

RESTRICTED COLLECTIO

GENERALIZED INVERSES OF SPECIAL TYPES OF MATRICES

PULLEPU SREE SATYA MARAYANA VARA PRASADA BAO

A thesis submitted to the Indian Statistical Institute in partial fulfilment of the requirements for the sward of the degree of

Doctor of Philosophy Calcutta 1974

ACKNOWLEDGEMENTS

I thank the Research and Training School of the Indian Statistical Institute for the facilities granted to me in carrying out this work.

I am highly grateful to Professor C. P. Pao, F.R.S., for supervising this work. I record my sincere thanks to him for going through this thesis and offering valuable suggestions for its improvement.

Is thank Professor J. Roy for the encouragement I received throughout the period of this work. I express my deep sense of gratitude to Dr. P. Bhimasankaram for his multidimensional help and advice.

l'thank Dr. A. Ramachandra Pao and Dr. K.P.S.Bhaskara Rao for the valuable discussions I had with them. I thank Dr. K.P.S.Bhaskara Rao for his permission to include our joint results in this thesis.

Finally, I thank Mr. Arun Das for his elegant typing and . Apurba Guha for his efficient cyclostyling of this thesis.

PSSNVP.Rao

CONTENTS

			page	
INTRODUCTION		i - '	vií	
CHAPTER 1:	g-INVERSES OF BOOLEAN MATRICES	1 *	46	
1.1	Introduction and Summary	1		
1.2	Preliminarios	3		
1.3	g-inverses of matrices over { 0, 1 }			
	Boolean algebra	5		
1.4	Space decomposition and reflexive g-inverses	22		
1.5	Moore-Penrose inverse and other types			
	of g-inverses	23		
1.6	An algorithm to compute a g-inverse	30		
1.7	g-inverses of matrices over an arbitrary			
	Boolean algebra	41		
CHAPTER 2:	g-INVERSES OF NONNEGATIVE MATRICES	47 -	74	
2.1	Introduction and Summary	47		
2.2	g-inverses of doubly stochastic matrices	48		
2.3	g-inverses of nonnegative matrices	52		
2.4	g-inverses of stochastic matrices	67		
2.5	Algorithm for computing a nonnegative			
	g-inverse	71		
CHAPTER 3:	CHARACTERISATIONS OF MERELY POSITIVE			
	SUBDEFINITE MATRICES AND RELATED			
	RESULTS	75 -	90	
3.1	Introduction and Summary	75		
3.2	Characterisation of MPSubD matrices	78		
3.3	g-inverses of MPSubD matrices	84		

		nage
CHAPTER 4 :	AN APPLICATION AND ALGORITHM	91 - 104
4.1	Introduction and Summary	21
4.2	A result on linear estimability	91
4.3	An algorithm to compute a generalized	
	inverse of matrix	95
4.4	Numerical illustration	102
REFERENCES		I - II

INTRODUCTION

Inverses, in the regular sense of the term, do not exist for singular square matrices and rectangular matrices. However for such matrices there exist matrices which satisfy many important properties similar to those of inverses of nonsingular matrices and for many purposes, can be used in the same way as regular inverses. These matrices are named generalized inverses (g-inverses) to distinguish them from the inverses of nonsingular matrices. Only since 1955 this field of study of generalized inverse was: investigated systematically and was explored for many beautiful and interesting results and applications though the concept of generalized inverse was first introduced by Moore in as early as 1920 as follows:

Definition (Moore): Let A be a m x n matrix over the field of complex numbers. Then G is the generalized inverse of A if AG is the orthogonal projection operator projecting arbitrary vectors onto the column space of A and GA is the orthogonal projection operator projecting arbitrary vectors onto the column space of G.

Moore studied this concept and its properties in some details in 1935.

In 1955, unaware of the earlier work of Moore, Penrose defined wneralized inverse of a matrix as follows:

efinition (Penrose): Let $^{\circ}$ be $m \times n$ matrix over the field of complex numbers. Then G is a generalized inverse of A if (1) AGA = A.

(ii) GAG = G, (iii) $(AG)^* = AG$ and (iv) $(GA)^* = GA$.

In 1956 Penrose showed that this generalized inverse of a matrix is unique and discussed the properties and uses of this generalized inverse of a matrix in a systematic way.

In 1956 Rado establised that the definition due to Penrose is equivalent to that of Moore. This unique generalized inverse is called Moore-Penrose inverse of a matrix.

A similar notion was also used by Bolt and Duffin in 1953 under the name constrained inverse and by Altken with a different symbolism in 1934.

Unaware of the earlier work of Moore and contemporary work of

Penrose, Rao in 1955, constructed a pseudoinverse of a singular matrix

which does not satisfy all the conditions of Moore-Penrose inverse and

showed that it serves the same purpose as regular inverses of a nonsingular

matrix in solving normal equations and also in computing standard errors

of least squares estimators. In 1962 Rao defined a generalized inverse,

formally, as follows, discussed its properties in greater details and its

application to the problems of Mathematical Statistics.

<u>Definition (Rao)</u> Let A be an $m \times n$ matrix. Then an $n \times m$ matrix **G** is a g-inverse of A if x = Gy is a solution of the linear system Ax = y whenever it is consistent.

Rao showed that the above definition is equivalent to the following definition which is also due to him.

Definition (Rao): Let A be an $m \times n$ matrix. Then en $n \times m$ matrix 6 is a g-inverse of A if AGA = A.

A g-inverse of a matrix as defined by Rao, in general, is not unique and thus opens an interesting study of matrix algebra. It can be easily observed from the definitions of Penrose and Rao that the Moore-Penrose inverse is contained in the class of all g-inverses (in the sense of Rao).

In two later publications in 1965 and 1966 Rao showed that in many practical applications it is sufficient to work with g-inverse satisfying this more general definition (due to Rao). In 1967 Rao developed a alculus of generalized inverse of matrices, studied many of its important and interesting properties, classified the g-inverse based on their ses, discussed their interrelationships and their further applications.

Mathematical Statistics.

Following this work of Rao, Mitra in 1968, gave an equivalent finition, introduced some new class of g-inverses and suggested some wither applications to solution of matrix equations and Mathematical atistics. During 1968-1973, Rao and Mitra pursued their research generalized inverse of matrices and its applications to various entific disciplines in a series of papers and a book.

Some other principal contributors to the theory and applications generalized inverses of matrices since 1955 are Greville, Ben Israel, lyi, Odell, Bose and Khatri, Cline, Pyle, Decel, Golub, Rohde - mention only a few. References to important contributions made by

these people and others will be found in the book by Rao and Mitra (1971).

Over the past two decades many interesting and important results on generalized inverses of matrices over complex field have been developed. However, till recently, not much work has been done in this regard for matrices over algebras which are not fields. Many fundamental properties of these matrices deviate from those of matrices over fields.

Rao [11] explored this new field of study and suggested some applications to graph theory and network analysis. In this thesis Boolean matrices and nonnegative matrices are studied systematically with regard to the theory and computation of generalized inverses. Some other principal contributors to this part of the field are Plemmons and Cline.

Each chapter of this thesis has a detailed introduction to it.

Here we just mention briefly the problems considered.

Chapter 1 mainly deals with (0, 1) Boolean matrices. Some interesting properties of Boolean matrices are proved comparing each time with the corresponding properties of real matrices. Necessary and sufficient conditions for the existence of various types of princerses are established along with an algorithm to compute these princerses. In the last section of this chapter, many results of (0, 1) Boolean matrices are extended to matrices over any arbitrary Boolean algebra.

In chapter 2, to start with, doubly stochastic matrices pressessing doubly stochastic g-inverses are characterised. Then necessary and sufficient conditions for the existence of various types of nonnegative g-inverses of nonnegative matrices are proved. Fise an algorithm to compute these g-inverses is given.

In chapter 3, two characterisations of merely positive subdefinite (MPSubD) matrices are proved and also a necessary and sufficient condition for an MPSubD matrix to possess an MPSubD g-inverse as given.

In chapter 4, a result of Milliken on linear estimability is extended in the first section. It is shown that his result holds in more general set up than the one considered by his. Finally, an algorithm to compute p-inverse of a matrix is given which is an extension of Goldfarb's "medified method for inverting measingular matrices".

The following notations are used in this thesis. Matrices are denoted by capital letters A, B, A etc., and vectors by lower case letters. I denotes the identity matrix and e_i denotes the i^{th} column of 1. (x, y) denotes the usual Euclidean inner product of vectors x and y, i.e., y^*x . ||x||| denotes the Euclidean norm of the vector x. The symbol V and x denote "for all" and "belongs to" respectively. x denotes the n-dimensional unitary space. Let $x = (a_{ij})$ be an x matrix. Some functions of x and the symbols used are described in the following Table 1.

Table 1 (Rao and Hitra, 1971)

Function	Symbol	Description
Transpose	A†	matrix with $(i,j)^{th}$ element = a_{ij}
Conjugate transpose	A*	matrix with $(i,j)^{th}$ element = \bar{a}_{ji}
Rank	R(A)	the number of independent columns or
		rows of A
Trace	tr A	Σaii
Column space	M(A)	vector space generated by columns of A
Orthogonal space	0(A)	set of all vectors x such that A'x=0
Null space	₩(A)	set of all vectors x such that Ax=0

Definitions of special matrices are given in Table 2.

Table 2 (Rao and Hitra, 1971)

Type of matrix	Definition
Symmetric	A = A'
Hermitian	A = A*
Idempotent	A ² = A
Positive definite (p.d.)	x*Ax > 0 V nonnull x
Positive semi-definite (p.s.d.)	x*Ax ≥ 0 V x
	and x*Ax = 0 for some nounull x
Nonnegative definite (n.n.d.)	- x*Ax ≥ 0 V x
Normal	AA* = A*A
Orthogonal	AA' = A'A = I
Unitary	$AA^* = A^*A = I$

vii
A classification of basic types of g-inverses is given in Table 3.

Table 3 (Rao and Mitra, 1971)

Notation	Equivalent conditions	Name of G	
AL .	GA = I	left inverse	
A _R	AG = I	right inverse	
$\mathbf{A}^{\mathbf{T}}$	AGA = A	g-inverse	
A _r	AGA = A; GAG = G	reflexive g-inverse	
A _m	AGA = A; GA = (GA)'	minimum norm g-inverse	
A _g	$AGA = A; AG = (AG)^{\dagger}$	least squares g-inverse	
A ⁺	AGA' = A; GAG = G AG = (AG)'; GA = (GA)'	Moore-Penrose inverse	
		}	

CHAPTER

g-INVERSES OF BOOLEAN MATRICES

1.1 Introduction and Summary

The matrices over Boolean algebra B require a completely separate treatment from that of matrices over the complex field 6 or real field R owing to the fact that these matrices do not satisfy many of the fundamental properties of matrices over C or R. For instance a matrix over B need not always possess a g-inverse in sharp contrast to the complex (real) case where every matrix has a g-inverse. Also for Boolean matrices row rank (as defined in Section 1.3) and column rank need not be equal which is again a fundamental result for matrices over C and R. Another contradiction to our basic concept for real and complex fields is, a set of n, k-tuples (n > k) over B may have more than k independent vectors. Due to these interesting deviations from the general complex field, a few of the usual definitions for the complex (real)field need modifications to be meaningful for Boolean algebra, as for example independence of vectors, row rank and column rank of matrices etc. However the product of two matrices A and B of order m \times r and n \times r respectively and the sum of two matrices of the same order can be defined as in the case of matrices over R (C). Definitions which need modifications have been stated in section 1.3. Hereafter unless otherwise stated, whenever we say a matrix A we mean a matrix A over B.

In this chapter we have considered gneral rectangular matrices. An algorithm to compute a g-inverse is also included in this chapter. These g-inverses of Boolcan matrices have many applications in graph theory and network analysis.

In section 1.2 we define a few necessary and related concepts and terms and a few preliminary results are proved.

In section 1.3 through section 1.6 the underlying Boolean algebra considered is {0, 1} Boolean algebra. In section 1.3 we characterise the class of square matrices possessing an inverse. In this section a general decomposition theorem has been proved which leads to the characterisation of matrices possessing g-inverses. Later in this section it is shown that if a matrix possesses a g-inverse then one can choose a g-inverse of particular simple form, to be precise permutation matrix as defined in section 1.3. A few results on idempotent matrices are also establised.

In section 1.4, we define space decomposition of a matrix, similar to the rank factorisation of matrices over R and C. However it is worthnoting that unlike rank factorisation, every Boolean matrix is not space decomposable. Like rank factorisation if a space decomposition of a Boolean matrix exists it is not unique. It was shown in this section that a matrix possesses a g-inverse if and only if it has a space decomposition. Later this space decomposition is used to characterise reflexive g-inverse of matrices.

In section 1.5, necessary and sufficient conditions for existence of Moore-Penrose inverse and other types of g-inverses of matrices are established.

In section 1.6, an algorithm is given which gives a g-inverse of Boolean matrix A, if A has any g-inverse. Table 4 can be used to check the existence of other types of g-inverses and to compute them.

Finally in section 1.7, the last section of the chapter, the main results of the previous sections are generalized for matrices over an arbitrary Boolean algebra.

1.2 Preliminaries

Let B = (B, +, ., -, 0, 1) be a Boolean algebra with + acting as supremum, . acting as infimum, - acting as compliment. O acting as the zero element and I acting as the unit element (Halmos [3]). We supress the dot of a.b and simply write ab, for infimum of a and b. By a matrix over B we mean a matrix whose elements belong to B. Since the order of the matrix is clear from the context, most of the time we supress the order of the matrix. Matrix addition and matrix multiplication are same as in the case of real matrices but for the concerned sums and products of elements are Boolean.

If x_1, \ldots, x_n are vectors (m-tuples) over B, the linear manifold generated by them is the set of all vectors of the form $\sum_{i=1}^n c_i x_i$ here $c_i \in B$ and is denoted by $M(x_1, \ldots, x_n)$. Other concepts such as

transpose, symmetricity, idempotency, M(A) etc. are same as in the case of real matrices.

<u>Definition</u>: Let A be an $m \times n$ matrix. Then an $n \times m$ matrix G is said to be a generalized inverse (g-inverse) of A, denoted by Λ^- if AGA = A.

<u>Proposition 1</u>: Let A be an $m \times n$ matrix and G be an $n \times m$ matrix. Then the following statements are equivalent

- (a) AGA = A
- (c) AG is idempotent and M(A) = M(AG)
- (d) GA is idempotent and M(A') = M(G'A')

Proof is in the same lines as in the real case and hence we omit.

If G is a particular type of g-inverse of A, say $A_{\bf t}^{-}$ then Q^*GP^* is a $(PAQ)_{\bf t}^{-}$ where P and Q are permutation matrices.

Observing the fact that if G_1 and G_2 are two g-inverses of an $m \times n$ matrix A then $(G_1 + G_2)$ is also a g-inverse of A and that number of $n \times m$ matrices is finite we define a maximum g-inverse of A.

Definition: A g-inverse G of A is said to be a maximum g-inverse of A if every $A \leq G$.

As an immediate consequence we see that any matrix having a g-inverse has a maximum g-inverse.

1.3 g-inverses of matrices over {0, 1} Boolean algebra

<u>Definition</u>: The $\{0, 1\}$ Boolean algebra denoted by B_0 is the set $\{0, 1\}$ together with the operations *, and - defined as follows

From now onwards upto section 5 we consider vectors and matrices over only. We say $A \le B$ if $a_{ij} = 1 \Rightarrow b_{ij} = 1$ for all i and j.

<u>definition</u>: The weight of a vector x, denoted by w(x), is the number f non-zero elements of x.

<u>efinition</u>: A set of vectors $\{x_1, \ldots, x_n\}$ is said to be independent if **b** vector is the sum of some of the remaining vectors and null vector **bll** elements zero) is not in the set.

efinition: A vector y is said to be dependent on vectors x_1, \dots, x_n y $\in M(x_1, \dots, x_n)$. Otherwise y is said to be independent of \dots

<u>Definition</u>: Let T be a set of vectors. Then a set $S = \{x_1, \dots, x_n\} \subset T$ is said to be a basis of T if S is independent and $M(x_1, \dots, x_n) \supset T$.

Proposition 2 Every set of vectors T, which has at least one nonnull vector has a unique basis.

Proof: Let $x_1 \in T$ be a minimum weight nonnull vector. Consider $T_1 = T - M(x_1)$. If T_1 is noncopty take $x_2 \in T_1$, a minimum weight nonnull vector and consider, $T_2 = T - M(x_1, x_2)$. Proceed likewise until for some k, $T_k = T - M(x_1, \dots, x_k)$ is empty. Clearly x_1, x_2, \dots, x_k are independent and $T \subset M(x_1, \dots, x_k)$. Hence the set $\{x_1, \dots, x_k\}$ form a basis of T and by construction x_1, x_2, \dots, x_k should be in any basis and hence it is unique.

The above proposition leads to the following definition.

<u>Definition</u>: Rank of a set of vectors T, denoted by R(T) is the cardinality of its basis.

Remark 1: This rank does not satisfy the usual properties of dimension in real vector spaces, for instance $R(T_1)$ may be greater than $R(T_2)$ even though $M(T_1) \subset M(T_2)$.

Consider
$$T_1 = \begin{cases} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{cases}$$
 and $T_2 = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{cases}$

 $\mathbf{re} \cdot \mathbf{R}(\mathbf{T}_1) = 4$ and $\lambda(\mathbf{T}_2) = 3$ but $M(\mathbf{T}_1) \subseteq M(\mathbf{T}_2)$

<u>Definition</u>: Row (column) rank of a matrix A is the rank of its row (column) vectors.

Romark 2: Row rank and column rank of a matrix A need not be equal.

Here row rank of A is 3 and column rank is 4.

<u>Definition</u>: A matrix A is said to be of rank r if row rank of A = column rank of A = r.

Definition: A matrix A of order $m \times n$ is said to be nonsingular if row rank of A is m and column rank of A is n.

<u>Definition</u>: A permutation matrix is a square matrix such that every row and every column contain exactly one 1.

<u>Definition</u>: A matrix (need not be square) is said to be a partial permutation matrix if every row and every column of it contain atmost one 1.

Remark 3: Row rank and column rank of a matrix are unaltered by premultiplying and post-multiplying by permutation matrices.

Remark 4: If P is a permutation matrix then PP' * P'P = I and if Q is a partial permutation matrix then $Q'Q \le I$ and $QQ' \le I$.

<u>Definition</u>: A square matrix B is said to be an inverse of a square matrix A if AB = BA = I.

Remark 5: If an inverse exists it is unique.

Before proceeding further to investigate the existence and properties of g-inverses of matrices in general let us find out the conditions under which a square matrix will possess the inverse.

Theorem 1: An $n \times n$ matrix A has inverse if and only if it is a permutation matrix.

Proof: 'If' part follows trivially since AA' = A'A = I.

'Only if' part: Let x_i be the ith column vector of A and B be the inverse of A. Then

AB = I => $b_{1i} x_1 + b_{2i} x_2 + \dots + b_{ni} x_n = e_i$, for $i = 1, \dots, n$ => $e_i = x_j$ for some j, since e_i cannot be the sum of two distinct normall vectors. $(i = 1, 2, \dots, n)$

- \Rightarrow column vectors of A contain e_1, \dots, e_n
- => A is a permutation matrix since A has only a columns.

The following decomposition theorem is a fundamental result of our study of g-inverses of Beolean matrices.

Theorem 2: (Decemposition Theorem): Let A be an $m \times n$ metrix with row rank r and column rank c. Then there exist permutation matrices P and Q and matrices C and D such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

pere A_1 is a nonsingular matrix of order $r \times c$.

To prove this theorem we need the following lemma :

(column) is deleted.

Proof of the lemma is easy and hence we emit.

wof of Theorem 2: Since the column rank of A is c the basis of by contains c column vectors of A. Let Q be a permutation rix such that the first c columns of AQ form the basis of M(A), i.e., AQ = (B : BC) for some C, where B is an $m \times c$ matrix with

I column rank. By the above lemma, row rank of B = row rank of A = r.

there exists a permutation matrix P such that first r rows of PB form

basis of M(B'), i.e., PB = $\begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$ for some D where A_1

is a $r \times c$ matrix with full row rank. Again by the above lemma, column rank of A_1 = column rank of B = c.

Therefore PAQ = P(B : BC)

= (P6 : PEC)

$$\begin{bmatrix} \nabla A_1 & A_1 & \\ & & \\ DA_1 & DA_1 \end{bmatrix}$$
 for some C and D,

here A_i is a $r \times c$ nonsingular matrix.

emark 6: Observe that in the above decomposition

pr
$$\begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$$
 is a column basis of A and $(A_1:A_1C)$ Qr

a row basis of A.

Forem 3: Let PAQ =
$$\begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$
 where A_1 is nonsingular and P,

are permutation matrices. Then the following statements are equivalent.

- (a) A exists
- (b) $\begin{bmatrix} A_1 \\ 0A_1 \end{bmatrix}$ exists
- (c) $(A_1 : A_1C)$ exists
- (d) A, exists.

Proof : Given a g-inverse of any of the above four matrices, instead of
ust showing the existence of g-inverses of the rest we will construct
inverses for the rest. Proofs are by straightforward verifications.

(a)
$$(b)$$
, (c) and (d)

A exists => (PAQ) exists, say,
$$\begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 is a (PAQ) $\begin{bmatrix} G_1 + G_2 \\ G_3 & G_4 \end{bmatrix}$ is a $\begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$, $\begin{bmatrix} G_1 + G_2 \\ G_3 + G_4 \end{bmatrix}$ is a $\begin{bmatrix} A_1 \\ A_1 \end{bmatrix}$.

Let
$$(G_1: G_2)$$
 be a $\begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$, then $\begin{bmatrix} G_1 + G_2D \\ 0 \end{bmatrix}$ is a A_1^{-1} , $G_1 + G_2D$ is a A_1^{-1} and $Q^{-1} \begin{bmatrix} G_1 & G_2 \\ 0 & 0 \end{bmatrix}$ by is a A_1^{-1} .

be a
$$(A_1 : A_1C)^{-1}$$
. Then $(G_1 + G_2D)$ is a A_1 ,

$$Q' \begin{bmatrix} G_1 & 0 \\ G_2 & 0 \end{bmatrix} P' \text{ is a } A \text{ and } (G_1 + G_2 b : 0) \text{ is a } \begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$$

Let
$$G_1$$
 be a A_1 then $Q^* \begin{bmatrix} G_1 & 0 \\ 0 & 0 \end{bmatrix}$ P^* is a A^* , $G_1:0$ is a $\begin{bmatrix} A_1 \\ 0A_1 \end{bmatrix}$ and $\begin{bmatrix} G_1 \\ 0 \end{bmatrix}$ is a $(A_1:A_1C)^*$.

Corollary: Let M(A) = M(B) then A exists if and only if D exists.

Remark 7:
$$\begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 is a $\begin{bmatrix} A_1 & A_1C \\ A_1 & BA_1C \end{bmatrix}$

If and only if $(G_1 + CG_3 + G_2 + CG_4 + CG_4)$ is a A_1

Hence the existence of a g-inverse of a matrix reduces to the Woblem of existence of g-inverses of non-singular matrices.

reposition 4. Let a g-inverse of an m × m matrix A exist. Them

- (i) column rank of A is n implies n < a
- (ii) row rank of A, is m implies m < n.

roof:(i) Let G be a g-inverse of A. Then M(A) = M(AG), by
roposition 1. This implies all independent columns, i.e., all the columns

f A are available among the columns of AG. But order of AG is

* m => n < m.</pre>

Proof of (ii) follows in the same line.

ark * : Let A be a nonsingular matrix then g-inverse exists
A is square.

collary A exists implies row rank of A = column rank of A.

 $\frac{\mathbf{pof}}{\mathbf{k}}$: Let A be an $m \times n$ matrix of row rank τ and column \mathbf{k} c. By the Decomposition Theorem there exist permutation matrices and \mathbf{Q} such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

re A, is an r x c nonsingular matrix.

by Theorem 3, A exists => A₁ exists => A₁ is square, by irk 8.

p r = c, i.e., row rank of A = column rank of A.

with 9: Every matrix need not possess a g-inverse.

position 5: Let A be an $m \times n$ matrix such that A exists. Then

- (i) A is of full row rank implies $AG_1 = AG_2$ for all g-inverses G_1 and G_2 of A.
- (ii) A is of full column rank implies $G_1A = G_2A$ for all g-inverses G_1 and G_2 of A.
- f: (i) Let G_1 and G_2 be any two g-inverses of the full row matrix A. By above corollary, the column rank of A is m.

 G be the maximum g-inverse of A. Then $G_1 \leq G$ and hence \leq AG. But $M(AG) = M(A) = M(AG_1)$ by Proposition 2, which ies that the set of column vectors of AG_1 is same as the set of mass of AG, which is again same as the column basis of A. together with $AG_1 \leq AG \Rightarrow AG_1 = AG$.

Hence $AG_1 = AG_2$.

Proof of (ii) follows from the above proof by taking A' for A serving that A exists \iff $(A')^{\top}$ exists.

lary: If A is a nonsingular matrix such that A exists then
a unique reflexive g-inverse.

By Proposition 5, for any two g-inverses G_1 and G_2 , AG_2 and $G_1A=G_2A$.

If G_1 and G_2 are any two reflexive g-inverse of A then $G_1 = G_1 A G_1 = G_1 A G_2 = G_2 A G_2 = G_2$

Remark 10: However, the converse of this, i.e., 'if a matrix has a unique reflexive g-inverse then it is nonsingular' is not true.

Consider $A = \begin{bmatrix} I & C \\ C' & C'C \end{bmatrix}$ where I is of order 3×3 and $C = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

By Remark 7, it follows that A has a unique g-inverse and it is

Remark 11: In case of real matrices, if the class of all g-inverses of A and B are same then A = B. But note that in case of Boolean matrices this result is not true even if A^- and B^- exists.

Example: Choose A as in Remark 10 and let

Then again by Remark 3 B has a unique g-inverse and it is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ Hence class of all g-inverses of A and B are same though A is clearly not equal to B.

Theorem 4: Let A be a nonsingular matrix such that A exists. Then there exists a unique permutation matrix P which is a g-inverse of A.

Proof: a is neasingular and A exists ⇒> A is square, by Remark 8. Let G be a g-inverse of A. Then M(A) = M(AG) and AG is idempotent. Since A is nonsingular, columns of AG are nothing but a permutation of columns of A, i.e., there exists a permutation matrix P such that $AP = AG \Rightarrow APA = AGA = A \Rightarrow P$ is a g-inverse of A.

To show uniqueness of P, if possible let P and Q be two permutation matrices which are g-inverses of A. Then by Proposition S, AP, = AP, since columns of A are distinct because A is nonsingular, $P_1 = P_2$.

Let A be an $m \times n$ matrix such that A exists. men there exist permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

were $A_1^2 = A_1$ and A_1 is nonsingular.

 \underline{Proof} : By Decomposition Theorem there exist permutation matrices P and Q_{1} such that

$$PAQ_{1} = \begin{bmatrix} A_{2} & A_{2}E \\ FA_{2} & FA_{2}E \end{bmatrix} \dots (4)$$

where A_2 is nonsingular. Since A has a g-inverse, by Theorem 3 A_2 has a g-inverse and by Theorem 4 there exists a permutation matrix Q_2 which is a g-inverse of A_2 . Postmultiplying both sides of (4)

$$PAQ = \begin{bmatrix} A_{2}Q_{2} & A_{2}Q_{2}Q_{2}^{T}E \\ FA_{2}Q_{2} & FA_{2}Q_{2}Q_{2}^{T}E \end{bmatrix} = \begin{bmatrix} A_{1} & A_{1}C \\ DA_{1} & DA_{1}C \end{bmatrix}$$

where $A_1 = A_2Q_2$ is idempotent, $C = Q_2^*E$ and D = F. Note that Q is a permutation matrix.

The following is a generalisation of Theorem 4 to any matrix which is a g-inverse.

heorem 5: Let A be an m x n matrix which has a g-inverse. Then mere exists a partial permutation matrix which is a g-inverse.

 $\operatorname{roof}:$ By above corollary, there exist permutation matrices and Q_1 such that

$$F_1 \triangle Q_1 = \begin{bmatrix} A_1 & A_1 C \\ 0 A_1 & 0 A_1 C \end{bmatrix} \quad \text{where} \quad A_1^2 = A_1.$$
 Then partial permutation matrix $P = Q_1^2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P_1^2 \quad \text{is a g-inverse of } A.$

Remark 12: This partial permutation matrix I' need not be unique. Before proceeding to the next section a few results on idempotent matrices are proved below.

Lemma 2: Let A be an idempetent matrix. Then $a_{ii} = 0$ implies i^{th} column of A depends on the rest of the columns and i^{th} row depends on the rest of the rows and also the matrix obtained by removing i^{th} row and i^{th} column of A, is idempetent.

Proof: Without loss of generality let and and let

$$A = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_1 = \begin{bmatrix} A_1 & \alpha \\ A_2 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_2 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_3 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_4 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_4 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_4 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

$$A_4 = \begin{bmatrix} A_1 & \alpha \\ \beta^* & \alpha \end{bmatrix}$$

and
$$(\beta^{\dagger}:0) = \beta^{\dagger}(A_{1}:\alpha)$$

$$A_1 = A_1^2 + \alpha B' = A_1^2 + A_1 \alpha B' A_1 = A_1 (T + \alpha B') A_1$$

 \Rightarrow A₁ + $\alpha\beta$ ' is idempotent

$$\Rightarrow$$
 $A_1 + \alpha \beta' = A_1^2 + \alpha \beta' = A_1$

Therefore A, is idempotent.

Corollary: If A is idempotent and nonsingular then $a_{ii} = 1$ for all i. However, A is idempotent and $a_{ii} = 1$ for all i do not imply A is nonsingular.

Lemma 3: ith row of A depends on the other rows implies ith column depends on the other columns where A is idempotent and Quest #i.

Proof: Without loss of generality let the last row depend on other rows

and let
$$A = \begin{bmatrix} A_1 & \alpha \\ \beta' & 1 \end{bmatrix}$$

$$A^2 = A \Rightarrow (i) A_1^2 + \alpha B^* = A_1 \Rightarrow A_1^2 \le A_1$$
. But $A_1 \le I \Rightarrow A_1^2 \ge A_1$

So
$$A_1^2 = A_1$$
.

(ii)
$$A_1 \alpha + \alpha = \alpha \implies A_1 \alpha \le \alpha \implies A_1 \alpha = \alpha$$

(iii)
$$\beta^{\dagger}A_{1} + \beta^{\dagger} = \beta^{\dagger} = \beta^{\dagger}A_{1} \leq \beta^{\dagger} = \beta^{\dagger}A_{1} = \beta^{\dagger}$$

and (iv)
$$\beta^{\dagger}\alpha + 1 = 1$$
.

(8':1) depends on the other rows implies that there exist C such that $(8':1) = C'(A_1:\alpha)$

ow
$$\beta^{\dagger}\alpha = C^{\dagger}A_{1}^{\dagger}\alpha = C^{\dagger}\alpha = 1$$

$$\begin{array}{ccc} & & & & \\ & &$$

the last column depends on the other columns.

w we can state the following theorem, proof of which follows from the bye two lemmas.

orem 6 : A is an idempotent matrix of rank r if and only if
e exists a permutation matrix P such that

$$PAP' = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

e A_1 is $r\times r$ nonsingular idempotent matrix and C and D such that $CD \leq A_1$.

lary1: If A is nonsingular, idempotent and symmetric then

Let A be an $n \times n$ matrix. If possible let $a_{ij} = 1$ for i and j such that $i \neq j$. Then there exists a k such that a_{jk} , otherwise i and j rows are identical which contradicts singularity of A. Since A is symmetric without loss of ity we assume that $a_{ik} = 0$ and $a_{jk} = 1$.

Now
$$A^2 = A \implies a_{ik} = \frac{n}{r+1} a_{ir} a_{rk} = 0$$

$$\Rightarrow a_{ir}, a_{rk} = 0 \quad \text{for } r = 1, 2, ..., n$$

$$\Rightarrow a_{ij}, a_{jk} = 0$$

$$\Rightarrow a_{ik} = 0,$$

which is a contradiction and hence $a_{ij} = 0$ for $i \neq j$. A is nonsingular and idempotent implies $a_{ii} = 1$ for i = 1, ...n from corollary of Lemma 2.

So
$$A = I$$
.

Remark 13: However if A is not symmetric the above result (corollary 1) is not true, for instance, consider $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

This is nonsingular and idempotent but clearly is not symmetric.

Corollary 2: A is an idempotent, symmetric matrix of rank r if and only if there exists a permutation matrix P such that

here C is such that CC' < I.

roof follows from the above theorem and corollary.

Goven 7: Let A be an $m \times n$ matrix such that $a_{ii} = 1$ for all i. G be any g-inverse of A then $g_{ij} \leq a_{ij}$ for i,j = 1,2,...,r, are r is the minimum of m and n.

$$rac{roof}{ij}$$
: Let $a_{ij} = 0$ for $i, j \le r$ then

$$A = AGA \Rightarrow a_{ij} = \sum_{k=1}^{n} \sum_{s=1}^{m} a_{ik} g_{ks} a_{sj} = 0 \quad \text{for } i, j \le r$$

=>
$$a_{ik}, g_{ks}, a_{sj} = 0$$
 for $k = 1, ..., n$

and
$$i, j \leq r$$

$$\Rightarrow$$
 $a_{ii} z_{ij} a_{jj} = 0$ for $i, j \le r$

$$\Rightarrow$$
 $g_{ij} \neq 0$ for $i, j \leq r$.

$$g_{ij} \leq a_{ij}$$
 for $i, j \leq r$.

4: In particular, if A is nonsingular and idempotent then
I g-inverse of A is A itself.

[15]: If A is an idempotent and nonsingular matrix then G inverse of A if and only if $1 \le G \le A$.

ce decomposition and reflexive p-inverse

define space decomposition of Boolean matrices similar to rank factorisation for real matrices.

on: A matrix A of order $m \times n$ is said to be space decomposable, when k there exist two matrices L and R of orders $m \times k$ a respectively such that

$$A = LR$$
; $M(A) = M(L)$ and $M(A^{\dagger}) = M(R^{\dagger})$.

This decomposition we call as space decomposition of A.

The following theorem gives an interesting characterisation of matrices possessing g-inverses.

Theorem 8 : A exists if and only if A is space decomposible.

Proof: 'If' part Let A = LR be a space decomposition of A

$$=> M(L) = M(A)$$

$$=> L = AD_1$$
and $M(R') = M(A')$ and $R = D_2A$ for some D_1 and D_2

Now $A = LR = AD_1D_2A \Rightarrow D_1D_2$ is a A".

'Only if' part : Let A exist. Then A is of the form

$$P\begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix} Q$$

where A_1 is $r \times r$ nonsingular idempotent matrix, where r is the rank of A and P and Q are permutation matrices .

$$\Rightarrow A = P \begin{vmatrix} A_1 \\ DA_1 \end{vmatrix} \quad (A_1 \quad A_1C) \quad Q$$

= LR

here
$$L = P \begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$$
 and $R = (A_1 : A_1C)Q$

It is easy to see that M(A) = M(L) and M(A') = M(R')Therefore A = LR is a space decomposition.

Remark 16: Observe that r the rank of the matrix is the minimum value that k (in the definition of space decomposition) can take. If rank does not exist i.e., row rank \neq column rank, space decomposition does not exist. In view of this, from now onwards by space decomposition of A we mean A = LR where L is of order $m \times r$, R is of order $r \times r$ where r is the rank of A and M(A) = M(L) and M(A') = M(R').

Theorem 9: Let $A = P \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$ Q where P and Q are permutation matrices, A_1 is nonsingular idempotent matrix. Then $A = L_1 R_1$ is a space decomposition of A if and only if $L_1 = LP_1$ and $R_1 = P_1^*R$ for some permutation matrix P_1 where $L = P \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1 \end{bmatrix}$

and $R = (A_{\tau} : A_{\tau}C)Q$.

Proof: 'If' part is trivial.

'Only if' part: $A = L_1 R_1$ is spacedecomposition of A $\Rightarrow M(L_1) = M(A) = M(L) \Rightarrow L_1 = LP_1$ and $M(R_1') = M(A') = M(R') \Rightarrow R_1 = P_2R$

some permutation matrices P_1 and P_2 .

Now
$$A = P \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix} Q = P \begin{bmatrix} A_1 \\ DA_1 \end{bmatrix} P_1P_2(A_1 : A_1C)Q$$

$$\Rightarrow A_1 = A_1 P_1P_2 A_1 \Rightarrow P_1P_2 \text{ is a } A_1$$

But A_1 being nonsingular and idempotent I is the only Permutation g-inverse it has, therefore $P_1P_2=I$

$$P_2 = P_1$$

Therefore $L_1 = LP_1$ and $R_1 = P_1^*R$

Theorem 10: Let A = LR be a space decomposition of $\Lambda = P \begin{bmatrix} A_1 & A_1 \overline{C} \\ DA_1 & DA_1 C \end{bmatrix} Q$

and G be a A. Then

- (a) L and R exist
- (b) $L^TL = RR^T$
- (c) $L^TA = R$ and $AR^T = L$
- (d) R^TL is a A^T
- and (e) RG is a L_r^- and GL is a R_r^- .

Proof: (a) Let
$$L = P \begin{bmatrix} A_1 \\ DA_1 \end{bmatrix}$$
 P_1 and $R = P_1^*(A_1 : A_1C)Q$

$$M(A) = M(L) \Rightarrow L \text{ exists and } M(A') = M(R') \Rightarrow R \text{ exists}$$

(b)
$$L^{\dagger}L = P_{1}^{\dagger}\begin{bmatrix} A_{1}^{\dagger} \\ DA_{1} \end{bmatrix} - P_{1}^{\dagger} = P_{1}^{\dagger}A_{1}P_{1}$$

and
$$RR^{-} = P_{1}^{*}(A_{1} : A_{1}^{*}C)QQ^{*}(A_{1} : A_{1}^{*}C)^{*}P_{1} = P_{1}^{*}A_{1}P_{1}$$

Therefore $L^TL = RR^T$

(c)
$$L^TA = L^TLR \approx RR^TR \approx R$$

(d)
$$AR^TL^TA = LR = A \Rightarrow R^TL^T$$
 is a A

So LRGL = L

and therefore. RG is a L and similarly we can show that GL is a R. Now, for reflexivity, consider

Thus RG is a $L_{\mathbf{r}}^{-}$ and GL is a $R_{\mathbf{r}}^{-}$.

Remark 17: Though R^{*}L^{*} is always a A^{*}, every g-inverse of A need not be of the form R^{*}L^{*}.

$$\mathbf{Ex}: \quad \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Next we turn our attention to reflexive g-inverses. In the following theorem we characterise reflexive g-inverses of A.

Theorem 11: G is a reflexive g-inverse of A if and only if $G = R^T L^T$ where A = LR is a space decomposition of A and one of R^T and L^T is reflexive.

<u>Proof</u>: 'If' part: Let A = LR be a space decomposition of A. We already proved that $G = R^TL^T$ is a A^T . For reflexivity

consider GAG = R^TL^TLRR^TL^T

 $= R^T R R^T L^T$

= R^TL^T assuming R^T is reflexive

≈ G

If L is reflexive

 $GAG = R^{T}L^{T}LRR^{T}L^{T}$

= RTLTLL

= k L

≈ G

'Only if' part : Let G be a $A_{\mathbf{r}}^{-}$.

Then $G = GAG = GLRG = R_{L_{r}}^{T}L_{r}^{T}$

(from (e) of previous theorem).

Remark 18: The condition that one of R and L is reflexive is necessary, for otherwise i.e., if both are not reflexive R L may not be a reflexive g-inverse of A.

Ex:
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
; $L = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$; $R = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

$$R^{-} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $L^{-} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$G = R^{-}L^{-} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is a A^{-} but not A_{T}^{-} .

1.5 Moore-Penrose inverse and other types of g-inverses

In this section we obtain necessary and sufficient conditions for a matrix A to possess various types of g-inverses, namely $\Lambda_{p_1}^-$, Λ_{L}^- and $\Lambda_{p_2}^+$ where these g-inverses are as defined in Table 3.

Theorem 12: The following statements are equivalent

- (a) Λ_{m}^{-} exists
- (b) a is of the form $P = \begin{bmatrix} I & C \\ D & DC \end{bmatrix}$ where P and Q are permutation matrices and C is such that $CC^* < I$.
 - (c) A^{-} exists and $M(A) = M(AA^{*})$
- sand (d) there exists a G such that GAA' = A',

<u>Proof</u>: (a) \Rightarrow (b) Let $G = A_m^-$. Then GA is symmetric and idempotent. Therefore there exists a permutation matrix Q such that

where C is such that $CC' \le I$. Again G is a A implies $M(A') = M((GA)') \text{ which implies A is of the form } P \begin{bmatrix} C \\ D \end{bmatrix} Q$ for some D

- (b) \Rightarrow (c) It can be easily checked that $Q' \begin{bmatrix} I & O \\ C' & O \end{bmatrix} P'$ is a A_m^- and M(A) = M(AA').
- (c) => (d) A exists and $M(A) = M(AA') \Rightarrow (AA')$ exists and there exists a matrix D such that A = AA'D. Now it is easy check GAA' = A' where $G = A'(AA')^{\top}$.
 - (d) => (a) GAA' = A' => GA is symmetric and hence AGA = A $=> G \text{ is a } A_m^{-}.$

This completes the proof of the theorem.

A similar theorem for $A_{\bf I}^-$ is stated below omitting the proof as it follows on the same lines.

Theorem 13: The following statements are equivalent

- (a) A_{g}^{-} exists

 (b) A is of the form P $\begin{bmatrix} 1 & C \\ D & DC \end{bmatrix}$ where P and Q are

permutation matrices and D is such that 0.0 < 1

- (c) A^{-} exists and $M(A^{+}) = M(A^{+}A)$
- and (d) there exists a matrix G such that A'AG = A'.

Corollary1: The following statements are equivalent

- (b) A is of the form P Q where P and Q are

permutation matrices and C and D are such that CC'< I and D'D <I

- (c) A^{-} exists, $M(A) = M(AA^{\prime})$ and $M(A^{\prime}) = M(A^{\prime}A)$
- and (d) there exists a matrix G such that GAA' = A' and A'AG = A'. Drollary2(Roo[11]): At exists ⇒ At - A'.

1.6 An algorithm to compute a g-inverse

In this section we develop an algorithm to compute a g-inverse if it exists. First we prove two theorems on which the algorithm is based. Before proceeding further we need the following definitions. <u>Perinition</u>: For a square matrix A of order $n \times n$ we define permanent of A, denoted by |A| as

$$|A| = \sum_{i=1}^{n} a_{2i_2} \cdots a_{ni_n}$$

where the summation is taken over all permutations i_1,\ldots,i_n of 1, 2, ..., n.

Observe that if $B\approx PAQ$ where P, Q are any two permutation matrices, then

$$|A| = |B| = |A'|$$

<u>Definition</u>: A set of vectors $T = \{x_1, ..., x_n\}$ is said to be satisfying weight condition or condition w, if for every i, there are w_i vectors in the set which are less than or equal to x_i where w_i is the weight of the vector x_i .

Theorem 14: Let A be a nonsingular square matrix. Then A exists if and only if |A| = 1 and columns of A satisfy condition w.

Proof: 'If' part: Let |A| = 1, then there exists a permutation $i_1, i_2 \dots i_n$ of 1.2, ... n such that $a_{1i_1}, a_{2i_2} \dots a_{ni_n} = 1$

Now consider the permutation matrix $P=(e_1, e_1, e_1, \dots e_n)$ and let B=AP. Clearly $b_{ij}=1$, for $i=1,\dots,n$.

where n is the order of Λ .

A is nonsingular => B is nonsingular.

Columns of A satisfy condition w

=> columns of B satisfy condition w.

Next we will show that B is idempotent which will imply P is a A". Let y_i be the i^{th} column vector of B and consider

$$P y_i = b_{1i} y_1 + b_{2i} y_2 + \dots + b_{ii} y_i + \dots + b_{ni} y_n \quad ... (11)$$

Let w_i be weight of y_i . Observe that none of the y_k 's is null vector for $k=1,\ldots,n$. The right hand side of (11) is sum of exactly w_i nonzero vectors. Now $y_k \leq y_i \Rightarrow b_{ki} = 1$ since $b_{kk} = 1$. Thus whenever $y_k \leq y_i$, y_k appears as nonzero term in the right hand side of (11) and since there are w_i y_k 's which are less than or equal to y_i and only w_i nonzero vectors are present in the right hand side of (11), each nonzero term is less than or equal to y_i and hence their sum is also $\leq y_i$, but since $b_{ii} = 1$, y_i itself is present in the right hand side of (11) and hence their sum is y_i .

Therefore By; * y;

So Bisidempotent => P is a n...

'Only if' part: A exists => there exists a permitation tatzix P such that AP is idempotent, by Theorem 4.

Let B = AP.

Then $b_{ii} = 1$, i = 1, ..., n, by Lemma 2. Hence |A| = |B| = 1.

Since B is idempotent $By_i = y_i$, i = 1, ..., n, where y_i is the I^{th} column vector of B.

- So $y_i = By_i = b_{1i}y_1 + b_{2i}y_2 + \dots + b_{ni}y_n$
 - => whenever $b_{ki} \neq 0$, $y_{k} \leq y_{i}$ for all k.
 - => there are at least w_i , y_k 's $\leq y_i$, since weight of y_i is w_i .
 - => columns of B satisfy the condition w
 - => columns of A satisfy the condition w since columns B are nothing but a permutation of columns of A

which completes the proof of the theorem.

<u>Corollary I</u>: If A is square, nonsingular matrix then A exists if and only if |A| = 1 and the rows of A satisfy condition w.

Corollary 2: If A is nonsingular and A exists then there exists column of A of weight one.

Froof: Let x be a column vector of A with least weight say $k \ge 1$. But by above theorem there should be k columns of $A \le x$. Since x is a column of least weight there cannot be any vector < x \Rightarrow there are k vectors $\Rightarrow x \Rightarrow A$ is singular which is a contradiction. Hence $k \le 1$. Since $k \ne 0$, $k \ne 1$.

Corollary 3: Let A be a square nonsingular matrix such that |A| = 1 and columns of A satisfy condition w. Let i_1, \ldots, i_n be such that $a_1 i_1 \ldots a_{ni_n} = 1$ then $F = \{e_i, e_i, \ldots, e_i\}$ is a g-inverse of A.

In fact this is established in Theorem 14.

Let A be a square nonsingular matrix such that A exists then one and only one term in [A] is nonzero.

Theorem 15: Let A be a nonsingular matrix such that PAQ = $\begin{bmatrix} 1 & \alpha' \\ 0 & A_1 \end{bmatrix}$

where P and Q are permutation matrices and a and 0 are column vectors. Then A exists implies A_1^+ exists and A_1^- is nonsingular.

Proof: A is nonsingular and A exists

- => A is square
- ≃> A_l is square

Let
$$\begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 be a g-inverse of PAQ

$$AGA = A \Rightarrow A_1G_4A_1 \Rightarrow A_1 \Rightarrow G_4 \text{ is a } A_1^{\top}$$

- => row rank of A₁ = column rank A₁
- => A₁ is nonsingular.

Corollary: If A is nonsingular and A exists then there exist permutation matrices P and Q such that PAQ is nonsingular idempotent and upper triangular.

Algorithm

Let A be m × n matrix and A exist. For computing A we proceed as follows. First we obtain the row basis and the column basis of A. Then we compute the permutation g-inverse of the nonsingular submatrix formed by these rows and columns of A. Finally A is constructed as in Theorem 3.

The algorithm given in the next page is also used in chapter 2 for computing a nonnegative g-inverse of a nonnegative matrix.

Let A be the given matrix of order $m \times n$.

<u>Step 1</u>: Set p = 1 and $B_1 = M$. Compute w_1, w_2, \dots, w_m , the row weights of A. (These weights, we refer in Step 2, as original row weights). Go to step 2.

Step 2: Compute w_1^1 , w_2^1 ,..., w_m^1 , the row weights of B_p . Choose a minimum weight nonnull row of B_p . If there are more than one row of B_p with minimum weight, choose one from them with minimum original row weight. Let it be $\frac{1}{p}$ row of B_p . Form the matrix B_{p+1} from B_p by making j column of it null if $(B_p)_{ip}^1 \neq 0$ for j=1,2...n. If B_{p+1} is null, go to step 3, otherwise increase the value of p by 1 and go back to step 2.

Step 3: Let k be the value of p. Set p=1. Form the matrix C_1 with $i_1, i_2, \dots i_k$ the rows as those of A and the rest of the rows null. Compute $v_1, v_2, \dots v_n$ the column weights of C_1 . (These weights are referred as original weights in step 4). Go to step 4.

Step 4: Compute $v_1', v_2', \dots v_n'$, the column weights of C_p . Choose an smarked weight 1 column of C_p . (There is always one such column for $p \leq k$). If there are more than one unmarked weight 1 column of C_p , hoose one from them with minimum original weight and mark it. Let it p = p the column of C_p and let p = p element of it be nonzero. Form p = p from p = p by replacing all but p = p element of p = p the column of p = p the satrix p = p the column of p = p.

row of C_p by zeroes and keeping other elements as they are. If p=k we stop otherwise increase the value of p-by-1 and go back to step 4.

Now we have

Theorem 16: Let A exist. Then

- (a) rank of A is k
- (b) $i_1, i_2, \dots i_k^{th}$ rows of A form the row basis of A
- (e) $j_1, j_2, ..., j_k$ columns of A form the column basis of A
- and (d) $C_{f k}^{m{r}}$ is a partial permutation g-inverse of ${}^{m{r}}{}\Lambda$

where k, i_1 , i_2 ,... i_k , j_1 , j_2 ,... j_k and C_k are as in the above algorithm.

The theorem follows directly from the Theorem 3, Corollary of Theorem 15 and the above algorithm.

Remark 19: Whether A exists or not the above algorithm always gives the matrix C_k . One way of checking whether C_k^* is A or not, is checking whether $AC_k^*A = A$ or not.

Once we confirm the existence of A^- checking for the existence and computation of other g-inverses, viz., A_m^- , A_2^- and A^+ is simple that is given in the Table 4.

Let A^- exist. Let G_1 be the matrix with $i_1, i_2 \dots i_r^{th}$ rows as those of A and rest of the rows null and G_2 be the matrix with $j_1, j_2, \dots j_r^{th}$ columns as those of A and the rest of the columns null.

Table 4

Type of A	Condition for existence	Given by
A _r	alwasys exists	C' A C'
A n	weight of every column of $C_1 \leq 1$	G'i
Ag	weight of every row of $G_2 \leq 1$	G'2
A [*]	weight of every column of $G_1 \le 1$ and weight of every row of $G_2 \le 1$	A ¹

Numerical illustration :

Example 1:
$$1 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = B_1.$$
 Taking $1 = 3$

$$B_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}; Taking i_{2} = 5, B_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Here all the three nonnull rows of \mathbb{G}_3 are of equal weight. But second row has minimum original weight. So we take $i_{\chi}=2$. Then v_{χ} becomes null. So k = 3. We form now

Taking $j_2 = 2$ we have $C_3 = C_2$ and $j_3 = 4$.

Now it can be easily checked that C_3^* is a A^* . Now $C_1 = C_1$

and
$$G_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Also all the columns of G_1 are of

ight \leq 1. So G_1^* is a A_m^* But the first row of G_2 is of weight e than one and therefore Ag does not exist.

$$B_{2} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}, Taking i_{2}=1, B_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Here both third and fifth rows are of same weight. But we take $i_3 = 5$ since fifth row has minimum original weight. Now B_4 becomes null so k = 3. We form

king
$$\mathbf{j}_2 = \mathbf{2}$$
 $\mathbf{C}_3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$ and therefore $\mathbf{j}_3 = 5$.

C' is not a A', A' does not exist.

1.7 g-inverses of matrices over an arbitrary Spotean algebra

In this section we deal with matrices over an arbitrary Boolean algebra B not necessarily [0, 1] Loolean algebra. The case of the general Boolean algebra, not necessarily finite, we dispose of, in a present at the end of this section. We wish to obtain results about prices over a finite Boolean algebra B analogous to the results prince in sections 3, 4 and 5. Our main tool is the concept of prorphism.

inition: Let B_0 be the $\{0, 1\}$ Boolean algebra as usual. A map $B \to B_0$ is called a homomorphism if

- (1) h(a+b) = h(a) + h(b)
- 11) h(a,b) = h(a).h(b)
- (iii) $h(\tilde{a}) = h(\tilde{a})$ for all $a,b \in B$.

For a homomorphism h and matrix $A = (a_{ij})$ over B, we define \emptyset , a matrix over B_0 by $(h(A))_{ij} = h(a_{ij})$. With these definitions is easy to see h(A.B) = h(A).h(B), h(A+B) = h(A) + h(B) and \emptyset) = $[h(A)]^4$. Let H denote the set of all homomorphisms from B_0 . The following proposition is basic for our extensions.

position 6: For matrices A and B over B, h(A) = h(B)Tall $h \in H$ if and only if A = B. Proof of this proposition is an easy consequence of the fact that if $T_{A=1}^{C}$ a $\neq b$ then exists $h \in H$ such that $h(a) \neq h(b)$. (Halmos, P.R.[3]).

As a consequence of the above proposition, we have, G is a g-inverse of A if and only if h(G) is a g-inverse of h(A) for all $h \in H$.

 $\underline{\textbf{Definition}}$: A square matrix P over B is called a permutation $\underline{\textbf{Matrix}}$ if

- (i) elements of any row are pairwise disjoint i.e., a.b = 0 if a and b are two different elements of the same row.
- (ii) elements of any column are pairwise disjoint
- (iii) sum of all the elements in any row is equal to 1
 and (iv) sum of all the elements in any column is equal to 1.

<u>Befinition</u>: A matrix (need not be square) over B is called a <u>partial permutation matrix if it satisfies conditions (i) and (ii).</u>

We are justified in calling these matrices over B as permutation and partial permutation matrices in view of the following terms:

- Lemma 4: (a) P is a permutation matrix over B, if and only if h(P) is a permutation matrix over B, for all h ϵ H
 - (b) P is a partial permutation over B if and only if h(P) is a partial permutation over B_0 for all h ϵ H.

Proof of the lemma is easy and is omitted.

We now prove

Lemma 5: Given matrices A_h over B_o , of the same order, indexed by $h \in H$, there exists a matrix A over E such that $h(A) = A_h$ for all $h \in H$.

Proof: It is sufficient to prove that, given an element $a_h \in B_0$ indexed by $h \in H$, there exists a unique element $a \in B$ such that $h(a) = a_h$ for all $h \in H$. Since B is a finite Boolean algebra, we can find elements $a_1 \dots a_n \in B$ such that, they are pairwise disjoint and any element of B is a sum of some of $a_1 \dots a_n$. For any homomorphism $h: B \to B_0$ we can find an element a_i such that $h(a_i) = 1$ and $h(a_i) = 0$ if $j \neq i$. Also with the help of any a_i we can define a homomorphism $h: B \to B_0$ which is an extension of $h(a_i) = 1$ and $(a_i) = 0$ for $j \neq i$. So there is one to one correspondence between and $a_1 \dots a_n$.

Let $\mathbf{h}_1 \dots \mathbf{h}_n$ be all the homomorphisms such that

$$h_k(a_k) = 1$$
 if $k = k$
= 0 if $k \neq k$.

the given elements be $a_{h_1}, a_{h_2}, ... a_{h_n}$. Define $a = \Sigma a_i$ where mation is taken over all i such that $a_{h_i} = 1$. It is easily defined that $h(a) = a_h$ for all $h \in \mathbb{R}$. Uniqueness is clear.

We now ready to prove our extensions

Theorem 17: For square matrices A and B over B, AB = I implies A is a permutation matrix over B and B = A!.

Proof: AB = I

- \Rightarrow h(AB) \Rightarrow h(A).h(B) \Rightarrow h(I) \Rightarrow I for all h \in H
- => h(A) is a permutation matrix over B_0 and $h(B) = h(A)^{t-1}$ for all $h \in H$
- \Rightarrow A is a permutation matrix over B and B = A'.

Theorem 18: If a matrix A over B has a g-inverse, then it has a partial permutation matrix over B as g-inverse.

Proof: A has a g-inverse

- => h(A) has a g-inverse for all h t H
- => h(A) has a partial permutation g-inverse, say $\mathbf{Q}_{\mathbf{h}}$ over $\mathbf{B}_{\mathbf{0}}$ for all h
- => there exists a partial permutation Q over \mathcal{B} which is a g-inverse of A.

Theorem 19: If A exists, then it is A'.

Proof: Let G be A⁺

=> $h(G) = [h(A)]^+$ for all $h \in H$ But $[h(A)]^+ = [h(A)]^+ = h(A^+)$ for all $h \in H$ => $h(G) = h(A^+)$ for all $h \in H$ => $G = A^+$.

Leams 6: Let A and B be two matrices over B. Then $M(A) \approx M(B)$ if and only if M(h(A)) = M(h(B)) for all $h \in B$.

Proof: 'if' part: M(h(A)) = M(h(B)) for all $h \in H$ $h(A) = h(B) C_h$ and $h(B) = h(A) D_h$, for all $h \in H$. Therefore we can find matrices C and D such that $h(C) = C_h$ and $h(D) = D_h$ for all $h \in H$ so that $h(A) = h(B) \cdot h(C) = h(BC)$ and $h(B) = h(A) \cdot h(D)$ h(AD) for all $h \in H$ which implies A = BC and B = AD. Hence M(A) = M(B).

**Only if' part : $M(A) = M(B) \Rightarrow A = BC$ and B = AD for some C and A Therefore h(A) = h(B).h(C) and h(B) = h(A).h(D) for all $h \in H$.

Which implies M(h(A)) = M(h(B)) for all $h \in H$.

Theorem 20: An $m \times n$ matrix n over n has a space decomposition if and only if A has a g-inverse.

 $\frac{h \cos f}{\ln t} : \text{ if ' part : } A \text{ has a g-inverse } \Rightarrow h(A) \text{ has a g-inverse,}$ $\text{for all } h \in H \implies h(A) = L_h R_h \text{ (space Jecomposition of } h(A)) \text{ for }$ $\text{[all } h \in H \text{ such that } P(h(A)) = M(L_h) \text{ and } M(h(A)') = M(R_h') \text{ for all }$ \$t\$ \$H\$,

where r_h is the rank of h(A).

In the $h \in H$ where $h \in H$ is null matrix of order $\frac{h(r_0 + r_h)}{h} \quad \text{and} \quad R_h = \begin{bmatrix} -R_h \\ 0 \end{bmatrix}$ where $h \in H$ is null matrix of order where $h \in H$ is null matrix of order $h \in H$.

 $(\mathbf{r}_0 - \mathbf{r}_h) \times \mathbf{n}$. Then $h(A) = \mathbf{L}_h R_h$ for all $h \in \mathcal{H}$, where $\hat{\mathbf{L}}_h$ is of order $\mathbf{m} \times \mathbf{r}_0$ and \hat{R}_h is of order $\mathbf{r}_0 \times \mathbf{n}$ for all $h \in \mathcal{H}$ and $H(h(A)) = M(\hat{\mathbf{L}}_h)$ and $M(h(A)) = M(R_h^T)$. So we can find matrices \mathbf{L} and \mathbf{R} over B such that $h(\mathbf{L}) = \hat{\mathbf{L}}_h$ and $h(\mathbf{R}) = \hat{\mathbf{R}}_h$ for all $h \in \mathcal{H}$

Now it clearly follows that A = LR.

Other part follows trivially.

Remark 20: All the above results of this section can be extended to matrices over any Boolean algebra B (not necessarily finite). The hint is that, if one wishes to prove a result about a matrix A over B it is enough to consider A as a matrix over a finite Boolean algebra generated by the elements of A. This is because of the following lemma which is easy to prove using homomorphisms.

Lemma 7: Let A be a matrix over a Boolean algebra B. It has a generalized inverse over B if and only if it has a generalized inverse over the Boolean algebra generated by the elements of A.

[The author has obtained the results of this chapter jointly with Dr. K.P.S. Bhaskara Rao in January 1975, completely unaware of the earlier work of Plemmons [7]. We had believely known that Plemmons has obtained a version of Corollary to Proposition 4 and Theorem 4. It should be noted that our approach is entirely different than that of Plemmons. However we do acknowledge the priority of his results.]

CHAPTER 2

g-INVERSES OF NONNEGATIVE MATRICES

2.1 Introduction and Summary

In this chapter we discuss in general about nonnegative matrices having various types of nonnegative g-inverses.

To start with, in section 2.2, a simple special type of nonnegative retrices, viz., doubly stochastic matrices are considered. Doubly stochastic matrices having doubly stochastic g-inverses are characterised in this section. This result can also be obtained as a particular case of a later section. However the proofs given here are of independent interest.

In section 2.3 nonnegative matrices possessing various types of monnegative g-inverses are characterised. It is shown that a nonnegative matrix of rank r possesses nonegative g-inverse if and only if it has an r x r nonsingular diagonal submatrix. It is also established that for a nonnegative matrix to possess a nonnegative minimum norm g-inverse it is necessary and sufficient that every pair of columns are either orthogonal or one is a multiple of the other. Similar results for least squares g-inverse and Moore-Penrose inverse are also proved.

In section 4 of this chapter, stochastic matrices are considered.

Mecessary and sufficient conditions for a stochastic matrix to possess

Parious types of stochastic g-inverses are established.

Finally in section 2.5 an algorithm for computing a nonnegative g-inverse of a nonnegative matrix is developed. At the end of this section computational formulas are given in a tabular form for computing minimum norm g-inverse, least squares g-inverse and Moore-Penrose inverse.

2.2 g-inverses of doubly stochastic matrices

<u>Definition</u>: An $n \times n$ nonnegative matrix is said to be doubly stochastic if

n n
$$\Sigma$$
 a = 1 and Σ a = 1 for j = 1, ... n. i=1 i=1

<u>Matrix</u> A is said to be an isometry if $||Ax|| = ||x|| + ||x||^n$

lefinition: An $m \times n$ matrix A is said to be a partial isometry if $||Ax|| = ||x|| \quad \forall x \in M(A')$

when the above definitions it immediately follows that A is an isometry f and only if $A' = A^{-1}$ and A is a partial isometry if and only if $f' : A^{\dagger}$.

It is well known that a nonsingular doubly stochastic matrix has bubly stochastic inverse if and only if it is a permutation matrix permutation matrices are the only doubly stochastic isometries. this section we prove that a doubly stochastic matrix has a doubly chastic g-inverse if and only if it is partial isometry.

prove a theorem on partial isometries which is used later.

rem 1 : A is a partial isometry if and only if one of the
owing equivalent conditions holds.

- i) $\left(AA^*\right)^p A$ is a partial isometry for some nonnegative integer p,
- ii) $(AA^{\dagger})^{P}$ is a partial isometry for some positive integer p

į.

(AA') A is partial isometry

(**)
$$(AA')^p AA' (AA')^p (AA')^p A = (AA')^p A$$

i.e.,
$$(AA')^{3p+1}A = (AA')^{p}A$$

$$\langle = \rangle$$
 $(AA^{\dagger})^{2p+1} A = A$

$$C(AA'A-A) = 0$$
 where $C = [(AA')^{2p} + (AA')^{2p-1} + ... + (AA') + I]$

- AA'A = A Since C is positive definite
- A is partial isometry
- ii) (AA')^p is partial isometry

$$(AA')^{3p} = (AA')^{p}$$

$$\iff (AA^{+})^{2p+1} = AA^{+}$$

$$C(AA^*AA^*-AA^*) = 0$$
 where $C = [(AA^*)^{2p-1} + (AA^*)^{2p-2} + ... + (AA^*)$

- <=> AA'AA' = AA' since C is p.d.
- <=> A is partial isometry.

This proves the theorem.

In the sequel we need a result of Sinkhorn (1968) which we state below for completeness.

Lemma 1: If A is a doubly stochastic and idempotent matrix then λ is symmetric.

Theorem 2: Let \cdot A be a doubly stochastic matrix possessing a doubly stochastic g-inverse. Then A^+ is doubly stochastic.

Froof: Let G_1 be a doubly stochastic g-inverse of A and let $G = G_1 \wedge G_1$. Observe that G is a doubly stochastic reflexive g-inverse of A. Further GA and AG are idempotent and doubly stochastic and hence by Lemma 1 are symmetric. Therefore $G \cong A^+$.

lemark 1 : Boubly stochastic reflexive g-inverse of a Loubly
stochastic matrix is unique and in fact it is the Moore-Penrose inverse.

now prove

Meorem 3: Let A be a normal doubly stochastic matrix. Then the following statements are equivalent.

- (a) A has a doubly stochastic g-inverse
- (b) each nonzero eigen value of A is of modulus unity
- (c) A is a partial isometry.

<u>Proof</u>: Let $R(\Lambda) = r$. Since A is normal then exists a unitary matrix U such that $\Lambda = U \wedge U^*$ where $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ and $\lambda_1, ..., \lambda_n$ are the eigen values of A. Without loss of generality let $\lambda_1, ..., \lambda_r$ be nonzero and $\lambda_{r+1}, ..., \lambda_n$ be zero.

(a) => (b)

A has a doubly stochastic g-inverse implies (by Theorem 2) that A^{\dagger} is doubly stochastic. Since A is doubly stochastic $|\lambda_{\bf i}| \leq 1$ for ${\bf i}=1...$ r. Clearly $A^{\dagger}=UA^{\dagger}U^{\dagger}$ where

 $h^* = \text{diag } \left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2} \dots \frac{1}{\lambda_r} 0 \dots 0 \right), \text{ Again since } n^* \text{ is doubly}$ stochastic $\left| \frac{1}{\lambda_i} \right| \le 1$ for $i = 1 \dots r$

Hence $|\lambda_i| = 1$ for i = 1...r

(b) => (c)

First observe that $A^* = A^*$ since A is real. $\begin{bmatrix} \lambda_1 \end{bmatrix} = 1$ for $i = 1, 2, ..., r \Rightarrow AA^*A = A$ and hence $AA^*A = A$.

So
$$A^{\dagger} = A^{\star} = A^{\dagger}$$

c) => (a) is trivial.

Theorem 4: A doubly stochastic matrix A possesses a doubly stochastic g-inverse if and only if it is a partial isometry.

Proof : 'If' part is trivial.

To prove the 'Only if' part, let $S = \Lambda^{\dagger}$.

If Λ has a doubly stochastic g-inverse, then by Theorem 2 5 is doubly stochastic. So G'G which is $(\Lambda\Lambda')^{\frac{1}{2}}$ is doubly stochastic and by Theorem 3 $\Lambda\Lambda'$ is partial isometry. So by Theorem 1, Λ is partial isometry.

2.3 g-inverses of non-negative matrices

Defore proceeding to study nonnegative matrices possessing nonnegative g-inverses we recall some results of chapter 1 on Boolean
negatives which are true in general for real matrices and which are used in
the sequel. Proofs are same as those of chapter 1 and hence are omitted.

Meercom 5 : Let A be an $m \times n$ matrix of rank r. Then there
mist permutation matrices P and Q and matrices C and D of
morphists orders such that

$$PAQ = \begin{bmatrix} A_1 & A_1^C \\ DA_1 & DA_1^C \end{bmatrix}$$

re A, is $r \times r$ nonsingular matrix.

Theorem 6: Let
$$A = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$
 Then $G = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$

is a A if and only if $(G_1 + G_3 + G_2D + GG_4D)$ is a A_1 .

- lemma 2 : (i) Let G be a reflexive g-inverse of A. Then
- . (a) i^{th} row (column) of AG is null if and only if i^{th} row (column) of A(G) is null.
 - (b) if ith row (column) of A is null then the matrix obtained replacing ith column (row) of G by null vector is also a reflexive inverse of A
 - (c) all the rows (columns) of A corresponding to the null umns (rows) of G are linearly dependent on the other rows (columns) A.
 - (ii) Let G be a least squares reflexive g-inverse of A. Then row of A is null if and only if $i^{\mbox{th}}$ column of G is null.
 - (iii) Let G be a minimum norm reflexive g-inverse of A.

 (ith column of A is null if and only if ith row of G is null.
 - (iv) Let G be the Moore-Penrose inverse of A. Then ith row mm) of A is null if and only if ith column (row) if G is null.

is elementary and hence is omitted.

meorem 7: Let
$$A = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$
 where A_1 is nonsingular. Then

(i) $\begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}$ is a reflexive g-inverse of A where $B_1 = A_1^{-1}$.

(ii) $\begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}$ is a least squares g-inverse of A where

$$\begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

(iii) $\begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}$ is a minimum norm g-inverse of A where

$$\begin{bmatrix} C^{\dagger}B_1 & 0 \\ C^{\dagger}B_1 & 0 \end{bmatrix}$$
 is the Moore-Penrose inverse of A where

$$\begin{bmatrix} C^{\dagger}B_1 & B_1B^{\dagger} \\ C^{\dagger}B_1 & C^{\dagger}B_1B^{\dagger} \end{bmatrix}$$
 is the Moore-Penrose inverse of A where

$$\begin{bmatrix} C^{\dagger}B_1 & C^{\dagger}B_1B^{\dagger} \\ C^{\dagger}B_1 & C^{\dagger}B_1B^{\dagger} \end{bmatrix}$$
 is the Moore-Penrose inverse of A where

e theorem follows by straightforward verification.

now prove

becomes δ : Let G be a reflexive g-inverse of an $m \times n$ matrix A, en there exist permutation matrices P and Q such that

$$= \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix} \text{ and } Q'GF' = \begin{bmatrix} G_1 & G_1E \\ FG_1 & FG_1E \end{bmatrix} \text{ where all }$$

rows and columns of both A_1 and G_1 are non-null and G_1 is a flexive g-inverse of A_1 .

Froof: Let i_1 , $i_2 \dots i_p$ rows and $j_1 \dots j_q$ columns of AG be mull and let $\{s_1, s_2 \dots s_{m-r}\}$ be the union of $\{i_1 \dots i_p\}$ and $\{j_1 \dots j_q\}$. Let P be a permutation matrix such that the $\{i_1, s_2 \dots s_{m-r}\}$ rows and columns of AG are the last m-r rows and columns of PAGP, i.e.,

PAGP' =
$$\begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix} = U \text{ (sey)}$$

where U_1 is of order $r \times r$ and i^{th} row of $[U_3:U_4]$ i.e., $(r+i)^{th}$ now of U is nonnull implies $(r+i)^{th}$ column of U i.e., i^{th} column of $\begin{bmatrix} U_2 \\ U_4 \end{bmatrix}$ is null. Similarly i^{th} column of $\begin{bmatrix} U_2 \\ U_4 \end{bmatrix}$ is nonnull implies i^{th} row of $[U_3:U_4]$ is null. Also no row of $[U_1:U_2]$ is null and $[U_4:U_4]$ is null.

In a similar manner we get a permutation matrix Q such that

$$Q'GAQ = \begin{bmatrix} V_1 & V_2 \\ V_3 & V_4 \end{bmatrix} = V \quad (say)$$

Here V_1 is of order t \times t (say) and the last n-t rows and Mumms satisfy conditions similar to those above. Now consider

$$PAQ = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \quad \text{and} \quad Q^{\dagger}GP^{\dagger} = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$

where A_1 is of order $r \times t$ and G_1 is of order $t \times r$. First observe that Q'GP' is a $(PAQ)_{r}^{-}$. We will show that $\begin{bmatrix} G_1 & 0 \\ 0 & 0 \end{bmatrix}$ is also a $(PAQ)_{r}^{-}$.

Let $(r+i)^{th}$ column of Q'GP' be nonnull. Then $(r+i)^{th}$ row of U is null, so $(r+i)^{th}$ row of PAQ is null. Therefore we can replace $(r+i)^{th}$ column of Q'GP' by a null column and still have a $(FAQ)_T^-$. Thus we can replace all the nonnull columns of $\begin{bmatrix} G_2 \\ G_2 \end{bmatrix}$ by null columns and $\begin{bmatrix} G_2 \\ G_1 \end{bmatrix}$ by null columns and $\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}$. Which is a $(FAQ)_T^-$. So G_1 is a reflexive g-inverse of A_1 . Now using lemma 2 we get that PAQ is of the form $\begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$. Notice that if A_1 has a null row say, ith $(i \le r)$, then ith row of PAQ is 11, so ith row of U is null which is a contradiction. Hence A_1 we not have any null row. Similarly we can show that A_1 has no null lumns.

Finally by the symmetry of the argument we conclude that \mathbb{G}^* is of the stated form and \mathbb{G}_1 has no null row and null column . We the theorem follows.

Below we state a lemma which is very easy to prove.

imma 3: An $m \times n$ nonnegative matrix A of rank m possesses a managerive right inverse if and only if there exists a permutation where P such that $AP = (A_1 : A_1C)$ where A_1 is a nonsingular diagonal matrix of order $m \times m$.

worse if and only if there exists a permutation matrix P such that
P is a nonsingular diagonal matrix.

Proceeding to g-inverses, the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ has a summegative g-inverse $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ but $A^+ = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 & 1 \\ -1 & 2 & 1 \end{bmatrix}$ is not

punegative. So the existence of a nonnegative g-inverse does not sure the nonnegativeness of the Moore-Fenrose inverse as in the mate of doubly stochastic matrices. Before proceeding further we take a theorem on nonnegative matrices (Gantmacher [1]).

Morem 9: To the maximal characteristic value r of a nonnegative matrix A there belong positive eigen vectors of A and A' if and by if A can be represented by a permutation in quasidiagonal form $\operatorname{diag}(A_1:A_2...A_s)$ where $A_1...A_s$ are irreducible matrices each which has r as its maximal characteristic value.

wollary: Let A be a nonnegative idempotent matrix such that all matrix and rows of A are nonnull. Then there exists a permutation matrix P such that $PAP' = diag(A_1:A_2...A_s)$ when each A_i is

a rank one idempotent matrix and s is the rank of A.

Proof: Since A is idempotent with all the rows and columns nonnull its maximal eigen value is 1 and x, the vector of row sums is a positive characteristic eigen vector corresponding to the eigen value 1. x is positive since A does not have any null row. Similarly 7, the vector of column sums is a positive eigen vector of A' corresponding to the eigen value 1. Therefore by Theorem 9 it follows that there exists a permutation matrix P such that $PAP^+ = diag(A_1 : A_2 ... A_s)$ where $A_1, A_2 ... A_s$ are irreducible and have 1 as a maximal characteristic mot. Since A_1 is irreducible this maximal characteristic root is mique, i.e., simple. Also A is idempotent implies A_1 is idempotent hich implies A_1 is of rank I. Therefore rank of A is s. This implies the proof of the corollary.

 $\frac{mark}{mark} \ 2 : \ \text{If} \quad \Lambda \geq 0 \quad \text{has a nonnegative g-inverse G_k it has a nonnegative}$ namely GAG.

at we proceed to prove

Morem 10: A nonnegative matrix A of order m × n, all the rows discolumns of which are nonnull has a nonnegative reflexive g-inverse thall the rows and columns nonnull if and only if there exist protection matrices P and Q such that

where B is an $r \times r$ nonsingular diagonal matrix, r is the rank of A and C and D are such that CC' and D'D are diagonal.

Froof: 'If' part follows trivially once we observe that A given
by (iv) of Theorem 7 is nonnegative and has no null row or null column.

'Only if' part: Since A and G do not have null rows and columns, so AG and GA do not have null rows and columns. Therefore by corollary to Theorem 9 there exists a permutation matrix P_1 such that $P_1 AGP_1' = \operatorname{diag}(H_1 : H_2 \dots H_T)$ where H_1' 's are rank 1 idempotent matrices and r is the rank of A. Let H_1 be of order $m_1 \times m_1$. Partitioning $P_1 A$ and GP_1' as

$$P_{1}A = \begin{bmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{r} \end{bmatrix} \text{ and } GP_{1}^{*} = [G_{1} \dots G_{r}]$$

here A_i is of order $m_i \times n$ and G_i is of order $n \times m_i$ it can be pastly observed that G_i is $n (A_i)^*$ and hence A_i is of rank 1. Let α_i be a row of A_i .

Then $\alpha_1 \dots \alpha_r$ are independent since A is of rank r. Now we have rearrange the rows of A by premultiplying by a permutation matrix

as
$$P_{2}P_{1}A = \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} \quad \text{where} \quad B_{1} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{r} \end{bmatrix}$$

and D is such that each row of D has exactly one nonzero element. So D^*D is diagonal. Thus we have

Partitioning GP as $(G_1:G_2)$ where G_1 is of order $n\times r$ we can observe that $G_3=G_1+G_2O$ is a nonnegative reflexive g-inverse of B_1 . Also it can be easily proved that all the rows and columns of both B_1 and G_3 are nonnegative by applying the above argument we can show that there exists a permutation matrix Q_1 such that B_1Q_1 is of the form

$$\mathbb{B}_1^{}\mathbb{Q}_1^{}=[\mathbb{B}_2^{} : \mathbb{B}_2^{}\mathbb{G}_1^{}]$$

where \mathbf{E}_2 is a $r \times r$ nonsingular matrix and \mathbf{C}_1 is a nonnegative matrix of order $r \times (n-r)$ such that \mathbf{CC}^1 is diagonal. Now partitioning $\mathbb{Q}_1^1\mathbf{G}_3$ as $(\mathbf{G}_2^1:\mathbf{G}_5^1)^4$ it can be seen that $\mathbf{C}_6 = \mathbf{G}_4 + \mathbf{C}_1\mathbf{G}_5$ is a nonnegative inverse of the nonnegative matrix \mathbf{B}_2 which shows that there exists a permutation matrix \mathbb{Q}_2 such that $\mathbf{B} = \mathbf{B}_2\mathbb{Q}_2$ is diagonal.

$$So = \mathbb{P}_1 Q_1 Q_3 = (\mathbb{S} : \mathbb{S} \mathbb{C}) \text{ where } \mathbb{C} = \mathbb{Q}_2' \mathbb{C}_1 = \mathbb{C}$$
 and $\mathbb{Q}_3 = \begin{bmatrix} \mathbb{Q}_2 & 0 \\ 0 & 1 \end{bmatrix}$. Thus denoting $\mathbb{Q}_1 \mathbb{Q}_3$ by \mathbb{Q} we have

$$PAQ = \begin{bmatrix} B_1 \\ DB_1 \end{bmatrix} Q = \begin{bmatrix} B & BC \\ DB & DBC \end{bmatrix}$$

whre B is an $r \times r$ nonsingular diagonal matrix and C and D are nonnegative matrices such that CC' and D'D are diagonal. This completes the proof of the theorem.

We note that in the partition of $r_1 \wedge as$ in the proof

of above theorem $A_i A_j^i = 0$, $i \neq j$. This is because B is diagonal and each column of BC is just a constant multiple of a single column of so $\alpha_i^i a_j = 0$, $i \neq j \implies A_i A_j^i = 0$. Thus we have

Remark 3: Every pair of rows (columns) of A are either orthogonal brone is a multiple of the other.

Inollary: If a nonnegative matrix A with nonnull rows and columns as a nonnegative g-inverse with nonnull rows and columns then A^{\dagger} is a management and is of the form $A^{\dagger}D_{1}$ where D_{2} is a diagonal matrix.

mof: We have seen in the proof of Theorem 10 that there exists a
mutation matrix P such that

PA =
$$\begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_r \end{bmatrix}$$
 where A_i is of rank 1, for $i = 1...r$.

From the Remark 3 above we have $A_i A_i^2 = 0$ for $i \neq j$.

Also observe that if B is of rank 1 then $B^+ - \frac{1}{\operatorname{tr} B^* B} B'$.

Putting these facts together we have

$$A = P^{\dagger} \begin{bmatrix} A_{1} \\ A_{T} \end{bmatrix}$$

$$A^{\dagger} = \begin{bmatrix} A_{1} \\ A_{T} \end{bmatrix}^{\dagger} P$$

$$= (A_{1}^{\dagger} \dots A_{T}^{\dagger}) P$$

$$= (C_{1}A_{1}^{\dagger} \dots C_{T}A_{T}^{\dagger}) P \quad \text{where} \quad C_{1} = \frac{1}{\operatorname{tr} A_{1}^{\dagger} A_{1}^{\dagger}}$$

$$= \left(\begin{bmatrix} A_{1} \\ A_{T} \end{bmatrix} \right)^{\dagger} P \quad \text{where} \quad D = \operatorname{diag} \left(C_{1}I : C_{2}I \dots C_{T}I \right)$$

$$= A^{\dagger} P^{\dagger} D P$$

$$= A^{\dagger} D_{1}$$

where $D_1 = P^*DP > 0$ which is diagonal. This proves the corollary.

Theorem 11: A nonnegative matrix G is a reflexive g-inverse of a monnegative matrix A of order $m \times n$ and T and T if and only if there exist permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix} \quad \text{and } Q'GP' = \begin{bmatrix} G_1 & G_1E \\ & & \\ & & \end{bmatrix}$$

where A_1 and G_1 are $r \times r$ nonsingular matrices and C, D, E and are such that

$$G_1 = \{(I + E0) | A_1(I + CF)\}^{-1}.$$

<u>roof</u>: 'If' part of the theorem follows from Theorem 6. To prove 'Only f' part, let G be a $\Lambda_{\bf r}^-$. Then from Theorem 8 it follows that there xist permutation matrices ${\bf F}_{\bf l}$ and ${\bf Q}_{\bf l}$ such that

$$P_1AQ_1 = \begin{bmatrix} B & BU \\ VB & VBU \end{bmatrix}$$
 and $Q_1^*GP_1^* = \begin{bmatrix} H & HX \\ YH & YHX \end{bmatrix}$

where B and H have no null row and null column and H is a $B_{\bf r}^-.$ Now applying Theorem 10 we have for some permutation matrices P_2 and Q_2

$$P_2^{BQ_2} \approx \begin{bmatrix} A_1 & A_1^{C_1} \\ D_1^{A_1} & D_1^{A_1^{C_1}} \end{bmatrix}$$

re A_1 is $r \times r$ nonsingular diagonal matrix and C_1 and D_1 are h that $C_1C_1^*$ and $D_1^*D_1$ are diagonal. Writing $Q_2^*HP_2^*$ as

$$\begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 it follows from Theorem 6

t $G_1 + C_1G_3 + G_2G_1 + C_1G_4G_1$ is A_1^{-1} which implies G_1 , G_2G_1 are diagonal. Therefore $(G_1 + C_1G_3)$ and $(G_1 + G_2G_1)$ are

diagonal. Observe that if any row of $(G_1+G_2D_1)$ is null then a row of either B or H is null which is a contradiction. So $(G_1+G_2D_1)$ is nonsingular. Similarly we can show that $(G_1+C_1G_3)$ is nonsingular. Now H is B_1^+ implies

$$G = (G_1 + G_2D_1) A_1(G_1 + C_1G_3).$$

which implies G_1 is nonsingular. So $Q_2^t \mathbb{HP}_2^t$ is of the form

$$\begin{bmatrix} G_1 & G_1E_1 \\ & & & \\ & &$$

Therefore

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix} \quad \text{and} \quad Q^*GP^* = \begin{bmatrix} G_1 & G_1E \\ FG_1 & FG_1E \end{bmatrix}$$

$$\text{where} \quad P = \begin{bmatrix} P_2 & 0 \\ 0 & 1 \end{bmatrix} P_1 \quad \text{and} \quad Q = Q_1 \begin{bmatrix} G_2 & 0 \\ 0 & 1 \end{bmatrix}$$

Rest of the proof follows from Theorem 6.

Remark 4: In the above set up ED and CF are diagonal. This is because

$$G_1 = [(I + ED)A_1(I + GF)]^{-1}$$

=> $(I + CF)G_1 = A_1^{-1}(I + ED)^{-1}$
=> $(I + ED)^{-1} \ge 0$ since A_1 and G_1 are diagonal

- \Rightarrow (I + E0) is diagonal since (I + E0) \geq 0
- => ED is diagonal.

Similarly we can show that CF is diagonal.

Theorem 12: Let A be a nonnegative matrix. Then

(i) A has a nonnegative g-inverse if and only if there exist permutation matrices P and Q such that

$$PAC = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

where Λ_{1} is a nonsingular diagonal matrix

- (ii) A has a nonnegative least squares g-inverse if and only if θ^*D is diagonal in the condition of (i)
- (iii) A has a nonnegative minimum norm g-inverse if and only if CC' is diagonal in the condition of (i)
- and (iv) A has nonnegative A^{\dagger} if and only if both D'D and CC^{\dagger} are diagonal in condition (i).

Proof: 'If' part follows from Theorem 7 and the 'Only if'
part of (i) follows from Theorem 11.

For 'Only if' part of (ii), let G be a nonnegative least squares reflexive g-inverse of A. Then by Theorem 11 there exist permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ BA_1 & DA_1C \end{bmatrix} \quad and \quad Q'GP' = \begin{bmatrix} G_1 & G_1E \\ FG_1 & FG_1E \end{bmatrix}$$

where A_1 and G_1 are nonsingular diagonal matrices and

$$G_1 = [(I + ED)A_1(I + CF)]^{-1}$$

Now AG is symmetric implies

$$A_{1}(I + CF)G_{1}E = [DA_{1}(I + CF)G_{1}]$$

So $E = D^*$ since $A_1(I + CF)G_1$ is nonsingular and diagonal. Therefore by Remark 4 we have D^*D is diagonal. We can prove the rest in a similar way.

Corollary: Let A be a nonnegative matrix. Then

- (i) AA' has a nonnegative g-inverse if and only if A has a nonnegative minimum norm g-inverse
- (ii) A'A has a nonnegative g-inverse if and only if A has a nonnegative least squares g-inverse.

The result (i) follows trivially once we observe that $(A^m)^A^m$ is a $(AA^i)^A^m$ is a $(AA^i)^A$ is a $(AA^i$

".4 g-inverses of stochastic matrices

Definition: A nonnegative matrix A of order m ×n is said to be n two stochastic if Σ a = 1 for i = 1,...,n. i=1

efinition: A nonnegative matrix A of order $m \times n$ is said to measure to the column stochastic if $\sum_{j=1}^{n} a_{j,j} = 1$ for j = 1,...n.

At AB = C. Then it is easy to check that A and B apq row pechastic implies C is row stochastic. Also B and C are row pechastic implies A is row stochastic.

Ew we provo

wherem 13: Let A be a row stochastic matrix of order $m \times n$ and $m \times r$. Suppose A has no null column. Then

(a) a row stochastic A exists if and only if there at permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

 \mathbf{A}_{1} is $\mathbf{r}\times\mathbf{r}$ nonsingular diagonal matrix and \mathbf{C} is such \mathbf{CC}^{*} is diagonal

(b) a row stochastic Λ_{g}^{-} exists if and only if D'D is julin the condition of (a)

- (c) a row stochastic A_m^- exists if and only if C is column stochastic in the condition of (a)
- (d) A^{+} is row stochastic if and only if C is column stochastic and $D^{*}D$ is diagonal in the condition of (a).

<u>Proof:</u> For proving 'if part' of the theorem we construct the respective row stochastic g-inverses under the hypothesis. Let X be an $r \times (n-r)$ matrix such that

$$x_{ij} = 1$$
 if $c_{ij} \neq 0$
= 0 otherwise.

[let G = 3

$$G = Q \begin{bmatrix} G_1 & G_1E \\ X'G_1 & X'G_1E \end{bmatrix} P$$

Now the following statements are easy to verify under the respective mothesis:

(a) G is a row stochastic A_r^- for $G_1 = 1$ and E = 0

(b) G is a row stochastic A_{2r}^{-} for $G_{1} = (I + D^{r}D)^{-1}$ and $E = D^{r}$

(c) G is a row stochastic A_{mr}^{-} for $G_1 = I$ and E = 0 and

 \emptyset G is row stochastic and A^+ for $G = (I + B'B)^{-1}$ and B = B'.

To prove 'only if' part of theorem, let G be a row stochastic iflexive g-inverse of A. Then by Theorem 11 and Remark 4 it follows but there exist permutation matrices P and Q such that

PAQ =
$$\begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$
 and $Q^*GP^* = \begin{bmatrix} G_1 & G_1E \\ FG_1 & FG_1E \end{bmatrix}$

where A_1 and G_1 are $r\times r$ nonsingular diagonal matrices and C, D, E and F are such that CF and ED are diagonal and

$$(I + CF) G_1(I + ED) = A_1^{-1}$$

A and G are row stochastic implies D and F are row stochastic.

Now CF is diagonal implies every column of C has atmost one nonzero element. So CC' is diagonal. This completes the proof of only if part of (a).

In addition to A_r^- let G be also a A_L^- . Then AG is symmetric which implies C = F'. So G is column stochastic. Similarly, if G is a row stochastic A_{mr}^- then we can show that D = B' which implies D'D is diagonal, since ED is plagonal. Finally the 'only if' part of (d) follows from those of A_r^- and (c). This completes the proof of the theorem.

where S: We can relax the condition that A has no null column in the case of (a) and (b). However it is necessary for the distance of row stochastic A_m and A^{\dagger} .

Similarly, for column stochasts matrices we have

Theorem 14: Let A be a column stochastic matrix of order $m \times n$ and rank r. Suppose A has no null row. Then

(a) a column stochastic A exists if and only if there exist permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

where A_1 is $r \times r$ nonsingular diagonal matrix and D is such that D^*D is diagonal

- (b) a column stochastic A_{ℓ} exists if and only if CC' is diagonal in the condition of (a).
- (c) a column stochastic Λ_m^- exists if and only if D is row stochastic in the condition of (a)
- (d) A^{\dagger} is column stochastic if and only if v is row stochastic and CC^{\dagger} is diagonal in the condition of (a).

ally we have

 $\underline{\underline{rem 15}}$: Let Λ be a doubly stochastic matrix of order $n \times n$ rank r then it has a doubly stochastic g-inverse if and only if \underline{s} exist permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_1 & A_1C \\ DA_1 & DA_1C \end{bmatrix}$$

where A_1 is $r \times r$ nonsingular diagonal matrix and C and D are such that both CC' and D'D are diagonal.

The theorem follows from the Theorems 13 and 14.

Corollary: A doubly stochastic matrix A has a doubly stochastic g-inverse if and only if there exist permutation matrices P and Q such that

$$PAQ = diag(J_1 ... J_r)$$

where J_i is rank 1 doubly stochastic matrix i.e., all the elements of J_i are equal to $\frac{1}{n_i}$ where n_i is the order of J_i .

2.S Algorithm for computing a nonnegative g-inverse

Let A be the given nonnegative matrix of order $m \times n$. To compute a nonnegative grinverse of A we proceed as in chapter 1. We use the same algorithm of chapter 1 (Page 36) and get k, $i_1, i_2 \ldots i_k$, $j_1, j_2 \ldots j_k$ and C_k . Let G be such that

$$g_{ij} = \frac{1}{(C_k)_{ij}}$$
 if $(C_k)_{ij} \neq 0$
= 0 otherwise.

The following theorem is easy to prove

sorem 16: A monnegative A exists if and only if G is a A.

Remark 6: Here again, the algorithm always gives a nonnegative matrix G whether 'A has a nonnegative g-inverse or not. So we have to check whether G is A or not, after computing G.

As in the case of Boolean matrices here also conditions for existence and computation of other types of g-inverses are tabulated in Table 5.

Let A be an $m \times n$ matrix and A exist. Let G_1 be the matrix with i_p^{th} row as the i_p^{th} row of A devided by the sum of squares of elements in that row, for $p = 1, 2 \dots k$ and rest of the rows are null. Let G_2 be the matrix with j_p^{th} column as the j_p^{th} column of A devided by the sum of squares of elements in that column. Let w_1, w_2, \dots, w_n be the column weights of G_1 and $w_1', w_2' \dots w_m'$ be the row weights of G_2 . Let G_3 and G_4 be as follows:

$$(G_3)$$
 = 1 if (G_1) = 0 V i
 (G_3) = 1 if (G_1) ≠ 0
if ij
= 0 otherwise

and
$$(G_4) = 1$$
 if $(G_2) = 0$ V;
 $(G_4) = 1$ if $(G_2) \neq 0$
ij = 0 otherwise

A vector x is said to satisfy the condition C if all the nonzero elements of x are equal.

Table 5

Type of A	Type of A	Condition for existence	Given by
Nonnegative	Nonnegative		
	A _m	w ₁ ≤ 1 ¥ 1	Gi
	A ₂	$ w_i^* \leq 1 - V i$	G'2
	Λ*	$w_i \leq 1$ and $w_i' \leq 1 \forall i$	$G_1^{\prime}G_k^{\prime}G_2^{\prime}$
Row stochastic	Row stochastic		
	A ⁻	$ w_{i} \leq 1$ V i	G' ₃
	Λ_{m}^{-}	$w_i = 1 \ V i $ and rows of C_i	G'3
		satisfy condition C	
	Λ _Q	$w_i \le 1$ and $w_i' = 1 \ V i$	G'3CkG'2
	A ⁺	$w_{i}=1$ and $w_{i}=1$ V is and	$G_3^{i}C_kG_2^{i}$
		rows of S _l satisfy	
		condition C	
Column stochastic	c Column stochastic		
	A"	W ₁ ≤ 1 V i	G ₄
	Λm	$w_i' \le 1$ and $w_i = 1 \ \forall i$	$G_1^*C_kG_4^*$
	N_2	w;=1 V i and columns of	G'
	~	62 satisfy condition C	
	A ⁺	w!=l and w _i =l V i and	$G_1'C_kG_4'$
		columns of G ₂ satisfy	
		condition C	
Doubly stochastic	c Doubly stochastic A_n^-, A_g^-, A_m^-, A^+	 w _i =1 and w _i =1 V i and	A'
	- m	rows and columns of A	
		satisfy condition C	

[A version of Theorem 4, Corollary to Theorem 10 and parts (i) and (iv) of Theorem 12 are also independently obtained by Flormons [8] and Plemmons and Cline [9].]

CHAPTER 3

CHARACTERISATIONS OF MERELY POSITIVE SUBDEFINITE MATRICES AND RELATED RESULTS

3.1 Introduction and Summary

The concept of quasiconvex and pseudoconvex quadratic forms which play an important role in mathematical programming problems lead to a new subclass of real symmetric matrices, namely positive subdefinite (PSubD) matrices. Martos [4] made an interesting study of these matrices where he proves some nice properties of merely positive subdefinite (MPSubD) matrices, matrices which are PSubD but not positive semi-definite (PSemiD). He wondered whether some of the properties of these matrices, proved by him, would characterise the MPSubD matrices.

The object of this chapter is to answer his question in the affirmative, there by obtaining an interesting characterisation of MPSubD matrices. We obtain another characterisation of MPSubD matrices similar to the one of PSemiD matrices. These characterisations provide an easy recognition of quasiconvex and pseudoconvex quadratic forms. We study these matrices with respect to the generalized inverse also. It is well known that a PScmiD matrix has a PScmiD g-inverse. However as two show, barring trivial cases MPSubD matrices do not possess MPSubD g-inverses.

For completeness we give some definitions and state some theorems of Martos.

<u>Definition</u>: The real symmetric $n \times n$ matrix A is positive semidefinite (PSemiD) if for any n-vector x

$$x'Ax \le 0$$
 implies $Ax = 0$

<u>Definition</u>: The real symmetric $n \times n$ matrix A is positive subdefinite (PSubD) if for any n-vector x

x'Ax < 0 implies Ax is either nonnegative or nonpositive.

<u>Definition</u>: The real symmetric $n \times n$ matrix A is strictly positive subdefinite if for any n-vector x.

 $x^*Ax < 0$ implies Ax is either strictly positive or strictly negative.

<u>Definition</u>: A PSubD matrix which is not PSemiD is called merely positive subdefinite (MPSubD).

<u>Definition</u>: A quadractic form $Q(x) = x^{t}Ax$ is convex in the set X, if for all $x_1, x_2 \in X$,

$$2(x_1 - x_2)' Ax_1 \ge x_1'Ax_1 - x_2'Ax_2$$

<u>efinition</u>: Q(x) = x'Ax is quasiconvex in the set X, if for all $x_2 \in X$,

$$\mathbf{x}_{1}^{\prime}\mathbf{A}\mathbf{x}_{1} - \mathbf{x}_{2}^{\prime}\mathbf{A}\mathbf{x}_{2} \geq 0$$
 implies $(\mathbf{x}_{1}^{\prime}-\mathbf{x}_{2}^{\prime})^{\prime}\mathbf{A}\mathbf{x}_{1} \geq 0$

<u>Definition</u>: $Q(x) = x^t Ax$ is pseudocenvex in the set X, if for all $x_1, x_2 \in X$

$$x_1^{\dagger}Ax_1 - x_2^{\dagger}Ax_2 > 0$$
 implies $(x_1 - x_2)^{\dagger}Ax_1 > 0$.

Theorem 1 (Martes) : An MPSubD matrix

- (a) is nonpositive
- (b) has exactly one (simple) negative eigen value,
- and (c) has the corresponding eigen vector either nonnegative or nonpositive.

Theorem 2 (Martos): $Q(x) = x^{1}Ax$ is convex for every x if and only if A is PSemiD.

Theorem 3 (Martos): $Q(x) = x^t Ax$ is quasiconvex for every nonnegative $x(x \ge 0)$ if and only if A is PSubD.

Theorem 4 (Martos): $Q(x) = x^*Ax$ is pseudoconvex for every nonnegative (nonnull) x if and only if A is strictly PSubD.

In the next section we prove the converse of Theorem 1 of Martos, thereby obtaining characterisation for MPSubD matrices. As the characterisations of PSemiD matrices are well known, these together characterise PSubD matrices. Thus, with the help of these characterisations, in view of Theorems 3 and 4 of Martos, quasiconvex and pseudoconvex quadratic forms are easy to identify.

Throughout this chapter x^i denotes the i^{th} element of the vector x, and A_k denotes the leading principal submatrix of order k.

3.2 Characterisations of MPSubD matrices

We prove

erefore

Theorem 5: A nonpositive symmetric matrix, having exactly one (simple) negative eigen value, is MPSubD.

<u>Proof</u>: Let A be a nonpositive symmetric matrix having exactly one negative eigen value λ_1 . Therefore the eigen vector of A corresponding to λ_1 is semi-unisigned? Consider the spectral decomposition of A

$$A = \lambda_1 p_1 p_1^* + \lambda_2 p_2 p_2^* + \dots + \lambda_r p_r p_r^* + \dots + \lambda_n p_n p_n^*$$

where $\lambda_2,\dots,\lambda_r$ are positive eigen values of Λ are $\lambda_{r+1},\dots,\lambda_n$ are zero eigen values of Λ and $p_1,\,p_2,\dots,p_n$ is the orthonormal set of eigen vectors of Λ corresponding to $\lambda_1,\lambda_2,\dots,\lambda_n$. Without loss of generality let $p_1\geq 0$ because p_1 is semi-unisigned.

$$A = \lambda_{1} p_{1} p_{1}^{T} + \lambda_{2} p_{2} p_{2}^{T} + \dots + \lambda_{r} p_{r} p_{r}^{T} \qquad \dots (1)$$

 $x = c_1 p_1 + c_2 p_2 + \dots + c_n p_n$ be any vector, then

$$Ax = \lambda_1 c_1 p_1 + \lambda_2 c_2 p_2 + \dots + \lambda_r c_r p_r$$

A vector x is called semi-unisigned if $x \le 0$ or x > 0 and x is called unisigned if x < 0 or x > 0

and

$$(Ax)^{i} = \lambda_{1}c_{1}p_{1}^{i} + \lambda_{2}c_{2}p_{2}^{i} + \dots + \lambda_{r}c_{r}p_{r}^{i}$$
 for $i = 1, 2, \dots, n$
$$x^{i}Ax = \lambda_{1}c_{1}^{2} + \lambda_{2}c_{2}^{2} + \dots + \lambda_{r}c_{r}^{2}.$$

To show that $x'Ax < 0 \implies Ax \ge 0$. Let $c_1 \ge 0$.

 $x^*Ax < 0 \Rightarrow c_1 \neq 0$, therefore

$$-\lambda_1 > \frac{1}{c_1^2} [\lambda_2 c_2^2 + \dots + \lambda_r c_r^2] = (u, u) \dots (2)$$

where $u' = \frac{1}{c_1} (\sqrt{\lambda_2} c_2, \dots, \sqrt{\lambda_r} c_r)$

Since $A \le 0$

$$a_{ii} = \lambda_1 (p_1^i)^2 + \lambda_2 (p_2^i)^2 + \dots + \lambda_n (p_n^i)^2 \le 0$$

Now
$$p_1^i = 0 \Rightarrow p_2^i = p_3^i = \dots = p_n^i = 0 \Rightarrow (Ax)^i = 0$$

Otherwise if $p_1^i \neq 0$

$$-\lambda_1 \ge \frac{1}{(p_1^i)^2} [\lambda_2(p_2^i)^2 + \dots + \lambda_r(p_r^i)^2] = (v, v)$$
 ...(3)

where
$$v' = \frac{1}{p_1^i} (\sqrt{\lambda_2} p_2^i, \dots, \sqrt{\lambda_r} p_r^i)$$

(2) and (3) =>

$$-2\lambda_1 > (u,u) + (v,v) \ge 2(u,v)$$

$$\Rightarrow -\lambda_{1} > (u,v)$$

$$\Rightarrow -\lambda_{1} > \frac{1}{c_{1}p_{1}^{i}} (\lambda_{2}e_{2}p_{2}^{i} + \dots + \lambda_{r}c_{r}p_{r}^{i})$$

$$\Rightarrow \lambda_{1}c_{1}p_{1}^{i} + \lambda_{2}c_{2}p_{2}^{i} + \dots + \lambda_{r}c_{r}p_{r}^{i} < 0 \qquad \dots (4)$$

that is $(Ax)^{\frac{1}{2}} < 0$ for all i such that $p_{\frac{1}{2}}^{\frac{1}{2}} \neq 0$ Therefore $(Ax)^{\frac{1}{2}} \leq 0$ for all i Hence $Ax \leq 0$. Similarly if $c_{\frac{1}{2}} < 0$ the inequality in (4) changes and $Ax \geq 0$.

In view of Theorem 1 of Martos [4] we thus have

Theorem 6: A real symmetric matrix A is MPSubD if and only if

(a)
$$A \leq 0$$

Hence the theorem.

and (b) has exactly one (simple) negative eigen value.

Remark 1: It is interesting to note that if A is MPSubD and $x^iAx < 0$ then $(Ax)^{\frac{1}{2}} = 0$ if and only if $p_1^{\frac{1}{2}} = 0$, that is if and only if i^{th} row and i^{th} column of A are null. Hence we have the following result.

An MPSubD matrix is strictly PSubD if and only if p₁ is misigned that is, if and only if A is irreducible (Gantmacher [1])

Also it is easy to observe that if A is MPSubD then $a_{ij} = 0$ implies either a_{ii} or a_{jj} or both are zero, and in the case of strictly PSubD $a_{ij} = 0 \Rightarrow a_{ii} = a_{jj} = 0$.

We need the following lemma in the proof of Theorem 7. This lemma is also of independent interest.

Lemma 1: If A is an $n \times n$ MPSubD matrix and B is a non-negative matrix of order $n \times p$ then B'AB is also MPSubD, provided it is not null.

Proof:
$$x'B'ABx < 0$$

=> $y'Ay < 0$ where $y = Bx$

=> $Ay = ABx \ge 0$

=> $B'ABx \ge 0$ since $B \ge 0$

Thus $B'AB$ is MPSubD.

Remark 2: The above lemma holds for $B \le 0$ also.

It is known that a square matrix A is PSemiD if and only if all its principal minors are non-negative. A similar characterisation for MPSubD matrices is proved below using a separation theorem (Wilkinson [15], pp 103).

The eigen values $\lambda_1', \lambda_2', \dots, \lambda_{n-1}'$ of the leading principal minor matrix A_{n-1} of the symmetric matrix A_n separate the eigen values $\lambda_1, \lambda_2, \dots, \lambda_n$ of A_n .

Theorem 7: A nonpositive symmetric matrix $A(\neq 0)$ is MPSubD if and only if all its principal minors are nonpositive.

<u>Proof</u>: 'If' part: The proof is by induction. Assuming $A_k \approx 0$ or MPSubD we will prove A_{k+1} is null or MPSubD. To show A_{k+1} is MPSubD it is enough to show that it has exactly one simple negative eigen value as the result follows from Theorem $\overline{\bf J}$.

To start with $A_1 = a_{11} \le 0 \Rightarrow A_1$ is 0 or MPSubD. Notice that $R(A_k) \le R(A_{k+1}) \le R(A_k) + 2$.

Case 1. Let $A_1 = 0$.

If A_{k+1} is also null we are done. Otherwise if $R(A_{k+1})=1$ which implies there is only one nonzero eigen value of A_{k+1} , which has to be negative since $\operatorname{tr}(A_{k+1}) \leq 0$. On the other hand if $R(A_{k+1}) \approx 2$ then out of the nonzero eigen values of A_{k+1} one is positive and the other is negative because of separation theorem.

Case 2. Let A_k is MPSubD. We will show that A_{k+1} is also MPSubD. Denoting by $\lambda_1^*, \lambda_2^*, \dots, \lambda_k^*$, the eigen values of A_k and $\lambda_1, \lambda_2, \dots, \lambda_{k+1}$ the eigen values of A_{k+1} in increasing order we have by separation theorem $\lambda_1 < 0$, $\lambda_2 \stackrel{>}{\leq} 0$ and $\lambda_3, \dots, \lambda_{k+1}$ are nonnegative. Now if $\lambda_2 \geq 0$ then λ_1^* is the only negative eigen value of A_{k+1} and hence the result. Otherwise that is $\lambda_2 < 0$ we will show a contradiction.

Let $R(A_{k+1}) = m$. Then there exists an m^{th} order nonzero principal minor of A_{k+1} , which can be brought to m^{th} order leading principal minor of A_{k+1} by using same permutation on rows and columns of A_{k+1} . As MPSub definiteness is undisturbed by these operations (Lemma 1) without loss of generality we can assume that the m-th order leading principal minor of A_{k+1} is nonzero. Therefore by hypothesis m-th order leading principal minor of A_{k+1} is negative.

Considering the spectral decomposition of A_{k+1} we have

$$A_{k+1} = P \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \quad P^* = \begin{bmatrix} P_1MP_1' & P_1MP_3' \\ P_3MP_1' & P_3MP_3' \end{bmatrix}$$

where $P = \begin{bmatrix} P_1 & P_2 \\ P_3 & P_4 \end{bmatrix}$ is an orthogonal matrix and M is diagonal

matrix of m^{th} order with diagonal elements as the nonzero eigenvalues of A_{k+1} . So det M>0 as there are exactly two negative eigen values of A_{k+1} . Thus m-th order principal minor of A_{k+1} , that is det $P_1MP_1^*\geq 0$ which is contradiction. Therefore $\lambda_2\neq 0$. Hence λ_1 is the only negative eigen values of A_{k+1} . That proves the if part.

'Only if' part: Given A is MPSubD, to show that every principal minor of A ≤ 0 . To show this given any r^{th} order principal minor there exists a permutation matrix Γ such that the given minor is

the leading principal minor of B = PAP'. Now consider-

$$\begin{bmatrix} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \mathbf{PAP}, \quad \begin{bmatrix} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \mathbf{B_r} \quad \mathbf{0} \\ \mathbf{0} \quad \mathbf{0} \end{bmatrix}$$

where I_r is the identity matrix of order r. From Lemma 1 and corollary of Martos [4] it follows that B_r is MPSubD.

Hence the theorem.

3.3 g-inverses of MPSubD matrices

When does a PSubD matrix have a PSubD g-inverse? Notice that a PSubD matrix is either a PSemiD matrix or MPSubD matrix. It is known that a PSemiD matrix always possess a PSemiD g-inverse. So our main interest is towards the class of MPSubD matrices, that is, when does an MPSubD matrix have a PSubD g-inverse? Noticing the fact that an MPSubD matrix cannot possess a PSemiD g-inverse, since a symmetric matrix A have a PSemiD g-inverse if and only A is PSemiD. So the only possibility is MPSubD matrix has to possess MPSubD g-inverse. A necessary and sufficient condition for an MPSubD matrix to have an MPSubD g-inverse is established in Theorem 9. Before that we prove a theorem on symmetric reflexive g-inverses of symmetric matrices.

Theorem 8: If A is a symmetric matrix of order n and rank r then every symmetric reflexive g-inverse G of A can be written as

$$G = \frac{1}{\lambda_1} q_1 q_1^* + \dots + \frac{1}{\lambda_r} q_r q_r^*$$

where $\lambda_1, \dots, \lambda_r$ are nonzero eigen values of A and q_1, \dots, q_r are independent vectors.

Proof: Consider spectral decomposition of A

$$A = P \begin{bmatrix} \Lambda & O \\ O & O \end{bmatrix} P^{\dagger} = \lambda_{1} P_{1} P_{1}^{\dagger} + \lambda_{2} P_{2} P_{2}^{\dagger} + \dots + \lambda_{r} P_{r} P_{r}^{\dagger}$$

where $P = [p_1 : p_2 : \dots : p_r : \dots : p_n]$ is orthogonal matrix of eigenvectors of A and A = diag $(\lambda_1, \lambda_2, \dots \lambda_r)$.

It is well known that G is a symmetric reflexive g-inverse of A if and only if G is of the form

where U is arbitrary. Partitition P as $[P_1 : P_2]$ and let $U' = (u_1 u_2 ... u_r)$. Consider

$$q_i = p_i + \lambda_i P_2 u_i$$
 for $i = 1, 2, ..., r$

Notice that q_i 's are independent,

Therefore
$$Q = \{q_1 : q_2 : ... : q_r\} = P_1 + P_2U^{\dagger}A$$

Now

$$G = P \begin{bmatrix} A^{-1} & U \\ U' & U' AU \end{bmatrix} P'$$

$$= [P_1 : P_2] \begin{bmatrix} A^{-1} & U \\ U' & U' AU \end{bmatrix} \begin{bmatrix} P_1' \\ P_2' \end{bmatrix}$$

$$= P_1 A^{-1} P_1' + P_1 U P_2' + P_2 U' P_1' + P_2 U' A U P_2'$$

$$= (P_1 + P_2 U' A) A^{-1} (P_1' + A U P_2')$$

$$= Q A^{-1} Q'$$

$$= \frac{1}{\lambda_1} q_1 q_1' + \frac{1}{\lambda_2} q_2 q_2' + \dots + \frac{1}{\lambda_r} q_r q_r'$$

which proves the result.

Remark 3: Observe that $p_i^i q_j^i = 0$ for $i \neq j$ and $p_i^i q_i^i = 1$.

Hence Q is a right inverse of p_i^i .

Again if Q is any right inverse of P_1' then $Q\Lambda^{-1}Q'$ is a symmetric reflexive g-inverse of A. Thus we have the following result.:

If A is a symmetric matrix then G is a symmetric reflexive g-inverse of A if and only if it is of the form

$$G = Q\Lambda^{-1}Q'$$

where Q is a right inverse of P_1 .

Now we prove

Theorem 9: Let A be any WPSubD matrix, then the following statements are equivalent.

- (a) there exists an MPSubb g-inverse of A
- (b) R(A) = 1 or R(A) = 2 and the two nonzero eigen values of A are of same magnitude.
- (c) A⁺ is MFSubb.

<u>Proof:</u> (a) => (b). Let G_1 be an MPSubD g-inverse of the MPSubD matrix A. Then $G = G_1AG_1$ is a reflexive g-inverse of A. From Lemma 1 it follows that G is also MPSubD. Let R(A) = r

$$A = \lambda_1 p_1 p_1^* + \lambda_2 p_2 p_2^* + \dots + \lambda_r p_r p_r^*$$

as in Theorem 5. From Theorem 8 it follows that

$$G = \frac{1}{\lambda_1} - q_1 q_1^* + \frac{1}{\lambda_2} - q_2 q_2^* + \dots + \frac{1}{\lambda_r} - q_r q_r^*$$

where $q_i = p_i + \lambda_i P_2 u_i$ for some u_i .

$$Gp_1 = \frac{1}{\lambda_1} q_1 \Rightarrow q_1 \ge 0$$
 since $G \le 0$ and $p_1 \ge 0$.

Sinco G is MPSubl we have

$$\varepsilon_{ii} = \frac{1}{\lambda_1} (c_i^i)^2 + \frac{1}{\lambda_2} (c_2^i)^2 + \dots + \frac{1}{\lambda_r} (c_r^i)^2 \le 0 \qquad \dots (5)$$

Now
$$\hat{q}_{1}^{i} = 0 \Rightarrow \hat{q}_{2}^{i} = \hat{q}_{3}^{i} = \dots = \hat{q}_{r}^{i} = 0 \Rightarrow \hat{q}_{i}^{i} = 0$$

Otherwise

$$q_1^i \neq 0 \Rightarrow$$

$$1 \geq (x,x) \quad \text{where} \quad x^i = \frac{1}{q_1^i} (\sqrt{\frac{-\lambda_1}{\lambda_2}} \quad q_2^i, \dots, \sqrt{\frac{-\lambda_1}{\lambda_r}} \quad q_r^i)$$

Since A is MCSubs

$$a_{ij} = \lambda_1 (p_1^i)^2 + \lambda_2 (p_2^i)^2 + \dots + \lambda_r (p_r^i)^2 \le 0$$
 ... (6)

=>1
$$\frac{1}{2}(y,y)$$
 where $y' = \frac{1}{p_1^i} \left(\sqrt{\frac{\lambda_2}{\lambda_1}}\right) p_2^i, \dots, \left(\frac{\overline{\lambda_r}}{\lambda_1}\right) p_r^i$

provided $p_1^i \neq 0$. In case $p_1^i = 0$ then $a_{ii} = 0$.

Since $2(x,y) \leq (x,x) + (y,y)$

$$\Rightarrow \quad \frac{2}{p_1^i q_1^i} \; (p_2^i \; q_2^i \; + \; \dots \; + \; p_r^i \; q_r^i) \; \leq \; (x,x) \; + \; (y,y) \leq 2 \, .$$

for all i such that $p_1^i \neq 0$ and $q_1^i \neq 0$

$$\Rightarrow \ p_1^i q_1^i \ \geq p_2^i q_2^i + p_3^i q_3^i + \ldots + p_r^i q_r^i \ \text{for all} \quad i \, .$$

Summing over i, we have

$$\begin{split} & \Sigma \ p_1^i q_1^i \geq \Sigma \ p_2^i q_2^i + \ldots + \Sigma \ p_r^i q_r^i \\ => \ 1 \geq r-1 \\ => \ r \leq 2. \end{split} \tag{7}$$

Since $A \neq 0$ therefore r = 1, or 2.

If
$$\mathbf{r} = 2 \Rightarrow A = \lambda_1 p_1 p_1^* + \lambda_2 p_2 p_2^*$$
 and Equality sign occurs in (7)

$$\Rightarrow \text{ Equality sign occurs in (6)}$$

$$\Rightarrow \text{ tr } A = 0$$

$$\Rightarrow \lambda_1 = -\lambda_2$$

that is both the nonzero eigen values are of same magnitude.

(b) => (c) If
$$r = 1$$

$$A = \lambda_1 p_1 p_1^*$$

$$\Rightarrow A^+ = \frac{1}{\lambda_1} p_1 p_1^* = (\frac{1}{\lambda_1})^2 A$$

Therefore A is MPSubb.

If
$$r = 2$$
 and $\lambda_1 = -\lambda_2$
$$A = \lambda_1 (p_1 p_1^* - p_2 p_2^*)$$

$$A^+ = \frac{1}{\lambda_1} (p_1 p_1^* - p_2 p_2^*) = (\frac{1}{\lambda_1})^2 A$$

$$\Rightarrow A^+ \text{ is MPSubD.}$$

(c) \Rightarrow (a) is obvious.

Remark 4: When r=2 and $\lambda_1=-\lambda_2$ in the above theorem then $P_1=|P_2|$ where $|P_2|$ is the vector obtained by replacing each element of \mathbf{p}_2 by its modulus. Secause

$$0 = a_{ii} = \lambda_1 [(p_i^i)^2 - (p_2^i)^2]$$

$$\Rightarrow (p_1^i)^2 = (p_2^i)^2$$

$$\Rightarrow p_1 = |p_2|$$

Thus we observe that barring trivialities an MPSubS matrix does not possess an APSubO g-inverse.

CHAPTER 4

AN APPLICATION AND ALGORITHM

4.1 Introduction and Summary

In section 2 of this chapter a result of Milliken [5] on linear estimability, is extended. It is shown that his results hold in a more general set up than the one considered by him.

In section 3, a theorem is proved, based on which an algorithm for computing a g-inverse of a (real) matrix is developed. This algorithm is an extension of Goldfarbs [2] modified method for inverting nonsingular matrices.

4.2 A result on linear estimability

Milliken [5] gave a necessary and sufficient condition for the estimability of $A\beta$ in the linear model

$$y = X\beta + \varepsilon$$
 ...(1)

where y is an $n \times 1$ random vector, X is an $n \times p$ matrix of known coefficients, 3 is a $p \times 1$ vector of unknown parameters and ε is a random vector with $E(\varepsilon) = 0$ and $D(\varepsilon) = \sigma^2 I$. (D(.) denotes the dispersion matrix). He took A to be a k × m matrix of rank k. His Theorem 2.1 in our notation can be stated as follows:

Theorem 1 (Milliken): Consider the model (1). A6 is estimable if and only if $R(X(I - A^{\dagger}A)) = R(X) - R(A)$ where A is a $k \times p$ matrix of rank k.

The object of this present section is to prove a more general theorem than Theorem 2.1 of Milliken by employing more elementary techniques and also give analogous theorems to those in section 3 of Milliken.

We state below a lemma of Mitra (1972) which is easy to prove using rank factorisation of matrices. This lemma is used in the proof of the main theorem.

Lemma 1: R(A+B) = R(A) + R(B) if and only if $M(A) \cap M(E) = \{\phi\}$ and $M(A') \cap M(B') = \{\phi\}$, where ϕ denotes multivactor.

We now prove

Theorem 2: Consider the model (1). As is estimable if and only if $R(X(I-A^TA)) = q-k$ where R(X) = q and R(A) = k (the number of rows in A need not be k) and A^T is any g-inverse of A.

Proof. 'If' part :

Write $X = XA^TA + X(I-A^TA)$. From the hypothesis it follows that

$$R(XA^{T}A) = k = R(A) \qquad ...(2)$$

By Lemma 1, we now have

$$M(XA^TA) \cap M(X(I-A^TA)) = \{\phi\} \qquad \dots (3)$$

Let $\alpha \in \mathcal{O}(X^*)$. Then, $\phi = X\alpha = XA^*A\alpha + X(I - A^*A)\alpha$. By (3) it follows that $XA^*A\alpha = \phi$. From (2), we have, $\beta XA^*A = A$ for some 0. Thus $A\alpha = \partial XA^*A\alpha = 0$ which implies $\alpha \in \mathcal{O}(A^*)$. Hence $M(A^*) \subset M(X^*)$ and consequently $A\beta$ is estimable.

'Only if' part : A is estimable > A = DX for some D. Write

$$X = XA^TA + X(I + A^TA)$$
. Let $\alpha \in M(XA^TA) \cap M(X(I - A^TA))$. Then
$$\alpha = XA^TA\theta_1 = X(I - A^TA)\theta_2 \text{ for some } \theta_1 \text{ and } \theta_2$$
$$\Rightarrow \quad D\alpha = A\theta_1 = \phi$$
$$\Rightarrow \quad \alpha = \phi$$

Hence $M(XA^TA) \cap M(X(I-A^TA)) = {\phi}$. Clearly

 $M((XA^TA)^*) \cap M((X(I-A^TA))^*) = \{\phi\}.$ Therefore by Lemma 1

 $R(X) = R(XA^TA) + R(X(I-A^TA))$. Further

 $k = R(A) = R(DXA^TA) \le R(XA^TA) \le R(A) = k$

Hence $R(XA^TA) = k$ and $R(X(I-A^TA)) = q - k$

This completes the proof of Theorem 2.

Martos also proved a few theorems on testing of hypothesis about estimable linear combinations. We now state a theorem which is analogous to Theorems 3.1 and 3.2 of Milliken.

For the linear model (1) consider testing of hypothesis

$$H_0$$
: AB = ϕ against AB $\neq \phi$...(4)

where AB is estimable.

Theorem 3: The restricted model used to obtain the sum of squares due to the null hypothesis (4) is

$$Y = X(I - A^TA)\beta + \epsilon$$
 where $E(\epsilon) = 0$ and $D(\epsilon) = \sigma^2 I$.

The sum of squares due to the hypothesis is

$$Q = Y'[XX_{1}^{T} - (X(I-A^{T}A))](X(I-A^{T}A))_{1}^{T}Y.$$

 $Q.\sigma^{-2}$ is distributed as a noncentral chi-square with k degrees of freedom.

Froof is easy and hence we omit.

Remark 1: Theorem 2 remains valid even if $D(\epsilon) = \sigma^2 \Lambda$ where Λ is any positive definite matrix and Theorem 2 holds (when $D(\epsilon) = \sigma^2 \Lambda$) with obvious modifications.

The following theorem is worthnoting,

Theorem 4: Let X be any $n \times p$ matrix. If R(X(I-GA))=R(X)-R(A) then G is a g-inverse of A.

Froof: By Probenius inequality, we have

$$R(X) + R(I-GA) \le p + R(X(I-GA)) = p + R(X) - R(A)$$

$$\Rightarrow$$
 R(I-GA) \leq p - R(A)

Also
$$R(I-GA) \ge p - R(GA) \ge p - R(A)$$

Therefore R(I + GA) = p - R(A) and hence by Theorem 2.2.1 of Rao and Mitra (1971) it follows that G is a A..

Remark 2: Combining Theorems 2 and 4 we have the following:

Consider the set up (I). As is estimable if and only if there exists a matrix G such that R(X(I-GA)) = R(X) - R(A) in which case G is a g-inverse of A.

4.3 An algorithm to compute a generalized inverse of a matrix

In this section we present an algorithm to compute a g-inverse of a matrix. This algorithm is a generalisation of Goldfarbs modified method of computing inverse of a nonsingular matrix.

Let A be an $m \times n$ matrix. Without loss of generality let $m \le n$ otherwise we can take A' and compute $(A')^{\top}$.

Choose an $n \times m$ matrix B_0 such that $R(S_0A) = R(A)$ as an initial approximation. Let Z be an orthonormal basis of Z^n . Compute

$$B_{k} = B_{k-1} - \frac{(B_{k-1}A y_{k} + x_{k}) x_{k}' B_{k-1}}{x_{k}' B_{k-1} A y_{k}} ...(5)$$

for some $\mathbf{x}_k \in \mathbf{Z} - \{\mathbf{x}_1 \dots \mathbf{x}_{k-1}\}$ and $\mathbf{y}_k \in \mathbf{Z} - \{\mathbf{y}_1 \dots \mathbf{y}_{k-1}\}$ such that $\mathbf{x}_k^* \cdot \mathbf{B}_{k-1} \wedge \mathbf{y}_k \neq 0$ for $k = 1, 2, \dots$ Then we will show that $\mathbf{Y} \cdot \mathbf{X}^* \cdot \mathbf{B}_r$ is a \wedge^* where $\mathbf{Y} = [\mathbf{y}_1 \dots \mathbf{y}_n]$ and $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_n]$, for some $\mathbf{r} \leq \mathbf{m}$.

Assuming β_1 ... β_{k-1} are already computed choosing $x_1 \dots x_{k-1}$ and $y_1 \dots y_{k-1}$ we choose x_k and y_k as follows for computing β_k . Choose $x \in \mathbb{Z} - \{x_1 \dots x_{k-1}\}$ and $y \in \mathbb{Z} - \{y_1 \dots y_{k-1}\}$ such that $x^* \beta_{k+1} \land y \neq 0$ and call them x_k and y_k respectively and compute β_k . If no such x and y exist i.e., if $x^* \land \beta_{k-1} y = 0$ for all $x \in \mathbb{Z} - \{x_1 \dots x_{k-1}\}$ and for all $y \in \mathbb{Z} - \{y_1 \dots y_{k-1}\}$ we stop at this stage.

Let the procedure stops at $(r*)^{th}$ stage i.e., after computing B_r . Then denoting $X_1 = (x_1 \dots x_r)$ and Y_2 the matrix with the rest of the vectors of Z as columns and $Y_1 = (y_1 \dots y_r)$ and Y_2 the rest of the vectors of Z as columns, we have

$$X_{2}^{*} \otimes_{r} A Y_{2} = 0.$$

Let $X = [X_1 : X_2]$ and $Y = [Y_1 : Y_2]$.

Consider
$$X'E_{\mathbf{r}}AY = \begin{bmatrix} X_1' \\ X_2' \end{bmatrix} e_{\mathbf{r}}A[Y_1 : Y_2] = \begin{bmatrix} X_1' & B_{\mathbf{r}}A & Y_1 & X_1' & B_{\mathbf{r}} & A & Y_2 \\ X_2' & B_{\mathbf{r}}A & Y_1 & X_2' & B_{\mathbf{r}} & A & Y_2 \end{bmatrix}$$

$$= \begin{bmatrix} X_1' & B_{\mathbf{r}} & A & Y_1 & X_1' & B_{\mathbf{r}} & A & Y_2 \\ X_2' & B_{\mathbf{r}} & A & Y_1 & 0 \end{bmatrix} \dots (6)$$

At this stage we need the following lemmas.

Lemma 2:
$$B_k \wedge y_p = x_p$$
 for $p = 1, 2 \dots k$ and $k = 1, 2 \dots r$.

Proof: We will prove this by induction.

First we show that the result is true for p = k and using it we will prove the result for p = k-1 and so on.

Let p = k. Then

$$B_k \wedge y_p = B_k \wedge y_k = (1 - \frac{(3_{k-1} \wedge y_k - x_k)x_k'}{x_k' \cdot 3_{k-1} \wedge y_k}) \cdot 3_{k-1} \wedge y_k$$

$$= x_k$$

So the result is true for all $p = k \le r$.

Now assuming $B_k \wedge y_p = x_p$ for p = k, k+1, ..., k-j+1, k=1...r we show that $B_k \wedge y_{k-j} = x_{k-j}$

$$\begin{aligned} \mathbf{B}_{k} & \mathbf{A} & \mathbf{y}_{k-j} &= [\mathbf{I} - \frac{(\mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k} - \mathbf{x}_{k}) \mathbf{x}_{k}^{*}}{\mathbf{x}_{k}^{*} \mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k}}] & \mathbf{B}_{k-1} \ \mathbf{A} & \mathbf{y}_{k-j} \\ &= [\mathbf{I} - \frac{(\mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k} - \mathbf{x}_{k}) \mathbf{x}_{k}^{*}}{\mathbf{x}_{k}^{*} \mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k}}] & \mathbf{B}_{k-1} \ \mathbf{A} & \mathbf{y}_{(k-1)-(j-1)} \\ &= [\mathbf{I} - \frac{(\mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k} - \mathbf{x}_{k}) \mathbf{x}_{k}^{*}}{\mathbf{x}_{k}^{*} \mathbf{B}_{k-1} \ \mathbf{A} \ \mathbf{y}_{k}}] & \mathbf{x}_{k-j} \\ &= \mathbf{x}_{k-j} & \text{since} & \mathbf{x}_{k}^{*} \ \mathbf{x}_{k-j} = 0 \end{aligned}$$

Rest of the proof follows by induction.

Lemma 3:
$$R(S_kA) = R(S_{k-1}A)$$
 for $k = 1, ..., r$.

<u>Proof</u>: By construction it is obvious that $\mathit{H}(\mathbb{S}_{k}\mathsf{A}) \supset \mathit{H}(\mathbb{S}_{k+1}|\mathsf{A})$.

To show the other inequality let $\alpha \in \mathit{N}(\Im_{k}A)$

$$\Rightarrow B_k \Lambda \alpha = 0$$

$$\Rightarrow \mathbf{x}_{\mathbf{k}}^{\dagger} \, \, \mathbf{B}_{\mathbf{k}} \, \, \mathbf{A} \, \, \mathbf{a} = 0$$

$$\Rightarrow x_{k}^{*} B_{k-1}^{*} A \alpha - \frac{x_{k}^{*} (B_{k-1}^{*} A y_{k}^{*} - x_{k}^{*}) x_{k}^{*} B_{k-1}^{*} A \alpha}{x_{k}^{*} B_{k-1}^{*} A y_{k}} = 0$$

$$\Rightarrow x_{k}^{'}B_{k-1}^{'}A\alpha - x_{k}^{'}B_{k-1}^{'}A\alpha + \frac{x_{k}^{'}B_{k-1}^{'}A\alpha}{x_{k}^{'}B_{k-1}^{'}Ay_{k}^{'}} = 0$$

$$=> \frac{x_{k}^{2} B_{k-1} A \alpha}{x_{k}^{2} B_{k-1} A y_{k}} = 0$$

$$\Rightarrow \quad \mathbf{x}_{k}^{*} \; \mathbf{b}_{k+1} \; \mathbf{A} \; \mathbf{\alpha} = 0$$

$$\Rightarrow$$
 $B_k \wedge \alpha = B_{k-1} \wedge \alpha = \phi$

$$\Rightarrow$$
 $\alpha \in N(B_{k-1} | A)$

$$\Rightarrow \quad \mathit{N}(\mathsf{D}_k \; \land) \subseteq \mathit{N}(\mathsf{B}_{k+1} \; \land)$$

Hence
$$N(\mathbb{B}_{k}A) = N(\mathbb{B}_{k-1}A)$$

Therefore
$$R(E_kA) = R(B_{k-1}A)$$

which completes the proof of Lemma 3.

Now from (6) we have

which is idempotent and of rank r which implies $R(B_TA) = r$ since X and Y are nonsingular matrices. As B_0 is chosen initially such that $R(B_0A) = R(A)$ in view of Lemma 3 we have $R(B_TA) = R(A)$. Also $R(AY) = R(A) = R(B_TA) = R(X^TB_TAY)$ and X^TB_TAY is idempotent implies X^TB_T is a g-inverse of AY and hence YX^TB_T is a A^T . Thus we have

Theorem 5: Let A be an $m \times n$ matrix. Choose an $n \times m$ matrix B_0 such that $R(B_0A) = R(A)$ as an initial approximation and let Z be an orthonormal basis of E^R . Compute B_k as in (5) for k = 1, 2...r where r = R(A) and $\{x_i\}$ and $\{y_i\}$ are some permutation of vectors of Z. Then $YX'B_r$ is A^T where X and Y are as above. Observe that YX' is a permutation matrix.

Let A be an $m \times n$ matrix such that $n \gg m$. The most economical choice of B and Z in terms of computer storage and number of operations performed is

$$B_0 = \begin{bmatrix} T \\ 0 \end{bmatrix}$$
 and $Z = \{e_1, e_2, \dots, e_n\}$

This leads to the following algorithm. Let b_{ij} be the $(i,j)^{th}$ element of B_{k-1} and c_{ij} be the $(i,j)^{th}$ element of B_k .

At k^{th} step, for k = 1, 2, ..., using k^{th} column of A compute

$$u_i = \sum_{i=1}^{k-1} b_{ij} a_{jk} + a_{ik}, i = k,...,m.$$

If $u_{ij} \neq 0$, compute

$$u_{i} = \sum_{j=1}^{k-1} b_{ij} a_{jk}, \quad i = 1, 2, ..., (k-1)$$

$$c_{kk} = 1/u_{k}$$

$$c_{kj} = c_{kk} b_{kj}, \quad j = 1, 2, ..., (k-1)$$

$$c_{ij} = b_{ij} - u_{i} c_{kj}, \quad i = 1, 2, ..., m, i \neq k; \quad j = 1, 2, ..., (k-1)$$
and
$$c_{ik} = -u_{i} c_{kk}, \quad i = 1, 2, ..., m, i \neq k.$$

If $u_k = 0$, take a nonzero u_i and interchange i^{th} row and k^{th} row of B_{k-1} and proceed. Thus a row interchange may be necessary. However, if $u_i = 0$ for $i = k, \ldots, m$, compute u_i for $i = k, \ldots, m$ as above using p^{th} (p > k) column of A and interchange p^{th} and p^{th} tolumn of A. Thus a column interchange may be necessary. In practice, the actual interchange of rows and columns may be avoided by using permutation vectors. We stop at $(r+1)^{th}$ step where $u_i = 0$ for p^{th} for p^{th} and p^{th} for the rest of the columns of A.

Remark 3: If $u_i = 0$ for i = k,...,m for p^{th} column of A at k^{th} step then $u_i = 0$ for i = k,...,m for p^{th} column of A at $(k+1)^{th}$ step also.

Computational aspects

To reduce the computational error it is advisable to use the maximum absolute u_i as u_k , the pivotal element. At k^{th} step 2(m-1) (k-1) additions and subtractions, 2m(k-1) + (m-1) multiplications and one division are needed. So if the matrix is of rank r we need r(m-1) (r-1) additions and subtractions, (mr^2+r) multiplications and r divisions, without taking into account the extra computations needed when a column permutation has occured. Totally (n-r) column permutations are necessary and each column permutation at k^{th} step needs (m-k+1)(k-1) multiplications and the same number of additions, which attain maximum at $k = \left\lceil \frac{m}{2} \right\rceil + 1$ where $\left\lceil \frac{m}{2} \right\rceil$ is the integral part of $\left\lceil \frac{m}{2} \right\rceil$. So the maximum number of computations that are needed in these (n-r) column permutations is (n-r) $\left\lceil \frac{m^2}{4} \right\rceil$. Thus the total number of additions and subtractions needed $\leq r(m-1)$ (r-1) + (n-r) $\left\lceil \frac{m^2}{4} \right\rceil$, total number of multiplications needed $\leq r(m-1)$ (r-1) + (n-r) $\left\lceil \frac{m^2}{4} \right\rceil$, total number of multiplications

It is easy to observe that the number of computations is minimum when the first (n-r) columns are null and in that case we need r(m-1)(r-1) additions and subtractions, (mr^2-r) multiplications and r divisions. The number of computations is maximum when $\lceil \frac{m}{2} \rceil + i$, for $i = 1, \dots, n-r$, columns depend on the first $\lceil \frac{m}{2} \rceil$ columns.

4.4 Numerical illustration

In this section we consider three matrices and compute their g-inverses using the algorithm given in the previous section.

Example 1 :

This is an example where the number of computations attains the maximum.

Example 2 :

$$A^{-} = \begin{bmatrix} -1.50 & 2.00 & 0.50 & 0.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ -1.00 & -1.00 & 0.00 & 1.00 & 0.00 \\ -0.50 & 1.00 & -0.50 & 0.00 & 0.00 \\ 1.50 & -2.00 & -0.50 & 0.00 & 0.00 \\ -0.50 & 1.90 & 0.50 & 0.00 & 0.00 \end{bmatrix}$$

This is an example where the number of computations attains the minimum.

Example 3 :

$$A = \begin{bmatrix} -1 & -1 & 0 & 0 & 1 & 1 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 1 & 0 & 1 & -1 & 0 & -1 \\ 2 & 1 & 3 & -3 & 1 & -2 \end{bmatrix}$$

$$A^{-} = \begin{bmatrix} -2.00 & -1.50 & 0.00 & -0.50 \\ 1.00 & 1.50 & 0.00 & 0.50 \\ 1.00 & 0.50 & 0.00 & 0.50 \\ 1.90 & 1.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

REFERENCES

- [1] Gantmacher, F.R. (1960): <u>The Theory of Matrices</u>, <u>Vol.2</u>.

 Chelsea Publishing Company, New York.
- [2] Goldfarb, D. (1972): Modification Methods for Inverting Matrices and Solving Systems of Linear Algebraic Equations. Math. Comp., 26, 829-852.
- [3] Halmos, P.R. (1963): <u>Lectures on Boolean Algebras</u>. D. Van Nostrand Company.
- [4] Martos, B. (1969): Subdefinite Matrices and Qudratic Forms.

 SIAM J. Appl. Math., 17, 1215-1223.
- [5] Milliken, G.A. (1971): New Criteria for Estimability in Linear Models. Ann. Math. Stat., 42, 1588-1594.
- [6] Mitra, S.K. (1972): Fixed Rank Solutions of Linear Matrix Equations. <u>Sankhyā</u>, Ser. A, 34, 387-392.
- [7] Plemmons, R.J. (1971): Generalized Inverses of Boolean Relation
 Matrices. SIAM J. Appl. Math., 20, 426-433.
- [8] (1973): Regular Monnegative Matrices.

 Proc. Amer. Math. Soc., 39, 26-32.
- [9] Plemmons, E.J. and Cline, R.E. (1972): The Generalized Inverse of a Nonnegative Matrix. Proc. Amer. Math. Soc., 31, 46-50.

- [10] Rao, C.R. (1965): Linear Statistical Inference and Its

 Applications. John Wiley and Sons, New York.
- [11] (1972): A talk on Generalized Inverses of Boolean
 Valued Matrices delivered at the Conference on
 Combinatorial Mathematics held at Delhi, India.
- [12] Rao, C.R. and Mitra, S.K. (1971): Generalized Inverse of Matrices and Its Applications. John Wiley and Sons, New York.
- [13] Rao, P.S.S.N.V.P. (1973): On Generalized Inverses of Doubly Stochastic Matrices. Sankhya, Ser. A, 35, 103-105.
- [14] Sinkhorn, R. (1968): Two Results Concerning Doubly Stochastic Matrices. Amer. Math. Monthly, 632-634.
- [15] Wilkinsen, J.H. (1965): The Algebraic Eigen Value Problem.
 Clarenden Press, Oxford.

