

where Ni = η([0, π] × (xi,∞]). Let us denote Zi = η([0, π] × (xi, xi−1]) with x0 = ∞.

Now observe that to calculate P(N1 = 0, N2 ≤ 1, · · · , Nk ≤ k − 1), it is enough to

consider P(N1 = a1, N2 = a1 + a2, · · · , Nk = a1 + · · · + ak), where ai ≥ 0 and

P(N1 = a1, N2 = a1 + a2, · · · , Nk = a1 + · · · + ak)

= P(Z1 = a1, Z2 = a2, · · · , Zk = ak)

=
(e−x1)a1

a1!

(e−x2 − e−x1)a2

a2!
· · · (e−xk − e−xk−1)ak

ak!
e−e−xk .
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This proves Part (i). Part (ii) is an easy consequence of Part (i). 2

7.1.2 Symmetric circulant

Let λn,x(ω0), λn,x(ω1), . . . , λn,x(ωn−1) be the eigenvalues of n−1/2SCn. These eigenval-

ues are given by (see Section 1.2.2):

(i) for n odd:





λn,x(ω0) = 1√
n

[
x0 + 2

∑⌊n
2
⌋

j=1 xj

]

λn,x(ωk) = 1√
n

[
x0 + 2

∑⌊n
2
⌋

j=1 xj cos(ωkj)
]
, 1 ≤ k ≤ ⌊n

2 ⌋
(7.1.14)

(ii) for n even:





λn,x(ω0) = 1√
n

[
x0 + 2

∑n
2
−1

j=1 xj + xn/2

]

λn,x(ωk) = 1√
n

[
x0 + 2

∑n
2
−1

j=1 xj cos(ωkj) + (−1)kxn/2

]
, 1 ≤ k ≤ n

2

(7.1.15)

with λn,x(ωn−k) = λn,x(ωk) in both cases.

Now define a sequence of point processes based on the points (ωj,
λn,x(ωj)−bq

aq
) for

k = 0, 1, . . . , q(= ⌊n
2 ⌋), where λn,x are as in (7.1.14). Note that we have not considered

the eigenvalues λn−k for k = 1, . . . , ⌊n
2 ⌋ to define the point process since λn,x(ωn−k) =

λn,x(ωk) for k = 1, . . . , ⌊n
2 ⌋ and it does not affect our goal of finding the limit distribution

of upper order eigenvalues. Define

ηn(·) =

q∑

j=0

ǫ(
ωj ,

λn,x(ωj )−bq

aq

)(·) (7.1.16)

where

bn = cn + an ln 2, an = (2 lnn)−1/2 and cn = (2 ln n)1/2 − ln lnn+ ln 4π

2(2 ln n)1/2
. (7.1.17)

Theorem 7.1.6 (Bose, Hazra and Saha (2010) [35]). Let {xt} be i.i.d random variables

which satisfy Assumption 7.1.2. Then for the sequence of point processes ηn defined

in (7.1.16), we have ηn
D→ η, where η is a Poisson process on [0, π] × (−∞,∞] with

intensity measure π−1dt× e−xdx.

We shall use Lemma 4.3.3, a strong approximation result similar to Lemma 4.4.6,

in the proof of Theorem 7.1.6.

Proof of Theorem 7.1.6. The idea of the proof is similar to that of Theorem 7.1.3. So we

mention only the main steps and a few technical details. We first establish convergence
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in distribution for the point process based on the points (ωj ,
λ′

n,x̄+σnN (ωj)−bq

aq
) for j =

1, 2, . . . , q, where

λ′n,x̄+σnN (ωj) =
1√
n

[√
2(x̄0 + σnN0) + 2

⌊n
2
⌋∑

t=1

(x̄t + σnNt) cos
2πjt

n

]
, 0 ≤ j ≤ ⌊n

2
⌋.

Define

η∗n(·) =

q∑

j=1

ǫ(
ωj ,

λ′
n,x̄+σnN

(ωj )−bq

aq

)(·).

We first show η∗n
D→ η. Since the limit process η is simple, it suffices to show (7.1.5) and

(7.1.6) for above η∗n. We can establish them following arguments similar to those given

in the proof of Theorem 7.1.3 and using Lemma 4.3.3.

Now define the following point processes

η̄′n(·) =

q∑

j=1

ǫ(
ωj ,

λ′
n,x̄(ωj)−bq

aq

)(·), η̄n(·) =

q∑

j=1

ǫ(
ωj ,

λn,x̄(ωj )−bq

aq

)(·),

η′n(·) =

q∑

j=1

ǫ(
ωj ,

λn,x(ωj)−bq

aq

)(·),

where

λ′n,x̄(ωj) =
1√
n

[√
2x̄0 + 2

⌊n
2
⌋∑

t=1

x̄t cos
2πjt

n

]
, 0 ≤ j ≤ ⌊n

2
⌋,

and {λn,x̄(ωj)} are given in (7.1.14) with xt replaced by x̄t. As before it now suffices to

show that (see Theorem 4.2 of Kallenberg (1983) [80])

η̄′n − η∗n
P−→ 0, η̄n − η̄′n

P−→ 0, η̄n − η′n
P−→ 0 and η′n − ηn

P−→ 0. (7.1.18)

For the first relation in (7.1.18) define An = {max1≤j≤q |λ′n,x̄(ωj) − λn,x̄+σnN (ωj)| ≤ γ}
and observe that

max
1≤j≤q

|λ′n,x̄(ωj) − λn,x̄+σnN (ωj)| =
σn√
n

max
1≤j≤q

|
√

2N0 + 2

⌊n/2⌋∑

t=1

Nt cos
2πjt

n
| = Op(σn lnn).

Hence P(Ac
n) → 0. The remaining argument is similar to the proof of (7.1.9). For the

second relation note that

P
(

max
1≤j≤q

|λn,x̄(ωj) − λ′n,x̄(ωj)| > ǫ
)
≤ P

((
√

2 − 1)|x0|√
n

> ǫ
)
→ 0.
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Proof of the third and fourth relations are similar to the proofs of (7.1.10) and (7.1.11)

in the proof of Theorem 7.1.3. 2

Note that a result similar to Corollary 7.1.5 holds with {λn,(i)}1≤i≤k as the ordered

eigenvalues of the symmetric circulant matrix. Here we skip the proof.

Corollary 7.1.7. Under the assumption of Theorem 7.1.6,

(i) for any real numbers xk < · · · < x2 < x1,

P

(
λn,(1) − bq

aq
≤ x1, · · · ,

λn,(k) − bq

aq
≤ xk

)
→ P(Y(1) ≤ x1, · · · , Y(k) ≤ xk),

where (Y(1), · · · , Y(k)) has the density exp(− exp(−xk) − (x1 + · · · + xk−1)).

(ii)
(

λn,(i)−λn,(i−1)

aq

)
i=1,...,k

D−→ (i−1Ei)i=1,...,k where {Ei} is an i.i.d standard exponential

sequence.

7.1.3 k-circulant, n = k2 + 1.

First recall the eigenvalues of the k-circulant matrix Ak,n. For any positive integers k,

n, let p1 < p2 < . . . < pc be all their common prime factors so that,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏

q=1

p
αq
q .

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. Then the characteristic

polynomial of Ak,n (whence its eigenvalues follow) is given by

χ (Ak,n) = λn−n′
ℓ−1∏

j=0

(λnj − yj) , (7.1.19)

where yj, nj are as defined in Section 1.2.4.

For simplicity, here we consider k-circulant matrix only for n = k2 + 1. One can

consider point process based on eigenvalues of k-circulant matrix for n = kg + 1 where

g > 2 and can prove result similar to Theorem 7.1.9. But for general g > 2 algebraic

details will be much more complicated.

In the present case, clearly n′ = n and k′ = k. From Lemma 2.4.16 and (2.4.24) of

Chapter 2, g1 = 4 and the eigenvalue partition of {0, 1, 2, . . . , n − 1} contains exactly

q = ⌊n
4 ⌋ sets of size 4 and each set is self-conjugate. Moreover, if k is even then there is

only one more partition set containing only 0, and if k is odd then there are two more

partition sets containing only 0 and only n/2 respectively.
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For the development of the point process we need a clear picture of the eigenvalue

partition of {0, 1, 2, . . . , n− 1}. For this we represent the set Zn = {0, 1, 2, . . . , n− 1} in

the following form

Zn = {ak + b; 0 ≤ a ≤ k − 1, 1 ≤ b ≤ k} ∪ {0}. (7.1.20)

Then we can write S(x) defined in (1.2.4) as follows

S(ak + b) = {ak + b, bk − a, n− ak − b, n − bk + a}; 0 ≤ a ≤ k − 1, 1 ≤ b ≤ k.

Lemma 7.1.8. For n = k2 + 1,

Zn =
⋃

0≤a≤⌊k−2
2
⌋,a+1≤b≤k−a−1

S(ak + b)
⋃
S(0), if k is even (7.1.21)

and

Zn =
⋃

0≤a≤⌊k−2
2
⌋,a+1≤b≤k−a−1

S(ak + b)
⋃
S(0)

⋃
S(n/2), if k is odd (7.1.22)

where all S(ak+ b) are mutually disjoint and hence form an eigenvalue partition of Zn.

Proof. First observe that S(0) = {0} and S(n/2) = {n/2} if k is odd and

#{x : x ∈ S(ak + b); 0 ≤ a ≤ ⌊k − 2

2
⌋, a+ 1 ≤ b ≤ k − a− 1} =

{
n− 1 if k even

n− 2 if k odd.

So if we can show that S(ak + b); 0 ≤ a ≤ ⌊k−2
2 ⌋, a + 1 ≤ b ≤ k − a − 1 are mutually

disjoint then we are done. We shall show S(a1k + b1) ∩ S(a2k + b2) = ∅ for a1 6= a2 or

b1 6= b2. We divide the proof into four different cases.

Case (i) (a1 < a2, b1 > b2) Note that

a1 + 1 < a2 + 1 ≤ b2 < b1 ≤ k − (a1 + 1).

Since {S(x); 0 ≤ x ≤ n−1} forms a partition of Zn, it is enough to show that a1k+b1 /∈
S(a2k + b2). As (a2 − a1)k > k and (b1 − b2) < k, we have a1k + b1 6= a2k + b2. Also

(b2 − a1)k ≥ 2k and a2 + b1 ≤ ⌊k−2
2 ⌋+ k− (a1 + 1) ≤ 3k

2 , therefore a1k+ b1 6= b2k− a2.
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Note that

a1k + b1 + a2k + b2 ≤ (a1 + a2)k + 2k − 2(a1 + 1)

≤ 2⌊k − 2

2
⌋k + 2k − 2(a1 + 1)

≤ k2 − 2k + 2k − 2(a1 + 1)

< k2 + 1 = n.

Therefore a1k + b1 6= n− (a2k + b2). Similarly,

a1k + b1 + b2k − a2 ≤ a1k + k − (a1 + 1) + (k − (a2 + 1))k − a2 < k2 + 1 = n

and therefore a1k+b1 6= n− (b2k−a2). Hence in this case S(a1k+b1)∩S(a2k+b2) = ∅.

Case (ii) (a1 < a2, b1 < b2) In this case it is very easy to see that a1k+b1 /∈ S(a2k+b2)

and hence S(a1k + b1) ∩ S(a2k + b2) = ∅.

Case (iii) (a1 = a2, b1 < b2) Let a1 = a2 = a. Obviously ak + b1 6= ak + b2. Since

0 ≤ a ≤ ⌊k−2
2 ⌋ and a+1 ≤ b1 < b2 ≤ k−(a+1), we have (b2−a)k ≥ 2k > (a+b1). Hence

ak+b1 6= b2k−a. Also 2ak+b1 +b2 ≤ k(k−2)+2k = k2 < n, so ak+b1 6= n−(ak+b2).

Finally,

b1 + b2k + ak − a ≤ [k − (a+ 1)](k + 1) + ak − a = k2 − 2a− 1 < k2 + 1 = n,

implies ak+b1 6= n−(b2k−a). Hence ak+b1 /∈ S(ak+b2) and S(a1k+b1)∩S(a2k+b2) = ∅.

Case (iv) (a1 < a2, b1 = b2) In this case also it is very easy to show that

S(a1k + b1) ∩ S(a2k + b2) = ∅. This completes the proof. 2

Now we are ready to define our point process based on the eigenvalues of the k-

circulant matrix. For our purpose we neglect {0, n/2} if n is even and {0} if n is odd.

Denote

S = Zn − {0, n/2}, Tn = {(a, b) : 0 ≤ a ≤ ⌊k − 2

2
⌋, a+ 1 ≤ b ≤ k − (a+ 1)},

λt(x) =
1√
n

n−1∑

j=0

xj exp(
2πjt

n
), βx,n(a, b) =

∏

t∈S(ak+b)

λt(x) and λx(a, b) = (βx,n(a, b))1/4.

Now define a sequence of point process based on the points {( a√
n
, b√

n
,

λx(a,b)−dq

cq
) : (a, b) ∈
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Tn}. Define

ηn(·) =
∑

(a,b)∈Tn

ǫ( a√
n

, b√
n

,
λx(a,b)−dq

cq

)(·) (7.1.23)

where q = q(n) = ⌊n
4 ⌋ and

cn = (8 ln n)−1/2 and dn =
(lnn)1/2

√
2

(
1 +

1

4

ln lnn

lnn

)
+

1

2(8 ln n)1/2
ln
π

2
. (7.1.24)

Theorem 7.1.9 (Bose, Hazra and Saha (2010) [35]). Let {xt} be i.i.d random variables

which satisfy Assumption 7.1.2. Then for the sequence of point processes ηn defined in

(7.1.23), we have ηn
D→ η, where η is a Poisson process on [0, 1/2] × [0, 1] × [0,∞] with

intensity measure 4I{s≤t≤1−s}e
−xdsdtdx.

Proof. Though the main idea of the proof is similar to the proof of Theorem 7.1.3, the

details are more complicated. We do it in two steps.

Step 1: We first establish convergence in distribution for the point process based

on the points {
(

a√
n
, b√

n
,

λx̄+σnN (a,b)−dq

cq

)
: (a, b) ∈ Tn} where λx̄+σnN (a, b) is obtained

from λx(a, b) replacing {xi} by {x̄i + σnNi}. Define

η∗n(·) =
∑

(a,b)∈Tn

ǫ(
a√
n

, b√
n

,
λx̄+σnN (a,b)−dq

cq

)(·).

We show η∗n
D→ η. Observe that first two components of the limit is uniformly distributed

over a triangle whose vertices are (0, 0), (1/2, 1/2), (0, 1). Denote this triangle by △.

Since the limit process is simple it suffices to show that

E η∗n((a1, b1] × (a2, b2] × (x, y]) → E η((a1, b1] × (a2, b2] × (x, y]) (7.1.25)

for all 0 ≤ a1 < b1 ≤ 1/2, 0 ≤ a2 < b2 ≤ 1 and x < y, and for all l ≥ 1,

P(η∗n((a1, b1] × (c1, d1] ×R1) = 0, . . . , η∗n((al, bl] × (cl, dl] ×Rl) = 0) (7.1.26)

−→ P(η((a1, b1] × (c1, d1] ×R1) = 0, . . . , η((al, bl] × (cl, dl] ×Rl) = 0),

where ∩l
i=1(ai, bi] × (ci, di] = ∅ and R1, . . . , Rl are bounded Borel sets, each consisting

of a finite union of intervals on [0,∞].

Proof of (7.1.25): We shall first prove condition (7.1.25) for the following type of

sets:

(i) (a1, b1] × (a2, b2] lies entirely inside the triangle △.
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(ii) (a1, b1] × (a1, b1] where 0 ≤ a1 < b1 ≤ 1/2.

(iii) (a1, b1] × (1 − b1, 1 − a1] where 0 ≤ a1 < b1 ≤ 1/2.

(iv) (a1, b1] × (a2, b2] lies entirely outside of the triangle △.

Graphically the mentioned boxes are as in Figure 1.

0 1

1

Type(iii)

Type(i)

Type(ii)

Type(iv)

x-axis

y
-a

x
is

x-axis

y
-a

x
is

10

1

∆ I4I1

I2

I3

∆

Figure 1 Figure 2

Figure 1 shows four types of basic sets and Figure 2 shows the decomposition of a rectangle into these

four types of sets.

Since any rectangles in [0, 1/2] × [0, 1] can be expressed as disjoint union of these

four kinds of sets (see Figure 2), it is sufficient to prove (7.1.25) and (7.1.26) for the

above four kind of boxes only. Let Ii denote i-th type of set. Enough to prove that for

each i, as n→ ∞, E η∗n(Ii × (x, y]) → E η(Ii × (x, y]).

(a) Proof of (7.1.25) for Type (i) sets:

E η∗n((a1, b1] × (a2, b2] × (x, y])

= E
( ∑

(a,b)∈Tn

ǫ(
a√
n

, b√
n

,
λx̄+σnN (a,b)−dq

cq

)((a1, b1] × (a2, b2] × (x, y])
)

=
∑

( a√
n

, b√
n

)∈(a1,b1]×(a2,b2]

P
(λx̄+σnN (a, b) − dq

cq
) ∈ (x, y]

)

∼ (b1 − a1)(b2 − a2)n
1

q
(e−x − e−y)(1 + o(1))

→ 4(b1 − a1)(b2 − a2)(e−x − e−y)

= E η((a1, b1] × (a2, b2] × (x, y]).
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(b) Proof of (7.1.25) for Type (ii) sets:

E η∗n((a1, b1] × (a1, b1] × (x, y])

= E
( ∑

(a,b)∈Tn

ǫ(
a√
n

, b√
n

,
λx̄+σnN (a,b)−dq

cq

)((a1, b1] × (a1, b1] × (x, y])
)

=
∑

( a√
n

, b√
n

)∈(a1,b1]×(a1,b1]

P
(λx̄+σnN (a, b) − dq

cq
) ∈ (x, y]

)

∼ 1

2
(b1 − a1)(b1 − a1)n

1

q
(e−x − e−y)(1 + o(1))

→ 1

2
(b1 − a1)24(e−x − e−y)

= E η((a1, b1] × (a1, b1] × (x, y]).

(c) Proof of (7.1.25) for Type (iii) sets is exactly similar as Type (ii) sets.

(d) Proof of (7.1.25) for Type (iv) sets:

E η∗n((a1, b1] × (a2, b2] × (x, y])

= E
( ∑

(a,b)∈Tn

ǫ(
a√
n

, b√
n

,
λx̄+σnN (a,b)−dq

cq

)((a1, b1] × (a2, b2] × (x, y])
)

=
∑

( a√
n

, b√
n

)∈(a1,b1]×(a2,b2]

P
(λx̄+σnN (a, b) − dq

cq
) ∈ (x, y]

)

= 0 = E η((a1, b1] × (a2, b2] × (x, y]),

since {(a, b) ∈ Tn : ( a√
n
, b√

n
) ∈ (a1, b1] × (a2, b2]} = ∅. This completes the proof of

(7.1.25).

Proof of (7.1.26): We prove (7.1.26) for the four types of sets separately.

(a) Proof of (7.1.26) for Type (i) sets: (ai, bi]× (ci, di] lies completely inside the triangle

△ for all i = 1, 2, . . . , l. Let

nj = #{(a, b) : (
a√
n
,
b√
n

) ∈ (aj , bj ] × (cj , dj ]}

∼ √
n(bj − aj)

√
n(dj − cj) = n(bj − aj)(dj − cj).

Then the complement of the event in (7.1.26) is the union of m = n1 + . . . + nl events,
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that is

1 − P
(
η∗n((a1, b1] × (c1, d1] ×R1) = 0, . . . , η∗n((al, bl] × (cl, dl] ×Rl) = 0

)

= P
(
∪l

j=1 ∪( a√
n

, b√
n

)∈(aj ,bj ]×(cj ,dj ]
{λx̄+σnN−dq

cq
∈ Rj}

)
.

Now following the argument to prove (7.1.6) given in Theorem 7.1.3, we get

P
(
η∗n((a1, b1] × (c1, d1] ×R1) = 0, . . . , η∗n((al, bl] × (cl, dl] ×Rl) = 0

)

n→∞−→ exp {−
l∑

j=1

(bj − aj)(dj − cj)4λ(Rj)}

= P(η((a1, b1] × (c1, d1] ×R1) = 0, . . . , η((al, bl] × (cl, dl] ×Rl) = 0).

This proves (7.1.26) for Type (i) sets.

(b) Proof of (7.1.26) for Type (ii) sets: Here ci = ai, di = bi and

nj = #{(a, b) : (
a√
n
,
b√
n

) ∈ (aj , bj ] × (aj , bj ]}

∼ 1

2

√
n(bj − aj)

√
n(bj − aj) =

n

2
(bj − aj)

2.

Remaining part of the proof is as in the previous case. Finally we get

P
(
η∗n((a1, b1] × (a1, b1] ×R1) = 0, . . . , η∗n((al, bl] × (al, bl] ×Rl) = 0

)

n→∞−→ exp {−
l∑

j=1

1

2
(bj − aj)

24λ(Rj)}

= P(η((a1, b1] × (a1, b1] ×R1) = 0, . . . , η((al, bl] × (al, bl] ×Rl) = 0).

(c) Proof of (7.1.26) for Type (iii) sets is same as Type (ii) sets.

(d) Finally we prove it for Type (iv) sets. In this case (ai, bi] × (ci, di]
⋂△ = ∅ for

all i = 1, . . . , l. Note that for all i, #{(a, b) ∈ Tn : ( a√
n
, b√

n
) ∈ (ai, bi] × (ci, di]} = 0 and

therefore

P
(
η∗n((a1, b1] × (c1, d1] ×R1) = 0, . . . , η∗n((al, bl] × (cl, dl] ×Rl) = 0

)
= 1.

Also from intensity measure of η,

P(η((a1, b1] × (c1, d1] ×R1) = 0, . . . , η((al, bl] × (cl, dl] ×Rl) = 0) = 1.
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Hence (7.1.26) is proved for all four types of sets separately. Consequently, the proof of

Step 1 is complete.

Step 2: It remains to transfer the convergence of η∗n onto ηn. First define the fol-

lowing process

η̄n(·) =
∑

(a,b)∈Tn

ǫ( a√
n

, b√
n

,
λx̄(a,b)−dq

cq

)(·).

Then it suffices to show that for any continuous function f on [0, 1/2] × [0, 1] × [0,∞)

with compact support,

η̄n(f) − η∗n(f)
P−→ 0 and η̄n(f) − ηn(f)

P−→ 0. (7.1.27)

Suppose the compact support of f is contained in the set [0, 1/2] × [0, 1] × [K + γ0,∞)

for some γ0 > 0 and K ∈ R. Since f is uniformly continuous, ω(γ) := sup{|f(s, t, x) −
f(s, t, y)|; s ∈ [0, 1/2], t ∈ [0, 1], |x− y| ≤ γ} → 0 as γ → 0.

Proof of η̄n(f) − η∗n(f)
P−→ 0:

On the set An = {max(a,b)∈Tn
|λx̄+σnN (a,b)

cq
− λx̄(a,b)

cq
| ≤ γ}, we have for γ < γ0,

∣∣f(
a√
n
,
b√
n
,
λx̄+σnN (a, b) − dq

cq
) − f(

a√
n
,
b√
n
,
λx̄(a, b) − dq

cq
)
∣∣

≤
{
ω(γ) if

λn,x̄+σnN (ωj)−bq

aq
> K

0 if
λn,x̄+σnN (ωj)−bq

aq
≤ K.

(7.1.28)

Now if P(Ac
n) → 0, then using (7.1.28)

lim sup
n→∞

P
(
|η∗n(f) − η̄n(f)| > ǫ

)
≤ ω(γ)

ǫ
4e−K → 0, as γ → 0.

Now we show P(Ac
n) → 0. For any sequence of random variables (Xi)0≤i<n, define

Mn(X) = max
1≤t≤n

∣∣n−1/2
n−1∑

l=0

Xl exp(i2πtl/n)
∣∣.

We can use the basic inequalities

∣∣|z1z2| − |w1w2|
∣∣ ≤ (|z1| + |w2|) max{|z1 − w1|, |z2 − w2|}, (7.1.29)

and

||w1|1/2 − |w2|1/2| ≤ |w1 − w2|1/2, zi, wi ∈ C, 1 ≤ i ≤ 2, (7.1.30)
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to obtain

max
a,b

∣∣λx̄+σnN (a, b) − λx̄(a, b)
∣∣

≤
[
(Mn(x̄+ σnN))1/2 + (Mn(x̄))1/2

]
(Mn(σnN))1/2 (by (7.1.29))

≤
[
2(Mn(x̄+ σnN))1/2 + (Mn(σnN))1/2

]
(Mn(σnN))1/2 (by (7.1.30)).

By Davis and Mikosch (1999) [50], we have

M2
n(σnN) = Op(σ2

n lnn) and M2
n(x̄+ σnN) = Op(lnn),

with σ2
n = n−c. Therefore

max
a,b

1

cq

∣∣λx̄+σnN (a, b) − λx̄(a, b)
∣∣ = Op((ln n)n−c/2).

Hence

P(Ac
n) = P

(
max
a,b

∣∣λx̄+σnN (a, b)

cq
− λx̄(a, b)

cq

∣∣ > ǫ
)

= P
(nc/4

lnn
max
a,b

1

cq

∣∣λx̄+σnN (a, b) − λx̄(a, b)
∣∣ > ǫnc/4

lnn

)
→ 0 as n→ ∞.

This completes the proof of η̄n(f) − η∗n(f)
P−→ 0.

The other part of (7.1.27) follows from the fact (4.4.9) of Chapter 4. This completes

the proof of Step 2 and hence the theorem is completely proved. 2

Let xk < · · · < x1 be real numbers, and let Ni,n = ηn([0, 1
2 ] × [0, 1] × (xi,∞)) be

the number of exceedances of xi by
λx(a,b)−dq

cq
. Then the joint distribution of the k

upper order eigenvalues can be written in terms of {Ni,n}1≤i≤k. From this it is easy

to derive distributional convergence of the k upper order eigenvalues. Hence a similar

result as Corollary 7.1.5 holds with {λn,(i)}1≤i≤k representing the ordered eigenvalues

of k-circulant matrix.

7.2 Results for dependent input

Let {xn;n ≥ 0} be a two sided moving average process,

xn =

∞∑

i=−∞
aiǫn−i (7.2.1)



173 Results for dependent input

where {an;n ∈ Z} ∈ l1, that is
∑

n |an| < ∞, are non-random and {ǫi; i ∈ Z} are i.i.d.

random variables. Let f(ω), ω ∈ [0, 2π] be the spectral density of {xn}. Note that if

{xn} is i.i.d. with mean 0 and variance σ2, then f ≡ σ2

2π .

It seems to be a non-trivial problem to derive Poisson convergence of the point

processes based on eigenvalues of the matrices with such dependent entries. As seen in

Chapter 6, an individual scaling of each eigenvalue is needed. We resort to scaling each

eigenvalue by the spectral density at the appropriate ordinate, as done in Chapter 6

and then consider their point process.

We shall prove our next theorems under the following assumption on the two sided

moving average process {xn} defined in (7.2.1).

Assumption 7.2.1. {ǫi; i ∈ Z} are i.i.d. random variables with E(ǫ0) = 0, E(ǫ20) = 1

and E |ǫ0|s <∞ for some s > 2 and

∞∑

j=−∞
|aj ||j|1/2 <∞ and f(ω) > 0 for all ω ∈ [0, 2π].

7.2.1 Reverse circulant

Let λn,x(ωk) be the eigenvalues of n−1/2RCn defined in (7.1.1). Define the sequence of

point processes based on the points λ̃n,x(ωk) =
λn,x(ωk)√
2πf(ωk)

as

η̃n(·) =

q∑

j=1

ǫ(
ωj ,

λ̃n,x(ωk)−bq
aq

)(·) (7.2.2)

where aq = 1
2
√

ln q
, bq =

√
ln q and q = q(n) = ⌊n

2 ⌋.

Theorem 7.2.2 (Bose, Hazra and Saha (2010) [35]). Let {xn} be the two sided moving

average process defined in (7.2.1) and which satisfies Assumption 7.2.1. Then for the

sequence of point processes η̃n defined in (7.2.2), we have η̃n
D→ η, where η is a Poisson

process on [0, π] × (−∞,∞] with intensity measure π−1dt × e−xdx.

Proof. First observe that minω∈[0,2π] f(ω) > α > 0. We define another sequence of point

process based on the points
(
ωk,

λn,ǫ(ωk)−bq

aq

)
for k = 1, 2, . . . , q where λn,x(ωk) are the

eigenvalues of n−1/2RCn with xi replaced by ǫi. Define

ηn(·) =

q∑

j=1

ǫ(
ωj ,

λn,ǫ(ωj)−bq

aq

)(·). (7.2.3)

In Theorem 7.1.3, we have shown that ηn
D→ η, where η is a Poisson process on [0, π] ×

(−∞,∞] with intensity measure π−1dt× e−xdx. Now if we can show that η̃n − ηn
P→ 0,



Chapter 7: Poisson convergence of eigenvalues of circulant type matrices 174

then we will be through. Equivalently, we have to show that for any continuous function

g on E with compact support,

η̃n(g) − ηn(g)
P→ 0

as n→ ∞. Suppose the compact support of g is contained in the set [0, π]× [K+γ0,∞)

for some γ0 > 0 and K ∈ R. Since g is uniformly continuous , ω(γ) := sup{|g(t, x) −
g(t, y)|; t ∈ [0, 1], |x−y| ≤ γ} → 0 as γ → 0. On the set An = {maxj=1,...,q | λn,x(ωj)

aq

√
2πf(ωj)

−
λn,ǫ(ωj)

aq
| ≤ γ}, we have for γ < γ0,

∣∣g(ωj ,
λ̃n,x(ωj) − bq

aq
) − g(ωj ,

λn,ǫ(ωj) − bq
aq

)
∣∣ ≤

{
ω(γ) if

λn,ǫ(ωj)−bq

aq
> K

0 if
λn,ǫ(ωj)−bq

aq
≤ K.

(7.2.4)

Observe

1

aq
max
1≤j≤q

| λn,x(ωj)√
2πf(ωj)

− λn,ǫ(ωj)|

≤ 1

αaq
max
1≤j≤q

|λn,x(ωj) −
√

2πf(ωj)λn,ǫ(ωj)|

≤ 1

αaq
max
1≤j≤q

∣∣ 1√
n

n−1∑

l=0

xle
iωj l − (

∞∑

t=−∞
ate

iωjt)
1√
n

n−1∑

l=0

ǫle
iωj l
∣∣

and from (6.1.5), we have

max
1≤j≤q

| 1√
n

n−1∑

l=0

xle
iωj l − (

∞∑

t=−∞
ate

iωjt)
1√
n

n−1∑

l=0

ǫle
iωj l| = op(n−1/4).

Therefore limn→∞P(Ac
n) = 0. Now, for any δ > 0, choose γ sufficiently small that

γ < γ0. Then, by intersecting the event {|η̃n(g)−ηn(g)| > δ} with An and Ac
n and using

(7.2.4), we obtain

lim sup
n→∞

P(|η̃n(g) − ηn(g)| > δ) ≤ lim sup
n→∞

(P({|η̃n(g) − ηn(g)| > δ} ∩An) + P(Ac
n))

≤ lim sup
n→∞

P(ω(γ)ηn([0, π] × [K,∞)) > ǫ) + lim sup
n→∞

P(Ac
n)

≤ lim sup
n→∞

E ηn([0, π] × [K,∞))ω(γ)/ǫ ≤ e−Kω(γ)/ǫ.

Since ω(γ) → 0 as γ → 0, η̃n − ηn
P→ 0. 2
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7.2.2 Symmetric circulant

Here we consider the two sided moving average process defined in (7.2.1) with an extra

assumption that aj = a−j for all j ∈ N. Define

η̃n(·) =

q∑

j=0

ǫ(
ωj ,

λ̃n,x(ωj)−bq

aq

)(·) (7.2.5)

where q = q(n) ∼ n
2 , λ̃n,x(ωj) =

λn,x(ωj)√
2πf(ωj)

and λn,x(ωj) are the eigenvalues of symmetric

circulant matrix given in (7.1.14) and aq, bq are as in (7.1.17).

Theorem 7.2.3 (Bose, Hazra and Saha (2010) [35]). Let {xn} be the two sided moving

average process defined in (7.2.1) with aj = a−j and satisfies Assumption 7.2.1. Then

for the sequence of point processes η̃n defined in (7.2.5), we have η̃n
D→ η, where η is a

Poisson process on [0, π] × (−∞,∞] with intensity measure π−1dt× e−xdx.

Proof. The line of argument is similar as in Theorem 7.2.2. We omit the details but

mention that to show limn→∞P(Ac
n) = 0, we use the following fact from (6.1.10) of

Chapter 6:

max
1≤k≤⌊n

2
⌋

∣∣∣ λk√
2πf(ωk)

− λk,ǫ

∣∣∣ = op(n−1/4).

2

7.2.3 k-circulant, n = k
2
+ 1.

First recall the eigenvalues of k-circulant matrix for n = k2 + 1 given in Section (7.1.3)

and define following notation based on that

βǫ,n(a, b) =
∏

t∈S(ak+b)

λt(ǫ), λǫ(a, b) = (βǫ,n(a, b))1/4,

β̃x,n(a, b) =

∏
t∈S(ak+b) λt(x)

4π2f(ωak+b)f(ωbk−a)
and λ̃x(a, b) = (β̃x,n(a, b))1/4.

Now with q = q(n) = ⌊n
4 ⌋ and dq, cq as in (7.1.24), define our point process based on

points {( a√
n
, b√

n
,

λ̃x(a,b)−dq

cq
) : (a, b) ∈ Tn} as:

η̃n(·) =
∑

(a,b)∈Tn

ǫ(
a√
n

, b√
n

,
λ̃x(a,b)−dq

cq

)(·). (7.2.6)

Theorem 7.2.4 (Bose, Hazra and Saha (2010) [35]). Let {xn} be the two sided moving

average process defined in (7.2.1) and which satisfies Assumption 7.2.1. Then for the
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sequence of point processes η̃n defined in (7.2.5), we have η̃n
D→ η, where η is a Poisson

process on [0, 1/2] × [0, 1] × [0,∞] with intensity measure 4I{s≤t≤1−s}e
−xdsdtdx.

Proof. First define a point process based on {( a√
n
, b√

n
,

λǫ(a,b)−dq

cq
) : (a, b) ∈ Tn},

ηn(·) =
∑

(a,b)∈Tn

ǫ( a√
n

, b√
n

,
λǫ(a,b)−dq

cq

)(·).

First note that in Theorem 7.1.9, we have shown that ηn
D→ η, where η is a Poisson

process on [0, 1/2]× [0, 1]×(−∞,∞] with intensity measure 4I{s≤t≤1−s}e
−xdsdtdx. Rest

of the argument is similar to the proof of Theorem 7.2.2. The additional point that needs

to be noted is that P(max(a,b)∈Tn

∣∣∣λ̃x(a, b) − λǫ(a, b)
∣∣∣ > γ) → 0 follows from the proof

of Theorem 6.1.16 of Chapter 6. 2
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Few remarks and further research

In this chapter we indicate a list of problem that arise in the context of this thesis for

circulant and related matrices. We list the problems topicwise for future study and

hope that our article will generate activity in this interesting area of research.

8.1 Limiting spectral distribution

As discussed in Chapter 0, the study of the limit of the empirical spectral distribution

of random matrices when the dimension tends to infinity has a long history, specially

where the input sequence has light tails. But there have been very few works where the

input sequence has heavy tails. This thesis also concentrated on the light tailed case.

For the Wigner matrix, when the input sequence belongs to the domain of attraction

of an α stable law with α ∈ (0, 2), Ben Arous and Guionnet (2008) [26] showed that the

LSD exists in probability and it has heavy tails. Later Belinschi, Dembo and Guionnet

(2009) [25] studied some symmetric band matrices and the sample variance covariance

matrices with heavy tailed inputs. In both these articles the LSD was shown to be

nonrandom.

In Chapter 2 we have discussed the LSD of the scaled eigenvalues of circulant type

matrices when the input sequence is i.i.d. with finite moments of suitable order. We

then also derived the LSD of these matrices when the input sequence is a stationary,

two sided moving average process of infinite order.

What is the limiting behaviour of the ESD of circulant type matrices when the input

sequence has heavy tails?

The LSD of the reverse circulant and circulant matrices with the (i.i.d.) input

sequence belonging to the domain of attraction of an α stable law with α ∈ (0, 2) was

shown to exist in Bose, Chatterjee and Gangopadhyay (2003) [30] using the methods

of Freedman and Lane (1981) [60]. Knight (1991) [83] has been able to obtain some

177



Chapter 8: Few remarks and further research 178

very nice representation of the empirical distribution of periodogram entries of {Xi, 1 ≤
i ≤ n} and provide its limiting distribution including a representation for the limit.

If the empirical measure of {Xj} converges in distribution, then for any continuous

function f , the empirical measure of {f(Xj)} also converges in distribution. Since the

eigenvalues of the reverse circulant matrix are the square root of the periodogram entries

of {Xi, 1 ≤ i ≤ n}, the LSD of the reverse circulant matrix follows from Theorem 5 of

Knight (1991) [83] with an appropriate choice of f .

Very recently, Bose et al. (2011) [32] have extended the above works and considered

the k-circulant matrix for kg = n ± 1. Assuming that the input sequence belongs to

the domain of attraction of an α stable law with α ∈ (0, 2), they have shown that the

LSD exists. They also determined explicit representations of the limits. We now briefly

describe their results.

Assumption on the input sequence : Suppose that the input sequence {Xi} is

defined on a probability space (Ω,A, P ). Suppose it is i.i.d. in the domain of attraction

of a stable law with index α ∈ (0, 2), that is, there exists an → ∞ such that

a−1
n

n∑

k=1

(Xk − cn)
D→ Sα,

where Sα is a stable random variable and cn = E[X1I(|X1| ≤ an)].

It is well known that a random variable X is in the domain of attraction of a

(nonnormal) stable law with index α ∈ (0, 2) if and only if P[|X| > t] = t−αl(t), for

some slowly varying l and

lim
t→∞

P[X > t]

P[|X| > t]
= p ∈ [0, 1]. (8.1.1)

Also the normalizing constants an are such that

nP[|X| > anx] → x−α.

8.1.1 k-circulant with n = kg + 1 (heavy tailed input)

We now analyze the eigenvalues for this particular case in more detail. First suppose

n = k2 + 1. Then from Bose, Mitra and Sen (2008) [44], if k is even then there is one

singleton partition set {0} and if k is odd then there are two singleton partition sets

{0} and {n/2} respectively; all the remaining partitions have four elements each. Thus

apart from these finitely many (hence negligible) singleton partitions, all others are of

equal size of four.

In general for n = kg + 1, g ≥ 1, the eigenvalue partition (see Section 4.1 of Bose,
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Mitra and Sen (2008) [44]) of {0, 1, 2, . . . , n − 1} contains approximately q = [ n
2g ] sets

each of size (2g) and each set is self-conjugate; in addition, the remaining sets do not

contribute to the LSD. We shall call the partition sets of size (2g) as major partition

sets.

We shall now use these major partition sets and express the eigenvalues in a conve-

nient form. This is given in the following Lemma (see Bose et al. (2011) [32]) for easy

reference. To do this, observe that a typical S(x) may be written as

S(b1k
g−1 + b2k

g−2 + · · · + bg)

which in turn is the union of the following two sets

{
b1k

g−1 + b2k
g−2 + · · · + bg, b2k

g−1 + b3k
g−2 + · · · + bgk − b1, . . . , bgk

g−1 − b1k
g−2 − · · · − bg−1

}

and its conjugate i.e.

{
n− (b1k

g−1 + b2k
g−2 + · · · + bg), . . . , n− (bgk

g−1 − b1k
g−2 − · · · − bg−1)

}

where

0 ≤ b1 ≤ k − 1, . . . , 0 ≤ bg−1 ≤ k − 1 and 1 ≤ bg ≤ k.

Define

Tn = {(b1, b2, . . . bg) : 0 ≤ b1 ≤ k − 1, . . . , 1 ≤ bg ≤ k} ,

Ct =

n∑

j=1

Xj cos(
2πjt

n
) and St =

n∑

j=1

Xj sin(
2πjt

n
) for t ∈ N.

So far the scaling constant {an} has been taken to be n1/2 (see Chapter 2) but now

since the entries are heavy tailed, the square root scaling is not the appropriate scaling

any longer.

Lemma 8.1.1. The eigenvalues of the k-circulant a−1
n Ak,n with n = kg+1 corresponding

to the major partition sets may be written as

{
λ(b1,b2,...,bg), λ(b1,b2,...,bg)ω2g, . . . , λ(b1,b2,...,bg)ω

2g−1
2g : (b1, b2, . . . , bg) ∈ Tn

}

where ω2g is the primitive (2g)-th root of unity and

λ(b1,b2,...,bg) = a−1
n

(
C2

b1kg−1+···+bg
+ S2

b1kg−1+···+bg

)1/2g
. . .
(
C2

bgkg−1−···−bg−1
+ S2

bgkg−1−···−bg−1

)1/2g
.

In view of Lemma 8.1.1, to find the LSD of the k-circulant a−1
n Ak,n where n = kg +1,

it suffices to consider the ESD of
{
λ(b1,b2,...,bg) : (b1, . . . , bg) ∈ Tn

}
: if these have an LSD



Chapter 8: Few remarks and further research 180

F , then the LSD of a−1
n Ak,n will be (r, θ) in polar coordinates where r is distributed

according to F , and θ is distributed uniformly across all the (2g)-th roots of unity and

r and θ are independent. With this in mind, define

LAk,n
(A,ω) =

1

|Tn|
∑

(b1,...,bg)∈Tn

I(λ(b1,...,bg) ∈ A).

Further, let {Γj}, {Bj}, {Uj}, {U∗j } and {U∗t,j}, be independent random sequences

defined on the same probability space where Γj =
∑j

i=1Ei and {Ei} is a sequence of i.i.d.

exponential with mean 1, and Bj are i.i.d. satisfying P[B1 = 1] = p = 1 − P[B1 = −1]

where p is defined by equation (8.1.1) and the rest of the variables are i.i.d U(0, 1).

Finally, let

Zj = Γ
−1/α
j =

(
j∑

t=1

Et

)−1/α

and µt = E[BtZtI(Zt ≤ 1)].

We now state the following theorem. A typical element of Ω will be denoted by ω.

Theorem 8.1.2 (Bose et al. (2011) [32]). Suppose g is fixed and n = kg + 1.

Then LAk,n

D→ LAk
as n → ∞, LAk

(·, ω) being the random distribution induced

by L1(ω)
1
2gL2(ω)

1
2g · · ·Lg(ω)

1
2g and

Lj(ω) =

( ∞∑

t=1

sin(2πU∗t,j)Bt(ω)Zt(ω)

)2

+

( ∞∑

t=1

cos(2πU∗t,j)Bt(ω)Zt(ω)

)2

, 1 ≤ j ≤ g.

8.1.2 k-circulant with n = kg − 1 (heavy tailed input)

Now there are approximately q = [n
g ] major partition sets, each of size g. For detailed

illustration see Bose, Mitra and Sen (2008) [44]. The major partition sets {S(x)} may

now be listed as

{b1kg−1+b2k
g−2+· · ·+bg, b2kg−1+b3k

g−2+· · ·+bgk+b1, . . . , bgk
g−1+b1k

g−2+· · ·+bg−1}

where 0 ≤ b1 ≤ k − 1, . . . , 0 ≤ bg−1 ≤ k − 1, 1 ≤ bg ≤ k. , with

(b1, b2, ..., bg) 6= (k − 1, k − 1, ..., k − 1) and (b1, b2, ..., bg) 6= (k − 1, k − 1, . . . , k − 1, k).

Now define

T ′n =
{

(b1, b2, ...bg) : 0 ≤ b1 ≤ k − 1, ..., 1 ≤ bg ≤ k, (b1, b2, ..., bg) 6= (k − 1, k − 1, ..., k − 1)

and (b1, b2, ..., bg) 6= (k − 1, k − 1, . . . , k − 1, k)
}
,
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γ(b1,b2,...,bg) = a−1
n

(
Cb1kg−1+···+bg

+ iSb1kg−1+···+bg

)
...
(
Cbgkg−1+···+bg−1

+ iSbgkg−1+···+bg−1

)
,

η(b1,b2,...,bg) = |γ(b1,b2,...,bg)|1/g exp{
i arg

(
γ(b1,b2,...,bg)

)

g
}.

Then the eigenvalues of the k-circulant a−1
n Ak,n with n = kg − 1 corresponding to the

partition set S(b1k
g−1 + b2k

g−2 + · · · + bg) are

η(b1,b2,...,bg), η(b1,b2,...,bg)ωg, η(b1,b2,...,bg)ω
2
g , ..., η(b1 ,b2,...,bg)ω

g−1
g

where ωg is g-th root of unity. So, to find the LSD, it suffices to consider the ESD of

{γ(b1,b2,...,bg) : (b1, ..., bg) ∈ T ′n}: if these have an LSD F , then the LSD of a−1
n Ak,n will

be (r′, θ) where r′ is distributed according to h(F ) where h(z) = |z|1/ge
i arg(z)

g and θ is

distributed uniformly across all the g-th roots of unity, and r′ and θ are independent.

Hence define

LAk,n
(A,ω) =

1

|T ′n|
∑

(b1,...,bg)∈T ′
n

I(γ(b1,...,bg) ∈ A).

Theorem 8.1.3 (Bose et al. (2011) [32]). Suppose g is fixed and n = kg − 1.

Then LAk,n

D→ LAk
as n → ∞, LAk

(., ω) being the random distribution induced

by L1(ω)L2(ω) . . . Lg(ω), and

Lj(ω) =

( ∞∑

t=1

cos(2πU∗t,j)Bt(ω)Zt(ω)

)
+ i

( ∞∑

t=1

sin(2πU∗t,j)Bt(ω)Zt(ω)

)
, 1 ≤ j ≤ g.

8.1.3 Symmetric circulant matrix with heavy tailed input

The (i, j)-th element of the symmetric circulant, SCn is given by Xn/2+1−|n/2−|i−j||. Let

λ0, λ1, . . . , λn−1 be the eigenvalues of a−1
n SCn. Then the ESD of a−1

n SCn is given by

LSCn(A,ω) =
1

n

n−1∑

j=0

I(λj ∈ A).

Theorem 8.1.4 (Bose et al. (2011) [32]). As n → ∞, LSCn

D→ LSC , where LSC(·, ω)

is the distribution of 2

∞∑

t=1

cos(2πU∗t )Bt(ω)Zt(ω).

The method of proof of the above results (Theorem 8.1.2, 8.1.3, 8.1.4) heavily relies

on the extension of the results of Freedman and Lane (1981) [60] accomplished in Knight

(1991) [83] together with some intricate study of the eigenvalue structure of the k-

circulant with n = kg ± 1.
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8.1.4 k-circulant with n 6= kg ± 1

We have already discussed in Section 2.3.1 that establishing the LSD for general k-

circulant matrices is a difficult problem even with light tailed entries. For general k

and n, the eigenvalue partitions have different sizes and varied compositions, and hence

establishing the LSD is much more difficult for both light tailed and heavy tailed entries.

It is an open problem.

Bose, Mitra and Sen (2008) [44] showed that the radial component of the LSD of

k-circulants with k ≥ 2 is always degenerate, at least when the input sequence is i.i.d.

normal, as long as k = no(1) and gcd(k, n) = 1.

Theorem 8.1.5 (Bose, Mitra and Sen (2008) [44]). Suppose the input sequence is i.i.d.

N(0, 1) random variables. Let k ≥ 2 be such that k = no(1) and n→ ∞ with gcd(n, k) =

1. Then Fn−1/2Ak,n
converges weakly in probability to the uniform distribution over the

circle with center at (0, 0) and radius r = exp(E[log
√
E]), E being an exponential

random variable with mean one.

The proof of this result uses the normality of the variables very crucially. It would

be interesting to establish this result when the normality assumption is dropped. It

would also be interesting to find the other possible choices of (k, n) for which the LSD

has degenerate radial component.

8.2 Spectral radius and spectral norm

As we have seen, the behaviour of the extreme eignevalues of general large dimensional

random matrices is a very nontrivial issue. The class of k-circulants admit a formula

solution for its eigenvalues. This helped in the study of the extreme values but the

issue of non Gaussianity of the entries was taken care of after considerable amount of

approximation by the Gaussian case. Even then this required the finiteness of a moment

of order larger than two. Moreover, these results were proved only for certain subclasses

of the k-circulants. There are some results (see Section 4.1, 5.4) known for the related

Toeplitz and Hankel matrices but even there, a host of unanswered questions remain.

For the Toeplitz matrices with mean zero entries nothing is known about the limiting

distribution of the spectral norm (after centering and scaling). As seen in Section 4.1

only the almost sure and in probability convergence (see Remark 4.1.2) of spectral

norm is known. It would be nice to find appropriate centering and scaling in such a

case. Similar questions can be asked about the Hankel matrices. Moreover, even for

the almost sure convergence results, the results are not completely sharp and the exact

limits if any, are not known. It would also be interesting to study the limiting behaviour
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of the extreme eigenvalues of palindromic Toeplitz matrices and Toeplitz matrices with

band structure.

Results on spectral radius of k-circulant matrices were proved in Section 4.4 for the

case when n = kg ± 1 with g ≥ 1. It would be interesting to find out what happens for

other combinations of k and n.

As mentioned in the beginning of Chapter 4, k-circulant matrices with k = 1, n− 1

(circulant matrix and reverse circulant matrix respectively) are normal matrices and

hence their spectral norm and spectral radius are same. The limiting behaviour of

spectral norm has been derived from the behaviour of the spectral radius (see Section

4.2). The behaviour of the spectral norm for other k-circulant matrices is not known as

the matrices in such cases are non-normal matrices.

In Chapter 5 we derived the behaviour of the spectral norm of circulant and reverse

circulant matrices when the input sequence is in the domain of attraction of α stable

law with 0 < α < 1. Results for the case 1 ≤ α ≤ 2 are not known. In the heavy

tailed case no results for the spectral norm and spectral radius of k-circulant matrices

is known even for the case when n = k2 + 1.

It is interesting to study the spectral norm and spectral radius when one goes out of

the independent regime. Suppose the input sequence {xn} is an infinite order moving

average process, xn =
∑∞

i=−∞ aiǫn−i, where
∑

n |an| < ∞, are nonrandom and {ǫi; i ∈
Z} are i.i.d. with E(ǫi) = 0 and V (ǫi) = 1. It seems to be a nontrivial problem to derive

properties of the spectral norm and spectral radius in this case. The spectral density is

expected to appear in some form in the limit. This seems to be a difficult problem.

We obtained some results (see Chapter 6) when one resorts to scaling each eigenvalue

by the spectral density at the appropriate ordinate and then considering their maximum.

This scaling has the effect of equalizing the variance of the eigenvalues. However, it is

not known what happens if we consider the maximum without such scaling.

In Section 6.1.2, for SCn with inputs from a linear process we have shown that

the maximum of the eigenvalues over certain subsets converges in distribution to the

Gumbel distribution. For instance, in Theorem 6.1.11, we have shown that if λk,x denote

the eigenvalues of 1√
n
SCn with input {xi} then

maxk∈L1
n
λk,x − bq

aq

D−→ Λ

and
maxk∈L2

n
λk,x − bq

aq

D−→ Λ,

where

L1
n = {k ∈ Ln : k is even} and L2

n = {k ∈ Ln : k is odd},
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Ln = {k : 1 ≤ k ≤ ⌊npn/2⌋} and pn = (1 − 1

n1/2+δ1
), 0 < δ1 < 1/2.

However, it is not clear what will happen to this limiting distribution when maximum

is taken over all the eigenvalues. This is an interesting open problem.

8.3 Poisson convergence

In Section 7.1.3 we saw that a detailed study of the eigenvalues (see Lemma 7.1.8) was

used to exhibit the point process convergence for k-circulant matrices with n = k2 + 1.

This explicit study for the eigenvalue partition is not known for n = kg + 1 when g > 2.

If this study is accomplished then one can expect a point process convergence result

similar to Theorem 7.1.9 in this case.

In Section 7.2 we have considered the point processes based on the eigenvalues scaled

by the spectral density. The above Poisson convergence results immediately imply that

results similar to Corollary 7.1.5 hold for the corresponding ordered values in each case.

However, it is not at all obvious how to derive the joint distributional convergence of k

upper ordered eigenvalues in this dependent situation.

In Theorem 7.2.2, for the point process convergence of the eigenvalues of SCn we

needed an extra assumption aj = a−j on the process {xt}. We have also seen in Theorem

6.1.7 of Chapter 6 that without this extra assumption the distributional convergence of

the maximum of properly scaled eigenvalues of SCn is not known. Similarly, here also

it is not clear whether Theorem 7.2.2 will hold without this assumption.

8.4 Minimum of the eigenvalues

As discussed in Chapter 0 it is much harder to study the convergence of the smallest

eigenvalue of random matrices. For S matrix it was studied by Silverstein (1985) [110],

Bai and Yin (1993) [18]. For circulant type matrices also it is not at all obvious how the

minimum of the absolute eigenvalues behave, and the answer is not known in general.

Recently Bose, Hazra and Saha (2011) [40] shed some light for a specific subclass of

k-circulant matrices when the input sequence is Gaussian. They established the follow-

ing result on distributional convergence of the minimum of modulus of eigenvalues of

circulant, reverse circulant, symmetric circulant and k-circulant matrices for n = kg + 1

with Gaussian entries.

Theorem 8.4.1 (Bose, Hazra and Saha (2011) [40]). Suppose {xi}i≥0 are i.i.d. standard

normal random variables. Consider any one of the circulant type matrices {Bn} with
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the input {xi}. Then as n→ ∞,

min1≤i≤n |λi|
cq

D→ F, (8.4.1)

where {λi, 1 ≤ i ≤ n} are the eigenvalues of n−1/2Bn and for

(i) Bn = RCn or Bn = Cn,

q = q(n) = [
n− 1

2
], cq = q−1/2 and F (x) = 1 − exp(−x2),

(ii) Bn = SCn,

q = q(n) = [
n

2
], cq =

√
2

π
q−1 and F (x) = 1 − exp(−x),

(iii) Bn = Ak,n with n = kg + 1,

q = q(n) =
n

2g
, cq = q−1/2g(log q)−

g−1
2g and F (x) = 1 − exp(−x2g).

A similar result for non-Gaussian entries is not known. The normal approximation

results used in Chapter 4 for the spectral radius do not seem to be able to salvage the

situation for the minimum. Similarly, the behaviour when the input sequence is heavy

tailed is also not known. Also, no results for the minimum of modulus of eigenvalues of

k-circulant matrices is known when n = kg − 1.
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[57] Erdélyi, A. Asymptotics Expansions, Dover, New York, 1956.

[58] Fan, Jianqing and Yao, Qiwei. Nonlinear Time Series. Springer Series in

Statistics. Springer-Verlag, New York, 2003.

[59] Feller, W. An Introduction to Probability Theory and Its Applications. Vol.

2, 2nd ed. Wiley, New York. 1971.

[60] Freedman, D. and Lane, D. The empirical distribution of the Fourier co-

efficients of a sequence of independent, identically distributed long-tailed

random variables. Z. Wahrsch. Verw. Gebiete, 58(1):21–39, 1981.
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[105] Rootzèn, Holger. Extreme Value theory for moving average processes. Ann.

Probab., Vol. 14, No. 2, 612–652, 1986.

[106] Tao, T. and Vu, V. Random matrices: the distribution of the smallest

singular values. Geom. Funct. Anal., 20(1):260–297, 2010.

[107] Samorodnitsky, Gennady and Taqqu, Murad S. Stable Non-Gaussian Ran-

dom Processes. Stochastic Modeling. Chapman & Hall, New York, 1994.

[108] Sen, Arnab. Large Dimensonal Random Matrices. M. Stat Project Report,

Indian Statistical Institute, Kolkata, 2006.

[109] Strok, V. V. Circulant matrices and the spectra of de Bruijn graphs.

Ukrainian Mathematical Journal, 44, no. 11, 1446–1454, 1992.

[110] Silverstein, Jack W. The smallest eigenvalue of a large dimensional Wishart

matrix. Ann. Probab. 13, 1364–1368, 1985.

[111] Silverstein, Jack W. On the weak limit of the largest eigenvalue of a large

dimensional sample covariance matrix. J. Multivariate Anal., 30, 307–311,

1989.

[112] Silverstein, Jack W. The spectral radii and norms of large dimensional non-

central random matrices. Commun. Statist. Stochastic Models., 10, No. 3,

525–532, 1994.



BIBLIOGRAPHY 196

[113] Silverstein, Jack W. The Stieltjes transform and its role in Eigenvalue

behavior of large dimensional random matrices. Random Matrix Theory and

its Applications, Lecture Notes Series, Institute for Mathematical Sciences,

National University of Singapore. Vol. 18, World Scientific, Singapore, 1–25,

2009.

[114] Silverstein, J. W. and Bai, Z. D. On the empirical distribution of eigenvalues

of a class of large-dimensional random matrices. J. Multivariate Anal., 54

(2):175–192, 1995.

[115] Soshnikov, A. Universality at the edge of the spectrum in Wigner random

matrices. Comm. Math. Phys., 207(3):697–733, 1999.

[116] Soshnikov, A. A note on universality of the distribution of the largest

eigenvalues in certain sample covariance matrices. J. Statist. Phys., 108

(5-6):1033–1056, 2002.

[117] Soshnikov, A. Poisson statistics for the largest eigenvalues of Wigner random

matrices with heavy tails. Electron. Comm. Probab, 9, 82–91, 2004.

[118] Soshnikov, A. Poisson statistics for the largest eigenvalues in random matrix

ensembles. In Mathematical physics of quantum mechanics, volume 690 of

Lecture Notes in Phys., pages 351–364. Springer, Berlin, 2006.

[119] Springer, M. D. and Thompson, W. E. The distribution of products of

Beta, Gamma and Gaussian random variables. SIAM Journal on Applied

Mathematics, Vol. 18, No. 4, 721-737, 1970.

[120] Tang, Q. From light tails to heavy tails through multiplier. Extremes, Vol.

11, No. 4, 379–391, 2008.

[121] Tao, T. and Vu, V. Random Matrices: The circular law, Communications

in Contemporary Mathematics, 10, 261–307, 2008.

[122] Tao, T., Vu, V. and Krishnapur, M. (Appendix). Random matrices: Uni-

versality of the ESDs and the circular law. Ann. Probab., 38, 5, 2023–2065,

2010.

[123] Tracy, C. A. and Widom, H. Level-spacing distributions and the Airy kernel.

Comm. Math. Phys., 159(1):151–174, 1994.

[124] Tracy, C. A. and Widom, H. On orthogonal and symplectic matrix ensem-

bles. Comm. Math. Phys., 177(3):727–754, 1996.



197 BIBLIOGRAPHY

[125] Tracy, C. A. and Widom, H. The distribution of the largest eigenvalue in

the Gaussian ensembles: β = 1, 2, 4. In Calogero-Moser-Sutherland models,

Springer, New York, 461–472, 2000.

[126] Voiculescu, D. Limit laws for random matrices and free products, Invent.

Math. 104, 201–220, 1991.

[127] Wachter, K. W. The strong limits of random matrix spectra for sample

matrices of independent elements. Ann. Probability, 6(1):1–18, 1978.

[128] Walker, A. M. Some asymptotic results for the periodogram of a stationary

time series. J. Austral. Math. Soc., 5, 107–128, 1965.

[129] Weyl, H. Uber die Gleichverteilung von Zahlen mod Eins. Math. Ann., 77,

313–352, 1916.

[130] Wigner, E. P. Characteristic vectors of bordered matrices with infinite

dimensions. Ann. of Math., 2, No. 62, 548–564, 1955.

[131] Wigner, E. P. On the distribution of the roots of certain symmetric matrices.

Ann. Math., 2, No. 67, 325–327, 1958.

[132] Wishart, J. The generalized product moment distribution in samples from

a normal multivariate population. Biometrika, 20A, 32–52, 1928.

[133] Wu, Y. K., Jia, R. Z. and Li, Q. g-Circulant solutions to the (0, 1) matrix

equation Am = Jn. Linear Algebra and Its Applications, 345, No. 1-3, 195–

224, 2002.

[134] Yin, Y. Q. Limiting spectral distribution for a class of random matrices. J.

Multivariate Anal., 20(1):50–68, 1986.

[135] Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. Limiting behavior of the

eigenvalues of a multivariate F matrix. J. Multivariate Anal., 13, No. 4,

508–516, 1983.

[136] Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. On the limit of the largest

eigenvalue of the large-dimensional sample covariance matrix. Probab. The-

ory Related Fields, 78, No. 4, 509–521, 1988.

[137] Yin, Y. Q. and Krishnaiah, P. R. Limit theorem for the eigenvalues of

the sample covariance matrix when the underlying distribution is isotropic.

Teor. Veroyatnost. i Primenen., 30(4):810–816, 1985.



BIBLIOGRAPHY 198

[138] Zhou, Jin Tu. A formal solution for the eigenvalues of g circulant matrices.

Math. Appl. (Wuhan), 9, No. 1, 53–57, 1996. (In Chinese).


	
	Introduction
	A brief survey of existing results on limiting spectral distribution
	Wigner matrix and the semicircular law
	Sample covariance S matrix and Marcenko and Pastur law
	Toeplitz, Hankel and related matrices
	I.I.D. matrix and the circular law
	Rate of convergence

	A brief survey of existing results on extreme eigenvalues
	Extreme of S matrix
	Extreme of Wigner matrix

	Some motivation to study circulant and related matrices
	Plan of the thesis

	Matrices and eigenvalues
	Some LDRMs of interest
	Description of eigenvalues
	Circulant matrix
	Symmetric circulant matrix
	Reverse circulant matrix
	k-circulant matrix


	Limiting spectral distribution of circulant type matrices
	Basic definitions
	Methods used in establishing LSD
	Moment method
	Stieltjes transform method
	Method of normal approximation

	Results on LSD with independent inputs
	k-circulant matrix

	Result on LSD with dependent inputs
	Spectral density and some notation
	Circulant matrix with dependent input
	Symmetric circulant matrix with dependent input
	Reverse circulant matrix with dependent input
	k-circulant matrix with dependent input

	Simulations
	I.I.D inputs
	Linear process inputs


	Tail of product and extreme values
	Tail of product
	Various methods for two fold product
	Tail behaviour for n fold product

	Extreme values

	Spectral norm and radius of circulant type matrices with light tail
	Toeplitz and Hankel with light tail entries
	Circulant and reverse circulant with light tail entries
	Symmetric circulant with light tail entries
	k-circulant with light tail entries
	Properties of eigenvalues of Gaussian k-circulant for fixed n
	Additional description of eigenvalues of k-circulant when n=kg+1
	Final preparatory lemmas: truncation and normal approximation
	Proof of Theorem 4.4.2
	Remark on k circulants with sn=kg+1

	Few remarks

	Spectral norm of circulant type matrices with heavy tail
	 Input sequence of the matrices and scaling sequence
	Reverse circulant and circulant with heavy tailed entries
	Symmetric circulant with heavy tailed entries 
	Toeplitz matrix with heavy tailed entries

	Distribution of maximum of scaled eigenvalues: dependent input
	Dependent input with light tail
	Reverse circulant and circulant: dependent input with light tail
	Symmetric circulant: dependent input with light tail
	k-circulant: dependent input with light tail

	Dependent input with heavy tail

	Poisson convergence of eigenvalues of circulant type matrices
	Results for i.i.d. input
	 Reverse circulant
	Symmetric circulant 
	 k-circulant, n=k2+1. 

	Results for dependent input
	 Reverse circulant 
	 Symmetric circulant 
	 k-circulant, n=k2+1.


	Few remarks and further research
	Limiting spectral distribution
	k-circulant with n=kg+1 (heavy tailed input)
	k-circulant with n=kg-1 (heavy tailed input)
	Symmetric circulant matrix with heavy tailed input
	k-circulant with n=kg1

	Spectral radius and spectral norm
	Poisson convergence
	Minimum of the eigenvalues

	

