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INTRODUCTI1ONW

Inverses, in the regtlapr sense of the ters, do not exist for sinpular
square matrices and rectanpular watrices. lewewey for such matrices thers
exist matrices which sotisfy mony important properties similar to those
of inverses of nonsinpular matrices and for many purposes, can be used in
the ssme way as reagular inverses, These mateices are named generalized
inverses (g-inverses) to distinpuish them from the inverses of nonsingular
megtrices, Only since 1955 this Tield of study of generalized inverse
wak: invastigated systemetically and was explorced for many beautiful and

interesting results and applications though the concept of generalized

n

inverse was first introduced by Moore in as e&rly as 1820 as follows

Definition (Moore) : let & he a m »x n matrix over the field of

complex numbers. Then G is the generalized inverse of A if AG is
ghe orthogenal projectien operator projecting arbitrary vectors onto the
column space of A and GA i3 the orthogonal projection operator

projecting arbitrary vectors onto the column space of 6.
HMoore studied this concept and its properties in some detalls in 1835,

In 1855, unaware of the earlier work of Moore, Penrose defined

wneralized inverse of a matrix as follows

wfinition [Penrosse) : fLet * be m xn watrix over the field of complex

pmbers. Thea € is n generalized inversc of A& if [i) AGA = A,
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(1i) GAG = 6, (iii} (AD)* = 4G and {iv} {GA)* = CA.

In 14956 Penrose showed that this goneralized inverse ef a matrix
is wnigue and discussed the propertics and wses of this generalized

inverse of a matrix in a systematic way.

In 1956 Rado establised that the definition due to Penrose is
equivalent te that of Moore. This unique generalized inverse is called

Hogre-Penrose inverse of a matrix.

A simlIar notion was also used by delt and Duffin in 1953 under the

name constrained inverse and by Altken with a different sywbolism in 1934,

_ Unaware of the earlier work of Moors and contemporary work of
Penrose, Rmo in 1955, constructed a pscudoinverse of a singulsr matrix
which does not satisfy all the conditions of Moore-Fenrose inverse and
. showed that it serves the same purpose as regulnr inverses of o nonsingular
matrix in solving normal equetions and also in cormmuting standerd errors
of least squares estimators. In 1962 Rao defined a pencralized inverse,
formally, as follows, discussed its propertices in greater details and its

application to the problems of Mathematicnl Statistics.

. Definition (Hag) Let Abocan mxn matrix, Then an n = m matrix

G .is a p=inverse of A if x = Gy is a solution of the Iinsar system

A = ¥ whenever it is consistent,

Rao showed that the above definition is equivalent to the following

definition which iz alse due to him,
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Definitionm (Rac) : Let & he an m » n matrix. Them on on =< m matrix

§ is a g-inverse of A il AGA = A

A g-inverse of a matrix as defined by Rao, in general, is not unique
and thus cpens an interesting study of matrix alpebra. It con be easily
observed from the definitions of Penrose and Rao that the Moore-Penrose

Anverse is contained in the class of all g-inverses (in the sense of Rad).

In two later publications in 1965 and 1946 Rao szhowed that in many
prectical applications it is sufficicnt to work with g-inverse satisfying
this more general definition {Jdue to Rao). 1In 1967 Rao doveloped a

aiculus of generalized inverse of matrices, studied many of its important
md interesting propertices, c¢lassified the g-inveorse based on their
ges, discussaed thelr interrelationships and their further applications

Mathemetical Statistics,

Following this work of Rap, HMitea in 1988, gave an equivalent
_finition, introduced some new class of g-lnverses and sugpested some -
rther applications to solution of matrix ejuaticns and Mathematical
atistics, During 1968-1971, Rav and ¥itrn pursued their research

generalized inverse of matrices and its applications to various

#ntific disciplines in a series of papers and a book.

Some other principal contributors to the theory and applicetions
generatized inverses of mattices simce 1955 are Greville, Den Israel,
1yi, Ddell, Bose and YXhetri, Cline, Pyle, Decel, Golub, Rohde -

iention only a few. References to important contributions made by
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these poople and others will be found in the bocok by Rao and Mitra (1971).

Over the past two decades many intercsting and important results
on generalized inverses of matrices over complex field have been
developed, = lowever, tili recemtly, not much werk has been done in this
regard for matrices over algebras which arc mot fields. ‘apy fundamental
properties of these matrices devigte from those of matricos over fields,
Rac [11] explored this new ficld of study and sugpested some applications
to graph theory and network analysis. In this thesis Boolean matrices
and nonnegative matrices are studied systematically with regard to the
theory and computation of guneralized inverses. Some other principal

contributors to this part of the fleld are Plemmons and Cline.

Each chapter of this thesis has a detailed introduction to it,

Here we just mentiom hricfly the problems considered.

Chapter 1 mainly dmals with {0, 1) boclean matrices. Some
interesting propertius of Doolean matrices are proved comparing each
time with the corresponding properties of real matrices, Mecessary
#nd sufficient conditions for the existcnce of various types of
grinverses are established along with an algoriihm to compute these
@rinVEfﬁesm In the last section of this chapter, many results of
#0, 1) Boolean matrices are extended to matrices over any arbitrary

Boolean algebra.
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In chopter 5, to start with, doubly steoastic matricas prossossine
doubly stochastic s-inwevses are characterizel.  Then necessary and
sufficient ernditiomz Tov the existenco of varises types of nonnegative

g-inverses of nofn.zative matrices are proved. [ Ise an slgetitan to

compute these g-inverses 15 given.

In chapter 3, twe characturisations o7 aerely argitive subdefinite
{MPSubL) matrices are rowved and atss a necossarey and sufricieat condition

for an MPSubl matrix to oossess an JWSull p-inverse s oiven.

In chapter 4, a rvesult of [fillilen on lincar extimability is
pxtended ip the First soction, It is showrn thot his result hokds In
more general set ap than the one copsiderad Ly “ir. “Finally, an
alpotithy to compute ;-iswvoerso of a matrix is given which is an extension

of Goldfarb's “medified rothed for inverting nonsingular matrices™,

The following netations are used im this thesis, Matrices are
denoted by capital letters 7, 8,8 cte., ond wodtors &y lower case
letters. T denotes the identity matrix aad ch duenetes the ith colurn
of 1, (x, ¥) denctes the usual Buclidean innor wyoduct of vectors
¥ end v, i.o, y*x, \tx{{ denotes the Guclidoan norem of the veootor X.
The symbol ¥ and g donote 'for all™ and "bulongs to" respectively.

EF denotes the n-dipensional ynitary space, Let o o= {aij} bo an
©xn matrix., Some functions of . aad the symbols used are described

in the following Table 1,
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I'able,} {Rao amd Vitra., 1871)
Function Symhol Descriptlon

Transpose Al matrinx with (i,j]th alement = aji

Conjugate transpose A¥ matrix with {i,j]th ¢lement = 5}1
Rank REAY the number of independent columng or

TOWs 0f A
Trace tr A Ta, .
ii

‘{Codumn .space MEA) vector space zenerated by columns of A
|0rthogonal space 0{a) set of all vectors x such that A'x=0

Null space 6N set of 211 vectors X such that Ax=0

Definitions of special matrices are given in Table 2.

Table 2 [Mao and iditra, 1Yil}

Positive definite (p.d.)

Pogitive semi-definite (p.s.d.)

Nonnegetive definite {n.n.d.)

Type of matyix T Taofinition
Symmetric L= A
Hermitian 4 = A*

“a
Idempotent A" = A

Normal AAF = AW
Srthogonal At =AM =
mit&r}’ L N L U |

AX » 0 ¥ nonmull oz

LAt SRR i S

and x*Ax = for somancgnull X

cxepx o » OOV ox
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A classification of basic types of g-inverses is given in Table 3,

Tahle 3 (Rao and hitra, 1971)

Notation Lquivalent conditions Name of G
j ~1
Al Gh = 1 left inverse
-1 ; . _
AR AR = T ripht inverse
A AGA = A g-inverse
ﬁ; BOA = Ar BAG = G refloxive g-inverse
Yy AGA = A&y GA = {GAY' minimum nork g-inverse

e

DA

A

; AG = (AG)°

AGA = A; GG = G

MG s (AGYY, GA = (GA)°

legast spuares g-inverse

Mpore-Fenrose inverse




CHAPFTER

g-INVERSES OF BOOLEAN MATRICES

1,1 Introduction and Sumnary

The matrices over Boolean algebra § reogquire s completely separatce

treatment from that of matrices over the compleox field © or real field

R owing to the fact that these matrices do not satisfy many of the

fundamental propertics of matrices over 0 ¢r £, For instance a natrix

over B need not always pusscss e g-inverse in shorp contrast to the complex

{real) case where every matrix has a p-inversc. Also for Boolean matrices

row rank (as defimed in zocticom 1.3) and column Tank need not be equal

which is again o fumdnmentsl result for matrices ower © and H.  Another

contradicticn to cur basic concept for real and complex fields is, a

set of n, k-tuples (n » k) over B wmay have more than X independent

vectors., DOue to these interesting deviations from the goneral complex

field, a fow of tho usval definitions for the complex {real)field need

modifications to e meaningful for Boolean alsebra, as for example

independente of wectors, row rank amd column rvank of matrices eto. However

the product of two matrices A and 0 of crder mxr and n x ¥

respactively and the sum of twe matrices of the same oyider can be defined

a8 in the case of matrices over & (Cl.Definitions which need modifications
have teen stated in section 1.3. Hereafter,unless otherwise stated, whenever

we say a matrix A we mean a matrix A over £,



In this chapter we have considered gFeral rooctangular matrices.
An algerithm to compute a g-inverse is also included in this chapter.
These g-inverses of doolcan matrices have many applicatiovns ip graph

theory and network analysis,

In scetion 1,2 we defino a fow necessary and related concepts

and terms and a few preliminary results are proved.

In section 1.3 through section 1.6 the underlying Boolean
‘algebra copsidersd is (D, 1} Boolean algebra. In secrion 1.3 we
chardcterise the class of square matrices possessing an inverse. In
this soction a general decomposition theorem has been proved which leads
to the characterisation of matrices possessing g-inverses. Later in
this section it is showp that if a matrix possesses a g-inverse then
one ¢an choose a g-inverse of particular simple form, to bo precise
- permutation matrix as defined in scetion 1.3, 4 few results on idempotent

matrices are also establised,

In section 1.4, we define spacc decomposition of a matrix, similar
to the rank factorisation of matrices over I and O . However it is
worthnoting that unlike rank factorisation, cvery Soolean matrix is not
space decomposable., Like rank factorisation if a space decompositon
of a Boolean matrix wxists it is not unigque, It was shown in this section
that a matrix possesscs a g-inverse if and oply if it has a space decom-
position, Later this space decomposition is used to characterise reflexive

g-inverse of matrices,



In section 1.3, necessary and sufficient conditions for existence
of Moore-Penrose inverse and pther types of g-invérses of matyices are

pstablished,

In section 1.6, an algorithm is given whick gives a g-inverse of
Booiesn matrix A, if A has any g-inverse, Table 4 can bo used'to.

check the ¢xistence of nther types of g-inverses and to cowmpute them,

" Finally in scction §,7, the last section of the chapter, the main
results of the previous sectlons are generalized for matrices over an

arbizrary Boolean alpebra.

1.2 Praliminaries

Let B a (8, +, ., -, D, 1) e a Boolean algebra with + acting
48 supremum, . acting as infimum, - acting as compliment, O acting as
the zero elepent and I acting as the it eloment (Helmos {3 }). We
supress the dot of a,b and simply write ab, for infimm of a and b,
By & matvix over B we mwan a matrlx whose elepents beiong te B,
Since the order of the matrix is clear from the context, most of the time
we supress tho order of the matrix. Matrix sddition and marrix waltiplis
catlon aye same ns in the case of rosl matrices but for the concernsd suvms

ind products of elements are Boclean,

1£ XyaeesaX, aTE veclors {m=tuples) over B, the linear manifold

n
enarated by them iz the set of all woctors of the form T ¢, X..

] L F
here e £ F and is denoted by H{xl...xn}. Othor concepts such as



transpose, symnetricity, idempotency, M(A) etc. are same as in the casc

af real matrices,

Definition : Let A be an mxn matrix. Then an n = m matrix G
is said to be a generalized inverse {g-inverse) of A, denoted by A

if AGA = Al

Proposition 1 : Let A Le an mxn watrix and ¢ be an n »x w matrix,

Then the following statements are equivalent
{a}l AGA = A .

(b) Gy is r solution of the system of lincar equations
Ax = v whenover solution exists  i.e,, whenever

¥ e ML)
{e] AG is idempotent and M{A} = M{AG)
(d) GA is idempotent end M(A') = M{G'A')
Proof is in the same lines as in the real case and hence we omit.

If ¢ is 3 particular type of g-inverse of A, say R; then

Q'GP is a [PAQ]; where ¥ and § ere permutation matrices.

Observing the fact that if G, and G, are two g-inverses of an

n* 5 matrix A then EGI + sz is also a g-inverse of A  and that number

of ‘n wm mstrices i: finite we define a moximum g-inverse of A,



Defirmition @ A g-inverse 0O of A is said wo b ovdipen g-inwversd
of A if every A < G,

As an demiiliste copseguence wo soo that any matrix heviang s p-inverse

has a naxiram p-imverse,

.

1.3 p-inverses of matriees cver {0, 1} Goolean aluelra

Definition 3 The 10, 1} Boolean slpebra denotod by B is the set (0, 1%

together with the operations », , amd - delfined as follows
RE .

do= 1 ang 1 = O

?xl“ﬂm now onwards upto section 5 wo consider veotors and matrices over

% Yo We say A2l if ’1U t ]}'lj L ofor all i oand

Efinitieg ¢ Tho weight of & vecter x, dencted by wix), is the number

f non-zers clements of x.

afiniticn ; A set of yectors {xi,....,x“j is sald to e independent if

b vector is the sum of some of the remaining vectors snd nueil vecter

fall elements zero) is mot in the set.
Rfinition : A vector y is said to be dependent on vocters XypeeesXy
¥ £ H‘hl""’xn}' Otherwise y iz sald to be independent of

FrY ,xna



Definitian @ Let T ULe a set of vectors. Thenm a set 5 t{xl,...,xn‘i*{:'l‘

1¢ said to he a basis of T 4L § is independent and M[xl,....xn} DT,

Proposition 2 Every set of vectors 7T, which has 3t icast one nonmull

vector has a unigque basis,

Proof : Let x, €T be 0 minimum weight nonnull vector. Consider
Tl o T M[xl}.- It Tl is noncepty take X, & Ty.n minimum woight
nonmuil veetsr and eensider, T, =T - M{x;, %), Procced likewise

until for some k, Tk =T - M{x),. .,xk} is empty. Clearly X, ,X;,...,%,
are independent and TECIM (xl...xk}. Hence the set {xl...xk}fmm a

basis of T and by construction Xp o Xgare oo Xy should he in any basis

and hence it is unique.

The above propesition leads to the following definition,

pofinition : Rank of a set of vecters T, denoted by R{T) is the

cardinality of its Lasis.

Bemark ) : Thiz rank does not satisfy the uwswal properties of dimensiom.
in feal vector syzces, for instance R(TI] may e gredter than R{Tz}

even though HT, ) M(T,).

11 0 0% 100

Considoy Tlﬂ 0 1 1 0 and “l*2 = Jo 1 ¢
0 o0 1 1 coa 1l

SR,

re R[Tl] =4 and a{T,) = 3 but M{Tl] £ im;"rzj



Definition @ Row {(column] rank of a matrix A is the rank of its row

(¢olumn) wectors,

Romark 2 :  Row rank @nd column rank of a2 natvix A need net be ogqual.
- -

Comsider 4 =

Here row rank of A 13 2 and column rank is 4.

Pefinition ¢ A matrix A is said tc be of rank » if row rank of

A= column mank vf A& = r.

Definition : A matrix A of order m % n 1s said to be ponsingulay if

row rank of A 18 m and column Tank of A is n.

Definition : A permutation matrix is 3 square matrix such that every

row and every columm contain exactly coe 1.

Definiticn : A matrix (neml nct be square) is said to be a partial
permutation matrix if every vow and every column of it contain atmost

poe 1,

Remark 3 : Row rank and colummn tank of a matrix are upaltered by premulti-

" plying and post-nultiplying by permutation metrices,
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Rematk 1 : If P is = permutation matrix then TP = P'® = I and

if ¢ is a partial permetation matrix them G§'Q <1 and QQ' < I,

pefinition @ A sguare wmatrix @& is said to be an inverse of a square

matrix & if Al = LA = L.

Rematk 5 : If an inverse exists 1t is unique.

Before procceding further to investicate the sxistence
and properties of g-inverses of matrices in gemeral let us find out the

conditions under which a square matrix will pessess the inverse.

Theorem 1: An n x n matrix A& has inverse if and only if it is a

permutation matrix.

Proof : ‘If' part follows trivially sinee AN - A'A = I,

"Only if' part : Tet X be the jth column vectar of A and B be

the inverse of A. Then

ABaI=r b, %, +%.. %, % .., +8B ,x =&, for i=1,...,n
I1 71 21 T2 ni n 1’ ' :

8y xj for some  j, sincc €. cannct ¢ the sug of twe

distinct nonaull vectors, (1 = 1,2,...,0)

=  gplubtn vectors of A eontain ©pe €y

=> A is a permutation matrix simce A has conly 6 Columns.



The following decomposition theorom 1s a fundamental result of our

study of g-inverses of Deoleaa matrices,

Theorem 2. (Decomposition Theorem): Let A be an m » n metrix with

tow Tank r and columd rank ©. Then there cxist permutation matrices

P end Q and matrices € and D such that

DA 1 I’Lf'a1 C

nere AI is & nonsingular matrix of order 1 % C.
To prove this theorem we need the Following letma

jma 1 : Column (row) rank of A 15 uhaltered even il a Jependent

{cclumn) is deleted,

Proof of the lemma is casy and hence we omit,

wof of Theorem 2 : Since the colum rank of A is ¢

I

the bazsis of

\} contains ¢ enlupn veetsrs of A. Let § he & permitation

riz such that the first ¢ c¢olums of AG form the tasis of MIAY, i.c.,

AQ = (B : BC) for some C, where [ 1is an m x ¢ matrix with

1 column rank, By the above lemma, row rank of B = row rank of A = r.

there exists a permmtation metrix P such thar first r rows of PE form
¢
basis of M{E'}), i.e,, PL = 1 far some D wherc A

i
DAI

—



isag T ¥e¢c

column rank of ﬂl

Therefore 0aQ = PED @ 00)

e [FB @ PEC)

Tﬁtl ﬁ}{: “;
! r}.ﬂkl Dulﬂ

palrix with full row rank.

= column rank of

far some

I

o= a,

Coand D,

e re ni is & r » ¢ nomeingular matrix,

Jbserve that in the

gggrk 6

I

&

'pT
a
“i-a !i.l-__F
& pow basis of AL
,_ﬂl
1prem I let PAG =
s Dﬁ]

are permutation motrices.

(a) A exidts

U TR
wBAL#

{c) {Al : ALG} oxisis

{d) A, exists,

1

aboye decommositicon

A

rilc
[ wherae

DAIE |

T]:‘afsﬂ tha foll OWLNg

EL I
I

Again by the above lemau,

g is a columm basis of A and {A]:AIC} Qr

is rnensingular and P,

statements are equivalent.
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Proof iGjven a g-inverse of any 0f the ahtove four matrices, instesd of
ust showlng the axistence of g-inverses nf thc rest we will construct

inverses for the rest., Proofs are by straightforward verifications,

(a] == (b}, {c) and (d]

- - Gl Gg -
A exists = (PAQ) exists, say, is a (PAQ)
3 G
3 4_
AglT 16, % 6D i
(Gl * CGS : 62 + 564) is a , ' is a (A Alf.'.)
Dﬁl G:S + G4L'l

(6) + €6y + 6,0 + (G0 is & A

(k) »> (=), (d} and (a)

— —— - Iﬂ- b

. 1"1.1 L-il + sz‘.-
Let [Gl : GZJ bz a , then L iz a

E'Al ] _
_ - = -4 G
AIEI . Gl + Gzl} is a AI an. @ 1 2 P isa 4.
0 0

€} => (¢} (a} and (p)

o 1 . - . -
et be a A+ A0 rhenEG.L+GZJJ is a A,
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16, g .
Q! P'" isa A& and (G} + GEU ) i oa b

G, n | D,

— A— I-,- —r

AdY == (1Y, By and {9)

, 6 07l ‘
Lot Gl e oa :"11 then Q' [ P dsa A,
0 o]
Els “Gl | -
i & i ALL) .
[Gl 10} 15 a an<* is a [‘ﬂ‘i : 11 ]
L]-f"...l i

— w— —

MEA) = M{ZY} then A exdsts if anl cnly if

2]

Corcllary ;: Le

I exists.

Renark 7 : 6 G, l ' Ay A6 ‘] _
l is a [ . i‘

if and only if (G) *+ GGy + Gy + €607 ix a4,

Hence the existence of a g-inverse of = walrix veluces to the

sroblem of cxistence of g-inverscs of non-singulior matrices,

'
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roposition 4 . Let a g-inverse of an mox o0 matrix & oxdst, Thon
(i) colupil rank of A 1s n implies 0 < n

(i1) row rank of A is m implics w < n.

g_qg_f_,;{i} Let G be a g-inversc of A. Then M{A) = M(AG), by
roposition 1. This implies all independent columns, i.e¢., sll the columns
F A are avcilahle amenp the columms of AG.  Jut arder of AG is
*m= n o< om
Proof of {ii)} fullows in the smwme line,
ark 8 : Llet A be a nonsingular matrix then g-inverse oxists

A iz sguare.

ollary & exists dmplins row rank of A = column rank of A,
%E_f_: Bet A be an o om o» @ omatTix of row rank t and column

ik ¢, DBy the Decomposition Theorem there exist pormutation matrices

and § such that

Fad =
[’u'i.l ) lC

re Rl is an 1 » ¢ mnonsingular malrix.

by Theorem 3, n  exists =>» ;\1 exists => A, 15 square, by

ik &.

Br=cg, l.e,, row rank of A = column rank of A,
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wrk 9:  Every metria need not possess a g-inverse,

position 5: Let A e anm mxn matrix such that A ocxists. Then

{1} fi is of full row rank implies AG, = AG., for all

1 J
H=LIVET SES Gl Tl G'Z of AL

(ii) A is of full column rank impliss ’G-lé"z. = G4 for all
=

= AVOTECS I‘;l and G, of A

£

f v (1) Let G, and G, be any two g-inversos of the JTull row

nAtTi A Ty above corellary, the columpn rank of & 1s =,

G be the maximum g-inversc of A Then G ¢ G and hence

X AG. Dut M{AG) 7 M{A) = .i‘f;?{}"iﬁl} by Proposition 2, which

tes that the set of column wectors of .fu'}] is same os the set of

mns of AG, which is ag7in same as the column basis of 4.

togethor with AD, < AC == AL = MG,

1 = I
Hence ﬁGl = M:r
Proof of {ii) frollows from the above proof by takinp A for A

serving that A exists «<=» (&') exists.

lary: If A is a nonsinpular matrix guch that A exizts then

a unigue reflexive g-inverse.

By Frotosition 5, for any two o-inversos E} R (ﬁ;z,

iﬂi and G4 = G.A,

1 2



ia

If Gl and GE are any two reflexive g-inverse of A then

Gy = G,AG, = GAG, = G,A6, = G,

Remark 10 @ However, the 'converse of this, i.e., Tif a matrix has a

unique reflexive H-iNVETSC then it is nonsingular’  is not true.

1 <
Cansidar A= where I s of order 3 = 3
o c'e
-1 0 1=
and g =
1 1 L

By Remark 7, it follows that A has a unique g-inverse and it is
1 0 N
=> A has a unique reflcxive g-inverse
0 0 0 4]

- — o e

Remark 1l1: In case of real matrices, if the class of all g-inverscs
of A and B are same then A = B, But note that in case of Boolean

matrices this result is not true oven if A~ =and I exists,

Example: Choose A as in Rewark 10 amd let

: I U
b o= where T is of order 3 = 3
o D'g
"1 1 1"
and D= 1 1 1



! cf“l
Then again by Remark 2 © has a uplque peinverse and it is i
0 0
- .3

Mence class of all p-inverses of A and B oare sase though A is
) a

clearly nnt equal to [,

Theorem 4 . Let & be 2 nensinpular matrix such that A exists.
‘Then there exists 2 unique permutation matrix F which is a p-inverse

of A

Proof : & 1Is nonsingular and A0 exists =» A is sguare, by Remark 8.
et G be a p-inverse of &, Then M{A} = M{AD) and AG 1s idempotent.
Bince .0 is nensingular, columns of AG are nothing hut s pormatation of
columms of A, i.¢., there exists a permutation patrix P such that

AP = AG =» SBSC o AGA = A s> P ois oa geloverse of 4,

Jc show unigueness of P, if prssible let P and 4§ be twa permutation

IH

A7

i 2!

Bince olumns of A are 2istinct becausc A is nonsingular, Py o= Py

matrices which are g-inverses ~f A. Then by Propesition 5, AP

oTollary Let A be an m o« n matrix such that A oxists.
4

ghen there exist permutaticn matrices P and @ such that

.'il f\.lf‘r J
PAQ =
DR oA



¥

Proof @ Ty Docomposition Thoneem there exist per
Poand Q such that
F;\Ql =
PA? thh
whers y is nensingular. Since A

mataiisn matrices

(43

has a g-inverse, by Theorem 3

Az hag a g-inverse and by Thecrem 4 there exists a permutaticn matrix

QZ ¥hich is a p-inverse of AE. Postmultiplying toth sides of  {4)
T v L
hy and calling Ql as § we have
“;G 1__ 0 1
] 80,05 € 7 ] M e
P.\'kQ = =
FA,Q, FAL0; QF A bAC
vhere A= A0 is idempotent, C = Qi and D =F, Note

that Q¢ is a permutation matrix.

The following is 2 generalisaticn of Theorem 4 to any matrix which

s a g-inverse,

potom 3 @ Let

meTe ¢Xists a partial permutation matriz which is

and 4

Ty above corollory, there exist

suych that

A be an mxn matrix which has a g-inverse,

Then

a g-inversa,

permytation matrices



l." "\i,. J!RTC-" o
- i H .
rln{;l = whote A, = ok
- 4
vl 4 ‘Lm}{, ~
- _ 1 ~ E
Then partial pormstation matrix P = Qi i }‘;; is a
0 i '
: . _ i
g-inverse of Ao

Remark 12 ¢ This partiazl permutation maivix ) neod ol Be undgoe,

Before procceding o the next section a2 few resulfs on Ldeapttent

matrices are proved lwelow,

Lemma 2.+ Let A be an Llempctent matrix. Thop ag, v amplics
. . . 1 _ .
1 column of A depends on the rest of the colupns andl 17 row depemis

. . - .th
on the rest of the Tows and #lso the matrix chtaine® Ly removing i

TOW ang ith enlinm 2% a4, 15 Idempstent,

= .0 ant Tt

%%zf : Without loss of penerality  let

b
1

A =
U
L T R 4'11
2 .
voE R oER e =
Bf'ee =
Blﬂl = R
Tl RS
1
'y T e
— - t
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and {8* : 0) = B'(A; : a]

=n2 ar o 4% B EA = LG
J!'sl nl + gt = lﬁ.l + 2’]'.1{35 rt.L = aliT + B }&1

= _-!'L1 + af”  is idempotent

my Al + aff' = J'kf +afil= A.]

Thereforc A, 1s idempotent.

Coroliary : If A is idespotent and nonsingular then Ay = 1 for all
i, However, A 1s idempotent and 25 =1 for all 1t de not irgly

A is nonsingular.

- : ; . .th
Lz 3 :..th row of A depends om the other rows implies 1

colusn depends on the nther columns where A 15 idempotentamd @izt ¥i.

Proof ! Without loss of penerality Jet the last row depend on other rows

Al a
and let L=
B! 1
Azﬂhm {1}A+:E\'*h:?’ﬁ-_2<h at AL~ 1 >.ﬂ.2>A
1 1 -1 1 - I -1
2
S Al .‘"1.1.

i1 +n = > Ao < =2 A a = a
(ii) .Alm neog =2 Aaa A

(1i1) B'A, + 8" = &' => E'h, 2 00 =» FTA =R

and (v} fta +1 =1,

{8' : 1) depends on the cther rows implies that there exist C

such that (3 : 1) = 'E"{,"-tl Dol



A0

e B L L WART S U |
1
-~ -y =
i:‘ = ! 1 hi
| e

the Jast column depends on the other columns.

wwe can stete the fallowing thenrem, proof oF which £alisws from the

ove twn lenmas,

arem bt A 35 an ddempotent matrix of rask v 1f and only if

ey

e oexists o nevamtation matrix P such that

8 Al is r * r nensitipolar idempotent matTiv and O and D

‘uch that €D < A,

laryd 1 I0 A is momsingular, ddempotent and symmesric then

et 4 bean n o2 n omatrix., I nossibie fot oa,, = 1 fop

1o oand 3 such that &1 # j. Then thoere oxists a b such that

, th . .th R et
gik' otherwise 1 wmd ] rows are identical which contradicts
singularity ~f A, Simce A 18 symmetric without ioss of

ity we assume that = and oa., = 1.

ﬂik rooane "3y
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- ES i, - . . = )
Mow 4 A > ik 3 HM_ 'k
r=]
= Hil_.ﬂ.rk = (¥ for r=1,2,....,n
. -
=¥ 1],:]_]_!( =
=3 2 a I:ul"

jk
which is a contradiction snd hence a5 7 0 for t# j. A is
nonsinguley and idempotent implics O 1 for 1= 1,...n

from corollary uf Lowmn 2.

So A= 1.
Rewark 13: However i A is not symmetric the sbove Tosult
| L
{eornllary 1) is not true, for instance, consider A4 =
T n 1

i — —

This is nomsinpuiar and icempotent but clearly is nnt symmetric,

L

gomllarvz: A 1s an idempotent, symmetric matrix of trunk r© if and
pnly if there exisis a permutation matrix T such that
1 C ‘“[

oL t;*c_[

hers C 1Is such that CC' < 1.

i‘mf follows from the above theorem and crrollary.

morem 7 1 Let A bean moxn matrix such that Ry = 1 for all 1.
G be any g-inverse of A then 25 f—-ﬁij for i,j = L2,...,1,

sre r is the ninimm of m and n.



ppaf: Let a.. =17 for i, j <r then

1]
. n ™
. -
b= AGA = 8 7 kE1 .;51 Mk ks s N for i,j<r
= &lk.gks.asj = D for ¥ =1,....1

i

11

ot
=

=oAL, 7.,

11 711 i3
=> %5 z 1 for 1, ] <0,
Eiy % 4 for i, j < r.
i} =743 -

4 ¢ In particular, if A is ponsingular and idempatent then
I geinverse of A is A itself,

JA5: If A is an idemnotent and nonsinpular matrix then ©
inverse of A if and only if 1< G < &,

i . .
i€¢ decomposition and reflexive p-inverse

define space dccomposition of doolean matrices similar to

rank factorisation for real matrices.

m ! A matrix A of order w x n is said tv ke space decompesable,
ek there exist two matrices L oand B of orders m o x k

# Tespectively such that

"



A= LR MAY = ML) and M{A') = MR,
his decomposition we call as space decomposition of o,

The foilowing theorem gives an interestingy chatacterisation of

matrices poussessing g-inverses,

Theerem 8 : A7 cxists i€ and only if A is space decompasshle,
Pyeaf @ 'If' part Let A = LR be a space deenmzositiom of A
== M{l) = M(A)
= T = J"tﬁl

and M{R'} = M{A'}) and R+ D for some D, aml T

Y 1 2

Now A= LR = ;‘L{iluzﬁ =¥ i}lt.‘z is a A,

'Only 1f' part @ Let A  exist. Thzpn A is of the form

|5 ' 7,
-:.:Ijj"kl Jr."J‘kLC

where A, 15 r x 1 nonsinpular idempotent matrix, where r is the

rank of A and P and Q are permutation matrices

o a= P 1A A q
na 1™
2
= Lk
| A
here L= P and R o= [A, : A C)Q
. o4 1
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It is easy to sec that M(A) = M{L) and M{A') = M{R'}

Therefore 4 = LR i5 a space decomposition,
Remark 16: Observe that r  the rank of the matrix is the minlwum valuco

that k. (in the definiti-n of space decomposition) can take, IF rank

does not oxist 1.e., row rank # <olwmn rank, space decomposition

does not exist, In view of this, from aow onwards by space recomposition

of A wenmean A =LK whore 1 i3 of order m» r, R is of order

- rxn where r 1s the rank of A& and M8} = ML) and M{A') = M(R'),
_AI A.l{'i'_

" Theorem 9+ Let A= P ]

Dﬂl D.AIE.‘

permutation matrices, A, s nonsingular idempotent matrix., Then

where T and (Q are

A= LR is a space decomposition of A if and enly if L

, = Py
!’-‘sl—
ancd Ry = PR for some permutation matrix P, where L= F
DA
| '
i R= (A1 A0

JPraef: YIf!' part is treivial,
o f———

'Only 4f' part : A = L R, 1is

1 By spacedecomposition of A

)

=> ML) = ¥{8) = M{L) = L, =LP

H

and  M(R]) = M(A')= M(R') w> R, = PR

some pervutation matrices Pl and Tz.



PP, fa

P 4,00

'1 : } W,

= A= Ay PIFE Al =2 FIPE isa &,

But Al being nonsingular and idempotent I is the only

Permatation g-inverse it has, therefore P1P2 = 1

= ‘ = Bip
Therefore Ll LF'1 and Rl Plh

Theorem 10 : Let A = LR be a space decompositicn of A= P

and G bea A, Then
{2} L= and R exist
(M L'L = RR
(e LA = R and AR =1
(@) RL isa A

and {e} HG is5 a L; and GL is a R;ﬁ

A
Proof : (a) Let L= P| 1| P, and R = PI(A; 1 AC)Q

L‘u"\l 1

MA} = M(L) => L exists and M{A'} = M(R') => R exists



(b} L'L = P

and  RR e P! (A @ ACIOQ' (A ;A QYR =D

Therefore L' L = R

{¢l LA =

|
[
)
i

=
=
=
H

ew )

and AR- = LRR- = LL'L

i
o

{(d) ARLA = LR=4A = R'L7 isa A

(e} AGA = A => LRGLR = LR
=» LRCGLRR = LRR®
i,e., LAGLL'L = LL'L

So LRGL = T,
and  therefore. RG is a L7 and similarly we can show that GL
B R, Now, for reflexivity, consider

RGLRG = RRRG = RG

Thus RG is a L; and GL is n n;,

is

Remark 17 : Though R'L™ is always a A~ , every g-inverss nf A need

not be of the form RL™.

1 0
Ex : A =

o 0
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Next we turn cur attenticn to reflexive p-inverses. In the following

thesrem we charncterise reflexive g-inverses of Al

Thesrem 11 ¢ G is a veflexive g-inverse of & if and only if
G= KL where A= LR is a space decompasiticn »f A and one of

B and L° is reflexive.

Proof ; "Tf' part : Let A = LR be 2 space decomposition of A,

We already proved that G = R L7 45 a A . For reilexivity

R L LER L

conzider GAG

RORRTLT

n

= R L assuming &~ is reflexive

Fi
[ ]

If L7 is roflexive

GAG = RLTLRRL™
= RLTLL
= L
= O
Only if' part @ Tet 6 be a A
Thﬁ‘ﬂ 3 = 3 = ] = T
G = GAG = GLRG = R_L_

(from (&)  of previous theorem).
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Kemark 18 : The condition that one of R and L is reflexive
is nceessary, for otherwise 1.e., if hoth are not reflexive BL”

may not be a reflexive p-inverse of A,

1 0 1 a 1 f
Ex: A o= ; L= ;o Ro=
(1 1 11 11
- - [ - — -
e _ 1o |
R = T A |
0 1 Q 1
- - - _
T 07
G = KL = iz a A but nat A .
o1 r

1.3 Moore-Penrose inverse and other types of p-inveyses

In this sectinon wo chtain neocessary and sufficient eonditions fov

a matvizx A to possess various fypes of p-inverses, namcly e“ﬁ;, AE

+ . . . _
and A where these p-inverses are as Jefined in Tabic 3.
Theorem 12 : The following statements sre cquivalent

(&) ﬂ; exists

71 c‘

(k] » is of the form D 7 where Poamd O oare

<

o o |
permutation matrices and €  is such that CCY < 1,

(e} A exists and  M{AY = M{AA')

ind {d) there exists a G such that Gl&' = A',
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Proof 1 {a) =» {B] bat G = A%‘. Then GA is symmetric and idempotent.

Therefore there exists a permutation matrix 0 such that
"1 ¢
GA = Q' 2
gt Eg'C|

—

where C 1is such that CC' < I. Apain G dis a A" implies

M{A'Y =  M((GAY') which implies A is of the form ﬂ Q
D DG
for some D - -
10
{5 => (c) It can be easily checked that 0 B!
¢t o
is a A; and  M{A) = M(AAYY.
{c) == (d) A exists and M(A) = M{AA') =» (AA')T exists

and there exists a matrix D such that A = AATD. Now it is easy check

GAA' = A where G = A'(AA") .

) => (a) GAAT = A' => GA is symmetric and hence AGA = A
= G isa A,
1
This campletes the proof of the thecrem.

A similar theorem for ﬂ; is stated below omltting the proof as it

tibliaw: on the same lines.



Theercm 13 @ The follewing statements are oguivalent

o

(8} A, exists
g

1 C

v

(M) % is of the form F i whare P andl 0 are
L

permutation matrices and [ is such that 0 < 1

(€} A exists and M{A') = M{ATA)

Ay

amd (4} there exists a watrix G such that A'AG = AT
Corolliaryl: The following statements are eguivalunt

(a) A" exists

-

{(t} A is of the form P o where ¥ oand o
f s'i{:]

permutation matrices and £ am? T arc such that CC'< I and

O <1
(€} A exists, M[A) = HMAATY and M{A') = H{A'A)

and (4} there exists o matrix © such that GAAT = &' and
!

E‘lﬁﬁﬂ-‘i‘ﬁl{ﬁgg L11-'}.:[ . ‘b\+ #Mx",:.j_.g 5’:‘? ﬁd oA

1.6  An alporithm to compute a s-iaverse

are

ARG

In this secticn we develop an alrorithm tn compute a g-inverse

if it exists, Pirst we prove two thecrems on which the algorithm is

{_}eased. Before proceeding further we nced the fnllowing definitions.

n P

I L
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fefiniticn @ For a squave matrix A of order n x n we define perma-

fient of A, dencted by |ﬁ! os

where the summation is taken over all permutations i,,....%1 of

1, 2, ..., ™,

fhserve that if I = PAQ where P, @ are any twe nermutation matrices,

then

[al = o] = |ar}

Definltion + A set ~f vectors T = {_x]...xn} is snid to be satisfying
weisht condition or condition w, if for every 1, there are w, vectars

in the set which are less than or equal to X whero Wy is the woipght

of the vector X; »

Theorem 14: Let A ke 4 nonsinmular square matrix. Them A7 exists

if and only if {a| = 1 and ecclumns of A4 satisfy condition w.

pronf 3 'IfT part @ Let |a] = 1, then there exists 2 permutation

.

i’l" 12 vae 1 of 1,2, .., n such that a

a., =1
n

n
111 212 i
¥here n is the order of A,
Now consider the permutation matrix T“-.:[e.i , B, ... €, 1 &nd

1 12 *n
Jet D= AP . Clearly byy =L, for i=1,...m,
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£ is monsinpular => B is nonsingular.
Columns of 4 satisfy condition W

=» columns of B satisfy condition w.

Next we will show that & 1s idempotent which will fmply P 'is a

A", Let y; be the it cotumn vector of B and consider

oy o= [ I . . . - .
FYLF DygYy Yy Y *hyy vyt P PhiYy oo QD

Let ws Yz welpght of Yy Dbserve that none of the yk's
15 mull vector for k = 1,,..,n, The vight hand side of (11} is sum
of exactly W, nenzero vectors., Now Y LYy = bki = 1 since
bkk = 1. Thus whenever Yi £ ¥i» ¥y 8PRUATS a5 noazero term-in
the right hand side of (11) and since there are W, yk's which
are Jess than or equal to Y and eonly W, Nenzero vectors are
present in the right hand side of {11}, each nonzero term is less
than or equal to Yi and hence thelr sum is alsno ¥ but since
byjy = 1. ¥; itself is present in the riwht hand sice of (11) and

hence their sum is ¥

Therefore By, = ¥;

S0 B is idempotent => P is a .
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‘Onby if" part ; A oxists => therc eéxists a permutation
tatzix P osuch that AP is idempotant, by Theorem 4,

Let B = AP,

Then bii =1, 1i=1,..,,n, by Lesms 2, Hence |A] = [B| = 1.

Since 2 is ilempotent ﬁyi LY i=1,..., n, where Y5 is the

th
i column vector of 8,

+

g = Oy, = I
o ¥y 7 by =y

oLy e ¥ ho
”21}2 * ni ¥y

=> whepwver by . # 3, yp<y.  for all Kk,
=> there sre at least W yk’s iﬁyl’ SIPCE

welght of ¥io1s W,

= g¢olumns of B satisfy the conditinon W

=» calumns of A satisfy the conditirn w
since columns B are nothing but a

permutaticon of eolupns of A

which completes the proof of the theorom,

Covollary 1 = If A is sepave, nonsineulsr matrix then A oxists

if snd only if Ja| = 1 and the rows of A satisfy condition w.

Corollary 2 ¢ If A is nonsinpular amnd AT exists then there exists

“tolumn of A of weirht one.
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Froof @0 Lot x be a column vectsr of % with Ienst weight say
> 1. Tur % ahove theoren there should b kb colums of A < x,

Siace ® is a column of least weipght there cannct be any vector < x

=r  there are Kk vedtors = x == & is sinpular which is a contradiction.

Homes k < 1. fimce k F O, % = L.

Corcllary 3 @ Let A he a square wonsingular matrix such that

]Af =1 and columns of & s2tisfy condition w, Lot il""‘iﬂ
h 5 , iy P . - A |r = = =3 L) o i 'l.
e such that 3111 anln 1 then T {ell olﬂ ﬁlu} iz a

g-inverse of A,
In fact this is established in Theerem 14,

Let A be a square nonsingular matrix such that 47 exists

then one and unly ene term in [A] is nenzerc.

1 a' ]
. ‘ {
Thenrem 1% + Let & be 1 nonsippular matTix such that PAD = :
LiecTem 1o -
111

— -

shere F and 7 are permutation matriccs and o and 11 are columm

vocters.” Then A7 exists dmplies A7 exists anl A is nopsinpular.

“Procft A is nonsineular ant A exists
v — i e
= A 15 Sguare

= A is square

it ponsingular => 4 is of full row rank

=> Al ia of full row rank,



e
E

Let - he a g-inverse of  PAT

AGA = A => AG AL = ﬁ.i => G, 1sa ‘-*L;
=> row rank of A = eolumn Tank 4y

1 1 is nonginmiar.

Corollary iIf A is somasingular and A exists then there exist
permutatien watrices P and O such that PAG is nonsingular

idempotent aml wpper trianguelar .

Al gorithm

let A be m %7 matrix and A exist. For computing A
we procied as follaws. First we obtain the vow basis and the column
basis of A. Then we compute the permutstion g-inverse of the
nonsingular submatrix formed by these rows and columns of A,

Finally A  is constructed as in Theorem 3.

‘The algorithm given in the next page is aleo uscd in chapter 2

for computing 3 nonnepstive g-inveyse of o nonnepstive mairix.
: g f
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Let A be the given matrvix of order m x an.

Step 1 Set p'=1 and & = «. Compute Wi W

-G he row
1 W, the ro

FA
wights of A. (These weights, we refer in Step 2, as original row

weights). Ga to step 2.

Step 2 © Lompute wl, Hé""‘w;':‘ the row weights of ﬂ?. Choose o
minimum weight nonnull row of iip. 1f there arte more than one row of
5‘, with minimum weightschoose one from them with minimum original Tow

: . . th .
) + g
wight., Let it be 1P row of Bp' Form the matrix Ep+1 from Bp

by meking 35 column of it @il if () ;#0 for §=12.m
1
P

1f Bpﬂ is null, go to step 3, otherwise incrcase the value of p by

l and go back to step Z.

Et_éE 3: Llet k be the value of p. Set p = 1. Form the matrix

El with il’ 'JLZ',...ikth rows as those of A and the rest of the rows

null,  Compute Vie Vaso.v the column weights of C.. (These weights

n I
ire referred as original weights in step 4). Go to step 4,

Step ¢ @ Compute !, vi,...v/, the column weights of EP Choose an
amarked weight 1 column of Ep' fThore 1= always one such eglumn for
ps k}. If there are more thap one unmarked weight 1 column of Cp,

“hoose one from them with minimum original weight and mark 1t. let it

e jpth calum of Ep and lei P.Pth glement of it be ponzerp. Form

@ patrix © h

. , . . th t
from ©_ Ty revlacing all hut clement of 2
p+l p 7 g p P



row of C_ by zeroes amd kaoping other eleoments as thoy are, If p=k we stop

L

otherwise increase the value of p by 1 and go back to step 4.

Now we have

L]

Theorem 16 : Let A exist, Then

fal rank of A iz X

(h) 11 iz,.“’ikth rows of A form the row basis of A

© 3, ]2,...jkth columns of & form the column basis of A
and  (d) CI:; is a partial permutation g-inverse of A

where k, v Ipere 1y jl-'-lz”‘jk and Ck arc as in the shove

slgorithm,

The theorem follows directly from the Theorem 3, Corollary of

Theorem 15 and the sbove algerithm,

femark 14. Whether A exists or not the sbove algorithm always gives
e ..

the marrizx C, . Ope way of checking whether Cp  is & nr not, is

hecking whetner ﬂCl'(.f'-. = A or nct,

Once we confirm the existence of A checking for the existence

ad computation of other g-inverses, viz., ‘!"1;:' ﬂ‘i‘. and A is simple

Bl is given in the Table 4,
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th

Let & exist. Let Gl bo the natrix with i i2 e ir ToWS

l?

as those of A and rest of the rows null an? G, be the matrix with

*r

Joa Jap ens § th exlumns as those of A and the rest of the columns
1?7 -2 r

null.

Talile 4

Type of A° Condition for existence Given by

A alwasys cxists Ei A Ci

A weight of cvery c¢olumn of
L} ( !
f.‘l_l Gl

Ay woight of every row of

6,2 1 2

A weight of every column of
Glj‘ 1 aond weight of
every row of sz_ 1

J!-:l.l

Numerigal illustration :

1 6 1 1
Example 1 : L= = B,. Taking 1, = 3
1 g0 1 0

G o 0 1




1 G 1 0

1 0o 1 0 , L )
32 - R Taking iy = 3, 53 =

{ { ] &

ifere all the three nonnull rows of O, are ~f equal weight

¢ than one and therefors Ay does not exist.

1 o0 1 0
1 ¢ 1 40
o o o 0
1 0 1 0O
o o 0 0

- —

. But sscotd

row has minimum eriginal weight. So we take i,=2. Then B, becomes
mll, 3o k = % We form now
TJ (S R R Tﬂ g & 07
= 11 90 1 s o Taking Jy =Ll Gty 5 9 g
0 ¢ 0 1 ' o 0 0 1
a 0o o o g 0 Q 0
0 1 B i} 10 1 o 0
Taking j; = % we have (= G2 ani 1y = *
Now it can be casily checked that Cl is a & . Now 6, = G,
1 0 0 17
and GE = T 0 0 6 Also all the c¢olumns of G, are of
40 0 1
1 1 & 1
01 o 0 _
“qght £ 1, So Gl is a A; But the first tow of G, is of weight




Examplo 2
&=

Here boeth third and

1 1 1
60 ¢ F =
1 1 1

1 1 1

1 1 o

1 1 0
o 0 0

1 1 0
1 1 0

1 1 0_

Fifth rows are of same weight.

Taking

since fifth row has minimum oTiginal weight.

Y= 3% We form

king i, =2

cl

3 is ot a Jﬂ'l.“, A

1 1 1
o0 1
6 0 0
3 0 0
1 i a _J
0
“s T ie o
6 0
D0
1 0

.

Teking
0 0
4 1
0 0
0 0
g 0

Joes naot cxist.

0 o0 0
n 0 g
i:=1, 53 = 3 0 0
Q { G
D R B
Fut we take i3
Wt ]3»_qu hecomes nmull
o1 1
i 0 o
I A
3] 0 0
i a o
and therofore j3 = 5,




L1 g-inverses of matrices over an arbitrary nhnqgqp alyehra

In this section we deal with matrices over an arbitrary Doolean
slpebra EF not necessarily [0, 1} Toolcan algebra. The case of the
general Boolean algebra, not necessarily finite, we dispose of, in a
keoark ‘at the end of this section. We wish to obtain results about

pitices over z finite Uoelean algebra £ anclogous to the results

p.ined in sections 3, 4 and 5 Qur main tool is the concept of

pemorphism.
Eitim + Let Hc. be the {0, 1} toclean algcbra as usual, A map

B +8 is called a homomorphism if

g 1) h{a*b} = h{a) + h(b]

143 h{g.b) = h{a).h{b}

R{aj for all a,b = L.

i) n(d)

For 2 hommmorphism h and matrix A = {aij} aver B, we definc
B, s matrix over Bﬂ by (h(ﬁl})ij= h{aij}. With these definitions
E‘is easy to sce h{A.BE) = h{A).h(B), hiA+B) = L{A) + h(B)} and
E’] s {hfa}]'. Let A denote the set of all homomorphisms from
w 3. The following proposition is basic for our extenstions,

Eiticm 6! For matrices A and B over FH, h{A) = h(B)

il h e d if and only if A = 0.
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Proof of this proposition is an easy consequence of the fact that if
That &

ipd then, exists h ¢ i such that k{a} # h(k). [Halmos, P.R.[3 ).

s a consequence of the above propesition, we bave, G ig a g-inverse

of A if and only if h{G) is a g-inverse of h(A) for all h ¢ #.

Befinition : A square matrix T over [ 1is called a permutation

faatrixc if

{i} elements of any row are pairwise disjoint i.e., g.b =10

if a2 and b are two different slements of the same row.
(ii) elements of any column are pairwise disjoint
{iii} sum of all the elememts in any row 15 equal to 1

id  (iv) sum of all the elements in any coluwn is equal to 1,

Pefinition : A matrix (need not be square) over F is called &

partial permutation matrix if it satisfies conditiens (i) and (ii}.

We are justified in calling these matrices over H as

pirmitation and partial permutation matrices in view of the following

?w 4 (a) P is a permutation matyix over 5. if and only if

h(F}) 4is a permutation matrix over EQ for all he ¥

(b} P 1is a partial permutation over B if and only if

h{P) is a partial permutation over B, for all h e H
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Proof of the lomma is casy and 1s omitted.

¢ now prove

borma 5 @ Given matricos ﬁ._‘ over Bu, of the same order, indeasd by
_ e J

he #, there exists a matrix A over F such that hfA) = A‘h for all

he b,

Proof: Tt is sufflicient to prove that,given an cloment a, ¢ 2, indexed
5 h ¢ B, there exists a unicue element a e Z such that h{a) = a,
for all h e H. Since [ 1s a finite Soolean alpebra, we cam find
element s aj...a F f# such that, they are pairwise disjoint and any
tlement of ¥ is a sum of some of By-eed . For any homomorphism

b B :‘30 we can find an clement &, such that h {a_.l_‘r =1 and

;illaj] =0 if *j #i. ALso with the help of any a, we can define a
%ummﬂrphism ot 0 Ei‘ﬂ which is an extension of h[ai] =1 and

iaj] =0 for 3§ # 1., So there is one t0 one correspondence between

and a, ...

Let hl..'.hn e all the homomorphisms such that

hkiﬂi‘,} 1 it k=&

n

L if k£ ».

the piven elemsnt b . - . Uefin = . where
e give 5 be A . a, Uefine a Ial

1 2 n
wtion is taken over all i  such that g, = 1. It is easily
‘i
Bfied that hia) = &, for all h £ 4. Unicueness is clear.
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e now ready to prove our extensions

Theorem 17:  For square matrices A and [ over B, AB =1 implies

A 15 a permutation matrix over B and B = A'.

Proof - AE = T
2> h({AB) = h{A).h(B) = h{(I} = 1 for all he ¥H
=> h(A) is a permutation matrix over U, and h(B) = h(A}' -
for all he &

=» A is a permutation matrix over 5 and B = A,

Thagrem 18: If 2 matrix A over 0§ has a g-inverse, then it has a

partial permutation matrix over 5 as g-inverse.

Proof : A has a g-inverse
=» h(A) has a g-inverse for all h e &
=»  h(A) has a partial permutation g-inverse, say Qh OVeT Bo

for all h
2>  there exists a partial permutation Q over 7 which is a

g-inverse of A.

Thearem 19: £ A" exists, then it is5 A°,

Proof :  Let G be A7
=> h{G) = [hEA]]+ for all h e ¥
But [h(A))" = [h(A)]" = h(a') for all h e &
=> hi{z) = h{A')} for all he d

= 0 = A',



Leama & : Let A and 0 he twe matrices ovor o Then  M{AF = M{R)

1 and only 1 M{h{a))

i

PREETY for a1 b ool

Proof : TLE part ¢ MCW{AY) = M(h{D}} fer all h e H

=» fi{A) = hib) Ch amd  h{d) hia) ﬂh,. ter all h e K. Therefore

1i

we can find matrices € and D such thet &(C) = C,. and hiG} = D

h h

for a1 h ¢ & sa that LIH) h{B) . R{C} = N{MCY  and ®B{N} = h(A).h(D}

A

=h{AD) for 201 h ¢ 7 which implies A= 20 and B = AD. Hence

YA = M(B) .

Wnly if" part :  MA} = MD} => A = % and 3 = 3D for some € and
n

Therefere h(A) = (D), h(C} and {8} = KENLhED) for all h e H

Milch implies  Mh{A}) = M(h{(L}) for all h ¢ A.

heorem 20 ¢ an @ =10 matrix « over o hes o space deeowposttion if

ind orily if A has a g-inverse,

Jaof ¢ TifT part @ A& has a peimversc => h{A} Hhas 2 I=INVETSE,
Horall hoc & => h{A) = Lh R, [space Jecomposition of h{A)) for

Bl hoe B osuch thet  SThiaAn)

Ml ot ME(A)') = MRY) for all
£
Mt r Be max T where p, is the rank of h{Al.

¢ hed | h

_ Bne Lh = “"h : 'CJ.FJ where 0,1 iz null matrix of orderv

Ry, {
% # B .FE _' - - ; . -
_{rr; rl:-} B L*h | where {Ih 15 nult matyix of order
| O
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z, - r,)x n. Then h(A) = L R for all h e, where Lh is
of order m = T, antd Rh is of order £, XN for all h e H

and  MCh{A}]) = M[fh} and Mh(A)') = MIR%J. S0 wo ean Find matrices
L and R over & such that h{L} = ﬁh and h{R) = .

h for all he H

Mow it ¢learly follows that A = LR.

Other part follows trivially,
Rematk 20 : All the above results of this section can be extended to
matrices over any Boolcan alpebra B (not nccessarily finite), The
hint is that, if one wishes to prove a result about a matrix A  over
B it is onough to consider A a5 a matrix over a finite Boolean algebra
generated by the elements of A, This is because of the feollowing lemmz

which is easy to prove using homomorphisms.

lerma 7 ¢ Let A be 2 matrix over a Roolcan alpebra F ., It has a
peneralized inverse ocver 5 if and only 1f it has a generalized inverse

over the Dpolean algebra generated by the elements of A

[The guthor has obtained the results of this chaptor jointly with

b, ¥.P.5. Bhaskara Rag in Jenuary 1973, ceor:lately unaware of the
earlizr work of Plemmans [7}. Mo had belotetly bposm that Plemmons
has obtnined 2 version of Corollary to Pronesition 4 and Thearem 4,
It should be neted that gur approach is entirsly di“Ferent then that

of Plepmons. However we do scknowledge the triority of his results.]



CHAPTER 1
g- INVERSES OF KONNEGATIVE MATRICRES

i1 Introducticn and Sumnary

In this chapter we discuss in general about nonnegative matrices

having various types of nonncgative g-inverses,

To start with, in section 2.2, a simple special type of nonnegative
rtrices, viz,, doubly stochastic matrices are considercd. Doubly stochastic
setrices having doubly stochastic g-inversus are characterised in this
section, This vesult can alse be obtained us a particular case of a later

section.  However the proofs given here are of independent interest.

In section Z.3 nonnegative matrices posscssing various types of
nomnegative g-inverses are characterised., Tt is shown that a nonnegative
mtrix of rank T possesses nonegative g-inverse if and only if it has
m r¥ roapnsingular diagonal submatrix., 1t 1s also established that
for 2 nompegative matrix to pessess ¢ nonnegative mindmum norm g-inverse
it is necessary and sufficient thot every puair of columns are either
orthogonal or one is a multiple of the other. Similar results for least

squares g-inverse and boore-Penrose inversc arc also proved.

In section 4 of this chapter, stochastic matrices are considered.
Yecessary and sufficient conditions for a stochastic matrix to possess

‘mrious types of stochastic g-inverscs are established,
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Finally in section 2,5 an algorithm for computing a nonnegative
g-inverse of a nonnggative matrix is developed., At the eond of this
section computaticnal Fformulas are given in a tsbular form for computing

mnimum norm g-inverse, least squares p-inverse and Moore-Penross inverse.

32 geinverses of doubly stochastiv matrices

lefinition : An n = n nonnegative matrix i5 said to be doubly stochastic

it
n n
oA =] and g oa,, =1 for =1, ...n.
i=1 3% i=) M

efinition ¢ An nx n matrix A is sald to be an isometry if

M ff=l x| v oxer”
Wfinition : An mw n matrix A& s said to he a partial isometry if
[FA] =[fa] v xe MAD)

mn the above definitions it immediately follows that A is an lsometry

tand only if A = A"T and & is g partial isometry if and only if

ey,

It is well known that & nonsingtlar doubly stochastic matrix has

dbly stochastic inverse if and only if it i3 3 peroutation matrix
permutation matrices are the only doubly stochastic isometries,

tMs section we prove that a doubly stochastic matrix has a doubly

ghastic g-inverse if znd enly if it is partial isometry.
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prove a theogrem on partial isometrics which is wsed later.

reml: A is a partial isomstry if and only if ane of the

ming equivalent conditions holds,

i] Eﬂﬁ*)p A is a3 partial isomerry for soms nonnegative

integer p,

i1) (AaanP is a partiat isometry for some positive integer p
£
Y (aaP 4 is partial isometry
P Can? oan @ TeeanPa = an)Pa
e, @A P A = aanPa
ey {AA'}2P+1 A=A
& i zp L) zp"i L
<ad CEAA'A-AY = 0 where © = [(AA'I7H+{mAN) to. e (ALY +I]
- K> AMA = A Bince C  is positive definite
=y A ds partial isometTy
i1) {88} is partial isometry
s (I,:uﬁkf]zp = (}mr]P
@ ran T o

L] CERATAM -AA') = 0 where O o= [{Aﬂ‘jzp_l+[!‘uﬂ'jzp-2h..+(M«‘)

+ I}



<= AMTAAY = AAY O saneqe € s puod.

<=¥ A is partial isometry.

This proves the theorsm,

In the seguel we need a result of Sinkhern (19681 which we state
below For completeness,
lemma 1 @ If A is a doubly stochastic an! idempotent matrix then

A 1% symmetric,

heorem 2 Lot - A be a doubly stochastic matrix possessing a doubly

. . + _ .
stochastic g-inverse. Then A is Jdouhly stochastic.

froaf ; Let G be a doubly stechastic g-invorse of A

td

and let

b= Glﬁ.{:l. Observe that (& is a doubly stochastic reflexive g-inverse

of A Furtlier G4 and AC are idempotent and doubly stochastic and

bence by Lemna 1 aee symmetric, Therefore G = A

jemark 1 . foubly stochastic reflexive geinverse of a Zoubly

Aochastic matrix is unique and in fact it is the Moore-Ponrose inverse.

B now prove

Hueorem 3 : Let A be a normal doubly stochastic matrix. Then the

ihllowing statements are ecuivalent.
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{a) & has a doubly stochastic g-inverse
() each nonzero eipen value of A is of modulus unity
(e} A 1s @ partial isometry,

Prouf : Let R{A) = r. Since A 15 normal then exists a unitary

matrix 11 such that & =Y A U* where A = diag( ll.i.hn} and

Ayoe ln are the eigen values of A, Without loss of generality
' i 1 . e b .

let 11...hr he nonzero  and lr+1 ln ¢ ZRTG

a} =» (b}

A thas s doubly stochastic g-inverse implies (by Theorem 2) that

A" is doubly stochastic. Since A is doubly stochastic ]lil < 1

for i = 1...r. Clearly At = Un*u* whare
¥

n*= diag [ %uu %m . %*—G .es 91 Again since & is doubly
1 g T
stochastic |%fm[ <1 for i=1l...r

1

Hence Flii =1 for i=1l...r

{b} => {c)

First observe that A* = A' since & is real. [Ai! = T

for i = 1,2...r => AA*A =h and hence AA*A = AL
S0 AT = A% = A"

8 =r {a) is trivial,
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Theorem 4 ¢ A Joubly stochastlc matris A possesses a doubly stochastic

g-inverse 1f dnd only if 1t is a partial isometry.

Proof @ 'Lf' part is trivial.

To prove the *Toly aft part, let 4« 2

If A has a doubly stochastic g-inverse, then by Thenrem 2
G 15 deoubly stachastic. S0 G'G which is [;‘m'f is doubly stachastic

and by Theorem 3 A" s partial isometry. 5o by Theetem 1, A 1s

partial isometyy.

1.3 g-inverses of nea-nepative matrices

Tefore proceccing to study nonnegative matricos possessing non-
legative g-inverses we recall some results of chapter 1 on Doslean

;f‘gmrices which are true in pemeral for raal matrices and which zre used in

TMhe sequel. vroufs are same as these of chapter 1 amd hence are omitted.
Meorem 5 @ Let A ke an mo% on matrix of rank v, Taen there

@izt permutation matrices T oand 7 and matrices £ and U of

gpmpriate orders such that

Ak na
Nk 1 .1C

® A, 15 ¥ x r nonsingular matrix,



thearem & et & = Then 3 =

A g .m'il i G G~’r

s a & if and only if {G, + GG, * 6,0 + €65} is a A

ferma 2 5 (i Let G be a veflexive g-inversc of f.  Then

4%

{a) ith row [eolurn) of AG is null if and only if i T

fiumn) of #(G} is null.

-
{b) if i“h row {columm} of A is null then the matrix obtained
replacing ith column {row) of G Dby null vector is also a reflexive

imrerse of A

{c)  all the rows {columns) of A corrcsponding to the null
mps {rows) of G are linearly dependent cn the other rows {columns}

k.

(ii} Let = be a least sguares roflexive g-inverse of A, Then

v of A& is pull if and only if ith column of 4 is null,

{tii) Let € be a minimum norm reflexive c-inverse of A,
- th s . . .o . th e g
4 columm of A is null if and only if 17 row of G 18 null.

L]

. .th
fiv) Let G The the Moore-Penresc inverse of A, Then 3 TOKW

m] of A is null if and only if i th column {row) if & is null.

is$ elementary and hencc 15 omitted,
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.-"il A}-C
meprem 7 Let A = wheye 2. is nonsingular. Then
— ) i
DA A, C
1 1
El Q - = _1
(i} is a reflexive g-inverse of A where El = kl ;
L) .
_Sl o fT
(i1} iz a least squares g-inverse of A where
o 5
R E';)Al]“
T R
(iii} 1 i3 a minimum norm g-inverse of A whoere
: 1 r
C'e, 0
1o Ty e ey
f E’IE-""
d {iv} 1 is the Moore-Penrose inverse of [ where
t Ex FRoh
C LI C Ly
(= (1 + DA (T + cen]
¢ theorem follows by straightforward verification.
fnow prove
worem & : Let G be a reflexive g-inverse of an m x n matrix A,

en there exist permutation matrices P and { such that

- o

Ay AC G G, &
= and QTGP = where all
Dﬂl D.ﬁ.lC F

rows and columns of both Al and Gl arg non-null and G1 is a

flexive g-inverse of Ay



e

. . . th . . th . s
froof : Let t., i....1 " rows ond 1, ... ] columns of A0 he
- i1° 74 p 1 v
wil and 1ot {2., $,...5 be the union of {i,...1_ )} and

1 2 m-T J b

[jl”'jq}' Let 7 be 3 pormutation matrix such that the

) SyeseS rows aned columns of AG  are the last m-r Tows and

M-I

lumns of  YAGPY, i.e.,

h

)

|1 U
pAGE = | : = 1 (sov)
U, Uy
, - ., .th . TR P
Hhere Ul is of order T2 r and 1 Tow of j_[f._i s, dee., {Tei)
: . : . th : . th
M oef U is nonnull implies ('I‘H]h column of U i.e.. i columm
HE th u,
i is null., Similarly 1 ecolumm of is monnull implie
U i,
: 4
;fith oW of HTS : UJ is nal). Also ne row of {Hl : ‘.J2,1 is null and
Yy

B colusmn K Cis nult.
Y3

In a similar monner we pet a pormutation matrix £ such that

nIGAT = 1 1 =v (say)
Bere v iz of order t » ¢ (s53y) and the last n-t rows and
Bloms satisfy conditioens similar to thnse above, Wow censider

Py = | 2 and  voEt o= | D ?
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shere Al iz of order r *x t- and G, 1is of order © ox t.

i

. _
G, 0
First observe that Q'GFY is a {F Aa} We will show that I 1 \
1

b

is also a [:smg];

Let {r*i]th column of Q'CE'  be nonnuil, Then [r+i}th row af 11
is null, so r[r--vi]th row of TAQ is null. Therefore we can replace

fre1) h columm of Q'GP by a null column and still have a {“iqj' Thusg

v can replace all the nomnull eolumns of 2] by null columns and
| Sal 7 ¢, o7
fonnull vows of Gy G, ] by null rows apd get i ;mwaieh
" g &
it 3 {PﬁQj;i go G, is a reflexive g-inverse of A,

L

Now using
leme 2 we met that PAQ is of the fors 1

jP] “h c

if hl has 2 null row say, ith {i <r), then ith row of DA is

11, so ith row of [ is null whick 4% 3 contvadiction. Henoe

! Hetice that
A

;".1
s not bave zny null row. Fimilarly we can show that iy Has no null

iumne.

Finally by the symmetry of the argument we conclude that

' is of the stated form and Gl has no null row and null column

+

i¢ the thoorem follows,

Below we s2tate a leama which is wvery casy Lo prove.
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dmma 3 0 AR om ox 0 ponbegative matrix A of rank om POSSESS0s 4

pomegative ripht leverse 1f and only i there cxists a permutation

ptrix F  such that A8 = (A

o ﬂlc} where ﬁl is a nonsinpular
disgonal matrix of order m x m.
[Mnllarf ! A nomnsingular nornegative matrix A has a nonnegative

fwerse if and only if theve exists a permutation matrix P such that

¥ i3 a nonsingular diagonal matrix,

1 0
rroceeding to g-inverses, the matrix A = 0 has a
s -
10 . i!”E -1 17
wnegetive g-inverse hut A0 = 7 is not
21 0 -1 2 1

poregative,  Sp the existence of a nonnegative g-inwverse does not
guure the nonnegativensss of the Mooru-rFenrese inverse as in the
s of doulily stochastic matrices. TNefore proceeding furthor we

ite 4 thocorew on nonnegative matrices [(Gantmacher L11].

Pearen @ @ To the maximal characteristic value © af 3 nommegative

Bitrix & therve belong positive eigen vectors of &4 and A' if and
Ky if A can bo represented by a permutation in quasidiagonal form
=diag(ﬁ1 : ﬁz...ﬂﬁ] whore ﬂl.i.ﬁs are irreducible matricos cach
fuwhich has r as its maximal characteristic value.

Eﬂlarv : Let A be A nonmegative idempotent matrix such that all

K oplumns and rows of A are nonnnll,  Then there exists o permuta-

famatrix P such that A9 = diag-[‘ﬁal:é,}...ﬁg) when each f"li is
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a rank one idempotent matrix and s is the rank of Al

-ﬁgﬂfi Since A is idempotent with all the rows and colunns nonnull

its maximal eigen wvalue is 1 and x, the vector of row sums is a

wsitive characteristic cigen vector corresponding to the etigen value

. x is pesitive since A does not have any rull row. Similarly

ty the vector of column sumsa is a positive eigen vector of A' corres-

wnding to the eigen value 1. Therefore by Theorewm & it follows that

there exists a permutation matrix P such that ?h?‘ﬂdiug{hlzhz.. Ay

el

he e &13 ﬁz...As are irreducible and have 1 as a muximal characteristic

wet,  Since ﬂi is irreducible this maximal characteristice root is

rique, i.c., simple, Also S is idempotent implies Ai is idempotent

hich implies ﬁi is of rank I. Therefores vank of A 113 s, This

tepletes the proof of the corollary.

The

mark 2 : IF , it has a nonnegative

A > 0 has a nonnegative g-inversc G

namely GAG,

nt we proceed to prove

erMnlﬂ A nomnepative matrix A of order m % m, all the rows

R golumns of which are nonnull has a nonnegative reflexive g-inverse

ith all the rows and columns nonnull if and only if there exist

putation matrices T and ¢ such that




ThY;
vhere o

is an r » r nonsingular diagonal matrix, r ZIs the rank

of A and T and D are such that CC' and &' are diagonal.

] . , ¥ .
rroof; 'If' part follows trivially once we ohserve that A given

by (iv) of Theorem 7 1s nouncgative aud has no null row or mull eolumn.
*Only if' part : Since A and G do rot have null rows cond seees

vealupms, so AD and GA  do not have null rows aud columns, Therefore

by corollary tc Thaorem 9 thore cxists o permutation matrix Pl
3 Hr] where Hi's are ronk 1 idempotent matrices

such that
1 L. N ‘
PIAGFL x dlagful ¢ H

id r is the rank of A, Let H, be of order m, x m,. Partitioning

_ . .
FlA and l.'w'P1 ag
A f
P oa0w ! JALANE- S [ ¥ :
Pa A and 6P} =[G ... G
2}
- N
A
r

kere ﬂi is of order m ¥ n and Gi is of grder n = m.1 it can be

ksily observed that 6, isa (Ai)' and hence A, is of rank 1.

al oy e a1 row of Hi'

Then  2,...2, are independent since A is of tank r. Now we

!nrearrﬂnge the tows of & DLy premultiplying by a permutation matrix

as o
“'ul - ¥y
TA = o=
P::‘ 1 where "W o
[ Z
1 .
- o
T
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sl D 15 such thet each row of D has exactly cne nonzern element.
S50 D'D is diagonal. Thus we have

— e

PL = where T o= PEPI, El ts an ¥ ¥ T ponnsgative
LB

e T
matrix of rank » and D is 2 nonnegative matTix of order {m-1v) =T

such that DP'D is Jiagonal,

Partitioning GF'  as (G, + G,) where G 15 of crder o ¥ ¥ we can

shserve that Gy = Gl + GEH is a noonnegative reflexive p-inverse of

B, Also it can be easily proved that all tho rows and columms of both
b and G, are nomMl1, Hence by applying the above arpument we can

show that there exists a permutation matrix Ql such that BEQL 15

of the form

HIQI = [EH : chl]

shere EE is a r® r nonsingular matrix and Cl is o nomnegative

ratrix of order r % (n-r} such that €OV is diaponal. Now partitioning

I a o B LR o ] o . ™ H + 7 03 i* : : 1Ive
%rs 25 (G} @ Gg}'it cam be seen that ‘6 ® Eq * ;6. 15 a nonnegative
inverse -of the nonnogstive matrix u1 which shows that there uxisis a

permutation matrix QE such that b = Hott, i3 disgomal,

-

55 ElquS = {7 : B} where O = Qéﬁl = {
B) it
nd Q3 =1 2 Thus Jenoting QIQS vy 0 we have



I [":1 ue whiC

whre B is an v x r nonsinpular diagomal matyix und O oapd D are

whinegative matrices such that CC' and 2'0  are diagonal. This

completes the proof of the theorem,

1

-
¥e note that in theﬁmrtiti:}n of ‘“?‘1;". as .

|

i in the proof
1 ]" ‘
-

a—

of above theorem fy A,}i =0, i# 3. This is Lecause §  dis Jiagonal

md cach column of BC

i5 just a constant multiple of a single column of
|

50 fx; roT @, i #3 = a‘kin'. = 1, Thus we have
Jmark %1 Every pailr of yows{volumms) of A are either orthogonal

krone is a multiple of the other.

Brollary T a nonnegative matrix A with nonnull rows and cojumns
- . . -

s 2 nonnepative g-inverse with nonnull rows and columns then A s

Wrnzgative and is of the form A where [ is a Jdiagonal matrix,

Eouf: We have scon in the gruof of Theorem 10 that there cxists a

Putation matrix P such that

Fa = &, where ;"i iz of vank 1, for 1= 1...1.




B2
From the Temark 3 above we have Aiﬁg =0 for 1i# 3.

Also observe that if B is of rank 1 ther H+ -

Putting these facts together we have

Awpr| l
A
— r._
— o, W
At e M
!ﬁ.r
= (h{ Ve ﬁ;} P
1
a - ] T - i e
¢ —"-':i,[
ﬁ 1Y ‘ﬂtl I;'ul . Ll k N 5
= QL ¥ where I = diag (e, ¢ c,I ... e 1)
{H A |
= ‘liillzp ‘)
= A*Dl
vhere [}, = PTDP » 0 which is diagonal. This proves the corellary.

1

fhegrem 11 @ A nownegative matrix € is a reflexive g-inverse of a
gormegative matrix A of order m = n and vank ¥ if amd only if there

frist permutation matrices P and § such that

AI .-‘11(3 Gl Glﬁ
PG = and P'GF' =

b DhIC FC Fii F
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vhers hl and Ll are r * r nonsingular matrices and €, U, £ and

are such that

6, = {(T + EN A (T« cF}]"l.

ropf : 'If' part of the theorem fullows from Thecrem 6. To prove 'Only
f' part, let & Do = ﬂ;. Then from Theorem § it Follows that there

st permutation matrices PI and Ql such that

i BI H 1%
AN QiGPi =

PAQ, = :
b Y YHX ’

f VD VLT

vhere 3 and H have no null row and null celunn and H 1s a B,
Yow applying Theorem 10 we have for some permutation matrices P2

gnd Qz

‘ A 4,64 ’
R = . )
272 \JIAI DlﬁlLll

re Al is r x v nonsinpular diaponal matrix and £, and ﬂl are

. Ly 1 1A i =y g RN g
h that 8 andl Diu,  are diagonal, Writing QEH Loas

—

it Fallows from Thoorem 6

t 6, +C G,); + €,6,0, is Al which implies G, G,D

p 60y ¢ Gy ¢ 06D, 1t B2

are diagonal. Therafore {Gl + 0. 65.] and (G1 + GEEI} are

§ 73
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diagonal. Obse¥ve that if any row of {El + GQDI} is5 nell then a

row of cither B or H is null which isz contradiction, Sc {Gl + Gzﬂlj
is nonsingular. Similarly we can show that (GI + EIGS} 15 non-
singular. Now H is B implies

G = (G * G,0.) A (G + C,G),

which implies & is nonsinenlar. 5o QEHP% is of the form

i
- . —
Gl dlEl
whare Gl is v * r nonsingular -diagpenal matrix,
1 F16 Fi6iEy
Therefore
Pul AIC Gl GIE
PAQ = and Q'GF' = .
1.!.!11 Df";lC ]'Gl FGIE
Cop, 0 T, 07
vhere P = Fl and 0 = Ql
Q I o 1

‘Test of the proof follows from Theorem G.

Remark 4 : In the above set up EDI and CF are diaponal. This is

bocause

]
1¥

- -l
= LU+ EDA( + CF)]

-1

2> (I + CF}Gl 331{1 + LI

=> (I + ED) Y

iw

T since A and G

1 are diagonal

1



=> {I + EU} is diapomal since (J + EI} > ©

=3 ED  is diagonal,

Similarly we can show that [F is diagonal. .
Theprem i2 ¢ Let A be a nonnepative matrix. Then

(i} A& has & nonnepative g-inverse 1f and only if there exist

parmutation matrices P and 0§ such that

‘ A nC

% F"ﬂ». = -
1 N U”’I ) 1{1

where A, is 2 nonsingular diagonal matrix

£i1) A has a nennegative least squares g-inverse if and only
if O'R  is diagonal in the condition of (i)
{iii)} A has a nonnegative minimum norm g-inverse if and only if
CC' is diapgonal in the conditien of (i)

and [iv) A lhas nopnegative AY if and only if both DD and

CC' are diagonal in condition (1),

Proof 1 fI{" wart follows from Theorem 7 and the 'Only if'

part of (i} follows from Theoorem 11.

For "Only if" part of (ii}, Tet G be a nonnegetive least
squares réflexive g-inverse of A, Then by Theorem 11 there exist

permutaztion watrices F and £ such that
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PAQ = { na. DALC and - QIGR' = Vpe  pg g

e — — —

whers A, and G, are nonsingular diagonal matrices and

G, = [{I +EDA (I + cry1 L

Now AG is symmetric implies

Alu + cr]le = [m1 (I + CF}GI]'

Sa E = D' since AI[I » EF)GI is nonsinpular and diagenal.
. Therefore by Remark4  we have D'D i1s diagonal. We can prove

the rest in a similar way.
‘Corollary : Let A be a nonnegative matrix. Then

(i} AA' has a nonnegative g-inverse if and only if A has

a nonnegative minimum norm g-inverse

(i) A'A has a nonnegative g-inverse if and only if A

has a nonnegative lesst sgquares g-inverse.

The result (i] fellows trivially once we observe that
(Am)*A'm is a {AA') anmd A'(AA*}” 1s a A'm, Proof

of ({ii) 1is similar.
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"4 g-inverses of stochastic matrices

fefinition : & nopnepative matrix & of onder m o xn is said to be
n .
W stochastic if I a.. = ! for 1 =1,....,7.
=t M
efinition : A nonnegative matrix A of order == o 13 said to
1
t golumn stochastic if X 1.2 1 for 3§ = l...n.
i=1 M
it alk = 0, Then it is easy Tto check that A& and B ope tow

fschastic implies € is rvow stochastic. flso B oand © ore row

Echastic implies A is row stochastic.
B We prove

horgm 13 . Let A a2 g row stochastic matrix of order m = 1
3

B ¥, Suppose A nas no null column.  Then

{2) 2 row stochastic A& wxists if and omly if there

kt permutation matrices P and ¢ such that

f‘tl AlE
A} =

UAI ﬂhlﬁ

A, 15 r ¥ r nonsingular diayonal matrix zand € is such

(€' is diaponal

(b) & Tow stochastic ﬁ; uxists if and only 1f D'D 1s

il in the condition of (a)}

afd
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{t) 2 row stochastic A; exists if and only if C is

trlumn stochastic in the condition of {a})

{d) A" is rvow stochastic if and only if € is columm

stochastic and D'D  is diagomal in the condiviem of (a).

sroaf: For proving 'if part’ of the thevrem we construct the respective
ww stochastic g-inverses under the hypothesis. Let X be an r x (i-r)

jatrix such that

x,i.j = 1 if cij 20

= 0 ntherwise.
G G

et ¢ = gl ? LI
EGJ" X'G, L

Now the following statemcnts are easy to verify under the respective
wpothesis

) 6 is a row stochastic A; for G = I amd E =0

)} & is a row stochastic A, for G {I + DTD}'l and L = [

ir 1

FE]

&] G is a row stochastic ﬂ;r for G I and E =0 and

1

G is row stochastic and AT far G (1 + n’ﬂ}'l ane £ = D',

To prove 'enly if' part of theorem, let G be a row stochastic
flexive g-inverse of A, Then by Theorcm 1l and Remark 4 it follows

t there exist permutation matrices P and 0§ such that
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l Ay AL Gy 6,E
PAQ = and Q'Gpt :
DAI L].-'kii: FG FGIE l

it

1

wvhere Al and Gl arg T R v

€, 0, E und F are such that C¢F and EP are diagonal and

nonsingular disgonal matrices and

(1 +CF) 6 (1 +1¥D) = n11

A and G are row stochastic implies D and F  are

Tow stochastic.

Now CF is diagonal iwplies every columa of € has atmost

othe nonzero element. So CC'  is diagonal. This completes the

proof offonly if' gart of (a).
In wdditien to A; let G be also a hi. Then AG is
gmmetric which implies C = F'. Sp € is ¢olumm stochastic,

flmilarly, if G is a row stochastic ﬁr; then we can show

that D = B' which implies RB'D is diaponal, sinee ED is

pagonal.  Finally the 'only if' part of (4} Scllows from thosc of

F] and (ej.

This crmpletes the proof of the theorem.

bmark B : We can relax the condition that A has no null colum

ft the case of ({al and ({b). However it is necessary for the

. - +
mstence of row stochasrtic An and A,

Similarzly, for colum 51‘.0&351:*. matrices we have
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meorEm 14 ¢ Let A& be a column stochastic matrix of order m = n

mé rank r. Suppese A has no null row, Then

fa) @ column stochastic A exists if and only if there

gxi5t permutation matrices P and Q such that

ﬁl AIE

PAG =

DAI U&IC

e —

Waore A1 15 v *» v nonsingular diaponal watrix and D

iz such that D'D is diagonal

{b] a column stochastic ﬂi cxists if and enly if CC!

is diagonal in the condition of (a).

{¢) a column stochastic ﬂ; exists if and only if D is

row stochastic in the condition of (a)

(d} 2 is columh stochastic if and only if © 15 tow

A

stochastic and CC' is diagonal in the condition of (a).

plly we have

wem 15 @ Let /A be a doubly stochastic matrix of order p = n

rank r then it has a doubly stochastic g-inverse if and only if

% oxist permutation matrices P and § such that

A MO T

1 N1
PA =

DRI Eﬁlﬂ



71
where Ai i5 T x* r nopsingular diagopal matrix and C and D
are such that both CC' and D0'D  are diagonal.
The theorem follows from the Theorems 13 and 14,

Coxollary : A doubly stochastic matrix A has a doubly stochastic

g-inverse if and only i1f there exist permutation matrices P and 0Q

such that
PAD = diag(Jl P Jr}

where Ji is rank 1 doubly stochastic matrix i.e., all the elements of

i .
Ji are egqual to . where m, is the order of J..
i

3.5 Algorithm for computing & nonnepative g-inverse

Let A be the piven nonnegative matrix of order mx n. To
cwmpute a nonmegative g-inverse of A we procoed as in chapter 1.

¥e yse the same algerithm of chapter 1 (Page 38) and get

k,il,l2 R ST jl‘jz cee dy and Cp. Let 6 ke such that

(B2

g B emei— if (C) #0
ij { k} k T

i

i)
) otherwise.

The following theorsm is easy to prave

sorem 16 : A nonmegative A exists if and only if 6 isa A%,
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Remark ¢ : Here again, the algorithm always gives z nonpegative matrix
G whether "A has a nomnegative g-inverse or not. So we have to check

whether G is A . or not, after computing G.

As 1n the case of Soolean matrices here also conditions for
existonce and computation of other types of g-inverses are tabuleted

in Tatle 5.

Let A bean m =xn metrix snd A& cxist. Let G1 ba the
h th

matrix with ipt Tow as the ip row of A Zavided by the sum of

squares of elements in that row, for p = 1,2 ... k &nd rest of the
rows are null. Lat Gz be tho matrix with jﬁth column as the j th
column of A devided Ly the sum of squarés of elements in that
colum, Let w, Wor cous Wy be the columm weights of Gl and

wi,_wé ... W, be the row weights of G,. Let G, and G, be as

follows : (Gy) 21 if EGlj e 0 Vi
ij i)

Gy = 1 if (G)) # 0
ij 1]
= { otherwise

and (G,) =1 if (GE) w 0 ¥}

Yl ij

(G,) =1 if (G, # 0
Vi3 ¥y

=0 otherwise
A voctor X iz said to satisfy thoe condition € if all the

nonzero elemonts of x  are aqual,
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rows and columms of A

satisfy condition O

Tahle &
Type of A Type of A Condition for existence b Given trv
Nomnegative Nonnegative
= ] ]
Am wi <1 ¥ o1 Gl
= 1 r |
+ 1 | 1 I
A W, *_l and Wi ﬁ_l ¥ GICkGE
Row stochastic Oew stochkastic
A weoel ¥ Gy
- I T A . I '
Am Wi"l ¥ i and rows of Cy GS
satisfy condizion £
- | : ' T
J‘ILE wi 3 1 alnd w.l =1 Vi EckGE
+*
= im Vi oan A T
A wi 1 and wi 1 Vv ianl %SLkGE
rows of Gl setis{y
condition C
Golumn stochastic|Column stochastic
A wh el Wi Gé
a" L 1 . N Iz oL
hA hi _E_ 1 and \9.] 1¥ 1 GIC]-:"A
ﬁ.; wi =1 ¥ i and wolumrs of Gé
Gz satisfy conditicn ©
a ¥ - T o /i ) '
A hi-—l an:d .-.ifl ¥ i ang Gl‘:kﬂd
colums of ¢, satisfy
condition €
Joubly stochastic| Doubly stochastic
ATAT AR w.=t and wizl ¥V i and A
El g *'qt 1 1
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[ version of Thzorenm 4, Corellary to Theoysn 19 snd warts {1] apd
{iv} of Trenram 12 are alse indemendentlyv aktninad by Plemmons {8]

and Plemmons ans' Cline [2].]



CHAPTER 3

CHARACTERISATIONS OF MERELY POSITIVE SUBDEFINITE
MATRICES AND RELATED RESULTS

3.1 Introduction and Summary

The concept of quasiconvex and pseudoconvex quadratic forms which
play an impertant rele in mathematical programming problems lead to a
new subclass of real symmetric matrices, namely positive subdefinite
(PSubD) matrices. Martos [4 ] made an interesting study of these matrices
where he proves some nice propérties of merely positive subdefinite
(MPSubD} matrices, matrices which are PSubD Lyt not positive semi-definite

(FSemil), He wondered whether seme of the properties of these matrices,

proved By him, would characterise the MPSubD matrices.

The object of this chapter is to answer his question in the
affirmative, there by obtaining an interesting characterisation of MPSubD
matrices. We obtaln another characterisation of MPSubD watrices similar
to the one of PSemil matrices. These characterisations provide an casy
recognition of quasiconvex and pssudcesnvex quadratic forms. We study
_ﬂmse matrices with respect to the penerslized inverse also. It
18 well known that & PScmlD matrix has a PSemiD g-inverse. However as
e show, barring trivial cases MPSubD matrices do not possess MPSubD

g-inverses,

For compileteness we give some definitions and state some theoraems

of Martos,
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Definition : The real symmetric n x n matrix & 1is positive semd-

definite (PScmiD) if for any n-vegtor X
x'Ax = 0 implies Ax =0

Definition ;' The real symmetric n * n wmatrix A is positive subdefinite

(PSubli) if for any n-vector x

'Ax < 0 implies Ax is elther nonnegative or nonpositive.

befinition : ‘fhe real symmetric n *» n matrix A 1s strictly positive

subdefinite if for any n-vector =

x'Ax « 0 impliocs Ax is either strictly positive or

strictly negative,
Definition : A PSubl matrix which is net PSemill is called merely
positive subdefinite (MPSubD).

pefinition : A quadractic form {(x) = x'Ax 1is convex in the set

X, if for all Kiy By € X,

. 1 1 - 1
2{x1 le Axl 1_11Ax1 xzﬂxz
efinition @ Q{x) = x"Ax is gquasiconvex in the set X, if for all
» Xy € X,

i - T LR T oy R =
xlhxl xzﬁxz > 0 dmpliss {xl xz} Axl >0



b
Definition : Q{x) = x'Ax Is pscwleconvex in the set %, if for all

X, e X

L

ll
xiﬂxl - xéﬂxz >0 implics (xl - xzjl Axl » 0,

Theorem 1 (Martcs) : An MPSubl) matrix

{(a} is nonpositive
{b) has exactly cne {simple) negative eigen value,

and (<) has the correspomding eigen vector either nonnegative or

nonpositive.

Theorem 2 (Martos) @ Q(x) = x'Ax 1is convex for every x if and

only if A is PSemil.

Theorem 3 (Martos) @ Q{x) = x"Ax is gquasiconvex for every nonnegative

x(x > 0} if and only if A is PSubl,

Theorem 4 (Martos) : Q(x) = x'Ax is pseudocenvex for every nonnagative

{nonnull) x if and only if A is strictly PSubl.

In the next secticn we prove the converse of Theorem 1 of Martos,
thereby obtaining charscterisation for WPSubb matrices. As the character-
isations of PSemlD matrices are well known, these together characterise
PSubD matrices, Thus, with the help of these characterisations, in view
of Theorems 3 and 4 of Martos, quasiconvex and pseudogomvex gquadratic

forms are easy to identify,
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Throughout this chapter xi denotes the ith clement of the

vector X , and Ak denotes the leading principal submatrix of order k.

3.2 Characterisations of MPSubD matrices

He prove

Theorem 5 : A nonpositive symmetric matrix, having exactly one (simple)

Jhegative eigen valae, is MPSubD,

Proof § Let & be a nonpositive symmetrie matrix having exactly
one negative eigen value 11. Therefore the eigen vactor of A

correspending to 11 is semi-unisigned? Consider the spectral decomposi-

tion of A

= 1 ¥ L T
A=Ay ByPy * A PPy ¢ vr P A Plp Yoo ¢ A BRy
where Lz,...,lr are positive cigen values of A are kr+1""'hn
e zers eigen values of A and Bp» Py rer Pp is the orthonormal
wt of cigen vectors of A corresponding to 11,32,...,hn. Without
loss of generality let N > 0 beeause P is semi-unisigned,

eTofore
A= hlplpi + lzpzpé LI lr?rp} e {13
X2 Py * CoPy * ... oD be any vector, then

Ax = llclpl + AZEEPZ oL F lrcrpr

A vector x is called semi-unisigned if x<= 0 or x> 0 and

% 1% called unicioned 1€ v o 0 omwm o ow = i
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and

i i i i .
()™ = llclpi + lzczp2 t .. lrﬂrpr for i =1,2,...n

To show that x'Ax <0 => Ax 2 0. Let ¢, 2 0.

XA < O = e # 0, therefore
+ + A cz] = (u, u) (2]
4 B ow rr , - u F
I .
LI :
vhere 't = S fva Cas aen

Since A < D

L 1.2 i, 2 e 1.3
s @D 2 0h7 67 < o

i i i i i
Hﬂw p1 m () o= pz L] P; 2 L,, = P; = ] => fﬂle = [}
. . i
Otherwise if Py ¥ 0
1 i 2
A 2 —g7 [ lgfpélz Pt 1rfP;} 1=, v +ea{3)
gy
where  v'o= -k /T, pl,... /AL oy
j -'{‘ 2 lei* LI ] 7 pr
P
(2) and (3) =»

=2A; * {wu) ¢ (v,v) s 20u,v)
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= =X > (U,V}

1
L T} > 1 {lci-t- +1ci]
1 S A2 R Rt
P
11
i : i :
* A EPy * AgCPs + o+ A < 0 cor (4)

that is (Ax)> < 0 for all 1 such that pi £0

Therefore {Ax}™ <0 forall i
Hence Ax < O,

Similsrly 1f c; = 0 the inequality in (4) changes and Ax > 0.
Hence the theorem.
in view of Theorem 1 of Martos [4] we thus have

Thepyrem & ¢ A real symmnetric matrix A is MPSubl if and only if

{a) A<
and (b) has exactly one (simnle} negative eigen value,
Remark 1 : It is interesting to note that if u  is MPSubD and

Ay € 0 then LAx]i =0 if apd enly i€ p; = {0, that is if and only

it 1% row and 1*® column of A are null. Hence we have the

Bollowing result.

An MPSubD matrix is strietly PSubD if and only if " is
misigned that is, if and only if A is irreducible [Gantmacher

3
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Alsc it is easy to observe that if A is MPSubD then = 0

Bij

implies sither a,; or ajj or both are zerc, and in the case of

strigily PSubbD aij = 0 =» B 7 ajj = 0,

We need the following lemma in the procF of Theorem 7. This lemma

is alse of independent interest.

Lemma 1 : If A is an n xn MPSubD matrix and B is = non-
negative matrix of order n x p then R'AB is zlso MPSubD, provided

it is not null,

Procf : 2BABx < O
a» ylAy< () whore ¥y = Bx
»
=7 ,ﬂ.y:‘f“ﬂx P 1)
-3 . , -
=» B'ABx ;—D since B > 0

Thus QJTAB iz MPSubD.

Remark 2 @ The above lemma holds for © < 0 alsa,

It ig known that a square matrix A is PSemiD if and only if
all its principal minors are non-negative. A similar characterisa-
tion for MPSubD matrices is proved below using a separation thecrem

(Wilkinson [15], pp 103},

The eigen values li,lé,.,.,la_l of the leading principal minoT

matrix Asq of the symmetric matrix An separate the elgen values

11’ 12, W LR ¥ Rn Qf An‘
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Theorem 7 : A nonpasitive symmetric matrix A(# 0) is MPSubD if and

only if all its principal ninors are nonpositive,

Proof & 'If* part © The proof is by inducticn. Assuming fy =0 or
MPSubD we will prove A, . is null or MPSubD, To show A, o is MPSubD
it is enough to show that it bas exactly one simple negative eigen value

as the result follows from YHeorem'd.

To stert with Ay = a,, <0 => A is C or MPSubD, Notice

. that R(Ak] E_R{Ak+1) E_R{Ak] + 2,
Caze 1. Let ﬂk v 0,

If Ak+1 is also nuoll we are done. Otherwise if R(Ak+lj =1
which implies there is only one nonzero sigen value of Ak+l‘ which
‘has to be necgative since tr[Ak+1) < 0. On the other hand if
R(Ak+1] = 2 then out of the nonzero eipen values of ﬁk+1 one is

positive and the ather is negative because of separation theoren.

Case 2. Let A is MPSubD. We will show that ,wk+i iz also MPSabD,

: ' 1 : ,
Denoting by ll,lé,...,lk, the eigen values of hk and Al’AZ""'lk+1

the eigen values of hk+1 in increasing order we have by separation

> +
theoren 11< @, 13 <0 and 13,....kk*1 are uonnegative. Now if

> 0 then xl is the only negative eigen value of Ak+l and hence

‘the result, Otherwise that is A, < 0 we will show a contradiction,
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Let H(ﬂk+1} = m. Theon there exists an mth oTder nonzers
principal sminor of Ak*l’ which can be brought to mth ocrder leading
principal wminor of Ak+1 by using same permutation on rows and columns
of A ;- A5 MPSub definiteness is undisterted by these operations
(Lemma 1) without loss of generality we ¢an assume that the m-th order
leading principal minor of A, ; i5 nonzero. Therefore hy hypothesis m-th

order leading principal minor of Ay ,p 15 negative.

Considering the spectral decomposition of A, . we have

v} ¥ P ME! FlMP

171 3
bar = F pt =
0 0 P MP P oML
Py By
where F = is an cgrthogonal matrix and M is diagonal
_FE P4ﬂ;

matrix of m?h order with diagonal elewents as the nonzero eigen
values of Ak+l' So det M > ¢ as there arc cxactly two negative
eigen values of ﬁk+1' Thus m-th order principal minor of ALey?
that is dst PIMPi > 0 which is contradiction., Therefcre 12 £,
Hence A, 1is the only negative cigen values of A 4y That proves
the'if' part,

"Unly if' part ¢ Given A is MPSubD, to show that every principal
minor of A < 7. To show this given any ™ order principal minar

there exists a permutation matrix ! such that the given minor is
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the leading principal minor of B = PAP', Now consider

FAR? =

where IT is the identity matrix of order r. ¥From Lemma 1 and

coroliary of Martos [4] it follows that B, 1s MPSubD.

Hence the theoren,

3.3 g-inverses of MPSubD matrices

When does a PSuliD matrix have a PSubD g-inverse ?  Notice that
a POULD matrix 15 either a PSemiD matrix or MESubD matrix., It is
known that a PFSemiD matrix always possess z PSemid g-inverse, S0 our
main interest is towards the class of MPSubD matrices, that is, when
dogs an MPSull matrix have a PSubbD g-inverse 7 Noticing the fact
that an MP5ubD matrix cannot possess a PSemil g-inverse, since a
sympetric matrix A have a PSemiD g-inversc if and only A is PSemiD.
S0 the only possikhility 1s MPSubl matrix has to possess MPSubU g-inverse,
A necessary and sufficient condition for an MPSubD matrix to have an
MPSubD g-inverse is established in Theorem Y. Jefore that we prove

a theorem cn symmetric reflexive g-inverses of symmetric matrices,

Theorem 8 ©  If A is s symmetric matrix »f orde» n znd ronk T

“hen every symmetric reflexive g-~inverse G of A can be written as



1, 1,
L R el
T

where A --»X,  are nonzero cigen values of A and ye - n Gy

1"
are independent vectors,

Proof; Consider spectrsl decompositich of A

A i
A t i f —
A=P , . P Alplpl + lzpzpz o +Ar“rpr
where P = [ﬁl Py :....:pr:....pn] is crthogonal matrix of eigen

vectors of A and A = diag ( Ais A?i..mrj.

-

It is weld known that G is a symmetric reflexive .g-inverse

of A if and only if C is of the form

G= P pr
TAN 1R

where U is arbitrary. Partitition P as [Pl : Py} and let

Ut = (uluz...ur). Cemsider
9; = py * Ai Poouy for i =1,2,...,r

Netice thar q; 'S are independent ,

Therefore § = fql P gy :...:qr] & Fl + PLUTA
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" Row .
a7l u
G =7 o
_p' ufau
~ 1 - - -
A u Pl
= [P, 1 B} -
u T AL ?i
; -ﬂ-l_ 1 AT
1 Plh Pi * PJUPé * PZU‘Pi - PEU'AUPE

(P, + P,U'A) n-l{Fi * WUP3)
- a7l

. 99 * —qul t .. * g
Al 1A, 2 2 A, Tr

which proves the result,

Remark 3 : Observe that Piqj =3 for i#j and piqi = 1,

Hence Q is a right inverse of. Pi.

Again if Q iz any right inverse of Pi then Qﬂnlﬁ' 18
s symmetric reflexive p-inverse of A. Thus we have the following

rasult.:

if A is s symmetric matrix then G is a symmetric reflexive

g-inversy of A Af and only if it is of the form

G = QI‘L'IQ‘



where 7 i3 a rirht inverse of Pi¢

Mow we prove
Thuenron 8 Let [ he any HPSubl matrix, then the following statements
are cguivalent,
{a) there exists an YPSubb g-inverse of A
) R{A) = 1 or R{A) = 2 and the tws nonzers elsen
values of & arc of same aapnitule,

+ . a .
ic} A is MESubo.

vroofy (z) =» (I}, Let Gl. neoan MPSuRD s-inverse of the MASubd

matrix A, Then G = Glﬂﬂl is a reflexive E-inverse of A, From

Leima 1 it feljows thet 6 is alse My5uD.  Let H(AY = r

A=)

LU B T SRR

as in Thenrem 5. Frcom Therrem 2 it follows that

- 1 ¥ 1 + 1 .
CFAT WM Ty RN TR S

1
where .= op. v AU, for som .
9 % Fy jUgky TOT STme uy

Gpy = 5= 9, => qy 2% since G <0 aml opy O

Sul:! we have



A

€55 = %;; CHEEE %5(:1';12 vt %;: (' < o e (5)
How gy = O =» qi = qi = = ql = =» .. &0
1 Z 3 r i1
Grherwise
qi F 7 o=

LM Mg
1> (x,x] where x' = _3{ = gaeens —E—-qr)
qy 2 T

Since & 1s TSubd

.2 i,2 i2 .
aii = 11[31} + ﬁz[pgj + L.l ¥ lr{?r} 3 a .*.(6}
A - S
=31 ?(}*,}"} where }rl = _11‘._ { .f__:_!.l 11;, e ’Jfﬁl'} ?1:}
] '11 vhl

provided p) # 0. In cast g = 0 them &, =0
since 2(x,y) £ (6,x) + (r»Y)

;1 -
= e iy Gyt b Trd) £ K s 2

1],_\"_t.ﬂll.
171

for all i such th=t ri 40 ant gl # 0

1
i1 i i i3 i
«> PyAp 2y * PL0y 7 + nog- for adl o}

Summing over 1, we have



Since A # (¢ therefore v =1, or 2,

If T 2wy A llplpi

Equality sion cceurs in (7)

=» Eguality sign cccurs in {0)

== tr fo= 0

that is Loth the nonzers eigen values are of same masnitude.

(b} == (&) If =1
A=y
- 'i
=x A a ?\—1- l"llrri
Therefore A+ is MI8uks,
If v =2 apd X, = -3
H L] ] L
A= hy(pypy - nypsl

+

3,

=> A" is 1PSuhi.

= 5%

1 ; 1
S I;[?lpi - Pyp3) (I;J

AT



e
<1

[c) => (A} is alvious.
demark 4t When 1 = 2 anad Hl = —12 in the alove theprem

then P, = [P} where [P,| is the vector obtained by replacing

each element of P uy its malulus. DSecause
&

o =3 = nlEpt - %)
= (p;}z = {P;}E
= P]. = h}zi

Thus we obscrve that Larring trivialities an MoSubd matria Joes

net possess an FSuLl g-inverse.



CHAFPTER 4

AN AFPLICATION AND ALGORITHM

4,1 Introduction and Summary

In section 2 of this chapter a result of Miilliken [ 5] on linear
estimability, is extende:sd. It is shown that his rosults hold in a more
general set up than the one congidered Ly him.

In section 3, a theorem is proved, basec on which zn alporithm
for computing a g-inverse of a (real) matrix is leveloped. This
algorithm 15 sn extension of Goldfarts [ 2] modified method for invert-

ing nonsingular matrices,

4.2 A result on linear estimability

Milliken [ 5] gave 3 necessary an’ sufficient condition for

the estimability of AR ir the linear model

}rz}{ﬂ+£ ..-11)

where ¥ is an n x 1 randem vector, X 1is an p = p matrix of
known coefficients, 3 is a p x 1 wector of unknown parameters and
£ i3 a randem vector with Eizg) = 0 and 2(g) = dZI. {((.) denotes

. the dispersion matrix). FHe took A to bea k xm matrix of rank

k. His Theorem 2.1 in our natation can be stated as follows !

Theorem 1 (Milliken) : Consider the model (1). AS is estimable

if and only if R(X{I - ATA)) = R(X) - B(A) where & dsa k xp

matrix of rank k.
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The ohject of this presont section is td preve a more peneral
theorem than Theorcr 2,1 of Milliken Ly employing more elcmentary
technigues and alse give analogous theorems to those in section 3 of

Milliken.

We state below a lemma of Mitra (1372) which is easy to prove
using rank factorisation of matrices. This lemma is uwsed in the

proof of the main theorem,

Lemma 1 ¢ R{A+3) = R(A) + R{G) if and only if M(A}:7 H(E) = {3}
and M{A')TVME') 2 {4}, whare ¢ damncte s rutt voclor.
WNe now prove

Theovem 2 ¢+ Consider the model (1), AR is estimable if and only if
R(X(T-A"4)) = g-k where ®(X) = ¢ and R{4} = ¥ (thc number of rows

in & need mot be k) and A is any geinverse of A.

Proof. ‘*If' part

Write X = Xi A + X(I-A A). From the hypothesis it follows that

R{%A AY = k = R{A) e (2)

Iy Lemma 1, we now have

MIXA A MIX{I-ATAL) = {4} Lo {3



a3

Let o e OfX')., Thenm, ¢ = Xe = X& 4z + X(I - A A)a.
Dy (3} it follaws that XA Aa = ¢. From (2), we have, BXA A = A
for some 7. Thus As = OXNA Az = 0 which implies o ¢ O{A').

Hence M(A')07 M{X®) and consequently AL iIs estimable.
'Only if' part : A is estimable => A = DX for some D. Write

o= XATA » X{L - ATAY. Lot o e M{XAAYTY M{X({I-A"A)). Then

u o= xa*ﬁal = K[I-A"R]BE for some 0, and 9

2
o 3o ¢

Hence M{XATAYOVM(R(I-ATAY) = {$}. Clearly
M{(XA™A)') O M{(A(E-ATA))') = {8}, Therefore %y Lemma 1
R{X) = R(XA"A) + R(X(I-A"2)). Further
k = R(A) = R{DXATA) < R{XATA) < R{A)} =k
Hence R{XATA) =%k and R{X(I-AA)) =q -
This completes the proof of Theorem 2.

Martos also proved a few theorems on testing of hypothesis

about estimable linear combinations. We now state a theorem which

is analegous to Theorems 3.1 and 3,7 of Milliken.
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For the lincar model (1) consider testing coi hyputhesis

H A = ¢ arainst AR # ¢ v {4)

whare Af is estimable.
Thegrem 3 ¢ The restricted model used to obtain the sum of squares
due to the null hypothesis (1) is
Y = X{1I - AAR + ¢ where E(g) =0 anl (] a1,
The sum of squares due to the hypothesis is
0= Y'[IK; -{X(1-A"8}} {I[I-A'A}};]Y.
Q.G_z is distrituted as a noncentral chi-square with k degrees of
freedom,
Froof is easy and hence wae omit,

Remark I : Theorem 2 remains valid even if U0{g} = czﬂ where A
is any positive definite matrix and Theorem 2 helds {(when Die} sdzﬁj

with obvious modifications,
The followinr theorem is worthnoting,

Theorem 4 @ Let X he any 7. x p matrix., IFf ROX(T-CGA}Y=R{X)-R{A)

then G is a g-inverse of A,

Froof « Ty Frobenius inequality, we have

R{X) + R{I-GAY< p + R{X(I-GA)) = p + R{X} - R{A}
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=» R{I-GA)< p - R{A)
Asoe R(I-GAY > p - R(GA}) = p - R(A)

Therefore KB(I - GA) = p - R(*) and hence by Theerem 2,2.1

of Rao and fitra (1871 it faflows that 6 is a A.

Remark 2 : Combining Theorems 2 and 4 we have the following:
Consider the set up {1}. A3 is astimable if and enly if there
exists 4 matrix G such that R(X{I-GA)) = R(X) - A{A)} in which

case G is a p-inverse of A.

4.3  An algorithm to compute s peneralized diaverse ol 4 matrix

In this section we present an alyorithm to compule a p-inverse
of a matrix. This alporithm is 2oponerslisoticon of Goldfzrbs

modified methe! of computing inwverse of a nonsinmular matrix.

Let £ Le an m = n matrix. Without loss of generality let

m < n otherwise we ¢an take A' and compute (A') .

Choose an n % m matrix En such that R(SDA} = R{A) a5 an

initial aporoximation. Let Z be an orthonormal basis of =,
Compute
| Grah v - %d % 5y
B =T - «.e (5}
k k-1 %} " .
k “k-1 " T



- o 1 o _
for some X, € FA {xl...xk_l} and v, €17 {}1"'yk-l} such that
x]; Bk-l &Yy £O for k=1,2 ..., Then we will show that

' . av : = s ane R .
Y X Er is a & where Y [}'1 fn] nd X [x1 Kn]‘ for

same T o< n.

Assuming

o TR P | 1

and YyreeYyop W choose Xy ansl Yy s follows for computing
Choose xc¢ % - {xl...xk_l} and yeo 2 - {yl"‘yk~1} such that
x‘Bkwl Ay #0 and coll them Xy and Yy raspectively amd compu
Bk. If no such x anl y exist i.e,, 1if «'4 sk-l v = [

for all x ¢ Z - {xl"'kal} and for 211 v e Z - {ylt..yk_l}

we stop at this stage.

2!

are alrealy computed chaosing x Xy

k-

te

th . .
Let the procedurc stops at (r+I} stage i.e., after computing

i : ! ing X = - and ¥, the matrix wi re
dr' Then denoting Kl (xl...xr} an 5 the matrix with the v

~of the vectors of £ as coluwns and Yl = {yl...yr} AN Yz the

-

Test of the vectors of I as columms, we have

2 “y 2
Let X = 0 + X1 ama ¥ = {0y, «v,]
| ,. }im Ty BAY, X5,
Comsider X'LAY = f'zw ALy, oY, ] = e, .
Laen 0|

E5L

coe (6]
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At this stage we need the following lemmas.

Lempa 2 @ 0 A yp = Xy for p=1,2 ... k and k = 1,2 .,.7,
Proof : We will prove this by induction.

First we show that the result is true for p = k and using
it we will prove the result fur p = k-1 and so on.
Let p = k. Then

(1 B ¥y - BI%

(r- Ay

[
p S
e
4

=
Bt

—
#

e ) B Ay
X oG Ay k-1 k

it
=

So the result is true for all p =k < r.

Mow assuming kk & yp = xp for p =k, k-1,...,k-3+}, k=l.. v

we show that I A Ykoi = Fxey

By Ay - X%

] 3 = - ﬂ .
hk A yk_j [ 1 Sk BRTI A Yk I Jknl i yk-j
=i1- (By_y Ay - Xdx A~ s
ey Ay kel TR - (-1
= [1- S T T e TR
X P Ane 0 Tk
® xk-j sinee X oy ® y

Rest of the proof follows by induction.



Lemma 3 : R{EkAJ = R{ak_l M for k= 1,....,1.

Froof = Uy construction it is obvious that

To show the other inequality let a ¢ H(jkﬁj

=

£

m

@

=

=7

FEELA) (D

k1 M

s

xﬂ Bkal N

= Il oA
Ekﬂ vt LL-l Mo 3
fi L
i £ J{E:{_l nj
N(T.Lk Ay N(Ek—l A)

TET = M *
Hence ﬂ'(bkn} = ‘J(wk"l 11.}

Therefare

R{EA) = R(B, | A

which compl:tes the prootf of Lemma 3.

]
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Now from (56} we have

1y TR
DAY i Klll Klurﬂ Tz
e -
:{i}fl o
— 1 . _
I }(lhrﬂ *l'z
G £

which is idempotent and of rank r which implies R[Erﬁ] =y since

X and Y are nomsingular matricves. As &, is chasen initially such
that R(Boﬁ] = R{A) in view of Lemma 3 wc have R{Brﬂ] = B{AY.

Also R{AY) = QA{A) = R[BTA} = R[X*ETRY) and K'Erﬂ I is idempotent
implies X'B. 1is a g-inverse of AY and hence YX'BE. isa AT

Thus we have

Theorem 5 0 Let £ be aon mx n matrtix, Choose an T X m matrix
Be such that R(Bnﬁj = R{A) as ap initial approximation and let 2
be an orthonmormal basis of £, Compute Ek as in {58) for k = 1,2...r
where 1 = R{A)} and {xi} and {yi} are some permutation of vectors
of Z, Then YK‘Er 15 & where X amd Y are as above,

Quserve that YX' is a permutation matrix.

let A be an m x n matrix such that n ® @, The most economical
choice of Eo and I in terms of computer storoge and number of opera-
tions performed is

B, = ; and I = {2.85,..0,0 }
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This leads to the follswing algorithm. Lot hij he the {i,j]th clement

of Bk-l apd ¢ ke the {i,j]th element of &

i k'
At kth step, for k =1,2,..., using kth column of A
compute
k-1
ui = jfl bij a}r + A I 1=k, Ji

If Uy # 0, compute

k-1

u, = '5 bij ajk . iel,2,..., (k-1)
j=1

Sk = 1/1..1k

k5 % Ckk Ckj = b2 )

I;:].._'1:: "ij-u'.'\. chj’ 1=1121*1*rmr1f"k} ] F 132!""{k_1}
and Cip T Y S i=1,2,...,m, 1#Kk.
. .th th ,
If u =0, take 2 pomnzero uy and interchange i row and %X Tow
of By and proceed, Thus a row interchange may b necessary. However,

if u, = 0 %er i=1%k,,..,R, compute uy for = k,,..,m as above
th . th th :

using p (p =k} column of A and interchange p  and k column of

A, Thus a column interchange may be necessary. In practice, the actual

interchange of rows and columns may be avoided by wsing permutation

m

r

vectors, We stop at {r+1}th step where u, = & for 1 = {r+l),...

and for the rest of the columns of A,
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Remark 3 : If uw, =0 Ffor 1 =%k,..,.,m for pth colpmn of & at kP

i
step then u, = 0 for 1= k,...,mn for pth eolumn of A at {k*l]th

step also.

Computational aspects

To reduce the computational error it is advisable to use the
naximum absolute u; a3 u,, the pivotal element. At kth st.ep
2(m~1} (k-1} additions and subtractions, 2m(k-1} + {m~1} multiplications
and oneg division arc needod., 5o if the matrix is of rank r we need
r{m-1) {r-1) additions and suhtractinns,{mrzwrl miltiplications and r
divisions, without taking into account the extra computations needed
when 2 column permutation has occured. Totally (n-1) column permutations
are necessary and each column perrutation at Rth step needs (mek+1}(k-1)
pultiplications and the same nuaber of additions, which attain mazimum

at ko= E?] + 1 whers {3] 4s the integral part of % So the maximum

number af computations that are needed in thesc (n-r) colusn permutations

2
is {n-r) % }. Thus the total number of additions and subtractions

2
needed £ r{m-1} {r-1) + {n-71) [% ]. total number of multiplications

2
2 . Coe

needed % mr®-r+ {n-r) [?—] and v divisions are needed.

It is casy to observe that the number of computations is minimum
when the first (n-r} columns are null and in that case we need rim-1){r-1)

s . 2 sy . ke s

additions and subtractions, (mr -r) multiplicatians and v divisions,
The number of computations iz maximum when [%J <1, for 1= 1,...,0-r

columns depend on the first [%& columms.
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4.4 Nuperical illustration

In this sectien we consider three matrices and compute thelr

g-inverses using the algorithm given in the previous scction,

Exampla 1 :
o1 -1 0 1 -1 -1
t 9 ¢ 3 1 1 9
"2l o2 2 65 4 0 2
303 -3 9 6 0 -3
A L
0,00 1.60 0,00  0.00  0.60
0.50 -0,50  0.25  0.00  0.00
0,00 2.06  2.00 .00 .90
A" = |l3.00 -5.00 0,00 1,00 0.00
0.00  0.00 -2.00  0.00  1.00
0,00 0.90  0.00 .00 0.00
-0.50 -0.55 .25 0.00 0,00 |

This is an example where the number of computations attains the maximum,



Example 2
8 o 0 o 1 % 3
o0 0 o8 11 2
A= f 0 o 9 -1 2 1
c 0 6 9 2 3 5
o 0 0 0 0 1 0
- —l

-1.50 2,00 0,50  6.00  1.0p

0.0 D00 0.ND 0,00 0,00

0.00 Q.00 0,00 6,00 0.00

A = | "L00 -100 D00 100 .00

-0.30 1,00 -0.50 Q.00 0.00
1,50 -2.,00  -0.50 0.00 0.00

-0.53 1.0 0.30 0.4 .00

. ———

This is an example where the rumber of computations attains the

minimum,



Example -3 :

-2.00
1,40
1.00
1,00

3.00

-1,50
1.50
(.50
1.00
0,00

.00

104

0.00
0,00
0,00

1.40

0.04

.58
n.se
¢, 00
o.0n

0,40
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