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Notation

2R

AN

The set of natural numbers

Nu {0}

The set of integers

The set of real numbers

The set of complex numbers

The identity map

Real part of z

Imaginary part of z

Trace of matrix A

Lebesgue measure of B in appropriate dimension
ap — b, - 0asn— oo

z—: —lasn— o

Euclidean norm of = € R?

Modulus of z € C

Greatest integer less or equal to 7 for a,b € N
Least integer greater or equal to 3 for a,b € N
Cardinality of the set A

Distribution function F,, converges to F' in distribution (weakly) as n — oo
Topological boundary of a set A C R"

Set of all points at (euclidean) distances less than 7 from A






Chapter 0

Introduction

Consider a sequence of matrices whose dimension increases to infinity. Suppose the en-
tries of this sequence of matrices are random. These matrices with increasing dimension
are called large dimensional random matrices (LDRM).

Practices of random matrices, more precisely the properties of their eigenvalues,
has emerged first from data analysis (beginning with Wishart (1928) [I32]) and then
from statistical models for heavy nuclei atoms (beginning with Wigner (1955) [I30]).
To insist on its physical applications, a mathematical theory of the spectrum of the
random matrices began to emerge with the work of E. P. Wigner, F. J. Dyson, M. L.
Mehta, C. E. Porter and co-workers in the 1960’s. And this established the link between
various branches of mathematics including classical analysis and number theory. Slowly
it appeared in other branches of sciences as well, like high dimensional data analysis,
communication theory, dynamical systems, finance, diffusion process and so on. The
most important papers on random matrix theory in physics from this early period are
collected in the book edited by Porter (1965) [102].

Initially enumerative combinatorics was the only, though very useful, tool to analyze
random matrices. Many other sophisticated and varied mathematical tools are now
available in the field. These includes Fredholm determinants (in the 1960’s), diffusion
processes (in the 1960’s), integrable systems (in the 1980’s and early 1990’s), and the
theory of free probability (in the 1990’s). Many of the mathematical elements of random
matrix theory which were developed in the beginning of the 1960’s has been described
in the book by Mehta (2004) [90].

One of the most important objects to study in random matrix theory is the spectra of
LDRM. The necessity of studying the spectra of LDRM, especially the Wigner matrices,
arose in nuclear physics during the 1950’s. In quantum mechanics, the energy levels
of quanta are not directly observable, but can be characterized by the eigenvalues of

a matrix of observations. However the empirical spectral distribution (ESD) of the



Chapter 0: Introduction 4

eigenvalues of a random matrix has a very complicated form when the order of the
matrix is high. Many conjectures, e.g., the famous circular law conjecture were made
through numerical computation.

The random matrix literature is vast and evergrowing. We provide a very brief
introduction restricting ourselves to areas/results which have some relevance to the
problems considered in this thesis. For detailed information on these and for other
developments we refer to the excellent books by Mehta (2004) [90], Bai and Silverstein
(2010) [13], Anderson, Guionnet and Zeitouni (2010) [3] and the survey papers of Bai
(1999) [10], Bose, Hazra and Saha (2010) [39.

In Sections and [ we provide a brief summary of existing results on the limiting
spectral distribution and on the extremes of eigenvalues. In this thesis we study the
circulant and related random matrices. In Section we provide some motivation to

study such matrices. In Section we give a brief summary of the thesis.

0.1 A brief survey of existing results on limiting spectral

distribution

The research on limiting spectral analysis (LSA) of LDRM has attracted considerable
interest among mathematicians, probabilists and statisticians. Here we discuss some of
the more common matrix models that have been dealt with in the literature.

For any square matrix A, the probability distribution which puts equal mass on
each eigenvalue of A is called the Empirical Spectral Measure of A. The corresponding
distribution function is called the Empirical Spectral Distribution Function (ESD) of
A.

If A, Ao, ..., A\, are the eigenvalues of an n xn matrix A,,, then the Empirical Spectral

Distribution Function (ESD) is given by

n
Fa,(z,y) =n"" > H{R(\) <z, T(N) <y}
i=1
Let {A,}>2, be a sequence of square matrices with the corresponding ESD
{F4,}>2,. The Limiting Spectral Distribution (LSD) of the sequence is defined as
the weak limit of the sequence {F}y, }, if it exists.
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0.1.1 Wigner matrix and the semicircular law

Wigner matrix (W,,) is a symmetric matrix and it is defined as

T11 Z12 13 .- Ti(n—1) Lln

Tr12 X922 X23 ... .%'Q(nfl) Ton
W, =

Tin T2n T3n - -- x(n—l)n Tnn

Wigner (1958) [I31] assumed the entries {x;;} to be i.i.d. real Gaussian, and proved
that the expected ESD of %Wn tends to the so called semicircular law which has the

density function
=VA—s2 if |s| <2,
pw(s) =
0 otherwise.

It was also noted in Wigner (1958) [I31] that the semicircle law is the LSD of much
more general symmetric matrix models where the entries on and above the diagonal are
independent and the entries have symmetric distribution function with variance 2 for
the nondiagonal entries and 202 for the diagonal ones and all higher moments are uni-
formly bounded. This claim motivated the interest of relaxing the conditions on entries
of the matrix to the maximum possible extent, and Grenander (1963) [2] and Arnold
(1967, 1971) ELB] generalized this work of Wigner in various aspects. In an important
review work on random matrix theory by Bai (1999) [I0], two general assumptions were
used on the matrix model of Wigner : let W, be n x n Hermitian matrix whose entries
above the diagonal are i.i.d. complex random variables with variance 1 and whose di-
agonal entries are i.i.d. real random variables (without any moment requirement) or let
W, = [w;;] be n x n hermitian whose entries above the diagonal are independent com-
plex random variables with a common mean 0 and variance 1 satisfying the Lindeberg

type condition, for any 6 > 0 as n — oo,

1« )
577 2 Bl L, 550w — 0
ij=1
It was shown in Bai (1999) [I0] that, under either assumption, as n — oo with proba-
bility one the ESD of %Wn converges weakly to the semicircular law.

Anderson and Zeitouni (2006) [2] considered an n x n symmetric random matrix
with on-or-above-diagonal terms of the form ﬁ f (%, %)&j where ;; are zero mean unit
variance i.i.d. random variables with all moments bounded and f is a continuous func-
tion on [0, 1]? such that fol f?(x,y)dy = 1. They show that the empirical distribution of
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eigenvalues converges weakly to the semicircular law. There are other extensions which
we do not discuss here. See Banerjee and Bose (2010) [21].

0.1.2 Sample covariance S matrix and Marcenko and Pastur law

Suppose that {x;;; i,j = 1,2,...} is a double array of i.i.d. complex random variables
with mean zero and variance 1. Write i, = (z1x, Tk, - . ., Tpr) and X = (1, 2, ..., Zp).
The sample covariance matrix is usually defined by S = 130 () — 2)(z), — 2)*.
However, in spectral analysis of LDRM, the sample covariance matrix is simply defined
as S =150 ot = Lx X~

We now describe the Marcenko-Pastur law denoted by Ly/p, : has a positive mass
1-— é at the origin if y > 1. Elsewhere it has the density:

27r1xy b—2z)(x—a) ifa<az<b,
pympy(T) = (0.1.1)
0 otherwise

where a = a(y) = (1 — /¥)? and b = b(y) = (1 + /9)%

Researchers have established the LSD of S matrix under suitable conditions on the
xi;’s. Here, we state the LSD result under relatively simpler conditions. Suppose {z;;}
are i.i.d. with mean zero and variance 1, p — oo and p/n — y € (0,00). Then the
ESD of S converges to Ly py a.s..

The first success in finding the LSD of S is due to Mar¢enko and Pastur (1967)
[87]. Subsequent work was done in Bai and Yin (1988) [I6], Grenander and Silverstein
(1977) [73], Jonsson (1982) [78], Wachter (1978) [127] and Yin (1986) [I34], Bai (1999)
[T0]. When the entries of X are not independent, Yin and Krishnaiah (1985) [I37]
investigated the LSD of S matrix when the underlying distribution is isotropic. For
further developments on S matrix see Bai and Zhou (2008) [T9] and Bose, Gangopadhyay
and Sen (2010) [31].

0.1.3 Toeplitz, Hankel and related matrices

Toeplitz matrix 7T}, and Hankel matrix H,, are defined as follows:

i) T T2 vee Tp—2 Tp-—-1
Tl o Tl oo ITp—-3 Tp-—2
T, = X9 X ) oo Tp—4 Tp—3

Ip—1 Tp-2 Tp-3 ... I Zo
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T2 T3 Ty e In Tn+1

z3 T4 Zs coe Iptl Tp42

H, = T4 5 6 ... Tnt2  Tnt3
| Tn+l Tn42 Tp43 .- T2p-1  T2n |

The existence of limiting spectral distributions of Toeplitz and Hankel matrices were
proved by Bryc, Dembo and Jiang (2006) E7]. Hammond and Miller (2005) [75] also
proved the existence of LSD of Toeplitz matrix. Bose and Sen (2007) [E3] gave a unified
approach based on the work of Bryc, Dembo and Jiang (2006) [47] to prove the existence
of LSD of different LDRM.

If the top right corner and the bottom left corner elements of a matrix are zeroes,
we call it a band matrix. The amount of banding may change with the dimension of
the matrix. The LSD of the Toeplitz, Hankel band matrices was discussed in Basak and
Bose (2009) [22], Kargin (2009) [82] and Liu and Wang (2009) [85]. For other variants
of Toeplitz and Hankel matrices, also see Bose and Sen (2008) [E3] and Basak and Bose

(2010) [23).

0.1.4 I.I.D. matrix and the circular law

The most interesting problem in LDRM literature was the so called circular law conjec-
ture that the ESD of the non-symmetric random matrix with i.i.d. entries, after suitable
normalization, tends to the uniform distribution over the unit disc in complex plane.
This was first established for Gaussian entries by Mehta (1967) [R9]. Girko (1984) [67]
suggested a method of proof for the general case. Bai (1997) [9] assumed smooth densi-
ties and bounded sixth moment of the entries and showed the result to be true. Gotze
and Tikhomirov (2007) [68] showed the result for sub-Gaussian entries and the moment
conditions were further relaxed by Pan and Zhou (2010) [95], G&tze and Tikhomirov
(2007) 1] and Tao and Vu (2008) [I2I]. The result in its final form was derived by
Tao, Vu and Krishnapur (2010) [T22].

0.1.5 Rate of convergence

Another important aspect arose after the LSD of an LDRM was found: the convergence
rate of LSD. This is of practical interest, but had been open for decades. The first success
was made in Bai (1993a, 1993b) [48], in which convergence rates were established for the
expected ESD of a large Wigner matrix and sample covariance matrix respectively. Bai’s
work developed a method of discussing convergence rates of ESDs through establishing
a Berry-Esséen type inequality in terms of the Stieltjes transforms. The result was

later improved in Bai, Miao and Tsay (1999) [L1] for Wigner matrices by assuming a
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slightly milder condition. Then Bai, Miao and Yao (2003) [I2] improved the results of
Bai (1993b) [§] on the convergence rate of LSD of the S matrix. For other development
in this direction, see Gotze and Tikhomirov (2004, 2005) [69,[70].

0.2 A brief survey of existing results on extreme eigenval-

ues

Another aspect that became the focus of research was the limiting behaviour near the
“edge”: of the extreme eigenvalues, spectral norm and spectral radius. This behaviour
of the extreme eigenvalues and related quantities is very nontrivial for most random

matrices. We now give a very brief survey of results on extreme eigenvalues.

0.2.1 Extreme of S matrix

Historically, one of the first successes in the study of the extreme eigenvalues was by
Geman (1980) [63], who proved that as n — oo and p/n — y, the largest eigenvalue of
S matrix converges almost surely to (1 + \/5)2 under certain growth conditions on the
moments of the entries. Yin, Bai and Krishnaiah (1988) [I36] proved the same result
under the existence of the fourth moment, and Bai, Silverstein and Yin (1988) [I4]
proved that the existence of the fourth moment is also necessary for the existence of the
limit. Silverstein (1989) [IT1] found a necessary and sufficient condition for the weak
convergence of the largest eigenvalue of S to a nonrandom limit.

It was much harder to study the convergence of the smallest eigenvalue of S. The
first breakthrough was obtained in Silverstein (1985) [I10], who established that the
smallest eigenvalue of S converges to (1 — \/§)2 almost surely when the entries are i.i.d.
standard normal and p/n — y, n — oo. Bai and Yin (1993) [I8] proved the almost
sure convergence of the smallest eigenvalue under finiteness of fourth moment of the
underlying distribution. As a byproduct, they also established the almost sure limit of
the largest eigenvalue of the S matrix.

Johansson (2000) [76] proved that the properly scaled largest eigenvalue of S
converges weakly to the Tracy-Widom law as n,p (dimension of X,) tends to oo,
n/p — v > 0 and the entries are i.i.d. complex Gaussian. Johnstone (2001) [77]
proved a similar result when the entries are real Gaussian. Soshnikov (2002) [IT6] gen-
eralized these results in two directions. He proved that the joint distribution of the
upper ordered eigenvalues of Wishart matrices (after proper scaling) converges to the
joint Tracy-Widom distribution and also extended the results to non-Gaussian entries
provided n — p = O(p'/3). El Karoui (2003) [54] extended the result of Johnstone to
the case p/n — 0 or co. Onatski (2008) [94] showed that the joint distribution of the
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centered and scaled several largest eigenvalues of p-dimensional complex Wishart ma-
trix converges to the joint Tracy-Widom law when n and p tend to infinity so that n/p
remains in a compact subset of (0, co). This result was the extension of results of Baik,
Ben Arous and Péché (2005) [20] and El Karoui (2007) [53] who studied the asymptotic
distribution of the largest eigenvalue of the complex Wishart matrix as n and p go to
infinity so that n/p remains in a compact subset of [1, co). Péché (2009) [98] generalized
the result of Soshnikov (2002) [I16] when p/n — ~ where v € (0, oo]. For results on the
smallest singular values of n x n matrix with i.i.d. entries, see Tao and Vu (2010) [106].
They showed that the limiting distribution of the smallest singular value is universal
in the sense that it does not depend on the distribution of the entries. In particular, it
converges to the same limiting distribution as in the special case when the entries are
i.i.d. real Gaussian, and which was explicitly calculated by Edelman (1988) [52].

0.2.2 Extreme of Wigner matrix

Juhész (1981) [[9] and Fiiredi and Komlds (1981) [61] studied the asymptotic properties
of the largest eigenvalue of W under the existence of moments of all order. Sometimes
they assume the uniform boundedness of entries. Bai and Yin (1988) [I7] found nec-
essary and sufficient conditions for almost sure convergence of the largest eigenvalue of
W. Some related work can be found in Geman (1986) [64] and Bai and Yin (1986) [I5].
Geman proved that the spectral radius of a square matrix of i.i.d. entries, after proper
scaling tends to one almost surely under a growth condition on the moments of the
underlying distribution. The same result is proved in Bai and Yin (1986) [I5] under
only the finiteness of the fourth moment of the entries, as a by-product of a main lemma
about the limiting behaviour of the operator norm of product of random matrices.

Soshnikov (2004) [I17] considered the point process based on the positive eigen-
values of appropriately scaled W with heavy tailed entries {z;;} satisfying P(|x;;| >
x) = h(x)x™® where h is a slowly varying function at infinity and 0 < a < 2. He
showed that it converges to an inhomogeneous Poisson random point process and from
there, he deduced the distributional convergence of the maximum eigenvalue of an
appropriately scaled W with such heavy tailed entries. The limiting distribution is
O, (r) = exp(—z~*). A similar result was proved for sample covariance matrices in
Soshnikov (2006) [II8]. These results were extended in Auffinger, Ben Arous and Péché
(2009) 6] to 2 < ar < 4.

Another important class of matrices related to W are the Gaussian matrix ensembles,
which are Gaussian measures on spaces of Hermitian matrices A, obtained by multiply-
ing a translation-invariant measure by the Gaussian function exp(—Tr(A?)). The three
main examples are the Gaussian orthogonal ensemble on real Hermitian matrices, the

Gaussian unitary ensemble on complex Hermitian matrices, and the Gaussian symplec-
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tic ensemble on quaternionic Hermitian matrices. These matrices are also defined by

the density of their eigenvalues. The joint probability density of the eigenvalues is given
by (see Mehta (2004) [90])

Pog(x1,22,...,2,) = Cn[ge_%ﬁzyzlx? H |z; — 8.
i<k
For 8 = 1 the matrices are n x n real Hermitian, for 5 = 2 the matrices are n xn complex
Hermitian, and for 6 = 4 the matrices are 2n x 2n self-dual Hermitian or quaternionic
Hermitian matrices. For 0 = 4 each eigenvalue has multiplicity two.

The distributional convergence of the largest eigenvalue of Gaussian orthogonal,
unitary and symplectic ensembles were studied by Tracy and Widom (1994, 1996) [123]
[[24] in a series of articles. See Tracy and Widom (2000) [I25] for a brief survey of such
results. Soshnikov (1999) [IT5] showed that after proper scaling, the first, second, third,
etc. eigenvalues of Wigner random hermitian (respectively, real symmetric) matrix
weakly converge to the distributions established by Tracy and Widom for Gaussian
unitary (respectively, Gaussian orthogonal) cases. Péché and Soshnikov (2007) [99]
established a probabilistic upper bound on the spectral radius of W with i.i.d. bounded
centered but non-symmetrically distributed entries. Péché and Soshnikov (2008) [I00],
established a probabilistic lower bound on the spectral radius of W with same type of
entries and combining both the results, they established a rate of convergence result for
the spectral radius of W. For some recent results on extreme gaps of the eigenvalues of

Gaussian unitary ensembles see Ben Arous and Bourgade (2010) [24].

0.3 Some motivation to study circulant and related ma-

trices

In the previous section we have briefly mentioned some of the more common random
matrices (Wigner, S, Toeplitz and Hankel) and the results known on their LSD and
extreme eigenvalues. All these matrices are patterened random matrices.

In this thesis we concentrate on some specific type of patterned matrices, namely,
circulant, symmetric circulant, reverse circulant, k-circulant and Toeplitz matrices. An

n X n k-circulant matrix is defined as

i) T xT9 N Tn—2 Tp—1
Tn—k  Tn—k+1 Tp—k+2 -+ Tpn-k-2 Tp—k-1
Apm = | Tn-2k Tn-2k+1 Tn-2k+2 -+ Tn-2k-2 Tn-2k-1
| Tk Tk+1 Th+2 Th—2 Te=1 | ,un
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For 1 <j<mn-—1,its (j + 1)-th row is obtained by giving its j-th row a right circular
shift by k positions (equivalently, & mod n positions). For k =1 and k =n — 1, it is
known as circulant matrix (C),) and reverse circulant matrix (RC,,) respectively. For
detailed description of all these matrices, see Section [Tl

Why should one study such matrices?

Nonrandom Toeplitz matrices and the corresponding Toeplitz operators are of course
well studied objects in mathematics. Circulant matrices play a crucial role in the study
of large dimensional Toeplitz matrices with nonrandom input. See, for example, Grenan-
der and Szeg6 (1984) [74] and Gray (2006) [66]. Toeplitz matrices appear as the co-
variance matrix of stationary processes, in shift-invariant linear filtering and in many
aspects of combinatorics, time series and harmonic analysis. Bai (1999) [I0] proposed
the study of large Toeplitz matrix with independent inputs. So, one of the motivations
to study circulant matrix is to understand the behaviour of the Toeplitz matrix.

The eigenvalues of the circulant matrices also arise crucially in time series analysis.
For instance, the periodogram of a sequence {a;};>¢ is defined as n™!| Z?:_()l ae?™i/m 2,
—121] < j < |2 and is a straightforward function of the eigenvalues of the cor-
responding circulant matrix. The study of the properties of the periodogram is funda-
mental in the spectral analysis of time series. See for instance Fan and Yao (2003) [53].
The maximum of the periodogram, in particular, has been studied in Davis and Mikosch
(1999) [B0.

The k-circulant matrices and their block versions arise in areas such as multi-level
supersaturated design of experiment (Georgiou and Koukouvinos (2006) [65]), spectra
of De Bruijn graphs (Strok (1992) [I09]) and (0, 1)-matrix solutions to A™ = J,, (Wu,
Jia and Li (2002) [I33]). See also Davis (1979) 9] and Pollock (2002) [I0T].

Patterned matrices have deep connection with free probability theory. Limiting spec-
tral distribution of such patterned matrices are related to different notions of indepen-
dence — classical independence, free independence and half independence. Researchers
studied the arbitrary product of Wigner matrices formed from a class of independent
Wigner matrices. It is well known that the trace of any such product converges and
this is tied to the idea of free independence developed by Voiculescu (1991) [126]. This
freeness in the limit is very special to the Wigner type matrices. Bose, Hazra and Saha
(2010) B8] studied the joint convergence of symmetric patterned matrices. In particu-
lar, they show that for independent copies of the Toeplitz, Hankel, symmetric circulant
and reverse circulant matrices, the tracial limits exist for any monomial formed with
these independent copies. It turns out that the symmetric circulant limit is classically
independent with Gaussian marginals. The reverse circulant limit is half independent
with symmetrized Rayleigh marginals. The Toeplitz and Hankel limits do not seem to

submit to any easy or explicit independence/dependence notions. These limits are not
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free, independent or half independent.

0.4 Plan of the thesis

We now present a guided tour of the thesis. The sequence {z;} or {z;;} which will be
used to build our matrices is called the input sequence. The circulant, reverse circulant,
symmetric circulant and k-circulant matrices will together be called “circulant type
matrices”. We will investigate the following interesting aspects of (mainly) circulant

type matrices :

(i) Existence and identification of limiting spectral distribution (LSD) with indepen-

dent inputs.

(ii) Existence and identification of limiting spectral distribution (LSD) with dependent

inputs.

(iii) Distributional convergence of the spectral norm and spectral radius with light tail

inputs.

(iv) Distributional convergence of the spectral norm and spectral radius with heavy

tail inputs.

(v) Limiting behaviour of the maximum of modulus of the appropriately scaled eigen-

values with dependent inputs.

(vi) Convergence of the point process constructed from the eigenvalues of circulant

type matrices.

We now give a chapterwise brief description of this thesis. In Chapter [l we describe the
structure of different circulant type matrices and their eigenvalues. We also give short
descriptions of other well known matrices in random matrix literature.

In Chapter Bl we deal with the limiting spectral distribution of the above mentioned
matrices. Limiting spectral distribution of the scaled eigenvalues of Toeplitz and circu-
lant type matrices are known when the input sequence is independent and identically
distributed with finite moments of suitable order. We reestablish these known limits
for circulant type matrices with lesser moment assumption on the input sequence. We
then derive the LSD of these matrices when the input sequence {x,} is a stationary,

two sided moving average process of infinite order, i.e.,

o
Ty = Z a;€p—;, where a, € R and Z lan| < oco. (0.4.1)

i=—00 nel
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The limits are suitable mixtures of normal, symmetric square root of the chi-square,
and other mixture distributions, with the spectral density of the process involved in
the mixtures. For instance, we prove that under some conditions on {z,}, the ESD of

L RC, (RC), is the reverse circulant) converges weakly to the distribution Fr, where

NG
1_ fol/2 e‘#?m)dt if >0
f01/2 e 2nI D) (it it © <0,

and f is the spectral density function of {z,,}. Note that f is appearing in the limiting
distribution Fgr.
In Chapter Blwe digress from our main flow. There we identify the tail behaviour of

finite but arbitrary product of i.i.d. exponential random variables. Suppose

where {E;} are i.i.d. standard exponentials. We prove that
1
Hy,(z) = Cha®e """ gp(z), n>1,
where for n > 1,

1 n—1 n—1
C = — 2 2 =
n ( 77) y On om

vn

As a consequence, it follows that this n fold product of i.i.d. exponentials lies in the

and gp(z) =1 as = — .

maximum domain of attraction of the Gumbel distribution for any n. We use this result
to derive the limiting distribution of spectral radius of k-circulant matrix in Chapter @l

In Chapter Hl we consider the spectral norm of scaled Toeplitz, circulant, reverse
circulant, symmetric circulant and spectral radius of a class of k-circulant matrices when
the input sequence is independent and identically distributed with finite moments of
suitable order and the dimension of the matrix tends to co. We first review some known
results on the spectral norm of Toeplitz and Hankel matrices. Then we prove the almost
sure and the distributional convergence of the spectral norm of reverse circulant and
circulant matrices. For instance, suppose {x;} is i.i.d. with mean p and E|z;|?>T < oo
for some § > 0. Now consider the reverse circulant (RC,) matrix with inputs {z;}.
Then

vn
if u # 0, and
1
—=RC,|| —d
|Gz R0 —da

Cq
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if p =0, where

q=q(n)= Lnle’ dq:\/Ea Cq = 2\/1ln—q
and A is the standard Gumbel distribution.

We then consider the joint behaviour of minimum and maximum eigenvalue of sym-
metric circulant matrix and from there we deduce the distributional convergence of the
spectral norm. We prove the distributional convergence of the spectral radius of k-
circulant matrix where n = k9 + 1, g > 2 and then give an idea of how to deal with the
more general case, sn = k9 + 1 with some suitable condition on s. In most of the cases
after appropriate scaling and centering the limit distribution is the standard Gumbel
distribution.

In Chapter B we consider the distributional convergence of the spectral norm of
the scaled eigenvalues of large dimensional circulant, reverse circulant and symmetric
circulant matrices when the input sequence is independent and identically distributed
with appropriate heavy tail. For instance, suppose {Z;, t € Z} is a sequence of i.i.d.
random variables with common distribution F' where F' is in the domain of attraction
of an a-stable random variable with 0 < o < 1. Now consider RC), with input sequence
{Z;}. Then under some conditions on {Z;}, we show that |b, 1 RC,|| LA Y., where Yy, is
distributed as SQ(C';%, 1,0) and b, =~ n'/*Ly(n) for some slowly varying function L.
Note that in this heavy tail situation the limit distribution is different from the Gumbel
distribution. We also establish the distributional convergence of the spectral norm of
circulant and symmetric circulant matrices. With such heavy tail inputs we are not able
to obtain the exact limit of the spectral norm of the Toeplitz matrix. But we provide
good upper and lower bounds in the distributional sense.

When the input sequence is a stationary two sided moving average process of infinite
order, it is difficult to derive the limiting distribution of the spectral norm. For such
an input sequence, we scale the eigenvalues of circulant type matrices by the spectral
density at appropriate ordinates and study the limiting behaviour of the maximum
of the modulus say M, in Chapter @l There in Section we consider stationary
two sided moving average process of infinite order based on light tail entries and show
distributional convergence of M for circulant type matrices. For instance, suppose {x, }

is the two sided moving average process as in ((LZI]) and

M(n~Y2RC,, f) = max _ Nl
1<k<3 27Tf(u)k)
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where \;, are the eigenvalues of n='/2RC,, and f is the spectral density of {z,}. Then

under some assumptions on {x,} we show that

M(n~Y2RC,, f) —d, D
—_—

Cq

A

)

where ¢ = q(n) = [252], dy = vIng and ¢, = 2—\/%117.

Then in Section B2, we again consider the maximum of the modulus of scaled
eigenvalues (M) but with heavy tail entries and establish the weak limit of M for
reverse circulant, circulant and symmetric circulant matrices.

In Chapter [ we consider the point processes based on the eigenvalues of the reverse
circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that

they converge to Poisson random measures in vague topology. For example, let

M) =D e, 2y ()

q
3=0 a

be a point process based on the points {(w;, Aj;bq
q

), 0 < j < ¢} where {)\;} are the
eigenvalues of n='/2RC,, and {w; = 2%} are the Fourier frequencies, ag, b, are appro-
priate scaling and centering constants and ¢ = [ % ]. Then under some conditions on the
entries we showed that 7, A 7, where 7 is a Poisson process on [0, 7] x (—o0, 0o] with
intensity measure 7~ 'dt x e *dux.

The joint convergence of upper k-ordered eigenvalues and their spacings follow from
this result of Poisson convergence. We extend these results partially to the situation
where the entries come from a two sided moving average process.

In Chapter B we list some open problems that arise in the context of the thesis.



Chapter 0: Introduction

16




Chapter 1
Matrices and eigenvalues

In this chapter we give a brief description of the matrices of our interest. Although
some of them have been already introduced in Chapter @, for the sake of completeness,
we again discuss them here. Then we describe their eigenvalues whenever they can
be obtained in some explicit form. In Section [l we first describe the circulant type
matrices, and the Toeplitz and the Hankel matrix. In later chapters we deal mainly with
these matrices. At the end of this section we give a brief description of two other well
known matrices, namely, the Wigner matrix and the sample covariance type matrix.
In Section [CZ, we describe the structure of the eigenvalues of circulant type matrices,

which will be used extensively in later chapters.

1.1 Some LDRMs of interest

The sequence of variables which will be used to construct the matrices is called the

input sequence. It shall be of the form {x;;7 > 0} or {x;;; 4,5 > 1}.

Circulant matrix: The circulant matrix is defined as

i) T ro ... Tpn—2 Ip-1
Tn—1 Zo Ty ... Tp-3 Tp-2
C, =| Th—2 Tpn-1 To ... Tp-4 Tn-3
X X X e Tp— X
s 2 23 n-1 To |

For 1 <j <mn—1,its (j + 1)-th row is obtained by giving its j-th row a right circular

shift by one positions and the (4, j)-th element of the matrix is Z(;_i1n) mod n-

17
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Symmetric circulant matrix: The symmetric version of the usual circulant is defined

as B _
rog 1 X2 ... T2 X1
r1 g X1 ... T3 X2
SC, = | r2 x1 x9 ... Ty T3
| 1 2 3 1 0 | nXn

The first row (xg 21 2 ...x2 x1) is a palindrome and the (j + 1)-th row is obtained by

giving its j-th row a right circular shift by one position. Its (4, j)-th element is given by

Tn/2—|n/2~li—j||-

Reverse circulant matrix: The reverse circulant matrix is given by

i) r1 T2 ... Tpn—2 Ip-1
I ro I3 ... Tpn-1 i)
RC,, = T2 xr3 T4 ... X0 T
| Tn—1 T0o T1 ... Tp-3 Tp-2 | nxn

For 1 < j <mn—1,its (j + 1)-th row is obtained by giving its j-th row a left circular

shift by one position. This is a symmetric matrix and its (,j)-th element is given by

L(i4j—2) mod n-

k-circulant matrix: This is a generalization of the usual circulant matrix. For positive

integers k and n, the n X n k-circulant matrix is defined as

i) T xT9 N Tn—2 Tpn—1
Ipn—k Tn—k+1 TIn—k+2 -+ LTn—-k—2 Tpn—k-1
Arn = | Tn—2k Tn-2k+1 Tn-2k4+2 --- Tn-2k-2 Tn-2k—1
xr x i e Lle— Tl—
| k k+1 k+2 k—2 k=1 | ,.xn

We emphasize that all subscripts appearing above are calculated modulo n. For
1 <j<n-—1,its (j + 1)-th row is obtained by giving its j-th row a right circular
shift by k positions (equivalently, k¥ mod n positions). Observe that the circulant and
the reverse circulant are special cases of the k-circulant when we let k =1 and k=n—1

respectively.
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Toeplitz matrix and palindromic Toeplitz matrix: The Toeplitz matrix is a

symmetric matrix and its (7, j)-th element is x|;_;. So it is given by

) I X9 vee Tp—2 Tp-—-1
Tl Zo Tl oo ITp—-3 Tp-—2
T, = X9 1 X0 oo Tp—4 Tp—3
Tp— Tp— Tp— c. X X
| tn—1 n—2 n—3 1 0 1 nxn

Nonrandom Toeplitz matrices have been around in mathematics for a long time and
their properties are well understood. See for example the classic book by Grenander
and Szegd (1984) [74]. Recent information on this matrix may be found in Béttcher
and Silbermann (1999) EH].

The palindromic Toeplitz matrix is the palindromic version of the usual symmetric
Toeplitz matrix. It is defined as (see Massey, Miller and Sinsheimer (2006) [85]),

ro 1 T2 ... T2 T1 X9

r1 9 X1 ... X3 T2 X1

ro X1 X9 ... T4 T3 X2
PT, =

r1 T2 X3 ... 1 T T1

ro 1 T2 ... T2 T1 X9

- - nxn

Observe that the n x n principal minor of P11 is SC,. So P1T, is close to SC,,.

Hankel matrix: The (7, j)-th entry of the n x n random Hankel matrix H,, is xi};_2.

It is closely related to the Toeplitz matrix and is given by

i) I T2 e Tpn—2 Tn—-1
T xT9 T3 P | Tn
H, = X9 xs3 x4 R Tn Tp41
Tn— T X e Top— Ton—
| “n—1 n n+1 2n—2 2n—1 1 nxn

For detailed properties of Hankel matrices see the references cited above for the Toeplitz

matrices.

Now, we give brief description of a few well known matrices in random matrix liter-

ature though we shall not use them later.
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Wigner matrix: A Wigner matrix (see Wigner (1955,1958) [I30L[I31]) of order n and
scale parameter o is a Hermitian matrix of order n, whose entries above the diagonal
are independent complex random variables with zero mean and variance o2, and whose

diagonal elements are i.i.d. real random variables. So this matrix is given by

wip w2 w13 ... Wi(p—1) Win

W21 W22 W23 ... w2(n,1) Wan,

Wp,=| w31 w32 w33 ... W3p-1) Ws3n
i Wnp1 Wp2 Wp3 ... wn(n_l) Wnn, 1xn

where wy; = wj;, for j < k.

Sample covariance type matrices: Suppose {x;;, j,k = 1,2,...} is a double array
of i.i.d. complex random variables with mean zero and variance one. Write x) =

(g, ..., xpr) and let X,, = [x1 x2 -+ Xp]. In LDRM literature, the matrix
S, =n"1X,X:

is called a sample covariance matrix (in short an S matrix). As a concrete example, if
{x;;} are real normal random variable with mean zero and variance one, then S, is a
Wishart matrix. Note that we do not centre the matrices at the sample means as is the
convention in defining the sample covariance matrix in the statistics literature. This
however, does not effect the LSD.

Now let Yn1 2 be any p X p Hermitian matrix, independent of X,,. Define

B, =n"'Y2X, X Y1/2,
The matrices B,, are called sample covariance type matrices.

Matrix with i.i.d. entries: The matrix with i.i.d. entries (real or complex) has
also received considerable attention in the literature and has given rise to the so called

circular law conjecture. It is given by

) T X9 e Tn—2 Tn—1

Tn Tn+1 Tn+42 co. I2p—2 T2p—1

U, = Tan Ton+1 Toan4+2 ... T3n—2 T3n—1
| Tn2—n  Tp2—n41 TnpZ-ny2 --- Tp2_2 Tp2-1 |
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1.2 Description of eigenvalues

For most of the matrices in LDRM literature, explicit expression of the eigenvalues are
not known. Below we give brief descriptions of the eigenvalues of circulant type matrices

and we will use these descriptions very often in the later chapters. Define

wk:@ for 0<k<n-1. (1.2.1)
n

1.2.1 Circulant matrix

Its eigenvalues {\;, 0 < k < n— 1} are given by (see, for example, Brockwell and Davis

(1991) [E6)):

n—1 n—1 n—1
A = ij exp(iwgj) = ij cos(wgj) —|—i2xj sin(wgj), 0<k<mn-—1
=0 =0 =0

1.2.2 Symmetric circulant matrix

The eigenvalues {\;, 0 <k <n — 1} of SC), are given by:

(a) for n odd:

13]
Ao :$0—|—2ij

j=1
15] n
A = 20 + Qlej cos(wgj), 1<k< L§J
j:
with A\, = Ap for 1 <k < |5].
(b) for n even:
n_q
Ao :CCQ—FQZCC]'—FCC”/Q
j=1
n_q
. k n
A =29+ 2 Zl zjcos(wif) + (1) w0, 1<k < 3
j:

with A, = Ay for 1 <k < 3.
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1.2.3 Reverse circulant matrix

The eigenvalues {\g, 0 <k <n — 1} are given by (Bose and Mitra (2002) [E1]):

n—1
)\0: E T4
J=0

n—1
Az = Z(—l)jxj, if n is even
=0
n—1 n—1
Me = —Appopp = |Zoxjexp(iwkj)|, L<k<[——]
j:

1.2.4 k-circulant matrix

Here we give a brief description of the eigenvalues of the general k-circulant matrix. A
more detailed analysis of the eigenvalues, useful in deriving the limiting distribution of
the spectral radius for a specific class of k-circulant matrices, has been developed in
Section For further information on the properties of these eigenvalues, see Bose,
Mitra and Sen (2008) [E4]. Let

n—1
v =y, = cos(2n/n) + isin(2n/n) and A\, = leukl, 0<j<n. (1.2.2)
=0
For any positive integers k, n, let p; < p2 < ... < p. be all their common prime factors
so that,
(& C
n=n Hpqq and k =k Hpg“. (1.2.3)
q=1 q=1

Here oy, B; > 1 and n/, K/, p, are pairwise relatively prime. For any positive integer s,
let
Zs=1{0,1,2,...,s —1}.

Now for fixed k and n, define the following sets
S(z) = {zkb mod n’ : b > 0}, (1.2.4)

where 0 <z <n’ and n' is as in (CZ3). For any set A, let #A denote its cardinality.
Let g, = #S(x) and
Uk = #2 € Ly 2 go < g1} (1.2.5)

We observe the following about the sets S(x).

1. S(x) = {zk® mod n' : 0 < b < #S(x)}.
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2. For x # u, either S(x) = S(u) or S(z) NS(u) = (. As a consequence, the distinct

sets from the collection {S(z) : 0 <z < n'} forms a partition of Z,.

We shall call {S(z)} the eigenvalue partition of {0,1,2,...,n — 1} and we will denote

the partitioning sets and their sizes by

{Po={0},P1,....,P_1}, and n; =#P;, 0<i<l. (1.2.6)
Define
yj = H My, 7=0,1,...,1—1 where y=n/n" (1.2.7)
teP;

The following theorem provides the formula solution for the eigenvalues of Ay ,,. In
what follows, x(A)(\) stands for the characteristic polynomial of the matrix A evaluated

at A but for ease of notation, we shall often suppress the argument A and write simply

X (A4).
Theorem 1.2.1 (Zhou (1996) [I38]). The characteristic polynomial of Ay, is given by

/-1

X (Akn) ) = A" T O = wy), (1.2.8)
j=0

where y; is as defined in ([CZT).

Proof of the above theorem is available in Zhou (1996) [L38](Chinese article) and
also in Bose, Mitra and Sen (2008) [44]. For sake of completeness we reproduce the
proof given in Bose, Mitra and Sen (2008) [4]. Here recall {«} and {3,} from ([CZ3))
and define

m = max [Bq/cql, [tlmp :=tk™ mod b, bis a positive integer. (1.2.9)
<g<c

Let ey,4 be a d x 1 vector whose only non-zero element is 1 at (m mod d)-th position,

E,, 4 be the d x d matrix with ej,, 4, 0 < j < d as its columns and for dummy symbols
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00,01, ..., let Ay, 4 be a diagonal matrix as given below.
o]
0
em,d = 1 ) (1.2.10)
0
- 0 <4 dx1
Em,d = [eo,d €m,d €2m.d- - e(dfl)m,d] s (1211)
Am,b,d = diag [5[0}%1), 5[1]m,b7 ceey 5[j]m,b’ ey 5[d_1}m,b:| . (1.2.12)
Note that
Aop,q = diag [50 mod 5 %1 mod b 53‘ mod &+ %41 mod b] :

We need the following lemma for the main proof.

Lemma 1.2.2. Let 7 = (w(0), (1), ..., 7(b—1)) be a permutation of (0,1,...,b—1).
Let

P, = [eﬂ(O),b €r(1),b ---en(b—l),b] .

Then, Py is a permutation matriz and the (i,j)th element of P7rTEk7bA0,b,bP7r s given
by

8 if (i,7) = (7Y (kt mod b), 7= 1(t)), 0<t<b

Pl EypDop6Pr )i =
(P; k,b20,b,b n)w {0 otherwise.

The proof is easy and we omit it.

Lemma 1.2.3. Let k and b be positive integers. Then

X (Akp) = X (ErpDopp) - (1.2.13)
where, d; = Z?;é aw’!, 0<j <b, w=cos(2r/b) +isin(27/b), i* = —1.

Proof. Define the b x b permutation matrix

0 Iy
1 o |

Observe that for 0 < j < b, the j-th row of Aj; can be written as aTng where ng

P, =
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stands for the jk-th power of P,. From direct calculation, it is easy to verify that
P, =UDU¥ is a spectral decomposition of P, where

D = diag(l,w,...,w"), (1.2.14)
U = [UO Uy - ub,l] with (1.2.15)
uj = b71/2(1,wj,w2j, . ,w(bfl)j)T, 0<j<hb.

Note that §; = aTuj, 0 < j < b. From easy computations, it now follows that
U*Ap U = Ep Do b,
so that, x (Akp) = X (ExpQopp), proving the lemma. O

Lemma 1.2.4. Let k and b be positive integers and, x = b/ged(k,b). Let for dummy

variables Yo, Vi, Y2y« Vo—1,
[ = diag (70, Y15 V25> Y-1) -
Then
X (Brp x T) = N7 (By o x diag (Yo mod by Wk mod bs-- > V(e—1)k modd))  (1.2.16)
Proof. Define the following matrices
Bixe = [€0 €kb €2kp -+ €@-1)kp] and P =[B B]

where B¢ consists of those columns (in any order) of I, that are not in B. This makes
P a permutation matrix.

Clearly, E = [B B --- B] which is a b x b matrix of rank =, and we have

X (Eppl) = x (PTEppl'P).
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Note that,
Wi I I
PTE,IP = ’ ’ ’ rpP
| Op-2)xz  Op—z)xz Op—z)xz
S
= P
Ob—z)xb
¢ ] CB CBe
Op—a)xb 0 0
where,
C = [I,I, - LT
= [Im Im te I:v] X diag(%, Y1y e 717—1)-

Clearly, the characteristic polynomial of PTEk,bI’P does not depend on C' B¢, explaining

why we did not bother to specify the order of columns in B€. Thus we have,
X (BppD) = x (PTER,TP) = X" (CB).
It now remains to show that

CB = Ej; x diag (70 mod b» Tk mod bs Y2k mod bs - - - » Y(z—1)k mod b) -

Note that, the j-th column of B is ejip.  So, j-th column of CB is actually the

(jk mod b)-th column of C. Hence, (jk mod b)-th column of C is ;i mod b €jk mod -
So,

CB = Ej, x diag (Y0 mod b» Tk mod b» Y2k mod bs - - - » Y(z—1)k mod b)

and the Lemma is proved completely. O

Proof. of Theorem [LZ1l We first prove the Theorem for Ay ,s. Since k and n' are
relatively prime, by Lemma [[2Z3]

X(Ak,n’) = X(Ek,n/AO,n/,n’)-

Get the partitioning sets Po, P1, ... of {0,1,...,n' —1}, as in ([CZH) where P; = {r;k”
mod n/, 0 < z < #P;} for some integer rj. Let Ny = 0 and N; = zgzl n; where

n; = #P;. Define a permutation 7 on the set Z,, as follows:

7(0) =0 and 7(N; +t) = rj;1k""" mod n' for 1 <t <njiq and j > 0.
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This permutation 7 automatically yields a permutation matrix P, as in Lemma [[Z2]
Consider the positions of ¢, for v € P; in the product PEEk,n/AO,n/7n/Pﬂ. We know,

v =r;k'""1 mod n’ for some 1 <t < n;. Thus,
a1 (rjkt_l mod n') =Nj_1+t, 1<t<n;
so that, position of §, for v = rjkt*I mod n/, 1 <t <n;in PWTEIMIAOWP,T is given by

(Nj_l—i-t—i-l, Nj_l —i—t) if, 1§t<nj

(ﬂ_l(rjk:t mod n'),ﬂ_l(rjkt_l mod n')) = ]
(Nj—1+1, Nj—l —i—nj) if, t:nj

Hence,
PLE} Do Pr = diag (Lo, L1, ...)

where, for j >0, if n; = 1 then L; = [5rj] is a 1 x 1 matrix, and if n; > 1, then,

0 0 0 .. 0 0 K51 mod

81, mod n 0 0 ... 0 0

Lj: 0 5rjkmodn’ 0o ... 0 0
0 0 0 o O 2 e 0. |

Clearly, x(Lj) = A" —y;. Now the result follows from the identity

X (Ek,n/AO,n/,n’) = H X(Lj) = H()‘nj - yj)'

Jj=0 J=0

Now let us prove the results for the general case. Recall that n = n’ x H;leqﬁq. Then
again using Lemma [C2Z3],
X(Ak,n) = X(Ek,nAO,n,n)-

Recalling Equation (CZY), Lemma and using Lemma [[Z4] repeatedly with y =

n/n',

X(Ak,n) - X(Ek,nAO,n,n)

)‘nin,X(Ek,n’ Am,n,n’)

= )\"_",X(Ek7n/Am+j,n7n/) [ for all j > 0]

= AX (B % diag (0j0jo,us Ilons O2elons -+ Ol(n—1)glo,n)) -

Replacing Ay v s by diag (6[0]()%, Olyloms O2yloms -+ 5[(n/71)y]o,n)’ we can mimic the rest

of the proof given for Ay, ,, to complete the proof in the general case. O
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Chapter 2

Limiting spectral distribution of

circulant type matrices

In this chapter we establish the limiting spectral distribution of circulant type random
matrices with dependent inputs. Bose and Mitra (2002) [ first established the LSD
of reverse circulant matrix with i.i.d. input under finite third moment assumption and
Bose and Sen (2008) H3]) relaxed the moment assumption using a different approach.
Sen (2006) [I08] established the LSD of the usual circulant matix under finite third
moment assumption of i.i.d. inputs. Recently Bose, Mitra and Sen (2008) [#4] establish
LSD for some specific type of k-circulant matrices with i.i.d. entries. Thus most of the
existing work on LSD of circulant type matrices assumes the input sequence {x;} to be
independent.

It is interesting to see what happens to the LSD results of circulant type matrices if
dependent inputs are allowed. There are very few works dealing with dependent inputs
for random matrices. For instance, Bose and Sen (2008) [43] established LSD for some
specific type of dependent entries for the Toeplitz and Hankel matrices. Bai and Zhou
(2008) [19] established the LSD of large sample covariance matrices with AR(1) entries.
With the current methods used to establish LSD, such as the moment method or the
Stieltjes transform method, it does not appear to be easy to extend the known results
on LSD to general dependent situations for circulant type matrices. So we restrict
ourselves to a specific type of dependent inputs.

We assume that {x;} is a stationary linear process. Stationary linear process is an
important class of dependent sequence. For instance the widely used stationary time
series models such as AR, MA, ARMA are all linear processes. Under very modest
conditions on the process, we are able to establish the LSD for circulant type matrices.
These LSD are functions of the spectral density of the process.

Here is an outline of this chapter. In Section ZZTlwe give a few basic definitions related

29
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to limiting spectral distribution of large dimensional random matrices. In Section
we briefly describe three methods of establishing LSD’s of different LDRM. Then in
Section we deal with the LSD of circulant type matrices with independent entries
and in Section 4] we state and prove results on the LSD for dependent entries. In
Section we report some simulation which demonstrate our theoretical results.

Throughout the chapter ¢ and C' will denote generic constants depending only on
dimension, d of the corresponding Euclidean space.

The results of Bose, Hazra and Saha (2009) [33] are based on this chapter.

2.1 Basic definitions

Unless otherwise stated, the entries of all matrices are real in general.

Definition 2.1.1. For any square matriz A, the probability distribution which puts equal
mass on each eigenvalue of A is called the Empirical Spectral Measure of A. The
corresponding distribution function is called the Empirical Spectral Distribution
Function (ESD) of A.

If X\ is an eigenvalue of an n X n matrix A, with multiplicity m, then the Empirical
Spectral Measure of A,, puts mass m/n at A. Note that if the entries of A are random
then it is a random probability measure. If A\i, Ao, ..., A, are the eigenvalues, then the

Empirical Spectral Distribution Function (ESD) of 4,, is given by
Fa,(z,y) =n"' Y H{R(N) <z, Z(\) < y}.
i=1

If the eigenvalues are all real then the Empirical Spectral Distribution Function
(ESD) of A, is given by

Fa, (z) =n"" Zn:]l{)\i <z}

The ezpected spectral distribution function of A, is defined as E(F,(-)). This ex-
pectation always exists and is a distribution function. The corresponding probability

distribution is often known as the expected spectral measure.

Definition 2.1.2. Let {A,}°, be a sequence of square matrices with the correspond-
ing ESD {F4,}>° ;. The Limiting Spectral Distribution (LSD) of the sequence is
defined as the weak limit of the sequence {Fa,}, if it exists. If {A,} are random, the
limit s understood to be in some probabilistic sense, such as “almost surely” or “in Lo”

or “in probability”.
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Suppose elements of {A,} are defined on some probability space (€2, F,P), that
is, {A,} are random. Then {Fj4, (-)} are random and are functions of w € € but we
suppress this dependence. Let F' be a nonrandom distribution function. We say the
ESD of A,, converges to F' almost surely if for almost every w € 2 and at all continuity
points (z,y) of F

Fy, (z,y) — F(z,y) as n — oo.

We say the ESD of A, converges to F' in Lo if at all continuity points (x,y) of F,

/Q [FA”(x’y) o F(x>y)]2dp(w) — 0 asn — oo.

The ESD of A, converges to F in probability if for ¢ > 0 and at all continuity points
(z,y) of F,
P(|Fa,(z,y) — F(z,y)| > €) — 0 as n — oo.

It is easy to see that in this case,

convergence almost surely = convergence in Lo < convergence in probability.

2.2 Methods used in establishing LSD

Several methods to establish the LSD of LDRM are known in the literature. Out
of these, the two most common methods are the moment method and the Stieltjes
transform method. Though, in this thesis we will not use any of them, for sake of
completeness we briefly explain these two methods below. Then we explain the method
of normal approximation which is most suited for circulant type matrices. This will be

our method of choice in this thesis.

2.2.1 Moment method

Suppose {Y,,} is a sequence of real valued random variables with distribution functions
{F,} such that E(Y,”) — 3, for every positive integer h where {3, } satisfies Carleman’s

condition:

S gy = . (2.2.1)
h=1

Then there exists a distribution function F', such that for all A

8() = n(F) = [ ")

and Y,, converges to F in distribution.
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For any positive integer h, the h-th moment of the ESD of a real symmetric n x n

matrix A, with eigenvalue A1, Ao, ..., A\, has the following nice form:
L~yn_ Lo
h-th moment of the ESD of A = — E A = —tr(A") = Bi(A), say.
n n

i=1

Now, suppose {4,,} is a sequence of n x n real symmetric random matrices such that

Bh(An) - ﬂh-

Here the convergence takes place either “in probability” or “almost surely” and {0}
are nonrandom. If {,} satisfies Carleman’s condition then we can say that the LSD of
the sequence {A,} exists and is some distribution function F' (in the corresponding “in
probability” or “almost sure” sense).

If convergence of the empirical moments takes place almost surely, then

we{weQ: fr(dn)(w) — By, forall h} = F,(w) A F,

where F), is the ESD of A,,. That is, F,, D Fas.
Note that the computation of 8j,(A,) involves computing the trace of A” or at least
its leading term. This ultimately reduces to counting the number of contributing terms

in the following expansion, (a;; denotes the (7, j)-th entry of A):

tr(A") = > i Gy iy
1<i1 iz, <n
The method, though straightforward, is not practically manageable in most cases. The
combinatorial arguments involved become quite unwieldy and even practically impossi-
ble as h and n increase.

However, this method has been successfully applied to Wigner matrix, sample co-
variance matrix and F matrix and recently to symmetric Toeplitz, Hankel, Markov,
reverse circulant and symmetric circulant matrices. See Bai (1999) [I0] for some of the
arguments in connection with Wigner, sample covariance and I’ matrices. For the ar-
guments concerning Toeplitz, Hankel and Markov matrices see Bryc, Dembo and Jiang
(2006) E7 and Hammond and Miller (2005) [75]. For palindromic Toeplitz and circu-
lant matrices, see Massey, Miller and Sinsheimer (2007) [88] and for reverse circulant

and symmetric circulant matrices, see Bose and Sen (2008) [E3].
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2.2.2 Stieltjes transform method

Stieltjes transforms play an important role in deriving LSDs. They have also been used

in studying rates of convergence.

Definition 2.2.1. For any function G of bounded variation on the real line, its Stieltjes

transform sq is defined on {z : u+iv,v # 0} as

> 1
= G(dz).
sol2) = [~ —Glan)
We shall be concerned with cases where G is the cumulative distribution function
of some probability distribution on real line. If A has real eigenvalues \;, 1 < i < n,
then the Stieltjes transform of the ESD of A is

5a() = %Z - L - = %tr[(A _Y).
i=1""

Let {A,} be a sequence of random matrices with real eigenvalues and let the corre-
sponding sequence of Stieltjes transform be {m,}. If m,, — m in some suitable manner,
where m is a Stieltjes transform, then the LSD of the sequence {A,,} is the unique prob-
ability on the real line whose Stieltjes transform is the function m. The convergence
of the sequence {m,} is verified by first showing that it satisfies some (approximate)
recursion equation. Solving the limiting form of this equation identifies the Stieltjes
transform of the LSD.

For detailed developments of the properties of Stieltjes transform see Silverstein
(2009) [IT13]. The method has been successfully applied to the Wigner and the sample
covariance type matrices. See Bai (1999) [I0] for details on the use of this transform to
derive the convergence of the ESD. For its application in the study of rate of convergence
of ESD see Bai (1999) [10], Bai, Miao and Yao (2003) [I2] and Gotze and Tikhomirov

(2004, 2005) [69,70].

2.2.3 Method of normal approximation

This method is most suited for the circulant type matrices. To apply this method
fruitfully, one has to know the explicit formula of the eigenvalues. For most of the
matrices in the literature, it is very difficult to compute the eigenvalues. However, as
we have seen, for circulant type matrices the eigenvalue formula is known explicitly.
This makes the normal approximation method ideally suited for those matrices. Bose
and Mitra (2002) EI] first used this method to find the LSD of reverse circulant and

symmetric circulant matrices with i.i.d. entries. Recently Bose, Mitra and Sen (2008)
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4] used this to establish the LSD for some specific type of k-circulant matrices with
i.i.d. entries.

We use this method to prove the LSD results of circulant type matrices with inde-
pendent and dependent inputs. This method is explained in details later in Sections
and 2241

2.3 Results on LSD with independent inputs

First recall that the ESD of A,, converges to F in Lo, where F' is a distribution function,
if at all continuity points (z,y) of F,

/ [Fa, (z,y) — F(:U,y)]QdP(w) — 0 as n — oo. (2.3.1)
Q
Note that the above relation holds if

E[F4, (z,y)] — F(z,y) and V[F4,(z,y)] — 0 (2.3.2)

at all continuity points (z,y) of F. We often write F,, for F4, when the sequence of
matrices under consideration is clear from the context.

As mentioned earlier we use the method of normal approximation to prove our
results. For this we first state the following result on normal approximation (Berry-

Esséen bound).

Lemma 2.3.1. Let X1, ..., X} be independent random vectors with values in R?, having
zero means and an average positive-definite covariance matriz Vi, = k=1 Zle Cov(Xj).
Let Gy, denote the distribution of kil/QTk(Xl + -+ Xy), where Ty, is the symmetric,
positive-definite matriz satisfying T? = kal, n > 1. If for some § > 0, E ||Xj\|(2+5) <
o0, then there exists C' > 0 (depending only on d), such that

(1)

sup |Gy (B) — ®a(B)| < Ck~*2nin(Vi)] "+ pass
BeC

(ii) for any Borel set A,

Gr(d) = @a(A)] < Ch*PDin (V)] pays + 2 sup 24((94)" ~ )
yeR

where ®g is the standard d dimensional normal distribution function, C is the class
of all Borel measurable convex subsets of R, pyys = k™1 Z§:1E X139 and n =

Cpaysn=/2.

Proof of Lemma 3] follows easily from Corollary 18.1, page 181 and Corollary
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18.3, page 184 of Bhattacharya and Rao (1976) [28]. We omit its proof. Now consider

the following assumption.

Assumption 2.3.2. {z;} are independent, E(z;) = 0, V(x;) = 1 and sup, E |z;|**° <

Q.

We are now ready to establish the LSD of different circulant type matrices with
independent inputs satisfying Assumption Most of the results in this section are
known in the literature but in all cases at least finiteness of third moment of i.i.d. inputs
had been assumed. Here by using a better Berry-Esséen bound we reduce the moment
condition to (2 + J) for some § > 0. These results are also precursor to the new results
on the LSD for dependent inputs derived in the later sections.

The first theorem is on the LSD of usual circulant matrix with independent inputs.

Theorem 2.3.3. If Assumption [Z233 is satisfied then the ESD of %Cn converges in
Lo to the two-dimensional normal distribution given by N(0, D) where D is a 2 X 2

diagonal matriz with diagonal entries 1/2.

Remark 2.3.4. Sen (2006) [108] proves the same result under finite third moment
assumption. Meckes (2009) [91] shows similar type of result for independent complex
entries. In particular, if E(z;) =0, E|z;|> =1 and

n—1

1 )
j:

for every € > 0, then the ESD converges in Lo to the standard complex normal distri-

bution.

Proof of Theorem [ZZ33. First recall the eigenvalues of circulant matrices from Section
[L2T and then observe that we may ignore the eigenvalue A, and also A, whenever n

is even since they contribute atmost 2/n to the ESD F,(x,y). So for z,y € R,

n—1
E[Fn(x7y)] ~ n! Z P(by < z,¢ < y),
k=1,k£n/2
where
L~ 1= ok
by = NG jz;xj cos(wkj), ok = NG jzoxj sin(wgj), wp = % (2.3.3)

Recall from Z32) that it is enough to show

E[F,(z,y)] — ®op(x,y) and VI[F,(z,y)] — 0.
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To show E[F),(z,y)] — ®o p(x,y), define for 1 < k < n — 1, (except for k = n/2) and
0<li<n—1,
Xip = (\/ixl cos(wil), V2 sin(wkl))/.

Note that
E(X.4) =0 (2.3.4)
n—1
nt Z Cov(Xyp) =1 (2.3.5)
=0
n—1
sup sup [n* ZE | X |®F9) < C < . (2.3.6)
n 1<k<n -0
For k # n/2

n—1
(b < a,cp <y) = {n 12 Zlek < (V2z,v2y)'}.
=0

Since {(r,s) : (r,8)" < (vV2x,v/2y)'} is a conver set in R? and {X;, | =0,1,...(n—1)}
satisfies (ZZ9)—-EZTI]), we can apply Part (i) of Lemma B3] for k£ # n/2 to get

n—1
[P (n~1/? ZXl,k) < (V2z,v2y)') = P((N1, Vo) < (V2z,V2y))|
1=0

n—1
< Con?pt ZE X0 ]| 2] < Cn™9/2 = 0, as n — .
1=0
Therefore
1 n—1
Jim E[F,(z,y)] = lim — > Pk <z <y)
k=1,k#n/2
1 n—1
_ : - / /
= Jim — > (N, Ny) < (V2z,V2y))
k=1,k#n/2
= @07D(1‘,y). (237)

Now, to show V[F,(z,y)] — 0, it is enough to show that

1 - 1 -
— > Cov(Jy, Jw) = ~ > [E(JkJw) —E(JR) E(Jp)] — 0. (2.3.8)
k#k' 3k k'=1 k#k! sk, k'=1
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where for 1 < k < n, J is the indicator that {bx < z,¢cx < y}. Now as n — oo,

LSRRG = (L3R 53 (RO (st
k=1

2
n
k#£k!;k,k'=1 k=1

So to show ([Z3H), it is enough to show as n — oo,

1
= > E(UrJiw) = [@op(z.y)]*.
" k=1

Along the lines of the proof used to show ([Z31) one may now extend the vectors of two
coordinates defined above to ones with four coordinates and proceed exactly as above
to verify this. We omit the routine details. This completes the proof of Theorem E233]

O

In the following two theorems we state the LSD results for symmetric circulant and
reverse circulant matrices with independent entries. Idea of the proof is similar to the

previous proof, so we skip it.

Theorem 2.3.5. If {x;} satisfies Assumption[ZZ 3, then the ESD of ﬁSCn converges

weakly in Lo to the standard normal distribution.

Theorem 2.3.6. If {x;} satisfies Assumption ZZZA then the ESD of ﬁRCn converges
weakly in Lo to F', which is the symmetric square root of the chi-square with two degrees

of freedom, having density
f(z) = |z|exp(—2?), —o0 <& < o0. (2.3.9)

This limiting distribution is also known as the symmetrized Rayleigh distribution.

Remark 2.3.7. Bose and Mitra (2002) [{1] prove similar results for symmetric circu-
lant and reverse circulant matrices with finite third moment assumption on i.i.d. inputs.

Here by using better Berry-Esséen bound we reduce the moment condition.

Remark 2.3.8. One can derive the LSD of the palindromic Toeplitz matriz using The-
orem [ZZZA. For this, we use Cauchy’s interlacing inequality (see Bhatia (1997) |27,
page 59):

Interlacing inequality: Suppose A is an n X n symmetric real matriz with eigen-
values A\p, > A\p—1 > ... > A1. Let B be the (n — 1) x (n — 1) principal submatriz of A
with eigenvalues f,—1 > ... > pu1. Then

A Z -1 2 A1 2 =2 = ... 2> A2 = 1] = A,
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As a consequence

1
1Fa = Fpllo < ~
n

where Fy denote the ESD of the matriz A and ||f||cc = sup, | f(2)].
By using interlacing inequality, if {x;} satisfies Assumption [ZZ32, then the ESD of

%PTn converges weakly in Lo to the standard normal distribution.

2.3.1 k-circulant matrix

Now we come to the k-circulant matrix. Establishing the LSD for general k-circulant
matrices appears to be a difficult problem. From the formula solution of the eigenvalues
of k-circulant matrix, given in Section [L2Z4] it is clear that for many combinations of
k and n, a lot of eigenvalues are zero. For example, if k is prime and n = m X k
where ged(m, k) = 1, then 0 is an eigenvalue with multiplicity (n —m). To avoid this
degeneracy and to keep our exposition simple, we primarily restrict our attention to the
case when ged(k,n) = 1.

In general, the structure of the eigenvalues depend on the number theoretic relation
between k and n. If we keep k (other than 1) fixed and let n tends to infinity, then LSD
may not exist. For example, the LSD of usual circulant matrices n~%/ 241, is bivariate
normal. The ESD of 2-circulant matrix n~/ 2A2,n looks like a solar ring with no mass at
zero for n large odd whereas if n is even the LSD has mass at zero (see Figures Bl and
E2). Similarly, if £ = 3 then the behaviour of the ESD depends on whether n is multiple
of 3 or not a multiple of 3 (see Figures and EZ3)). So, for a fixed value of k(# 1)
the LSD may exist if we let n goes to infinity only along a subsequence depending on
k. LSD in a few special cases are derived in Bose, Mitra and Sen (2008) [44] for i.i.d.
inputs. The next theorem of Bose, Mitra and Sen (2008) [4] tells us that the radial
component of the LSD of k-circulants with k£ > 2 is always degenerate, at least when
the input sequence is i.i.d. normal, as long as k = n°®) and ged(k,n) = 1. Observe
that, in this case also n tends to infinity along a subsequence and it is determined by
the condition ged(k,n) = 1.

Theorem 2.3.9 (Bose, Mitra and Sen (2008) [E4]). Suppose {z;}i>0 is an i.i.d. se-
quence of N(0,1) random variables. Let k > 2 be such that k = n°Y and n — oo with
ged(n, k) = 1. Then Fn_l/gAlm converges weakly in probability to the uniform distri-
bution over the circle with center at (0,0) and radius v = exp(E[log VE]), E being an

exponential random variable with mean one.

In some special cases Bose, Mitra and Sen (2008) [E4] prove the LSD with indepen-
dent entries. In particular, suppose {x;} are independent satisfying Assumption
Let {E;} beii.d. Exp(1), U; be uniformly distributed over (2g)-th roots of unity, Us be
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uniformly distributed over the unit circle where {U;}, {E;} are mutually independent.

Then the following results are established there.
Theorem 2.3.10 (Bose, Mitra and Sen (2008) [E4]). Suppose {z;};>0 satisfies Assump-
tion[Z.3 A Fix g > 1 and let p1 be the smallest prime divisor of g.

(i) Suppose k9 = —1+ sn where s = 1 if g = 1 and s = o(nP*~1) if g > 1. Then
F-1y24, , converges weakly in probability to U ([19-, E)Y?9 asn — oo.

(ii) Suppose k9 = 1+sn where s =0 if g =1 and s = o(nP 1) if g > 1. Then Eo-vza,,
converges weakly in probability to Ug(H?Zl Ej)1/29 as n — oo.

2.4 Result on LSD with dependent inputs

In this section we investigate the existence of the LSD of circulant type matrices under

the following dependent situation.

Assumption 2.4.1. {x,, n > 0} is a two sided moving average process

o0
Ty = Z ai€n_i, where a, € R and Z lan| < co. (2.4.1)
1=—00 nez
Assumption 2.4.2. {¢;, i € Z} are i.i.d. random variables with mean zero, variance

one and E |¢;|?T0 < oo for some § > 0.

We show that the LSD of circulant type matrices continue to exist in this depen-
dent situation under appropriate conditions on the spectral density of the process. The
LSD turn out to be appropriate mixtures of the normal distribution, the symmetrized
Rayleigh distribution, and some other related distributions. Quite expectedly, the spec-
tral density of the process is involved in these mixtures. These results also reduce to

the results given in Section when we specialize to i.i.d. inputs.

2.4.1 Spectral density and some notation

Under Assumptions 2T and L2, ), = Cov (Tg4n, 2¢) is finite and 3,5 [v;] < oo.

The spectral density function f of {x,} exists, is continuous, and is given by
flw) = L > explikw) = L [0 +2> v cos(kw)] for w € [0, 2n].
r i 2m k>1

Let
1 n—1 A )
In(wr) = ~| gxte—”“k Ck=0,1,...,n—1, (2.4.2)
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denote the periodogram of {x;} where wy = 2wk /n are the Fourier frequencies.
Define

PE) = D0 aet™ n(e) = RIGEX)L, da(e) = T(E)),  (243)

j=—o00

where a;’s are as in ([ZZJ]). It is easy to see that

(™) = [r(e™)]? + [ha(e™)]* = 21 f (w).

Let A A

B(w) = < wl(efw) —1,[)2(6“0 ) and for g > 2,

Pa(e™)  1(e’)

P1(e1)  —hg(e1) 0 0 0

Yo (e1) py(er) 0 0 0

0 0 Pr(e2)  —ih(e™?) 0
B(wi,...,wg) = | 0 0 Po(e™2) oy (e™2) 0

0 0 0 0 : 0

0 0 0 P1(e?9)  —hy(etw9)

0 0 0 Pa(e™9)  apy(es)

The above sets, functions and matrices will play a crucial role in the statements and

proofs of the main results later.

2.4.2 Circulant matrix with dependent input

Define for (z,y) € R? and w € [0, 27],

P(BW)(N1, No)' < V2(z,y)) if f(w)#0,

Hc(w,m,y):{ I(z > 0,y > 0) if f(w)=0,

where N1 and Ny are i.i.d. standard normal variables.
Let
Co={t€0,1] : f(2nt) = 0}.

Lemma 2.4.3. (i) For fized z,y, Hc is a bounded continuous function in w.

(i) Feo defined as follows is a proper distribution function.

1
Fc(x,y):/ Heo(2ms, x,y)ds. (2.4.4)
0
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(iii) If Leb(Co) = 0 then F¢ is continuous everywhere and can be expressed as

1 2, 2
1 _ vitvy
FC(CU,y) = // H{(v17v2)§(m7y)} [/0 W@ 2 f(2ms) dS] dvldv2. (245)
Further, Fc is bivariate normal if and only if f is constant almost everywhere
(Lebesgue).
(iv) If Leb(Cy) # 0 then F¢ is discontinuous only on Dy = {(z,y) : xzy = 0}.

The proof of the Lemma is easy and we omit it. We just show how the normality
claim in (iii) follows by applying Cauchy-Schwarz inequality to compare the fourth
moment and square of the variance and using the fact that for the normal distribution

their ratio equals 3.

Proof of [ZZ.3 (iii). If f is constant it easy to see that F¢ is bivariate normal. Now sup-
pose F¢ is bivariate normal. Let (X,Y") be a random vector defined on some probability

space with distribution function Fz. Now it is easy to see that
1 1
E(X) =0, E(X?) :7T/ f(27s)ds and E(X1%) :371'2/ f2(2ms)ds.
0 0
Since (X,Y) is bivariate normal, X is a normal random variable and hence
E(X") = 3[E(x?))?
1 1 2
= 3712/ f*(2rs)ds = 3n° (/ f(27rs)ds> . (2.4.6)
0 0
Now (ZZT) holds if and only if f is constant almost everywhere. O

Theorem 2.4.4 (Bose, Hazra and Saha (2009) [B3]). Suppose Assumptions [ZZ_1] and
2214 hold. Then the ESD of #Cn converges in Ly to Fo(-) given in (Z4.4)- B4

Remark 2.4.5. If {z;} are i.i.d with finite (24 ) moment, then f(w)=1/2r, and F¢
reduces to the bivariate normal distribution whose covariance matrix is diagonal with

entries 1/2 each. This agrees with the conclusion in Theorem 2223,

Before going into the proof of Theorem EZZ4] we observe a general fact which will

be used in the proofs.

Lemma 2.4.6. Suppose {\, i }1<k<n 1S a triangular sequence ofRd—valued random vari-

ables such that N\, = Ny i + Yni for 1 < k < n. Assume the following holds:

(i) imy oo 230 Py < &) = F(Z) for & € RY,
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(i0) Nty oo iz D25 1y Pl < &, < §) = F(2)F(3), for 7,5 € R,
(111) for any e > 0, maxi<g<yn P(|yni| >€) — 0 as n — oc.
Then,

(a) limy oo 2 370 PN < &) = F(&).

(b) Tty oo & S0y POk < 3 At < ) = F@)F ().

Proof. We define new random variables A, with P(A, = A\, ;) = 1/nfor k=1,...,n.
Then

1 n
P(A, <7) =~ D> Pk < ).
k=1

Similarly define E, (on the same probability space) with P(E, = n,;) = 1/n for
1 <k <nandY, with P(Y, = y,x) = 1/n for 1 < k < n. Now observe that
A, = E, 4+ Y, and for any € > 0,

n

P([Ya| > €) =

SEES

P(|ynk| >€) — 0, as n — o0
k=1

by Assumption (iii). Therefore A,, and E,, have the same limiting distribution. Now as

n — 00,

n

and this is conclusion (a).

To prove (b) we use a similar type of argument. Here we define new random variables
Ay, with P(A,, = (Apky Anig)) = 1/n? for 1 < k,1 < n. Similarly define E,, and Y. Again
An = En + ffn and

1 n
PYall > €)= — > P(l(ynp: yn)| > €) — 0,88 n — co.
k=1

So A,, and E,, will have same limiting distribution and hence conclusion (b) holds. O

Now we move to the main proof. This proof mainly depends on Lemma 3] which

helps us to use normal approximation, and Lemma ZZ7] given below which allows us
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to approximate the eigenvalues by appropriate partial sums of independent random
variables. The latter follows easily from Fan and Yao (2003) 58] (Theorem 2.14(ii),
page 63). We provide a proof for sake of completeness. For k =1,2,---  n, define

_ n—1
Sok—1 = Z et cos(wit), &op = 7 Z € sin(wyt).
—0 -

Lemma 2.4.7. Suppose Assumption [ZZ.]] holds and {e:} are i.i.d random variables

with mean 0, variance 1. For k=1,2,--- ,n, write

n—1
- % D we st = () [Cp—1 + o] + Yo (wi).
1=0

Then
Jnax. E|Y,(wg) — 0 as n— oo.
Proof.
n—1
A\ = i 1, et Wkt
n t=0
1 [e'e) n—1
- Z ajelwk] Ze elwk(tf_])
\/ﬁ j=—00 t=0
n—1
\/_ Z aje lwk] (Z etezwkt + Un])
j=—00 t=0
= (™) [€a—1 + i&ak] + Yo (wr),
where
n—1—j n—1 0o
Unj = Z ere’rt — Zete“”“t, Yy (wp) = n~ 12 Z aje"“* Uy, .
t=—j t=0 j=—o00

Note that if [j| < n, U,; is a sum of 2|j| independent random variables, whereas if

j| > n, U,; is a sum of 2n independent random variables. Thus E |U,,;|> < 2min(|j],n).
J J
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Therefore, for any fixed positive integer [ and n > [,

B |Va(wy)| < 0| (EU2)V?
[Yawn)| WZ“

J=—00
< 23 laslminll.
Jj=—00
< VB[ = Sl + X los
ljl<t 171>

The right side of the above expression is independent of k and as n — oo, it can be
made smaller than any given positive constant by choosing [ large enough. Hence,

maxi<k<n E |Yn(wk)| — 0. O

Now we are ready to prove Theorem 224l As pointed out earlier in Section Z3] to
prove that F), converges to F' (say) in Lo, it is enough to show that

E[F,(z,y)] — F(x,y) and V[F,(z,y)] — 0 (2.4.7)

at all continuity points (z,y) of F. This is what we show here and in every proof later

on.

Proof of Theorem [Z7} First assume Leb(Cp) = 0. Recall the eigenvalues of circulant
matrix from Section [[2ZT] and note that we may ignore the eigenvalue A, and also A,/

whenever n is even, since they contribute atmost 2/n to the ESD F,(z,y). So for

z,y € R,
n—1
E[Fn(x7y)] ~ n! Z P(by < x,¢, < y),
k=1,k#n/2
where

~Vn Zxﬂ' cos(wrj), ¢k = N ij sin(wgj), wi = %k
Define for k =1,2,--- | n,
Mk = (£2k_1’£2k),’ Yi"(wk) = R[Yn(wk)]’ Yén(wk) = I[Yn(wk)]a

where Y, (wg) are same as defined in Lemma A7 Then (bg,cx) = Blwi)ne +
(Yin(wg), Yon(wg))'.  Now in view of Lemma and Lemma ZZ7 to show
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E[F, (z,y)] — Fo(x,y) it is sufficient to show that
1
n

n—1
S P[Bwr)mk < (z,y)] = Folz,y). (2.4.8)
k=1,k#n/2

To show this, define for 1 <k <n — 1, (except for k =n/2) and 0 <1 <n —1,

X1k = (\/561 cos(wgl), V2¢ sin(wkl)),.

Note that
E(Xik) =0, (2.4.9)
n—1
'y Cov(Xyy) =1, (2.4.10)
=0
n—1
sup sup [n~* ZE | Xpp |3F9] < C < 0. (2.4.11)
n 1<k<n -0
For k #n/2

n—1
{(Blwrm < (@.9)'} = {Bln)m™2Y X0 < (V2r,V2y)'}.
=0

Since {(r,s) : B(wy)(r,s) < (V2z,v2y)'} is a conver set in R? and {X;;, | =
0,1,...,(n — 1)} satisfies (ZZZ9)-EZTIT), we can apply Part (i) of Lemma 3] for
k #n/2 to get

n—1
P(B(wr)(n 2> Xip) < (V22,v2y)) — P(B(wi) (N1, No)' < (vV2z,v2y)')|
1=0

n—1
< Cn 2N B X 3] < 0n7? 0, as - oo
=0

Therefore, since by Lemma EZZ3)(i), H¢ is bounded continuous for every fixed (z,vy),

1 1 ok
Jim =~y P(Blwwm < (wy)) = lim —  Ho(=—,.y)
k=1,k#n/2 k=1,k#n/2

1
= / HC(QWSaxay)dSZFC(:Cay)'
0
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Hence by ([ZZ.F)
1
E[F,(z,y)] —>/ Ho(27s, x,y)ds = Fo(z,y). (2.4.12)
0

To show V[F,(z,y)] — 0, it is enough to show that

% Z Cov(Jg, Jp) = % Z [E(Jk, Jpr) — E(Jk) E(Ji)] — 0. (2.4.13)

kK k=1 kK k k=1

where for 1 < k < n, Jj is the indicator that {b; < z,cx <y}. Asn — oo,

n n

% Z E(Jy)E(Jy) = ZE Ji)] ——2 (B (Jk / He(2ms, o y)ds] .

| k=1
So to show [ZZIJ), it is enough to show as n — oo,

1 . !
E Z E(Jk,Jk/) — [/ HC(Qﬂs,x,y)ds]2.
0

kK ke k=1

Along the lines of the proof used to show [ZZI2) one may now extend the vectors of
two coordinates defined above to ones with four coordinates and proceed exactly as
above to verify this. We omit the routine details. This completes the proof for the case
Leb(Cp) = 0.

When Leb(Cy) # 0, we have to show [ZZT) only on Df (of Lemma EZJ]). All the
above steps in the proof will go through for all (z,y) in Df. Hence if Leb(Cp) # 0, we
have our required LSD. This completes the proof of Theorem ZZ.41 O

2.4.3 Symmetric circulant matrix with dependent input

For x € R and w € [0, 7] define,

P(VIRT@NO,1) ) i [(w) £0,

) (2.4.14)
I(x > 0) if flw)=

Hs(w,z) = {

Let
Cy={t€10,1/2]: f(2nt) = 0}.

The following Lemma is analogous to Lemma We omit the proof.

Lemma 2.4.8. (i) For fized x, Hg is a bounded continuous function in w and

Hy(w,7) + Hs(w, —2) = 1.
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(ii) Fs defined below is a proper distribution function and Fs(x) + Fg(—x) = 1.
1/2
Fg(x) =2 Hgs(2ms, x)ds. (2.4.15)
0
(111) If Leb(C{) = 0 then Fg is continuous everywhere and may be expressed as

T 1/2 1 t2
Fg(z) = / [0 76*—4wf<2ws>ds}dt. (2.4.16)

o F(2rs)

Further, Fg is normal if and only if f is constant almost everywhere (Lebesgue).
(iv) If Leb(Cy) # 0 then Fg is discontinuous only at x = 0.

Theorem 2.4.9 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions [EZ-1] and
2213 hold and

e
Jim — ;; [f(T)] —0 forall 0<p<1. (2.4.17)

Then the ESD of —=SCy converges in Ly to Fg given in Z713)-(27.10). The same
limit continues to hold for PT,,.

Remark 2.4.10. (i) Condition (ZZ.17) is satisfied if inf,, f(w) > 0. If we do not
assume (Z4.17), it is not clear whether the LSD result will be true.

(ii) It is easy to check that the variance, s and the fourth moment g of Fs equal
f1/2 A f(2ms)ds and f1/2 24772f2(27rs)ds respectively By Cauchy-Schwarz inequality it
follows that “4 > 3 and equal to 3 iff f = s=. In the latter case, Fs is standard normal
distribution functwn This agrees with the concluszon of Theorem 2.3

We prove the result for symmetric circulant matrix only for odd n = 2m + 1. The
even case follows by appropriate easy changes in the proof. First recall the eigenvalues of
symmetric circulant matrix from Section The partial sum approximation (Lemma
EZ7) that has been used in the proof of Theorem EZZA] now takes the following form.

Lemma 2.4.11. Suppose Assumption [Z_1] holds and {e;} are i.i.d random variables

with mean 0, variance 1. Forn=2m+1 and k =1,2,--- ,m, write

m

1 - okt ; okt 1 okt
— Ic 7 k: 1
NG tE 1 Tt COS = Pi(e E €4 COS ho(e NG tg 1 sin " + Y ks

where 1 (€%F), Po(e™r) are same as defined in [BZ3). Then maxo<k<m E(Ynx) — 0

as n — oQ.
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Proof.
1 « okt
— Z Tt COS
s
1 i i 21k(t — j) 2rkj . 2mk(t—j) . 2mkj
= — aj€—;j [cos COS — sin sin ]
n , n n n n
t=1 j=—o0
1(e™*) i okt ho(eR) O~ . 2mkt
= I 7 €; COS — ZSI — + Yok,
Vn — n N4 — n
where -
1 kj 27k
Yo = ~ Z y [cos Uk, n de],
j=—00
= 21k(t — 5) 2kt = 21k(t — 7) 2kt
U = ; [et_j cos T—et cos T]’ Vij = ; [et_j sin ?—et sin T]

Note that if |j| < m, U ;,Uj, ; are sums of 2[j| independent random variables, whereas
if 7] > m, Uy, Ul;j are sums of 2m independent random variables. Thus E |Uk7j|2 <

2min(|j|, m). Therefore, for any fixed positive integer [ and m > [,

B Yo < %[ S Il ECE)2 4 Y llEV2)] (- ZW@O

j=—00 j=—00

< 22 Z s {min(j], m)} /2

_]7—00

( = > lallsl "+ 3 layl).

| |< 71>

IN

The right side of the above expression is independent of k and as n — oo, it can be
made smaller than any given positive constant by choosing [ large enough. Hence,

maxi<k<m E(Yn,k) — 0. |

Proof of Theorem [Z-9 Note that all eigenvalues {\;, 0 < k <n — 1} are real in this
case. As before, we provide the detailed proof only when Leb(C{)) = 0. Note that we
may ignore the eigenvalue )y since it contributes 1/n to the ESD F,,(-). Further, the

o

term 72 can be ignored from the eigenvalue {\;}. So for x € R,

m

2 1 2 & okt
E[F,(z)] ~ EZP(T)%<$ E;P ntZZ;Z:ctcos < z).

n



49 Result on LSD with dependent inputs

Following the argument given in the circulant case and using Lemma ZZ0] and Lemma

E.ZTTl it is sufficient to show that

P [zm(e’“'f)% > e cos 27;“ — z/a(ei“k)in > sin T < g

t=1 t=1

P{?nil/2 invk S Ck} — Fg(x)
1 =1

3w
NE

B
Il
—_

I
S 1w
NE

t

where

2wkl 2mkl

X = (20;161 coS , 25;1qsin ), 0'7% =2—1/m, 52 =24+1/m,

Cr = {(u,0) : o1 (" )u+ dp1ha(e™*)v < \/n/ma}.

Note that

1 m m
E(X; ;) =0, — ZCOU(XM) =V, and sup sup m ! ZE 1 X .]?T <O <0
M mo1sksm =1

(2.4.18)

where

1 k
Vi < 1 — T tan 2m11 )
- 1 k :
— — tan 2m11 1

Let a; be the minimum eigenvalue of V. Then ap > «y, for 1 < k < m and

1 ¢ mm ~1 2m—|—1w1 2_ ]
Vam? 1 Momy1 mr xS

Since {X;} satisfies @ZIF) and Cj is a conver set in R?, we can apply Part (i) of
Lemma 3T for £k =1,2,--- ,m to get

oy =1 —

‘2 i [P{m—l/z Em:Xl,k € Ck} — <1>0,Vk(ck)} ‘ < Cm—3/22 Em:a;s/z
=1

n n
k=1

< Om™ %2732 0.

where ®q y, is a bivariate normal distribution with mean zero and covariance matrix V.
Note that for large m, 02 ~ 2 and 62 ~ 2. Hence C}, = {(u,v) : ¢1 (€™ )u+ o (e™*)v <

NG } serves as a good approximation to Cj and we get

m

2 — 2 — L2
- kZ_l%,vk(Ow ~ ;%,vk(%) == ;P(ukN(O, 1) <a),

where pf = b1 (e™F)2 + 1ho €k )% 4 2ahy (€' )aho (€'F) \/477;_1 tan 27211. Define
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V2 = 1py (k)% + 1h9(e™r)?. Now we show that

m

lim % 3" [P(uN(0,1) < 2) — B(pN(0,1) < )] ( ~ 0. (2.4.19)

n—oo

Let 0 < p < 1. Now as n — oo, using Assumption (ZZIT),

— P(upN(0,1) <z) — P(yxN(0,1) < =z ‘ = — / edet‘
nio e V2T
[mp]
< 2||z‘ 1, — vi ‘
PV (pk + Vi)

2|x|ta%m

< — 0

- kz 1—|—a

On the other hand, for every n,

215" [PGuN(©.1) <)~ POaN(O.1) < 2)]| <40 - p).
[mp]+1

Therefore, by first letting n — oo and then letting p — 1, (ZZI9]) holds. Hence

n—oo n

L2 L2
lim —I;P(VkN(O, 1)<z) = T}LIEOE;P( 2r f 2k /n)N(0,1) < z)
1/2

— 2 Hg(2ms, x)ds.
0

Rest of the argument in the proof is same as in the proof of Theorem ZZ41

2.4.4 Reverse circulant matrix with dependent input
Define Hr(w,x) on [0,27] x R as

2

G(5b) i J@) #

Hplw,) :{ 1 it flw)=

where G(z) =1 — e™® for > 0, is the standard exponential distribution function.

The proof of the next lemma is omitted.
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Lemma 2.4.12. (i) For fized x, Hr(w,x) is bounded continuous on [0, 27].

(i) Fgr defined below is a valid symmetric distribution function.

1 1/2 .
5+ Hr(2rt,x)dt  if >0

Fr(z) = ? f01/2 . (2.4.20)
53— Jo! " Hr(27t,z)dt  if x <0.

(ii1) If Leb(C) = 0 then Fr is continuous everywhere and can be expressed as
1-— f01/2 e 27ffz<22”t> dt  if x>0
Frz)=1 . °, (2.4.21)

Jo! T e it dt if ©<0.

Further, Fgr is the distribution of the symmetric version of the square root of chi-square
variable with two degrees of freedom if and only if f is constant almost everywhere
(Lebesgue).

(i) If Leb(Cy) # 0 then Fg is discontinuous only at x = 0.

Theorem 2.4.13 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions[Z.Z.1] and
223 hold. Then the ESD of ﬁRCn converges in Lo to Fr given in (2.1.20)-(2.72.21]).

Remark 2.4.14. If {x;} are i.i.d, with finite (24 ) moment, then f(w)=1/2r for all
w € [0,27] and the LSD Fr(-) agrees with (ZZ23) given earlier.

We now need the following Lemma to approximate the eigenvalues by appropriate
partial sums of independent random variables. Its proof is given in Fan and Yao (2003)
[BY] (Theorem 2.14(ii), page 63).

Lemma 2.4.15. Suppose Assumption [ZZ_1] holds and {e;} are i.i.d random variables

with mean 0, variance 1. For k=1,2,---, L%J, write

In(wi) = Lo(wp) + Rn(wi), where Ly(wi) = 27 f (wi) (351 + &31)
and I,(wg) is as in (Z2.4). Then Max) .o nt E|R,(wg)| — 0 as n — oo.

Proof of Theorem [Z.13: As earlier, we give the proof only for the case Leb(C() = 0.
From the structure of the eigenvalues {\x, 0 < k < n—1} of RC,, (see Section[[Z3]), the
LSD, if it exists, is going to be a symmetric distribution. So, it is enough to concentrate
on the case z > 0. As before we may ignore the two eigenvalues Ag and A,, ;5. Hence for
x>0,

15 125
1
E[E,(x)] ~1/24+n"1 ;—1: P(EAi <z =1/24n"" ;_1 P(I,(wy) < 2?), (2.4.22)
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where I,(wg) is as in (ZZZ). Along the same lines as in the proof of Theorem 7]
using Lemma and Lemma E2ZTH] it is sufficient to show that

) 125+] 1/2
— > P(La(w) <) — Hpg(2mt, z)dt
n 0
k=1
where L, (wg) is same as in Lemma Define for k = 1,2,---, |22 ] and | =

0,1,2,--,n—1

)

Xk = (\/iel cos(lwy), V2¢ Sin(lwk)),, App = {(rl,rg) s flwp)(rE 4+ 1rd) < :c2}.

Note that {X;;} satisfies @ZI)-EZI) and {L,(wy) < 22} = {n~1/2 l":_Ol X1, €
A;m}. Since Ay, is a conver set in R?, we can apply Part (i) of Lemma EZ3 ] to get, as

n — oo
|
=37 P(Elwn) < 2%) = Do s(Apn)| < O 0
"=
But
R Y
! 1 o1k 1/2
= > 0os(Am) = = > Hp(—,1)— Hp(2nt, x)dt.
"a (i n 0
Hence for x > 0,
1 1/2
E[F,(2)] = 5 i Hp(2rt, z)dt = Fr(x).

Now the rest of the argument in the proof is same as in the proof of Theorem ZZ4 O

2.4.5 k-circulant matrix with dependent input

First recall the eigenvalues of the k-circulant matrix Ay , and related notation from
Section [LZ4l For any positive integers k, n, let p1 < pa < ... < p. be all their common

prime factors so that,

Cc c
n:n'Hpqq and k::k'Hpgq.
q=1 q=1

Here oy, B, > 1 and n/, K/, p, are pairwise relatively prime. Then the charectaristic

polynomial of Ay, is given by

/-1

X (Aen) =X TT O —yy), (2.4.23)
7=0
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where y;,n; are as defined in Section [LZZl This provides a formula solution for the

eigenvalues. Also recall
S(z) ={zk’ mod n' :b >0}, 0<xz<n'; gy =#S@), Vg = #{x €L : g < 1}

As mentioned before, it appears difficult to prove a general result on LSD for all possible
pairs (k, n). We investigate LSD for two subclasses of the k-circulant matrix, where
(k, n) satisfies either n = k9 + 1 or n = k9 — 1 and g > 2. Note that in both the cases
ged(n, k) = 1 and hence, n’ = n in [ZZZ3J).

Before going into the main results we state a lemma from Bose, Mitra and Sen
(2008) [E4] which we shall use in the proof of the following theorems and also in Chapters
H and [@ Here we skip the proof.

Lemma 2.4.16. (i) Fiz g > 1. Suppose k9 = -1+ sn, n — oo with s =1 if g =1 and
s =o(nP~Y) if g > 1 where py is the smallest prime divisor of g. Then g = 2g for all

Vk.n

- — 0.

but finitely many n and
(ii) Suppose k9 = 1+ sn, g > 1 fived, n — oo with s =0 if g =1 and s = o(nP~ 1)

where py is the smallest prime divisor of g. Then g1 = g for all but finitely many n and

Vk.n
= — 0.

We consider two types of k-circulant matrix, namely, k-circulant with n = k9 + 1

and k-circulant with n = k9 — 1 for some g > 2.
Type I. n = k9 4 1 for some fixed g > 2.

Suppose n = k9 + 1 and g > 2. We observe a simple but crucial property of eigenvalue
partitioning {P;} of Z, (see (LZH)). For every integer ¢t > 0, tk9 = (—1 4+ n)t = —t
mod n. Hence A\; and \,_; belong to the same partition block S(t) = S(n —t). Thus
each S(t) contains an even number of elements, except for ¢t = 0, §. Hence the eigenvalue

partitioning sets P; are self conjugate. So, we can find sets A; C P; such that
1
Pi={z:zcAjorn—zc A} and #A; = §#Pj. (2.4.24)

However, it follows from Lemma that for n = k9 + 1, g1 = 2¢ and vy, /n — 0.
For g = 2, it is easy to check that S(1) = {1,k,n — 1,n — k}, hence, g; = 4, and

{0,n/2} if n is even

2.4.25
{0} if n is odd. ( )

Uk,n:{xezn:gar<gl}:{

As a consequence, vy ,/n < 2/n — 0.
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For any d > 1, let
d

Ga(z) =P(]] Ei < x),

i=1

where {E;} are i.i.d. Exp(1). Note that G4 is continuous. For any integer d > 1, define

Hy(wi,...,wg,z) on [0,27]¢ x R>q as
2d . d
x f : )
Hy(wi,...,wq,x) = Gd<(2”)d ITis f(w1')> it i (@) £
1 if [T f(wi) =0.

The proof of the following lemma is omitted.

Lemma 2.4.17. (i) For fived x, Hy(wy,...,wq,x) is bounded continuous on [0,27]?.

(ii) Fy defined below is a valid continuous distribution function.

d
Fyx) = /1 e /1 Hy(2wty,. .., 27wtg, x) Hdti for x >0. (2.4.26)

0 0 i=1
Theorem 2.4.18 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions[Z.Z.1] and
2273 hold. Suppose n = k9 + 1 for some fixzed g > 2. Then as n — oo, Fn—l/QAk’n
converges in Ly to the LSD Uy([[%_, E:)'/?9 where {E;} are i.i.d. with distribution
function F, given in ([Z4.20) and Uy is uniformly distributed over the (2g)-th roots of

unity, independent of the {F;}.

Remark 2.4.19. If {z;} are i.i.d, then f(w) = 1/2x for all w € [0,27] and the LSD
is Uy (T[T, Ei)Y/?9 where {E;} are i.i.d. Exp(1), Uy is as in Theorem [E-Z-18 and inde-
pendent of {E;}. This limit agrees with Theorem EZZI().

Remark 2.4.20. Using the expression (Z4.23) for the characteristic polynomial, it
is then not difficult to manufacture {k = k(n)} such that the LSD of n='/2 Ay, has
some positive mass at the origin. For example, suppose the sequences k and n satisfy
k9 = —1+4+sn where g > 1 is fized and s = 0(n1/3). Fix primes py, pa, ..., p: and positive
integers By, B2, ..., 0. Define

n= pf1p§2 . .pftn.

Suppose k = p1ps...pgm — oo. Then the ESD of ﬁfl/QAkﬁ converges weakly in prob-
-1

ability to the LSD which has 1 — <H§:1pgs> mass at zero, and rest of the probability

mass is distributed as Uy ([[7_, E;)Y/?9 where Uy and {E;} are as in Theorem [ZZ-18

Proof of Theorem [Z2.1§: The proof is also based on the method of normal approxima-

tion and uses the eigenvalue description given in Section [CZ41
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For simplicity we first prove the result when g = 2. Note that ged(k,n) = 1 and
hence in this case n’ = n in ([CZF). Recall that vy, is the total number of eigenvalues v;
of Ay, such that j € Py and |P;| < ¢1. In view of Lemma EZATE(7), we have vy, /n — 0
and hence these eigenvalues do not contribute to the LSD. Hence it remains to consider
only the eigenvalues corresponding to the sets P; which have size ezactly equal to g;.

Note that S(1) = {1,k,n — 1,n — k} and hence g1 = 4. Recall the quantities
n; = #Pj, yj = [L1ep, A, where \; = Z?:_ol il 0 < j < n given in (CZJ). Also, for
every integer t > 0, tk?> = —t mod n, so that, \; and \,_; belong to the same partition
block S(t) = S(n —t). Thus each y, is real. Let us define

I, = {l: #P, = 4}.

It is clear that # — 4. Without any loss, let I,, = {1,2, ..., #I,}.
Let 1,w,w?,w? be all the fourth roots of unity. Note that for every j, the eigenvalues

of Ay, corresponding to the set P; are: y;/4, y;/4w, y;/4w2, yjl»/4w3. Hence it suffices to

1/4

consider only the modulus of eigenvalues y; as j varies: if these have an LSD F,
say, then the LSD of the whole sequence will be (r,0) in polar coordinates where r is
distributed according to F' and @ is distributed uniformly across all the fourth roots of
unity and r and 6 are independent. With this in mind and remembering the scaling

v/n, we consider for x > 0,

Fy(z) = #1In %H([%f‘ < x>

Since the set of A values corresponding to any P; is closed under conjugation, there

exists a set A; C P; of size 2 (see (ZZZ)) such that

Pi={z:x €A orn—uzec A}
Combining each \; with its conjugate, we may write y; in the form,

yj =[] (b +nef)
tE.Aj

where {b;} and {¢;} are given in [Z33). Note that for = > 0,

E[Fy(2)] = #1In ZP(% <.
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Now our aim is to show

where Fy(z) is as in (ZZZG) with d = 2. We can write % = Ly, j+ Ry, j for 1 < j < #1,,

where

Yi )
Ly; = 4772fjn_J2a y; = H (n€3,_1 + né3y), H flwy), 1<j<#I,,
teA; LEA;
Rn,j - Ln(wjl)RN(w]é) + Ln(ij)RN(wjl) + RN(wjl)RN(wjz)v
Ln(wj,) = 27Tf(wjk)(§§jkfl + §§jk)a k=1,2.

Now using Lemma EZZTH it is easy to see that for any € > 0, maxi<j<xr, E(|Rn | >

€) — 0 as n — oo. So in view of Lemma ZZ0 it is enough to show

#1n

#I ZP nj < at) = Fy(). (2.4.27)
We show this in two steps.
Step I. Normal approximation:

#1In
#I Z [P(Lmj < x4> - <I>4(An7j)} — 0 asn — oo, (2.4.28)
where
4 at .
An,j:{(xlaylyx2yy2 R H iE +y@ =~ 47T2fj}’ 1§J S#In
Step II.
#1In
lim_ # T Z O4(A Fy(x). (2.4.29)

Proof of Step I. It is important to note that A, ; is non-conver. So we have to apply

care while using the normal approximation. Define

2mtl 2mtl
Xl,j:21/2 (61005 (—W >, € sin <L>, tGAj>, 0<l<n, 1<) < #1,,
n n
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Note that {X ;} satisfies (ZZJ)-EZZIT) and
n—1
{LnJ < .%'4} = {n71/2 ZXl’j S An,j}-
=1

For (ZZ29), it suffices to show that for every ¢ > 0, there exists N = N(¢) such that
for all n > N(e)

sup P(Ln,j < .%'4> — (134(14”7]')‘ <e.
J€In

Fix e > 0. Find M1 > 0 large such that <I>([ My, Mi]¢) < €/16. By Assumption
EZ2 E(n~1/? Zl o €1COS 2””) = BE(n~1/? Zl o € sin 2”“) 1/2 for any n > 1 and
0 <t < n. Now by Chebyshev bound, we can find Ms > 0 such that for each n > 1 and
for each 0 < t < m,

n—1
2mlt 2mlit
P(|n71/2Zelcos L| > M) <€/16 and P (|n~ 1/2Z€lSIHL| > My) < €/16.

Set M = max{Mj, My}. Define the set B := {(ml,yl,xg,yg) eRY |z, lyjl < M Vj}.
Then for all j € I,

n—1
P <n71/2 ZXl,j € An,j) — ®4(Anj)

=0

n—1
P (723" X1 € Ay N B) = @4(Ay; 1 B)
=0

< +¢/2.

Since A, ; is a non-convezr set, we now apply Part (ii) of Lemma 23Tl for A, ; N B to

obtain

sup P<n 1/2Zle€An]ﬂB> ®4(An; N B)

€l 1=0

<O Ppyys + 2 sup sup <I>4<(<9(An,j NB))"— Z)
] n 2€
where )
ne
pres = supn 'y B|Xi5|**and n=mn(n) = Copgrsn /%
I€n 1=0

Note that psys is uniformly bounded in n by Assumption

It thus remains to show that

sup sup @4((8(/1”7]' NB))" — z) <¢€/8
jEIn Z€R4
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for all sufficiently large n. Note that 9(A, ; N B) C 0A, ; N 0B C 0B and hence

sup sup Py ((5(An,j nB))" - Z)

jEIn Z€R4
= sup sup / O(r1—21) ... d(y2 — z4)dxy ... dys
jeln Z€R4
(An,;NB))"
< sup / ¢(w1 — 21) ... P(y2 — z4)dzy ... dy2
z€R4
(OB)"
S / dxl e dyg.
(oB)n

Finally note that 0B is a compact 3-dimensional manifold which has zero measure under
the 4-dimensional Lebesgue measure. By compactness of 0B, we have

(0B)" | OB asmn — 0, and the claim follows by Dominated Convergence Theorem.
Therefore

| #In | #o
_ J .
E[an]—#h;P(;_w) e ZP( ni < )~%;¢4<An,]>.

Proof of Step II. To identify the limit, recall the structure of the sets S(x), P;, A; and
their properties. Since #1,,/n — 1/4, vy, < 2 and either S(z) = S(u) or S(x)NS(u) =

(), we have

#1 D
n—co #1 Z 4(Any) = Jim = Yo eu(Any). (2.4.30)

Also for n = k? +1 we can write {1,2,...,n—1} as {ak+b; 0<a<k—1, 1 <b<k}

and using the construction of S(z) we have (except for at most two values of j)
A; ={ak+b,bk —a} for j=ak+b; 0<a<k—-1, 1<b<k.

Recall that for fixed x, Hy(w,w’, z) is uniformly continuous on [0, 27| x [0, 27], . There-
fore given any positive number p we can choose N large enough such that for all
n=*k-+1>N,

2r(ak +b) 2mw(bk — a) 2wa 27h
su H. ; o) —Hy(—=,—== ‘< . (2431
OSaSk—lPlgbgk‘ 2< n n ) 2< Vn'/n > P )
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Finally using (ZZ30), (ZZ3T]) we have

#In 1 n
Tim #1 Zcm = lim E;@Mn,j)
1 4
- nILHSOEZGQ(zL:?fj)
L\/_J Lv7]
_ HILH;OE; ZO < ak+b)’27r(bl;—a)’x>
L\/_J [v7]
2ra 27b
— lim = ki
dim 3 ()

11
= / / Hy(2ws, 2t, x)ds dt = Fy(x).
0 JO

To show that V[F,(x)] — 0, since the variables involved are all bounded, it is enough

to show that
_22000( yj <z ) H(% §x4)> — 0.
J#5’

Along the lines of the proof used to show E[F,(x)] — Fy(z), one may now extend
the vectors with 4 coordinates defined above to ones with 8 coordinates and proceed
exactly as above to verify this. We omit the routine details. This completes the proof
the Theorem for g = 2.

The above argument can be extended to cover the general (g > 2) case. We highlight
only a few of the technicalities and omit the other details. For general g we need the

following lemma.

Lemma 2.4.21. Suppose Ly (wj), Ry(w;) are as defined in Lemma[ZZ 19 Then given
any €,n > 0 there exist an N € N such that

P(| HLn(%) | I Rolw;)

i=s+1

>¢€) <n foralln> N.

Proof. Note that

P([]Zn(w)) I Be(wi)|>¢) < P(|Ln(wj,)| > Me)
i=1 i=s+1
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and iterating this argument,

S g S
P(IT] Zn(w;) ] Bulwi)l >€¢) < P(|La(w,)] = Me) + Y P(|Lu(wy,)| = M)
i=1 i=s+1 i=2
g
+P(| I Rulws)| > 1/M°).
i=s+1

Further note that

P(I IT Batwidl>1/m7) < P(| [T Balws)

> 1/MS) +P(‘Rn(sz+1)| > 1)

i=s+1 i=5+2
-1
< P(|Rn(wj,)| > 1/M7) +§;P(|Rn(wﬁ)| > 1)
< (MP4g-s—1) max 15_|Rn(wk)|.
Combining all the above we get
P(] ﬁan(wﬁ) ﬁan(%)\ >e€) < P([La(wj)| = Me) +2P(\Ln(%) > M)
i= i=s+ =
+(M°+g—s5-1) @%E | Ry (wp)|

1
< M(s -1+ 1/6)47rwg[1(§a:;<ﬂf(w)

M? —s—1 E|R .
+(M® +g — s — 1) max E|Rn(wr)]
First term in the right side can be made smaller than 7/2 by choosing M large enough
and since maxj<y<, E|R,(w;)| — 0 as n — oo, we can choose N € N such that the

second term is less than 7/2 for all n > N, proving the lemma. O

Now return to the main proof for general g > 2. As before, n’ = n and v ,/n — 0.
Hence it remains to consider only the eigenvalues corresponding to the sets P; which
have size exactly equal to g; and it follows from Lemma EZZT6l(7) that g; = 2g. We can

now proceed as in g = 2 case. First we show

#1n

#11 ZP(% < 2%) — Fy(x). (2.4.32)
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Now write % as follows
Y _ Ui
n—]g =L,;+R,; forl<j<#I,, where L, ; = H Ly(w) = (QW)gfjn—;.

teA;

Using Lemma EZZ2T1 it is easy show that for any € > 0, max <<y, P(|Ry ;| > €) — 0
as n — oo. So, by Lemma ZZ0] to show ZZ3Z) it is sufficient to show that

#1n

1
y, ZP(LW- < 2%) — Fy(x).

We prove this in two steps (Step I and Step II) as we did for g = 2. Define

g 29
) _ x
A, = {(mi,yi,z =1,2,..,9) € R29 . | |[2 1(:6,2 +%2)] < }
i=1

(2m)9f;

Now, in Step I, for fixed € > 0 we find M; > 0 large such that ®([—M;, M;1]¢) < €¢/(8¢)
and My > 0 such that

n—1 n—1
2mlt 27t
P (\n*l/2 ;el cos T! > M) <€/(8g) and P (\n*l/2 ;61 sin T! > Ms) < €/(8g).

Set M = max{M;, M>} and define B := {(xj,yj; 1<j<g)€R¥: |z |y <M Vj}.
Note that, OB is a compact (2g —1)-dimensional manifold which has zero measure under

the 2¢g-dimensional Lebesgue measure. Now proceeding as before we have

#Ip, #1n

‘#1In ZP<Ln’] < x4> _ #1In Z¢4(An’j)

=1

Now note that for n = k9 + 1 we can write {1,2,...,n— 1} as {bk97 1 +bok9 2+ - +
bg1k+by; 0<b; <k—1 for1<i<k-1;1<b, < k}. So we can write the sets
Aj (see, ZZZ) explicitly using this decomposition of {1,2,...,n — 1} as done in g = 2
case, that is, n = k? + 1 case. For example if g = 3, A = {b1k? + bok + b3, bok®+ b3k —
b, bsk® —bik — by} for j = byk? + bok + by (except for finitely many j, bounded by vy,
and they do not contribute to this limit). Using this fact and proceeding as before we
conclude that the LSD is now Fy(-), proving Theorem completely. O

Type 1I. n = k9 — 1 for some g > 2.
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For zj,w; € R,i =1,2,..,g9, and with {N;} i.i.d. N(0,1), define
Hy(wi, zi,wii=1,...,9) = P(B(wl,wg, ey wg) (N1, oy Nog ) < (24, w5, =1,2,..,9) )

Proof of the following lemma is omitted.

Lemma 2.4.22. (i) For fized {z;,w;,;i = 1,...,9}, Hy is bounded continuous in
(wl,...,wg).

(i1) Fy defined below is a proper distribution function.

1 1
Fylziywiyi=1,...,9) = / / Hy(2mti, 2, wiyi = 1,. .. ,g)Hdti. (2.4.33)
0 0
(i111) If Leb(Cy) = 0 then Fy is continuous everywhere and may be expressed as
g(zi,wi, i =1,..,9)

H{Hf(QWuz);ﬁO} g 75%}(21“2)1
/ [rectmscrnl [ il iy L1 7o T Ja

where t = (t1,ta,...,tag—1,tag) and dt = [[ dt;. Further F, is multivariate normal (with

independent components) if and only if f is constant almost everywhere (Lebesgue).

(i) If Leb(Cy) # 0 then Fy is discontinuous only on Dy = {(zj,w;,i = 1,...,9) :
ngl ZiW; = 0}

Theorem 2.4.23 (Bose, Hazra and Saha (2009) [33]). Suppose Assumptions[ZZ-1] and
[Z-Z3 hold. Suppose n = k9 — 1 for some g > 2. Then as n — o0, I}, —1/2,  converges
in Ly to the LSD ([T, Gi)'/9 where (R(G;),Z(G:); i =1,2,...9) has the distribution
Fy given in (ZZ-39).

Remark 2.4.24. If {x;} are i.i.d, with finite (2 + 0) moment, then f(w) = 1/27 and
the LSD simplifies to Us(I1{_, Ei)'/?9 where {E;} are i.i.d. Exp(1) and Us is uniformly

distributed over the unit circle independent of {E;}. This agrees with the conclusion in

Theorem [Z-310(7i).

Proof of Theorem BZ-23 First we assume Leb(Cp) = 0. Note that ged(k,n) = 1. Since
k9 =1+ n =1 mod n, we have g1|g. If g1 < g, then g1 < g/ where a = 2 if g is even
and o = 3 if g is odd. In either case, it is easy to check that

Hence, g = ¢g1. By Lemma EZZT6Ki7), the total number of eigenvalues ~; of Ay ,, such
that j € A; and |A4;| < g is asymptotically negligible.
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Unlike the previous theorem, here the partition sets A; are not necessarily self-
conjugate. However, the number of indices [ such that A; is self-conjugate is asymptot-
ically negligible compared to n. To show this, we need to bound the cardinality of the

following set for 1 <[ < g:
Dy={te{1,2,...,n}: tk' = —t modn} = {te {1,2,...,n} :n|t(k +1)}.

Note that tg = n/ged(n, k! + 1) is the minimum element of D; and every other element
is a multiple of tg. Thus
D] < == < ged(n, k' + 1),
0

Let us now estimate ged(n, k! 4 1). For I > [g/2],
ged(n, k' + 1) < ged(k? — 1,k +1) = ged (k9 (K" + 1) — (W9 = 1), K" + 1) < k97,
which implies ged(n, k' 4+ 1) < kl9/2) for all 1 <1 < g. Therefore,

ged(n, k' 4 1) klo/2] 2

2
n (k9 —1) = W = OOGRER o(1).

So, we can ignore the partition sets P; which are self-conjugate. For other P;,

yj = H (Vnbg +iv/ne)

teP;

will be complex.

Now for simplicity we will provide the detailed argument assuming that g = 2. Then,
n = k? — 1 and we can write {0,1,2,...,n} as {ak+b; 0<a<k—-1,0<b<k—1}
and using the construction of S(z) we have P; = {ak + b,bk + a} and #P; = 2 for
j=ak+b 0<a<k—1,0<b<k—1 (except for finitely many j and hence such
indices do not contribute to the LSD). Let us define

I, = {j : #P; 22}.

It is clear that n/#I, — 2. Without any loss, let I, = {1,2,...,#I,}. Suppose
P; = {j1,j2}. We first find the limiting distribution of the empirical distribution of
% (v/nbj, , /ncj,, \/nbj,, /nc;,) for those j for which #P; = 2 and show the convergence
in Ly. Let Fy,(z,y,2z,w) be the ESD of {(b;,,¢j,,bj,,¢j,)}, that is

#1In

1
[(bj, < 2k, ¢, <wp, k=1,2).
1

In
#In ]

Fo(z1, w1, 22, w9) =
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We show that for zq1,wq, 29, ws € R,
E[F,, (21, w1, 22, w2)] — Fa(z1, w1, 22, we) and V[F, (21, w1, 22, w2)] — 0. (2.4.34)
Define for j =1,2,--- ,n,

n; = (Ea1—1,&251, €2jo—1, €255 )

and let Y1, (w;) = R(Yn(wj)), Yon(wj) = Z(Y,(wj)), where Y, (w;) is same as defined in
Lemma ZZ7 Define

Yn;= (Yln(wjl)7 Yon (le)a Yin (sz)a Yon (wjg)) .

Then (bj,,cjysbjys¢jy) = Blwjy,wjy)nj + Y, ;. Note that by Lemma EZZT for any € >
0, maxi<j<n P(||Yn;ll > €) — 0 as n — oo. So in view of Lemma to show

E[F,(z1, w1, 22, we)] — Fa(z1,w1, 22, we) it is enough to show that

#In
1
#I ZP(B(wjl’wJQ)n] S (Zl?wlaz25w2)l) - .7:2(21,1111,22,’(02).

For this we use normal approximation and define

21l 21l 27 ol 21 jol\ '
Xl,j:21/2 (elcos( UEE ),elsin( UEE ),elcos( )2 >,elsin( )2 >> ,
n n n n

and N = (Nl,NQ,Ng,N4)/, where {N;} are i.i.d. N(0,1). Note

{B(wjy, wjp)n; < (21,w1, 22, w2)'}

n—1
= {B(u)jl,(4)]‘2)(n71/2 Z Xl,j) S (\/521, \/5?1}1, \/52’2, \/5?1)2)’}.
=0

Since {(r1,72,73,74) : B(wj,,ws,)(r1,72,73,11) < (V221,V2w1, V22, vV2w3)'} is a con-
ver set in R* and {X;;; | = 0,1,...,(n — 1)} satisfies (ZZJ)-(EZI), we can show
using Part (i) of Lemma 3] that

#In
1
#1, Z |P(B(wj17wj2)nj < (21’w17z27w2)/)

—P(B(wj,,wj,)N < (V221, V2wy, V22, ﬂwz),){ — 0,
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as n — 00. Hence

#1In
ZP w]l’wm)nj < (Zl,wlaZQaUJQ)/)

#In

ZP (Wi, wj )N < (V221,V2w1, V229, V2w3)')

n—00 I

= lim —ZP (wjy,wjp )N < (\/izl,\/iwl,\/iz%\/iwg)/)
n—oo N

= llm — E HQ(wjljwj27217w17227w2)

n—oo N 4
J=1
- l1m—L§ gH wlak+) 2wOhta)
= n_>oona0b0 2 n ; n y <1, W1, <2, W2
L\fJ V7] oh
= lim — , 21, W1, 22, W2
i 2525 2 2 )

1
= //H2(27Ts,27Tt,z1,w1,22,w2)dsdt:]-"g(zl,wl,zQ,wg).
o Jo

Similarly we can show V[F),(z)] — 0 as n — oo.

Hence the empirical distribution of y; for those j for which #7P; = 2 converges to the
distribution of H?Zl G; such that (R(G;),Z(G;); i = 1,2) has distribution F». Hence
the LSD of n_l/QA;wl is (H?Zl Gi)l/Z, proving the result when g = 2 and Leb(Cy) = 0.

When Leb(Cy) # 0, we have to show [ZZ34) only on DS (of Lemma ZZ27). All
the above steps in the proof will go through for all (z;,w;;¢ = 1,2) in DS. Hence if
Leb(Cy) # 0, we have our required LSD. This proves the Theorem when g = 2.

For general g > 2, note that we can write {0,1,2,...,n} as {b1k9 ™1 +bok9 =2 4+
bg—1k +bg; 0 < b; < k—1, for 1 <i < k}. So we can write the sets A; explicitly
using this decomposition of {0,1,2,...,n} as done in n = k? — 1 case. For example if
g =3, Aj = {b1k? + bok + b3, bok® + bsk + by, bsk? + b1k + by} for j = byk? + bok + b3
(except for finitely many j, bounded by vy, and they do not contribute to this limit).
Using this fact and proceeding as before we will have the LSD as ( 7 Gi)l/ 9 such
that (R(G;),Z(G;); i =1,2,...g) has distribution . O
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2.5 Simulations

2.5.1 I.I.D inputs

In Figure ZTHZA, we have plotted eigenvalues of k-circulant matrices for different com-

bination of £ and n when the input sequence is i.i.d.

3 2
2t
1
1r.
of 0
—1t
-1
-2t
-3 . ‘ . - . . . _2
-3 -2 -1 0 1 2 3 _2 O 2

Figure 2.1: Eigenvalues of 10 realizations of n~/2A, ,, with z; i.i.d. N(0,1) when (i) (left) k =
1, n =2000 and (ii) (right) k = 2, n = 2000.

1.
1,
0.5
0.5
or or
-0.5} —-0.5
-1 . . o . . . , —1 "
-15 -1 -05 0 05 1 15 2 -1 o 1

Figure 2.2:  Eigenvalues of 10 realizations of n_l/QAk?n with z; i.i.d. N(0,1) when (i) (left) &k =
2, n = 2001 and (ii) (right) &k = 3, n = 2001.
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1.5¢ 1
ol 0.5
0.5
of 0
—-0.5
-0.5
_l F
—-1.5 _1
-3 -2 -1 (o] 1 2 _1 O 1

Figure 2.3: Eigenvalues of 10 realizations of n=/2Ay ,, with z; i.i.d. N(0,1) when (i) (left) k =
3, n=2002 and (ii) (right) & = 3, n = 2003.

2 2
"\ ‘," 15t
1 ' ' T
\ /
Ot~ . . ol
N
-1 1t
,"' "‘.. -15
2, 0 ) R L R

Figure 2.4: Eigenvalues of 10 realizations of n~/2Ay ,, with 2; ii.d. N(0,1) when (i) (left) n =
k* +1, k=10 and (ii) (right) n = k* — 1, k = 10.

2.5.2 Linear process inputs

To demonstrate the limits we did some simulations with MA(1) and MA(2) processes.

A process {X;,t € Z} is said to be a moving average process of order ¢ (MA(q)) if
Xe=Zr+a1Zv 1+ a2Zi o+ +agZiq

where {a;} is a sequence of real numbers and {Z;,t € Z} is a process with zero mean
and covariance function E(Z;Z; ;) = I{h = 0}c2.

We performed numerical integration to obtain the LSD. In case of k-circulant (n =
k% + 1), we have plotted the density of Fy defined in (ZZ2H).
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- . . . 0
4 6 8 10 -6

-- dependent entries symmetric circulant

Figure 2.5: (i) (left) dashed line represents the density of F» when f(w) = 5=(1.25 + cosz) and
the continuous line represents the same with f = 5=. (ii) (right) dashed line represents the LSD of
symmetric circulant matrix with entries z; = 0.3¢; 4+ €41 + 0.56,42 where {¢;} i.i.d. N(0,1) and the
continuous line represents the kernel density estimate of the ESD of the same matrix of order 5000 x 5000
and same {x}.

0.45 0.45

04r

0351

03r

0.251

02r

0.15F

01r

0.051

reverse circulant with N(0,1) entries reverse circulant with Binomail(1,0.5)

Figure 2.6: (i) (left) dashed line represents the LSD of the reverse circulant matrix with entries
x¢ = 0.3 + €141 + 0.5€142 where {¢;} i.i.d. N(0,1). The continuous line represents the kernel density
estimate of ESD of the same matrix of order 5000 x 5000 with same {z;}. (ii) same graphs with centered
and scaled Bernoulli(1, 0.5).



Chapter 3

Tail of product and extreme

values

In this chapter we digress from random matrix theory. Here we identify the tail be-
haviour of finite but arbitrary product of i.i.d. exponential random variables. As a
consequence, it follows that this n fold product lies in the maximum domain of attrac-
tion of the Gumbel distribution for any n. We use this result in the next chapter to
derive the limit of spectral radius of k-circulant matrices.

Several researchers have studied the distributional properties of the product of
independent and identically distributed (i.i.d.) random variables. See for instance
Springer and Thompson (1970) [I19], Lomnicki (1967) [86] and Galambos and Simonelli
(2004) [62]. However, there does not seem to be in the literature any result quantifying
the nature of the tail behaviour of product beyond two or three fold product of i.i.d.
exponentials.

Here is an outline of this chapter. In Section BTl we describe a few known methods
for product of two exponentials. In Section B2 we derive explicitly the tail behaviour of
the n fold product of exponentials (Theorem BT2) by making judicious use of Laplace’s
asymptotic. Then in Section B2 using this result on tail behaviour we show that the
1/2g-th root of product of g-many i.i.d. exponentials belongs to the max domain of
attraction of the Gumbel distribution.

Some of the results of Bose, Hazra and Saha (2010) [F7] are based on this chapter.

3.1 Tail of product

Let {E;} be i.i.d. standard exponentials. Define

Hy(z) = P|E\Ey - Ep > 2. (3.1.1)

69
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What is the behaviour of H,(z) as x — oo? It is easy to see that this tail becomes
heavier as n increases but there does not appear to be any results in the literature

quantifying the nature of the tail beyond the case n = 2.

3.1.1 Various methods for two fold product

There are several possible approaches that come to mind to solve this problem:

(a) Mellin Transform: The Mellin transform of any non-negative function f(x), z > 0,
is defined as (see Springer and Thompson (1970) [119])

MOl = | T f(a)da

0

Under certain regularity conditions, this transform, considered as a function of the

complex variable s, admits an inversion integral:

1 c+ioco
= — SM(f()]s)d
f@) =50 [ a0l
where the path of integration is a line parallel to the imaginary axis and to the right of
the origin. If X and Y are non-negative independent random variables with p.d.f. f()
and g(-) respectively and if h(-) is the p.d.f. of Z = XY, then

M (h(-)|s) = M (f(-)|s) M (g(:)]s) -

Thus the Mellin transform for the product plays a role similar to that played by the

Fourier transform for sum. It can be easily seen that
M(F(-)|s) = s 'M(f(-)]s +1), where F(z)=P[X > z]. (3.1.2)
Using (B2 and appropriate complex integration, Lomnicki (1967) [86] showed that,

-1 1 eee —s.—1 n
M(H,(")|s) =s [I'(s+1)]" and Hy,(x) = —/ x %s (s + 1)]"ds.

211 — oo

He also derived the following series representations of the above integral for n = 2 and
n=3.

[e.e]

o xJ oo o . 1
Hy(z) =1 ;T._N}Q{ logz +2¢(j) + 35},

i (—1)i-1 il
— _%Zj{(i D) Ik {—logz +3¢(j) + 7 1+ 3{y/(1 +Zk F+577,

J=1
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where 1)(+) is the Euler psi function (digamma function) and «’(-) it’s first derivative.
For the special case of n = 2, comparing the above series with the series expansion

of the modified Bessel function of the second kind Ky(x), it can be easily shown that
Hy(x) ~ \/7_'('2?%6_2961/2 as T — oo.
However, this method does not seem to be easy to extend to other values of n.

(b) Differential Equation: The following differential equation can be easily derived
for Hs(-) (see Bose, Mitra and Sen (2008) [44])

2

d
wag(x) — Hy(x) =0, H3(0) =0 and Hj(oco) = 1.

Standard theory of second order differential equations implies that the solution can be
expressed in terms of the modified Bessel function of second kind and the tail behaviour
follows from that. For m > 3 we obtain higher order differential equations and their

solutions appear to be intractable.

(c) Real analysis: Tang (2008) [I20] obtained a nice formula for Ha(x) using simple
integral substitutions. We reproduce the result and its proof since this will be useful to

motivate our result for arbitrary n.

Lemma 3.1.1.

0 ,—z 9p1/2
Hyfa) =" / — dz ~ e 2 g gy (o),
0

VZ /22 + 4221/

where ga(x) — 1 as © — oo.

Proof. First note that,

oo z1/2 00
Hy(x) :/ e Ve Vdy :/ e_(y+§)dy+/ e_(y+§)dy.
0 0 x

1/2

Let A(y) =y + 5. Then

A'(y)zl—%>0 if y> axl/?

<0 if y<x1/2.

Hence in these two regions, consider separately, the monotone substitution A(y) = t.
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Let the corresponding unique solutions (inverses), be y;(t), ¢ = 1,2, so that
yi(t) < 2% < ().

Observing that both the ranges transform to (2:61/2, o0), we obtain,

o= [T\ gm) ()

Since y; = t, i = 1,2 are the two solutions of the quadratic equation A(y) = t, it is easy

() (o) |-

1/2

dt.

to see that

Now, making a further substitution t = z + 2z'/ we get,

_ogl/2 P e 24 21‘1/2
0 VZ /224 42zl

_ 1 [®e? [ 1+42z/201/2
VT Jo VZE\ 1+ 2/421/2

g2()

Hy(x)=¢e

Now a straightforward application of the Dominated Convergence Theorem (DCT) im-
plies
1 * z 1/2d 1
lim gg(ﬂ:):—/ ez edz = 1.
v Jo

r—00

This proves the Lemma. |

3.1.2 Tail behaviour for n fold product

The following theorem provides the tail behaviour of the product of n many i.i.d. stan-

dard exponentials.

Theorem 3.1.2 (Bose, Hazra and Saha (2010) [87]). There ezists constants {Cy,, o, }
such that )
H,(x) = Cpz®me ™" g, (), n>1, (3.1.3)

where forn > 1,

1 n—1 n — 1
C = — 2 2 =
n ( 7T) y On m

vn

We shall prove the theorem using method of induction and Laplace’s method to find

and gp(x) — 1 as z — oc.
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the integral asymptotics. First we give a brief description of Laplace’s method.

Integral asymptotics: Laplace’s method. Consider the following integral

I(z) = / ’ F(t)e =90t

where ¢(t) is a real valued function of the real variable ¢, f(t) is real or complex valued
function and z is a large positive variable. The Laplace principle is that, the major
contribution to the value of the integral I(x) arises from the immediate vicinity of those
points of the interval a <t < b at which g(¢) assumes its minimum value.

Suppose f(t) is continuous, g(t) is twice continuously differentiable and g(t) reaches
its (strict) minumum over [a,b] at an interior point ¢, so that g(c) < g(t) fora <t < ¢

and ¢ <t <b. Then as x — 00,

2T

I(z) = e "9 f(c) 29"

(I+0(1)) (3.1.4)
and this is known as Laplace’s asymptotic. If g(t) attains its minimum at a boundary
point say, at t = a then Laplace’s asymptotic takes the following form

I(z) = e 9@ f(q) (14 0(1)). (3.1.5)

P
229" (a)
If g(t) has finite number of minimum, we may break up the integral in a finite number
of integrals so that in each integral g(¢) attains its minimum only at one point and no

other point, and then can apply Laplace’s method to each integral. For detail discussion
on Laplace’s method see Section 2.4 of Erdélyi (1956) b1

Proof of Theorem [Z14. We shall use the method of induction. Note, Hy(z) = P[E; >

x] =e % So, C;1 =1, a; =0 and g1(z) = 1 for all z. Hence the result is true for

n =1. Now

Hy(x) = / e Ve ™ Vdy
0

o0
= x1/2/ et gy (subtituting y = tz'/?)
0

zt/? / f(t)e_gﬁmg(t)dt,
0

where f(t) = 1 and g(t) = t + 1. Note that g assumes a strict minimum at ¢ = 1 and
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f(1) =1 +# 0. So applying Laplace’s asymptotic ([BI4]) we have

— 2w
Hy(z) = 21/2¢ 1/2g(1)f(1)1/mgg(x)

= VAR g (a)

where go(z) — 1 as x — oo. Hence Cy = /7 = %(2#)1/2 and aj = 1. So the result is
true for n = 2.
Now suppose [BI3]) is true for n = k. We shall prove it for n = k + 1.

Hiy1(x)
= / efka(g)dy
0 Y
_ v (Eyon gDV (T
= C/ e Y(=)%%e My =\d
kL (y) gk(y) Yy

o0
= ﬂUka/ e_(kSJrs_’“)skak*k*lgk(sk)ds (substituting z/y = s* )
0

hajtt Xkt )T hag—ke1 kR o T
= x k1 kCy e th ek g (t"x*+1)dt (substituting s = x*+1t )
0
kak+1

oo 1
= g k1 k:C'k/ f(t)eimkﬂg(t)dt
0

where .
e k
ft) = tho=k=1g (t*F a1y and g(t) = kt + -

k
Note that ¢g assumes a strict minimum at ¢ = 1 and f(1) = gg(z*1) # 0, ¢"(1) =
k(k +1). Again applying Laplace’s asymptotic (BI4]) we have

kap+1 1 2
Hii(z) = @ 5 kCre 190 f(1) #ﬂ(l)h(ﬂf)
Xkt g
o 1
A )

e k(k + 1)
where h(z) — 1 as © — oo. Subtituting the values of aj, and Cj we get

k 1 _ T _k_
Hyi(z) = 22000 = (2m)F 2 F075T g (07 ) ()
vVk+1

1
_ —(k+1)z*+T
= Cpparrie (e Irt1(x)

where
k 1 & _k_
Api1 2(]{3 T 1), Ck-i—l \/m( 7T) y  Gk+1 gk(CU +1) (:C)
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and ggy1(x) — 1 as * — oo. Hence the result is true for n = k + 1 and this completes
the proof. O

3.2 Extreme values

We start this section with the definition of the Gumbel distribution.

Definition 3.2.1. A probability distribution is said to be Gumbel with parameter 0 > 0

if its cumulative distribution function is given by
Ag(x) = exp{—Oexp(—x)}, = €R.

A=Ay is known as the (standard) Gumbel distribution.

The next theorem is an easy consequence of standard calculations in extreme value
theory as found in Rootzen (1986) [I05], Embrechts, Kluppelberg and Mikosch (1997)

[56].
Theorem 3.2.2 (Bose, Hazra and Saha (2010) [37]). Let {X,,} be a sequence of i.i.d.

non-negative random wvariables with distribution F and let Fn) = maxi<ij<np X;. If

1 — F(x) ~ Cabe™*" as x — oo, then

(n) _
E dn A Ala
Cn
where
b 1/2
. = 1 and d, — InC—3lna Inn / 1+blnlnn ‘
2a'/2(Inn)t/2 2a1/2(Inn)t/2 41nn

Proof. Let F =1 — F. Then
F(x) = 0(x)Fy(r) where (x) — 0 = Ce™® and Fy(z) = 2% exp(—a(z?—1)). (3.2.1)

By invoking Proposition 1.1 given in Resnick (1987) [I03] , it is now enough to show
that, there exists some ¢ and a function f such that f(y) > 0 for y > x¢ and such that

f has an absolute continuous density with f’(xz) — 0 as x — oo so that

1— Fy(x) = exp(—/ (1/f(y))dy>, x> 7. (3.2.2)

T
o

Further, a choice for the normalizing constants ¢, and d,, is then given by

ay = (1Fp) (). ¢ = f(a). (3.2.3)
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Comparing the two representations of Fy given in (BZI]) and @ZZ) implies that we

may choose

x 1
flx) = 5023 "~ 30m as T — 00.
Hence we have (noting that d — o),
1

On the other hand, since Fg(d;;) = 2, we have
*\b * )2 1
(dn)” exp(=a((dy)” = 1)) = —.
Taking logarithms on both sides we have
ad;? —=bInd —a =1Inn. (3.2.4)

Since d} — oo, df, ~ (ln—)1/2. Let d}, = (ln—)1/2 (14 0y,). Using this in (B2ZZ) we get

a a

Op =

%lnlnn—i- €n (Inlnn)?
(Inn)?

2lnn

where €, = —bIn(1 +4,) — 2Ina + a. So we get

1 1/2
d; = (%) (1+0,)

(lnn>1/2 [1 N blnlnn  a—%na—bln(l+d,)

b 0 (Inlnn)?
a 4 Inn 2lnn (Inn)3/2 )

Neglecting the lower order terms and denoting

i Inn\ 2 1+blnlnn+a—%lna 4 e 1
= _— — n _—
" a 4 Inn 2lnn e 2a1/2(Inn)1/2
we have )
F" —d
Ain gACe“l'
Cn

Now letting ¢, = ¢, and d,, = ¢, In(Ce™ %) + d,, and using convergence of types result,

we have )
W —dn p A;.

Cn
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The following corollary and lemma follow immediately using Theorem

Corollary 3.2.3. Let {X,} be a sequence of i.i.d. random wvariables where X 2
(E1Ey ... Ep)Y?F and {E;}1<i<h, are i.i.d. Exp(1) random variables. Then

maxi<i<n X; — dy DA,
cn
where
B 1 _lan—%lnk Inn\ "2 1+(/<:—1)1nlnn
= 2k1/2(Inn)L/2” 7" 2k1/2(Inn)l/2 k 41nn

Ch = \/iE(zw)’“zl.

Lemma 3.2.4. Let {E;}, ¢, and d,, be as in Corollary @ZA. Let 02 = n=¢, ¢ > 0.

Then there exists some positive constant K = K (x), such that for all large n we have
1/2k 2\—1/2 K
p ((E1E2 L E)Y s (14 02) V2 (cr + dn)> <=, zeR

This lemma will be useful in the proof of Lemma in Chapter Bl
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Chapter 4

Spectral norm and radius of
circulant type matrices with light
tail

In this chapter we deal with spectral norm or spectral radius of circulant type random
matrices and Toeplitz and Hankel matrices when the input sequence is independent and

identically distributed. For any matrix A, its spectral radius sp(A) is defined as
sp(A) = max{])\] : A is an eigenvalue of A},

where |z| denotes the modulus of z € C.
A related quantity is the spectral norm. For any matrix A with possible complex

entries, its spectral norm ||A|| is the square root of the largest eigenvalue of the positive

||AH -V Amax(A*A)

where A* denotes the conjugate transpose of A. Therefore if A is an n xn real symmetric

semi-definite matrix A*A:

matrix or A is a normal matrix, with eigenvalues A1, Aa, ..., Ay, then

14 = sp(4) = max [Ai].

The spectral radius and spectral norm have been important objects of study in
random matrix theory. For the n x n matrix with all i.i.d. complex Gaussian entries
having zero mean and variance 1/n, Kostlan (1992) [81] gave an upper bound for the
spectral radius and then Rider (2003) [I04] showed that the spectral radius converges to
a Gumbel distribution with appropriate scaling and centering. Silverstein (1994) [112]

considered the n X n matrix with i.i.d. entries of non-zero mean and finite fourth

79
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moment, and showed that its spectral radius converges almost surely to a real value
and converges weakly to the normal distribution after proper scaling and centering. For
some work on spectral norm of (symmetric) Toeplitz matrices, see Meckes (2007) [92],
Adamczak (2008) [I] and Bose and Sen (2007) [E2]. For result on the spectral norm of
symmetric circulant matrix, see Bryc and Sethuraman (2009) [4g].

For symmetric or normal matrices, we prove results on spectral norm (hence spectral
radius) and for other matrices we consider only the spectral radius. Since RC,,, SC,, are
symmetric and C,, is normal, we consider their spectral norm. For n = k9 4+ 1, g > 2,
k-circulant matrices are not normal, and hence we consider their spectral radius. Here
is an outline of the chapter.

In this chapter we deal with i.i.d. light tail inputs. In Section L1l we review some
known results on spectral norm of Toeplitz and Hankel matrices (which are close cousins
of the circulant matrix and the reverse circulant matrix respectively). In Section we
prove almost sure and distributional convergence of spectral norm of reverse circulant
and circulant matrices. In Section we consider the joint behaviour of the minimum
and maximum eigenvalue of the symmetric circulant matrix and from there we deduce
the distributional convergence of the spectral norm. In Section B4l we review a known
result on the spectral radius of the k-circulant matrix when n = k% + 1. Then we prove
the distributional convergence of the spectral radius of the k-circulant matrix where
n=k9+1, g > 2 and in Section give an idea to deal with the more general case,
sn = k9 + 1 with some suitable condition in s. Finally in Section we pose some open
questions. Throughout the chapter, ¢ and C' will denote a generic constant.

Some of the results of Bose, Hazra and Saha (2009, 2010) [34[57] are based on this
chapter.

4.1 Toeplitz and Hankel with light tail entries

First we state a known result for Toeplitz and Hankel matrices. Let
up =n"2(1,1,.. ., )7, (4.1.1)

Theorem 4.1.1 (Bose and Sen (2007) [B2]). Let {z;} be i.i.d. with E(xg) = p > 0

and Var(zo) = 1 and let T,, be the symmetric Toeplitz matriz ((z;_j)). Let 7O =

T, — ,ununuz;. Then

() ,
75| T,
— ualmost surely and || || = 0 almost surely.

n 1Tl

(ii) If E(zd) < oo, then for M, = |T,|| or My, = \(T5,), the mazimum eigenvalue of
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iy
M, — un

NG

(iii) If T, and TY are replaced by the corresponding symmetric Hankel matrices H,, and

— N(0,4/3) in distribution.

H?, then (i) holds. Further, (ii) holds with the limiting variance being changed from
4/3 to 2/3.

Remark 4.1.2. When {x;} are independent and centered random variables, the follow-
ing results are known for the Toeplitz matriz. Meckes (2007) [99] showed that if x;’s
are independent and centered uniformly subgaussian then E|T,| < Cv/nlnn. He also
showed that if for all j and for some constant A, |x;| < A or, if {x;} satisfy logarithmic

Sobolev inequality with constant A, that is,
E [f*(x;)log f*(x;)] < 2AE[f'(x;)?] for every smooth f such that E f*(z;) = 1,

then with probability 1

T,
lim sup M < C,

n  Vnlnn

where C depends only on A.
These results were further improved in Adamczak (2010) [1], where it was shown that

for {xz;} i.i.d. mean zero and finite variance,

[Tl _

im =1 a.s.
n0 B[ |

Further,

|7
vnlnn

< o0 a.s. if and only if Exg =0 and Ex% < 0.

lim sup

4.2 Circulant and reverse circulant with light tail entries

Results similar to Toeplitz and Hankel matrices can be established for reverse circulant,
symmetric circulant and circulant matrices. In fact we shall show that in each case, the
spectral norm converges in distribution when centered and scaled appropriately. Recall
the eigenvalues of C,, and RC,, and, observe that ||C,| = ||RC,|. Hence the spectral
norm for these two matrices do not have to be dealt with separately. Some results
about the maximum of the singular values of circulant matrices with standard complex
normal entries is known from the form of the eigenvalues. See for example Corollary 5
of Meckes (2009) [aT].

We start with a result on the reverse circulant which follows easily from the existing

literature.
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Theorem 4.2.1 (Bose, Hazra and Saha (2009) [34]). Suppose {x;} isi.i.d. with E(xg) =
w and Var(xg) = 1. Suppose RC,, is the reverse circulant matriz formed by the {x;}.
Let RCY = RC,, — pnuyul where uy, is as given in @IL). If > 0, then

| = 0 almost surely.

[1RC|l — 1 almost surely and || ch
- | RC,||

Similar results hold for C,, also.

Proof. The proof follows in a straightforward manner from arguments for Toeplitz and
Hankel matrices given in Theorem 3 and Lemma 1(7) of Bose and Sen (2007) [2]. We
omit the details. O

Remark 4.2.2. If we assume E(x§) < oo, then the distributional convergence when
>0 can also be proved following the proof of Bose and Sen (2007) [42]. However,

below we establish the distributional convergence under the assumption E|xo|**° < oco.

Theorem 4.2.3 (Bose, Hazra and Saha (2009) [34]). Suppose {z;}i>o is i.i.d. with
mean p and E|z;|**% < oo for some 6 > 0. Consider the reverse circulant (RC,) and
circulant (Cy,) matrices with the input {x;}.

(i) If u# 0 then,

|RCall — Il o
———F — N(0,1).
BN

(i) If =0 then,
1
—=RCy|| —d
IRC I~ 1
Cq

where

n—1 1
q=q(n)=| 5 |, dg=+/Ing, ¢ Y

and A is the standard Gumbel distribution defined in Section[ZA The above conclusions

continue to hold for C,, also.

Proof. As pointed out earlier, it is enough to deal with only RC),. Let Ao, A1,..., Ap_1
be the eigenvalues of n~/2RC,,. These eigenvalues are given by (see Section [CZ3):

Ao —n-1/2 Z?:_ol T
Anj2 =n1/2 Z?;Ol(—l)txt, if n iseven (4.2.1)
M= Aok =l 1< K< [251)
where )
1« i 2k
I$7n((,()k) — E‘ the thk’2 and Wi = T

t=0
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Note that {|\x|%; 1 < k < n/2} is the periodogram of {z;} at the frequencies {%, 1<
k <mn/2}. If u = 0 then under the given conditions, Theorem 2.1 of Davis and Mikosch
(1999) [50] yields

max I, n(wg) —Ing Z A (4.2.2)
1<k<%
Therefore
max |[\g> —Ing DA (4.2.3)
1<k<n/2

Define g(x) = /2. Then by mean value theorem,

2y _ 4 2 _
ol anox Pl = gina) = /(&) (a0~ g

where &, lies between maxi<j.;,2 [A¢|* and Ing. From EZJ) we have

maxj<k<n/2 ’)\k‘Q g 1
Ing ’

Therefore lfl—"q N 1. Now

&

J (&) <h1_Q>1/2 P4
g'(Ing)

and therefore

g'(Ingq) ~ ¢'(Ing)

g(maX1§k<n/2 |>\k|2) —g(lng) g'(6n) max | ’2 —In D A
1<k<n/2 F 4 .

So if {z;} are i.i.d. with mean zero, variance 1 and E|z;|*t < oo, then

max; <<z Akl —vVIng p
1 e
2v/Inq

(4.2.4)

Observe that we have left out A\g and A, j» (if n is even) where

n—1

n—1
1 1

M=-—=Y 2 and Ny =— ) (=1)'m,.
i e

Now suppose that mean of {z;} is p > 0. For 1 <k < n/2,

)

1 n—1 1 n—1
|>\k| _ _| xteitwk‘ _ _‘ (xt _M)eitwk
=

and (x¢ — p) has mean zero and variance 1. Therefore even when E(z;) > 0, ([EZ3)
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holds. Note that by CLT
Vndo —pn o N(0,1). (4.2.5)

N
EZ3) implies Ao %, 50 and hence
ol — v/ 2 N(0,1).
Let A, = maxi<j<q |\x|. From @ZZ) and EZ3)
Ao P

A
n gl and —— — 1

Ving py/n

and so it follows that
P[max(Ay,|Xo|) — pv/n > z] — P[N(0,1) > z],

proving (i) for odd n. Since for even n,
n—1
Aujz =023 (=1) !z, B N(0,1),
t=0

this can also be neglected as before, and hence (i) holds also for even n. Similar proof

works when p < 0. This proves (i) completely.

(ii) Now assume g = 0. In contrast to the previous case, here A,, dominates ||, since
|Ao| is tight and
[Ao| — VIng 7
(Ing)—1/2

Hence in this case

4.3 Symmetric circulant with light tail entries

The spectral norm of the symmetric circulant matrices behaves quite similar to reverse
circulant matrices but the normalizing constants change. The following normalizing

constants, well known in the context of maxima of i.i.d. normal variables, will be
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repeatedly used in the statements of our following results.

Inlnn + Indnr

an = (2Inn)"Y? and b, = (2Inn)Y/? — 2@

(4.3.1)
We need the following Lemmata which are well known and hence we omit their proofs.
The first Lemma is on the joint behaviour of maxima and minima of i.i.d normal random

variables.

Lemma 4.3.1. Let {N;} be i.i.d. N(0,1). If m, = mini<j<, N; and M, =
max<;<n Vi, then with a,, and b, as in {.3-9),

—m. —b. M. —
< My, bn7 n bn) LA@A,

an a

where A @ A denotes joint distribution of two independent standard Gumbel random

variables.

The statement of Lemma is taken from Einmahl (1989) [53] Corollary 1(b),

page 31, in combination with his Remark on page 32.

Lemma 4.3.2. Let {¢;} be independent random vectors with mean zero and values
in R, Assume that the moment generating functions of ¥;, 1 < i < n, exist in a

neighbourhood of the origin and that

CO’U(lpl + ¢2 + ...+ ’l/}n) - BnId7

where B, > 0 and I; denotes the d-dimensional identity matrixz. Let ny, be independent
N(0,02Cov(3y)) random vectors, k = 1,2,...n, independent of {1} and o* € (0,1].
Let 4} = ¥y, + i, k = 1,2,...n and write p}, for the density of B;l/Q Y h_1 k. Choose
a € (0, 3) such that

a Y Bl exp(alixl) < B,

k=1

where |x| denotes the Buclidean norm in R, Let

B = Bula) = B,*2 Y " Elun|* exp(aliyl).
k=1

1/2 _
If |z < cloan/ , 02 > —cf2InfB, and B, > cza~2, where c1,co,c3 are constants

depending only on d, then

(@) = S1102)1, () exp(T () with |T(2)] < caf(lal’ +1),
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where ¢, is the density of a d-dimensional centered Gaussian vector with covariance

matriz ¢ and c4 s a constant depending on d.

We shall use the above Lemma now to derive a normal approximation result which
shall be used in the proof of Theorem EE34] and again in Section Define

e = oo < (1+2))"°) = Elad(|J] < (14 25)"°)]. (4.3.2)

For 1 <iq <ig<..<ig<jlet

2miqt 2miot 2migt
- , COS — s eeey COS —
27 +1 2j+1 27 +1

va(0) = V2(1,1,...,1), vg(t) =2 <cos > for 1<t<j.

Lemma 4.3.3. Let n = 1+ 25 and 0]2 = (14 2§)7¢ for some ¢ > 0 and let {z;} be
i.1.d mean zero with Ew% =1 and E|xy|® < 0o for some s > 2. Suppose Ny’s are i.i.d.

N(0,1) random variables independent of {x;} and p;(z) is the density of

1
TQJ‘ Z(:Ct + O'th)Ud(t).
t=0

Then for any measurable subset E of R?,

| /E By (a)dar — /E Puron @] < /E D11, (@) + Ofexp(—(1+2))"))

where € — 0 as j — 00, n > 0 and the above holds uniformly over d-tuples 1 < i; <

19 < ... <1g < jJ.

Proof. Let S;z = Zgzo Zv4(t) and let s = 2 + 4. Then observe that Cov(S;z) = Bjlg
where, B; = (2j+1)Var(z;) and I is the d x d identity matrix. Since {Z;v4(t) }o<i<; is
an independent collection of mean zero random vectors in R%, we can use Lemma 32

L1
By choosing o = %, it can be easily shown that,

J
a Y E|Zwg(t) exp(alzwa(t)]) < Bj.
t=0

If we define 3; = B;3/2 g:o E|zvq(t)]? exp(a|Zsvg(t)]), then it follows that

17176)

B <C(+25)"G

Let ¢ = % — 122 5 0. Now choose |z| < claB;/z ~ o1 +2j)%_§

2 . .
S and o5 satisfying,

1> 07 > es(In(2j + 1))(25 + 1)
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Clearly B; > caso™? and Bj =~ (1+42j). We mention here that ¢y, c2, c3, ¢4 are constants
depending only on d. Then Lemma implies that,

Pj() = G1102)1,(x) exp(|T;(2)])

with |Tj(z)] < e50;(|z|® + 1). Note that, |Tj(z)| — 0 uniformly for |z|> = o{min((1 +
25)7¢ (1+ 2j)%_é)}. For the choice of O'JQ- = (14 2j) ¢ the above condition can be seen
to be satisfied. Now it follows from Corollary 1 of 4] that for any measurable subset
E of RY,

{/Eﬁj(w)dm—/E¢(1+og)1d($)d9€{ < ﬁj/EGﬁ(Ho;)zd(ﬂU)derO(GXP(—(l+21)"))
where €; — 0 as j — oo. O

For the reverse circulant, leaving out the eigenvalues A\g and A, /5, the maximum
and minimum eigenvalues are equal in magnitude. This is not the case for symmetric
circulant. Hence we now look at the joint behaviour of the maximum and minimum of

the eigenvalues.

Theorem 4.3.4 (Bose, Hazra and Saha (2009) [34]). Suppose {A\p, 0 < k < n —1}
are the eigenvalues of %SC’,@. Let ¢ = |§] and M,, = maxi<y<qAp and mg, =
minj<g<q M. If {x;} are i.i.d. with Exo =0, Ex3 =1 and E|xg|* < oo for some s > 2

then we have,

— —by My, —b
< Mg, a X q) LA@A,
Gq Qq
where ag and by are given by (.3.1). The same limit continues to hold if the eigenvalue

Ao 18 included in the definition of max and min above.

Proof. First assume n = 2j + 1, odd and let s = 24 . The proof may be broken down
into four steps. We use truncation and normal approximation (Lemma33]) along with

Bonferroni Inequality.

Step 1: Truncation. Let Z; be as in [{E32) and
iy = ml(|ze| < (1 +25)Y%).

We show that it is enough to deal with the truncated random variables {z;} (see [E33])).
If \; and \j, denote the eigenvalues of symmetric circulant matrices with entries z; and
i; respectively, then A, = \,. By Borel-Cantelli lemma, S75° | |2¢|1(|z¢] > (1 + 25)'/%)

is bounded with probability 1 and consists of only a finite number of non-zero terms.
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Thus there exists a positive integer N(w) (depending on sample point w) such that

J J
Dolw =@ = Y |z > (1+2)"°)
=0

t=0

Y Lzl > (1+25)"°)

<
t=0
N(w)
= > lwl(ja] > (1+ 25)17).
t=0
It follows that for 2j+1 > {N(w), [#1|%, ..., [¥n(u)|*} the left side is zero. Consequently,

for all j sufficiently large, Ay = A\ a.s. for all k. Therefore for all j sufficiently large,

<—mjvx —bj M.~ bj) D <—mj@ —bj Mz — bj) (4.3.3)

a; a;j a; a;j

where mijz = minlSij j\k and Mj@ = mMaXj<g<yj j\k

Step 2: Application of Bonferroni Inequality.
Define for 1 < k < j,

—/ 1 J 27T]§?t
N, = 7(\/592 +2Y " 7 cos — )
k V27 +1 0 ; t 27 +1
J
- _ . 2wkt
N, = N+ L V2N, + 2 N, cos
k k hJFQJ( 0 ;:1 t " )

RV AT/
= k‘+0-.7Nj,k"

where 0]2 = (1 +25)7¢ for some ¢ > 0. Observe N} are iid. N(0,1) for k=1,2,.-- .
Define
M;zion = 11;1]?%% A and mjzion = min A

1<k<j
Let
M n — b, M - — b,
A— ( Jyx-;fN I s, J@+;N S y),
J J
— min (14 02)N;, — b max (14 02)Ny, — b;
B:P< 1<k<j(1+ 05) Ny . 1<k<j(1 4+ 05) N J>y>_
aj aj

Claim:

lim [P(A) — P(B)] = 0. (4.3.4)

J—00
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We approximate P(A) by P(B) as follows:

P(A) _ ( —Mjz+oN — b > 1, Mj,:iJroN - bj > y)
aj a;j
(m] T+oN < —a;T bja Mj,:iJrUN > ajy + b])
(
(

ULy {0 < —ajz — b} N UL {N, > ajy + b;})

P
P
P
P U‘;C 1 {)\k 6 ,y}) = IP)( U‘]i:l Akv])

where, I;%,y = (ajy + bj,—ajx — bj) and Ay ; = {X;C € I%y}. Now by Bonferroni’s

inequality,
2k B 2k—1 )
D (DT <PA) < Y (- T Ay, (4.3.5)
t=1 t=1
where
A= Y P(A n.ndyy).
1<) <ig <<t <j
i 2 ; . A
P(B) — P(_ m1n1§k§j(2f 07) Nk — b - maxlgkgj(la—ii o5 )Ny, — b; N y)
J j

= P(U_ {(1+0)2Ny e B }) =P(Ul_, By)

where By ; = {(1 + sz)l/QNk € I,}. Again by Bonferroni’s inequality,

2% 2%—1
S (=D)"'B; <P(B) < Y (1) By (4.3.6)
t=1 t=1

where

Byj = > P(Bi, j N Biyj N ..N Bi, ).
1<i1<ig<---<it <j
From (30 and [E30) we get
2% 2%—1
> ()" N(Arj = Bij) = Bagsr; <P(A) = P(B) < Y (1) (A — Bry) + Bak
t=1 t=1
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Now note that,

Bt,j = Z P(Bil,j ﬁBiQJQ... mBit,j)

1<i1 <ig- <1t <j

= > P(A+0)PN, e il=1,2,..1)

1<i1 <ig- <1t <j

_ Z P ((1+0H)'2N;, e 1i,).

1<i1 <ig- <1t <j

Note here that

P((1+ 0]2»)1/2]\71 € (ajy+bj,—ajz—b;)) < P((1+ 0]2»)1/2]\71 > ajy + b;)
= P(N1 > (ajy+bj)(1+03)71/?)

IN

P(N; > (ajy + by)(1 — %sz»)).

2
o*
J

Now (ajy + b;)(1 — <) = bj + o(1) and P(N; > b;) = % Therefore
1 K
P(N > (1~ 5%2')(%?/4- bj)) < =

and hence
- I\ Kt K!
B, < — < —.
’ t) gt t!
Thus

lim lim By ; = 0.
t—oo j—oo

On the other hand, fixing t > 1 we get,
1 J

> (@ + 0 N)vg(t) € Ey),

P(Aiyj N A NN Ay ) = P(T%
=0

where Fy = {(x1,x9,...,2¢) : x; € I£7y}. So by Lemma 33l we have that uniformly over
all d-tuples 1 <141 <19 < ... <ig <7,

1 J .
> (3 + 0 N)vg(t) € By) —P((1+07)' PN, € I, 1 <1< t)

v14+2j P J T,y

< eP((1+0H)Y2N;, > ajy+bj,1 <1< t) + Oexp(—(1 + 25)")).

g

So as j — oo we get,

by = Bl < B+ (1) Olexpl=(1-+20)7) 0
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Therefore,
lim [P(A) — P(B)| < Tim Bygyqj + lim Boy
J—00 J—00 J—00

and letting k — oo we get,
lim [P(A) — P(B)] = 0.

Jj—00

This proves the claim ([34) completely.

Step 3: Claim:

, — A®A. (4.3.8)

(—mj,ﬂ(,N —bj MjzioN — bj) D
a; a;

As maxi<p<; N = Op((lnj)l/Q), it follows that,

2\1/2
(1 + O'j) / maxj<g<j Nk - bj maxj<g<j Nk — bj ‘ < 05 Max]<k<j |Nk| E 0
a; a; - a; '
Therefore
(1 + 0'?)1/2 maxi<g<j Nk — bj D
—

aj
Since —minlSij(l + 0-]2‘)1/2Nk = maxj<i<; ( — (1 + 0']2‘)1/2Nk) and —(1 + sz)l/QNk 2

(1+ a?)l/QNk we get

ming<g<; —(1+ 0]2»)1/2Nk — bj D A
=LAl

a;j

Since (1 —i—ajz)l/QNi are 1.i.d. symmetric distributions, by Resnick (1987) [I03] (Exercise
5.5.2)

(minlgkgj—(l —|-0']2»)1/2Nk — bj maxlgkgj(1+0]2)1/2Nk — bj) D A®A (439)
) — . .O.
a; a;

Therefore combining [34]) and E3) we get,

(—mj,ﬂ(,N —bj Mjzion — bj) PoAwA

a; a;

This completes the proof of (3.

Step 4: Claim:

e —bs Mia— b
( Mjz = bj Mia bﬂ) P A®A. (4.3.10)
a; a;
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We prove this using [E3F). Note

{max(j\;ﬁ) — max(j\z)‘ < ﬂmaX|N'» | 2.0
aj a; ~ a; Gk '

Similarly —X, = =\, — oN; ;. and

{max(—%) B max(—j\;g)‘ - ﬁmax[N’- | P
a; a; Toay gk )

/

Now if we denote m; oz
bl

= minlSij 5‘;9 and Mjlj = MmaxXj<k<j 5\;9 then,

|(_mj,5c+aN —bj Mjzyon — bj) _ (_m;f —b MJ/‘@ — b )‘

Qj a; Qj Qj
—MjzroN — (=M ;) Mjz1on — M} 5
< of|ney =) Monie = Mg )
_ J
max(—\,) — max(—\, max(\, ) — max(\
< CU (=A%) ( k)|+‘ (M%) (k)”i)o.
aj aj
Therefore using [E3ZH), we hwve
—m’_—b; M._ —b;
(—2E 2 BTy PoAwA. (4.3.11)

Again \p = ) + (1;”/421)5:0, therefore

— 2o,
aj aj
and .
| e = bj  —mjz—b 220
a;j a;j
Hence using ([3IT]), we have
<—mm —bj Mjz— bj) DoAmA

a; a;

This completes the proof of (EZIM).

Now we get back to the proof of the main theorem. Combining E33]) and E3ZI0),
we can conclude that

(Fria=bi Miz Z0i) 2, g,
Qj ’ Qj
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This proves the theorem when n is odd.

For the even case say n = 2j it should be noted that if we work with X, = /2z¢ +
V2(=1)Fz; + 22{;11 x4 COS 272‘?—? then similar normal approximations can be done and
the subsequent calculations follow after that. We omit the obvious details. This proves

the theorem completely. O

The next theorem follows by calculations similar to those used in the proof of The-
orem

Theorem 4.3.5 (Bose, Hazra and Saha (2009) [34]). Suppose {x;}i>o is an i.i.d. se-
quence with mean p and E|xz;|**° < oo for some § > 0. Consider the symmetric
circulant matriz (SCy,) with these {x;}.

(i) If n = 0 then,
SCpl| = by —agn2 4

—

I

Gq
where ¢ = q(n) ~ § and ag and by are as in equation [Z.31)).

(ii) If  # O then,
[SCnll — [uln

NG

Proof. To prove (i), since mean p = 0, Ao 2, N(0,2). So we can neglect this as was

2 N(0,2).

done in proof of Theorem Therefore, for large n with arbitrarily large probability,

SCy|| = max{— min \;, max \;}.

H\/_ 1<i<|2] << 2]
Hence
— Ai—b Ai—b
P(|—=SCnll < agu+by) = P(—tt < p BN <y
\/_ q q
2 A@)A(z) =Az+1In>)
Now by convergence of types
(e
p(IECI =y 2y
q

where, d, = a, and b, = b, + a,In 2. This proves (7).
In part (i7), Ao dominates and the proof proceeds as in the proof given for Theorem
We omit the details. O
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4.4 k-circulant with light tail entries

It appears difficult to establish distributional convergence of spectral norm or spectral
radius for k-circulant matrix for all possible values of (k,n). A special case (n = k?+1)
was tackled in Bose, Mitra and Sen (2009) [44].

Theorem 4.4.1 (Bose, Mitra and Sen (2009)). Suppose {x;}i>o is an i.i.d. sequence

with mean zero and variance 1 and E|x;|*>T0 < oo for some § > 2. If n = k? +1 then

Sp(n_l/QAk,n) dq D
—
Cq

A

as n — oo where ¢ = q(n) = | 5| and

Inn)!/? llnlnn 1 T
= (8Inn)" Y2 and d, = (Inn) 7 1+- In—. (441
¢n = (8lun) o V2 * 4 Inn * 2(8Inn)l/2 ) ( )

We now state the following significant generalisation of the above result.

Theorem 4.4.2 (Bose, Hazra and Saha (2010) [37]). Suppose {x;}i>o is an i.i.d. se-
quence of random variables with mean zero and variance 1 and E|z;|7 < oo for some

v >2. If n=Fk941 for some fized positive integer g, then as n — oo,

sp(n*1/2Ak7n) —dy p
D

A
q
where ¢ = qp, = % and the normalizing constants ¢, and dy, can be taken as follows
LU WG -fimg  (n)"*[ (g—Dinhn
" 2¢t2(Inn)t/2T " 2¢/2(Inn)1/2 q Inn )
1 ~
and Cy = —(271)%_

NZ

The proof of the above theorem is long and is developed in the following sections.
It involves some intricate study of the structure of the eigenvalues, the behaviour of the
tail of product of i.i.d. standard exponential random variables H,(-) from Chapter
and some normal approximation methods. In Section EEZ0, we remark about the case
sn=k9+1.

Here is an outline of the proof of Theorem In Section EEZT] we discuss some
distributional properties of the eigenvalues of k-circulant matrix when the input se-
quence is i.i.d. Gaussian. In Section we provide more detailed description of the
eigenvalues of k-circulant matrix for n = k9 + 1. Section has two preparatory

Lemmas on truncation and normal approximation. Drawing on the developments of
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Section of Chapter Bl and of Sections and EEZ3] we derive the limit behaviour
of the spectral radius of k-circulant matrices when n = k9 +1 — oo (g being an integer
held fixed) in Section EZAl We show that the spectral radius, when scaled and centered

appropriately, converges in distribution to the Gumbel distribution.

4.4.1 Properties of eigenvalues of Gaussian k-circulant for fixed n

For 1 <t < mn, let us split \; into real and complex parts as \; = as, + by, that is,

n—1 n—1
2mtl 2mtl
Aty = E T COS (%) , bin = E T sin (%) . (4.4.2)

1=0 =0

For z € C, z denotes its complex conjugate. For all 0 < ¢,t' < n, the following identities

can easily be verified using the orthogonality relations of sine and cosine functions.
E(at7nbt,n) = 0’ and E(a’?,n) = E(bin) = ’I’L/2,

M=ty EQy) =nl(t+t =n), E(N?) =n.
The following Lemma is due to Bose, Mitra and Sen (2009) [E4].

Lemma 4.4.3. (Bose, Mitra and Sen (2009) [74)]) Fiz k and n. Suppose that {x;}o<i<n
are i.1.d. standard normal random wvariables.

1/2at,n,n_1/2bt7n, 0 <t <n/2 are i.i.d. normal with mean zero and

(a) For every n, n~
variance 1/2. Consequently, any sub-collection {y;,,Yj,,...} of {y;j}o<j<e, so that no
member of the corresponding partition blocks {Pj,,Pj,,...} is a conjugate of any other,

are mutually independent.

(b) Suppose 1 < j <l and Pj = {n—i: i € P;} and n/2 ¢ P;. Then n~"/%y; are

distributed as (nj/2)-fold product of i.i.d. exponential random variables with mean one.

4.4.2 Additional description of eigenvalues of k-circulant when n =
k9 + 1

We need some additional facts about the eigenvalues since we are dealing with spectral
radius instead of LSD. Recall the eigenvalue structure of k-circulant matrices from
Section [CZAL Also recall that g, = #S(x) and S(z) = {2k’ mod n': 0 < b < g,}. We
call g, the order of x. Note that gy = 1. It is easy to see that

g =min{b > 0:b is an integer and zk® =2 mod n'}. (4.4.3)
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Recall from (C2Z7)

yj::H)\ty, j=0,1,...,0—1 where y=n/n"
teP;

Define
Zn,=140,1,2,...,n—1},
Jy :=A{Pi: #Pi=k}, ng:=#Jx, X(k):={x: = € Z, and z has order k},
Vkn = #{x: v € Zp and g, < g1} (4.4.4)
Lemma 4.4.4. The eigenvalues {n;} of the k-circulant with n = k9 + 1, g > 2, satisfy
the following:

(a) no = Z?:_ol i, is always an eigenvalue and if n is even, then nn = ?:_01(—1)%,5,

s also an eigenvalue and both have multiplicity one.
(b) For x € Zy ~ {0, 5}, g = g1 or 9 for some b > 2 and 9 is an integer.

(c) For all large n, g1 = 2g . Hence from (b), for x € Zy, ~{0,5}, g» = 2g or 279. The

total number of eigenvalues corresponding to Jog is
29 X #Jog = #X(29) = n.

(d) X(%g) =0 for2 <b<g,beven. Ifg is even then X(%g) = X(2) is either empty

or contains exactly two elements with eigenvalues

m = |)‘l|a Nn—1 = —|)\l|, for some 1 <1<

|3

(e) Suppose b is odd, 3 < b < g and { is an integer. For each P; € J%g there are 2?9

etgenvalues given by the 2?g—th roots of y;. Total number of eigenvalues corresponding
to the set Jz4 s

b

29 29

> X #HJ2g = #X(?) ~ (K9° +1)(1 +n™%) for some a > 0.
b

There are no other eigenvalues.

Proof. Since n = k9 + 1, n and k are relatively prime, we have n’ = n.
(a) Pp = S(0) = {0} and the corresponding eigenvalue is 1y = Z?;OI x¢ with multiplicity
one. Similarly if n is even then £ is odd and hence S(n/2) = {5}, and the corresponding

eigenvalue is nz = ?:_01(—1)txt of multiplicity one.

(b) From [Z3) it is easy to see that g, divides g; and hence g, = g1 or g, = % for



97 k-circulant with light tail entries

some b > 2. Also for every integer t > 0, tk9 = (=1 + n)t = —t mod n. Hence )\
and \,_; belong to same partition block S(t) = S(n —t). Thus each S(t) contains even

g1

number of elements, except for ¢t = 0, 5. Hence 9+ must be even, that is 2 must be an

’ 2b
integer.

(c) From Lemma EZT0(i), g1 = 2¢ for all but finitely many n and vy, /n — 0 as
n — oo. For each P; € Jy, we have 2g many eigenvalues which are 2g-th roots of II;.
Now the result follows from the fact that

n = 2g#Jog + Vg -

(d) Suppose b = 2 and = € X(%) = X(%g). Then zk% = 2k = z mod n. But
k9% = —1 mod n and so, k9 = —x mod n. Therefore 2x = 0 mod n and z can be
either 0 or n/2. But we have already seen in part (a) that go = g,» = 1. Hence
X(%) = 0.

Now suppose b > 2, even. From Lemma 3(ii) Bose, Mitra and Sen (2008) [4],
#X(%g) < ged(K29/ —1,k9 4 1) for b > 3. Now observe that for b even,

1 if k even,

cd(k¥/P —1,k9 +1) =
god( ) 9 if k odd.

So we have #X(%g) < 2 for b > 2 and b even.
Suppose if possible, there exist = € 7Z, such that g, = 279. Then #S(x) = 279 and
for all y € S(z), g, = 2. Hence

2 2
#{y: gy:?g}zjg>2 for g >b> 2, beven.
This contradicts the fact that #X(%g) <2forg>0b>2,beven. Hence X(%g) = () for
beven and g > b > 2.

If b = g and it is even, then from previous discussion #X (279) = 0 or 2. In the latter
case there are exactly two elements in Z, whose order is 2 and there will be only one

partitioning set containing them. So corresponding eigenvalues will be
n
m =N, M1 = —|N|, forsomel <1< 3
(e) We first show that for b odd,

2
(kP +1) = 3T (kP41 < #X(?g) < k941,
b;>b, b; odd,
bijinteger
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Note that (e) is a simple consequence of this. Let
Znp = {w : 2 €7, and 2k*/" =z mod (k9 + 1)} .

Then it is easy to see that

— )

X(%g) C 7y (4.4.5)

Let € Z, 3 and § = m. Then

K9+ 1| z(k29/b — 1)
= KMl z(k®™—1)

= EODm _gO=2m L pG=m k1| z(k™ - 1).
But ged(k™ — 1, k(b-Dm _ p(0=2m o p(0=8)m _ ... _ 4 1) = 1, and therefore z is a
multiple of (k(0—1m — k(0=2)m L g(b=3)m _ ... _ k1 1), Hence
Kb 41
#Zn,b - {(k(bl)m — kO=2)m 4 p(b=3)m _ ... 1 1)J

= K"4+1=k9"+1
and combining with [ZH),
2
#X(?g) < H#Zn, =k +1.

On the other hand, if z € Z,; then either g, = %g or g, < z—bg. For the second case
g = %—f for some b; > b, b; odd and therefore x € Z,,;,. Hence

2
#X(D) 2 #Zup— Y. #lus

b;>b, b; odd,
i integer
1
> (P — > (k4.
b;>b, b; odd,
i integer
3
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4.4.3 Final preparatory lemmas: truncation and normal approxima-
tion
Truncation:
From Section LX) n = n’ and S(t) = S(n —t) except for t = 0, n/2. So for P; #
S(0), S(n/2), we can define A; such that
1
Pi={z:zcAjorn—zcA;j} and #A; = §#Pj. (4.4.6)

For any sequence of random variables b = {b; };>¢, define for P; € Jy

271

Boi(i) = T1 , where w = exp <7> . (4.4.7)

teA;

1 n—1 2
LS
\/ﬁ =0

Suppose {z;};>¢ are independent, mean zero and variance one random variables. For

each n > 1, define a triangular array of centered random variables {fl(n)}ogkn by
p =z = 21 — Bl
L= = Tiligy | <nt/y — BT gy <nl /v

Now, recall from Lemma EZA #Jo; = ngy ~ % for n = k9 4+ 1. Without loss of

generality, assuming that P; € Jo, for 1 < j < ¢ = %, we prove the following lemma.

Lemma 4.4.5. Assume E|z;|” < oo for some v > 2. Then, almost surely,

max (B, (7))* = max (Br,4(j))'* = o(1).

Proof. Since Z?;Ol wt =0 for 0 < t < n, it follows that Bz ,(j) = Bz.n(j) where

= ~n) 4 _
T =I, =1+ Exl]I‘x”SnlM = xﬂlmgnuw.

By Borel-Cantelli lemma, » ;% |xt|H\xt\>t1/V is finite a.s. and has only finitely many

non-zero terms. Thus there exists a positive integer N(w) such that

n n N(w)

e}
Sl =@ =Y |willspn < 0l snm = 3 @l snn-  (44.8)

t=0 t=0 t=0 t=0

It follows that for n > {N(w), [x1]7, ..., [T ()|} the left side of @ZF]) is zero. Conse-
quently, for all n sufficiently large,

Brn(j) = Ban(j) = Bzn(j) as. for all j (4.4.9)
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and the assertion follows immediately. O

Normal approximation:

For d > 1, and any distinct integers 1,19, ...,1%q, from {1, 2,..., ["T_W }, define

2mi;l 2mi;l T
voq(l) = (COS( ™ >,sin< ™ ):1§j§d> , LELy.
n n

Let ¢x(-) denote the density of the 2d-dimensional Gaussian vector having mean zero

and covariance matrix Y and let Is; be the identity matrix of order 2d. The following

Lemma is from Davis and Mikosch (1999) [50] and it follows from strong approximation
results of Einmahl (1989) [B3].

Lemma 4.4.6 (Davis and Mikosch (1999) [20]). Let {x¢} be i.i.d random variables with
E[zo] = 0, E[z¢]? = 1 and E[zo]” < oo for some v > 2. Let p, be the density function
of
n
21207 12N (@ + 00 NyJualt),
t=1
where {N;} is independent of {x;} and o2 = Var(z;)s2, for some sequence {s,}. If
n~*Inn < s2 <1 with c = 1/2 — (1 — )/~ for arbitrarily small § > 0, then uniformly
for |z|> = og(min (n¢, n'/2=1/5)),
Pn(T) = P1402)1,4(x) (1 + 0(1)).
We shall use this lemma also in Section [LTJl Now we have the following corollary
which is similar to Lemma

Corollary 4.4.7. Let v > 2 and 02 = n~° where c is as in Lemma[[Z.0. Then for any
measurable B C R?,

/BﬁN(x)dx_/19¢(1+0%)12d(x)dx S6n/3¢(1+0%)12d(x)dx+Od(eXp(_nn))a

where €, — 0 as n — oo and n > 0. The above holds uniformly over all the d-tuples of
distinct integers 1 < iy < iy < ... <ig < [251].

4.4.4 Proof of Theorem

To establish the theorem we shall use the following lemmas whose proofs are given
later. Recall that {Bx,g(t)l/ 291 are the eigenvalues corresponding to the set of partitions

having cardinality 2¢g. We derive the behaviour of the maximum of these eigenvalues in



101 k-circulant with light tail entries

Lemma Then using the results of Lemma EEZ9, we show that the maximum of

the remaining eigenvalues is negligible compared to the above.

Lemma 4.4.8.
maxi<i<q Brg(0)'/* — dg D
Cq

A (4.4.10)

where dg,cq are as in Corollary[ZZ3, q = ¢, = % —k, and %” —0asn—o00. Asa

consequence,
1/2
maxi<i<q Br.g(t)'/% — dijag A

Cn/2g

A. (4.4.11)

The next Lemma is technical and is required in the proof of Theorem Let

c(l):; d(l)zw ln_”l/Ql (—=1nlnn
" 2l1/2(1nn)1/2’ n 211/2(lnn)1/2 I T ,
G = i(27‘(‘)l771, and

Vi

Cny; = Cny; (])’ dngj = dngj (]), Cn/j2g = Cn/2g(g) and dn/2g = dn/2g(g)-
Lemma 4.4.9. Letn = k9+1. If j < g and for some a > 0, 2jngj = (K7 +1)(1+n~%) ~
ns or is finite, then there exists a constant K = K(j,g) > 0 such that,

dn/?g - dngj

Cn/2
2K oand 29T oo a5 m— oo
Cnay, Cnay,
Now we prove Theorem using Lemmas and Then we shall prove

the lemmas.

Proof of Theorem [[..3 If #P; = j, then the eigenvalues corresponding to P;’s are the
j-th roots of II; and hence these eigenvalues have the same modulus. From Lemma
EZA, the possible values of #P; are {1,2,2¢g and 2g/b, 3 < b < g,b odd, { € Z}.
Recall from [ZZ) that (3, (i) is the modulus of the eigenvalue associated with the
partition set P;, where #P; = 2j.

In case of Gaussian entries it easily follows that 3, j(7) is the product of j exponential
random variables and they are independent as ¢ takes ng; many distinct values. So from
Corollary EEZ3] if ng; — oo then the maximum of 3, ;(k)"/% has a Gumbel limit. For
more general entries the method as in the proof of Lemma can be adopted to get
the following limit:

By (k)% —d

, ng; D
max ! 2 S A, as ng; — 00, (4.4.12)
1§k§n2j Cn2j
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where ¢,,; and d,,; are as above.

Let
Ty = Cp + dy, q:q(n):2ﬁ and B={b:bodd, 3<b<yg, %EZ}.
g
Then
P (sp(n_l/QAk,n) > xq) >P < max Bx,g(j)l/zg > xq>
J:Pj€day
and

P (sp(nilﬁAk,n) > :Uq>

< P A\ 1/2g > P -\b/2g >
< (g, a0 ) 4 P (s 5007 >
eB b
n—1 n—1
+P <|nl/2 Z ay| > xq> +P <|nl/2 Z(—l)llﬂ > xq>
=0 =0

+P < max 63672(3')1/2 > xq)>

YHZISOP
= A+B+C+D+E.

From Lemma EEZ] the term D appears only when 5 € Z and the term E appears only
if g is even and in that case Jo contains only one element. It is easy to see that C, D
and F tend to zero since we are taking maximum of single element.

Note that B is a sum of finitely many terms. Now suppose for b € B, we have some
finite K such that

c dpj2g — d
29 K, and —2 T2 o asn — oo, (4.4.13)

cn2g/b cn29/b
Then from observation ZT2) and EZTI3]) we get that B goes to zero. So it remains
to check that whether [EZT3]) holds for b € B. But ([ZTI3]) holds from Lemma B2 e)
and Lemma
Now the limit in A follows from Lemma EEL8 proving the theorem. O

Now we prove Lemmas and

Proof of Lemma [[7.8 First assume that {x;};>0 are i.i.d. standard normal. Let
{E;};>1 be i.id. standard exponentials. By Lemma EEZ3)] it easily follows that

1/2g
P (i (89 (1) > ¢4z +d,

1/2 .
=P <(Eg(j_1)+1Eg(j_1)+2 e Egj) /2 > cqx + dg for some 1 < j < q).
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The Lemma then follows in this special case from Corollary
For the general case we break the proof into the following three steps and make use
of the two results from Section Fix x € R.

Step 1: Claim:
lim Q™ — Q] =0, (4.4.14)

n—oo

where

gn) =P <max (ﬁi-l—anN,g(j))l/zq > cqx + dq> >
1<5j<q

n 1/2
=P (131%(1 +02) (Eg-n1Bog-vys2 - Bag) > > cqa + dq) ’

and {N;};>0 is a sequence of i.i.d. standard normal random variables.

Step 2: Claim:

maxi<j<g(Betoan,g(4)) /% — dy DA (4.4.15)
q

Step 3: Claim:

maxisisy Org ()1 —dy By (4.4.16)
cq . 4.
We shall prove the above three steps later.

Now combining Lemma and ([LZT0) we can conclude that

maxi<i<q fa.g(1)/* —dy D
q

A.

This completes the proof of first part, [EZI0) of the lemma. By convergence of type
theorem, the second part, ([ELZIT) follows since the following hold. We omit the tedious

algebraic details.
‘4 and 7dq 2y
Cn/2g Cq

— 0 as n — oo. (4.4.17)

Proof of Step 1: We approximate an) by the simpler quantity Q;n) using Bonferroni’s

inequality. By Bonferroni’s inequality, for all m > 1,

2m 2m—1
S-S, < QM < ST (-1)T1S (4.4.18)
i=1 =1
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where

Sjn = Z P ((5f+anN,g(ti))1/29 >cur+dg, i=1,... ,j) .

1<t <te<...<t;<q

Similarly, we have

2m ' 2m—1 '
ST, <8 < N (<1 Ty, (4.4.19)
j=1 j=1
where
1/2 . .
Tjn = Z P ((1"‘03)(Eg(tifl)JrlEg(tifl)H e Egti) /2> Cqrtdg, 1 =1, -u7>-

1<t <te<...<t;<q

Therefore, the difference between an) and an) can be bounded as follows:

2m 2m—1
Z(_l)]_l(Sj,n - ij) — Tomi1n < ng - gn) < (_1)]_1(51}71 - ij) + Tomn,
Jj=1 J

3

Il
—

(4.4.20)
for each m > 1. By independence and Lemma B:Z7] there exists K = K(x) such that

K  KJ
T < <”>— <= foralln,j>1 (4.4.21)
’ Jj)n = gl

Consequently, lim;_, limsup,, T}, = 0.

Now fix j > 1. Let us bound the difference between Sj,, and Tj,. Let A; defined in
([EZT) be represented as Ay = {ef,e7,...,e/}. Alsonote ef,€7,...,ef € {1,2,...,[%]}.
For 1 <t <ty <...<tj <gq, define

Vag; (1)

21le} 21le} 2rle? 2rle?
:<cos< t’“),sin( t’“),cos( b ) sin bl <k<ij).
n n n n

Note that {e} , ... yef 1 <k < j}isaset of distinct integers in {1,2,...,[%]]}. Then,

n—1
P <(ﬁ5&+0nN,g(ti))1/2g > cqrtdg, i =1,. .. 7]') =P <21/2n71/2 D (E40nN)vag;(1) € Br(Lj))
1=0
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where

g
BY) = {y € R H(yggtwlq + y%gt+2l)1/29 > 22 (cqw +dy);0 <t < J} :
=1

By Corollary 27 and the fact NZ + N2 2 2F1, we deduce that uniformly over all the
d-tuples 1 <11 <t9 <...<t; <gq,

n—1

‘P <21/2n—1/2 Z(El + O'an)Uzgj(l) e B7(7/j))
=0
g
_p ((1 4 o2P2(T] Byroyes) ' > cqr+ dg1 < m < j)\
=1

1/2 .
< &P <(1 +o)/? (By(tm—1)+1Eg(tr—1)12 " Egt) 129 cqT +dg, 1 <m < J)
+O(exp(—n")).

Therefore, as n — oo,
1Sjn —Tjn| < eTjn+ <n> O(exp(—n")) < en— +0(1) — 0, (4.4.22)
J J

where O(-) and o(-) are uniform over j. Hence using ([ZIR]), EZIY), EZ2T) and
EZ22), we have

lim sup ]an) — an)] < limsup Top41,n + limsup T, ,,  for each m > 1.
n n n

Letting m — oo, we conclude

lim [Q}" - Q4] = 0.

n—oo

This completes the proof of Step 1.

Proof of Step 2: Since by Corollary B23],

1/2 e
max (Ey1y1Bygoin- o) % = O(nm)'2) and o2 =n™"

it follows that

1/2
(1+ 02)1/2 maxi<;<q (Eg(j—1)+1Eg(j—1)+2 T Egj) /20 dg D

Cq
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and consequently,

maxi<j<q(Betong())* —dg D\
q

This completes the proof of Step 2.

Proof of Step 3: In view of ([EZTIH), it suffices to show that

max (Br4o,ng (7)1 = max (Bz.4(7))"/ = opleq).

Note that
2 g

= [T lessl’

k=1

g

Bfl"f’o'n ,g H

k=1

, sSay,
TL

1 n—1
Z (Z1 + on N w
1=0

and
Bx,g H

Now by the inequality

g g
i=1 i=1 j=1 i=1 i=j+1

for non-negative numbers {a;} and {b;}, we have

]Hai—Hbil <> (T )la; - H a;) (4.4.

23)

g
|Bi+0,n,g(J) — Ba,g(d) Zhj,lf'“\717k71|2“0<j,k\2 — PPl gl
k=1

For any sequence of random variables {X,, },,>0, define

n—1
_ 1/2 1l
M, (X) ax |n ZZ;Xlw

As a trivial consequence of Theorem 2.1 of Davis and Mikosch (1999) [50J, we have
MZ2(o,N) = Op(o,Inn) and MZ2(Z + 0,N) = Opy(Inn).

Therefore |ozj7k| = Op(VInn). Now,

1 =l k
k| < lesie] +on]—= D Niw' |
J J n ﬁ;
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and therefore hj}k{ = (14 0,)0,(VInn) = Op(VInn). So we have

02X Brto0,n.9(J) — max fzq(s )‘ < max [fato.ng(5) — Brg()l

g
< max 3 (Op(nn))* " ok — vik| (lagl + 1)
A
< Inn)9?
< Op(Inn)? " 0,( fgjaé(qZMgk ’Y]k|
< Op(lnn)gféganMn(N)
< op (n_c/4(ln n)9> .
Hence
100 (B 0,49 (1)) — 0055 (Brg )27 < |10 Basoug () — s By o7
i<j<q TrontVe 1<j<q 09 = ligjgg TroniVg 1<j<q 9 £1/29
where ¢ lies between maxi<j<q Sz40,N,9(j) and maxi<j<q fBz,4(j). We know that
maxi<i<e frtoung(d) 2 | o [ maXigi<q Brronng(f) — maxicice Frg ()] 7
(Inn)9 (Inn)9
Therefore
maxigj<qfag _  MAXIgj<q BovouNgd) | maXi<icq Brg(f) — maxigjcq Fatonn.g()
(Inm)9 (Inn)9 (Inn)9
LA
Hence 1172
13 P § P 1 _ g
T S51= —(lnn)9(1—1/29) S1= 751_1/29 = Op((ln n)z )

Combining all these we have

1nax BerUnN,g(J)l/ 9 — max Bz,4(J )2 < Op(nfc/él(ln n)?) + Op((In n)%fg)

1<j 1<5i<q
< oplcq)-
This completes the proof of Step 3 and hence completes the proof of Lemma O

Proof of Lemma [{-4-9 First observe that if n; is finite then the result holds trivially.

If no; W then

1 1
Inng; =jnk + (E —i——> (14+0(1)) —1In2j

nj/g
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1
for some a > 0 and since k = (n — 1)9 we have

J
g

Cn/2g

Cny;

— as n — oQ.

Similarly we get for some ag > 0,

n Inn

i
Inlnng; =Inlnns 4 < > (I+0(1)) —In2j.

Now observe that
1,2 or 3.

) 90 —dn . . . .
% can be broken into the following three parts say J;,i =
n2j

InCj — 5t nj
2j1/2(1nn2j)1/2

—lan— g%llng

=27 (i) V2 291/2(In 1)1/
L 29

] — my (finite constant).

Inn/2g

Jy = 2512 (Inng;)*/?

In n2;
J

)"~

1/2
) ] — mg (finite constant).

(

g

=2 e [ -
— 951/2(Inpy; )12 :(i(;ﬂlg;n/;r;;//zg B (jé(ﬁg;r;)l%zj 0(1)]
= % :(g ~1)Inlnn/2g - (j%)g I In ng; + 0(1)}
= % <(9 -1) - @) Inlnn/2g + 0(1)] — 00 (since g > j).

Hence Lemma is proved.

4.4.5 Remark on k circulants with sn = k9 + 1

Bose, Mitra and Sen (2008) [#4] show existence of the limiting spectral distribution of
the k circulant matrix with k9 = sn — 1 assuming that s = o(nP1~!) where p; was
the smallest prime factor of g. To derive the limit of the spectral radius, we need a
slightly stronger assumption that s = o(nP'~1~¢) for some 0 < ¢ < p; and s > 1. This
is essential since s = o(nP'~1) implies vk ,/n — 0 which is not enough to deal with the
maximum. We need the stronger result U’“T" = o(n™%) for some a; > 0, so that these
terms are negligible in the log scale that we have. Note that with the above conditions

s = o(nP71) and vy, = O(n~/P1),
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Since s > 1 it easy to see from Lemma 3 in Bose, Mitra and Sen (2008) [E4] that

k9 +1

#M%‘q) < ged (k" — 1, ) < ged(k* — 1,k 4 1) (4.4.24)

Also observe that,

k941
S

# {:U . 2 € Zy, and 2k*/° = 2 mod ( )} > HZnyp. (4.4.25)

From observations ([LZ24]) and Z2Z0) it easily follows that Lemma EZA d) remains

valid in this case. Further, for some o > 0 we get that
#X (%) . - _
Mo No 7 > _ go — _ (0% > _ (0% .
Z a1 >1—k9%14o0(1)=1—(sn)"*(1+0(1)) >1—n"*1+0(1))
Hence from the above discussions we have the following Theorem.
Theorem 4.4.10 (Bose, Hazra and Saha (2010) B7). Suppose {x;};>0 is an i.i.d.
sequence of random variables with mean zero and variance 1 and E |x;|7 < oo for some

v >2 Ifs>1and sn =k9+1 where s = o(nP~17¢), 0 < € < py1, and py is the

smallest prime factor of g, then as n — oo,

sp(n_l/QAkm) — dq D
—
Cq

A

where ¢ = q(n) = % and ¢, and d, can be taken as follows

InC. — 9=1] 1/2 _ _
o nCy—4=Ing Inn 14 (9—1)Inlnn e L(%T)%
2g1/2(Inn)1/2 29 41nn NG

and
1

Cn = 29172 (Inn) /2’
4.5 Few remarks

In Theorems and we saw that the nature of the limiting distribution depends
on whether the input sequence has mean zero or not. Results from Adamczak (2008) [I]
and Bose and Sen (2007) [A2] suggest that the same should happen for the Toeplitz
matrix. It would be interesting to find out the limiting distribution of the spectral
norm of the Toeplitz matrix in general. Since our main focus is circulant type matrices,
we have not pursued it in this thesis. Incidentally, there does not seem to be an easy
answer to this question.

Theorem EE3 4 shows that the joint distribution of the maximum and minimum of
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the eigenvalues of SC), behave like the maximum and minimum of i.i.d. standard normal
entries. It follows that the distribution of the range of the spectrum is the convolution
of two Gumbel distributions. So one can ask a very natural question: what happens in

general to the spectral gaps. We shall address this question in Chapter [



Chapter 5

Spectral norm of circulant type

matrices with heavy tail

In this chapter we focus on spectral norm of circulant, reverse circulant, symmetric
circulant and Toeplitz matrices when the input sequence is heavy tailed.

There are a few results in the literature for matrices with heavy tailed entries.
Soshnikov (2004) [I17] shows the distributional convergence of the maximum eigenvalue
of appropriately scaled Wigner matrix with heavy tailed entries {z;;} satisfying P(|x;;| >
x) = h(x)x~® where h is a slowly varying function at infinity (that is, h(tz)/h(z) — 1
as n — o00) and 0 < a < 2. The limiting distribution is ®,(z) = exp(—z~%). A similar
result was proved for sample covariance matrices in Soshnikov (2006) [I18] with Cauchy
entries. These results on the Wigner and sample covariance matrices were extended in
Auffinger, Ben Arous and Peche (2009) [6] to 2 < a < 4.

Here we focus on the circulant, reverse circulant, symmetric circulant and Toeplitz
matrices when the input sequence is heavy tailed with tail index 0 < a < 1. In Section
BTl we describe the input sequence of the matrices and define a few related notions. In
Sections we establish the distributional convergence of the spectral norm and
hence of the spectral radius of the three circulant matrices. Though we are unable
to obtain the exact limit in the Toeplitz case, we provide upper and lower bounds in
Section 4l Our approach is to exploit the structure of the matrices and use existing
methods on the study of the maximum of periodograms for heavy tailed sequences. This
approach is totally different from the methods used to derive the results in Chapter H
with light tailed entries.

The results of Bose, Hazra and Saha (2010) [36] are based on this chapter.

111
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5.1 Input sequence of the matrices and scaling sequence

Let {Z;, t € Z} be a sequence of i.i.d. random variables with common distribution F'
where I is in the domain of attraction of an «-stable random variable with 0 < a0 < 1.

Thus, there exist p,q > 0 with p 4+ ¢ = 1 and a slowly varying function L(x), such that

< _

—_ = = d P(|Z ~x “L .
S AR S AR gand P(|Z1] > z) = x (x) as x — oo

(5.1.1)
A random variable Y, is said to have a stable distribution S, (o, 3, p) if there are pa-
rameters 0 < a < 2,0 > 0,—1 < 3 <1 and p real such that its characteristic function

has the form

exp{iut — o®|t|*(1 —ifsgn(t) tan(ra/2))}, if a#1,

Elexp(itYy)] = { exp{ipt — olt|(1 + (2i3/7) sgn(t) In [¢])}, if a=1.

If 3= p =0, then Y, is symmetric a-stable (Sa.S). For details on stable processes see
Samorodnitsky and Taqqu (1994) [I07].

In the description of our results, we shall need the following: let {I';}, {U;} and
{Bj} be three independent sequences defined on the same probability space where {I';}
is the arrival sequence of a unit rate poisson process on R, U; are i.i.d. U(0,1) and B;
are i.i.d. satisfying

P(B;y=1)=p and P(B; =—-1) =g, (5.1.2)

where p and ¢ are as defined in (BIT]). We also define
00 o D 1 1S9 -1
Yo = er ¢ = 5,(Ch,1,0) where C, = (/ x sinmdm) . (5.1.3)
j=1 0
For a non-decreasing function f on R, let f“ (y) = inf{s : f(s) > y}. Then the scaling

sequence {b,} is defined as

1 «—
bp= =—— n) ~n'/*Lo(n) for some slowly varying function Lj.

Define o
wk:Lfor0§k:§n.
n
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5.2 Reverse circulant and circulant with heavy tailed en-

tries

Recall the eigenvalues {\x, 0 < k <n — 1} of b, ' RC,, are given by (see Section [CZ3):

Ao = b, Y1 Z
Anj2 =0b,! ?;01(—1)tZt, if n iseven (5.2.1)
Me=—dnk = Inlwp), 1<k <[5,
where
k = ‘ Z VA e*thkP
b” t=0

The eigenvalues of b, 'C,, are given by

n
Nj=b,' Y Zie™s, 0<j<n—1.
t=1

Note that {|\x|?; 1 < k < n/2} is the periodogram of {Z;} at the frequencies {wy; 1 <
k < n/2}. From the eigenvalue structure of C,, and RC,,, it is clear that ||b,'C,| =
b, 1 RC,|| and therefore they have identical limiting behaviour which is stated in the

following result.

Theorem 5.2.1 (Bose, Hazra and Saha (2010) [86]). Consider {Z;} satisfying (211).
Then for a € (0,1), [|b,*Cnll 2y, and |6, 1RO, || A Y., where Yy, is as in (3.

The main idea for the proof of the above result is taken from Mikosch, Resnick and
Samorodnitsky (2000) [93] who show weak convergence of maximum of the periodogram
based on heavy tailed sequence for o < 1. Let €,(-) denote the point measure which
gives unit mass to any set containing x and let E = [0, 1] x ([—o00, 00]\{0}). Let M,(FE)
be the set of point measures on FE, topologized by vague convergence. The following

convergence result follows from Proposition 3.21 of Resnick (1987) [103]:

n

o0
Nn = Z (k/n Zk/bn N Z E(UJ7B F_l/a in Mp(E) (522)
k=1 7j=1

Suppose f is a bounded continuous complex valued function defined on R and without
loss of generality assume |f(x)| < 1 for all x € R. Now pick n > 0 and define T}, :
My(E) — C0,00) as follows:

(Tym)(2) =Y 01y, 1o f (2mt;)
j
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if m =) €40, € Mp(E) and v;’s are finite. Elsewhere, set (T;m)(z) = 0. The fol-
lowing Lemma was proved by Mikosch, Resnick and Samorodnitsky (2000) [93] (Lemma
2.3) using the function f(x) = exp(—ix). The same proof works in our case. For sake

of completeness we give the details.

Lemma 5.2.2. T, : M,(E) — C[0,00) is continuous a.s. with respect to the distribu-
tion of N.

Proof. Tt is enough to show that if 2, — = > 0 and m,, — m in M,(E), where
m{9([0, 1] x {[v] = n}) N[0, 1] x {—=00,00}} =0,

then (T,,m,)(xn) — (T;m)(x). To do this denote

My, = Ze(tg."),v;”)) and m = Z €(t;0;)-
j j
Consider the set
K, :=[0,1] x {v: |[v] > n}.
K, is compact in F with m(0K,)) = 0. Since m,, % m, we can find an ng such that for

n > ny

say and there is an enumeration of the points in K, such that
(87, 0f), 1<k <1) = ((brve), 1< <),
Without loss of generality we can assume that for given £ > 0

sup || vV sup |vf”] < €.

sup
n>ng 1<k<l

Therefore

l l
(Tyma)(@n) = (Tym)(@)] = |3 v f(=2maaty) = 3 vnf(~2maty)|
k=1 k=1

l
< Z |v,(€n)f(—27mcnt,(€n)) — ka(—Qﬂ'xtk)‘
k=1
l l
< Z |v,(€n) - vk| + Z |vk||f(—27rxnt,(§n)) — f(=2maty)|,
k=1 k=1
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SO
Tim [(Tyma) (@) - (Tym) (@) = 0.
This completes the proof of the Lemma. O

The proof of the following lemma is similar to the proof of Proposition 2.2 of Mikosch,
Resnick and Samorodnitsky (2000) [93]. We briefly sketch the proof in our case.

Lemma 5.2.3. For 0 < a <1, as n — oo the following convergence holds in C10,00):
In.z(x/n) : Z f27rx]/n)—>J ZB F_l/af(vaU) 0 <z <o0.
j=1

Proof. Applying Lemma BZ2 on (EZZ) we have

n

Z; ,
Tp(a/n) = DL @rwm)L )
j=1"
D > a .
= Z;BI‘ Y f(2maU;)1 Vs = JW(z) in C[0,00).
J

Also, as n — 0 by dominated convergence theorem we have

J(2) B Js(z) == BT,V f(2mal;).
j=1
So using Theorem 3.2 of Billingsley (1999) [29], the proof will be complete if for any

e >0,
hm hmsupP(HJ — Jnzl| > €) =0, (5.2.3)

n—oo

where ||z(-) — y(-)||so is the metric distance in C[0, 00) given by

() =y(Vlloo = D 2% Hz() =yOlln A1), where [lz() —y()lln = sup () — y(t)].
n=1 te|0,n

Now

n

hmhmsupP(HJnZ n7z\|>e) < hmhmsupP(Z‘?Hﬂzj‘gnbn}>e)

n—0 n—oo n—0 n—oo =1

< limlimsupne 'E (‘—‘1{\2 |<nbn}>'

n—0 pooo

By an application of Karamata’s theorem (see Resnick (1987) [[03] Exercise 0.4.2.8) we
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get that
A o o
E(1 Mgz em ) ~ P(|Z1] > nby) ~ 1-a
nE (5111 1<) ——nP(|Z1] > nbn) =
and %771*0‘ — 0 as 7 — 0. This completes the proof of the lemma. O

Proof of Theorem [Zl We use Lemma and Lemma BEZ3 with f(x) = exp(—ix).

It is immediate that

b Call < 021D 124
t=1

It is well known (cf. Feller (1971) [B9]) that

n o0
b3 12 B Ve =Y T 2 8a(Cr e 1,0).
t=1 j=1

Hence it remains to show that for v > 0,
liminf P(b, | Cn| > 7) = P(Ya > 7).
n—oo

Now observe that for any integer K and sufficiently large n,

P( sup [Jnz(j/n)] >7) =P( sup [Jnz(G/n)] > 7).

§=1,0 2] j=1,..K
Now from Lemma we have
) . D ) .
(Fozi/m)1 <5 < K) B (Juali).1 < j < K)
in R¥. Hence

. D .
sup | Jnz(j/n)| = sup [|Joo(4)]
j=1,..,.K j=1,...,.K

and so letting K — oo,

lim inf P( sup |,z /n)| > ) > P(‘ sup | Joo(4)] > 7).

el ]:177L§J _]:1,...700

Now the theorem follows from Lemma B2 given below.

Lemma 5.2.4.

o0
sup |Jxo(7)] = sup ‘ZBtPt_l/a exp(—2mijU;)| = Yo a.s.

]:17"'700 ]:17"'700 t=1

(5.2.4)

(5.2.5)

(5.2.6)
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Proof. Define

Qy = {wGQ ZF_l/a < oo and for all m > 1,

(Uy (w), ..., Un(w)) are rationally independent}.

Then P(Qp) = 1. Let T denote the fractional part of x. For any w € g, by Weyl

(1916) [1291,

(nUi(w),...,nUp(w)), n € N

is dense in [0,1]™. Fix any w € Qg and € > 0. Then there exist an N € N such that
denaal 1/ “(w) < € and from Weyl’s result there exist an Ny € N such that

€

Real (Bj exp(—2miNoUj)) > 1 N Ve
j

j=1,...,N.

Then we have

sup |ZBJ‘ /exp( 27?1]Ut)|
J=L-00 4

o
sup |ZBtF L exp(— 2m]Ut — Z I’t_l/a
J=100 4oy t=N+1

v

v

| Z Btft_l/a exp(—?wiNoUt)‘ —€

v

N
Real( Y B,/ exp(—2miNoUy)) —
t=1

v

N
Z _1/a)F_1/a—e—ZF_1/a 2¢.

t=1 =

Letting first N — oo and then ¢ — 0, we get sup;_; _ |Joo(j)| = Yao. Trivially
SUP;—1, o0 |Joo(j)| < Ya. This completes the proof. O

5.3 Symmetric circulant with heavy tailed entries

The eigenvalues {\g, 0 < k <n — 1} of b, 1SC,, are given by (see Section [[Z2)):
(i) for n odd:

{)\0 =z +2Zm 7 (5.3.1)

A =0b, 1[Z0+22 2 Zjcos(wj)], 1<k<|%]
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(ii) for n even:

_ 21
{ Yoo = (B0 422 £t L) (53.2)

Me =0, 2o+ 202 Z cos(wig) + (1) Zyp), 1<k <

|3

with \,,_x = A\x in both cases.

Theorem 5.3.1 (Bose, Hazra and Saha (2010) [B6]). Assume that the input sequence
is i.i.d. {Z} satisfying (L1). Then for a € (0,1), ||b, SCy]| D ol=1/ay. where Y,
is as in (BEIJ).

Proof. The proof is similar to the proof of Theorem BE2ZT We provide the proof for n

odd, and for n even, the changes needed are minor. Define

q
In,z(x) = 2b;1 Z Zycos(2mat) and M, z = Orgkaé{q ‘sz(k/n) , (5.3.3)

t=1

where ¢ = g(n) = | %]. Since |||b; 1 SCy || — My, z| — 0 almost surely, it is enough to show

M, 7z D, gl-1/ay,  Note that (EZ2) holds with [0, 1] replaced by [0, 1/2], and letting
_ N _ .

No = i €hmziog)y N = 202 W, 17 and U; to be iid. U[0,1/2]. Now

following the argument given in Lemma BZ2 Lemma and taking f(x) = cosx it

is easy to establish that

2rkx

q [e8)
Jn.z(x/n) = 2b, " Z Zy, cos D gl-1/a Z B]Tj_l/a cos(2mxlU;) = Joo(2).
k=1 j=1
(5.3.4)

It is obvious that
q 0
M,z < ngl Z A D 9l-1/a ZF;l/a _ 2171/aYa.
t=1 j=1

It remains to show that for n > 0,

liminf P(M,, 7 > 1) > P(2'7Y°Y, > 7).

n—00

Now following the arguments given to prove (ELZ0l), we can establish this relation. This

completes the proof of the theorem. O

Remark 5.3.2. (i) Theorem 21 and B3 are rather easy to derive when p =1, that
is, when the left tail is negligible compared to the right tail. Let us consider ||b,*RC,||
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and note from the eigenvalue structure that,
n
b7 RCull < b, > |24,
t=1

For the lower bound note that

P(||b, ' RC,|| > x) > P(\g > ) b‘lzZt > ).

Now since P(|Z1| > x) =~ P(Z1 > x) as x — oo, the upper and lower bound converge
with the same scaling constant and hence Theorem ELZl holds. The details on these
convergence can be found in Chapter 1 of Samorodnitsky and Taqqu (1994) [107]. Sim-

ilar conclusion can be drawn for the symmetric circulant matrices too when p = 1.

(ii)) When the input sequence {Z;} are i.i.d. mnonnegative and satisfies (L) with

a € (1,2) then from above it is easy to derive the distributional behaviour of the spectral

norm. In particular if kj = 2% (]OéTf1 —(j - 1)%1) and Y, = > 1Ty = ky) 2

_1
Sa(Cq *,1,0) then,

(HRC Hb E[Z] > x) N p(f/; >x) asn — oo,

and

(HSC ol — : nElZ] x) . PRYYYY, > ) asn — oo

When o =1, and {Z;} are non negative

(HRC wll = nby [ sin( i) P(Zy € dx)

2 >x>—>P(§/;>x),

where Yy is a S1(2/m,1,0) random variable. Similar results hold for symmetric circulant

matrices.

5.4 Toeplitz matrix with heavy tailed entries

Resolving the question of the exact limit of the Toeplitz spectral norm seems to be very

difficult. Here we provide a good upper and lower bound in the distribution sense.

Theorem 5.4.1 (Bose, Hazra and Saha (2010) [36]). Suppose that the input sequence
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is i.i.d. {Z} satisfying (ZL1). Then for ~ >0,

P2 (1 -U)r; Y > )
7j=1

IN

liminf P(b, || T, > 7)

[e.9]

IN

[o¢]
limsup P(b, Y|l > 7) < P2 TV > ).

Proof. Following Meckes (2007) [92], T;, is a sub-matrix of the infinite Laurent matriz
L = [Zj_iLj—k<n—1] ; ez

so [|T,]] < ||Ln|| , where ||L,|| denotes the operator norm of L,, acting in the standard
way on [3(Z). If we use the Fourier basis to identify lo(Z) with L]0, 1], it turns out

that L, corresponds to a multiplication operator, with the multiplier

n—1 n—1
g(x) = Z Z‘j|62”jz =Zyp+2 Z cos(2mjx)Z;.
j=—(n-1) J=1

Therefore
|Tnll < [ILall = llglloc = sup |g(z)]-
0<z<1

Hence as n — oo,

n—1 [’
J— —_ D -
bl Tl < bt (120l 230 175 223 T e
=0 =1

and we have for v > 0
oo
. - -1
hmnsupP(banTnH > ) < P(QZFj /o 7).
j=1
By another argument of Meckes (2007) [92], we get the following estimate

Thv,v 1
To0:0) 5y LT, 00)],
<U7U> 0<z<1 M

[Tnll = sup
veCn\{0}

where v, € C" is defined as (v;); = €™ for j = 1,2,...,n and (-,-) is the standard



121 Toeplitz matrix with heavy tailed entries

inner product on C™. Therefore

|T.| = — sup ‘Z Z;- 2m'(jfk)g;‘

N 0<z<1
1 n—1
_ . 2mija
= — sup n—|j)Z;e
n0<m<1‘ ._Z(n:l)( b d ‘
n—1 .
= sup Zo—i—QZ ) Z; cos(2mjz)|.
0<z<1 = n
Now
n—1 .
lim inf P (b, | Tl > ) > liminfP(b," sup |Zo+2> (1 - =)Z;cos(2mjz)| > 7)
n n 0<z<1 = n
n—1
= limP(b_ sup 22 1——)Z cos(27rjx)‘ >’y)
n 0<z<1 5

To find the limit in the last expression, pick n > 0 and define T}, : M,(E) — C[0, 00),

as follows:

> (L —=t;)vjcos(2maty)L(|vj| >mn) if m =37, €4, 0, all vis are finite

0 otherwise.

(Tym) () = {
Following the argument given in Lemma BT, it is easy to see that T}, is continuous a.s.

with respect to the distribution of N and then using an argument from Lemma (23]

we can show that for fixed x
2b,, IZ (1—=34/n)Zjcos(2mjx/n) — 22 1-U;)B;I; L cos(2maUyj). (5.4.1)

Now for any fixed T' where n > T > 0, using (BZT]),

n—1

2mjx
26,1 (1 — =)Zjcos(2 = |2,
o 23 (= zgentemi] = s | Z os =]
2mjx
> 2b;, 1 g
> | Z e
D - 1/
—1/a
= OEEET{QZ —U;)B;T; Cos(27TxUj){,

J=1
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and hence

lminf P (b, |7, > ) > P( sup 22 1-Uj)B;l; /e “cos(2malU;)| > 7).
n 0<z<T

Since this is true for any 7', we obtain

liminf P (b, || T,[| > ) > P( sup QZ Uj) BT e cos(2maUj)| > 7).
n O<z<oo 55

To identify the distribution of the random variable appearing in the right side, we follow
the proof of Lemma BZAl Here we use the fact {(zU1(w),...,2Un(w)),z > 0} is dense
in [0,1]™ and we get

[ee]
sup 22 1-U BF L/ cos(2mxUj) Z l/a a.s.

0<zr<oo j=1
This completes the proof. O

Remark 5.4.2. The assumption of a < 1 is crucially used only in the lower bound
argument. It is clear from the above proof that the upper bound can be derived when
€ (1,2). Indeed, it easily follows that if o € (1,2) then

lim sup P

n—oo

T, — 2nE[|Z
(H [ bn 2]

:U> < P(2§7; > x),

where Yy is as in Remark 32 (7).

Remark 5.4.3. The case when a € [1,2) and p # 1 and {Z;} are not necessarily
nonnegative appears to be nontrivial. In the reverse circulant case we saw that the
eigenvalue structure is similar to the square root of the periodogram and the maximum
of the periodogram is not tight with the scaling b,ll/a when a > 1 (even with input sequence
as i.i.d. SaS random variables). Instead it is tight with a different scaling (see Mikosch,
Resnick and Samorodnitsky (2000) [93], Section 3 for details).



Chapter 6

Distribution of maximum of
scaled eigenvalues: dependent

input

In this chapter we try to generalize the results on spectral norm of ChaptersEland Blwhen
the input sequence is dependent. We take {x,} to be an infinite order moving average
process, Tn = » oo Gi€n—;, where {a,;n € Z} are non-random with 3 |a,| < oo,
and {¢;1 € Z} are i.i.d. It seems to be a nontrivial problem to derive properties of
the spectral norm in this case. This is due to unequal variance of the eigenvalues.
So, we resort to scaling each eigenvalue by an appropriate quantity and then consider
distributional convergence of maximum of these scaled eigenvalues of different circulant
matrices. Now we give an outline of this chapter.

In Section BTl we consider infinite order moving average process with light tail entries,
that is {¢;;7 € Z} are i.i.d. with E(¢;) = 0 and V(e;) = 1. We scale the eigenvalues by
the spectral density at the appropriate ordinate as described below and then consider
their maximum. This scaling has the effect of (approximately) equalizing the variance
of the eigenvalues. Similar scaling has been used in the study of periodograms (see
Walker (1965) [I28], Davis and Mikosch (1999) [b0], Lin and Liu (2009) [84]).

For any circulant type matrix A,, we define

M(A,, f) = 19k%n /2 f(wn)

where f is the spectral density corresponding to {x,}, {\r} are eigenvalues of A, and
W = % is the Fourier frequency. This rescaling by the spectral density makes the
eigenvalues approximately of same variance and that makes it relatively easy to handle

their maxima. We show in Theorem and Theorem that M(n~'/2RC,, f)

123
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and M(n_l/QAkm, f) converge to the Gumbel distribution after proper centering and
scaling. For the symmetric circulant, in Theorem BT7 we show that M (n_l/ 2SC,, f)
converges to the same limit as above when we impose the extra condition a; = a_; for all
j. Without this condition, it is difficult to conclude the distributional convergence even
if ¢;’s are 1.i.d N(0,1). The convergence in probability of M (n='/2SC,,, f) is discussed
in Lemma and Theorem

In Section we consider the infinite order moving average process based on heavy
tail entries. Here also we resort to scaling each eigenvalue by the power transfer function
f (defined in Section [E2) at the appropriate ordinate and then consider their maximum.
We show the distributional convergence of M (A,, f) for the three circulant matrices.
These follow easily from the results on the spectral norm of their i.i.d. counterparts.

Some of the results of Bose, Hazra and Saha (2009, 2010) [33I30] are based on this
chapter.

6.1 Dependent input with light tail

Now let {z,,;n > 0} be a two sided moving average process,
o0
Ty = Z Ai€n—i (6.1.1)
1=—00

where {a,;n € Z} are non-random and ) |a,| < oo, and {¢;;¢ € Z} are i.i.d. random
variables. Let f(w), w € [0,27] be the spectral density of {z,}. Note that if {z,} is

i.i.d. with mean 0 and variance o2, then f = % We make the following assumption.

Assumption 6.1.1. {¢;, i € Z} are i.i.d. with E(¢;) =0, E(¢?) =1, Ele;|**° < oo for
some 6 > 0 and

Z ’ajHﬂl/Q < 00 and f(w) >0 for all w € [0, 27].

j=—o00

6.1.1 Reverse circulant and circulant: dependent input with light tail

Define M (-, f) for the reverse circulant matrix as follows:

_ | Akl
1<k<g (/27 f(wg)

where \j, are the eigenvalues of n=/2RC,, (see Section [CZJ). Note that M (n~Y2C,, f)
for the circulant matrix defined similarly satisfies M (n~Y/2RC,,, f) = M(n=Y2C,, f).
Note that Ao is included in the definition of M (-, f). When E(ey) = p = 0, this is
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immaterial. However if u # 0, see Remark

The following lemma is an approximation result which is a stronger version of The-
orem 3 of Walker (1965) [I28]. We will use this result in Theorem but not in full
force. We will again use it in Section

Lemma 6.1.2. Let {x,} be the two sided moving average process defined in {GL1l) and
which satisfies Assumption [ 1. Then

I, n(wk) _1/4
_;____‘_I ‘: / l )
25 o ) en(wr)| = op(n”/"VInn)
where
itwy |2 itwy |2 27k
Iy n(wr) ——|Zﬂ:6 B2, e p(wr) ——|Zee k| (mdwk_—
t=0
Proof. First observe that min,e(g 2] f(w) > @ > 0. Now for any r,
r—|s| r—|s]
‘ZGGMtQ Z Zwszet€t+|\< Z ’ZEtGH_H’
s=—r s=—r
Hence
T r—1 r—s 12
iwt 2 2
O<w< ‘Zee "] < E( 6t)+2Z[E(Z€t6t+S)]
t=1 s=1 t=1
r—1

< K32 (6.1.2)

where K is a constant independent of r. So

E [ max ]Zete“’”f <K1/2 3/4, (6.1.3)

O<w<

Note that ([GI3]) still holds if the limits of summation with respect to ¢ are replaced by

1+ p and r + p, where p is an arbitrary (positive or negative) integer. Let

j=—o0
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Then it is easy to see that 27 f(w) = |A(w)|? and

Th(w) = |Ru(w)+ Aw)Je (W)P_ ’A(W)‘Qlﬁ,n(w)

= Ru(@)AW)Jen(w) + Ra(w) A(w)Jen (W) + [Rn(w) .

)

Now
Ry(w) = Jen(w)— A(w)Jen(w)
1 n—1 00 o o) n—1
- Z ( Z atej—t) Wi Z et Z Ejelw]
K j=0 t=—o0 t=—o0 j=0
1 [e'¢) ' n—1 n—1
_ _n Z atelwt[z y elw(_] t) Z . ezwg]

Observe that

|Z]*—t€lezwj|+|23 n t ij|’ 1 §t<n
Zna(W)| <4 X020 e+ |3 0 Lejevi|,  —n<t< -1 (6.1.4)
122" i tEJ ZWH“ZO ejel|, lt| >n

and |Z, o(w)| = 0. Therefore using [EI3) and ([GIZ) we get

-1

1 n-1
2K 2 3
E( max [Ru(w)]) < —=[> lalts + > Iat||t|4+Z|at|n4+ Z jagln]

Oswsm \/ﬁ t=1 t=—n+1 t=—o0
1
2Kz 3 3
= Tl 2wl 3 jadnd]
1<]t|<n—1 [t|>n

1 1 1 1 1

< 2KanTi[ 0 > a2 ([E/n)E 4+ ) la]t]2]
1§|t\§n—1 ‘t|2n

= o(n Y (6.1.5)

since the second sum goes to zero as n — oo and the first sum is not greater than

Yo [t Pad + (k@) /)y Lyl

k(n)<[t|<n—1 1<j1<k(n)

where k(n) is such that lim,,_...{k(n)/n} = 0 and lim,,_,« k(n) = co.
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Also it is known from Davis and Mikosch (1999) [50] that under the conditions on {¢;},

1r<n]?x |Ie n(wi)| = Op(Inn)
and hence
max | Jen(wi)] = Op(Vinn). (6.1.6)
Finally using (G110 and (G0
1r§r}§a<x% % _Ie’"(wk)‘ = 27104 1<k< ax, [Tnlw)]
< a2 1) mas [A@)] max Jeaon)

2ra 0<w<T 0<w< 1<wy <

H{ max [Ra(w)[} ]
= o,(n Y*VInn). (6.1.7)

a

Theorem 6.1.3 (Bose, Hazra and Saha (2009) [34]). Let {x,} be the two sided moving
average process defined in (G L1l) satisfying Assumption [T Then

M(n~Y2RC,, f) —d, D A
—_—

)
Cq

where ¢ = q(n) = [252], dy = VIng and ¢4 = 2—\/11171. Same result continues to hold
for M(n=Y2C,,, f).

Proof. From Lemma G2 we have

Ix,n(wk)

— L ‘ = op(1 6.1.8
1I§r}€a<xg 27Tf(wk) m(wk) Op( ) ( )
where
1
Ipp(wi) = —| Zﬂf e~ k|2 and I p(wi) = _| ZE etk 2,
t=0

Combining this with Theorem 2.1 of Davis and Mikosch (1999) [50] we have

Iy n(wr)

—c —] A.
1</rca<X 27 f (wg,) ng =
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Now proceeding as in the proof of Theorem EE23, we can conclude that

M(n~Y2RC,, f) —d, p
—
Cq

A.

a

Remark 6.1.4. If we include Ny in the mazimum and define M(n='/?RC,, f) =

| Ak
maxo<k<n/2 5 f(or)

cess {xp}. If mean p of €y is 0 then by Theorem 7.1.2 of Brockwell and Davis (2002) [46]

it follows that \/% A N(0,1). So by arguments similar to Theorem [[.2.3 we have

then different limits may appear depending on mean y' of the pro-

M(n='2RC,, ) —d, D
D

Cq

A.

When p # 0 then,
M(n='2RCy, f) — [ulv/n 2 N(0,1),

Remark 6.1.5. It appears that by the results of Lin and Liu (2009) [84), if {xn} is the
two sided moving average process [GL1) where E(eg) =0, E(e3) =1, E[e3l{|¢] > n}] =
o(1/Inn) and

Z laj| =o0(1/Inn) and min f(w) >0,

; wel0,27)
[7]>n

then also
M(n='2RC,, f) —d, »
—

Cq

A,

where cq,dq are as in Theorem 13

6.1.2 Symmetric circulant: dependent input with light tail

We now come to the symmetric circulant case. First we prove the following result similar
to Lemma It will be used in the proof of Theorem ET7

Lemma 6.1.6. Let {z,} be the two sided moving average process (L1 where E(€;) =
0, E(e2) =1 and

Z |aj||j|1/2 < oo and f(w) >0 for all w € [0, 27].

j=—o0
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Then we have,

ax |— —2—= €4 COS +2— € sin(——)| = o,(n
B8 Ty~ Hm eSO PR Y asin(S D) = oY)
(6.1.9)
where
= 2 = . 2nkj
V27 f(wi) Ak = Z a; cos( and /27 f(wg)Br = Z a; sin( - ).

Proof. First observe that min,c(p,2x] f(w) > a > 0. Consider n = 2m + 1 for simplicity.

For n = 2m calculations are similar.

M @ 2kt B <~ . 2wkt
m Ztcos —)+ thsm - —) =Y,
where -
1 2rkj . 2mky
Yn,k = m Z a; [COS TUk’j — Sin " VkJ],
j=—00
- o2k (t — j) 2kt - _2mk(t — j) . 2mkt
Uk = Z [et,j €COs ————=—¢€;4 COS —], Vij = Z [et,j sin ———=—¢; sin —]
n n n n
t=1 t=1
Note that
10 jetcoswm|+|zt j+1€tCOS2ﬂTkt| if  [jl<m,j>0
Uy < | 1St ecos B ] S o 25 i <m.j <0
P IS ercos 22 4+ [ SO e cos 22 it [jl =m0
|ZL‘1ETilEtCOS2W—M|+|Zt 1et0082”kt| if |7 >m,j<0.

Now for any r > 1,

—|s]

T
i2 kt
’2§’Z€t622 Z‘ZQEHFH‘.
t=1

T
2kt
\ Z €t COS T
t=1 S=—r

Hence by equation (G12),

T
E{m]?x | Z €4 COS
t=1

Therefore
AK|j[P2 it | <m,
4Km?? if  |j| > m.

2
E{ml?x Ui} < {
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Similarly
AK[P2 it [j] <m
E ViZ2}< ’
{m]?X k,j}—{ 4K m3/2 if m > m.
Now
SIS R
E Y, < — | [E Uy} +E Viei
mpeYouly < 72 37 el [Blmp(Uisl) + Bl [V ]
2K1Y2 1
< _ |1413/4 374
—= \/%\/ﬁ[ Z |CL]||]| + Z |aj|m ]
l7l<m l7[>m
2K1/2 1 )
el 20015 /) /4 i1/2) .
< ol 2 gl S 5 ey
l7l<m li[>m
= o(n~%

since the second sum goes to zero as n — oo and the first sum is not greater than

o Y Plagl - {k(m)/my Y 151 gy,

k(n)<|j|<m 0<|j]<k(n)
where k(n) is such that lim {k(n)/n} =0 and lim k(n) = occ. O

Define M (-, f) for the symmetric circulant matrix as was done for the reverse circu-
lant matrix:

M Y25, f) = max — 4
1<k<g (/27 f (wg)

where A\ are the eigenvalues of n~1/28C, as defined in Section Under the addi-

tional restriction of a; = a_j;, for all j, the following result is easy to prove.

Theorem 6.1.7 (Bose, Hazra and Saha (2009) [34]). Let {x,} be the two sided moving
average process defined in (L) with aj = a_; and satisfies Assumption [T Then

M(n=Y28C,, f) — by —agIn2 p
—
aq

A

n

where ¢ = q(n) = | §] = 5 and a, and by are as in equation [{-31]).

As in Remark BT if \g is included in the definition of M (n~/2SC,, f) then the
result changes only when p # 0.

Proof of Theorem [6.1.] Note that if a; = a—; then in Lemma BT0 Bj = 0 and hence
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from the same lemma, it is easy to see that,

Ak

—_—— = o, (n~ /4 .
i~ | = ol (6.1.10)

max — A
1<k<|%]

where A . denote eigenvalue of symmetric circulant matrix with {z;} replaced by {e;}.
Combining this with part (i7) of Theorem we have

M(n=Y2S8C,, f) — by — agIn2 23N

Qq

a

In Theorem BT we assume that a; = a—; and this condition reduces {z,} to a
one sided moving average process. Now we focus on the case where a; is not necessarily
equal to a_;. For reasons to be discussed later (see Remark BITH), in this case we can
deal with maximum over two different subsets L}, and L2 (see (ETIA)) of {1 < k < [%]}
separately. We first define some notation which will be used in our further developments.
For 0 < §; < 1/2, define

1
pn=(1— m) and L, ={k:1<k < |[npn/2]}, (6.1.11)
L. ={ke L, :kiseven} and L? ={k € L, :kis odd}. (6.1.12)
Let
ApB k Dy k+ k) Epw K —k
ol =1+ r ktan(L), U = — tan m(k + )—i— MM tan m{ ), (6.1.13)
n n ’ n 2n n 2n

Dy jr = Ap By + Ap B, and  Ey pr = Ap By — A By,

where Ay, B, are as in Lemma
The following lemma from Dai and Mukherjea (2001) [2I] (Theorem 2.1) is an ana-

logue of Mill’s ratio in higher dimension.

Lemma 6.1.8 (Dai and Mukherjea (2001) [51]). Let (X1, Xo,...X,,) be multivariate
normal with zero means and a positive definite covariance matriz 3. Let &1 > 69 > ... >
Gn denote the variances and let I(t) = P(X; > t,1 <i < n). If a = (a1, q9,...,0p) =
2! where T = (1,1,...,1) with oy > 0 then
1 15-
I(t) =~ exp(—§t212_1TT).

(V2 /ISIITi o)t

We first look at the special case where {¢;} are standard normal random variables.




Chapter 6: Distribution of maximum of scaled eigenvalues: dependent input 132

Lemma 6.1.9. Let {N;} be i.i.d. N(0,1) and let

L3]
V2A,LN 1 okt .2kt
AbN = \/E 0 4 \/_ E N, <2Ak cos( ) — 2By sm(T)> )

Then A\ b
max 1 -
help RN 0 DA (6.1.14)

Qq

and \ b
max —
Reli kN 7% Do (6.1.15)

Qq

where ¢ = q(n) = || and ay, and b, are as in [{-31)).
In particular,
max| << 2| AkN  p

— 1. 6.1.16
Vinn ( )
Proof. We shall prove ([EI.14]) only. Proof of (GITH) is similar. Finally using these two
results we shall prove (GITG).

Proof of (EIT4): Consider the case n = 2m + 1. For n = 2m, calculations will
be similar with minor changes. First observe that Var(\;y) = o7 and for k' > k
we have Cov(Ap N, Ak N) = Vg where of and vy are defined in @ELTH). Let
Ty = aq + by ~ v/2In¢. By Bonferroni inequalities we have for j > 1

23 2j—1
Z(_l)d—léd < P(max A\p n > z4) < Z (-1)%"1By,
keLl
d=1 d=1
where
Bd = Z P(Ail,N > Zg, --«Aid,N > :Cq)

i1,12,...,ig€LL, all distinct
Observe by the choice of p,, we have,
1 (an ) 2nl/2+01

— tan N — —
n 2 ™

Hence for some € > 0, for large n we have 1 — e < 0,% <1+ ¢ and for any k, k' € L} (or
L%) we have |vj 5| — 0 as n — oco. We shall use this simple observation very frequently

in the proof. Next we make the following claim.

Claim:
(-4
exX
Z PQis v > @, Aig, N > ) X q'dl'; for d > 1. (6.1.17)
1i,02,...,ig€ LY, all distinct d.xq(\/ 271')
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To avoid notational complications we show the above claim for d = 1 and d = 2 and

indicate what changes are necessary for higher dimension.

2

d=1: Using the fact that U—g — 0 and for = > 0,
x
q

it easily follows that,

ST PIN(O0,1) > wpfor) & Y o exp(— )
, Zq/0k) ——2 .
keLl k€Ll 27”3‘1 20},
Observe that
g
Ve i ovlh) 2
qpn 3 - E Tk eXp(__(02 B 1))
V2rzg exp(—) " keL} k
1 x;, ArB k
= — 3 opexp(— o5 7 tan(T0))
2 2
qPn o o, n n

Now using the facts that 2 2 ABizg (on n(*£2) — 0, supgepr o7 »land [{k: ke L} ~
qpn, it is easy to see that the last term above goes to 1. Since p,, &~ 1 the claim is proved
for d = 1.

d=2: We shall use Lemma for this case. Without loss of generality assume
that O']% > O']%,. Let a = (a1’a2) where o = val and

2
VvV = O'k Vk,k:/
5 |-
Vg k' O
To Ve k! TRV : : 1—e¢
Hence (g, ap) = | & v v ) For any 0 < € < 1 it easily follows that a; > %

for large n and for i = 1,2. Hence from Lemma it follows that as n — oo,

exp(—%ngvflfT)
V| alagxg

Z P()\kJV > xq,)\ng > :Cq) ~ Z - !

k,k'eL}, k,k'eL},
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Now denote

1 Ak;Bk; wk Ak’Bk;’ k!
’ = — — t ) — ——t -
(o v - an - ) - an( - )
Ak;Bk wk Ak’Bk;’ k! 2
t — t —) =2 =+ 2 /]
+ an( n) ” an( - ) = 20k + 205,
and observe 2

\xqwkk/]<0 %9 tan (Wgn)—>0 as n — 0.

1 1. 271/ -17T
Zk‘,kﬁleL}L o7 /|V‘041042$g eXp( 2xq1V 1 )
q? exp(—=2)
2lz227
= — Z —————exp (—le(al + ag) + x2>
|V (65K 2 1 1

k Jk'eL},

2 4RE i
= — Z ( — V] 5 )exp <—7q(041+042—2)>
k

T yoery Ok Vi (0% = Vi

562

2) lv‘3/2
— E 7exp(——wkk/)—>lasn—>ooand as € — 0.
¢ L=, (1—e)?

) eL/n

IN

Similarly the lower bound can be obtained to show that the claim is true for d = 2.

d > 2: Now the probability inside the sum in claim (EIID) is P(N(0,V,) € E,)
where E, = {(yl,yg, wYd) Y > xq,i = 1,2...,d}, and V,, denotes covariance ma-
trix {V,,(s,t)}¢ ¢im1 With V. (s, 5) = o2 and for s #t, Vi (s,t) = vi,i,, where 0y, v, are
as in (ETT3). Without loss of generahty assume that o;, > 0;, > ... > 0;,, since we can
always permute the original vector to achieve this and the covariance matrix changes

accordingly. Note that as n — oo we get
an - IdHoo - O,

where || 4| = max|a;;|. As V1 = > ieoda— V,,)? we have a = 1+ P I(Ig— V).
Now since ||Ig — Vp|loo — 080 ||(Ig — Vi)?||oc — 0 and hence elements of (I; —V;,)? goes
to zero for all j. So we get that o; € (1 —€,14¢) fori=1,2,...,d and 0 < e < 1 and
hence we can again apply Lemma B8 For further calculations it is enough to observe
that for |z| # 0,

zVpal d ) 1 d
k
|xn|2 = Zxk A;, tan( - )+ e Z TRTp Vi iy,
k= 1<k£k'<d
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Since the last two term goes to zero in their modulus so given any € > 0, we get for
large n
1-€e< )‘mzn(vn) < )\mam(vn) <1+ €,

where Apin (Vi) and A (V) denote the minimum and maximum eigenvalue of V,.

Rest of the calculation is similar to d = 2 case. This proves the claim completely.

Back to the proof of (GITI4l). Using the fact that a, and b, are normalizing

constants for maxima of standard normal it follows that,

d agd
exp(——— 1
) L (de).

dlzd(v2m)d  d!

So from the Bonferroni inequalities and observing exp(—exp(—z)) = Y2, # exp(—dx)
it follows that

P(max \g ny > z4) — exp(—exp(—x)),
keLl

proving (EIT4) completely. For @IT5]) calculations are similar to the proof of (EIT4I)

and we omit the details.

Proof of (EITI6]): We first observe that,

n/2
2 PWO.D > zi/e0) < 50L-pmPVOD > 75)

since a,% < 2 for k < n/2. Expanding the expressions for a,, and b, we get,

1 Ing 1 T
= Z(aqx +by)? = o(1) + - Zln(47rlnq) + 5

=[S

Now

2132
1 — py) exp(—4)
2 Tq

1= pn) ;p")P(N(O, 2) > z,) < o™

~ Cn-1/2 n(l —pn)

2y/Inq
1

~(C——+—— —0asn— oo.

n%/Inq

Breaking up the set Ly = {k:1 <k < |%] and k is even } into L;, and
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LY ={k: [npn/2] <k < [%] and k is even} we get,

P(max A\ > 1,) = P(max(max A\ max A\ >
(keLl k,N q) ( (kEL}L kw,keil k,N) q)

n

< P(max \g ny > x4) + P(max A\ v > x4)
keLy keLl

13]
2
< P(,Ifé%’fn Ak, N > Zq) +t LZ/QJ P(N(0,0%) > xq)
=|npn

=P AN > 1).
(max A > 2q) + o(1)

n

Hence the upper bound is obtained. The lower bound easily follows from EII4l).
Similar calculations for the set Ly = {k:1 < k < |§] and k is odd} can be done. To

complete the proof it is enough to observe that,

maX1§k<L%J )‘k,N maxger, )\k,N maxXger,, )‘IC,N

vVinn Vinn Vinn

and the last two probabilities go to zero. This completes the proof of the Lemma. O

>1—¢) <P( >1—¢)+P( >1—¢)

Remark 6.1.10. By calculations similar to above, it can be shown that for o = n=°

where ¢ > 0,

d

K
> P(1+ 02N n > 2gy o (140D 2NN > 2) < =

o (6.1.18)

i4,02,...,ig€LL, all distinct

for some constant K > 0. This will be used in the proof of Theorem G

We now consider the symmetric circulant matrix with the general moving average

process {x,}. We shall use the result already proved for normal entries (Lemma ET.9]).

Theorem 6.1.11 (Bose, Hazra and Saha (2009) [B4]). Let SC,, be the symmetric cir-
culant matriz with entries from {x,}, the two sided moving average process defined in
(EI2) which satisfies Assumption LI If Ay, , denote the eigenvalues of %SCn with

input {x;} then

max Az — b
helo The 4 D, © (6.1.19)

Qq

and
maxyers M —bg o, (6.1.20)

Gq
where ¢ = q(n) = [ 4] and a, and b, are as in [{37).
Proof. We shall prove ([BZ) only. Proof of ([8Z) is similar. Again for simplicity we

assume that n = 2m + 1. We break the proof into four steps.
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Step 1: Truncation: Define

) oo oo
€ = Gtﬂ(‘Et’ < 7’L2+‘5), €& =¢€6 — Fé, Ty = E aj€t—j, Ty = E a]‘Et_j,

j=—00 J=—o0
1 2kt 2kt
iz = [Zo —l—Qth cos |, Mz = —=[To —l—Qth coS ]
Vi =1 f =1
Claim: To prove ([BZ) it is enough to show that,
max Aee— b
hely ke " 70 Dy (6.1.21)

Qq

where

V2AiE) 245 = okt 2Bj ~_ . 2wkt
N = \/_k‘0+\/_k;e S(T)——;Zetsm(T).

t=1
To prove the claim first note that

= 2kt
\/ﬁ)\k,g—c = EO+ZZEt cos
t=1 K
m m [ee]
N - 2kt - 2kt

= I +2th cos + Z a; E(E_;) +22[‘Z a; E(&_j)] cos -

t=1 Jj=—00 t=1 j=—00

= = 2kt
= Vida+[ Y EE)|[1+2) cos —]
j=—00 t=1
= Vnps.
Choose 7 such that (% — ﬁ —n) > 0 and observe
n"El max |Agz— Aol = n"E[ max |[Apz — i)
1<k<[3] 1<k<[3]
2 TS 1
< WZ Z |a;|E(ler—j [1(Jer—j| > n2¥9))
t=0 j=—o0
S nZ Z a1 [n7 P (lei-] > n7)
t=0 j=—o0
[e.e]
—|—/1 P(let—;| > u)du]
nZfe

= I + Iy, say,
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and

L
ho= 2SS IR > 0

t= 0]7—00
)
< nZ Z Jayl nw— E(ler—y )
t=0 j=—o0
2+5 o
< Bl Xt
572—“7

as n — oo since » 2 la;| < co. Similarly

o= o E Y el [ Pl > wd

= Oj—foo
S nz Z | J’/ ‘Z2iL+5)du
=0 j=—oc
2+4)
< (2+5’_€01‘ 1/2— nZOJZ_OJ ]|
< E(|60|2+6

Z laj| — 0,

(1+ 0)n2 =5 A

as n — oo for above choice of 7. Hence

Moz — Nea| = 1Y 6.1.22
152?@“ b kal = 0p (n77) ( )

Also from Lemma we have

Ak, 24y ~~_  2rmkt, 2By ~~_ . 2mkt Vinn
max : — € COs(—— ) + €&sin(——)| =o )
keL}l‘aq 27 f (wk) \/ﬁaq; ' \/ﬁaq; esin( )| = o oL )

(6.1.23)

Now from ([EI22) and ([EI23)) it follows that, to prove (B2) it is enough to show

maneL}L >‘k‘,e — bq g A

Qq

This proves the claim in Step 1 completely.
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Step 2: Normal Approximation: This is an intermediate step to approximate \j
by Ar.n, where A\, n is defined in Lemma B0 Define

V24, 24 > 27r/<:t 2By, < okt
AeetoN = (eo—i—aNo) (€:+0Ny) cos( - €+0Ny) sin(——).
Vi > w2 Z
Claim:
‘P(max AketoN > Tq) — P(max (1 + o)V NN > xq){ — 0, (6.1.24)
keL}, keL} ’

where \; y is defined in Lemma G.T.9
Proof of this claim is similar to the proof of Lemma We use Lemma to do
so. Let d > 1 and iy, s, ...ig be d distinct numbers from L.

Ud(O) = \/i(Ail, ---7Aid) and

27Ti1t 27T’i1t

n n n n

valt) = 2 <Ai1 cos(

Let S, = > ;"o &va(t), and observe that Cov(S,,) = V, where V,, is the covariance matrix
with diagonal entries V,,(k, k) = BnagC and off-diagonal entries V,,(k, k') = B,y ;,, and

2migt 2migt
) — Bj, sin( )y ey A, cos( T ) — B;, sin( T )>

= Var(é)n ~ n. We have in fact already seen in the proof of Lemma that,

Vi
15 = Tl =0,
To apply Lemma we define
n m
¢y = B, 2V 26 04(t) for 0 < t < ng and S), = Z €
t=0

It is easy to see that Cov(S],) = B,l;. Also note the since H(B—”)_1 — Ijllec < ¢ for
1

some constant ¢ > 0 and hence for large n we get that |e}| < 2dCn?+5 for some

constant C' . Hence {€,} is a sequence of independent, mean zero random vectors with

moment generating function finite in a neighborhood of zero. For verification of the

other conditions choose & = —“—, where ¢; is a constant to be chosen later. Hence,
n2+6 24dC
m
ZE|€t| exp(ale;]) < 3/2|V| 3/2 (2d) ZE|€t| exp(cy)
t=0 t=0

<dq exp(cl)C2d2n(1_Wl5)E|Et|3

5
<4y exp(cl)C2d2n(17ﬁ2‘5)E’€t’2+5Qv
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where 6 € (0,1) such that Ele|?t% < oo. Now choose ¢; such that the required

condition is satisfied. Similar calculations show that
m
B, = B;3/? ZE‘E;‘?’GXP(&’G;D <Cn™,
t=0

where c3 = ;

2 - 6 > 0. Rest of the calculation is similar to the proof of Lemma B33l
Let 62 = n=% and if N/ are i.i.d. N(0,52Cov(e})) independent of €, and p, be densrcy
Of S = A= S (e, + Nf), then,

Pn(x) = d(1152)1,(x)(1 + 0(1)),

(%—Wlé)). Here ¢¢ denotes the d-dimensional

uniformly for all # such that |z> = o(n
normal density with covariance matrix C.

Let 02 = Var(€)o? ~ n~% and observe that N} = 2 B2y,
iid. N(0,1) for t =0,1,....m

For z € RY, let ||z]o = minj<;<q ;. Recall | | denotes the Euclidean norm and
observe that ||z + yllo < |z[lo + |y|- Let S, \/— >oito(€& + Ni)vg(t). Then note that
s* = BY*v, %5,

Let r, = o(n(%fﬁ)) and denote K, = {y € R?: HB_l/2 1/QyHo > x4} and break it
into the following two sets K1, = {y € R?: HB71/2 1/2y||0 > zq,|y| > rp} and Ky =
{y € R+ | B, "*Vi?yllo > 4, ]yl < rn}. Then

1/20Ntvd(t), where N; are

P([[Snllo > z4)
P(| B /2,255 o > )

(
(

- / Pu()dy
Kn

_ / Fn(y)dy + / B(y)dy

IN

K2,n Kl,n
— (1+o(1) / Sitronrr, () dy + / Ba(y)dy
Kgn Kl,n
— (1+o(1) / b(tsor)1, W)y — (14 of1) / Siiroryr, (¥)dy + / Ba(y)dy

Kl,n Kl,n

= (L+oM)P(I(1+0*)"*—= ZNtvd Mo > x4)

~(1+0(1) / birsoryr, (¥)dy + / Puy)dy.
K

Kl,n
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The third integral is less than

1 m
P (\% Y BV e+ oNua(t)] > Tn) :

t=0

Now using the fact that H(g—z)*lﬁﬂoo < (5 for some constant C5 > 0 and using cal-
culations similar to Corollary 1 of Bose, Mitra and Sen (2009) [44] we conclude that
the third integral is bounded by Kj exp(—Kgn‘S?’) for some constant K7, K9 > 0 and
depending only on d and §3 > 0. Similarly the integral in the second term is bounded
by

P1402y1,(¥)dy < 2d exp(— ).

2d
ly|>rn

From all the above observations it is easy to conclude that, for ¢, — 0 we get uniformly

over d distinct tuples iy, i, ...ig € L. that

IP(I[Snllo > 24) = P(lI(1 + o) f ZNtvd Mo > z4)|
< e P(||(1 + o2 \/_ZNtvd Mo > 24) + Kzexp(—K4n®),  (6.1.25)

where K3, K4 are constants depending on d.
Now by arguments similar to Step 2 of the proof of Theorem EE34] and using ([ELIS])
and (ELZH) it follows that,

1/2
‘P(;?é%’;f Mieton > ) = Pmax(1+o V2NN > )| — 0.

This proves the claim ([EI24]) in Step 2 completely.

Step 3: Claim:
lim P(max AketoN > Tq) = A(). (6.1.26)

n—oo kel

Proof of this step is similar to Step 3 of the proof of Theorem EE34 Now since
maxgerr Ap,v = Op(VInn) (see Lemma BET) and 02 =n"% we get as n — o0,

P (max(l +oH)Y2 N > xq> — A(z).
keL}

Combining this with (GI24]) we get,

lim P AkctoN > A(x).
Jim. (ggx ketoN > Zg) = A(z)
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This completes the proof of Step 3.

Step 4: In this step we shall prove [EIZI]). Observe that

Maxperl AgetoN — by MaXpert Ape — by < T MmaXker) Ak,N 7

q aq aq
Now using (EILZ6]) it follows that

maXgerl Ake—bg D
= A.

Qq

This completes the proof of Step 4.

Hence from the claim in Step 1 it follows that

maXgerl Az —bg D A

Qq

proving ([RZ) completely. For ([B2) calculations are similar to the proof of ([§2)) and we
omit the details. This completes the proof of the theorem. O

Theorem 6.1.12 (Bose, Hazra and Saha (2009) [34]). If {\r .} are the eigenvalues of

ﬁSCn then under the assumptions of Theorem [T,
Ak,z

2n f(wy) P _ 27k
— 1 where w, = —.
n

Max<k<| 2]

Inn

Proof. As before we assume n = 2m + 1. It is now easy to see from the truncation part
of Theorem and Lemma that it is enough to show that,

maXlSkSL%J )\k75 P 1
N

vVinn ’

where,

V2AE = 27Tkt _ 2Bix~_ . 2wkt
Akye = \/_k L \/_ Z: + cos( : ;et sin( "

and € = ¢I(|e;| < n'/*) — Ee(|e;| < n'/*). The steps are same as the steps required to
prove (ELTH) in Lemma and observe from there that to complete the proof it is

enough to show,
5]
Z P(Age > z4) — 0 as n — oo. (6.1.27)
k=|npn/2]+1
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Denote

27Tkt) 9B, Sm(27rkt)
n

EL v1(0) = V24, and v1(t) = 24 cos(

m:L2

Since {€wv1(t)} is a sequence of bounded independent mean zero random variable, by

applying Bernstein’s inequality we get

doaui(t) > zg) < P(D _@wi(t)] > Vima,)

E\H

t=0 t=0
i T
= P> @) > mL)
2 7
mx
< 2exp(

_ q .
23 o Var(ei(t)) + %Cnl/sm%)

Denote by C = A Bj, and observe

D = mag
230 Var(evi(t)) + %Cnl/sm%
72
> Lq
ALY Var(ewr (t) + 3Cnl/s1 2,
_ %y
41 4+ %tan %k) + % /C;iql/s
2 2
> a >0
Therefore
m 2
P(|Y & (t)] > vimag) < 2exp(—-2),
t=0
and hence
15 m 2
1 _ L C
> P(—| S E@vi(t) > xg) < n(l—pn) exp(——1) < A 0.
t=|npn/2| t=0
This completes the proof of [ELZ7) and hence the proof of the theorem. O

Remark 6.1.13. Note that the above calculation can be imitated with ease to conclude
that under the conditions of Theorem [G1.13,

|>‘k,z|

27 f (wy) P

maxi<e<| %]

Inn
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The proof is same, with only the normalizing constants changed suitably.

Remark 6.1.14. If we include \o in the definition M(n=Y25C,, f) that is, if
N (n—1/2 _ Ak |

M(’I’L / Scn,f) = maXOSkSL%J m
[E70 except that mean p of {€;} is now non-zero,

then it is easy to see that under Assumption

M(n~"28Cy, ) = |ulv/n = N(0,2),

Remark 6.1.15. In Theorem [ 11 we were unable to consider the convergence over
LY UL2. It is not clear if the mazimum over the two subsets are asymptotically inde-
pendent and hence it is not clear if we would continue to obtain the same limit. Observe

that for example, if k is odd and k' is even then

— Dy / / I
k.k cot m(k+ k) B E gk cot m(k k:)
n 2n n 2n

CO’U()\]CJ;, )‘k’,a:) =

So for this covariance terms to tend to zero, we have to truncate the index set from below
appropriately. For instance, in the Gaussian case we may consider the set L' = {(k, k') :
1 <k < |npn/2], k+ |ng./2] < K < |np,/2|} with g, — 0, and can approzimate
it by the i.i.d. counterparts since supy pers |Cov( Mg, A 2)] — 0 as n — oo. The
complication comes when dealing with the complement of L' since it has no longer small

cardinality.

6.1.3 k-circulant: dependent input with light tail

First recall the eigenvalues of k-circulant matrix Ay, from Section [CZZA For any

positive integers k, n, let p1 < p2 < ... < p. be all their common prime factors so that,

Cc c
n:n'Hpq“ and k:k'Hpg“.
q=1 q=1

Here oy, B, > 1 and n/, K/, p, are pairwise relatively prime. Then the characteristic
polynomial of Ay, ,, is given by
{—1
X (Aen) = A" T O =), (6.1.28)

J=0

where y;,n; are as defined in Section [LZZ41

k-circulant for n = k2 + 1.

We first consider k-circulant matrix with n = k% 4+ 1. In this case, clearly n’ = n and
k' = k. From Lemma ZZT0(i), g1 = 4 and the eigenvalue partition of {0,1,2,...,n—1}
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contains exactly ¢ = %] sets of size 4, say {P1,Pa,... ’PL%J}' Since each P; is self-

conjugate, we can find a set A; C P; of size 2 such that
Pi={z:x€Ajorn—uxe A}

Since we shall be using the bounds from Lemma BT.2 we define a few relevant notation

for convenience. Define,

:vn W] __‘5 xlele

n

1
v en(wj) ——‘E €™t
n

n

1 & . 1 .
Jaal@) = =D me W, Jon(w) = 223 ae,
=1 =1

Ba:n Hlxnwj7 ﬁsn ngnwj

JEA: JEAL
Z atewf w]) =1, n(wj) |A(wj)|2le,n(wj),
t=—0o0
B (t) - 1/4
— Pen and M(n Y2 A, f) = foax (Bem(1)) "

ﬁmm(t) = HjeAt 27Tf(w]')

Theorem 6.1.16 (Bose, Hazra and Saha (2009) [34]). Let {x,} be the two sided moving
average process defined in [GI1) and satisfies Assumption LA Then for n = k? + 1,

M(n71/2Ak,n, f) - dq g A

Cq

as n — oo where ¢ = q(n) = || and cq,dy are same as defined in Theorem [[-71].

Proof. Observe that,

3 L ﬁa},n(t) _
Ben(®)i= s = flnll) + P,

where
+ 1 Tn(wtl) Tn (wt2)

() @) Talen)
Rn(t) —Ie,n( tl)zﬂ'f(th) e,n( t2)27Tf(Wt1) 27Tf(wtl)27'rf(wt2).

Let ¢ = [%]. Recall that,

1/2 _ 1/4 —1/2 _ 1/4
In" < Ap | = [max (Bam(t)) " and M(n= "2 Ay, f) = [max (@m( )) . (6.1.29)
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We shall show maxi<¢<q |§m7n(t) — Ben(t)] — 0 in probability.

Now
7 Ty (wt2) Tn(wtl) Tn(wtl) TN(wtz)
‘ﬁx,n( ) ﬁs n( )’ = ‘ en(wtl)m‘ + ‘I€7n(wt2)2ﬂf(wt1)’ 27Tf(wt1) 27Tf(wt2) ’7
Note that
TN(wtz)

I
e Wenlwn) 50,3

From (EI7) we get

1
I T,
< 2ra 1r<ntzix7 Hem(wr)] 1mtix T

—-1/4 1/2
wax [Tn(we)] = Op(n™""(Inn) /).

Therefore

T,
maX | Ie pn(wy,) (wry)

2 2 wrgy| — Crln )

and

Tn(wtl) Tn(th)
122 21 f (wey) 27 f (we,)

Combining all this we have

= 0,(n~Y%1nn).

1H<11?J<X |R ( )| - 1I£ltaX |B$ n( ) ﬂe,n(t” = Op(n71/4(]nn)3/2)_

Note that

(Ben®) " = IR < (Ban()* < (Ben(0) Y + [Ra ()Y

and hence

| max (B n(t)'* = max (Ben(t)'*] = Op(n="/ 10 (nn)?%). (6.1.30)

From Theorem EEZ1] we know

/4
maxi<i<q (Ben(t)) dq DA (6.1.31)

Cq
Hence from (GI29), (EI30) and EI3T) it follows that,

M(n_l/zAk,na f) - dq g A

Cq
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k-circulant with n =k9 +1, g > 2.

Now we extend Theorem BETT0l for n = k9 + 1 where g > 2. Here, we use slightly
different notation to use the developments of Sections EAZHL LAl Define,

Bm,j(t) = Bes (1) and M(n71/2Ak,n, f) = max max (Bx,l(j))

/21
HzeAt 27 f(wy) I jPjed;

Theorem 6.1.17 (Bose, Hazra and Saha (2009) [34]). Let {x,} be the two sided moving
average process defined in {G1) and satisfies Assumption [LIT1. Then for n = k9 +

1, g > 2,
M(n=Y2 Ay, f)—d

Cq

D
q = A

as n — oo where ¢ = q(n) = % and cq,d, are as defined in Theorem [[.4.3

Proof. The line of argument is similar as g = 2 case. To prove the result we use following

two facts:

(i) From LD,

1252?(% |T(wy)| = op(nfl/‘l(ln n)1/2).

(ii) From Davis and Mikosch (1999) [0],

lrgnlix% | Ien(wi)| = Op(Inn) and lrgnlixg | Iy n(wi)] = Op(lnn).

Using these and inequality ([EZZZ3]), it is easy to see that, for some dy > 0

Bot(t) — Bea(®)| = 0, (n=%). 6.1.32
max max, |5(t) = fei(t)] = op(n™") (6.1.32)
Now the results follows from Theorem and (EI32). O

6.2 Dependent input with heavy tail

Now suppose that the input sequence is a linear process {X,t € Z} given by

o0 o0
X = Z a;jZy—;, t€Z, where Z la;j]* ¢ < oo for some 0 < e <a. (6.2.1)
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Suppose that {Z;} are i.i.d random variables satisfying ([I1l) with 0 < a < 1. Using

E|Z|*7¢ < 0o and the assumption on the {a;} we have,

o0 o0
EIX* < > 0" B|Z " =E[Z1]* ) ag]* ¢ < 0.

j=—o0 j=—o0

Hence X; is finite a.s. Let

P(z) = Z ajexp(—i2nzj), x € [0,1]

j=—o00

be the transfer function of the linear filter {a;} and fx () be the power transfer function
of {X;}. Then

fx (@) = [i(@)*.
Define

M(ch’fX): max A M(Cn’fX)_ max |>\k|

0<ker \/Tx(kjn)’ ~osk<t \/fx(k/n)’

M(SC, fx) = max, —12%

where in each case {\;} are the eigenvalues of the corresponding matrix. From the

eigenvalue structure of C,, and RC,,, M(C,, fx) = M(RCy, fx).

Theorem 6.2.1 (Bose, Hazra and Saha (2010) [B6]). Assume that {X,} and {a;}

satisfy (CZD) and {Z;} is i.i.d satisfying (). Suppose fx is strictly positive on
[0,1/2]. Then

(a) M(b;'Co. fx) 2 Yo and M(by' ROy, fx) = Yo
(b) Further, if aj = a_;, then M(b,'SCy, fx) D gl-l/jay
Proof. (a) The proof is along the lines of the proof of Lemma 2.6 in Mikosch, Resnick

and Samorodnitsky (2000) [03]. Let C,, be the circulant matrix formed with independent
entries {Z;}. To prove the result it is enough to show that

|M (b, Cry fx) = |67 Coll] 2= 0.
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Let J, z(z) = byt SO0 Zyexp(—i2mat). Note

M0 o ) = G| = | sup (/)2 (/)] = sup Lzl /)|
< sup |[@(k/n) " I x (k/n)| = |Jn,z(K/n)]|
1<k<n
< sup ‘w(k/n)_ljmx(k/n) —Jn7z(/<:/n)|
1<k<n
and

Jnx(x) = b;lthexp(—zwat)
t=1

= b1 Z ajexp(—i27r:cj)(ZZtexp(—iQﬂ'xt)+Vn,j)

j:—oo t=1

= Y(x)Jyz(x)+ Y, (2), (6.2.2)

where

J n o)
Vo= Z Zy exp(—z’27mct)—z Zyexp(—i2mat), Yy(z) = b, " Z ajexp(—i2mzj)Vy ;.

.
t=

1—j t=1 j=—o00

Since fx is bounded away from 0 and ([EZZ) holds, it is enough to show that
P
maxj<k<n |Yn(k/n)| — 0. Now

Yo(z) = bt Z ajexp(—iQij)Vn,j—i—b;lZajexp(—i%mj)ij

Jj=n+1 J=1
-1 —1
byt Y ajexp(—i2maf)Vag + b, Y ajexp(—i2mz) Vi,
j=—o00 =

= Sl(.%') + SQ(I’) + Sg(.%’) + 54(1')

Now following an argument similar to that given in the proof of Lemma 2.6 in Mikosch,
Resnick and Samorodnitsky (2000) [93], we can show that

max |S;(k/n)| 20 for i=1,2.
1<k<n

The behaviour of S3(z) and S4(z) are similar to Si(z) and Sa(z) respectively. There-
fore, following similar argument we can show that maxj<y<y, [S;(k/n)| 2.0 for Jj=34.

This completes the proof of part (a).

(b) Let SC,, be the symmetric circulant matrix formed with independent entries {Z;}.
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In view of Theorem B3] it is enough to show that
[M (b1 5Co, fx) = b, SCall| 0.

Let ¢ = q(n) = |5] and

q
Inz(x) = 2bEIZZt cos(2mxt)
t=1

q q
= b, Z Zyexp(i2mat) + b, Z Zyexp(—i2mxt).
t=1 t=1

Then using a; = a_; we have

q q
Jux(x) = byt Z X, exp(i2mxt) + b, ! Z Xy exp(—i2mat)
t=1 t=1

00 q
= bt Z ajexp(—iQij)(ZZtexp(iQWmt)—i—UnJ)
t=1

j=—00

~ q
+b;1 Z aj exp(—i27m:j)(z Zyexp(—i2mwt) + V”J)

j:—oo t=1

= (@) Jnz(2) + Yin(2) + Yon(2),

where A
q+j q
U= Z Zyexp(i2mat) — Z Zyexp(i2mxt),
t=1+j t=1
q9—J q
Vo = Zy exp(—i2mat) — Z Zy exp(—i2maxt),
t=1—j t=1

o o0
Yi, = b, ! Z aj exp(—i2nxj)Up ;, Yo = b, Z aj exp(—i2mxf)Vy ;.

j=—o0 j=—o0

Since fx is bounded away from 0, it is enough to show that

sup [ Jnx(k/n) — 0(k/n)Juz(k/n)| < sup [Viu(k/n)|+ sup |Yau(k/n)| 2 0.
1<k<q 1<k<q 1<k<q
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Now

Yielw) = b, S ajexp(—i2raj)U,

j=—o00

00 q
= b1 Z aj exp(—i2rxj)Uy —|—b;12aj exp(—i2wxj)U, ;
j=q+1 j=1
—q—1 -1
+ bt Z a; exp(—i2mxj)Uy ; + byt Z aj exp(—i2nxj)Up ;
j=—00 j=—q

= 51(1') + SQ(.%’) + Sg(m') + 54(.%')

Again following an argument similar to that in the proof of Lemma 2.6 in [93], we can
show that suplékéqwi(k/n)‘ 2 0for 1 <i < 4. Hence SUP1<j<q |Y1n(k/n)‘ 2 0.

Similarly sup;<z<, |Yon(k/n)| 2. 0. This completes the proof of part (b). O
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Chapter 7

Poisson convergence of
eigenvalues of circulant type

matrices

In this chapter we deal with weak convergence of point process based on the eigenvalues
of circulant type random matrices. There appears to have been only limited studies
on the weak convergence of point process based on the eigenvalues of random matrices.
Soshnikov (2004) [I17] considers the point process based on the positive eigenvalues of an
appropriately scaled Wigner matrix with heavy tailed entries {z;;} satisfying P(|x;;| >
x) = h(x)x™® where h is a slowly varying function at infinity and 0 < a < 2. He
showed that it converges to an inhomogeneous Poisson random point process. A similar
result was proved for sample covariance matrices with Cauchy entries in Soshnikov
(2006) [TI8]. These results on Wigner and sample covariance matrices were extended
in Auffinger, Ben Arous and Peche (2009) [6] to 2 < o < 4.

On the other hand, in Chapter Bl we have established the distributional convergence
of the maximum of the modulus of the eigenvalues of circulant type matrices. The
same result for k-circulant matrix for n = k? + 1 was also derived in Bose, Mitra and
Sen (2008) [4]. The main tool for proving such a result was the strong approximation
theorem of Einmahl (1989) [53] for i.i.d random vectors. It seems then natural to study
the joint distribution of the ordered eigenvalues of circulant type matrices.

Here is an outline of this chapter. In Section [l we deal with circulant type ma-
trices with i.i.d. light tailed entries and consider the point process based on the points

{(wp, )"“a_qbq), 0 < k < n} where {)\;} are the eigenvalues as given in Section and

{wr = %} are the Fourier frequencies, and ag4, b; are appropriate scaling and centering
constants appearing in the weak convergence of the spectral radius in Chapter @l We

show that the limit measure is Poisson. In particular this yields the distributional con-

153
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vergence of any k-upper ordered eigenvalues of these matrices and also yields the joint
distributional convergence of any k spacings of the upper ordered eigenvalues. Then in
Section [ we extend these results partially to two sided moving average process entries
under certain restriction on the process.

The results of Bose, Hazra and Saha (2010) [35] are based on this chapter.

7.1 Results for i.i.d. input

We first recall the definition of point process and simple point process. Let M,(E) be the

space of all point measures on E equipped with an appropriate sigma algebra M, (E).

Definition 7.1.1. A point process on E is a measurable map
N : (Q,F,P) — (My(E), Mp(E)).
A point process N is simple if
P(N{z})<l,z e E)=1.

We initially assume that the input sequence {x;} is a sequence of ii.d. random
variables. Recall the eigenvalues of circulant type matrices from Section We use a
little different notation for their eigenvalues in this chapter. Necessity of using this will

be clear as we go along.

7.1.1 Reverse circulant

Let Apz(wo), Anz(wi), ... A z(wn—1) be the eigenvalues of n~1/2RC,,. The subscript z
in the eigenvalues keeps track of the fact that the input sequence is {x;}. This notation
will come in handy later on when we have the need to consider matrices with different

input sequences. These eigenvalues are given by (see Section [[23]):

An,z(wo) n~2
An,a(Wny2) =n 12 (—1)tay, if n s even (7.1.1)
A wk)

= _)‘n,m(wnfk) \V In,x(wk)7 1<k< ULTAJ

where )
L= 2k
In,x(wk) — _‘ the—ztka and wy, = L

[ n

Note that {|An.(wk)|? 1 < k < n/2} is the periodogram of {z;} at the frequencies
{wg = %; 1 < k < n/2}. This explains our notation of using wy as an argument of the

eigenvalues A, ;. Since the eigenvalues occur in pairs with opposite signs (except for
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perhaps one eigenvalue), it suffices for our purposes to define our point process based on
the points (wg, %{f%bq) for k = 0,1,2,...,[5]. Let €,(-) denote the point measure
which gives unit mass to any set containing z. With ¢ = ¢(n) = [3], a4 = 3 \/11n—q and

by = V/Ingq, define

M=

() = e(wj,xn,z(wj)qu)(-). (7.1.2)

i—0 aq

<

Let M, ([0, 7] x (—o0, o0]) denote the set of all point measures on the set [0, 7] x (—o0, 00]
endowed with the topology of vague convergence. Let D, denote the convergence in

distribution relative to the vague topology. Now consider the following assumption.

Assumption 7.1.2. {z;} are i.i.d., E[xg] = 0, E[z0]?> = 1 and E|x0|® < oo for some
s> 2.

We then have the following Theorem.

Theorem 7.1.3 (Bose, Hazra and Saha (2010) [35]). Let {z;} be i.i.d. random variables
which satisfy Assumption [T.1.3 Then for the sequence of point processes 1, defined in
(713), we have ny, A n, where 1 is a Poisson process on [0, 7] x (—o0, 0o} with intensity

measure ™ rdt X e Tdz.

Before going into the proof of Theorem we state a result which plays a key role
in the proof and which will also be used later.

Lemma LT provides a criterion for convergence. Its proof is available in Kallenberg
(1983) [B0J, Resnick (1987) [I03] and Embrechts, Kluppelberg and Mikosch (1997) [56].

Lemma 7.1.4. Let {N,} be a sequence of point process and N be a simple point process
on a complete separable metric space E. Let T be a basis of relatively compact open sets
such that T is closed under finite unions and intersections and for I € T, P[N(0I) =
0] = 1. IfnlirrgoP[Nn(I) =0]=P[N({) =0] and nlirrgoE[Nn(I)] = E[N(])] < oo then

N, 2 N in M,(E).

Now first suppose that the input sequence is i.i.d. normal. Then the eigenval-
ues (apart from negative eigenvalues) are independent square root of exponentials (see
Lemma LZ3)) and in this case the Poisson process result is easy to derive. As we have
already seen when the entries are not normal, the eigenvalues are asymptotically un-
correlated and asymptotically distributed as square root of exponential. This is also
easy to see using central limit theorem for independent random variables. The rate of
convergence is sharp provided the (2 + ¢) moment is finite.

Recall the sophisticated normal approximation result given in Lemma which

allows us to replace the variables by appropriate normal variables. But it is available
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only after appropriate truncations. Thus let the truncated and centered i.i.d. random

variables be
Ty = xdl(|ay] < nl/s) — Elzl(|z| < nl/s)].

Let {N¢} be a sequence of i.i.d N(0,1) random variables and ¢, be the density of d

dimensional centered Gaussian vector with covariance matrix Cy. Define for d > 1,
va(t) = (cos(wi, t), sin(wi,t), ..., cos(wj,t), sin(w;, b)) (7.1.3)

where w;,, ...,w;, are any distinct Fourier frequencies.

d

A sketch of the proof: Suppose for a moment that the entries are i.i.d. standard
normal random variables. Then it is easy to see from Lemma of Chapter Hl that
the eigenvalues are independent and distributed as symmetric square root v/E; where
F is a standard exponential random variable. In this case the Poisson convergence
result is immediate.

Now consider the reverse circulant matrices with the input sequences {Z; + o, N}
and {7;}. Let n} and 7, be the respective point processes 71, but with the above input
sequences.

In Step 1 we show that ), converges to the required Poisson process. For technical
convenience, to define 7}, we just consider the distinct eigenvalues and also leave out
Aog- In Step 2 we show that n} and 7, are close in probability. Finally using some
inequalities we show that the original point process 7, and 7, are close.

This is essentially the programme that is carried out for other matrices also. Finally,
the dependent case is reduced to the independent case by an appropriate approximation

result (such as Lemma for reverse circulant matrix).

Proof of Theorem [T.1.5 Step 1: We first show that 7;; 2 n where

77;() = Z E(u)j’)‘n,a'c-ﬁ—onN(“’j)*bq) ()

]:1 aq

and A\, z 4o, N(wp) are the eigenvalues of n~1/2RC,, with entries {Z; + 0, N;} with o2 =
n~ ¢ and c is as in Lemma First note that if we define the set

Ag = {(xhyh "'7xd7yd), : \/ x? + y22 > 22'(1}
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where z, = aqx + by, it easily follows that

P ()\n@_i_gnN(wil) > Zgy ey )\n@_i_gnN(wid) > Zq)

P (21/2n—1/2 Z(@ + onNy)va(t) € Ag)
t=1

[ Gasopna @)1+ o(1)ds
Ad

= ¢ %exp(—dx)(1+o0(1)). (7.1.4)

Since the limit process 7 is simple, to show 1 A 7 it suffices to show (see Lemma [T
that

Enp,((a,b] x (2, y]) — En((a,b] x (z,y]) = (7" —e™) (7.1.5)

forall0 <a<b<mand z <y and for all £ > 1,

P(n;;((al, bl] X Rl) = O, . ,nfl((ak, bk] X Rk) = O)
— P(n((a1,b1] x R1) =0,...,n((ag,bg] x Rg) =0), (7.1.6)

where 0 < a1 < by < - <ap < by <mwand Ryq,...,R; are bounded Borel sets, each

consisting of a finite union of intervals on (—oo, co].

Proof of (ZIH): It is established as follows:

En,((a,0] x (z,y]) = Z P(agz 4+ by < A gto,N(Wj) < agy + bg)
wj€(a,b]

by @@m) ~ e )

Proof of ([LTE): Set n; := #{i:w; € (a;,b;]} ~n(bj —a;). Then the complement of
the event in ([ZIG) is the union of m = ny + ... + ny events, that is,

(b—a)

™

(e —e™).

1=P(n,((a1,b1] x R1) =0, ..., 1, ((ak, b] x Ri) = 0)

)\n,a? O’nN(wi) —-b
=P (U?Zl Uwie(aj,bj}{ + a 1 ¢ Rj}) (7.1.7)

Now for any choice of d distinct integers i1, ...,iq € {1,...,q} and integers ji,...,jq €
{1,...,k} we have from ([ZIF) that

4 (AngtonN (Wi, ) — by W —d : A
P (N { € R;}) =4q H A(R;,)(1+0(1)), (7.1.8)

a
q r=1
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where A(+) is the measure on (—o0, 00| given by e~*dx and the relation is uniform over
all d-tuples i1, ...,74. Using elementary counting argument and ([ZLF]), the sum of the

probabilities of all collections of d distinct sets from the m sets that comprise the union

in (CI7) is given by

Se = Y (”1)---(”’“>qw“(Rl)---q“kA“k(Rk><1+o<1>>

U1 Uk
(wgseees ug )
U+t up=d
1 u u
= > m((bl —a)A(R1))"" -+ (b — ar) A(Re))™* (1 + o(1))
(wq,e-ey up)
u1+1~~~+ul;ifd

— (@) (01— an)A(Ra) + - 4 (b — ap) AM(Ry))"
Now it follows that,
2s _1)]',1

2s
d(=1yts =y ( i ((by — a)M(Ry) + ... + (b — ar)A(Rp))

j=1 j=1

S§— 00
— 1- exp

M?r

(bj — aj)m'A(Ry)),
7j=1

which by Bonferroni inequality and (1), proves (CIH).

Step 2: It remains to transfer the convergence of n} onto 7,. First define the point

process

MQ

ZE ’knx(w) bq)(') a‘nd nn

6 ’/\nx(w) bq)()'
Jj=1 *q

]:1 aq

It then suffices to show that (see Theorem 4.2 of Kallenberg (1983) [80])

T — 1% 2 0, (7.1.9)
T — 1 250 (7.1.10)
and
/ P
My, — M — 0. (7.1.11)

Equivalently, that for any continuous function f on [0,7] X (—o00, 00| with compact

support,

Ta(f) =15 (f) 250, 3u(f) =1 (f) 2= 0, and 0,(f) — na(f) = 0
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where the notation 7(f) denotes [ fdn. Suppose the compact support of f is contained
in the set [0, 7] x [K + 70, 00) for some vy > 0 and K € R. Since f is uniformly contin-
uous , w(y) :==sup{|f(t,z) — f(t,y); t€[0,7], |[x —y| <~} = 0asy—0.

Proof of (TIY): On the set A, = {maszl,___,q|>‘"’i””N(wj) — )‘“ WJ | < v}, we

aq
have for v < o,
. )\n,i on j)—b
™ Mngroun () —bay o Am(wj)_bq)‘ Ll i = e
J» aq 7 aq — 0 if )\n,a’c+0n61l\’(wj)_bq < K.
q
(7.1.12)
Also note
1
L s Postonv(e) ~ Do)
1 On
< - Un N. iw;t
< o 1 2 et
on 27Tk:t 2kt o
< = N, N,
T ag 1???(1 Z £eos n ; esin n )
<

a
2 max \/X —|—X22
ag 1<5<q J

where {X;;,X5;;1 < j < ¢} are iid. N(0,1). Now Z—Zmaxlgqu,/X —|—X =
Op(onInn). Therefore lim, .o P(A%) = 0. For any € > 0, choose ~y sufficiently small
that v < 9. Define By, = {|7.(f) — nj;(f)| > €}. Then

limsupP(B,) < limsup(P(B,NA4,)+P(A4;))
o < limsup Po(a)s([0,7] x [, 00)) > €) + limsup P(4S)
< HmewpEr(0,] % [Koo)e(fe
< e Fu(y)/e

Since w(y) — 0 as vy — 0, (CI) follows.

Proof of (LII0): This is essentially identical to the argument given for ([ZIJI).
>\n z(w]) >\nz w] | < "}/},

For completeness we give the details. Define C,, = {max;<;<q |

Again on the set C,,, we have for v < 7

An,z(wj)—bg
)‘n,x(wj) - bq )\n@(wj) — bq w(’y) if e
‘f(wja a—q) _f(wja a—q)| < 0 i )\n’i(w‘;)qu <K (7.1.13)
Qq
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Now

1< ‘
Ane(@)) = Anz(@i)] = ==Y ad(|z¢] > nl/%)eist
Poa) = ) = = 3 il > )

and hence

1
a_q E{lrgjaé(q [Ana(wi) = Az (w;y)|}

Therefore P(CS) — 0. Now for any

by intersecting the event {|n,(f) — 7

[ZTI3) and (ZIH), we obtain

1i1£risolépP(|ﬁn(f) — ()l >e <
<
<

1
< — E{max |sztﬁ 2| > nt/%)e™it |}

aq 1<5<q

Jinn .
NG E{;mmam > n'/*)}

< VnlnnE |z [I(|z] > n'/?)
= \/nlnn[nl/sP(]ml\ > nl/?) +/ P(X| > z)dx]
nl/s

E s E §
< Vamma[eEEl | Bl

n nl-1/s

Inn
S 2mE‘$1’8—>07 as n — Q.
€ > 0, choose ~ sufficiently small that v < ~y. Then

()| > €} with C,, and C¢, respectively and using

lim sup (P (w(7)7n ([0, 7] x [K, 00)) > €) + P(C;1))
lim sup B 7, ([0, 7] x [K, 00))w(7)/e
e Fuw()/e.

Since w(y) — 0 as v — 0, (ZTI) follows.

Proof of (CIII): Finally for any ¢ > 0

P([n(f) —m(f)l >€) =

IN

p(|(0, 2me) Zbay o

Gq
P(W > K)
q
1 n—1

le>Kaq+bq)—>O, as n — oo.

P

Therefore n,, — 1), 2.0, that is ([ZTTT) holds.
Since Step 1 and Step 2 are completely proved, the proof of Theorem is over.

a
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The relation n, KA n immediately yields the joint weak convergence of a finite vector
of k upper ordered eigenvalues. To be precise, we introduce for every n the ordered

version of the eigenvalues A\, »(w;),7 =0,1,...,n —1,
An(a) S0 S Any2) S Any)-

Let xj < --- < 1 be any real numbers, and write N;,, = 1,([0, 7] X (z;,00)) for the
An,a(w;j)—bg
Q,

number of exceedances of x; by ,j=1,...,q. Then

A —b A —b
%ley---a%Sxk}:{Nl,nzoyNQ,nSL--ka,nSk_l}-
q q

{

Then the joint limit distribution of the vector of the k£ upper ordered eigenvalues \, ;. (w;)

as well as their spacings can be derived from Theorem [.T3

Corollary 7.1.5. Under the assumption of Theorem [T.1.3,

(i) for any real numbers xp < -+ < x9 < X1,
A1) — b Ay — b
P(M <oy ,ngk) PV < - Y < ),
q q

where (Y1), -+ ,Y)) has the density exp(—exp(—zy) — (z1 + -+ + 21-1)).

NS W D . . - .
(ii) (" —"mG2D — (i E;)i=1.... 1 where {E;} is an i.i.d standard exponential
%a i=1,....k T

=1,...,

sequence.

Proof. The proof is similar to the proof of Theorem 4.2.8 of Embrechts, Kluppelberg
and Mikosch (1997) [56]. We just briefly sketch the steps. We have already seen that
for finite k,

7)\%(1) _ bq < z,... 7)\%(@ _ bq

P
( Qq Qq

S,Ik) = P(Nl,nZO,NZnS1,--->Nk,n§k_1)

- P(N1:07N2§177Nk§k_1)7

where N; = n([0, 7] X (x;,00]). Let us denote Z; = n([0, 7] x (z;,x;—1]) with xg = oco.
Now observe that to calculate P(N; = 0,No < 1,--- /N < k — 1), it is enough to
consider P(Ny = a1, Ny = ay + ag,- -+ , N, = a1 + -+ + a), where a; > 0 and

P(N1 =a1,N2 = ay +ag, -+ , Ny = a1 + -+ + ai)

:P(le(ll,ZQ:aQ,“‘,Zk:ak‘)
_ (e (e ey (e e et o
ap! as! a! .
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This proves Part (i). Part (ii) is an easy consequence of Part (i). O

7.1.2 Symmetric circulant

Let Ay 2(wo); Ane(w1), ..., Anz(wn—1) be the eigenvalues of n~1/28C,,. These eigenval-
ues are given by (see Section [CZ2):
(i) for n odd:

1
) T[x HZJ 1%] (7.1.14)
Mnalwr) = [mo+ 25725 7 cos(wed)], 1<k < |2
(ii) for n even:
o {[xo Zj 1 K. K (7.1.15)
Ao (W) %[ﬂzo + 22] 1 :c] cos(wgj) + (1) l“n/z], 1<k<?2

with A\, z(wp—) = Apz(wg) in both cases.

Now define a sequence of point processes based on the points (wj, for
k=0,1,...,q9(= [5]), where A\, ; are as in (ZTT4)). Note that we have not considered

the eigenvalues A, for k = 1,...,[§] to define the point process since A\, ,(wp—k) =

An,a(w;)—bg )
aq

Anz(wi) fork =1,...,[ 5] and it does not affect our goal of finding the limit distribution

of upper order eigenvalues. Define

ZG ) An z(wj)— bq)( ) (7116)
Jj=

aq

where

Inlnn + In4r

b = cn+ anIn2, ay = (2Inn)""/? and ¢, = (2Inn)"/? - 2(2Inn)l/2

(7.1.17)
Theorem 7.1.6 (Bose, Hazra and Saha (2010) [B5]). Let {x;} be i.i.d random variables
which satisfy Assumption [T1.2 Then for the sequence of point processes m, defined
in (7110), we have 1y, A n, where n is a Poisson process on [0,7] X (—o00, 00| with

intensity measure ™ dt x e *dx.

We shall use Lemma B33, a strong approximation result similar to Lemma 206
in the proof of Theorem [LTH

Proof of Theorem [T.1.0 The idea of the proof is similar to that of Theorem [ T3l So we

mention only the main steps and a few technical details. We first establish convergence
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Xn,a—chUnN(Wj)*bq

in distribution for the point process based on the points (wj, » ) for j =
1,2,...,q, where
1 2 2yt n
M gronn (Wy) = %[\/_(:co + o, No) +2Z Tt + opVy) cos ™ ], 0<j< LEJ
t=1
Define

q
77:1() = Z E(ij\/n@-t—an]\’(wj)ibq) ()
aq
We first show 7, A n. Since the limit process 7 is simple, it suffices to show ([ZTH) and
([ZTH) for above n. We can establish them following arguments similar to those given
in the proof of Theorem and using Lemma

Now define the following point processes

q q
77/;1() = Ze(wj )\;L’f(“’]) bq) ZE ; >\n x(‘*’j) bl])( )7

_]:1 aq

where

5]
\f:co+2zxtcos t} 0<j<l|2],

and {\, z(w;)} are given in (CTI4) with x; replaced by Z;. As before it now suffices to
show that (see Theorem 4.2 of Kallenberg (1983) [80])

_ x P _ ;P _ P P

m,—ns—0, 7, —1, —0, f,—mn, — 0 and n, —n, — 0. (7.1.18)
For the first relation in (CTTH) define A, = {maxi<j<q |\, 2(w)) = A zro, N (W) < 7}
and observe that

ln/2]
On 2
max |\, z(wj) — A gto,n(ws)| = 7 jnax |V2Ny + 2 E Ny cos mjt \ Op(opInn).

1<5<q

Hence P(AS) — 0. The remaining argument is similar to the proof of ([LTH). For the

second relation note that

P ( max [Ans(w;) = Xy o(w;)] > €) <P (Lﬁ)‘%’

> e) — 0.
1<5i<q
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Proof of the third and fourth relations are similar to the proofs of (ZII) and ([ZI.IT)
in the proof of Theorem O

Note that a result similar to Corollary holds with {A,, ;) }1<i<k as the ordered

eigenvalues of the symmetric circulant matrix. Here we skip the proof.

Corollary 7.1.7. Under the assumption of Theorem [7.1.0,

(i) for any real numbers xj, < -+ < o < T1,

A, (1) —b Ay — b
aq aq

where (Y, -+ ,Y(y)) has the density exp(—exp(—z¢) — (21 + - + 2_1)).

oy An )= An(i— D . . .. .
(ii) <%)Z:1 L (i E;)iz1, ) where {E;} is an i.i.d standard exponential

sequence.

7.1.3  k-circulant, n = k% + 1.

First recall the eigenvalues of the k-circulant matrix Ay ,. For any positive integers £,

n, let p; < p2 < ... < p be all their common prime factors so that,
(& C
n:n'Hpqq and k:k'HpZ‘q.
q=1 q=1

Here o, B, > 1 and n/, K/, p, are pairwise relatively prime. Then the characteristic

polynomial of Ay, (whence its eigenvalues follow) is given by

/-1

X (Agn) = A" T O =), (7.1.19)
7=0

where y;,n; are as defined in Section [LZZ41

For simplicity, here we consider k-circulant matrix only for n = k? + 1. One can
consider point process based on eigenvalues of k-circulant matrix for n = k9 + 1 where
g > 2 and can prove result similar to Theorem But for general g > 2 algebraic
details will be much more complicated.

In the present case, clearly n’ = n and k¥’ = k. From Lemma and (ZZ24) of
Chapter Bl g3 = 4 and the eigenvalue partition of {0,1,2,...,n — 1} contains exactly
q = | 7] sets of size 4 and each set is self-conjugate. Moreover, if k is even then there is
only one more partition set containing only 0, and if k£ is odd then there are two more

partition sets containing only 0 and only n/2 respectively.
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For the development of the point process we need a clear picture of the eigenvalue
partition of {0,1,2,...,n—1}. For this we represent the set Z,, = {0,1,2,...,n—1} in

the following form
Zp=Hak+b;0<a<k—-1,1<b<k}U{0}. (7.1.20)
Then we can write S(x) defined in ([CZF) as follows
S(ak +b) = {ak + b, bk —a,n —ak —b,n—bk+a}; 0<a<k-—1, 1<b<k.
Lemma 7.1.8. Forn = k% +1,

Ly = U S(ak +b) U S(0), if k is even (7.1.21)
0<a<[*52],a+1<b<k—a—1

and

Ly = U S(ak +b) | JS0)| JS(n/2), if k is odd (7.1.22)
0<a<|%52],a+1<b<k—a—1

where all S(ak +b) are mutually disjoint and hence form an eigenvalue partition of Zr,.

Proof. First observe that S(0) = {0} and S(n/2) = {n/2} if k is odd and

n—1 if k even

k-2
creS(ak+b);0<a< |t at1<b<k-a—1}=
#o: weSlab+by0<as|5)e =1 {n—Q if & odd.

So if we can show that S(ak +b);0 < a < [52],a+1 <b <k —a— 1 are mutually
disjoint then we are done. We shall show S(aik + by) N S(agk + by) = 0 for ay # ay or
b1 # bs. We divide the proof into four different cases.

Case (i) (a1 < ag,b; > by) Note that
ap+1<ar+1<by<b <k-—(ar+1).

Since {S(x);0 < x < n—1} forms a partition of Z,, it is enough to show that a1k +b; ¢
S(agk + b2). As (ag — aq1)k > k and (by — by) < k, we have a1k + by # ask + be. Also
(bg —ay)k > 2k and ag + by < L%J +k—(a1+1) < %, therefore a1k + by # bok — as.
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Note that
ark 4+ b1+ agk + by < (a1 +a2)k +2k —2(a; +1)
k—2
< 2LTJk+2k—2(a1+1)
< k?—2k 42k —2(a; +1)
< K+1=n.

Therefore a1k + by # n — (agk + b2). Similarly,
ark+b+bk—a < ak+k—(a1+1)+(k—(ag+1))k—as<k’+1=n

and therefore a1k +b; # n— (bok —az). Hence in this case S(a1k+b1)NS(azk+b2) = 0.

Case (ii) (a1 < ag,b; < by) In this case it is very easy to see that a1k+by ¢ S(azk+b2)
and hence S(a1k + by) N S(agk + be) = 0.

Case (iii) (a1 = ag,b; < be) Let a; = as = a. Obviously ak + by # ak + by. Since
0<a< Lk—EQJ and a+1 < b; < by < k—(a+1), we have (bo—a)k > 2k > (a+b1). Hence
ak+by # bok—a. Also 2ak+by +by < k(k—2)+2k = k? < n, so ak+by # n— (ak+bo).
Finally,

by +bok+ak—a<[k—(a+1D)](k+1)+ak—a=k"—2a—1<k*+1=n,

implies ak+by; # n—(bok—a). Hence ak+b; ¢ S(ak+bs) and S(a1k+b1)NS(azk+b2) = 0.

Case (iv) (a1 < ag,by

= by) In this case also it is very easy to show that
S(ark + b1) N S(agk + bg) = (. This completes the proof. a

Now we are ready to define our point process based on the eigenvalues of the k-

circulant matrix. For our purpose we neglect {0,n/2} if n is even and {0} if n is odd.

Denote
k—2
S =7Z,—{0,n/2}, T,, ={(a,b) : 0 <a < {?J,a—i—l <b<k-—(a+1)},
1= ot
A(x) = NG ij eXp(T), Bzn(a,b) = H Ae(z) and Az(a,b) = (Bzn(a, b))M/4,
Jj=0 teS(ak+b)

. . b Ae(ab)—dgn
Now define a sequence of point process based on the points {(in, T %) : (a,b) €
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T,}. Define
() = Z G(L Ax(a,b)—dq)(‘) (7.1.23)

_b_
Vvn’y/n’ cq

n

where ¢ = g(n) = |} ] and

¢n = (8Inn)""? and d, =

(Inn)'/? 1 llnlnn
V2 4 Inn

Theorem 7.1.9 (Bose, Hazra and Saha (2010) [35]). Let {z:} be i.i.d random variables
which satisfy Assumption [T.1. Then for the sequence of point processes ny, defined in
(7IZ23), we have n, LA 7, where n is a Poisson process on [0,1/2] x [0,1] x [0, 00] with

intensity measure 4l ;<1 gye” “dsdidz.

1 s
mZ.  (7.1.24
> T Emayie g (T2

Proof. Though the main idea of the proof is similar to the proof of Theorem [ZT3l the

details are more complicated. We do it in two steps.

Step 1: We first establish convergence in distribution for the point process based

on the points {(%, %, W) : (a,b) € T,} where A\ziy, n(a,b) is obtained

from A;(a,b) replacing {x;} by {Z; + 0,N;}. Define

77;('): Z G(L )‘a’c+crnN(avb)*dq)(')'

b
(a,p)eT, VPV °q

We show 7}, A 7. Observe that first two components of the limit is uniformly distributed
over a triangle whose vertices are (0,0),(1/2,1/2), (0,1). Denote this triangle by A.

Since the limit process is simple it suffices to show that
Eny, (a1, b1] X (a2,b2] X (z,y]) — En((ar, b1] x (a2, b2] x (x,y]) (7.1.25)
forall 0 <a; <b; <1/2,0<as <by<1andz <y, and forall ] >1,
P(ny,((a1,b1] % (c1,d1] x R1) = 0,...,n,((a, bi] x (¢, di] x Ry) = 0) (7.1.26)

— P(n((al,bl] X (Cl,dl] X Rl) = O, . ,n((al,bl] X (Cl,dl] X Rl) = 0),

where ﬂézl(ai, bi| X (¢;,d;] =0 and Ry,..., R; are bounded Borel sets, each consisting

of a finite union of intervals on [0, co].

Proof of ([LI2H): We shall first prove condition (ZIZ0) for the following type of
sets:

(i) (a1,b1] X (ag,be] lies entirely inside the triangle A.
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(ii) (a1,b1] x (a1,b1] where 0 < a; < by <1/2.
(iii) (a1,b1] x (1 —by,1 —aq] where 0 < ay < b; < 1/2.
(iv) (a1,b1] x (az, bs] lies entirely outside of the triangle A.

Graphically the mentioned boxes are as in Figure 1.

1 1

=~ Type(iii) \
. A

7 Iy

T Type(i) / I3
1« Type(ii)

T~ Type(iv)

y-axis

>
y-axis

>

x-axis 1 0 x-axis 1
Figure 1 Figure 2

Figure 1 shows four types of basic sets and Figure 2 shows the decomposition of a rectangle into these

four types of sets.

Since any rectangles in [0,1/2] x [0, 1] can be expressed as disjoint union of these
four kinds of sets (see Figure 2), it is sufficient to prove ((LI.Z0)) and ([ZIZ0)) for the
above four kind of boxes only. Let I; denote i-th type of set. Enough to prove that for
each i, as n — oo, En (I; x (x,y]) — En(l; x (x,y]).

(a) Proof of (CI2H) for Type (i) sets:

Enp((a1,b1] x (az, be] x (2,y])
= E( ) (= Aﬂanw,b)—dq)((alabl] x (az,ba] % (z,9]))

a b
(a,p)eT, VIV °q

_ Z P ()\gE+UnN(a, b) — dq) c (,7;7y])

Cq

—  4(by —a1)(by —ag)(e”" —eY)
= En((al,bl] X (a2ab2] X (ZC,y])
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(b) Proof of [ZIZH) for Type (ii) sets:

Eny,((a1,01]

:E(Ze(

(a,b)€Tn

X (al, bl]

b
T’ cq

x (z,y])
x+onN(a,b)qu)((a1ab1] x (a1,b1] % (z,9]))

- > p(Rotoan(@b) =gy )

(%7%)6(a17b1]x(a17b1}

~ - @) - (e
- %(bl——aﬁz4(e_$-—€_y)
— En((al,bl] X (algbl] X (xay])

Cq

=)L +o(1))

(c) Proof of ([LITZH) for Type (iii) sets is exactly similar as Type (ii) sets.

(d) Proof of (ZITZH) for Type (iv) sets:

En,((a1,01] x (az,b2]

3

(a,p)€Tn V7V “q

x (x,y])
N monzv(a,b)—dq)((alabl] x (az,ba] % (2,9]))

Ao, v (a,b) — d
- 3 p (2 N(c ) 1) € (z,9])
(S )€ (ar,bi]x (az b2 I
= 0=En((a1,b1] x (az,b2] x (z,9]),
since {(a,b) € T), : (%, %) € (ay,b1] x (ag,be]} = 0. This completes the proof of

C123).

Proof of (TI26]): We prove ([CI26) for the four types of sets separately.

(a) Proof of ([LI26]) for Type (i) sets: (a;, b;] X (¢;, d;] lies completely inside the triangle

Aforall i =1,2,...,1. Let

#{(a,0) : (-~

n; =

Vi’ Vi

e

(aj,b;] x (cj,d;]}

~ V/n(b; — aj)v/n(d; — ¢;) = n(bj — a;j)(d; — ¢;).

Then the complement of the event in ([ZT26) is the union of m =n; + ..

.+ n; events,
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that is

1-P (n;((al,bl] X (Cl,dl] X Rl) = O, . ,n;((al,bl] X (Cl,dl] X Rl) = 0)

o T+onN—dq

A
l
= P ( Uj=1Ye & )E(ajvbj]x(chdj]{

L ER]'}).

Now following the argument to prove (L6 given in Theorem [T we get
P (ny((a1,b1] x (c1,d1] x R1) = 0,...,m5((a, by) % (e, dj] x Ry) = 0)
!
= exp{= ) (b — a5)(d; — ¢;)AN(R;)}
=1
= P(n((al,bf] X (e1,d1] x Ry) =0,....n((a;,b] x (¢, dy] x R) = 0).
This proves ([LIZ4) for Type (i) sets.

(b) Proof of [ZIZ6]) for Type (ii) sets: Here ¢; = a;, d; = b; and

a

b
ng = #{(a,0): (=, %) € (a;,bs] x (a;, b5}
1 n
~ V(b = ap)vn(b; — o)) = 5 (b — a;)”.
Remaining part of the proof is as in the previous case. Finally we get
P (5 ((a1,b1] x (a1,b1] x R1) =0, ..., 5 ((as, by] % (az,b;] x R;) = 0)
l
n—oo 1
— exp{— Z; 5 (05— a))"4A(R;)}
]:
=P(n((a1,b1] x (a1,01] x R1) = 0,...,n((ar, bi] x (ar, bi] x Ry) = 0).

(c) Proof of ([LI26]) for Type (iii) sets is same as Type (ii) sets.

(d) Finally we prove it for Type (iv) sets. In this case (a;,b;] x (¢;,d;] (VA = 0 for
all i = 1,...,1. Note that for all 4, #{(a,b) € T, : (k. %) € (ag, b;] x (ci,d;]} = 0 and

therefore
P (n,’;((al,bl] X (c1,d1] x Ry) =0,...,m0 ((a;,b] x (¢, dj] x Ry) = 0) =1.
Also from intensity measure of 7,

P(n((a1,01] x (c1,dr] x R1) = 0,...,n((ar, bi] x (e, di] x By) =0) = 1.
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Hence ([ZIZA) is proved for all four types of sets separately. Consequently, the proof of
Step 1 is complete.

Step 2: It remains to transfer the convergence of 7 onto 7,. First define the fol-

lowing process
()= D € utwnoa():
(@b)et, YT
Then it suffices to show that for any continuous function f on [0,1/2] x [0,1] X [0, c0)

with compact support,

() = ms(f) 2 0 and 7 (f) — ma(f) 2= 0. (7.1.27)

Suppose the compact support of f is contained in the set [0,1/2] x [0, 1] X [K + 70, 00)
for some 79 > 0 and K € R. Since f is uniformly continuous, w(7) := sup{|f(s,t,x) —
f(s,ty)ls s€[0,1/2], t€[0,1], |z —y| <~} —0asy—0.

Proof of 7,(f) —n:(f) 2.0

Az+on N (a,b) Az (a,b)
TR -~ | <~}, we have for v < 7,

On the set A4,, = {max(a,b)ETn ‘

Cq
e, b Aeean(@b) mdyy o b da(@wd) = dy
\/ﬁ’\/ﬁ’ Cq \/ﬁ’\/ﬁ’ Cq
w(v) if AngtonNWi)=by o pe
< { 0 if WWna—l\z(WMZ < K. (7.1.28)

Now if P(AS) — 0, then using (ZT28])

timsup P ((f) — (£)] > &) < D24 0, sy 0.

n—00 €

Now we show P(AS) — 0. For any sequence of random variables (X;)o<i<n, define

n—1
_ —~1/2 -
M, (X) = Jnax. |n ;Xl exp(i2mtl/n)|.
We can use the basic inequalities
|[2122] — [wiwa|| < (|21 + |we|) max{|z — w1], |22 — wal}, (7.1.29)

and
s [V/2 = Jwa V2] < Jwy — wo|?, 2w €C, 1<i<2, (7.1.30)
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to obtain

max |Af+o—nN(a7 b) — \z(a,b) ‘

< [(Mn(f + UnN))l/Q + (Mn(@)l/Q] (MN(UnN))l/Q (by ([CIZ))
< [2(MN(E + UnN))1/2 + (Mn(UnN))l/Q] (MN(UnN))l/Q (by ([CI3)).

By Davis and Mikosch (1999) [20], we have
MZ2(6,N) = Op(02 Inn) and M2(Z + 0,N) = Op(Inn),
with 02 = n=¢. Therefore

1
mz%)x c_|)\i‘+0'nN(a’7 b) — Az(a, b)‘ = Op((ln n)n—c/z)_
a, q

Hence

P(A;) = P (max | Az+o,N(a,0) _ Az(a, b)‘ - e)
a,b cq cq
nc/4 1 enc/4
= P (lnn I%%Xa‘)‘fnLanN(aab) — )\i(%b)‘ > o ) — 0 as n — oo.

This completes the proof of 7, (f) — 1, (f) 0.
The other part of [LI27) follows from the fact (L) of Chapter Bl This completes
the proof of Step 2 and hence the theorem is completely proved. O

Let 2, < -+ < x be real numbers, and let N;, = 1,([0, 3] x [0,1] x (2;,00)) be
%{?7%. Then the joint distribution of the k

upper order eigenvalues can be written in terms of {N;,}1<i<x. From this it is easy

the number of exceedances of z; by

to derive distributional convergence of the k& upper order eigenvalues. Hence a similar
result as Corollary [L.T.H holds with {)‘n,(i)}léislc representing the ordered eigenvalues

of k-circulant matrix.

7.2 Results for dependent input

Let {z,;n > 0} be a two sided moving average process,

Ty = io: Ai€n—i (7.2.1)

i=—00
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where {an;n € Z} € [y, that is ), |an| < 00, are non-random and {¢;;7 € Z} are i.i.d.
random variables. Let f(w), w € [0,27] be the spectral density of {z,}. Note that if
{x,} is ii.d. with mean 0 and variance o2, then f = %

It seems to be a non-trivial problem to derive Poisson convergence of the point
processes based on eigenvalues of the matrices with such dependent entries. As seen in
Chapter B, an individual scaling of each eigenvalue is needed. We resort to scaling each
eigenvalue by the spectral density at the appropriate ordinate, as done in Chapter
and then consider their point process.

We shall prove our next theorems under the following assumption on the two sided

moving average process {x,} defined in ([ZZT]).

Assumption 7.2.1. {¢;;i € Z} are i.i.d. random variables with E(ey) = 0, E(e2) =1

and E|ep|® < 0o for some s > 2 and

Z ’ajHﬂl/z < 0o and f(w) >0 for all w € [0, 27].

j=—o00

7.2.1 Reverse circulant

Let An.(wg) be the eigenvalues of n~Y/2RC,, defined in ([ZII). Define the sequence of

. . 1 An x(wk)
point processes based on the points A, (wg) = \/j as
’ 2 f(wg)

() = Z e(wj,invz(“’k)’bq) () (7.2.2)

where a, = 2—\/1111—(1, by = vIng and ¢ = ¢q(n) = [5].

Theorem 7.2.2 (Bose, Hazra and Saha (2010) [35]). Let {x,} be the two sided moving
average process defined in (7.2-1) and which satisfies Assumption [T.21} Then for the
sequence of point processes 1y, defined in [7.2.3), we have 1y, A n, where n is a Poisson

process on [0, 7] x (—o0,00] with intensity measure ™ dt x e *dx.

Proof. First observe that min,e[g 2 f(w) > @ > 0. We define another sequence of point
process based on the points (wk, %{f)*bq) for k =1,2,...,q where A, »(wy) are the

eigenvalues of n~'/2RC,, with z; replaced by ¢;. Define

() = Ze(%xn,ew_bq)(-). (7.2.3)

]:1 aq

In Theorem [L T3] we have shown that 7, A 71, where 7 is a Poisson process on [0, 7] X

(—00, 00] with intensity measure 7~ 1dt x e"*dz. Now if we can show that 7, — 71, uA 0,
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then we will be through. Equivalently, we have to show that for any continuous function

g on E with compact support,

in(9) = n(g) 20

as n — 00. Suppose the compact support of g is contained in the set [0, 7] X [K + g, 00)
for some 79 > 0 and K € R. Since g is uniformly continuous , w(vy) := sup{|g(t,z) —

g(t,y); t €10,1], [r—y| <~} — 0asy — 0. Ontheset A, = {max;—1 4 ]%—
)‘"6 w’ | <~}, we have for v < 7,
3 . An,e(wj)—bg
nelisg) = Aaliy) = by, [ i) it Ameleihe s g
\g(%%) —g(wj,%)\ S0y deenos, e (T24)
aq — °
Observe
1 A ;
_ max | n,x(w]) _ An,g(w_]”
aq 1<j<q /27 f (w;)
1
S aag 1235, Pna) = 21T () Ancl0)
1 1= n-l
< — max |— T eiwj _ ay ezwj € eiwjl
T aag1<i<q ‘ Vn lzg ! t_Z:OO IZ(; ! |

and from (EI0), we have

poax 1o _me (3 e fZeze“’”r = op(n”!/1).

t=—00

Therefore lim,, .~ P(AS) = 0. Now, for any § > 0, choose ~ sufficiently small that
v < 70. Then, by intersecting the event {|7,(g) —nn(g)| > 0} with A,, and A and using

([CZ3), we obtain

limsup P(17,(9) — na(9)| > 6) < limsup(P({|7.(9) — m(g)| > 0} N A,) + P(A7))

n—oo n—oo

< timsup Eny ([0,7] (K, 00))o(1)/e < ¢ Fuo(3) e

Since w(y) — 0 as v — 0, ﬁn—nnzo. |

< limsup P(w(7)n, ([0, 7] x [K,00)) > €) + limsup P(AY)
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7.2.2  Symmetric circulant

Here we consider the two sided moving average process defined in ([LZ1l) with an extra

assumption that a; = a_; for all j € N. Define

[CRDYUREUENG 729

§=0 aq

where ¢ = gq(n) ~ 2, S\n,x(u)j) = &% and A, ;(w;) are the eigenvalues of symmetric

circulant matrix given in (CITI4) and ag, by are as in ([CIIT).

Theorem 7.2.3 (Bose, Hazra and Saha (2010) [35]). Let {x,} be the two sided moving
average process defined in (7.21) with a; = a_; and satisfies Assumption [7.21 Then
for the sequence of point processes 7, defined in ([7.2-3), we have 7, A 1, where 1 is a

Poisson process on [0,7] x (—oco, o] with intensity measure 7 tdt x e~ *dz.

Proof. The line of argument is similar as in Theorem We omit the details but
mention that to show lim, .. P(AS) = 0, we use the following fact from (EII) of

Chapter B
Ak

—_—— = 0,(n"1/%).
o o) p(n )

max — A
1<k<[ %] *

7.2.3  k-circulant, n = k? + 1.

First recall the eigenvalues of k-circulant matrix for n = k% 4+ 1 given in Section (1)

and define following notation based on that

BE,n(a’ b) = H At(e)’ )‘é(a’ b) = (BE,n(a’ b))1/4’

teS(ak+b)

i o A ) i

Now with ¢ = ¢(n) = [ %] and dg, ¢, as in ([LI24), define our point process based on
points {(-%, & M) (a,b) € T,,} as:

n’ \/n’ cq
() = Z G(L Xx(a,b)—dq)(')- (7.2.6)

_b_
(a,b)ET),, n’yn’ cq

Theorem 7.2.4 (Bose, Hazra and Saha (2010) [35]). Let {x,} be the two sided moving
average process defined in (7.2-1) and which satisfies Assumption [T7.2.1 Then for the
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: - . . D . .
sequence of point processes Ty, defined in [7.2-0), we have 7, — 1, where 1 is a Poisson

process on [0,1/2] x [0, 1] x [0, c0] with intensity measure 4lg,<y<i_gye” "dsdtdx.

Proof. First define a point process based on {(\/Lﬁ, %, M) :(a,b) € Ty},

()= > €(ca, b elatrmaq) (")

b
(ab)er, YV

First note that in Theorem [T we have shown that 7, A n, where 7 is a Poisson
process on [0,1/2]x [0, 1] x (=00, oo] with intensity measure 4l,<y<;_g e~ “dsdtdr. Rest
of the argument is similar to the proof of Theorem [[Z2Z2 The additional point that needs

to be noted is that P(max,p)er, [Az(a,b) — Ac(a,b)| > ) — 0 follows from the proof
of Theorem of Chapter @l O



Chapter 8

Few remarks and further research

In this chapter we indicate a list of problem that arise in the context of this thesis for
circulant and related matrices. We list the problems topicwise for future study and

hope that our article will generate activity in this interesting area of research.

8.1 Limiting spectral distribution

As discussed in Chapter [ the study of the limit of the empirical spectral distribution
of random matrices when the dimension tends to infinity has a long history, specially
where the input sequence has light tails. But there have been very few works where the
input sequence has heavy tails. This thesis also concentrated on the light tailed case.

For the Wigner matrix, when the input sequence belongs to the domain of attraction
of an « stable law with « € (0,2), Ben Arous and Guionnet (2008) [26] showed that the
LSD exists in probability and it has heavy tails. Later Belinschi, Dembo and Guionnet
(2009) [25] studied some symmetric band matrices and the sample variance covariance
matrices with heavy tailed inputs. In both these articles the LSD was shown to be
nonrandom.

In Chapter Bl we have discussed the LSD of the scaled eigenvalues of circulant type
matrices when the input sequence is i.i.d. with finite moments of suitable order. We
then also derived the LSD of these matrices when the input sequence is a stationary,
two sided moving average process of infinite order.

What is the limiting behaviour of the ESD of circulant type matrices when the input
sequence has heavy tails?

The LSD of the reverse circulant and circulant matrices with the (i.i.d.) input
sequence belonging to the domain of attraction of an « stable law with a € (0, 2) was
shown to exist in Bose, Chatterjee and Gangopadhyay (2003) [B0] using the methods
of Freedman and Lane (1981) [60]. Knight (1991) [83] has been able to obtain some

177
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very nice representation of the empirical distribution of periodogram entries of {X;, 1 <
i < n} and provide its limiting distribution including a representation for the limit.
If the empirical measure of {X;} converges in distribution, then for any continuous
function f, the empirical measure of {f(X;)} also converges in distribution. Since the
eigenvalues of the reverse circulant matrix are the square root of the periodogram entries
of {X;,1 <i < n}, the LSD of the reverse circulant matrix follows from Theorem 5 of
Knight (1991) [83] with an appropriate choice of f.

Very recently, Bose et al. (2011) [32] have extended the above works and considered
the k-circulant matrix for k9 = n £ 1. Assuming that the input sequence belongs to
the domain of attraction of an a stable law with o € (0, 2), they have shown that the
LSD exists. They also determined explicit representations of the limits. We now briefly
describe their results.

Assumption on the input sequence : Suppose that the input sequence {X;} is
defined on a probability space (€2, A, P). Suppose it is i.i.d. in the domain of attraction

of a stable law with index a € (0,2), that is, there exists a,, — oo such that
& D
a,! Z(Xk —¢p) = Sas
k=1

where S, is a stable random variable and ¢, = E[X11(|X1| < ay)].

It is well known that a random variable X is in the domain of attraction of a
(nonnormal) stable law with index o € (0,2) if and only if P[|X]| > ¢] = ¢t~I(¢), for
some slowly varying [ and

P[X > ]

lim — =~ —peo1]. 8.1.1
A iy P e 0 (8.1.1)

Also the normalizing constants a,, are such that
nP[|X| > apx] — 2%

8.1.1 k-circulant with n = k9 + 1 (heavy tailed input)

We now analyze the eigenvalues for this particular case in more detail. First suppose
n = k? + 1. Then from Bose, Mitra and Sen (2008) [#l, if k is even then there is one
singleton partition set {0} and if k is odd then there are two singleton partition sets
{0} and {n/2} respectively; all the remaining partitions have four elements each. Thus
apart from these finitely many (hence negligible) singleton partitions, all others are of
equal size of four.

In general for n = k9 + 1, g > 1, the eigenvalue partition (see Section 4.1 of Bose,
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2
each of size (2g) and each set is self-conjugate; in addition, the remaining sets do not

Mitra and Sen (2008) [HE4]) of {0,1,2,...,n — 1} contains approximately ¢ = [ﬁg] sets

contribute to the LSD. We shall call the partition sets of size (2g) as major partition
sets.

We shall now use these major partition sets and express the eigenvalues in a conve-
nient form. This is given in the following Lemma (see Bose et al. (2011) [32]) for easy

reference. To do this, observe that a typical S(z) may be written as
S(bik9™! +bok9™2 4+ by)
which in turn is the union of the following two sets
{b1k9™ 4 ok 2 4+ by, bok Tt + b3k 4 o+ bgk — by, .. bgk9 T — b kIR — e — by}
and its conjugate i.e.
{n— (O1k9 " + bok9™ 2 b)), — (kT = b kTR — = by )}

where
0<bi <k—-1,...,0<by—1 <k—-1 and 1<, <k.

Define
Tn:{(bl,bg,...bg): Ogblgk—l,...,lgbggk},

29t i . 2wt
Cy = ZXj cos( nj ) and S;= ZXJ sm(Tj) for ¢t € N.
j=1

So far the scaling constant {a,} has been taken to be n'/? (see Chapter B) but now
since the entries are heavy tailed, the square root scaling is not the appropriate scaling

any longer.

Lemma 8.1.1. The eigenvalues of the k-circulant a;lAk,n withn = k941 corresponding

to the major partition sets may be written as

2g—1
{)\(bl,bg,...,bg)7)\(bl,bg,...,bg)w297---a)‘(bl,bg,...,bg)wzg (b1,b2,...,by) € Tn}

where wag is the primitive (2g)-th root of unity and

1/29 1/29
_ -1 2 2 2 2
)\(b17b2’___7bg) — an (Cblkg_l+"'+bg + Sb1k9_1+"'+bg> oo <Cbgkg_1*“'*bg—1 + Sbgkg_lf“'*bg_l) .

In view of Lemma 8Tl to find the LSD of the k-circulant a,; lAkm where n = k941,
it suffices to consider the ESD of {)‘(bl,bg,...,bg) 2 (b,...,bg) € Tn}: if these have an LSD
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F', then the LSD of a;lAk,n will be (7,0) in polar coordinates where r is distributed
according to F', and 6 is distributed uniformly across all the (2¢g)-th roots of unity and
r and 0 are independent. With this in mind, define

1
LAk,n(A7w) = T Z I(A(b17---7bg) € A).
’ n‘ (b14e-sbg)ET

Further, let {I';}, {B;}, {U;}, {U;} and {U;,}, be independent random sequences
defined on the same probability space where I'; = >7_, F; and {E;} is a sequence of i.i.d.
exponential with mean 1, and B; are i.i.d. satisfying P[B; = 1] =p=1—-P[B; = —1]
where p is defined by equation [&IJ]) and the rest of the variables are i.i.d U(0,1).
Finally, let

. —1/a
J
Z; = F;l/o‘ = (Z Et> and ;= B[ByZ,1(Z < 1)].
t=1

We now state the following theorem. A typical element of  will be denoted by w.

Theorem 8.1.2 (Bose et al. (2011) [B2]). Suppose g is fized and n = k9 + 1.

Then La,, > La,

by L1(w)2 Lo(w)? - Ly(w)? and

as n — 00, La,(-,w) being the random distribution induced

o) 2 00 2
Lj(w) = <Z sin(sz;jj)Bt(w)zt(w)> + <Z COS(QWUt’fj)Bt(w)Zt(w)> ,1<j<g.
t=1 t=1

8.1.2 k-circulant with n = k% — 1 (heavy tailed input)

Now there are approximately g = [%] major partition sets, each of size g. For detailed

illustration see Bose, Mitra and Sen (2008) [4]. The major partition sets {S(x)} may

now be listed as

{b1h9 L4 bok 2 -+ by, bok9 ™ b3k 2 - b bgkAbr, . bk b 92 4 by}
where 0<b; <k—1,...,0<by_1 <k—-1,1<by, <k., with

(b1,b2,...,bg) # (k= 1,k —1,....,k — 1) and (b1,b2,...,0y) # (k — 1,k —1,...,k —1,k).
Now define

Th = {(b1,ba,.by) = 0<by <k—1,.,1<by <k, (br,ba,.,by) # (k—1,k—1,..,k—1)
and (b, by, ..., by) # (k—1k—1,....k—1,k)},
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1 . .
V(ba bzreosby) = Gn - (Chyiko—1 gty + 0Sp ko1 4mgny ) (Cbgk9*1+~~~+bg,1 + ZSbgk!?*l—i—---—i—bg,l) ;

}.

818 (V(by bo,..by))
g

N(b1,ba,...sbg) = \’Y(bl,bg,...,bg) ’1/9 exp{

Then the eigenvalues of the k-circulant a,; lAk,n with n = k9 — 1 corresponding to the
partition set S(b1k971 + bok9™2 + -+ +b,) are
2 g—1
N(b1,b2,--,b4) T(b1,ba,....bg )P g5 T(b1 ,ba,....bg )W g =++5 TN (b1 ,ba,....bg )W g
where wy is g-th root of unity. So, to find the LSD, it suffices to consider the ESD of
{V1,2,bg) ¢ (b15-0,0g) € T 3o if these have an LSD F, then the LSD of ap Ay will

iarg(z)

be (r',6) where ' is distributed according to h(F) where h(z) = |2|"/9%¢ s  and 6 is

distributed uniformly across all the g-th roots of unity, and r’ and # are independent.

Hence define )

LAkyn(A,w) = T Z I(’Y(bl,...,bg) S A)
|Tn| (blv"'vbg)eTrlL

Theorem 8.1.3 (Bose et al. (2011) [B2]). Suppose g is fixzed and n = k9 — 1.
Then La,, LA Ly, asn — oo, La,.(.,w) being the random distribution induced

by Li(w)La(w)...Lg(w), and
Lj(w) = <Z cos(QWUt’fj)Bt(w)Zt(w)> +1 <Z sin(QWUt’ij)Bt(w)Zt(w)> ,1<j<g.
t=1 t=1
8.1.3 Symmetric circulant matrix with heavy tailed input

The (7, j)-th element of the symmetric circulant, SC;, is given by X, /941 |n/2—|i—j||- Let
Ao, AL, -+, An_1 be the eigenvalues of a;, 1SC,,. Then the ESD of a,1SC, is given by

|
—

n

LSC’n (A, w) =

SRS

I()\j S A)

Il
o

J
Theorem 8.1.4 (Bose et al. (2011) B2]). Asn — oo, Lgsc, A Lsc, where Lgo(-,w)
[e.e]
is the distribution of 2 Z cos(2nU;" ) By(w) Zt (w).
t=1

The method of proof of the above results (Theorem B2 RT3l RTA) heavily relies
on the extension of the results of Freedman and Lane (1981) [60] accomplished in Knight
(1991) R3] together with some intricate study of the eigenvalue structure of the k-

circulant with n = k9 £ 1.
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8.1.4 k-circulant with n # k9 + 1

We have already discussed in Section EZ3J] that establishing the LSD for general k-
circulant matrices is a difficult problem even with light tailed entries. For general k
and n, the eigenvalue partitions have different sizes and varied compositions, and hence
establishing the LSD is much more difficult for both light tailed and heavy tailed entries.
It is an open problem.

Bose, Mitra and Sen (2008) [E4] showed that the radial component of the LSD of
k-circulants with k£ > 2 is always degenerate, at least when the input sequence is i.i.d.

normal, as long as k = n°1) and ged(k,n) = 1.

Theorem 8.1.5 (Bose, Mitra and Sen (2008) [4]). Suppose the input sequence is i.i.d.
N(0,1) random variables. Let k > 2 be such that k = n°Y) and n — oo with ged(n, k) =
1. Then Fn’l/QAk,n converges weakly in probability to the uniform distribution over the
circle with center at (0,0) and radius 7 = exp(E[logVE]), E being an exponential

random variable with mean one.

The proof of this result uses the normality of the variables very crucially. It would
be interesting to establish this result when the normality assumption is dropped. It
would also be interesting to find the other possible choices of (k,n) for which the LSD

has degenerate radial component.

8.2 Spectral radius and spectral norm

As we have seen, the behaviour of the extreme eignevalues of general large dimensional
random matrices is a very nontrivial issue. The class of k-circulants admit a formula
solution for its eigenvalues. This helped in the study of the extreme values but the
issue of non Gaussianity of the entries was taken care of after considerable amount of
approximation by the Gaussian case. Even then this required the finiteness of a moment
of order larger than two. Moreover, these results were proved only for certain subclasses
of the k-circulants. There are some results (see Section Bl B4l known for the related
Toeplitz and Hankel matrices but even there, a host of unanswered questions remain.
For the Toeplitz matrices with mean zero entries nothing is known about the limiting
distribution of the spectral norm (after centering and scaling). As seen in Section ET]
only the almost sure and in probability convergence (see Remark ELT2)) of spectral
norm is known. It would be nice to find appropriate centering and scaling in such a
case. Similar questions can be asked about the Hankel matrices. Moreover, even for
the almost sure convergence results, the results are not completely sharp and the exact

limits if any, are not known. It would also be interesting to study the limiting behaviour
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of the extreme eigenvalues of palindromic Toeplitz matrices and Toeplitz matrices with
band structure.

Results on spectral radius of k-circulant matrices were proved in Section B4 for the
case when n = k9 + 1 with g > 1. It would be interesting to find out what happens for
other combinations of k and n.

As mentioned in the beginning of Chapter Hl k-circulant matrices with k =1,n — 1
(circulant matrix and reverse circulant matrix respectively) are normal matrices and
hence their spectral norm and spectral radius are same. The limiting behaviour of
spectral norm has been derived from the behaviour of the spectral radius (see Section
E2). The behaviour of the spectral norm for other k-circulant matrices is not known as
the matrices in such cases are non-normal matrices.

In Chapter Bl we derived the behaviour of the spectral norm of circulant and reverse
circulant matrices when the input sequence is in the domain of attraction of a stable
law with 0 < a < 1. Results for the case 1 < a < 2 are not known. In the heavy
tailed case no results for the spectral norm and spectral radius of k-circulant matrices
is known even for the case when n = k% + 1.

It is interesting to study the spectral norm and spectral radius when one goes out of

the independent regime. Suppose the input sequence {x,} is an infinite order moving

0o
1=—00

average process, Tp = » ai€n—i, where ) |a,| < 0o, are nonrandom and {¢;;i €
Z} are i.i.d. with E(¢;) = 0 and V(e;) = 1. It seems to be a nontrivial problem to derive
properties of the spectral norm and spectral radius in this case. The spectral density is
expected to appear in some form in the limit. This seems to be a difficult problem.

We obtained some results (see Chapter @) when one resorts to scaling each eigenvalue
by the spectral density at the appropriate ordinate and then considering their maximum.
This scaling has the effect of equalizing the variance of the eigenvalues. However, it is
not known what happens if we consider the maximum without such scaling.

In Section B2, for SC,, with inputs from a linear process we have shown that
the maximum of the eigenvalues over certain subsets converges in distribution to the
Gumbel distribution. For instance, in Theorem BET.TTl, we have shown that if Aj, , denote

the eigenvalues of %SCn with input {x;} then

maxgerl Akae —bg D

ZLA
Qq
and
maXger2 Akae —bg D
— A,
Qq
where

L) ={keL,:kiseven} and L2 ={k € L, : kis odd},
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L,={k:1<k<|np,/2|} and p, = (1 ), 0<d <1/2.

- pl/2+0
However, it is not clear what will happen to this limiting distribution when maximum

is taken over all the eigenvalues. This is an interesting open problem.

8.3 Poisson convergence

In Section we saw that a detailed study of the eigenvalues (see Lemma [LTH]) was
used to exhibit the point process convergence for k-circulant matrices with n = k2 + 1.
This explicit study for the eigenvalue partition is not known for n = k9 + 1 when g > 2.
If this study is accomplished then one can expect a point process convergence result
similar to Theorem in this case.

In Section [L2Awe have considered the point processes based on the eigenvalues scaled
by the spectral density. The above Poisson convergence results immediately imply that
results similar to Corollary hold for the corresponding ordered values in each case.
However, it is not at all obvious how to derive the joint distributional convergence of k
upper ordered eigenvalues in this dependent situation.

In Theorem [L2Z3] for the point process convergence of the eigenvalues of SC,, we
needed an extra assumption a; = a_; on the process {z;}. We have also seen in Theorem
BT of Chapter @ that without this extra assumption the distributional convergence of
the maximum of properly scaled eigenvalues of SC), is not known. Similarly, here also
it is not clear whether Theorem will hold without this assumption.

8.4 Minimum of the eigenvalues

As discussed in Chapter [ it is much harder to study the convergence of the smallest
eigenvalue of random matrices. For S matrix it was studied by Silverstein (1985) [I10],
Bai and Yin (1993) [I§]. For circulant type matrices also it is not at all obvious how the
minimum of the absolute eigenvalues behave, and the answer is not known in general.
Recently Bose, Hazra and Saha (2011) [0] shed some light for a specific subclass of
k-circulant matrices when the input sequence is Gaussian. They established the follow-
ing result on distributional convergence of the minimum of modulus of eigenvalues of
circulant, reverse circulant, symmetric circulant and k-circulant matrices for n = k9 + 1

with Gaussian entries.

Theorem 8.4.1 (Bose, Hazra and Saha (2011) [A0]). Suppose {z;}i>0 are i.i.d. standard

normal random variables. Consider any one of the circulant type matrices {B,} with
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the input {x;}. Then as n — oo,

minlgisn ’)‘z‘ 2 F (8 4 1)

—cq ; 4.

where {\;,1 <i < n} are the eigenvalues of n="?B,, and for
(i) B, = RC,, or B, =

ns

n—1

q=q(n) =

(111) By, = Ak, with n =k9 +1,

n _g—1
¢=qn) =5 ¢= ¢ (logq)” % and F(x)=1- exp(—2%).
g
A similar result for non-Gaussian entries is not known. The normal approximation
results used in Chapter Hl for the spectral radius do not seem to be able to salvage the
situation for the minimum. Similarly, the behaviour when the input sequence is heavy
tailed is also not known. Also, no results for the minimum of modulus of eigenvalues of

k-circulant matrices is known when n = k9 — 1.
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