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CHAPTER I
INTRODUCT I0ON

The problem of pombining aeveral estimates of an unknown quantity to
obtain sn estimate of improved precision arises in meny spheres of applic-

ation of statjstica, Ta begin with let us conalder the following simple

made) 1
?i L [F] + ‘i ¥ jn s -I,dnt-"k

where y 1w e onknows quantity and €5 's ara srrors with n common mesn
2ern end o common varience uz. If we make no further essumptlon sboyt

the dintribution of Ei'n, the Gauas-Markeff theorem tells us that smung

all unbiased linesr combiinations of yi's, the lagst squere pstimator

¥ » Lyi/k of y hen the minimum varisnce. If g, 's are jointly hormally
distributed, than tha lesst aquare satimator is slaoc the maximum Jd%elihood
sativator and Hag winime verisnes in tha class of all unbiened sstimators
[Rea (1952}]. Under the sasumption of normelity the satimator enjoys yet
shother property thaet it is adnlasible in the cless of all eatimators with
reapect to any loss Function which i8 monatonie increasing function of the
sheolute error {Blyth {1951)]. All these important results sdmit of
Immedinte sxtengion to the cese whan ei'a are correlsted and have tnequal
variahces provided we know the relative values of the slemente of the
diepernion metrix of [ {gl*. ‘,zk]' 1,e. ¥{g) = o?H, where H ig a known
matrix, 1In this cree an well known modificetion of the ordinery Ilemat
squarsy procedure provides en esstimrtor with all the properties steted

sbova, 1n macy cesen it iz not unreascnable to sssume thet ria have
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{ndependent notmal distributions but it fs unressoneble to sssume thet

tha relative values of the variances of y;s are known. For sn exemple,
suppons that two laboratories have made separote determinations yia of the
seme physical or chemical quantity. It is essy to concoive situations
where it is wnressonable to asaume thot the two laharatories do not differ
in precision. In genersl, the relative precisions are not known but can
be eptimnted from the current or previocus data. Thus in the above exemple
ench laboratory may provide us with en sstimated standard error s, for the
eatimate Y3 of y. The problem of obtaining a good combined estimator in
such practical situations is not straightforward, The mathemeiical model

generally sgaumed For the problem is as follows:

H

(i) ¥y m-Niu,ni). i=1,...,k, ars independent

(11) B?ﬁaiawrxii, i=1,...,k, ars indepandent
The problem of estimating y of the above model, traditionally known as the
waighted meen problem has been of conaldersble Interest to both theoreticians
and practitioners of statistics. The theoretical interest arises because
of the difficulty of eliminating the unknown variance paremeters from
inference about u{See Hinkley (197%) far a recent diacussion]. The problem
has been treated at length in the literature starting with the papers by
Bartllet (1936, 1937) and is of keen interest even today. Dur contribution
on this problew is prepented in chapters 2 and 3, In chapter 2, we coneider
the problem of estimeting the common mean of K normal distributions, The
special case of estimating the common mesn of two normal distributions is
considered in chapter 3. To avoid repetetions. we have omitted in chapter 3

derivetion of all results which are derived in chapter 2 unless s simpler
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approach cen be used in the special cese conaildered in chapter 3.

A somewhat similer prablem arises in the analyais of a block design
undar the Eisenhart model 111 {blocks random, error random } {[Eisenhert
(1947) ] where certain treatment contrasts admit two independent estimates
commonly known sa the intra-block and the inter-block eatimatea. The aso
called problem of recovery of inter-block information seeks to combine
these to obtaln improved eatimators of these contrasta. Yates (1939, 1340)
ponfining himeelf to special designs was the first to observe this and
suqgest a method of recovery of inter-block information, His idea has.
besn gradually extended by others and many eltermative procedures have been
proposed, It should be noted thet although similar methods are appliesble,
the experimental dealgn problem differas from the weighted mesn problem in
moveral important empects ond requires seperste treatment. We mention hare
twa muin aspects. Firstly, we have to consider en appropriate method of
reduction of the datn, which is not quite obvious as in the weighted mean
problem. Secondly, we are required to eastimete not just a single paramcter
but nll estimable parametric functions of several parametsrs., Our contribu-
tion on this problem is presented in chapters 4 and 5. Chapter 4 containa
practica}ly sll our results on this problem. Chepter 5 contains nome
edditional results concerning the use of modified estimetors suggested by
Yates (1939) and Stein (1966). Results obtsined in this chepter are also
useful for the common meen problem treated in chapter 2, 1f one has a-priori
knowledge concerning the variance ratio similar to thet we have in the
dasign problem as explaired in the introduction of chapter 5.

There has been a good deal of work on the problem of point estimstion
of the coomon meen of two normal distributions together with the problem of

uep of recovery of inter-block infommation for point estimation of treetment



differences in hlock designs. Since the probability distribution of these
patimetars are not epslly tractable, comparatively very little has been

done on the Interval eatimation of these parameters. Meier (1953 [See alan
Cochran (1954)], eppears to be the first contributor on this problem,
Fallowing his work, there hes been many useful contributions by others. UOur
contribution on this problem, which is closely related to that in Hrown and
Cohen (1974), is presented in chepter 6.

The problem of combinirk) two or more independent unbissed estimators
haa been so far etudied, extensively only in the normal case. The only
contributora on thie problem in the non-normal case appears to be Hogg {1960}
and Cohen (1976). In chapter 7, we improve Cohen’s reaults to Hdd&mnra
practical value to his estimator,

In order to keep the material In the text close to the asubject metter,
we heve presented the derivation of some inequalities, used at several
places of the text, in the appendix. We believe thet theorems Al end A2 of
the appendix would be of general intersst for methemotical statistics,

We shall refrain from giving n survey of the litersture which ias vast
and discuss the work by others only when it is strictly necessary for
underatanding our own work. Each chapter conteins an introduction where due
referencea are given to all importent contributions along with e brief

sumwnary of our own work in that chapter.



CHAPTER 2

£STIMATION OF THE COMMON MEAN DF SEVERAL NDRMAL POPULATIONS

2.1 Introduction

Consider k indspendent random samples of sizes UERERTL regpectively
from k normal populations having & common unknown mesn y and unknown
varisnces, g;,...,a;. The problem is to estimete y on the basis of the
combined sample. Let nij denote the j-th observation in the ith sample;
Xy = (ﬁii""’iin{i)}t where for the sake of simplicity we have written
n{i) for n, where it appears sa & subscripty y = (x},200x0). Then, our
model 1is

Y = Au+e (2.1.1}

, k
where A= 1;n = Eiﬁilgmﬂfﬂ. L)t

E H diﬂg(ﬂi In(l},."!di In(k]}i L'E‘t E " {Hi,"wyﬂ;}i

It i» well known that a minimal sufficient stotistie for (y,0) is given by

_ n{i) n{1) L2
{xlf”'rxk; 5151-i55k}; whatg Ii = jgl xijfnj-; Si = ng (kij - xi} fni

[To simplify notation we have written xi, Si in plece of the usual notation
;1’ af for the gample mean end sample variance], It is also well known
that xl,._.,xk; 51’“"5k are independently distributed and that

Xy ~ Nlu ,0]), 5,/0% ~ Xhes) "here &} = oi/ny; my = ni-1. Clearly, For
any 1 £ j, E{Ii - KJJ = 0 but F‘rnb(xl F 4 EJ) > 0. Hence the minimal
sufficient statisiic is incomplete and do not lead us to UMVUE. It may

be noted that {(in view of lemma 2.2.1 which we shall prove in the next

ke
poction), any estimator of 1 can be expressed in the form : { ;‘ilcbixi,
1=



! A2

ke
where ¢,'s are meesureable functions of y such thet } 4, = 1. We shall
- i=1

denote the estimetor by Ji(¢), where Ekz WI“"""’&}‘ For convenience dafine,
oy = obfal , n, = 52, v, = 3/ )y YR S YRR DR (R WO
y = (yz.,...,yk}. 1t is well known th;t. BLUE of p is given by ﬁ(l}, if p

ie inown. DByt no optimnl solution is apparent, in the present groblem, in
which o iIs unknown.

Among the various solutions propoeed in the litersture those which are
applicable for any k > 2 and based on well-defined principles ara: (i} the
maximum likelibood estimastor [Bartlett (1936)] and ita modifications; ooe, by
Bertlett (1936, 1937) [soe aleso Neyman and Scott (1948)) and another, by
Kalbf‘lei:ach and Sprott (1950); (ii) Partially Bayes estimator [Cox (1975)1,
(iii)} MINQUE estimetor{J.N.K. Hao and Subrebmantam {1971), (iv) the so called
unifarmly better eetimators [Brown and Cohen (1974}, Norwood end Hinkelmann
(1977), Shinozaki {1978}, Bhattacharys (1979 ,128¢) 1. An

eatimstor which has been in long use is = p {(¢), where ¢ is given by

$; = {mif%}f'gl Eml-/S-i), iz 2,...,k. This has been studied intensively
by many authn;; [Cochran {1937, 1954), Meir (1953), Cochran and Carall {19%3),
Willtama {1967, 1975), Bement and Williums (1969}, Norwood and Hinkelman
{1977} and Sinha (1979), who erroncously calls it M.L.E,]. Yates and
Cochran (1938) ond Cochran (1954) praposed modification of this depending on
preliminary tests of hypotheses concerning the unknown g.

In section 2 wo present some general results concerning unbiasedness
and variance which spply to all estimetors proposed in the literature/present
work. In gection % and A we propose estimetors of the form ({8}, wherc ¢
is reloted to an sppropriate estimate 8 of o in the oame way ag Y is relsted
to . In section 3, § is obtained by an application of the marginal likelihood

pracedure formuleted by Fraser {1968) and Kelbfleise® and Sprott (1970},



In Section &4, 8 is obteincd by en application of theory ofwwQUE in Rao {1971 .
In Section 5 we offor s class of estimators better than Kl. The result iy an
extension of a similar result in Brown and Cohen {1974}. Section & 1s devolcd
to some studies leading to the class of estimatora better than each X; in
Shinozaki (1978) [ses also Bhettecharya(197%)). We improve an important
intermediate result in Shinozaki (1974) end provide an alternative proof

of his Final result, which we believe to be more elegant.

2.2 Unbissednsss pnd Varisnces of a General Clams of Eatimators.
In thig section we shall consider & very general class of estimatora.
We firat prove a lemma concerning the genernl Form of all sstimators

mentioned in the introduction,

Leoma 2.2.1 Any estimator §j of y can he expresssd in the Furm:fwf,ﬁ-f‘i’j';}

k
Lite a5 e ﬁ('ﬁf"}’:x,'* g’{ﬂ izl ¢i Ki ' {rﬂ-ﬂui)
k
$,'a are messurable functions such that ‘,E by = 1, = (P SUED
d- 4 . &) dim %oy =1
Proof We can write {I in the form:
ﬂ = xl + Ti{xi"‘xl}’. -i = 2,;--."‘ (21241]

where ¥y = {ﬁ-xljf{xiwxl) ta measurable since X;~Xy has e continuous
distribution. Summing both sides of (2.2.2) over 1 from 2 to k end dividing

the result by (k-1), we have

K
fi = Xy + 122 wgcxi-xl:r {2.2.3)

where ¥Y = ‘i’if(k-l}. The result follows from {2.2.3) by taking



9 = ¥} Af 132

k
= Y- g*if 1=l
j=2 %
. . fha glamanks ~F
Let g e = column — vector of my ortho-normal cun_:_:i:ragtg “iii“«g e

s in Lemma 1.5-4;8, = {Ei:”.;ﬁfé' ¥ and Iet € be as in {2.1.1) of the
previoue section, Ws shall say thal ¢ is even in € if iffj = ﬁf'ﬂﬁj .8,
and odd in ¢ if ¢(e) = ~ ¢(-c) a.8. Lot § denote the class of all
functions of ¢, which are measurable and even in g,. We shall confine
ouraslves to the clasa of estimator [:(E’.) ¢ € tﬁl:j 1} where ¢: denates the
artesian product of ? taken k tjrﬁ:;;l ;Jgé';:hat :;11' ﬂ]eir:'lﬁ;;r{;ei‘; ';’-‘wmtinn
of ¥ is & linear and bence an odd function of [ in particulsr, each
element of e, ts mn. odd function of ¢. In addition to this simple

pbeervation, we shall use the Following veeful result pointed out by Kakwani

(1967).

Lomma 2.7.2 An sutimator whose expectation exists is unbiased provided
ita deviation from theT¥®w yalue is of the form {{¢), where (i) ¢ has a
distribution which ia aymmstric sbout zere, (i1} F{g) is an odd Function

af ¢

g

Theorom 2.3.1 Llet 4 ¢ ¢§"iand assume the E[{{¢)] existe. Then

{1} {(s)} ia urbinsed for yu.
(48) VD (ol &3 [y + EOd7 (g - 117 {aaa)
Proof (1) follows from lemwn 2.2.2 since {i{¢) - w =X, - p+ 5’5‘}}3 iw

an odd function of ¢

(i1} We can write ﬁ{_ﬂ] in the form

(te) = fty) + Pl - y (2.2.%)



Note that ;,1(1} is¢y M.v.U.Land that € is a vector of zero functiana
with finite varisnces, Hence by the reault of Stein (1950}, E““[Ewﬁ{l}] = 0.
Note slso that ¢ snd  fi(y) are jointly nomsl end hence {i(y) is independent
of g . Thus, the second term on the r.h.s. of (2.2.5) is independent of the
first term since it is & messursble function of ¢ which has the desired

property. Hence,
VIB)] = VI + €9 (p- P

The result follows by observing that, V[{i (y)] = Ei \IE

Let us now turn our attention to the cluss of trenslation invariant and
stele preserving estimatora which can be seen to be egquivariant in the sense
of Berk (1967) and Wiisman (1967). Let R denote the pet of all reel numbers
and let A" denote the Cartesian product of R taken n times. Consider the

group G of transformetiorson the set R" defined by
6= {9 | 9 X =alsfx, x ¢ R, a cR, BeR 8 40)

Let T = T{X} be a statistic., Then following Zacks (1970), T is said to be

an eguivarient estimetor of y iff
Mg y) =a+ BTy}, Vg ekb

From this definition and the proof of lemma 2.4.1 it is easy to gee that any
eatimator f} in the present problem is equivariant iff it is of the form {i(4)
where ¢ 1is & measurable function of fyl,. ,.,yn), auch that it is completely
invariant under G, Hence ] is n measurable function of any maximal inveriant
function of {yl....,yn} under G. A maximal invariant function of ('yl,.._.,yn)

urder G 1e clearly given by (yg—y}]!fyzmyli (yn-—yl}flfyz-yj} and it is

eawily seen to be en odd function of e, Hence using theorem 2.2.1 wa have
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Theprem 2.2, Any equiveriant estimator of y whose expectetion exists is
unbiused and hem a varisnce given by formula (2.7.4).

Tacks (1970) cormidered the class of equivariant estimators based on the
minimal soufficlent stetiatics in the speciel cese k =z 2. Hesults concerning
yrbissedness and varience of such estimators in Zacks (1970) [who used an
enitrely different wpproach] follow From our theorem 2.2.2, For the some
spacial case E?Eﬂ:'ljgﬂhﬁﬁ {1974) and Khatri and Shah (1974) connidered the
more geners]l class of estimator {i(4) whel'e ¢ is a measurable function of
{Sf EE,H} and W =z {1‘2--!1){ Clearly this class of estimetorsils a subclass
of (D60, ¢ ¢ @0'}. Results in Brown mnd Cohen (1974} and Khatri and Shah
{1974} concerning urblesedness and variance of sstimators belonging to
thls clams can ba dediced from our Theorem 2,2.1, Arguments used by these
suthors sre swaentlully same as in Zacka {1970) except Ffor an interesting
innovation which laads to an elsgant expression for the variance. It can be
verified that sll setimators of y considered In the literature/present worl
belong to the class () (4)| ¢ ¢ ¢, } [in fact with the exception of some
mintmax sstimators in Coben and Sackrows¥z (1974) for the special case k =
all srs squivarient] and hence unbiased, in view of our theorem 2.2.1
In particular, the M.L,F. is unbinsed. As far as the suthor ls aware
unbiseednean of the M.L.E. may not have heen noticed earlier. The use of
M.5.0. For M,L.E, in Levy {1970} is an indication that he considered that

M.L.E. may not be unblesed,

2.} Estimetwyofl y Besed vn an Estimatoyof y from a Marginal Likelihood of o

In this section we shall obtain an estimate ¢ of y from a marginal
likelihood of ¢. We then propose to estimete y by a{¢}- tet y denota the

mesri of the combined semple and let £, be as defiped in the previous section.



: 11 ¢

It is eswy to sce thet the transformation from y » (¥ ,et)’ is one to onc;

the likelihood of {u,g) is product of two independent factore; one given by
the deneity of ¥ (which depends on both y and g) and the other given hy

the doraity of E*{which depends solely on @). The likelihood of o as given
by tha denaity of e is

ok ke -m, K 2 .
L, o [30° 1 a,” exp(~( b5 /al . é" r, é}f?} (2.3.1)
i=1 iz=]
whers L= Ei {-]:k-l 1;_1 + Eahﬂ;k = the column vector consisting of all
#lemants sgue) o imﬁ = tho diagonal matrix whose diagonal elements are
the components of the column vector p in the same order as in n3|I| stands
for the determinent of £, It is essy to see that L, is maximum with

respect to ﬁ; whan

3 ""ﬁ?‘ (5 + E 5 fﬂi + J'H J) where w = 1 { eyt n®
Horcs, the maximum value of L, with respect to of is
, ko o-m, /2 k _ ~ (-1} /2
-k i | . 1
L, o [uf M n (54 + ¥ S./n, + &
> §=2 1 . 1y f ALY B —~
{2.3.2)
k 8 -5 X
where m » igl mi, Wote that no=y Yy 3 Y < 1- i;q Ty lat

e Bl -8 Iy 1- 1t is easy to see that x = y; end hence

Ml = wln®] =

Almo
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K
T M B UL

1=2

Hence we have

k e Kk | ,
o 1L sy 8 e @.3.9

i) = 1 wX (2.3.4)

ity - %y {2.3.5)
and

k k
;' . 2-' : k » 2
Fvtde | vidlel vix-ap + 8t - xp)

K 2 oy _oyr2
= izl Ti[xi - ﬁtx}] + [xl-U{I}]

Since the product term vanishes in view of (2.3.4). Using (2.3.5) and
{(2.3.8)

_ k ny § a2

§1 a*é = 1;1 vil% - .u(I]}

Using this we have from (2.3.3)

k i
log L, = const. +%{ iz'l (m;+1) log y, - (mk-1) log 121 v; T,40))
e v a2 K
where Ti(IJ- = 51 + [Ki—u(ﬁ] . Note that ¥y = 1 - 122 Yy and regard

L, 8 a function of {TE,.“ﬁk). Then differentiating log L, w.r.t. vy
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and equating to zero For i = 2,...,k, we arrive at the following eguation

for the required eztimate ¢ = -{_¢2,“.,¢k} of y 1

, » . »
»{m}+1]!¢1 + (mi+1}f¢i - fm+k+l)(Ti - TI)KT =0 (2.3.7}
where
h,“ »* L k L
py o= 1 - 3 T, = T,(pds T = By T,o
1 1;2 i i 'z izl 1 't

Mote that {2.3.7) holde for i = 1 also. Hence multiplying hoth mides of

{2.3.7) by ¢; and summing aver i from 1 to k,
* L]
“(n+1)/g) + 14 (mk-DT,/T = © {2.3.8)
{2.5.7) and (2.3.8) finally gives,
. » .
fmi+1}f¢i =1 +-{m*k—IJYifT T TS I (2.3.9)

Since the r.h.s. of (2.3.9) is positive it is clear thet eath‘¢j > 1 ard then
we also have thet each dy < 1 1in view af the conditipn By = 1, which is
satiafied by any solution of (2.3.9)., It cen be ssen that the expression
(2.3.1) from which we derived our estimate ¢ of y 1# a marginal likelihood
of g in the -sense of both Freeer {1968) and Kalbfle{l?uh and Sprott (1970).
It is interesting to observe in thia cornection thst the expression {2.3.2)
obtained by meximizing the expression (2.3.1) w.r.t. of G§ is a marginal
likelihood of  p in the same sense [see Shasraw: et. sl. (1975) for details].
Avcordingly the expression (Z2.3.3) which is equivalent to (2.3.2) if we
consider the reparsmetrization p+y, in a marginel likelihood of y, Hence,

the derived estimate of ¢ of y may also be regarded as one based on =

margipal likelihood of v,



2.4 Estimator of p based on LBQUE {(with invariance) of o

In this section we shall obtain the locally best quadratic unbiosed
sstimator § of ¢ subject to the condition of invariance under translation of
u(see Reo (1971b3]. We then propose to estimete y by {i{¢}, where ¢ is related

tﬂ§ in the same way asn Y is relsted to ¢ . Our model is em given by (2.1.1)

k
I ] y - - P . . ; 3 .
Note that in this model ¢ “121 U g, where £, ~ N{(D,0} In(i}} are mutually

iﬁdﬁpendent;l.[i * {U,...,ﬂ,ln(ﬂ,ﬂ,.“,ﬂ}' is an n x n, matrix,

Let

T.3
;3

H ] &

Eﬂ = (ql""'ﬂk]: H.i = Uiu.’:.; Ti = ul“.i; Tez i

Re oA T A e sy R Ry @2 0,

Sij = tr R fi HTj; S= {Sij}kxk .

Nots that ¢ bas a multivariste normal distribution. Hence, according to

ot

the theory in Reo (1971e.10the LBQUE (with invariance} at o = q, s & given
by

sg? 8 = 0 (2.4.1)

It is =asy to see that

, = i ! : . 4.
W, = dimg (0,...,0, Iy Ds ,0) (2.4.2)

k &
. 1
l )

.1 - K -1
Th-; = if ﬁi Hii H-ITE E l“l] ﬂi H

A=, wWhere g =
8] ] i

-]
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1t is also easy to see that T, T; L .

K
N - - A1,
st = o vy 1 ) X

d

PRt
I
=

B, = Hi - L‘l;ifﬂo--w[}!uzl

i }ﬂ};(”, Oyuan,0)

Let o he related to % in the same way as y is related to o ;
io . fTul‘Té}" where y ;'8 are related to y in the assme way as y,'s are

N . mp oy R R
relsted ta y; €, = 51-}__”“)1’}{70}; G, = 5, + [%; -ulyg))", Note that

- -l My N
Yoi =M % J'le‘:,\ r By 5 -y ni {2.4.5)

m
[

Stralght forward calculations wsing (2.4.2) ~ (2.4.5), give

n-l —1 o
0 = o (y)uy By = of BiE; 7oy ve 03
L - _ 2 -
Sij = tr Bui ﬁHj &N -2 ¥y * Yo if 4=
= Yoi Yoj i 14y
Hence,
= o200
q = anlog‘ {Z.4.6)
n &
5:1’.‘!4-101% uhmraﬁ:_rj—z’i'g ,E_{nl, ’“k]‘ Then
s1apd o ol g 307! where w= 14yl E (200D

Using (2.4.6) and (2.4.7), (2.4.1) gives

. el 68 lfa  4-l
=0, S F8 =" ¥ 7S IUQ-E'} (3-0, 1,)(2.4.8)

~0

Cwhers 0, = o0t L i -l 70 ten s’ - n® 072G % - 0, ). Hence it is

easy to ses that
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3 =o@ - q, 0"V 0@ - q, (2.4.9)

where § = {¢1, $'}', from which ¢ may be cbtained simply by dropping the
first component.

J.M.K. Rep and Subrehamaniom {1971) cbtained the MINQUE estimator
proposed in Rao (19°H)) where g, o 1, sccording to the more general formule-
tion of the MINUOUE theory in Rao (1971) which gives the estimator obtained
tere, It can be seen that for fﬂ = nﬁf'n, which ia squivalent to gya 1.,
our estimatar of g given by (2.4.8) agreen with that obtained by these

guthors, as is to be expected.

2.5 Eotimatars better than the First semple mesn

We ghall be concerned only with unbiased estimstors and judge the
merit of an matimetor by its variance. Brown emd Cohen (1974) proposed
8 class of estimatars which are better than X, for all g, We offer m more

general claes and prove

Theorem 2.5.1  Assume that m > 5 for every { = 2,...,k. Lat 8,4 Ty

i=2,..v,k be arbitrary seguences of positive numbers auch that

ay < Min{1,2 Ei(mi*fi}f{miq-:l)] {2.5.1)
Let
-hi = EE 1f % = 2
iii _
= a{l- by if 4> 2 {2.5.2)
i J=2 J
and,
ﬁr w Il if r=1

i

r
Xl + 122 ¢i(xi*xlj if r>1
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where

¢y ° hi 511(51 + ¢ Si}

(1) {i, is unbiescd for y

(14)

_ﬁk is better thaon ﬁr' for every r < k. In particular {j
is butter than Xj.

Proof (i) It ls clear that i is equivoriant and hence is unbisaed in view
of Theorem 2.2.2.

{i1) To prove (14} 1f suffices to consider anly k » 3, alnce far

k=22, it followa From theorem 3.4.2 which we shril prove in next Chapter.

Assume therefore that k > 3. We heve

-1 6)25 o § o &2
V()= B[ - )5t « o a1 .
k =2 i 1 iz2 * i
Henca,

. k-1 |
VIR - Vi) = 55 EL(Lenod - 20 _122 8;) 0. (2.5.3)

It 19 oasy to see (by induction} that

r r
1- 3% b, = 1 (l-8), r=2,..0,k (2.5.4)
7 L TS ’

0 < 8y < 1, i=22,...,k

(2.5.5}
{2.5.4) ond (2.5.5) imply

r
0 < § by <1, r=2,...,k {2.5.6}
i=2?
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ther (2.5.2), (2.5.5) and (2.5.6) imply
0« b, « I, r=2,..,k (2.5.7)

Mot slso that o 1s non=negative in view of (2.5,7). Hence, from {2.5.3}
W have

wh) - \,{ﬁﬁ__l) < EiE[‘Ilmk)lﬁé - 21 uI:E: b} b ] (2.5.8)

In view of (2,5.2)
k-1

¢, = = Q ”122 by,

Y 5,715 + e, 5;]
Hance, {2,5.8) can be written os

o k1, 2 2
\f{yk}+xf(uk_}) < (1~ 122 b,) E[“"’k) Hk LN

{2.5.9)

In view of the formuls {3.3.1) (which we shall prove in the next chapter),
:».' 2 o oy _ —

whers
g = Il + Hk Kk (3{ 1}

The estimstar & i better than X, in view of theovem 5.4.7 and the

condition (2.5.1) sstiefied by & . Hence
V(R} - ¥(X;) <D (2.5.11)

and the desired result follows from (2.5.9), (2.5.10) and (2.5.11}.
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2.6 Estimators Better then Ench Sample Mean

We shall now consider another class of estimstors which is perhaps
more useful and important in the sense that members of this class would be
better than each X, under suitsble conditions.

let L= {1,2,..., k} and let N be sny non empty aubset of L. Consider

ﬁH = E ¢1(H}xi {2.6.1}
tew
whets
oy = ey S/ T ey 53 (2.6.2)
Jen

1)) Cps EppeessCy AT8 positive constants to be suitably chosen. We prove

Theorsm 2.6.1 Let L = {1,2,.._,1-:}, L' = {1,2,...,k=}}. Let N be any non-
ompty subset of L and let ﬁh be as defined by (2.6.1}. Assume that m, > 5,
Then

{1) ﬂN_ is unbissed for y

(11)  fi 4e better than {I,, iff

e fe; < 2(m -4)/(m.+2} for every { ¢ L' (2.6.3)

Proof (i) The pronf ias similar to thet for part (i) of Theorem 2Z.%.1°,

{if} Note that V{ﬁ“] = ET(4}, where
T(N) = 52 $2(N) (2.6.4}
1%&01 1

Hencw, ‘i(_ﬁL} = €T, "v'{ﬂr_,) = ET!

where

_ k-1 _
-2 2 22 2
53930 T' = 1 5 4

k-1

—f
o
# Py
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and 649 ¢i stand for dsi(l.) and ¢i(1;') respectively, Hence we have to

prave that
E{(T-1'} < 0 for all g (2.6.5)
1 k k-1
letw, =¢, 5%, W = ¥ Wie W'z ¥ w;»  Then, from {2.6.2)
i=1 i=1
R TLE ¢i W o= ¢i(w-wk), i=1,2,...,k-1 (2.6.8)

Dividing {2.6.6) by w we have

6y = 95 (1-¢ )0 1= 1,2,.00,(k-1) (2.6.7)

Squaring both sides of (2.6.7), then multiplying both eides by Ei and

finaily adding the resulta, we have

T-of G =T' (1-2 ¢+ ¢)) (2.6.8)

From (2.6.8) it is easy to see that,

-1t = ¢ﬁ (ai +T') -2 9y T* (2.6.9)
k"l *2
let B=1/ § §  and/that
i=1 1
B £ T'" forall ¢ (2.6.10)

Note nlao that #, < 1 and hence the right hand side of (2.6.9) is

nor-increaaing in T. Hence
. -2 .
Herce (2.6.%) holds if

r02(5 + B) < E264, for all ¢ (2.6.12)
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Let £z (1+5o/8)0y. Then (2.6.12) is equivalent to

ZEHEFZ »1 foraell ¢ (2.6.1%)

k-1
"It 18 emsy to see that f can be written in the form f = 1/{p {qidzl zi’fzk}*'l"jj
i=1
e - .#2
where 2, = ﬂi;fﬁi, p o= ﬁiffﬂi + BY: q = ﬂfﬂi’ d; = Ekk}i

Note that z;l ~ x:} phd hence 1n view of theorem A,2 given in tha appendix
i

inf EF/EF = min (1, cE¥/EY?)
p

k-1
. o 2 . ~1 L.
were ¢ = Ez /Ez, xm -4 ; ¥ =1/ igl (q, d;” 2;). Hence (2.6.13)
bolda if
2c py/ey’ > 1, for every q {2.6.14)

k-1
where g = (q),..-49 ). Note that q, >0 for every £ and | g, = L,
o iz1

Henca using theorem A.2 once again, we have

inf EY/E¥? = min (aid;l)

9 lejeke-1

IR ey S
a = Exi ;"Ezi = 1/{mi+21.
Herce (2.6.14) holds iF

icaidzl >1 forevery t¢ I’ {2.6.15)

(2.6.15) is equivalent to (2.4.7) and thues we have proved the sufficiency
of {2.6.3). To prove the necessity ohserve that equality holds in (2.6.10)

#imost sure for all 0 €.n4 where

Sy T {EIE = Ei for some 1 ¢ ')
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Hstce equality holds a,s. in (2.6.11) for all o e.n, and this implies

that (2.6.5) holds only if
2 EF/EF? >1 forall ge.ny (2.6.16)

It is clear from our previous analysis that inf Ef',a"Ei"2 is either 1 or
the value of Ef/EF’ st some point of .1 jonce it is noted that o ehy ee= q
equsls 1 Tor some i and 0 for all othera. Hence (2,6.16) <=2 (2.6.13) and
the proof is complete.

Theorem 2,6 is an improvement of a aimiler result in Shinozaki (1978)

[spe also Bhattactnrya (1979)) obtained under the condition:
I:mk-ri}f’[zfmi—ﬁl}] < g fey < Z{mk--‘-'l]f(mi+2} (2.6.17)

which is more stringent then {2.6.3). Our condition (2.6.3) being both

maceseary and sufficient leavem no acope of further improvement.

Remerk 2.6.1 For k = 2 theorem 2.6.1 reduces to the result in thoorem

34,1 of the next chapter.

Remark 2.6.2 In view of remark 2.6.1 we see that for a given i, (2.6.3)

is necesssry and sufficient for ﬁ{i,k] to be unifomly better than ﬁ{i} .
Herrs we have the following alternetive statement of thearem 2.4.1

BL is unifarmly better than ﬁL' ifF ﬁ{i,k} is uniformly hetter tham ﬁ{i}
for every 1 ¢ L',

The following corollary is a aimple conseguence of theorem 2.6.1.

Corollary 2.6.] Suppose the elements of L can be arranged in the Form
“l’ii""“’ik} such that all elements of ty appear before those of [-n;
The condition

r:jfr:i £ Efmj-ajfmi&} (2.5.18)
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Mitd for every (1,1) such that j e L-Mand i = i, J=i, for some s < t. Then
lﬁﬁﬁﬂa then fiy . In particular {i; is botter than X 1f (2.6.19)

bolde for every {1,}) such that 1 = £, =iy for sowe s <t

W dhull now obtain & necesmary condition for fi to be uniformly better than

Ifiﬁ first prove

Fae 2.6.1 (1) ﬁl. is better than {i, = (11) {i is better then ii, for
ety M such that NEMSJ

w ¥e have T(L} = T} a.s, for 0 € N, where .,z {El{;f = o for nll
i ¢ (LM} and T(N) is defined by (2.6.4). Hence, V{{IL) = V{fi,) for every
g ¢ A, The desired reaylt follows From this sinee V({i,} does not depend on
a‘g AP i £m

The following theorem ie s eimpla coneeguence of Lemma 2.6.1 and

theotew 2.6.1.

wotaw 2.5.2 EL is better than {i,, only if the condition (2.6.1B) holds

for every pair (1,f) where { en and j ¢ [-W . In particulai, ﬁL is better
Wli only 4f {2.6.1B) holds for every pair (i,}) where j £ i.

Progf Suppose GL is botter than i . Then by lemma 2.6.1 iy (4} is better
bhan ﬂﬂ for every j ¢ L-i¢ and the stated condition must hold by Theorem
2,81,

Cowbining corollary 2.6.1 and Theorem 2.6.2 we cen srrive at the
following important result due to Shinozeki (197B) in a direct and more

'm |EPART .

!m vam 2.6,3 GL is bsttar than each Xr 1ff {(2.6.18) holds for every
174§ In fact if the stated condition holds then i, is better than fi

for svery (M) such thet m €pg L.,



HI

Remark 2.6.3  The necesaity part of thearem 2.6.3 could also be proved
using arguments similar to that in Graybill and Deal (1959), as supgested
in Shinozeki (1978). But our approach through Lemma 2.6.1 ise simpler.
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CHAPTER 3

ESTIMATION DF THE COMMON MEAN OF TWD NORMAL POPLLATIONS

3.1 Introduction

In the previoua chapter we conaldered the gensral case of estimsting
tha comnon mean of several normal distributijons. JIn this chapter we
conglder the special case of estimating the common mean of two normal
distributions and obtain some additional results., We shall follow the game
notetion ae in the previous ehapten, unless otherwise stated. The vectars
E;,U)I;@ which in the present case have only one component will be weitten
#s pcalars: p, n, v, $. Suvbscripta to the leter symbols would signify
specific choices of the vectors which they represent,

Among the various estimators addressed to this special case, those
hagad on well defined principles ara: (1) Meximom likelibood estimator
[Yates (1939a}] which is also the Bayes eatimstor with respect to the improper rr?t_,-Lgh;;
proportional to  o77 o,%  [Box and Tiao (1973)]; (i1) Bayes and fiducial
squivariant estimators [Zacks (1970)]; (iii} Minimax estimators [Cohen and
Sackrowitz (1974)); (iv) the so called uniformly better estimetors [Graybill
and Daal {1959}, Brown and Cohen (1974}, Cohen and Sackrowslz {1974}, Khetri
and Shah {1974), Bhattecharya (1980)]. The work of Graybill and Usal (1959) ia
sddreseed to the special case of y {defined in section 2,1). Zacks (1966)
proposed modifications of this depending on a preliminary teat of hypothesis
eoncarning the unknown velue of p,  Similar but more flexible estimatora have
been studied by Gurland and Mehte (1969),

In section 2 we present a direct and aimpler derivation of the

estimator obteired in section 2,4, for the specisl case considered here.
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In section 3, we present some uvseful results For comparing estimators

belonging to the clasa {§i{4),$ ¢ ¢}. 1In section & we offer a class of

estinetors better than Kl. We unify the two similar classes in Brown and

Cohen {1974) and Khetri and Shah {1974} and improve the Brown-Cahen resulta,
Section 5 ig devoted to some studies concerning eatimatars better than

both !!1 afud HE‘ We diacuss and clarify some misunderatanding in the literature

concerning the ploneering work by Graybill and Deal {1959} on this topic.

¥o also remove the restriction: Ny = 0y in Coten and Sackrows 7z {1574) and

extend their resulta,

3.2 Letimator of y based on LBQUE  of {El Eg ) [with invarience)

The estimation procedure which we consider in thls section is asme asg
in section 2.4 where the more general case of k-mamples, waa treated uaing
the MINQUE theory. However, for the speciel case considered here we nffer
8 direct and simpler derivation of the resulting estimator. An orthogonel
basis for the residuals of the model (2.4.1) in the present case is given by:

{1} my orthogonal coritrasts within the first samplej

{ii) my orthogonal contrasts within the second sample;

{11i} Th: diffarence batween tho two sample means.
We shall corsider unbiagsed estimatora of (5;‘!,&%) which are quadratic forms
in these residuals [see Rao (197 For justification]. Note thet for any
product term of the guadratic form itz expectation ma well as eovarianes
with B square term is zero. Hence asuch terms do not contribute anything to
the expectation but has & pouitive contribution ta the varisnce of the
quadretic form. Therefore we need to confine ourselves only to quadratic

Fame of the dimgonal type, which can be written in the Form:

. oae ' . 2
= 351+h52+ch‘ Mmraw-{xa-xl}.

#nd we give equal weight to the squared residuals belonging to the same
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group in consideretion of the fect that these have the same expectations end

same variences, We have

» _ -7 -2 ETS T T g i
FR° = am g, +b m, o5 + vla + 0o} {(3.2.1)
1”1 2 -2 1 . 2
vig} = E? [(&ZNI +ef) Eczn +(I:a2m2l + ¢An?) (3.2.%)

tatgu = (“1’“2} and n,, Y, be related to ¢ in the seme way as n,y are
relsted to g. The required estimator (3} 5%} of [Ei, E}g} can he obtained
by minimizing (3.2.2) for the specified value of ¢ = o+ subject to the

vondition of unbiasedness which in view of (3.2.1} is given by
BMmy +e= 13 hmia-t:z{]

in case of Ei and a m+e = O; b my &€ = 1 18 case of &%. After
straight-forward calculetions which are omitted, we get,

- 2 2
o] = Aln, + m {1+ﬁﬂ) 131-52 + mM]

. 2 ¢ _ _ 2
= Al-nh S, + (emy(Len Fi S, + my 02 W)

where Az 1,-*'[mJ2 + m;"g +n'm‘@+ﬁu)2]_ Hence the required ¢ (which is related
A
to g in the seme way asyrelated to o) is

2 2 3
[m2 + “'Tuj ]51 - g 52 + szu W

$ s mySy + M5, + [szg + mlil-*rq}z]ﬂ

It cen be seen that the result obtained here is in
greement with that in section 2.4,

part from the case Y, = {m1+ll.f fm1m2+2} when we got the usuasl MINQUE
olation [aee section 2.84) the cases of special Intarest are T, = O
. 1, Y, = -% y appropriate when n 1s believed to be very large, very

mall and in the ¥icinity of 1 respectively.
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33 Some resulte for comparing two estimators

Let § be the class of all memsurable Functions of tSI’SZ‘H}* where
W= {xz-xlnz. ¥We shall consider estimators belonging to the cless {i{¢) |¢e &1
and obtein aome elementary but useful results for comparing two such
estimators. Our criterion would be mean aquare error. We shall use the

Following reault cbtained independently by Brown and Cohen (1974), and,

Khatri and Shah (1974).

Theorem 3.3.1 4Let ¢ £ ¢ and ssaume that € {(¢) exista. Let W, be such that
W,/EW ia @ ohisguare varisble with 3 degrees of fraedom distributed indepen-
dently of {51, 52). Let ¢, be the sxpression obtained from ¢ by replacing

Wby N, Then
{i) {i(¢) im unbimsed for
(1) VIf)) = 35 [+ €l fy-24p)) (3.3.1)

Since the estimators under conaiderstion are unbiased we ahalil ooy that the
estimator ﬁ{qml)ia better than ﬁ(%} for all p e Q, where £ is a qiven

subeet of the positive half of the resl lire, if

F{ﬁ‘f@l}] < F[ﬁfr@z}] for all p e @}

with strict inequality fof at lemst one valus of p ¢ 1. Then fur comparing
the estimators we have the following useful results which follow - from

(3.2.1) eanily.

Theorem 3,3.2 Let $y089 £ @ 8nd 1wt 4,,, ¢,, be related ta ¢, &
respectively in the smme way es ¢, ie related to 4. Then ﬁ(dal) is better
than ﬁ{@z} for all p ¢ 0 iff, for wetimating y

M.5.E. fq}l*} _‘SM-E-E& {*‘2...}

or 8ll p e 2.



theorem 3.3.3  Let ¢ ¢ 9. Then {i($) is better than X, for all p e 0 iff

2y} 2 1
where
- el
= f
uﬁicp} iPignJ'l- Ed/Ed
% = d"if"f

From theorem 3.3.3 we have

Corollary 3.3.1 If ¢ = a¥, where a is a positive constant to be suitably

chogen and ¥ e 33 then {i{¢) 1s better than X, for ell p e @ iff

8 < Zuﬂ(‘i']
It ahould be noted that in the absence of any a - priorl knowledge otherwise
fi will be taken to be {0,=), Ffor the sske of simplicity we shnll denote

u{ﬂ'm}{'}’} by w{¥). It ip easy to see that,

ol¥) = inf  EF/FF
ve{0,1)

Y4 C[atimatora Better than the First Sample Mean

We shall now consider a class of unbiased eatimators which have
gmllar variance than the first sample mean For all o » 0. Such estimators
ars important when the firat semple hes a apecial significance and one
wiuld mot like to use the aecond sample unless its use leads to Improvemunt

over X, for all p > D. Another point is that since it is known that the

1
vombined estimator is better than KI, V(IIJ in such cases serves no 5 Iower

bound for the variance of the combined estimestor, ectual value of which is,
in general difficult to compute.

The first demonstration of an estimator with the desired property is due
to Graybill and Deal (1959). In Fnet under appropriste conditions given

by Hum (which are both necessary and sufficient}iheir estimator is better
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then both gample means, snd thus has a more stringent property which we shall
#scuss more elaborately in the next sertion. An apparent defect in this
satimator is that it does not uvtilize the information on variences contmined
in the difference between the semple means, Recently Brown and Coben (1974)
gnd Khatri end Shah {1974} have come up with ﬁﬂtimﬂtﬂrﬁz which utilize
the difference between the semple means and posseas the desired property
wnder coneideration in this section. Boath Brown and Cohen (1974) and Khatri
and Shah (1974}, in fact consider e whole family of eatimators depending on
e single parameter and while the former required an upper bound on their

parameter the latter required a lower bound. The two families of setimetors

mentioned sbove can be treated as particular cases of a two parameter
family which we propose to study in order to unify the results obtained In
these two papera. Our uynified approrch would gusrantee the desired property
by 8 aingle condition on the two parameters, which is eguivelent to that
vhtained by Khatri and Shah (1974) for e subrlass considered by them and in
en improvement of the results in 8rown and Cohen (1974) for the subcless
considered by these authora. The upper bound set on their parameters by
Brown and Cohen (1974} wap somewhat crude end invalved e complicated expression
hich callad for a teble given in their paper. The improved upper bound of
ths Brown - Cohen parameter, which we shall obtain, ia a simple expreseion
for which no table is required and is moreover the best possible, ns we shall
ghow, Consider the estimator ﬁl = ﬁ(d}i} where

¢y = @ Slffﬂl + d{ﬁzm}]
ad &, d are poaltive constants to be suitably chosen, sjure @, - =¥

where ¥ = EszE-] + d{'SZ-I-H'}]. Let

- 2 | 2 -
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§; = a3¥y, Sy, = 8] (mudva = (i) plu)-aluly) IV,

where p(u) = 1, q{u) = 1-u. Hermce ¥ = ¥ /vy can be written on

¥ = Vily ¥ + dh(u,y}vﬂ]*J (3.4.1)
m

where h(u,y) = plw) - qlu)y. Note thet V| -x,;l, Yy ~ ;.;;W, TR a{%, -}5 )
gnd that Vl, ¥y» u are mutually independent.
Since V, is almost sure poaitive {3.4.1) is equivalent to

¥ = Uy + dhiu,y)¥]

where V = vafvl.
It can be seen that with the match-up u ~ %, ¥ ~ y, ¥ matches-up with

F of theorem A.4 and satisfies all conditions of part A of that theorem
provided Eir’"z < =, a condition which is cquivalent to My > 2. The support
of uis 5= (0,1); S, = {sle £ 5; g(8) > 0} = {0 < 8 < 1}. We have,

8, = E?'IIEWE = (mz-llf’{miﬂ}; 8y = inf  pla) =1

8¢5

§, = Inf p{a}/q{s) = 1;
SE--*

wh

ﬁj = inf k{s;l) = D
' 8 ¢ 0,

8y = mmx(ﬁzi da, 83} = 1%
o min fdﬂﬂ-ﬁl,GE) = min{_l,daﬂ'}.

Hence by theorem A.4

v(¥} > min {l,d_aﬂ)
Noto thet [EF/EVC] _ =da,

Wones  Inf EV/EF = inF ERAE <da for eny p_ > O where v is related
£2p Yoy
tupﬂ n Cthe seme WY od v 1a related to p. Hence using corollary 3.3.1.

we have
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)
*i

1 Aseume thet m, > 2 and let a=(m,-1)/(m+2), then

w 3.0,
(1) ﬁl ls better than X, for all p > O &F

B <2 min(l,daﬂ} {3.4,.2}
(11) ﬁi is better than X, for all p > p {(for some given p > 0)

pnly if
a <2 dnu_ (3.4.3)

Note that if either & < 2 or da_ < I then (3.4.2) i equivalent to

{3.4.3). Hence theorem 3.4.1 gives

Corollary 3.4,1 Assume that m, > 2 and that either s < 2 or da < I

then a sufficient condition for ﬁl to be better than X, for all p > 0 is
given by (3.4.3). Converaely the same condition ia also necessary For ﬁl to
be better than X, for all p > p_ for some given p > 0.

Consider, row the estimator ﬂz = ﬁ{@zl, where ¢, = 8 '51!(51 +d 52}.

This can be treated in the same way as ﬁl' Thus we have

Iheorem 3.4.2  Theorem 3.4.1 (Corollery 3.4.1} holds word by word for i,
provided the asaumption m, > 2 in this theorem (Corollary) is replaced by

!-Z;QS and the expression For a, is replaced by a = {mzwﬁ}f(mleu-?}_

Rewark 3.6.1 The enalogue of part (i) of theorem 3.4.1 contained in
theorem 3.4.2 above can be improved sa follows: ﬁz in batter than J(l for all
p>0 iff a <2 min (l,da ). Noto that in this cese [E¥/c¥*] ;=1 in
addition to [Wﬂi]ﬂ = dan. Since u¥) > min{l,d&u) ag in the casse

of ﬁl, thia implies wi¥) = min{l,dan}. Hence the improved result. An
alternative and perhape more elegant eppromch in thie case is glven by
thearem A.2, Observe that in this caese § = 1/[y + {1-y) dV,], where

¥, = yZHJ' Note that ¥ is of the seme form es f of Theorem A.2. (with

% =2, and X ¢ l,uzz d¥,) and satisfies all conditions of that theorem
provided E-!nf;z < w, a condition which is equivalent to My 2 5. Hence, by

that thenvom WY = mtl1 Aa 1 1 Fm =« %
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In the discussion which follows we shall write ﬁl and ﬁz in the more
¥leborate form ﬂl.{a,d) and ﬁz(n,dl respectively, to reflect their dependence
on the constants a,d. 1t can be seen that these two estimaktors include ns
particular caees the estimators T , 7.(i)} of Brown and Coben (1974} and p*,
' of Khated end Shah (1974). In fact T_ = ﬁ_l[a,[mr.],}f{mz..-z};

?ifl} 2 ﬁzfa,(ml-l}f(mz-l} ];ﬁ* = ﬁl(,},,d); ure = ﬁz“*‘”'

%8 recall that the values of a, for ﬁl ened ’32 are (mz-l']f(ml-a‘ﬂl and
fll2=-ﬁ]f{ml+2} respectively. Hence the values of da_ for T  and Fﬁ(l] are
ful-l}[mz-ﬂ!{{mfi){mf?}] and (ml—I){mz-&]f'[{mrﬂ(mz-ll}, respectively,
it tan be sean that in both cases da o < 1, Hence the following twa

vorollaries follow from our corollary 3.4.1 and theorem 3.4.2 roespectively.

forollary 3.4.3 T, is better than X| for all p > 0 iff

8« Elfml-‘ll {'mz»l}f( (ml*‘?] {m2+2} 1.

Corallary 3.4.4 !nfl} in better than Xy far a1l p > 0 iff

8 < Ztml—.l) (mza&)f{ [ml +2) (m,y-1 3.

These two corollaries are roedily seen btp be improvements of theorems 2.1

aned 2.2, respectively of Brown and Cohen (1974).
For the Khatri-Shah satimators we have a = 1 which satisfies the

vondition m < 2. Hence our corcllary 3.4.1 and theorsm 3.4.2 give

forgllary 3.4.5 (i* is better then X; for all p > 0 {ff

42 Gma2) /1)

Corollery 3.4.6 y** is better than Xl, for all p >0 iff d> {%}{m1+._2].f{m2-ﬁ}

These results are same as in Khatri and Shah (1974), who used a

completely different methond of proof.
Cohen and Sackrowitr (1974) obtained another estimator which is better

than Il for all p » 0. They agsumed mp = My, We shall remove this
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geetriction and derive the resulte using the general approach given by our
porrpllarien.
Yo begin with we refer to Glkin and Pratt (1958) where it is shown

{excopt for the differences in context and notation) thet the unique unbiaged

satimator of o, = (&"f - hxa {-5% + (p-1) Eg'j based on {5,,5,) i given by
= EET zrlfl,l-mI}’Z:mz,’z; 1/z), for z » 1

where z = Slfg{p—l)ﬁz] and the function 2!"1 is the well known hypergeometric
function. Note thet for p = 2, we have (1+p,}/2 = 1/{1+n) = y and hence
the unigque unbissed eetimator of y based on (5 SEJ is given by,
6 = 65,5, smpumy) = 1 - oF, (1,0-m,/25m /235,/5,) if 5 <5,
(344
£ zflfl,l-m};fz;mz;’?; 52!51) if 5,25,

A is to be expected, the mbove expression for G agrees with
that [denoted by G{z}] in Cohen and Sackrowitz (1974} when m; = m,, the
case considered by these authors [Note that they write z for our
z{xﬂ-lﬁzjzfﬂxu-){i]?which in ﬂu=mf30352f51 in the particulsy paase my mzj.

To see this uee the well known Formule | Lebedev (1972) p. 243, fomule (9.2.15]

EFI(G“']- ] E'*l;'f;z} - EFI(Q*B=T.’:) = &%ﬂlzi‘—l{a,ﬁ-l-l: '\"*1;1}

Cortider the estimator, ﬁj = ﬁfgh}} where ¢ = 8 6 omd ' &
defined v (5 a4}, pexe ¢, = oy where ¥ = G, Note that ¥ is independent

of ¥ and hence ¥, = ¥; furthermore ¥ is unbissed for y. Hence,

E9

E(¥/y) = 1
Honce EF/EF% = 1/E92 = lftﬁz where G = G/y and hence

vl¥) = inf {Jﬁﬁz) = 1/Sup i
Y ¥



Bence, In view of theorem 3.3.2 we have

Theorow 3.4.3  The estimator I is better than X, for all o > 0 iff
L 5 Mml’mi} where

1 mz} = 2/5up n? {3.4.5)
Y

It is not essy to evaluste ﬁ{rnl;mz,) but a mon trivial lower bound of it

Alm

¢an be ohtained in the following way.

tet m = m:i.n(ml,mz].\ Split 51 into L compuncnta ugy 1= 1L,2,000,my
ahd 52 into My components Vi 1=21,2,... WMy 8O that we have uifﬁi,i.:l,f,li,..q_ml
?iﬁg, i=1,2,.. LY identically and independently distributed chi-aguare
“barisbles with 1 d.f. each.

g on the basis of u,'s and

.vi'a and observe that (S]’SZ} ia then s aufficient statistic for EE% ‘ Eg,

Now consider the problem of estimating Ei,ﬁ

It is easy Lo see that for every integer r renging from 3 to m-1

n 2, I z
G, = [@r-2)/{n-5)] |} ”jfiil (og+v;)

=1+l
io unbiaged for y , end we have -
C gg = w2 olr) .
y = ¥ elr) (3.4.6)
whate
c{r) = {r-1){m-r+2) /[ (m-r)} (r-2) ] {3.4.7)

Since § is the unique unbissed estimator of y besed on f51'52:" wo have

-!:tc:r|-51,i52) « 6 for r = 3,4,...,m-1, Herce by Rao - Blackwell thoorem,
2 2 e
EG E Et;l‘ FD[‘ r = .S,tq!jm_l (}o'{*-ﬂ)
Dividing both sides of (3.4.8) by 4 and using (3.4.8) we have,

€62 < min e(r) (3.4.9)
3gr < m-l
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Bow (3.4.7) gives
et{r) = [-1/{(r-2)(r-13} + 2/{(m-7}{m-74+2)}Je(r)
Whers the prime standa for derivation with respect ko v. From this, it can
ba seen that cl{r) ie a convex function of r fuor r g [3,m~1] and hence,
Minr{e(3),...,c{m-1}} = ¢, (m), where,
c,(m) = Min{e[{[al}, c{{al+l)]) (3.4.10}
i {a] = the integral pert of a; erd o 18 the positive root of the equation
als2{m-a-m{m+2) + & = 0O,
In conjunction with (3.4.5) and (3.4.9} this implies A{m ,m,) > 2/c,(m}.
In view of theorem 2.4.3 we have thus proved.
Theorew 3.4.4  Assume that m = Min(m,,m,} > 4 and lst c,(m} be as defined
in (3,4.10). Then ﬁ'j is better then X, for el p > 0 if a ¢ 2/c,(m).
The sbove theorem reduces to theorem 2.1 of Cohen mnd Sackrowitz (1974)

if we replace 2/c,(m} by Ay(m,,m,} defined below :

2{m-3)/(m+3) if m 18 odd

n
]

2/cf (m+1)/2]

2/c[{ms2)/2] = 2(m~2)7f(ms2) JAF m &5 even
and comaider the apecisl case my = My, Cohen and Sackrowitr (1974} claima

A lm.  m}
*1r2 {3.4.11)

that for integral valuos of r ranging from 3 to m-1, c(r) is minimum at
re (mel}/2 1F m §s add and r = (m2)/2 1f m 18 even [nee section 2 of their
paper; note that they write n for our m+l and, instead of c{r} consider an
expresslon which 1a an increasing Function of c(r)]. We find that their
tlaim 1o true iFf m % 15, Aws such our theorem 3.4.4 is not only a
generalization but slso an improvement of their theorem 2.1.
3.5 Eetimators Better than Both Semple Meonn

- A good combined estimator should have the property that it is better
Huin both KI and )(2 for all poasible values of g. If we have a priori
krowledge thet n > 1, estimators which were shown to be better than X, are
#tomatically better than hoth Jil and Iz. By interchanging the role of the

iwo samples in the eombimed estimator, o almilar result can be obtained
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for the case n < 1. When nothing is known about p it is natural to look for
s combined estimator which is better than both )(1 and X2 for all p > 0.
A general procedure for constructing such eat’ators is given by the

following lemma.
Lemma 3.5.1 Let ¢ = ¢(_§1,52) and ¢* = ¢*(3<_1,52) satisfy the condition

¢(51, ﬁz) + ¢*(£29 51) =1 (3.5.1)

let F be a symmetric subset of the set of positive real numbers in the sense
that p e F =2 1/p ¢ F. Let E denote the set of all ordered pairs of natural
numbers such that [i(4) is better than X, for all p ¢ F if (only if) ("1’"2) ¢E.
Let E* be defined similarly in reletion to ¢*. Then {i(¢) is better than both

and X, for all p ¢ F if (only if) ("1’"2) € E, where £ = ENPE* and

% and X5
PE* stands for the set obtained from £* by permuting the co-crdinates of each

pair in E* in the reverse order. If further ¢ = ¢* we have
/ E, = EMVPE

Proof  Let Ji(x;sX,) = fi(¢) and T*(x,,x,) = fi(¢*). It is eesy to verify that
the condition (3.5.1) is equivalent to

Hxys %p) = i*0xp0 3y)
Since F 18 symmetric ﬁ*(ﬁz"ﬁl) and hence ﬁ(gl, 52) is better than )(2 for all
pef if (only if) (nl, "2) ¢ PE*, Hence the result is obvious.
Lemma 3.5.1 may be applied to the estimators ﬁz and ﬁ3 of the previous
gection to construct eet%mators with the desired property. For this we
require a = 1 in both cases. Then fi, reduces to y** of Khatri and Shah (1974),
who have already obtained the result obtainable in this case. We state their

result with the object of following it up with a clarification of some
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@wﬂaratanding which exists in the litersture concerning B similar result

iy Graybill and Deal (1959).

Theoren 3,5,1 (Khatri and Shah) The estimater {i, with a = 1 is better than

;iseth X, and X, for all p > O 1Ff

(M40 /((2(mi-D)] < d < 2n-4 ) k) (3.5.2)
If we take d = my/m, we see that (3.5.2) holds iff

'“i“ffml-i}(mg"@, {m -B}m, ] > 16  (3.5.3)

thus, we see that 0, with & = 1 and e = my/m, is better than both X; and

Xﬁ iff {3.5.3) holds, Thie is the result obtained by Graybill and Deel (1959).
The weaker stetement in theorem 1 of their paper to the effert that

ﬁz withazlandd= mlj’mz is better than both X, and X, if min{ml*mz} > 9,

has led to some trivial cleimg of improvement. For axmplg,;ﬁ;rtgad and

Hednkelnann (1977) who adopted the estimator of Graybill and Deal for

estimeting the common mesn of k normal diatributions claimed that their result

for k = 2 is differcnt from theat of Graybill and Deal and Correction of the

letter result by Hultqu;le':;untad by Donent and Willlems (196%)}. In actual

fact, the result of Norwgod end Hinkelmanr {if we take k = 2}, is no

different from what Graybill end Deal actually proved.

We now conaider the class of estimators with the dealred property
obtainable From ﬁj. The case Ry TN, has been considered by Ceben and
Sackrowitz (1974}, Here we consider the general case where 0y and My med
not be equal. Fer ﬁj with a = 1, we have $, = G. Let A(ml,mz} and
A,(ml,mzl be defined as in {3.4.5) and {3.4.11} respectively. "Toke #* = 3.
Then from (3.4.4) it ia clear that (4,¢*) satisfies the condition of lemma

3,5.1. By theorem 3.4.3, the set E of lemma 3.5.1 consists of all pairs
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ﬁi;xnz} such that A{ml,mzl 2 1, Hence the get E_ of that lemma conaists
of all paira (nI,nz) such that

min[ﬁ.{ml,mz}, Mm?'ml}] > 1 (3.5.4)
Hane, we have

The estimator ﬁiﬁ with 5 = } is better than both Xl and X,
fobell p> 0 4iff (3.5.4) holda.

As we have observed earlier, it ls not easy to evaluate A{m,,m,)
but Mﬁl;mz} > ﬁ*{ml,mzh provided miﬁ{mi,mz} > 4. Since A*(ml,mz} is a

swmetric function of (ml,mz}, we have the following generalization of the

pesult contained in remark 2.2. of EﬂhenESﬁckrmitz {1974).

Theotem 3,5.3  The estimator I with a = 1 is better than both X, and X

1 2
EF Ay(my,my) > 1 which ia setisfied if min(m ,m,) > 9.



CHAPTER 4
FSTIMATION OF TREATMENT EFFECTS IN BLOCK DESICNS

‘with recovery of inter-block information wnder
the assumption of normality

8.1 Introduction

An experimental design is an allocation of elements of a got of
trestment one on each of e set of experimental units, IF v denotes the
nmber of treatments and n denotes the mumber of experimentsl unita, then
the design is specified hy an nxv matrix X (called the design matrix) whose
{1,])th element %45 is 1 if the ith experimental unit receivea the jth
treatment and zero otherwise. 0OFften the experimental units are divided into
8 meober of groups ealled blocks., IF b denptes the mumber of blocks, the
reletionship of the experimental units to the blocke is specified by an
b matrix Z whose {i,})th element is 1 if the ith experimental unit belongs
to the jth block and 0 otherwise. A design with a block structure for the
sxperimental unite is known as A block design., The matrix N = X'Z ia
called the incidence matrix of the design. The (i, j)th element of N gives
the mmber of experimental units of the jth block, which receive the ith
traatment. The ith element of the vectar k = 1N where 1= a column vector
with v elements earh equal to 1, gives the number of experimental units in
the jth block {ralled the sirze of the ith block), The ith element of tha
vector r = N1, gives the mmber of experimental unite recelving the ith
trestment (called the replications of the ith treatment), A block design
18 calied binary if sach nij is either 0 or 1; equireplicate if £, = conat,
for ell i; proper if ki = conat, for all 1. If a block design ie equird-
plicate, then the common value of r;'s will be denoted hy r; if proper, the

comnon value of ki'ﬂ will be denoted by k. The matrix NN' which plays a



MYy important role in the analysia of equireplicete proper block designs
g talled the mssociation matrix, Some writers {e.g. Tocher (1952)] use the
B ‘concurrence matrix' for what we have termed as 'sssociation matrix'.

The general mdditive model for the observations from an experiment

@ing a block design can be written as

Y = lu+ Xp+178+g, (4.1.1)
Mhere
g = genersl effect
1 = the vector of treetment effects
R = the vector of block effects
c, = the vector of individual effecta of the experimental

wnits.
A advocsted by Fisher {1935) the treatments are generally allocated to
the experimental units at random auvbject to the reatrictions imposed by the
deaign. One can analyze the experiment solely on the basis of the
andowization theory. But we ghall not consider this spproach. For the
purpose of estimation only, it is customery to use the Geuss-Markoff theory
with ¢, assumed to be a random vector such thet Ee, = 0, V(e,) = o}l or {E.EZ
#sgumed to be a pair of random vectora such that cav-(& 'E*:' ={
£e, 2 0, ¥(g,) = gi 1,68 =0, V(8) = ”%fb]- The additional assumption of
romality of g [or ((i 'E*}} ia generally introduced if one fa'jﬁtarestad in
testing of hypothesie . Although we ere concerned here only with the
eatimation problem, the assumptior of normality would play a crwcisl role
in the derivation of some of our rosults. We assume that (y,1} ie fixed

and (i,g,) is a pair of random vectors such that

(B',e3)" ~ N[O, diaglodl,, ofl )] {(4.1.2)
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model (4.1.1} ean then be written apa
Y= A0+ ¢ {4.1.3)

A= (lﬁjx}: 9 = (u,1'l) '3 ~ N{G.(‘Fil’”; He= I+pZl’'; p = ﬁ%f{?i
' 1 uri, p are unknown,

Following the well accepted definttion [Bose (1944)] we shnll say that
. Unesr function of trestment effects in estimable iF there exnsts a
Yirear eatimator which is unbiased for it. Our problem is tr estimate an
arbitrarily given estimable linear function of 1. If p is known the least
aguare theory leads us to UMVUE. But if p is not known o optimnl solution
is appsrent.

A set of minimal pufficient stetistics has been obtained by some authors
[Graybill and Weeks (19%%); Roy and Shah (1%62)] in mpecisal cases, where it
i8 known to be incomplete, when p is unkoown, The general idea behind all
soletions proposed in the litersture [with some exceptions e.q. see last
paragraph of Stein (1966) end remark on this in Sheh (1%75)] is tou use an
eatimate i tn place of p in the optimal solution for the known p rase. Among
the various methods of eatimetion of p proposed in the literature the most
noteble ones are:Maximum likelibood procedure [Roy mnd Shah (1962}, l’{:art,ley
and Rac {1967} 1 which leadm to M.L. estimators concerning 1} Marginal
likelihood procedure formuleted by Fressr (1968) and Kalbfled sch snd Sprott
{1970) [see ©.q. Nelder (1968), Patterson and Thompson (1971), Shaarawi et al

Methad bosed wn e’ K0
(1975)}; LBQUE (with invarience), formuleted by Rao (1971} [see £.g. Roy and
Sheh (1962}, Sheh and Puri (1976)1; Curninghem.Honderson-Thompaon method
[Cunninghem and Henderson (1968), Thompson (1969}); Analysis of verinnce
(ANOVA) method [Yetea (3939b, 1940}, “air (1944),Rac (1947}, Cunningham and
Henderson (196B) ]; Tocher's method {Tocher (1952)); Ad-hor procedures leading
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B the 40 called uniformly better sstimators [Yates {1939b); Graybill and
B! (1959); Seshadri (1960a,b), Shah (1964), Stein {1966), Brown and Cohen
{1970}, Khatrl and Shah (1974),Bhattacharya (1980)], A method of estimating
Ereatrent contraets, which has been in long use 1s theat proposed by Yates
(193} (using § by ANOYA method sentionsd sbove), His method as extsnded
By fio (1947) hea been discugsed/studied in sevaral papsra [Sprott {1936,
1957), Freser {1957), Graybill end Weeke (1959}, Graybill end Seshadri {1960},
Roy and Shah (1962), Shah (1964), Khatri and Stmh (1974, 1975),Shaavewi
ot al. (1975), Bhattacharya {1978)]. Box and Tiao (1973) proposed Bayes
stimators concerning 1, with respect to the improper prinr@mi{l-ﬁh{‘}*i,
in the cese of a proper block design. Shasrawi et al (1975) proposed a
terginal procedure fof obtamining estimators concerning r, which they point
wt to be some as thogse of Rox and Tiao (1973), provided ons is willing
to relex the condition: p > 0 in Box and Tiap (1973). It can be seen that
the procedure proposed by Shasrawi et al. {197%) lenda o estimstors which
ife same Aa those given by the maximum likelihood procedurs.

In aection 2 we prosent some basic idean reeded for our work. Section
3 is concorned with eatimation of p. There we present two methude which
w believe to be new and ussful., One of these is an epplication of the
theory of MIVQUE in Rao (1971) and containe similer results in Roy and
Shah {1962) and Shah and Puri {1976)) the other one is ah extension of =
method due ta Tocher (1952). [In subpequent sactiona, we confine ourselves only
to proper bleck deaigns. Section 4 gives a canonical reduction lesading to
g aot of minimal sufficient atatistics. We treat both camses (i) when p is
urkrnown (i1) when p id known, although we ars intersited in cese (i) only.
Dur results fully extend the earlisr resulte [see Graybill and Weeks (1959},

Koy and Shah (1962} ] applicable only in specinl cases. In section 5,
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" present & genersl mpproach to the problem of recovery of inter-block
information based on the minimal sufficient statiatica obteined in eection 4.
W also present some useful resulte for comparing different procedures.

The ideas proposed and the results obtained apply to all procedures in the
Literature/present work. To summarize the work of the next two sections,

iii ya say (with & natural motivation} that a procedure is good if for every
tisstnent contrast estimable from intra-block anelyeis, it provides an esti-
ator which is better than the intra-hlock estimator [Note that all
#timators coneidered are unbiased and we jJudhge the merit of an estimator

by its variance], In section 6 we offer several classes of estimators

whirh are good in the shove sense. THis section contains unlfication/
wtension/improvemént relating to works of several authors in this area.
Sestion 7 is devoted to a study of the well known Yates-Rao procedure. We
give sn expresnion of the procedure in terms of the minimal sufficient
statistics end eetablish unblasedness of the procedure (hoth truncated

and intruncated). Thege results fully extend earlisr results [nee Graybill
and Weeks {1959), Roy and Shah (1962), Khatel and Shah (1974, 1975)]

ehtained earlier in special cases. We also provide some criteria which

ctn be spplied to a wide clasa of deaigne to exemine 1f the procedure is

good or not. These results unify and extend similar results in Shah (1964)

snd Bhattacharya (1978).

4.2 Preliminaries

In this section we present some basic idess related to the analyais

of a block dasign needed for our work.



[1) Intre and interblock contrmst : Let L{A) end L (A) stand for the column

mpece and null space respsctively of the matrix A, A contrast of the
ﬁﬁr\fatim[ is a linear function ¢'Y such thet % ¢ L*(L'.'j = 0. It is
talled an inter-block contrast if & e L(Z) and an intra-block contrast if

tel ('}, It is clear that (i) the set of all contrasts of Y span a

vactor spece of dimension (n-1)3 (ii) the set of intrm and intpr-block
tontrasts seperately span orthogonal aubepeces of it of dimensions n-b and
bel respectively [since rank 7 = b and 1 ¢ 1L(Z)1; {ii1) the vector spsce

in (i} is the direct sum of the two subspaces in (ii). Other useful
propertics of these contrasts which hold for the model (4.1.3)} end can be
saplly verified are: (iv) a given intra-block contraet is uncorrolated with
s given linear function of ¥ {ff these are orthogonal; {v) any intre-block
eontrast is uncorrelated with any inter-block contrast. There is, generally,
m relationship between orthogonality and uncorrelatedness smong the
inter-block contresta. However, we haves (vi) if the block design ia proper
then o given inter-block contreet ia uncorrelated with n given linear

furetion of ¥ iff thess two sre orthogonal.

(2) Intre-block analysis : The model for the so called intra-block analysis

ia given by {4.1,1) where t“’E*E) are fixed and g, ~ N0 ’ﬁfln)' It in
wull krnown [Chakravarty (1962)] thet for this wodel the reduced normal

swuetions far (v,R) is given by

cy

o

EI\DEE P

)

where
EG - EE'SN' ;] D= W . N'r-ﬁ N
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= X'Y = the vector of trealment totels
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]

Z"i = the vector of block totals. -
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It is also well known that a linear fumction p't of trestment effects
I sstimable iff p ¢ L(C) for which a necessary condition ia thet 15 p = 0.

Biailarly, s linear function g’ B of block effects is estimable iff q ¢ L{D)

Bir which ® necessary condition is that 4 9 =0. A lineer function of

eatment effects satisfying the condition 1, p = G is celled a treatment
tirtreat, A block contrest is defiped similarly. A design 1s said to be
pomected 1f rank C = v-1, & condition which is necessary and sufficient

for every treatment contrast to be estimable, As shown in Chekrevarty (1963)
the gbove definition of connectedness due to him is squivalent to the

triginal definition of Bose (1947). The condition rank C = v-1 18 equivalent

fo rank D = b-1 end is nleo necessary amd sufficient for every hiock contrast

e be sstimable., Wo have
E -~ N{El ¥ Cﬂ'i) -

This shows that the distribution of U does mot depend on B. Hence or
girectly wa can sae that the distribution of 0 under model {(4.1.3) is game

m sbove and does not depend on p,

(3) Inter-block snalysis : The ides of inter-block enalysis ia due to

fates (193%h, 1940} who realized the possibility of obteining estimates
ronterning treatment effects from block totals, under the assumption thet ]

is also & random variable as asaumed in (4.1.2). Soms writers o.g. Ogewa
(1974) usea the term inter-block analyeis syronimously with what we shall call
combired intre and inter-block sralyeis and trest later in this mection. In
the literature, the most general treatment of inter-hlock analysis appears

te be thet in Tocher {1%52), who restricted himself to proper block designs
with 8 non-aingular association matrix. The treatment which follows is
sppliceble to any block design. From our model (4.1.3), it follows that

the mode]l for block totals ia given by
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B ~ N {Z'A, 2'HZ o})
fis will be referred to ms the model for inter-block analysis. [t can be
peen that Z'A = (E1N‘)JEKHI " {I+pk's). Hence, the normal equation for 8 is
iven by
(kINR S (Lapk®) N = INDY kTS CLep$) T B
Fror this, the equation for estimnting T is gliven by

T T = {a.2.1}

V]

yhere - -
NS 1 101+ iy I

€ - bt
10+ o) 7 K
- N(Tap®) 7 3 1t (1e) 10
§ = M(I+pk™)™ B = IS B
-~ ~ 1 (k)™ &

It can be soen that a lirnear function p'y of treatment sffects is
gotimable iFf p ¢ L(C ) for which a necessery condition ie that Iep = 0.

e have

It can be sesn that Q is s vector of intre-block conktrasta, whereas E
.:lu g vactor of inter-block contrasts. Hemes, it followa as a consequence
of the property { v} of such contraste in {1} that intre-block end inter-
block snalyses provide independent sets of estimates concerning treatment
pffects,

The case of a proper block design is wmimpler ard of spacial interest.

In this case the eguation {4.2.1) is equivalent to:

a1

S

whete

[ e E]
i
~
x
v
-y
L]
"
=
L

§ = NB/k - {;Efﬂ



we have,

Q ~ N(C ¢, Co2)

where ol = D*Ui and p, = l+kp. Neither C nor Q' depends on p. Hence, in
this épecial case, inter-block estimates are obtainasble without the
knowledge of p. In general, however, solutions of equation (4.2.1) depend

on p and the inter-block analysis poses difficulties of the same nature as

we encounter with a complete analysis of model (4.1.3).

(4) Combined intra and inter-block analysis : We have seen that the intra-

block and the inter-block analyses provide us with independent sets of
estimates concerning treatment effects. The idea of recovery of inter-block
information originally due to Yates (1939b, 1940) is to combine these two
sets in order to gain increased precision. Yates restricted himself to
special designs. Rao (1947) extended his idea to all proper block designs.
The approach in Rao is somewhat different from that of Yates'. This point
has been discussed by Sprott (1956, 1957) and Fraser (1957), We observe
that a natural way of\gxtending the idea in Yates (1939b, 1940) would be
to combine the two linear models given by the equations for the intra-block
and inter-block eésdtimates. We have
Q,~N(C 1 , H,a})

where

| a, = @) c,= (€T H = diag (€, D)
From this model we can find the BLUE of any estimable linear function of 1
using the unified theory of lesst squeres in Rao (1973). Note that
L(Co)ﬁé L(H,) and hence, as shown in Rao end Mitra“(1971), the normal
equation for 1 is obtainable by minimizing (QO-COI)' H;(QO-COI), where ﬂ;

is any g-inverse of H*. We take
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H, = diag{C™, C)

#d hence obtain the normal equation as

C,r = 0, (4.2.2)

T
piro C, = C + E’; G, = @+ 0. A recessary arwd sufficient condition for

ptlnability of p't is thet p ¢ L(C,). It can be sesn that LIC) = L (1)),

{

ferce overy treatment contrsst is estimnble. It is important to note that
goe ven arrive at equation (4.2.2) also by a direct application of the
Baves-Harkoff theory to the model (4.1.3). MNote that for a proper block
pexign the equation {4.2.2) can ba wrilten as
(C+pltBX= g + o1 0 (4.2.3)

which waa obiained by Reo {1947).

In the practicel problem of recovery of inter-bleck informstion p
“{a unknown, Alsmost all methods proposed in the literature {with exceptions

to bs wentioned in due course), uses a auitable estimate § for p in

squation (4.2.2) which then serves ama the basis For estimstes concerning 1.

4,3 Egtimation of p

Various methods of estimation of p proposed in the literature have
dready been mentioned in e Section 1. We shall add to these two more
rethods which we believe to be new and useful,

(1} Method based on LBQUE (with inverience) of (o}, o}): By
straightforward application of the theory in Rao {197)efto our model (4.1.3)
ws find that the quadratic unbiased eatimator tﬁi,‘ﬁ;) of [gi,c%]‘r which is
locally best at {0}, 0}) = (o3;,0%;) subject to the condition of invarjance
under translation of 9, is given by

2 5)) ¢ 0 B2 5), = O
n

ats +plats -g
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were o, = 0l,/00)
z - . 2 F - iy ’ Zi

511 = tr R*j 512 = 521 0, tr(R*221); 522 = 0g tr {RZZ2')":
" 2 L .
G, = Y'R°Y ; G, = p Y'RZZ'RY;
1 s i

5 . S N \
A= Hci - HG X {x! Hn X) K'HU i Hn = [ + %ZE

Hence we estimate p by p= ngﬁi which ia given by

vely b r? o pte(RY2)
te(R222') + ptr(Rzz )’

Simllar result in Roy and Sheh (1962) can be obtained from this as a apecial
cage. The case p = D is of speciel interest. In this case R=1-X (0 x) "I
ond hence tr RZ = trR = n-v, tr RZZ' = tr 2'RZ = te(@N'r7ON) = oo

tlRZZ' )T = tr(Z'RZ)% = rDP;YIRY = YIRY & Y'Y - THr

Ay

S 1. vywmzzimy =

B N'r'ﬁT}'(B-N'rFST} = PP,  Henco, E ia given by
LA AT n-v + g tr D
FTFJ‘ R -~y 2
e tr D +ptr D

The result in Shah and Puri {(1976) can be obtained from this ss e apecial

rans,

(2) Generalizetion of Tother's Method : Tocher (1952) suggested a method

of estimating p in the case of connected proper block designs. He wes
motivated by the following ressoning: If we consider the model for the
intra-block anelysie, the residual sum of squares of the intra-block
sralysie is minimum varience quadratic unbiased estimator of (n-b-v+l)oj
provided only that errora have a distribution with normal akewness and
kurtogin. This im obvious from the fact that under the essaumed condition,
the variance of any quadratic wbinaed estimator of {:; would ba sama na in

the nommel case for which the residus) sum of square is known to be U.M.V.ULE,



[Rao (1973} p. 319: see Hsu (193B) and Rao (1952 , 1971k for other
conditions]), Similarly, the best quadratic estimator of a quadratic Function
of estimable parametric functions of parsmetere in the linear eset up ie the
torresponding quadretic function of the BLUES corrected for bias.

forrection for bies ie to be done by eubtreacting snappropriate multiple of
the reaiduval aum of sqguares, Thus his estimator for p is

(n-b-v+1) [B'(L1, - b 1 f’h}ﬁmﬁ-i.a{g‘(lg}b }é}g}]
(b-1) 5,

ny
1t

there 5, = intra-block error 55;
Bies = The spproprinte unbissed estimate of the bias. HWe drop tho
- geaumption thet the design is comnected snd generalize his method as follows:

he el A

Let L-be the matrix consisting of the columna which ronst . lute .
ted af mndoameax mnd
‘siqenvectqrg of 0 corresponding to its non-zero eigenvalues, which we denote
in the vector form by ¢. let B, = L'8 } E‘* - i-ﬁ L'P. Then, under the

model for intra-hlock anelysis ﬁ* ie BLUE for g,. Furthermore we have

B ~ NBys £7° ).

Hetwe

Then an estimator of ﬁ%, pimilar to that of Tocher (1952} is given by
E,', Mrarit D corrected for biss by sub tracting the appropriate multiple of

514 Hence the estimator for p is given by

(n-v-rank D} B} B
L) . ,»..-G
p = [ g - tr g ° ) renk D
1 i

The estimator clearly reduces to that of Tocher (19%2) iF the design is

connected.
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§.4 Cencnical Reduction mnd Minimal Sufficlent Statistica

Graybill and Deal (19%9) gave & canonicel reduction leading to a set
of minimal sufficient stetistica in the cese of B I B designa. Roy and
Shet (1962) extended the idea to sll connected binary squireplicate proper
block designs. We shall extend the idea still further end obtain results

shich are applicable to any proper block designs. Let

rank C

1]

p

rank C

q
dim{L{C) FYL(EY) = &

Nots that
prges 2 dim{L{C) +L{E)] = vt
Since €, T mre n.n.d. there exist a non-singular matrix M such that

M CH = Diagla® ,a® , 0, 0)

MECM = Diag{la, 0,1 o)

q-a’
g = lay,eenray)) o = f“ml"”"up}
ond @, 1= positive for each i = 1,... p. Let E be the metrix obtained from
(1)1 by deleting the last éolumn. Let € he partitioned in the form
€+ (E,'E IE,) such that £ conaists of the first s coluwis of E(E, conelsts
of the next p-a colunie snd E, consista of the last v-i-b columne, It ia
tlear that (1) column# of £ constitute a basis of L{C) + L(C}, (i1) colume
of £, span L(C) ML(EY, (144) mlmﬁ::{Eﬂ%El} span L{€}, {iv) colums of
{Eutfzi span L{C). Let

Lo =Eb s 6 " EiT, B = 6
and let

£ o g

. The elemants of £ will be called canonical contrasts. ¥We cbserve that £y



is gstimable only from intre-block anelysis, L ia eatimable only from
inter-block anslysis, but £ is estimeble from both intra-block and
jnter-block analyeis, Let F = {FO,FI,FZ} be a metrix suwch that Fﬂ..lf‘l‘.\"2

are related to M in the same way as U ,U, U, are related to (H'l}'. Let

x = o tFum, y = Fil
x. = o8 Fin - FQ
X» T Ty Yo 73

It iz clear that X, y are intre-bleck and inter-block estimotes of £, which
is sstimable from both analypes; x, ia the intre-block estimate of Eps which
is estimable only from intra-block enalysis: and Y isg the inter-block
satimate of £, which is estimeble only from inter-bleck mnalysis. It ia

alsp eany to see that

-4
Vix) = a of viy) = o}
Vix,) = a;® o ¥y) = o (4.4.1)
Tt T # 01 X.U Ta Sl
Cov(x, X,) = 0 Covly, y,) = 0

In view of the properties of the intra-block and inter-block contrast
discussed in the previouse section (3'5‘ 1*} beirng an wearrelated set of
intra-block contrasta, muet be a set of orthogonal intra-block contrasts.
Simllarly (y,y,} must be & set of orthogonal inter-block contrasts. Hence,
we can have (1} a vector £ af n-b-p normalized intra-block contrasta which
are orthogonal to each other and to {i* Xe)y (ii) & vector €, of b-1-q
mmalized inter-block contreats which are orthogonal to each other and to
{f+ Y«)- By an appesl to the properties of intre-block and inter-tlock
tontragts once more, it follows thet G, Xy Yo %yr YurE]'87 PT2 uncorrelated,
¥e shall now ahow that Eyr € bslong to arror. It ie essy to see thet

(6, x, x,) span the space of sll linear functions of Y which are BLUE in the
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#te] of the intra-block analysis, Since £y is uncorrelated with any such
fnction it Follows that £ belongs to error in the intra-block analysais.
fieilarly, €9 belongs to error in the inter-block analysis. It is now caay
fo see that (EJ’ 52) belongs to error in the combined analysis. The
drengofrmation from I to(h, Xi Yr Xev Y E15 EE) in linesr and one to one,

M have G, Ko ¥ Xy Yur €10 €9 independent]y distributed. Furthermore,

G~ N(np + 'ty 1 al }

x ~ N[E o V)], y ~ NLE ,V(y)]
xa Mgy YO0 Doy ~ NiEps V(y,))
-~ N(0, I o?), ~ N(Q, I of
e~ N(O ‘-"101) £, ~ N(C ezrj*}

8y = n-b-pj e, = b-1-q
and ¥{x), V{y), ¥{x,), V(y,) are defined by {4.4.1). Lot

I N R - .
N¢ have Slfaf . f(al}, Szfa;i ~ x*{ez}. Then, with the help of the operation
described on p. 328 of Lebmann and Schaffe (1950) it follows that
{G, Xr X5 Xgr Yo 5‘1,52] is s set of minimal aufficient statistics for
{“'.I* r_ji, 'j;)' Since chﬁ"?) = 0, whereas th{_i 4 x‘] > 0, it is clear that
the minimal sufficient statisticsa is incomplete and do not lead uwa to
LMY.UE, If p ie known, we can have further reduction leading to = set
of atatistics which is bpth minimal and complete. Let

2(g) = x + §§53 (4.4.2)

where L] is a random vector and £3 2 ¥ - X. Let z, = E{IJ where y is given by

i

& ' _ 6y-1
A {IH + Py } f4.4.3)

e ¢lepends of
Clearly £3 iz a vecter of orthogonel contraste E;FAY helonging fo error

snd ie uncorrelated with z, which is the best unbiased linear combinntion of
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,»,’EJW y. Also (z,, E}} is uncorrelated with (G, x, i*":'l'ff.z] aince 1t ie

i linear functlon of (f;'?f} which has the desired property. The transformation

from ¥ to (G, z,, %,, Yei€qs Eps 53] is linear and one to one. The

tsuformed varisbles are mutually independent. We have
-1

z. ~ NI&, u + Dy Iy o011

£y ~ N0, (6™ + 0,1 )03

e diatributions of the remaining variasblee remain sams as before except
that we should now write o2 as mﬂi, An application of the procedure due

to Lehmann and Scheffe (1950) mentioned earlier now shows that a set of

mnimal sufficient stetistice for (y,r, of) is given by (z,, x4, yu, §))

6, Pulg )1 £35. Completeness of the minimal
from a well known result, concerning

-1
whare SU = 51 + Oy 52 +§;{E
afficient statistics follows
exponentianl Femilies [Lebmenn (1959} Thecrem I, pege 132]. This result is n

gengralizetion of & similar result in Roy and Shah {1962).
The particular case of equireplicste proper block design is simpler

and of apecial interest. In this cpse the matrices Hh‘"l':, T have the same

sot of eigenvectora. It is easily seen thst 1v ia @ common eigenvector and

tha corresponding edgonvalus is rk for NN' and O for both C and C. Mereover,

if for a common eigefwector belonging to L,(l;} tha eigenvelus for WN' ia
y, then it follows eaaily that the corresponding eigenvelue for C in
r-y/k and thot for C is y/k. Let £ and m be the multiplicities of the

elgenvalues rk amd 0 respectively For NN'. Obviously m = v-t, where

£z rank NN". Then
= v « § - m = t-§

il
1]

p=v -1

w=l-m = t = 1

L
n
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The matrices En'El’EZ and the vectors ,n, can be conveniently obtained

from the eigenvectors and eigenvaluen of NY', tLet

D, = The matrix consisting of columna which constitute a complets

0
set of orthonormal eigenvectors of NN' correaponding to
pigenvalues other than O and rk.

Ul = The matrix consisting of columna which conatitute & complete

set of orthonormal sigenvectors of NN' corresponding to

the eigenvalue 0.
551

I, = The matrix conalsting of columns which together with v~
constitute a complete set of orthonormal eigenvectors of NN!
eorresponding to the eigenvelus rlk,

Clearly U, has 8 columna. let y = (xl,ﬁm.,xﬂl, where y, 1a the
eigenvalue of NN' corresponding to the eigenvector given by the ith columns of U

let U = (uﬂ:ul:uz:v“?ng. Theny it in easy to see that

U'CU = Diag(rl_ - /&, 11 ,0,0)
U' Cu = Diag(y /k,0,r1, ,0)
Hence the matrices EufEI’EZ’Fa’FIFFZ and the vectors o,uw, are given by
E, = Unizﬁfk)lfz; Ey = U5 By 2 172 U,
F, = Uﬁfxﬁfk)'m; Fpe g Fy =2,
L R RE TR

If the design is connected then we have, 0L=z1 . Hence it follows that for n

cormected equireplicate proper block design, s-qzt-1; p=av-1! amd Uz ia vold.

4,5 A General Approach to Recovery of inter-block Informaetion for Proper
Block Designg

From now on we shall confine ocurselves only to proper block designs.

If oy im known, from the sufficiency and completenses of (E*,x

L

540 1t

# Y

follaws that 2z, Xyr ¥, Are UMVUE of £t B sl En rogpectively. Wa phgerve

e

that avery trestment contrast can bo expressed uniquely ss v linear function
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Miu'gl £, and hence in this case the rorrseponding linear Function of

o %y Yy Qives us the UMVUE of that treatment contrest. We alsc observe
t, and y, do not depend on p, and ere therefore IMVUE of £,, and £,
regpectively, even when g is unknown. Thus even when g is unknown UMVUE
wjists for any treatment contrast which can be expresased ay o linear Function
of § o &, and 1s given by the corresponding linesr function of x, and y,.
tven if we drop the assumption of normality it can ba seen that {1,, L y,)
ire BLE when p, is known and that (x,, y,) remain BLUE even when p, is

To see this we only have to obaerve thet (z,,x,,y,) is uncorreleted

o e b wf
wlth € ce’ r:;*;-; ) v of orthogonel contrasts belonging to error which

WkNawT .

sgt span the apace of all lineer functions belonging to error since the

dinension of the error space is n-v. Suppose now that p, ls not known and arv

satimate of p, is used in place of p, in equation (4.2.3) to obtain the
combined estimator of & given treatment contrast p' 1 {as 1= the case with
ilsmost all methods of recovery of inter-block information proposed in the

literature). Then it follows from our previcus analysis that this combired

sgtimator must be

‘pﬂ} = &) Il:'y} + _E,i X ¥ E’i" Y (4.5.1)

By=1
“s + By a )7y 5{@} is as defined by (4.4,2) and Lor Ay %

N A
whare I =

ate uniquely determined from the representation

P'T =B + ik 135, (8.5.2)

Thus all these methods in effect seek to combime the two Independent unbinsed
estimators x mnd y of £ but differ From each other in the manner in which
this is done. The form of the combined eatimator, as given by ;(i_} ig

ratural but do not apply to all methods proposed in the literature. As an
example, we refer to the method suggested by Stein (1966), in the last

paregraph of his paper where differerent estimates of p, are required for
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m purpoae of estimating different suybseta of £, [see Sheh (1975)]. We

perve that all estimators of p, proposed in the literature belong to the

#ser b of 81l messursble functions of 515 55 Hl’ 'H'? ane Hﬂ and that a

meral form of the estimating equation (for trestment contrasts) which
gpliss to all methods proposed in the literaturee is given by (4.5.1)

provided i appearing there ias replaced by ¢ where ¢ ¢ ¢° and ¢° = Qartesian

poduct of ¢ taken o times,
We shall now obtein some baelc results which apply to all methods

proposed in the litersturse.
Assume that ¢ ¢ 9°. Then (1) ¢ is uncorrelated with tue

lenme 4.5.1
Funckion gi provided all elements of & are even functions of g (ii) ¢ is

independant of x,, ¥,

Proof  We have
'Y -~ ELy=1"¢

e e

Also note that elements of

£ ~ are linear functions of € and that S, I TERERL M L

it B8

even functione of g . Mence L% and ¢y L't ure odd function of g

Since the distribution of ¢ is symmetrie about 0, it follows that

EL'Y = 05 Ego'Y =0

EUV(fﬁi,&'E} = Elpgo'e) = 0

(il) This 18 & asimple consequence of the Fact thet ¢, 1s 8 meaaurable

function of E pu which le independent of x

F

wy Yur

Remark 4.5.1 The result in part (1) of lemme 4.5.1 implies yit ¢ is vnrenmelobud

with  z(#) [f;m Shearawl et, al. {1975) far = similar musult 7}
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Eﬂﬂrm 4,5.1 let ¢ e 87 and let E(E} be as defined by {4.4.2). Let

lenote the joint denaity of (51,5,,W,Wyyeer M) and lot W) i = 1, ... 8
b soch that wj*fEHi is o chi-sguare varisble with 3 degrees of freedom,

fistributod independently of CILIN R AT Wipqre-¥,). Let the

wibol £, stand for expectation with respect to the density ., = ﬁ"iiﬂi

nd let d;i , Btend for the expression obtnined from &y by replacing Hi. by

)

Lo Finally let

2

hylog) = o3/vy = 2ty
ind easuine that E[Efg_}} exists, Then
{1) E(g) is urbiased for £

(ii) Wz, ($)] = v{xi) {1+Ej*hi(¢1}] {4.5.2i)

V(x.) [1+€h, (4,01 (4.5.241)

{iii) cnv[zi(é},zj(g)] = D

(iv)  z(4) i» independent of (x,, y,].
fronf (i) Since x  is unbiased for £, we have to ahow that

£[¢i ’Eji] = 0
This : follows since E¢, ey, is an odd Function of € having a
flatribution symmetric about rero.
(1) Write z,(¢) in the form

bserve that on the r.h.s. of this the first term is U.M.V.U.E. and that
the eecond term is independent of the first term since it is a measurable
function of €., , which has the desired property as shown for a

sinilar situntion in the proof of Theorem 2.2.1(ii). MHence



Viz, (@)} = Wz,) + EL o~y YW, ] (4.5.4)
nd
Wz, )  ¥(x)(ey;) (8.5.5)
Hso
EW, = V(x,)/y;
oy Y2 1 = [VOx Ay JEL oy L /EM,T =[N0k )y JE g (g oy

= W0 )y + Ejy hi(0y)] {4.5.6)

fomula (4.5.2i) now follows from (4.5.4), (4,5.5) and (4.5.6). The Formulo

4.5.2i1) follows From this in view of the identity

w p{wsl} = pi{ws3)
were o{wim) denotes the density function of a chiequare veriable with m
fgrees of freedom.
({11} Firat observe that if i £ j, then 244 18 independent of 2y and
{ﬁj‘"f‘]) E}j- Hence

cuv[xifg}, zj(y] = E[{aﬁi-n)(qrj-*rj}gn EJJ]
it is ensy -to ses that the texm within square bracket on the right hand side
of this s an odd function of €34 for any given velue of the remaining argumenta
which sre indepsndent of £y~ Since €3y haa & distribution symmetric sbout
mro, it follows that the tonditional expectation of this term given the
wluee of all arguments other than €yy is zero. Hence, the expectation of
thie term is zero and the proof of (iii) is complete.
{Iv) Recall that (x,y) is independent of (x,,y,}. Also by part {11} of
lmma {4.5.1) ¢ is independent of (x,, y,). The result follows since z(¢)

it o measursble function of (x,y,¢) which is independent of (x,,y,).



imark 4.5.2 Results similer to {(i)—(iii} of our theorem (4.5.1) were

mved by Roy and Shah (1962) but they confined themselves to a more
mitricted class of designe as well ap to a more restricted choice of &, fur
gprosch iz similar except that we use more refined srguments in (ii) and
H{li} whicth enebles us to replace a condltion required by them [ see o.1.
‘wndition {6.2} in their paper] by the wesker condition that F2(4) exists.
‘Wile arguments in Roy and Sheh {1962} can only show that the two torma on
‘thoa. of (4.5.3) are uncorreleted provided ope is willing to nesume a
condition similer to {6.2) of their paper, we show that these are in Fact
Our Formula

independent under tho milder condition mentioned abowve.

{6,5.2ii) is emsentially equivalent to {2.5) of Khatri and Shah (1974) byt

wr proof is algebraicelly simpler. The following theorem states nn important

tongequence of theorem (4.5.1),

Theorem 4.5.2 Let by € ¢%. Lat (E'I]l and lfp'r}z be expressions obtained

from (4.5.1) by replacing ¥ appearing there by ¢y and ¢, respectively. Then

Viz (601 < ‘J[zi{f&z}]. for every i = 1,....,8

€= @'Y, < MG,

for every treatment contrast p' .

fropf  Theorem (4.5.1) implies
s 8 .
v (p ‘o)l o= izizglv['zicgj]} + LIVOOGIR, + BAV(v,)R,, § = 1,2

whare E’-u' El arvd &2 are as detemmired in {4.5.2) ard P’ui denotes the ith

component of L Herwe the desired result is cbvious,
In the following we shall refer to the procedure besed on g as procedure
TN
g- The procedure based bm ¢ = O will be referred to as ¢ . Let (p'1); s

{E'T}i be ag defined in Theorem 4.5.2. We shall say that {E‘E}l ig better
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FaY
then {p'1), for all pye 0 if
Vi(p't),1 < ¥l{p'1),] forall p, e
Tho procedure ¢ will be eaid to be better than ¢, for all p, € @ if

-

a
@)1 ia better than {E*Ilz for all treatment contrasta p‘I. In view of

" the sbave definitions Theorem 4.%.2 is equivalent to

Theorem 4.5.3  Let $10 9p € 8. Then ¢, is better than g iff zi(ﬂll} is

better than z‘i(’@z] for every i.

The following two Theoreme which can be essily deduced From thecrem

4.5.1 would be vseful for applicotion of the result just etated.

B _ . _
fhagrem 4.5.4 Let $yr 0 € O . Then Z‘j(m) is better then 21{@2} For ell g, €0

iff For eatimating Y
M.S.E. (4y;4) < M.5.E. {g,,,) for all p, £ @

Theorem &4.5.5 Let & ¢ @E then zifgl is better than the corresponding

o~

intre-block estimator for all p, ¢ @ ifF

Zyo(4) > 1
where
_ - el
uﬂ(¢i} = _inf‘ Ed:ifitpi :
Pyt R
by = oy
¥a shall conclude this aection with the following corollary of Theorem #.5.5

which would be used repestedly in the next two ssctions.

forollary 4.5.1 Let by = By ¥y where a, is a pogitive conatant to be

suitably chosen and ‘t‘i e $. Then zi(@} is better tham the corresponding

intra-block estimator for all p, e @ iff a; < 2vo(¥,).
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It should be noted that under the assumption (4.1.2) we must have p, > 1.
Kwever it con be easily seen that for a proper block design H ks p.d. iff
g =1k, Hemce in the resulting model (4.1.3) which is the basis of our
malysis, we may allow p, = 1 + kp to assume any positive value. In the
follgwing sections whero we ahall use the above results, {3 will be either
{0,) or {1,=) and for the gsake of Bimplir::ity we shall denote uﬂ(‘i’i} in the
o cases by u(‘i’i) and u,{?i} respectively. Let

Yoq © lfilmi}

e it is emsy to see that

Wy = inf ERAV
u*(’l'i} = inf £V /P
Yﬁnr"fﬂi)

4.6 Estimgtion ProcedureBetter than e

In this section we develop some estimatinn proceduren which are better
than the procedure .% « Yhere are two main reasons for considering such
proceduren. Firstly it is natural fo require that the use of additionnl
information ohtainable from the inter-block analysis ought to be made in auch
g way that under no circumstances it leads to estimators worse than what we
rould obtain without using it. Secondly estimstion procedures which utilize
Interblock information, generally produce estimatora for which verisnces are
difficult to compute or sstimate snd asm such the procedures we are looking
for has the advantege thet simple and unbingedly estimable upper hounds of
thess ere provided by those for the procedioras [ The pioneering wortk on the
conatruction of estimatora with the desired property was done by ¥ates {1939},
Eatimate of p,, used by him in this connection was besed on the inter-block
eccor sum squarss and differs from the usual one based on the adjusted block
am of sequares, recommérded by him in the aame paper. ﬂf’t;r;:;m:; years

interest in the problem wes revived by Graybill and Deal (1959}, who offered
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isimilar estimator in cese of BIBD with appropriate restrictiona. The work
of braybill and Deal was quickly fullowed by a series of papers by Seshadri
19%3 a,b), Shah {1964} and Stein (1966) but the results obtained were still
pplicable only to special designs. The estimates proposed by these three
wthors displayed some similarily and utilized only the treatment component

of the adjusted block sum of aqueres. Notable contributions in recent

jars are due to Brown and Coben (1971) on BIBD and by Khatri and Shah (1974)
i connected binary equireplicaste proper block designa. We shall unify and
wtends ideas in these two papers snd cbtatn comparsble results for any proper
block design. Our reault would contain those in Khatri and Shab (1974) and
wnetitute an improvement over the Brown Cohen results. We shall also unify
wd extend the estimstors proposed by Seshadrl (1963 m,b), Shoh (1964) end
Stein {1966) and generalize their results in & similar manrer.

Following the approach of the previous section we consider five procedures:

O = Wppreeord, o)y ¥ = 1005
where
i = i o
5
¥4 ¢ 51![51 + ci(S2 *kjgl H&}} ,
¥y, = 5/[5 + ¢1(52 +WJD

Yy = S5/ v ey 59,
/(5 v,

+ S5./(5.+e; ) W Y|
Ve, W )

8
5. /( e., W) o
1 jgl iy 3

*. <, ., TR P.ﬂ;i!;utz congtant X,

It ahould be pointed out that the canstant By Oy, EiJ which appear above

i
W
[N

#

are to bw interpreted as generic constents, that is to asy not mecessarily the

ims values of thesé conatants would be employed in different classss. The
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pocedures ¢y = ¢, are related to those in Brown and Cohen (1974} and
Petri and Shah (19M). Procedurs ¢ i related to those in Seshadri {19630 b)),
heh {1964) and Stein (1968). We Firast consider 4y Let

Y1

Vey = Ww/loj/ey + of]

3k

-~ 43 - 2
Slful, VE = Szfg*

”33 = ij{gifuj + qi], jAi

o
3 321 Vajr V4 = ¥ + Yy

-
]

UJ = yjjfvﬂ’ J=21,2,...,8
)
LF = fu fu-) "
i j=1 y J
Then
- 2
51 = 01?1

2
52 + Hi* + Jzi Nj = ﬁi?z + jgl {Gi;ﬂj + gi}?jj

1]

(0}/a) (U s gy p) Y,

Eﬂiffni Ti}]fpful-ﬂ(quj]Vﬂ

H

were p(u) = 13 g{u) = I-u. Hence it in eusy to see that ¥ cen be written
L

dy = ci;"ai
hlu,y) = p(u) - qlu)y

foto that ¥) ~ yi(e))s Yy ~ x* (9002} 5u, ~ B3, {e,08+1)/2) i j £ 4

0 ~B{3{2,{ez+a-1}f2_] if § = i; % g~ Bl (s+42)/2, 92;"2] and that ¥,
21

J
'fi,u are sutually independent. Since Vi is aimost sure positive, (4.6.1)
is equivalent toj

W = vy hlu,y V)



T

where V = V,/V,. It can be seen that with the matchup u-~x,¥ ~ vy, § matches
up with f of theorem A4 and aatisfies all conditions of part A of that
thearem provided ev? ¢ «w, & pondition which is gatisfied iff g, + 82 3.

The aypport of u ia § = {U,uifa*) where

o, = m}ﬁ aj; S, = Lt|t € 53 q(t) > 0}

= {t{0 < t < 1}.
We have
“lpu-2 _ o -
By = EV -/EV S = {ez+a-2)f(al+2]n
§ = inf pla) = 1; §5 = inf p{t)/qit) =1
teb teS,
8 = inf hit:1} = 0;
tas*
by = Hanf&z, diaﬂﬁ}) =1 ;
In view of the above calculation theorem A.4 gives w{y) > LT Also clearly
inf  EF/ER? - inf ETfE¥2 < [E@!E%z] -p = 9;8 For any p,n> 0.
€ 1/ (1, pa) - Yy o

Hence corolleary 4.5.5 gives

Theovem 4.6.1  Assume Ehat By + 8 2 ¥. Let a, = {e2+5«2}f{ﬁ]+2]. Then

{i) ziqﬁl} is better than x, for all ¢ > 0 if

By <2 nin(l,diaﬂ} {4.6.1)

(ii) zifgl} ia better than L for 8ll p, > p,, (for some Pap D) only if

a, <2 ﬂiaﬂ {4.6.2)

Note that if seither m, £ 2 or da <1 then {6.6.1) is equivalent to {4.6.2).

4]
Hence theorem 4.6.1 gives
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lorollary 4.6.1 Assume that ey + 8 > 3 and that either a; < Z or d;a < 1

then z. tEIJ is better than x, for all pe > p {For some Py > 0} iff
4?2 dia .
Similar arguments can be applied to each of the procedures Pas Gz Bge

s, we have

Theorem §4.6.2  Statement of Theorem 4.6.1 (and hence corocllary 4.6.1) helds
wrd by word for each of the estimator zi(f;;_z},_:zi{(p}} and z-i(cpu:l pravided the

sesunption By + 8 > 3 ta replaced by ey > 2, By > 5, 8 > ¥ reapectively and

the expression for 8 is replaced by a, (ﬁz“”’ffel"’z}v a, = (Ez"a)”ef?]!

0, < {8-2)/( el-I-?} respectively.

Remark 4.6.1 1In case of 45, the analogoue of part (i) of theorem 4.4.1
tehtained in theorem 4.6.2 can be improved by using arguments, similsr to that
e f-r'i"nt,.l:f'tg o Wi LE -

in Remark 3.4.]1. Wwie have “m#,c Asgume that By 2 5 and let HU:(ezmﬁ)J’Iel-Q),

Then g (¢4) is better than x, for ell p, > 0 iff

;% Z2 min {I’dian}
It can be seen that the estimstors Ei of Khatri and Shah (1974) and the

mtimators ﬁa’ ﬁ;” . {.‘; of Brown and Cohen (1974} can be written as

[
£y = 11(31} with ay 1, ey =

I

ﬁa = 2-_1(5?2} with 8y = &, ¢, = 1“iﬁﬂz*})

1)
-]
3
4

ﬁ;l}z 2,(¢5) with a, - = ) a/e,

fl

g; = zi{EIJ with a; = a,e; = e; uif{az+m2)

{from the details given in Section 4.4 note that for connected binary
suireplicete proper block deaigna, conaidered by these suthers, Bp#8 = b-1).

e vbaerve that Ei is s particular cese of xi(q,\l] with a; < 2. Also ﬁa’ ﬁ;”
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fore particular ceses of z,{¢,), 2,{¢;) end z,(¢;) respectively such that
fs, < 1 in each case, the veluss of d;s_ being elfezml}f[{eld-z){ﬂfli]],
iiiaz-lt}’{ez(elﬂ}] and el{azeﬂa-Z)I[{afz}(ezuu;u]reapﬁctivﬁiy.- Hence by

e pracading theorsms we have

broklary 4.6.2 For all p o, (i)t ia better than x, 1ff c if%*“i x

[sl+2}f{92+s—i’}, provided e+s > 3.
{if) ﬁﬂ is better then x, iFf a < 2 e,{e,-1)/[(e;+2)(e,+3)], provided

b2 2.

flii} ﬁgl'}is better than Xy iff a < 2 ﬂlfaz-&),@"[ (ef?}ﬂ] provided

4> 5.

v} ﬁ; is better than x; iff a < 2 el{ezm-»i}f{(nl+2}(az+ﬂ+ﬂ} provided
e > 3,

he result (i) of the above corcllary is an extension of a similar result by
atri and Shah (1974). The result (i1) - {iv) are extenaicns of similar

rweults in Brown and Cohen (1974) who confined themselves to BIBD., We

toerve that For e BIBD, s = p = g = v-1. Hence the results sbove concerning

the Brown - Cohen estimators are readily seen to be improvements of these in
wction 3 of Brown and Cohen, where the knowledge that ay Pu > 1 is used to
wrove the upper limit from o (s,e)) = 26V Yetv1 v D) ko

v, lee) = ﬂ?‘lmﬂax[af{ﬂl-k\']},\?j with ¥ ~ F{e,e,)and @ = e,+3, e,
il in cases (i), {ii} and (iil) respectively. We shall now concern
nrselves with some resulte and discussion concerning the procedure de - Let

11,\‘3j(j = 1,...,8 }ang V4 be defined as before. Lat

u} = v}jfvj {(j = 1,2,...,8)

g B
s = €5 u}fu, vz ()

b ) sy ey



8
2 i _ g
€ ”i* +j;1 Eij Hj = jé] {:i‘j{glfa‘] + d, ) V'lj = UE{U'—' + u‘ja_v*)h’}

nce, it is easy to see that ¥ can be written as
¥ = (Vlfvj}f["ri u* o+ (I-Ti}v*]
Furthermore

ts that vl,v3 are independent of each other and of {u*,v*),

hxiey), Yy~ xMae2), wt - B, B, 5 A dur - 8072, B,

§
i ut = 1. Hence EF/E% = 8, EF!’EFE, whoro
Fl .

8, = BV N/E /)Y = (8-2)/(842),  (4.6.3)
fz lf[-fi u* + (l-y,)v*]. Hence

wi¥} = a A {#.6.4)
hete 2

A = inf EF/FETF

v; € (0,1)

ke row need to find #.ﬂ for which we would meturally like to appeal to theorem
k2. Clearly, u* and v* are non-negative but in general u* and v* are
tpendent and the result there is not applicehle. However, when (i) Cyy = 1

for every j, we have u* - Vi v¥ l.fqi where

o
v, = JIJ (W¥/a) (4.5.5)

las, when (1i) ey = for every j, we have u* = 1; v* = vz,a’ai where

a
v, = {n, u,)
jgl 3

{4.6.6)

in each of these two cases u* and v* are obviously independent (one of the

o being 8 conetent).
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b by theorem A.2 we have

»
[

min{}/a;, ;1 in case {i}

a (4.6.7)

A min(1,M fai} in vase {ii) wiqne
M, = FH' ,”‘&v '# yat, :

imther cane which is nlao aimple and is of special interest concerns the

t

tss of demigns for which {iif) @ = A fFor all j. In this case

fzy* = ”3"’% where
B
) e Uy {4.6.8)
hen £ = an.fv} and hence 1t is obvious thet

A

o (lfq.n] My in case (ili) where

L]

- o) e =2

My v, /EvTS {4.6.9)
It complete the evaluation of nn in the three cages we need to find
tpitable expresasicns for Hl’ Hi‘ Hj-. For thisz we shall use the following

mault in Ruben (1962).

tamn 8.6,1 Lot X)yere9X, be independent chisquare varisbles with

LTI d.f. respectively. The density function of

j 1 dj pdyzovy {4.6.10)
s glven by
- 1 M _
f it :
[ f5ogrigrd
tere
a
m = "o
j%l J
ptiefies

Max |1-p, /d%]| < 1 j
J J
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f.'n are given by

J
- f'.2}=

b | I'llj
" (o fde
ik | {p,fdJJ

i1

|z] im}nfhp,k!ﬁ ;

and g{+»+) stands for the gomma density.

f?_ " -:mjf'z
[;_{;-p*/djxg] ]

(4.6,11)

Further the Fj'-.a may be determined

a m./ 2 j
. - i J -
from the relations f_ = ,j-zl ':r!f"dj} 3 fj+l = ,qil] Qr/[li,}-ul)] where
- 1w o)™
Kz.l
3
2ol - -, ¥ = vjvl‘:':]ll v}Jfﬂj (ﬂq'ﬁ-l?]
his ie of the Form (4.46.10) with
B = 8
m; = 1 if j£i {4.6.13)
= 3 if j= i
dj = 1.!""'!1‘1
hen uaing Lemma 4.6.1,
eyt e P/ ey Fil s (4.6.14)
where -
F{D 1 ffl’f{s-zj); |
r(1) (4.6.15)

: jgl rD/10-25)(s-25-2))

where F“‘} stands for the expreasion obtained from f § (of lemma 4.6.1) with

A

a;ml,..e,mﬂgdf,,..,a: a9 given by (4,6.13) and Pe = Py satisfying

D<p < M%ntlfuj}.
it is eany to see From (4.5.12) that

Using (4.6.14) and the fact that Vg, v;

are independant
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My = 2y hey e = o VA e (4.6.16)

Let Py iy sotisfy

0<p, < mjn{gj}; 0 < py < m§n(c1JJ

ot 7122, fgj} be obtained from Fglj[defined immediately ofter (4.6.15)]

by replacing the argument p, by Py and Py respectively and argument dj for

_ . . - ' 3 3
cch j by @8 = o and df = o respostively. Lot (F2), Fi2) ang (¢} r0))

J
te obtained from {F‘“u},F(”} [defined in {4.6.15)7 by replacing F(;“” by
1 4 N

F{ﬂ and f{j} respectively. Then, in A similar menner, we Find

J J
M, = (o D) a2); g = (o U M /e (a6 17)
How let
Ayg = 2 8, Min(L/a,My) 4
Apy =28, Min{1, szhj) : {4.6.18)
A)i = (Eﬂnfr\:u}H}

whers a  ia given by (4.6.3); MM, and My are given by (4.6.16) end (4.6.17),
Then ‘from (6.6.4), (4.6.7) snd {4.6.9), we find the value of 2u(¥) to be Ay, .Ay

and Ay, in the coses (1), (it} and {iii) respectively. Hence by corollary 4.,5.5

we have

Theorem 4.6.3 Assume that & > 3 and let ﬂli"“"?i arwl *5‘31 be as defined hy

{4.6.18). Then

(1) z; (g5} with e, |
{13 zi(i'j) with €4y % a is botter then x, for all p, > 0 iffo, < A,..

1 for all j is better then Xy for atl p, » 0 IFF ﬂiinli'

(i1t}  if ay = @ for all j,2,(¢.) is better then x, for all p, > 0 iffa cAy,.

Romark 4.6.2 With obvious modifications of the condition: s > 3 and the

formulee (&4.6.18) and (4.6.17) theorem 4.6.3 {iii) holds even when some D’ijlﬂ
a8 Iera.

It can be seen that the estimator proposed by Seshadri (1963e,b),

Sheh (1964) {untruncated form) and Stein {1966} for the recovery of
interblack information for special designs, where o j = 0, for overy j,
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respectively. It can be seen that 855 5-A3i iff e 3-2;8315 A3i iff
bl-Z)(s-b) >8 enda,, = A31/2 is always less than A4, . Hence by part
(iii) of theorem Q;Q.}, the result in those papers follow (Note that
Seshadri, Shah and Stein write t-1, p and p, respectively for our s; and
f, e, and n, respectively for our el). It should be noted, however, that
though the proof here is simple, the model here is less general than in
Stein (1966) who does not require the normality of block effects. Also
unlike Shah (1964), we consider the untruncated form of the estimators.
That in our model, all these results hold for the truncated form also follows
from theorem 5.3.3(1i), which we shall prove in the next chqpter.

The upper limits of ay in theorem 4.6.3 would be generally difficult
to compute without the aid of a computer. Hence we now wish to provide upper
‘Lits of 8, which can be used easily in practice to ensure that ;;(95) is

better than X5 for all p, > 0. For this we shall use the following lemma.

Lenma 4.6.2 Let x be a random vector and A(x) be a measurable function of

x. Then E[1/A(X)I/E[L/A(x)]? 2 min A(x).
X

o~

Proof The proof is elemehtary and is omitted.

Let
A+1+1 = 2a ﬂi; Ag, = 28 wz*/ai;Agi =z 2aoM§/ao (4.6.19)
where
My = m;n (l/aj):
M; = mi.n aj;
J
Mg = m}n Cij

From (4.6.5), (4.6.6) and (4.6.8), it is easy to see that
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M= Minv, o, 1=1,2,3
(u*lf,...,u&)
lnce, using lemma (4.6.2) we see from (4.6.16) and (4.6.17) that
Mi > M*i*

ling this, (4.6.18) gives :

Ayq 2 28, Min [Va,,M¥] = 2a M} = AY; (4.6.21)
tince My < 1/a; by (4.6.20).

Ay 2 28, Min[l,Mglai] = 2a M‘z'/o:i = A% (4.6.22)
fice M3/, < 1 by (4.6.20)

Ayy 2 28, M3/a = AY (4.6.23)

IMview of (4.6.21), (4.6.22) and (4.6.23) theorem 4.6.3 yields.

rollarya.¢.> Assume +rol s>3. Let A;i,a = 1,2,3‘be as defined by (4.6.19).

Then we have

(1) z,(9g) with €y 1 for all j is better than x, for all p, > 0 if a,<Af;.

(1) 21(95) with €y for all j is better than x, for all p,>0 if a,<A8..

%
(i41) if a;=q, for all j, then z;(4s) is better than x; for all py>0 1f a,<Aty..

47 Yates - Rao Procedure

As pointed out in the previous section the motivation behind the
meovery of inter-block information is not just to use the inter-block
iformation but to use it to improve upon the customary intre-block estimators.
It is therefore, desirable that we examine all well known procedures and obtain
pecise conditions under which the resulting estimntors have the desired
poperty. Although theorem 4.5.5 apparently offers a neat theoretical

wlution to this problem, practical spplication of this theoretical result
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hthe present study we shall restrict ourselves to a method which is

phaps the oldest and most widely used. The method was originally

moposed by Yates (1939b,19ll0) and gradually extended by Nair (1944) to sll
B8 designs, by Rac (1947) to all proper block designs and finally by
limninghem and H‘enderson {1968) to all block designs. Since we are concerned
nly with proper block designs, we shall refer to this method as Yates-Rao
mocedure. The method can be described as follows:

(i) Obtain the estimates Gi and 82 of o; and o2 respectively by equating the
intra-block error SS(SI) and adjusted block 55 (to be denoted by SSB) to

heir respective expectations, (ii) estimate p, by Py = 8:/3;, (iii)
whstitute 6* for p, in equation Q.ZJ) and from this obtain the estimate

of any desired treatment contrast.
As suggested by Yates, it is customary to modify the estimator 6* by
iy Py if B »>1
= ]l otherwise
The reason put forward for this is that under the assumption (4.1.2), p, cannot
wsume values less than 1. The procedure with or without this modification
i1l be referred to as the truncated and untruncated form respectively of
the Yates-Rao procedure. Following the notation of the previous section

v first establish the general form of the Yates-Rao procedure.
theorem'4.7.1  The untruncated form of Yates-Rao procedure is given by
0, = (96107 +1069) 3

8
bg1 = S1/1b35y + ©315; +_21 (1—Y°J.)wj}]

J:

vhere



vhere
=1 - aiyool[ez +8 - Yoo]

[
[}

0
[
[}

8
Yoo © le Yoj

(1i) The truncated form of Yates-Rao procedures is given by {2 = (@21,...,¢gs),

°Zi = 0g; AF 0 <065 SYoi3 = Yoi otherwise.
Proof The proof is straightforward once it is noted that the adjusted
block sum of squares can be expressed in the form:

8
55, Y S, + JZI["J’("GI + 1)

which is a straightforward generalization of statement (2.13) in Roy and

Shah (1962).

pemaxx 471 The expression for the Yates-Reo estimator given by theorem
8.7.1(ii) is a generalization of a similar expression [pbioinable froe  Roy
and Shah (1962)] given in Khatri and Shah (1975) for the special case of
connected binary equireplicate proper block designs.

Graybill and Weeks (1959) showed that in case of BIBD, the Yates-Rao
procedure is based oh the minimal sufficient statistic. The work of Roy and
Shah (1962) showed that this is true for all connected binary
e;uireplicate proper block designs. In view of our result in Section 4.4 our
Theorem 4.7.1 shows that this is true for all proper block designs.

The question of unbiasedness of Yates-Rao estimators has been examined
by Graybill and Weeks (1959), Graybill and Seshadri (1960) and Roy and Shah
(1962). Of these the most general result is contained in Roy and Shah (1962)

who established the unbiasedness of the Yates-Rac estimators for all connected
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iinary equireplicate proper block designs. In view of our Theorem 6.7.1 it

lillows from our Theorem 4.5.1 that the Yates-Rao estimators (both truncated

nd untruncated) ere unbiased for any proper block design. Unlike gsaveral
ithers proposed in the literature the Yates-Rao procedure utilizes all

jetween block comparisons. So far the only known designs for which the

huncated form of it, fails to give uniform improvement over the intra-block
wtimators are (i) the Linked block designs{ introduced by Yodtpen (1951) )

vith b S_G;i:shown by Shah (1964); there are many such designs [e.g. the
synmetrical BIBD with b =-v = 4,k=33 geveral others which are not BIBD can be
found in Roy and Laha (1966)1. (ii) The gsymmetrical BIBD with v = 4, b = 6,
k= 2 shown by the Bhattachar;§ (1978). While the properties of the Yates-Rao

procedure remains largely unexplored, the desire to construct estimators

petter than those by the procedure ¢, defined in section 4.5, has led to
several modifications of it, of which a fairly comprenensive AcCCOUNt has been
given in the previous section. Simulation studies by shasrawi st.al. (1575)

s well as numerical comparisions by Khatri end Shah (1975) show that
{stea-Rao estimator compares favourably with that of Khatri snd Shah (1974).
It {s therefore, both interesting and important to examine the conditions
under which the Yates-Rao prﬁcedure is better than ¢ . The question hes

been resolved by Shah (1964) for all Linked block designs which include

all symmetrical 818D's and by Bhattacharya (1978) for all esymmetrical 8IBD's
Jisted in Fisher and Yates (1963) with the é?bption of one (the BIBD with
y:5 b =10, k = 2). The results obtained by the author (1978) were
spplicable only to designs belonging to the Dl-claes [defined in Shah (1964) 1,
other than Linked black designs; the asymmetricel nIBD's were treated as
gecial cases. In the present work we extend those results to any proper

block design for which
bg 20 for all (4.7.2)
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bere bj's are as defined in (4.7.1). It can be seen that Linked block
kigns treated in Shah (1964) but excluded in Bhattacharya (1978) belong
tthe larger class of designs satisfying (4.7.2) which we treat here.

hview of (4.7.1), (4.7.2) is equivalent to

> Yoo / (e2 + 8), for all j (4.7.3)

Yun 2

fere Yy, = Min Yoi+ We shall also assume that

e, +8> 3 (4.7.4)

hall theorems which follow, the conditions (4.7.3) and (4.7.4) are assumed

ithout explicitly mentioning those. For the sake of simplicity we first

wsider dge We treat the\two cases (1) bi >0 (2) bi = 0 separately.
hee (1) bgi = B ¥ where
a; = 1/b; (4.7.5)
8
¥ = 5,[S) + (c;/b){(S, + 321 (1-y0j)wj}] .
v,V ,Vs,V and V bg ag defined in the previoues section. Let

17273 ll’uj
8

|:jzlyojuj .

Note that
s
Sy + (1-y Wy + J;i(l-yoj)wj = oiV2+le(l-V°§) (a}loi-'-oi)v3 j
= o}lpy + wll-p,) 1V, = [0}/ (a;v;) NP (w)-a(w)y; IV,

hre p(w) = law, qiw) = 1’"/701‘ Hence ¥ can be written as

o= Vy/TygYy + 9 h(wiy,)V,] (4.7.6)

hre h(w;yi) = p(w) - alw)ys
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d; = ci/(aibi) = c/b; c:el/(e2+s-yoo). (4.7.7)

ice V., is almost sure positive (4.7.6) is equivalent to

1
¥ = 1lyy + d; hlw,yy)V]

t can be seen that with the match up w ~ x, V ~ Y, ¥ matches up with f of

heorem A.4 and satisfies all conditions of Parts B and C of that theorem if

nteke y =y 4. The support of w is S = (0,y,), where y, = max y,

= {tjt e S;q(t) > 0} = {t|0 < t < Yoi}' We have )
a, = EVI/EVT = (ope-2)/(eps2); (4.7.8)
8§ = infp(t) =1y, 6= inf p(t)/q(t) = 1;
teS teS,
83 = inf h(t);-) = 0; 8y = inf h(t;yoi) = l—yoi H

teS, teS,
65 s mx(szycl;a(ﬁ}) = 13

Min(d;a,38,, &)= Min[1, (1-%,)] (4.7.9)

"

1'[2 Min(d;a,é,, 5‘7‘54.;90(1—7*)
since 66 = "'a"(52'd;3054).>.°'; a8, > <881

E(1-w) Ve[ (1-mMin(lw, 1y D171 5 (6.7.10)

9,(0)

g, (1) = [(lyMyyy) EW /EWE; 6g = Min(5,(0),0,(1)]

In view of the above calculation, an application of Theorem A.4 in the
sesent context gives u(¥) > max(my,qa 8g)5va(¥) 2 Max[15,0,3,94(0)] =
43.0,(0) since w <y, = Min(l-w,1-y ) > -y, = g(0) > I-y,-

lote that (E¥/E¥Z] = d,a_ g(0), where

9(0) = EQ-w e (6.7.11)
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Hence

inf E¥/EP = inf E¥/EF’ < da_g(0), for any p,, > 0
Py 2 Pxo Y; < 1/(1"'“10*0)

In view of corollary 4.5.1 we now conclude that

(1) z;(g.) is better than x; for all p, > 0 if 8, <2 max(n,,da _8g), which
[in view of (4.7.5), (4.7.7) and (4.7.9)] is equivalent to A, > 1/2, where

Ay = Max[Min{bi,cao(l-y*)}, ca_ ca) (4.7.12)
(11) zi(%) is better than xiFor ppl if a;< Zdaoﬁ(o), which is equivalent
to A,y 2 1/2, where

A, = ca, g(0) (4.7.13)

(111) 11(9.’6) is better than x, for all p, > p,, for some given Puo 2 0

ifa; < 2da°g(0), which is equivalent to

Ao 2 1/2 where A, = caog(O) (4.7.14)
Case (2) dgi = .Y " where a, = l/t::l .
8
Y= 5,/[S,+ jZI (I—YOJ)NJ]. Then, ¥ = (V/cfi)/h(wwi);E‘?/ETz = eT}aoEl’/Ef:Z

vhere f = l/h(w;yi). Hence, using Theorem A.3 we obtain

-1 -l -
v(¥) > aja 8g 5 vu(¥) > o8 g(0)
Mso in the same way as in the previous case

inf EW/EY? ¢ o}l a g(0)
Py > Puo

In view of corollary 4.5.1 we conclude

(1) 21(526) is better than x; for all p, > 0 if a; < 2‘;113068’ a condition
viich is equivalent to I\1 > 1/2

(i1) zi(¢6) is better than x; for all p, > 1 if a; < 2611306(0), a condition

wich is equivalent to Ajw 2 1/2.
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(i) 2z,(¢,) ia botter than x, for all p, > p,  for some given p,4 > O
ife < Z&E%DQKD], a condition which is equivalent to A, > 1/2. This
completes the anslysis for cese (2), where the final result is seen to be

the some as in case (1), We have thisa proved tua.~ » a 7.

[hearem 4.7.2 Let Hi‘ﬁi* ﬂio be sa defined in (4.7.17) - (4.7.14}. Then

(i) 11{26} ia better then x; for o]l p, >0 if A, > 1/2, (i) zi(ﬂﬁ) is
better than x, for all p, > 1 if A, > 1/2 (iif) z,{(¢,) is better than x,
for a1l p, > p (for some given Pug 2 W) only if A, > 1/2.
From (4.7.16}, observe that, Min g,(0} = l-y,i Min g, (1} < I-y,; and
i

hence H;n bg = Hin g,(1). Let

A, ca_{l-y,)

{6.7.15)
A

n

MinfMax(b, A M} A T ; ﬁﬁ = AM,

where
b, = Min bi;HEm;n 9 (1)/ (Qey JsM, = H;n g{0}/{1-y,)
(4.7.16)

Then from (4.7.12) - {(4.7.14) we see that Min Ay = A Min A, = A
i i

Min A, = A“. Hance theorem 4.7.2 tewds bo bhoasem o
i

Theorem 4.7.3 Let A, A, and A be aa defined in {4.7.15). Then (1) ¢, 18
better than ¢ for all p, > 0 if A > 1/2, (i1) g 1s better than ¢ for all
bx > 1 A Ay 2 1/2, (1i1) ¢, is better than ¢ For all p, > py, (For some
given p,. > 0} only if A > 1/2.

In order to spply theorem 4.7.3, we need computable expressions for n(0)

and gﬁfll. These cen be obteined by the seme technique as usad for

M

1’"2’”3 in the previctm section. Let Pyr P satiafy the conditions

8 <p, <201y, )y 0 <py <2y,
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&ifgﬂ] atand for the expression obteined from Fj {of lemma 0.6.1) when

§3Pgi Gz 8+ 15

i

" I ifF j#i,j=1,2,...,8; dj = }PTOJ if j=1,...,8

i = 1 iF = ael

Ll
il
14

3 if 3
= 8y if j = s+l.

(st f‘ﬁj be obtained from quby replacing the value of the arqument p, by

J
5and that of dj for each 3 = 1,...,8 by d * Yoy Lot {F{a}, F;} and

ﬁlﬁ] F{E)) he obtained from {F{J} iz}) given by (£,6.15) by roplacing

}1} by fgﬁ] and f§ 3 ¢ respoctively.  Then, from {4.7.11) ond {4.7.10),

44

9{0) [Py Fgﬂ}ffga)}f(ﬂ +5-2) (4,7.17)

0 (1) = Uy, )y e P PPN (o pee-2)

From (4.7.1), it is easy to see that

by = &y + 8 ~ v, Frpad/(epra-y, ) (4.7.18)

We are unable to obtain similar expressions for M, M,
but we can use (4.7.17) to compute g{0), ¢*(1) for emch i snd hence M, M
using (4.7.16}. In view of the difficulty in computing M, and hence A_

conslder

Miu = E(1-w); M= = Hin Hnif{l'T*)'

Then from (4.7,11) we see that g(0) < My, for all 1 and hence (4.7.15) gives
x Me
It is sasy to soe that M, = [e,+e+2-y ~2y ;1/(e,48+42). Hence

-1

= (l-v,} B ret2-y o~ 2y, ]/ (B,4042) (4.7.19)

( 2
From (4.7.15) and (4.7.19) we have A_ < A%, where

A* =AM (6.7.20)
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fce part (iil) of Theorem 4.7.3 leatx tm canrclin, .7}

lrollary 4.7.1 ¢ ie better then ¢ for all p, > o, {(for some given

ﬁml 0) only if A* > 1/2, where A* is na defined in (4.7.20),

In the special case whare o, = 0 we have [in view of (4.7.3}) b, =0

Therefore Theorom 4.7.3 gives -

fr 811 1 and w = y,. Hence, A = A_ = A,.

Then, ¢, is better than % for all

{rollary 4.7.2  Assume that e, = 0.

5, P4 for aome glven Pao 2 0) ifF A, > 1/2

We now turn our ettention to Eg {defined in Theorem 4.7.1}. Combining
the results of theorem 4.7.3 and part (ii) of theorem 5.3.3, w0 see that
g 1a better than $, for 81l p, > O AF A, > 1/2. On the other bend, it 1=
mny to sce that .‘EE 1 better then b for all p, > py, (for some given

%iﬂ) only if nn > /2 since P{‘I’Ei H ¢ﬁij + 0 a8 p, + =, which implies

that [E$EifE $;§]Tfﬂ = [EEM;"E@;}T g + for every i. Honce, we have,
_ i=

Theorem &, 7.4 gg is better than ¢ for all p, > p, (for some given

bep 2 03 {d) AF A > 3/2 and (ii} only if Au > 1/2.

forellary 4,7.3 ﬂg is better than [ for skl p, > p,, (for same given

Pyo 2 0 oOnly if Ax > 1/2,

lorollery 4.7.4 Assume that 8, = ¢. Then, 4% is better than o for all

0y > Dy (For some given Puo > D)ifFA, > 1/2,

RemamazaCorollary 4.7.4 1s e generalization of a similar result in Shah

(1964) concerning linked block demigns. [see cases (2c} and (24} of

application in specinl ceses to be givon shortly].
We shall ke mow consider applicaetion of theorem 4.7.3 and theorom 4.7.4

to some speciel cases, Dur atm is to consider the special features of the

degigns in each case wond derive, if possible, more explicit exprassions for
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the basic quantities required for applicetion from those given earlier in
the text for the general cese. The gquantities which ere necessary but not
ronsidered bave to be obtained with the help of the earlier expression for

the general cose.

{1) Eguireplicate designs We have s=t-fip = v-4; q = t-1; ay = (rkaxj}ijﬁ
v./ LT
fo( }

2]

Hence e, = b(k-1}-{w-L}; e, = b-t; Yoi

1
Yo = K*!(rk]; Yeu = x**f{rk}; Too = {Ei-rkjf[rk)

whera y, and 1y, ere the largest and the smallest latent roots of NN' and

t, = tr NN'. We have,

s
@
¥

= tke, (b-2-2)/ (8,+2){tk{b-L+1)-t,}]

)
(1]

Elﬂb—i-2)(rk~x*}3[(al+2} {rk(b-L+1}~t}]

=
1

k[, (B-2)erk~t, 1/ [rk{b-R+1}~t ]

M

1]

[ rk(b-8+3)~t,-xy /[ (b-2+2) (xk-y, )]

Jur results are applicable 1F y,, > (t~rk)/(b~t} aend & > & + 3.

(la) Binary equireplicate designs We have, t, = vr = bk. Hence yﬂnztb-r}fr

ca. = relﬂb-E-E}f[(ﬁ1+2} {r{b-g+1)-b}]
Ay = e (b-2-2)(rk~y,}/ k(e +2){r(b-2+1)~b}]
b, = t{xu{b-R)-k(b-r)}/{r(b-g+1)-b]

Me = {rk{b-f+3)-bk-2y, /[ (b-2+42) {rk-x,}].
Qur results are appliceble if y_ . > kib-r)/(b-2} and b > ¢ + 3.

{(1b) Connected binary equireplicate designa: We have & = 1; e, =h(k-1)~{v-1).

Hence
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ce, = relih-l}f[h{twl}{al+2)]

A, = e;(b-3)(rk-y,)/[{bk(e +2}(r-1)]
b, = tlx.(b=1)-k(b-r}1/[B(r-1)]

M = [rk{b+2)-bk-2y, /[ (b,+2) (rk-x,) ].

Dur results are applicable if y,, > k(b-r)/(b-1} end b > 4.

(2) Designe for which Yoj = constant for el1 j @ Llet Yo» dencte the common é

value of Yoi" THeN vy = Yau = Youl Yoo © BYga- Hence,

ce, = elfsz*a~23f[(EI+ZJ{EE+B(I~TH*?}I

by = 8y/[ey+e{l-y )]

A, = ca {l-yg,)

M* = [nz+(s+2)(ldvn*)JiE(a2+5+2)(1-To,}].

We can also simplify the expresaions for M and M,. From (4.6.11) note that

the generating function of f}ﬂ) 1s given by
S L8 _j (ey+842)/2 “{842)/2. 0 oy ~ey/2 . Pa . rlae2
jzﬂ F7 2 -y (1, ) (1-(1-pY ) [1-Q1 MI*TGEIT

{6.7.21)

where Py can be suitebly chogen subjesct to the condition @ Brp&€2{lﬂya*}. y
2 [ b 2 ‘

. i (8)_J_, 9212 “2
Let us teke p, = l.y . Then (4.7.21} beenmasjznfj xj_fl-yu*} (1-y, 2} -

Henge y
8,72
fjaj = “-‘T‘,D* 2

Using this, {4.7.18) glves

) T Lley/2 + 3Dy /300,

§ [(Ezf2+j—1]{. f{jte +B*2j)]]1j
: Jl 2
L = (6.7.22)

(az+a-2}j£u{(ﬂ232+j—1J(J}f{j!(ez+a+2j}{ez4m+2J-2}]]Tg*
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B
o, it can be seen that, wfym* ~ ﬂfE%E~, ig&. Hence, (4.7.16) gives
M= {ﬂwZ}f{ﬂz+ﬂ-2}

It 16 engy to mee that the assumption {4.7.32) is always satisfied. Hence,

wr results are sppliceble provided only Ba+8 > 3.

(20) Dl-ﬁlaaa depigns : As defined in Shah (1964), these sre connected
binary equireplicate designe for which Xj = conetant for A1l j, a condition
which is equivalent to Yo3 = constant for all j. MWe have y _ = {b-r)/[r{t-137;

§ 85 €,,08, Ad in case (1b). Hence

althna}{rtwhlffb[el+2}(r-lifthl}]

o
n

o = Plo-t)/[b{r-1)T;

(t-3)/(b-3}; M* = {b{r-1}{t-1)+2{rt-b} )/ (b+1)(rt-b}];

=
H

M, is given by (4.7.22) where €,y 8 and You bawethe volue apecifivd hera,

¥

fur resulta are applicable provided only b > 4.

{2b} Balanced incomplete block designs : These are Dl-clasg gesigns For

which t = v. MHence, y = (b-r}/[r({v-1)};

Ay = ey(b-3){k-1)/[(e;+2) (£-1)(v-1)]
b, = {r-ld/{r-1)
Mo o= (v3)/(5-31; M% 3 [{e-1){v-1)+20k-1) 1/ {b+1){k-1)]

M, 1s given by (4.7.22), where 8, = b-v;i @ = v-l1.

{2¢) Designa for which 8, = 0: It is easy to sep that we muat have Tﬂj

constant for all j. Furthermoras, w = Yo, 1t them follows that b, = 0 for

every 1 and that g{0) = g, (1) = i~y ,: Hence we have
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Jeble &.7.1 1 Comparison of ¢ and EE with ¢,

[ forasymmetrical BIBD's listed in Fisher and Yates (1963)]

Daglgn v b k A, A A® A, * Conclumion
No
1 3 i 6 2z 30060 3429 - 111
pl & 5 10 2 ASTS - L5568 5474 iv
3 5 6 15 Z L6000 L6000 - I
& 5 6 10 3 L6176 5000 - - 1
5 & 5 1l 3} 4222 L6000 - - I
h & 7 21 Y4 L5294 5294 - I
7 & 13 24 3 L7302 LA00D - - 1
8 7 a 24 2 5435 L9435 - - 1
9 7 B 14 & V032 . 5000 - !
10 7 15 35 3 L1356 L666T - - 1
11 a 9 35 2 L5500 L5500 - - I
12 8 9 18 4 7701 .5714 - - 1
13 g 2 50 4 L8262 L5714 - - I
14 e 1 &5 F4 .5%26  .5516 - - I
15 g 10 30 3 L7217 7217 - - i
1a 9 10 18 5 L8077 5000 & - 1
17 9 19 57 3 L1347 L6667 - ~ I
18 5 28 &) 4 L8232 L6250 - I
19 in & 15 & L1619 AT - - I
iy e ¥y & 5 JATED 3% - - b
21 m Ir % 2 B i SIS - - [
22 g Zi 3 ¥ L7322 LT3E2 - ~ I
3 i a1 82 5 LA717 L55%6 - - H
2k £ = ¥ ¥ EET BhLT - - 11
%5 3 5 M A AT 8227 - - h
26 & 10 15 g L1379 Laall - - I
Z7 & i X 5 _BRlg L TIBZ - - I
8 FA & B4 | 5 LAY L5554 - - I
29 8 5 12 6 L7738 L5159 - - [
30 a 21 28 b LB782 L6325 - I
| g 49 5b8 7 L9399 .8158 = - I
3z g 16 15 & Boes  .4718 - - 11
33 5 15 24 f .Be08 (5329 - - I
3 g 28 36 7 L9071 6872 - - I
35 g 46 62 6 L2106 L5933 - - 1
36 g & 72 g 540 (8434 - - L
37 0 21 30 7 .88p% 5924 - - I
3 10 36 45 8 .92% L1273 - - [
39 M 51 &% 6 63 L5305 - - 1
A0 o0 a1 90 bl 9637 .B6AD w - I

*» Conclusions ere codsd as Tollows:
1 Both %5 and Eg are better then

IT ¢, ig better than ¢ for all p,
111 Neither ¢, nor ¥ is better than ¢ for all p, > Pen

Py for all p, > 0
> 1 end ¢f 18 better for all p, > 0
(if p,, 20 18 given)

iV Ne conclusion could be e



oz A, s A% = EBUf1*TU*] = ey(s-2}/ ({9 (e +2)]

Using theorem 4.7.3 and theorem 4.7.4 togother with corollary 4.7.2 and

corollary 4.7.4, we cohclude s Hath ¢ and ¢p are better than ¢ _ for all

by > Dyg (For some given p > 0) iff
elfs-z}f[a(ai+2}] > 1/2 or, equivalently
{al-i)fa-ﬂ}_z B.

This result is a generalization of a aimilnr result in Sheah (1964)

concerning Linked designs.

{2d} Linked block dealgns  These are Dl—clasa deaingre for which t = b.

Hencea ey = D in addition to (4.7.3), We have s = b-1. Hence From tha

result obtained in the previoua case, we have!

Both ﬂa and ﬂE are better than ﬁq for 81l p, > pu, (for some given
P 2 D) AFF {al*ﬂi{b—Sl > B. The part of the above result which relates to
¢ was proved by Shish {1964) in a completely differcnt way. 0Our result

which relstes to §g 08 well is stronger.

The actual spplication of wur results to any given design, is o routine
aprcise. Whet we have bto do can be stated as follows: Examine if the
sssumptions {4.7.3) and (4.7.4) are sstisfied. IF not we are unable te
conclude anything, IF yes, compute A,. LIf A, < %, compute A*, If A* <%,
we concluda that neither ¢ nor ¢% is bettor then g - for all p, > p,, (if
Pea > 0 18 given). IFf A% > % compute ﬁn‘ If ﬁﬂ < %, wa corclude the game as
in the crge: A% < %, IF A, < % and AG > %, we are unable to conclude anything.
If ﬂ,kgtk, canpute A. If A 3_%, we conclude that both ¢ and QE
are better than 4, For mll p,> 0. IFf A >% but A<k, we
conhe lude that 4, 18 better than o for a3l p, > 1 and that ) is Hhottar

for all p, > 0. [In this case we sre unable to decide if e is better than
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[ for o, <1]. For illustration, we present a table of A,, A, A*,Ao (computed
sccording to the programme just described) for all asymmetrical BIBD's

listed in Fisher and Yates (1963). All entries are easily obtained with the
exception of the value of Ao for design no. 2. This is obtained by

the formule : AO = AM,, whet:e M, is given by (4.7.7) [Earlier, the author
(1978), had to use numerical integration since he had not discovered the

sbove expression at the time]. The conclusions are given in the table

end will not be repeated here.
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CHAPTER 5

USE OF MDDIFIED ESTIMATORS IN RECOVERY Of
INTER-BLOCK INFORMATION

5.1 Introduction

In the sralyasis of & proper block design with recovery of inter-block
information, en eatimator (say 1) of a given treatment contrast (ostimatrle
~ from both intra-block asnd inter-block analysis) la generally obtained ow
a welghted average of the intra-block and inter-block estimators of that
contrast using suitahly chosen random weights, The weight (say ¢) giver
to the inter-block eatimator cen be expressed in the form ¢ = 1/({1+f) and
one may regard | as an analogue of the best linear wnbiesed combinetion
of the intta-block and the inter-block estimatora in which the unknown
ratio {apy n) of the variance of the inter-block estimotor to thet of the
intra-block eatimator is repleced by % . n is generally a known multiple
(depending on the demign) of the rotio (ssay p*) of the inter-block orror
variance (per plot) to the intra-block error variance, Under the infinite
madels generally used in the literature, p, oxceeda unlty and then, n
sxeeeds a known quantity (say nﬂ}. But the value of § may turn out to be
loss than N, and in such a case, it is usually recomended that the value of
fi be replaced by yx Although, this trumpation proredure first propused
by Yates {1939) is widely used in practice very little thooretical
discussion seeme to be avallable in the literature concerning this and othar
alternatives to thine,

Stein (1966) considered a particular estimstor of the asme form as |

discussed sbove with & non-negative &, and proposed e truncation procedure
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tbesed on p according to which if ¢ turns out to be greeter than ¢ = 1/{1+n )
the value of 4 is replaced by $- Moke that if $ 18 non-regative than

* tharefore the truncation procedure proposed by

fen, <= ¢>4,

)
Yates and Stein are equivalent. Stein (1966) conjectured that his
truncation procedure would lead to a better estimator (say {1,) than the
origine]l estimator {i. Sheh (1971) (ummally proved 8 result supporting this
conjecture in the sense thot {i, is better thsn ) for all n > Ny under

certain peaumptiona, Shah (1971} did not make the necessary distinction

betwern the modification of {i suggested by Yates and Stein but it can be
geeny that hie condition 2.8, which he folt to be uvnneceasmrily restrictiva,
wee, in fact, necessary for 4 to be non-negetive and hence for the bwo
suggentiona to be equivelent, in his case, When the ssmmption that ¢ ir
nor-negative ia not satisefied [e.q. ¢ based on untrunceted estimator of &
by the customary Yates-Rao procedure For .oee of the  daeda ol
tenlencbe in cass of the PBIR design R1 in PBose, Clatwocthy and Strikhands
(1954} ], one can extend Stein's suggestion in many ways but rone of these
anree with that suggested by Yaten.

Section 2 containe the preliminary notatlons end results. Section 3
is then devoted to the specisl ceae in which ¢ is non-negetive (so that
Yatea' and 5tein's suggeations are equivalent). Theorem 5.3.1 improves
Shah's results end supports Stein's conjecture in the same sense as in
Shah (1971} under the milder assumption that (i} ¢ e ¢, where ¢ is as
defined in the next section (11) 4 > 0 a.s. (iii) E} exists. ‘{Note that
Shah imposes the utnnecessary restriction on ¢ by nsauming that his p* (5,
in our notation) is of the form (2.3) of his paper snd satisfies the
condi tion ﬂ(wﬁ] < w in tha notatlon of his paper]. Two more resulbs in

support of the Lroncation procodurs are astobhlished in theoran 5,3.3 wnder
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the sane sseumption. The first of these tells ua that for small n (to be
procise n < 1 + 2n) fi, 18 better than the intre-block estimatoer - pther
repilt msserts that (i) {i is better than the intra-block esimate  r

all n 2 l4Zn  implies (ii): {i; is better than the intra-blo k est imator for
all n > 8, Note that if (i) holds then using theorem 5.3.1 one «an only
magsart (111): ﬁ* ig better than the intro-block estimetor fc- 'l n > l+2n,
which is weaker then (ii).

In Section 5.4, we relax the aseumption that ¢ ia non-ne ptive and
generalize the results of scetion 5.3, Two fundamentul rem i'ls are
contained in theorems 5.4.1 and 5.4.2. Theorem 5.4.1 giver va o clags of
nodified eatimators for which the repult of theorem 5.%.1 bolda. It also
tells us that eny combined estimater which with a positive probobility pives
to the inter-block estimator a weight which is either neative or in excosg
of 1/(1+n.), is Inedniseible with respect to the restricioc parsmeter set
(n > nﬁ]* Theotem 5.4.2 glves a clese of modified eatimats s For which
the results of theorem 5.3.1 and 5.3.7 both hold, Finelly. #e coralder flve
modificatinng of {i emerging from Stsin's sungestion in addit oo to thot of
Yater, It {s shown that three of the five modiFications of | emarging
from Stein's suggestions are either iradmimsible or almoat u v identicel
#ith one of the remaining two, We exclude these thres From f ather
coneiderastion. Theorem 5.4.3 thon males a Lheorelical compar'son among the
remaining three. It is seen that Yates! moedification of {i is better then
the other two for small n {to be precise tor n < 142 un in one capk and
nEn, in the other cesa) snd is worse than cech of the gther two For
large n (to be precise for n > 142N, j. Lomparison of the other two showe
that one of them ia better then the olhor for small nito be precise n{1+2nnJa

[t appears that none of the results in theorems 5.5,1 and 5.3.3 with the
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exception of part (1) of theorem 5.3.3 need hold for the Yates' modification
of i in this general situation. But, theorem 5.4 shows that the resulte

of theorems 5.3.1 and 5.3.3 both hold for the other two omerging from
Stein's suggestion, Thzorem 5,4.5% which shows that part {i) of theorem
5.3.3 bolds For the Yates' modification of {i is an improvement of the

result of Sheh (1964a): in the asame monse in which Theorem 5.3.1 is an
improvement of the result of Shah (1971), which was discussed in the

previous paragraph.

5.2 Preliminary Notstlons and Results

Let x,y,Sl,S i=1,2,...,q be independant random variables auch

A
that x ~ Ny a0®), ¥ ~ Nﬁmyﬁhé;}ﬁfu" ~ ¥ Tfﬁ§$~ xar Wi/ logo? + 8,00) ~ xi.
1=12,...,q whera ajs ond 8;'s are known constants and w00l are
unknown parameters. Interprete x,y,ﬁl,ﬁz, wi*s pa follows: x and y es
the intra-block and inter-block eastimators of a given canonical contrast
which is eatimable From both intra-block and inter-block snalysis, 5, end
52 e the intra<block and inter-block error sum of sguares, and wi*s ag
the squared differences botween the inter-block and intra-block estimators
of other canonhical contrasts which are estimable frem both intra-block and
inter~block anelyais. ¥Finally for convenience, define L {y~x)2. Let
§ be the claass all memsurable furetionm of 51’52’"3'”1""'"1‘

Consider the estimator {i of y given by

i o= x o+ pfy-x) (5.2.1}

where 4 € . The following theorsm is essentially s reststement of the

result in (4.5.23.
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Theorem 5.2.1 Let ¢ € ® and let {i be as defined in 5.2.1. Assume that Efi

exists. Then,

V() = ayo? [4E,h(6)] (5.2.2

where h(t) = t2(1+n) -2t, n= Booilnooﬁ, E, stands for the expectation with

rcapect to the density wof/Ewo and f stands for the joint density of

S,T,wo,wl,...,wq.

Note that the negative part of h(¢) is bounded in absolute value by 1

and under the assumption that ¢ is measurable, v({l) always exists (finitely

or infinitely). The expreseion (2.2) will be used repeatedly in obtaining

the results of section 5.3 and 5.4, In addition, the following lemma will

help to make the results of section 5.3 and 5.4 more transparent.

loma 5.2.1 Let h(t) = t2(1+n) - 2t where n > 0 and let ¢

1/(1‘”’]0) N

where nu w 1 Thep

a)
b)
c)

d)

-t

v
o

for every t < 0 and u ¢ (t,|t]], h(t) > h(u) for all n >

for every t > c and u ¢ [c,t), h(t) > h(u) for all n

v

o

for every t ¢ (0,c], h(t) < h(0) for all n < 1+2Ng > h(0) for all n>l+Zn, .

for every t € (0,c). (i) h(t) < h(c) for all n > 1+2n,

(i1) h(t) > h(c) for all n < n,

Proof The proof is elementary and is omitted.

Before closing this section we remark that slthough we concern

wrselves only with combined estimators of canonical contrastas which are

stimable from both intra-block and inter-block analysis similar results

fold for any estimable treatment contrast in view of Theorem 4.5.2.
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%3 Special Cane

In this section we assume that ¢ is non-negstive mo that the modifi-
ation of y suggested by Yates (1939) and Stein (1966) roincide. Note thet
this asaumption i implicit in Shah (1971) end s satisfled in many cases.

lonaider

fi, = x + ¢, {y-x} {5.3.1)

whore ¢, = mint¢,1f{1+nn)} and n > 0 is a glven conetant. Note that
I, 1is the modification of {i, which ls generally recommended [Yates (193%),
Stein (196631 if It is known that n > My Under the infinite model genersliy

used in the literature ol/g? > 1 and N, May be taken to be B,/m,. Mo provs

Theosem 5,3.1  Let § e #. Lot §i sntt {i, be as defined in 2.1 end 3.1

Ao By i1 1Y Lot T Mt P et
e Bhei BT Phet T

V(L) < V(R for all q o2 {5.3.2)

~

with strict inequality bolding unless {i, = {i =.s.

Praof e view of theorem 5.2.1 it suffives to show that i¥ p > nﬂ,h{@} 3h(¢*)
for every & with strict inequality holding for every ¢ > lfﬂi+nn}$ But:
for ¢ 5_1f{1+nn}, wo have ¢, = ¢ and by Lemma 5.2.1(b), ¢ > lfflfnn) =>h(4)

> hip,) eince n > .. Hence the result.

Remerk 5.3.1. Note that Ny > 0 covld be arbitrary end hence the result of
theorem 5.3.1 may not be dependent on a rational choice of n, However,

suppose that the best aveilable knowledge aboul n is that n 2 Tye Conaidar

‘ﬂﬂ.ma.t; -
the rivals of i, 4 Hy and iy which wse fi truncated at R and n, > n,,

respectively. Then, ﬂl is better than | but is inedmissible since it would

be dominated by any one which vses T truncatoed at a velue nf E(ﬁl, "ng .
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tothar hand ﬁz ta better than both {i end {i, for all n > n, but may

we than even {) for some or all n ¢ [n, “2]' For this reason, it ims
wnded that I, which uses f}, truncated at n = g be used in preference
and ﬁ?‘

Sheh (1964b) cormsidered the truncated form of an estimastor and showed
it is better than the intra-block estimator for all n > O (not merely

13”9}‘ His proof is @ bit complicated but e similar result concerning

struncated Form of his estimetor is established very eesily {See

ion 4.6 ], An interesting question which erises then is : can we

tShah'’s result concerning the truncated form from the simllar reault
gening the untruncated form which is & lot more easier to deal with.

‘generally suppose 1t ie krmown that {i 1a better than x for all n > O.
# infer from thi= thet ﬁ* ig hetter then x for all n > 0, From

wem 5.3.1 we can only infer thet {i, is uniformly better than x for

120, ard the gquestion remairs unenawered. Theorem 5.3.3 gives an

imative anawer to this gquestion. We First prove,

mem 3.3.2 Let ¢ be ar in theorem 3.1, Then

¢ < 1f(1+qn} a.8. = V({i) < ¥{x} for all n < 142n

hstrict lnequality holding unless { = x a.s.

of We have to show that for every t e (0,1/(1+n_}], h(0} » hit) for all

tlZn . This holds by lemma 5.2.1{c). Hence the result,

gorem 5,3.3 below is a simple congequence of theorem 5.3.1 and thocorem

Il once it is noted that ¢, sutisfivs the condition of theorem 5.3.2.
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Theorem 5.3.3.  Let {i ,{i, be es in theorem 5.3.1. Then

(i} ¥(fi,) < ¥{x) for all n < 142 ng » With strict inequality holding

unless y, = {t a.s.

(ii} v(i? £ ¥{x) for all n > 142 N, = v(h,) < ¥{x} for all n> 0.

femerk 5.3.3  Note that n > O could be erbitrary end hence the results
in theorems %.3.2 and 5.3.3 may not be depondent on a rational choier of

fig? which is no doubt desirable for reason$ given in remarks 5.%.2.

5.4 General Cese

In this ssction we drop the assumption that ¢ i3 non-negetive, Our
gim is to generalize the results of theorems 5.3.1 and 5.3.3. lote that the
mdification of [ suggested Ly Yatea (1779) do not agree with thal by Stein (1965)
in the general case which we consider in this section; moreover the suggestion
by stein for a non-negative ¢ can be extonded in many ways. Hut, beforo we
eonglder thess alternstives we shall obieln seme general results. Our first
restiit contained in theorem 5.4.1 gives us a classe of estimators for which
the results of theorem 5.3.1 hold. It slso Lells us thot any pstimator
which with g positive probability gives to the inter-block estimator a
weight which is elther negative or in excess of 1}(]+n0) ig inadmigsible

with respect to the restricted parameter set [n > n, 1.

Theorem 5.4,1 Llet & £ ¢ and let {j be as defined in (5.2.1). Let

i, = % + ¢,{y-x) whera

by ¢ ifF 0 < ¢ < 1/(4n)

Al#) otherwise

i

snd A($) is n measurable function of ¢ such that
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(1) (4} € [¢s |$]]) For every 4 <0  and

{i1) (s} ¢ [lf(1+n0),¢] for every 4 > 1{(1+nn}
Then
(1) w(i,) fiﬁfai for all n > n, with strict inequality holding

unless fi, =f =a.8.

(ii} If further ¢ 5ylf(1+nﬁ} a.a,, then V([,) < V{{i) for all n > D

A

with strict ineguality holding unless fi = fi a.s.

Proaof  To prove (if} we have to show thot hip) > KW} IF 4 <D and

% € [d:10]]s with strict inequality holding if X £ ¢. This holds by
Lemna 5.2.1(s}. To prove {1} we have to show in addition that h(g} > h{x}
if ¢ > 1/(14n,) and & e {1/(14n },4], with strict inequelity holding of

if A#¢, This holds by lemma 5.2,1(b}. Hence the proof is complate,

Corollery 5.4.1 {i 1is inadmissible with respect to the restircted

parameter set [n gknn] if either P(y < D) > 00 or P[¢ > 1!(1+nu] > 0.

Teking n, = 0, we have

Corolipry 5.4.2. {i is inadmiassible with respect to the entire paremeter

set [n> 0] IF PO <o < 1) <1,
The next result, conteined in theorem %.4.2, gives ua a class of
modl Fied eatimators for which resulits of theorems 5.3.1 and 5.3.3 bath

hold,

fheorem 3.4.2. Let ﬁ* = % + ¢, (y-x) where

p, = Min [¢!1f(]+ﬂﬂ}] if >0
A{s)  otherwiee

sl 304} ds e weasurablo function of ¢ surh that



Then
{1)

(1i)

(1i1)

Proof (i)

r ing

Ao} e [0, Bin{|¢], %41+ﬂh}}} for every ¢ < 0

¥{fi,) < V(i) for all n > n with strict ineqality holding
unless {i, = i =.s.
¥{{i,) < ¥(x} Ffor all n < 142 n, with strict ineyuality holding

unlees i, = x a.s,

V([i}) < ¥(x) for all n > 1+gfﬁn => ¥{p,) < ¥{x) for all n >0

follows from theorem 5.4.1 once {t is noted that A{4) satisfien

the condition in that theorem. Proofeof (1i) and (iii)=r< gnalogous to thet

of theoorem c.23and follows from theorems 5.3.2 and 5.4.1%.
Conalder oom,

whera

x + ¢, (y-x), I =0,1,...,5

i

ﬁii) {i)

¢£UJ ¢ if 0< ¢ < 1/ (1)

L]

1/{1+n_) otherwise
o

¢£1] = Min [$, 1/(1+n }]

(2y | ¢ ‘
%" = 50 ¢ Min (4], 1/(l4n )]
¢£3) = ¢ AF 1p] <« Ll

= 1{{l+nu) otherwise

o Min[g1 A3 )] 3T 5 > 0
= (0 opltherwise

8!

"

Min(]o[, 1/(1+n )]
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Note that ﬁiu) is the modification of |i sugge ted by Yates (1939) and
ii), i=12,...,5 are imitations of that recoumended by Stein (1966) for
a non-négoat’
Béfore amining other aspects let us compare these six estimators
i thems '8, Observe ti:it by theorem 5.3.1, each of the estimators
fie ﬁiz) , ﬁﬁ}) is strictly dominated by ﬁs unless it is identical

with ﬁ5 almost sure. Hence in the following theorem, we compsre the

remaining three estimators.

Theorem S.: at V '(ﬁsi)), tH
@W v, 11 < la2n,
(i1) Vo< Yy for all n < l+2ng
3.Va for all n> 1+2n0
(11i) v <V for all 1 < ng
3.V5 for all n Z-I*ch

Furthermore, the inequality between each pair of variances as stated above

holds strictly unless the corresponding estimators are identical almost sure.

Proc” Let c be as in lemma 5.2.1. Then, to prove (i), we have to show
that for every t ¢ (0,c], h(t) < h(0) for all n < 142n, and to prove

(1i) we have to show that h(c) < h(0) for all n < 1+2n, and h(c) > h(0) for
n> 1+2nO . All these hold by lemma 5.2.1(c). To prove (iii) we have to
show that for every t ¢ (0,c), h(t) > h(c) for all n <n, and h(t) < h(c)
for all n > 142 Nge This holds by lemma 5.2.1(d). Hence the proof is

complete,
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1 seen that ~~h of ¢{%) and ¢{>) eatisfies the condition
of thr .2 and 1© have
Theorcw, .+ tet as 'n thec .4.3 en > 4,5

(i) ~Vi < V({i) for all n 2 Ny with strict i+ quaiity hclding,
unless ﬁii) = {i a.s.
(i1) V, < V(x) for all n < 142 Ng? with strict inequality

i
holding , unless ﬁ(l) = x a.s.

(1i1) V(f) < V(x) forall n>1+2n = V, <V(x) forall n2>0.

Finally note that ¢£O) satisfies the condition of theorem 5.3.2. Hence,

we have

Theorem 5.4.5. Let V., be as in theorem 5.4.3. Then, vS < V(x) for all

i
n < 1+2 No? with strict inequality holding upless uiO) = X

a.s8.

Remark 5.4.1 Noie that Pxg = 1 andp, <2 = ng<2 Ng = N< 1+2 Ny

and hence theorem 5.4.5 yields the result of Shah (1964a).
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CHAPTER 6

INTER . ESTIMATICY COMMON MEAN OF TWO NORMAL DISTRIBUTIONS
AND TRE# it DIFFERENCES IN BLOCK DESIGNS

6.1 Introduction

The problem of point estimation of a common mean of two normal
populations together with the problem of use of inter-block information for
point estimation of treatment differences in incomplete block designs has
received much attention in recent years. Since the probebility distribution
of such an estimate is not easily tractable the problem of interval estimation
of these parameters has received comparatively much less attention. Useful
contributions have however, been made by many authors [e.g. see Meir (1953),
Cochran (1954), James (1956), Rhodes (1961), Brown and Cohen (1974), Cohen
and Sackrowitz (1974), Rohatgi and Rastogi (1974),Maric and Graybill (1979a,b),

N haregov (1989);
hatri and Shah (1980].

Following Brown and Cohen (1974) we consider intervals of the seme
width as the usual intervals based on the t-distribution which are centered
around the main estimate (mean of the first semple in the two-sample problem
and the intra-block estimate in the block design problem) but we center these
intervels around point estimates which are hopefully more precise. In
Section 2, we use numerical integration methods to compute confidence
co-efficients for such intervals. Tables I and II give some illustrative
computations for the two sample problem and the balanced incomplete block
(BIB) design problem respectively. In Section 3, we compute constants
required by Brown and Cohen (1974) for constructing con%idence intervals
which are uniformly better than the ones centered around the principal

estimate. It turns out that for intervals with coefficient exceeding 0.9,
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: the point estimates used are nearly identical with the corresponding
principal estimates. In Section &, we use simulation methods for computing
confidence co-efficients For several intervals centered around "reasonable™
- point estimates of treatment differences in BIR designa, These computations
: indicate that some of the point estimates lead to significantly improved

interval estimates.

6.2 Numerical Integration Methods

Let

and

2 F

We shall assume that these random variebles are all independently distributed,
et
w = a{U/e}/{{U/e) + {b¥/F))

We shall consider , = x+w(y-x). We shall consider ﬂ+tE{u]UfE as an ipterval
eatimate for y whare f-tﬂ(a}, tﬁ{ﬂ}) containa & varlate with 't' distribution
with o degreea of Freedom (d.f.) with probability (1-a}.

Since the exact distribution of |1 is somewhat difficult to obtain we
shall adopt the Following method to evaluate the probability with which the
ebove interval will contain the true parameter value TH

Wo may write w ra w = af/{FibeV/ U},

Lot

t oo M ek B o Bii0kY 4 iknd

and let
B = {Ufaiif{{ufﬁi} + (Vfﬂ;]}.
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It is clear that B has Beta diatribution with peremeters (e/2, £/2),D -~ X;+f

md that B and 0 are independently distributed.
We may now write w as w = af 8/(f8 + bet(1-B}}. We can also expreas U

el = HDB:. We note that the conditional distribution of y given B and D is

Hu,{l—wizqi + wztai]. Thus
P = Pr{|f-ul® ¢ tzfa}UfB]

= € {Pr{zztww2+l:1~sw}2105 < tiiamfam,m (6.2.1)
B,D =

where z has s atanderd rommal distribution Independently of 8 and D. Writing

= Bﬂui we get

Pz £ (2?0 < miaeted + (1-m?)iB,0) .
B,D -

We note that w is a Function of B alone and hence does not involwve [b,

Taking expectetion w.r.t. D we get

N 1, 8+f
P = E 1¢{ 595~ ) {6.2.2)
where
L 2
EtE[aJ

(6.2.3)

13

a{ru2 + (l—w}z} +- BthQ}

and Ix(p,q} demotes incomplete Beta function.

~ for appropriate values of B end use numerical

¢
integration technigues to evaluante P.

Gne may evaluate I

The above mey be applied te evaluate confidence co-efficients Far
interval estimates of the common mean of two independent normal samples,
Table <.z 1gives this for sample sizes (&,6), (4,20), (20,6) and (20,20). Wo

toke astimates with
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(i) azl,b=1I,

{ii) ac-a = (e-2){f-3}/e(f+1), b = 1

i

[

{i11i) a=2a,bs=1.

Here @ = m~]1 and f = n-1. The firet is the one proposed by Graybill and
lesal. The other two have the property of having uniformly smaller variance
than the mean of the first semple for asll values of the ratio of variancen,
(See Brown and Cohen (1974}, Bhattacharya {1988)). We compute this when 1,
the ratio of verisnces of the two means is 0.5, 1, 10 and 1.

Results of Tableftlindicate that these intervals have improved
confidence co-efficient when 1 does not exceed 10,

The above method can elso be applied to the problem of eatimation of
the treatment differences in incomplete block designs. Teblees:gives the
computationa for three balanced incomplete block designe again for the saee
values of a ard b as in Tableg.z.1.We present the computations for § = 1,2,4
and 8 whare § denotes the ratin of Inter to intra-block varisnces.

The computations appear tou indicete substantiel improvement over intra.-
block satimate For values of § up to 4,

It may be noted that the claas of estimates {i conaidered here does not
irclude Yates' eatimate. However, these methode can be applied for some of
the eatimates considered in Khatri and Sheh (1974) where they take a = 1

art yse suitable valuws of b,

6.3, Analytical methods
Brown and Cohen (1974) considered intervel estimates of  of the type
coneidered in Section 2 with b = 1. They showed that there exists a suitable

valus of a such that the condidence co-efficient exceada 1-o for all values

of 1.
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After integrating w.r.twon both gides rondition (5.3) of Brown and

fchen givea
]-a 4 | (F-E)fﬁ r(h} N o ﬂ&!h}uﬁfjr u}f'mz-ﬂ
277 1 (e’ S e AR I P
v 7 T 3+ 7
{.3.1)
wiara

= {e+f+1)/2  and  t = i (al/Ve

To evaluste the L.H.5, of {6.3.1) we put k = ffe{l+nf Y, x=1/{0+ky),

thia givea
1f(i+u)3 = k}x5[1+(k-1)x1”}

Expandiog {I.+'(k“l;“il§}m} irn binomial series w0 can evaluate the LUU.5. by
integreting eech term of this series. The 2.H.5, is easily svalusted by

uging the substitution y = 1/{}+fv/e} end integrating w.r.t.y.

I £/2 «3 e+l fap ol i
E ( He=-1)F PSR ol r+ 3,3)8(5= + 1+ 3, 35)

+=(}

whera

A= 2" (1) eat?y P

We obtain the largest value of a which astisfies (4.3.2). It should

be noted that the velue of a dep=nds upor a. In particular a tends te zero

a3 q tende to zero. Teble G5 glves values of e for two sample problem with

= 2,10,20 and n = 4, 10, 20. these give a = 1,9,19; F = 5,9,19. Mo

present the resuvlts for o = G.6, G.4 and 0.2. We also celeulated walues
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of @ for a = 0.1, 0.05 and G.01I. For these values of g the corresponding

B ith the result thet the

values of a turn out to be leas than 107
eorresponding § will be virtuelly the seme as x. Even for lsrger values of
n as in Table &30 the values of a are rather small ap that §j will not
differ much Frem x, It ig clear that theese methoda ecen be applied in tha

- case of incompleie block demigna.  The results in that case can be expected

te be similer to Ehe results of Teble & 500

TABLE ¢. 1.}

Valuea for 'a' for two somple problem x 1[}q

a 0.6 0.4 0.2
m r

2 & D.3414 0.0856 0.0032
10 1.3472 0.3080 0.0077
20 2.3654 0.4936 D.0077

10 6 0.1797 0.0049 »

10 0.9567 0.0215 *

20 2.5126 D.0453 *

20 3 0.0057 * *

10 D.0340 * »

20 0.1162 ¥ .

* Indicatea that a <« 1070,
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Simulation Methods
" In this section we shall spply simulation methods to problem of
tval estimation of treatment contrasts in balanced incomplete block
Il designs. When one uses the intra-block informetion only, one con
itruct the uavel confidence interval centered around this estimate.

1setimate is based on ths fact that this estimnte divided by its

lmated stendard error follows student's t distribution with sppropriate

peee of freodom.
For all BIB designa it is possible to obtain a combined inter-and

ti=block estimete which hes smaller variance than the intra-block estimate.
ldas, there are many good procedures to Find such s combined estimate.
wver, the distribution of these estimates is virtually intractable and

la makes it very difficult to construct confidence intarvals based on the

pability distribtwtions of these eatimates. An slternstive approach

midered here is to construct fntervals of the same width as the usual
tervals centered around the intra-block estimates but to center the
terval around s reasonsble combined estimate and to hope that this intervel

uld contein the true patameter veluwe with higher probability which exreeds

be confidence co-efficient,
Since we do not know the probability distributione of these combined

itimates we attempt to estimate these probabilities via simulation in the

hllowing manner. We conaider the following eix methods of estimating

reatment difFerences: (1) Graybill and Deal (1959) (ii) Stein (1966)
[iti} Yatea {1940) {iv) Khatri snd Shah (1974} (v} Brown end Cohen (1974)

v} intre-block estimate. We take n treatment contrast with true value

pero grd conatruct confidence intervals of the sems width as the interval

fir the intre-block estimete and center them sround the six estimeten. We
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mdate 50,000 semples and exsmine tho propertion of samples for which the

mervals covered the true value {in this case zera}. for estimate {vi) this

mportion should be the confidence co-efficient. The results of this

pulation are given in Table«.sifor § = 1,2,4,8 where § ins the ratio of

ster to intra-block variamcea,. In all csaes, we have vsed truncation for 3

it unity.
Resultas of these simulations fndicate that the estimetes (iii), (iv)

nd (v} which are bansed on all components of the analysis of variance tabl:

provide yood confidence intervels. [etimate {iii) provides s better

Interval:for small values of § while (iv) and (v) provide beotter intervala

wen § exceeds two, As pointed out in Khatri and Shah (1974) each of tho

eetimates (1) and (ii) ignore n component of the analyeis of variance table

and this results in somewhat poorer performence. Here agein estimate

(ii} provides better intervals than eetimate (i), As expected, for

estimates (i) to (v} the proportion decresses as § increnses. Results for

gatimate (vi) provide a check for the simylation procedure. We expect the

proportions for this estimots to he fairly close to the confidence co-efficients
and in thia aense the results for estimete {vi) velidates the rest of

Tehle&.4.1. It may be noted that for three of the four designs we also

have the results for the firat eatimete in Table&aawhen a = 1. &f course,

these are obtained without truncation for §. The results abtained by

numerical integration and by simulation eppear to be fairly close.

v'e also calculated the ratio of the Fourth central moment to the square

of the second central moment for each estimate for each design. The values

were i all ceses very close to 3 indicating roughly n distribution not too

far from mormal. This would lead one to expsct thet the eatimates with

amaller variance would have good concentration eround the true paremeter

value.
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TABLE ¢. 4. b

Design' b=10,k=2c=5.2=1

Estimate Graybil-Deal Stemm Yates Kbatri-Shah  Brown-Cohen Intra-block
{-2 &
0.99 1 0.9948 0.9912 0.9939 0.9925 0.9923 0.9899
2 0.9930 0.9908 0.9925 0.9916 0.9915 £ 5%99
4 0.9915 0.9904 0.9914 0.9909 0.9908 0.9899
8 0.9906 0.9901 0.9908 0.9904 0.9904 0.9899
0.95 1 0.9744 0.9600 09721 0.9655 0.9641 09513
2 0.9653 0.9567 0.9643 0.9601 0.9597 Q9513
4 0.9576 0.9542 6.9585 0.9560 0.9561 09313
8 0.5:525 0.9528 0.9546 0.9542 0.9542 0.5513
0.90 1 0.9445 0.9203 0.9404 0.9299 0.9273 0.9011
2 0.9261 09133 0.9255 0.9195 09182 0.9011
4 0.9121 0.9081 0.9146 09114 0911, 0.9011
8 0.9027 6.9052 0.9080 0.5068 0.5066 I TH
0.80 1 08744 0.8352 0.8701 0.8508 0.8449 97992
2 08392 03208 0.8391 0.8302 0.8230 7992
4 Q8190 8112 NsTT 0.53160 08139 17992
8 0.7990 0.8055 0.4078 0.8082 0.8082 RN
0.50 i 0.5911 0.5498 0.5866 0.3668 0.5594 14976
N 0.5404 0.527 0.5416 0.5370 05361 04976
4 0.5087 0.5143 0.5162 0.5201 051w .0.4976
8 0.4961 0.5069 0.5072 0.5051 0.5099 14576
0.10 1 0.1237 0.1134 01220 0.1199 0.1171 01908
2 01117 21072 01097 01119 9 it AL -
4 01032 01042 3.1048 0 105 01033 IRE ¥
g 00991 ¢ 1014 0 1020 01021 §.1021 {roend

ANt
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CHAPTER 7

ESTIMATION OF & COMMON LOCATION

L.l Introduction

The problem of combining two or more independent unbiased estimators
?uiaas-nftan in practice. 50 far only the normal case bas been studied
miensively. Hogg (1960) sppears to be the First to discuss unbiesed
petimation of a common location in the non-normal case. Cohen {1976)
weing Hogg's result and the techniquea in Brown and Cohen {1974} obtained a
combined estimator with a varience smaller than that for the first asmple.
‘He also points out eitustions when his combined estimetor would be uniformly
better than both of the individual estimators,

To use Cohen's sstimator in practice one needs to know the upper
limit of & constant 'a' to be uaed in his estimator. For this Cohen (1976}
deriven sn upper limit [dencted by a*{m,n) where m,n are the two sample
gizesl and provides a table of this for m particuler situstion., We shall see
that this upper limit peeds improvement for use in practice and provide an

improved one which appears satisfactory.
A glance at the table of values of a*(m,n) in Coben (1976} revemls that

hie a*(m,n} is decreasing in n once n in sufficiently large. This gives an
impression, which is contracy to the fact ond the intutitive Feeling one
ghould have, ns explained later. 1In remark 2.3 of hie paper Cohen {1976)
congiders the important problem of constructing s combined estimstor which
is wniformly better than both of the individusl estimstors. But, if we

acan through his table of a®{m,n} we ses that for no {m,n) such an estimator
can be found following his suggestion although, as we shall show, such

petimators exist, in this case, for meny pairs (m,n).



r 118

With the motivetion to overcome these deficiencies of Cohen's n*fm,n,}
jerive an upper limit [deroted by Alm,n)] of a, which is sn improvement
#{m,n), A comparimon of the table of our A{m,n} with that of a*{m,n)
{ohen (1976) showgthat the improvement ls subatential in the porticular

x worked out in detell by Cohen {1976). Further expmination shows that

like Cohen's a*{m,n), A({m,n) here stendily incresses in n and unleas m

large, reaches the meximum value Z fairly quickly. The table of Alwm,n}

e esbips one to conetruct combined estimetor which is unifomly betier

#n both of the individual estimastors for all n > 25 if m = n ond for

in> 35 if m < m5, ip contrast to the fect mentioned earlier that the
dle of a*{m,n) in Cohen (1976) emablea one to conetruct none.

In section 2, we introduce the necessary preliminary notatlons and
This is fallowed by derivation of A{m,n} and some other related

soumptiona.

raulte in section 3, Finally, in pection 4, we present an application

b an jdentical eitustion considered by Cohen (1976) and compare our results

!ith hiB.

L2 Prelimlinory Notations and Agsumptions

Consider two independent random samples x = (x’l,...,x‘m) and y = {yl,.”yn}
o sizes m and n reaspectively from two distributions characterized by s
tommon unknown location parsmeter 8 and unknown scale parameters E‘n' ﬂy
wepectively. Assume that the distributions are symmetric about 9. Let 8
be an odd location-scale estimator of € and ﬁu be an even location - fres

scale - invariant estimetor of By based on the first semple. That is
§x, §x satisfy

ﬁ(axl-th., ces ) axm-ﬁh} = aE(xl,....,xm} + b

#

ﬁ{axlm,...,ﬂxm +b ) faf E{xl,....,xmj

for every o # 0 and b.
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Let 6y’ ay be similar estimators based on the second sample. Define

_A _A A _ A _22 -
T = (8,-0)/8,, T, = (6,-0)/Byy Sy = B,/B» Sy = By/Bys v = 5,/Sxr h(V) =
1/Q1+n), w = 1/[y+(1-y)v].

Mex (1,1/v), g(v) = Min (1,1/v), n =B, /B,» ¥
Note that the distributions of Tx’ Ty, Sx, Sy do not depend on the unknown
parameters and y lies between 0 and 1. Finally assume that

Erh2(v) Max(T2, Ts)] < . Cohen (1976) has shown that this assumption is

justified in a wide variety of situations (see the discussion praceding

his lemma 2.1), provided n > 6.

7.3 Results
Consider the class of estimators of the form

N

8 = 6, + a(ey - ex)/(1+z) (7.3.1)

>~
where z = .y/ax and a > 0 is a constant to be suitably chosen. Cohen (1976)

“has shown (1) 8 1s unbiased for 6 |

L) vd) = v + Es(V)] (7.3.2)
where,
s(v) = (L) (o) 272 & nTi)-28(1+nv)'l 2.

Since we are considering only unbiased estimators, following Cohen (197¢6),
we shall judge the merit of the estimator ) by its variance. It can be

geen thai
\

s(v) = aZWilyTZ + (1~y)T§]-2awT§ (7.3.3)

Lot

P

Rey) = ENTZ/EW?D 4TS + (1.7)751 (7.3.6)

Then, using (7.3.2) - (7.3.4), we have
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Theorem 7.3.1 Let 8 be as defined in (7.3.1). Then, 8 is better than

0., 1ff a < 2M, where M = Inf R(y).

Evaluation of M is an extremely
complicated job. But, for the if-part of theorem7.2.1 to hold it suffices
to take the constant a to be less than or equal to any non-trivial lower

bound for 2M. It is easy to see that

M > Min (M), M (7.3.5)

2)

. 2 ) 242 ,, 2, 2.2
where Ml = Isf Ewa/Ew Tx’ M2 = isf Ewa/Ew T,
Let A denote the joint density of v and Ti and let )\, = ATE/ET&. Then,

M, = inf E*w/E*w2 . where E, stands for expectation w.r.t. 1,.

Y

1

Note that w is of the same form as f of theorem A 2 and satisfies all

conditions of thst theorem. Hence, using that theorem,

u

Min(1, E;V"I/E*v'z)

(1]

Min (1,e72 v-ler? 72 (7.3.6)

Also, it is easy to see that

M, > ET2g(v)/ET2hE(v). (7.3.7)
4 y
Let,

A(m,n) = Min(2,A,A,) (7.3.8)
where

A = zsrfv'l/srfv'z, A, = 2crfg<v)/m§h2(v). (7.3.9)

Then, (3.3), (3.4) and (3.5) together imply

A(m,n) < 2M (7.3.10)

Hence,
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S A
Theorem 7.3.2 6 is better than 6 , for all a < A(m,n).

From theorem 7.3.2 and symmetry consideration, we have,

forollary 7.3.1 If both A(m,n) > 1 and A(n,m) > 1 hold then 9 with a = 1

is better than both §_  and 6y.

Remark 7.3.1 It is easy to see that theorem 7.3.2 is an improvement of

theorem 2.1 of Cohen (1976). For a numerical comparison refer to the next

section.

Remark 7.3.2 It can be seen that if (Tx,Ty) is independent of v, then

u = min (LEVIEVD), M, = Mlsrﬁ/crs. Hence it is possible to calculate

1
Ag(m,n) = 2 Min(Ml,Mz), which is a better upper limit of the constant a

than A(m,n). For the estimator Ta(l) of the common mean of two normal
populations considered in Brown and Cohen (1974), A, (m,n) = 2Ev'1/Ev'2,
which turns out to be best upper limit of the constant as shown in section

3.4,

Remark 7.3.3 From a consideration of the values of R(y) for y = 0 and

y = 1, it is clear that 2M < A*(m,n) where A%(m,n) = Min(2, zcriv‘l/trsv’z).
Hence a8 necessary condition for 3 to be better than 6x is given by a < A*(m,n).
For a = 1, this condition reduces to that in theorem 2.2 of Cohen (1976),

who used a different method of proof [essentially due to Graybill and

Deal (1959)], which requires the derivative of V(8) w.r.t. p = 1/nat p = O.

Our approach is obviously simpler.

7.4 Application
Assume that the density for x is

f(x; 6,8,) =1/B, if |x-08] <B,/2

= 0, otherwise.
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A A
Let 8, = (x(m) + *(1))/2’Bx = Xy~ X(1)* where x(l),x(z),...,x(m) are
the order statistics from the x-population. Let 6y, Ey be defined

similarly. The purpose of this section is to evaluate A(m,n) and to

compare it with a*(m,n) of Cohen (1976).

Let Lx = ZTX, Ly z 2Ty and note that the joint density of Lx’ Sx’ Ly,

S 1is
Yy

m-2 n-2 . Y
c S, Sy if L | <15, 0<S <1, |Ly| < 1-Sy,0<5y<1

0 otherwise

(s

x’ x,L ,Sy)

’

where c¢ = m(m-1) n(n-1)/4. Then,
1 1 l-Sx 1-S

AT <:;0 Io Io [0 Y (2 4" s;’“ dL, dL ds s,

eript - c;: j: I:-ssz-sy (2 s s;'é dL, di, ds o5,

Er2g(v) = c[f: jzx ]0- X [:’SY L2 st 53‘2 d, d, d5 ds,
+ fl I: Il“ X I ; L2 7 s;““ aL, d, &5 ds ]

X

11 1-5 1-5
Ev2hi(v)= elf § f X1 7 L2 g™2 gn-6 L d, dS, dS,
y 0°s. 0 0 y x Y
y

1 5, 15 15 -2
Y kS a6, )
00 o

For convenience, define

- 1,1 15, (1-S, 2 m-2 n-2
G(m,n) = (%) IG '[o Io !0 Ly Sy Sy d, A o5 ds_
1 S S S
. - . x x v ¥ T o™
Hm,n) = %) 30 ID ]0 ]0 i g §$*! a a & &
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11 1-5 1-5
c : X y 2 gmZ gn-2 45 ds
(m,n) (%) IU Io IO IO y S Sy Ay A, ds, oS
15 1-5 1-5
D = y X Y (2e™2g™2 g 4 dS dS
(m9n) (%) IO !0 IO Io Ly X y y X X y

Then, it is easy to see that

T2/ = 2 G(m2, n-2); RIZAZ = 2 ¢ Gma, n-0)
e2g(v) = 2e[H(m,n) + G(mZ, n-2) - H(m2, n-2)]
ETshz(v) = 2c[@(med, n-6)-D(mes,n-4) + D(m,n))

It is also easy to see that

11
. (A 3 m-2 N-2

Gm,n) = (3) 10 Iu (1-5.) (1.sy)sx 5, ds, ds,_
Himyn) = () !1 ISX (1-5.)> (1-5.)s™2 s"Z g5 ds

’ Y 00 “x Ty Tx y y X
and that
Cmyn) = () Il Il (1-5.)(1-5 ) s™2 §"% 45 dS_ = G(n,m)

m, = r4 0 0 ~Oy —Jy X y X y = n,m

D(m,n) = cl)'Il ISY (1-5.) (1-5.)> s"~2 s"-Z 45 ds_ = H(n,m)

' Y 0’0 Tx My X y x oy - ’

Using (7.4.1) end (7.4.3), Ay and A, defined by (7.3.7) are given by

A = 2 G(m+2, n-2)/G(m+8, n-4) ;

A = 2[G(me2,n-2) + H(m,n) - H(m+2,n-2) ]
e 2 " n-4,m+4)+H(n,m)-H{n-4 ,m+4
from (7.4.2)

(7.6.1

(7.4.2)

(7.4.3)

(7.4.8)
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n-1 "
3 m-2 X X
-8 " (-7 )

"

Him) = () ]

O = O m

- @

where p = m+n. Note that

]
~

3
v
3
N
3
3
3
ot

3 3 6
- (m+2) ~ mimel) — (m=1) m(me1) (m+2)

Hence

"

G(m,n) 1/[n(2)(m+2)(a)]

Hmm) = 1/Ln-D (p+D) @] = 1n(pe) @] = 1P () D)) (7.4.5)

using (7.4.5) and after some manipulation we arrive from (7.4.4) at the

following formulae for practical computation of Al and A2 :

Z(M)(z) (m+6) (2)/[ (H—Z)(Z) (m+2)(2)]
(n-8)®)[ 0625 - _@ngz; (a » D20 =315
(p+2) n
§ - (7.4.6)

A

1

(-2 m(25 5 50)+.375 |
o) @ @

(m2) D 03125 «

where Q = .5/(p-2).
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Using (7.3.9) and (7.4.6), the values of A(m,n) are compiled in t bl 7.41

for vglues of (m,n) as in Cohen (1976). Unlike in Cohen (1976), we give

the actual value of A(m,n) even when it is greater than or equal to 1 and

a blank entry in the table here mesns A(m,n) = 2, which is the best upper
limit of a. Note also that the arrangement of the values of A(m,n) here is
different from that of a*(m,n) in Cohen (1976). The entry in cell (i,j) here

should be compared with that in cell (j,i) in Cohen (1976).

It can be seen that the entries in the table are consistent with the
necessary condition stated in Remark 7.3.3, which in the model of this

gsection reduces to

a < Min [2,2(n-4)(n-5)/(m+2) (m+1)]

A comparison between the table of A(m,n) here with that of a*(m,n)

in Cohen (1976) leads to the following conclusions:

1) Each entry in the table here shows improvement over the corresponding
entry in Cohen (1976) and the improvement is remarkable for each m provided

n is not too small.

2) As a natural consequence, the table here reveals many pairs (m,n),

in contrast to none in Cohen (1976), fur which both A(m,n) > 1 and

A(n,m) > 1 hold. In view of corollery 7.3.1, 8 with a = 1 is readily seen
to be better than both § and 6 for all n > 25 4f m = n and for all

n>35 if m < mS5,



- e - -

Values of A{m,n)

n

T S R S N T 11 12 13 16 15 20 - 25 30 35 — ag as s

2 .2569 .6570 1.0738 1.4721 1.8552

3 L1610 .A794 -.B977 1.3673 1.8621

&  .1050 333 6575 1.0568 1.5068; 1.9928

5 ‘0725 cm 0““" tm 1.1?33 1.5905

6 .0525'-17”’ ;m‘ .ﬂx .91“ 1-26}1 1-“73

7 .0395 .1325 .2806 .4802 .7260 1.C125 1.3349 1.6869

8  .0306 .1038 .2219 .3832 .5847 .8225 1.0932 1.3936 1.7212

9 .0243 .0831 .1790 .3115 .4784 .6775 .9060 1.1618 1.4826 1.7:38
- 10 0198 .0679 .1471 .2573 .3973 .5654 .7599 .9789 1.27°. 1.4842

11 .0163 .0564 .1226 .2155 .3342 .4777 .6445 .8333 1.04c9 1.2721

12 .0137 .0474 .1036 .1828 .2845 .4080 .5522 .7162 .8989 1.0995 "
i3 .0116 0404 .0886 .1567 .2a47 .3519 .4775 .§209 .7813 .9578 - ;
14 .0100 .0348 .0765 .1357 .2124 .3061 .4164 .5427 .6842 .8405 1.8249 x
15 .0086 .0302 .0667 .1185 .1859 .2685 .3659 .4777 .6038 .7425 1.6239 o
2 .00A7 .0167 .0372 .0667 .1053 .1532 .2102 .2761 .3508 .4342 .9738 1.7038

15 .0029 .0105 .0235 .0423 .0671 .0980 .1350 .1779 .22659 .2817 .6411 1.1352 1.755

50 .0020 .0072 .0161 .0291 .0463 .0677 .0935 .1235 .1578 .1964 ,4511 .8052 1.2534 1.7920

15 .0014 .0052 .0117 .0211 .0337 .04%4 .0683 .09C4 <1157 .1442 ,3334 .59B&4 .9359 1.3435 1.5189

40 .0011 .0039 .0088 .0160 .0256 .0376 .0520 .0689 .0883 .1102 .2559 .461G .7236 1.0419 1.41a3 1.8397

45 .0008 .0031 .0069 .Q126 .0201 .0295 .0409 L0542 . .0405 N8RS ,2023 .3655 .5752 .8301 1.129) 1.471a 1.8%61

50 .0007 .0024 .0056 .0101 .0162 .0238 .0329 .0437 .0S61 .07u0 .1637 .2965 .4676 .6760 .9211 1.2020 1.5183
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(3) Cohen's a*(m,n) is at first increasing and then decreasing in n,
whereas A(m,n) here steadily increases in n and unless m is large, reaches
the maximum value 2 fairly quickly. It is reasonable to expect 8 to be
better than & for all n > n_ if it is 60 for n = n_provided m remsine
fixed, Our table of A(m,n) supporte this and helps to correct, an impression

to the contrary one gets from the table of Cohen's a*(m,n).
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APPENDIX
SOME  INEQUALITIES

We present here the derivations of pome inequalitiee which were used

in the text. Suppose f and g are Functions of k rendom variables

Kyrooe Xy e We shall use the aymbol Enf where n < k io denote the conditional

expectation of f given (“I"“’“n]' we shall also wse the abbreviations:

f 4 x;, for the atetement ¢ is non-decremsing in x ' F 4 x; for the
statsment f is non-incressing in x,*. The abbreviation f 509jx; would
mean that f and 9 are monotonic in the same direction with respect to X5 in

E%:nsa that either F 4 Xy and g 4 Xy or fi Xy and 9 4 X . Similarly,

F []Ug|xi would mean that F and g are monotonic in opposite directions with
reapect to Xg in the sense that either F # X and 9} Xy or fF 4 Xy and

g+ X, - We now prove,

Theorem A,.1 let u,v,t be a.s, positive functiona of k random varinbles
Xyseres¥ . Aosime that v has a finits expectation. Let, 4 = En(tv}fEnv;

h" = EnIFfEnv. Then

(1} g SD A [x ¥n<k =5 (i1) E(tu)/E(ty) > Eu/Ev (A1)
(11)9 00 h [x ¥ 04 k = (iv) E{tu/E(tv) < Eu/Ev (A.2)
Proof

(if) == E{tu)/Ev> [(Eu/Ev) E{tv}/Ev] o> E*(tw) > £ Bt {(A.3)

where w = u/fv; E* atands for sxpectation with respect to the denaity

e

]

vf/Ev; f ia the joint density of (x;,...,x, ). Note that, EX(t} =g ;

E;{u} = hn. Hence

(1) wems EA() SD EX(W)ix, ¥ n <k =» t 5D wx, (A.4)
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ywell-known that [see o.g. Hardy, Littlewood and Polya (1952), p.43
Kaball (1951), p. 6007,

f SD g|x =» E(fg) > Ef g {A.5)

f 00 glx == E(fg} < EF Eg {A.8)
vew of (A.4), (A.5) and (A.3)
=> E*(tw) = E¥ER (tw) > E¥[E} ((t)-Ep (0]
= ¥ (Ep_(OER (W] 2 EX[EY_,(LEL ,(m)):
vee 2 EX(EF(RIER(w)] > EX(t) EX(w) => (i)

ia proves (A,1). The proof of (A.2) is similar. In this case we uso

w6) instead of (A.5).

hworem A.2 Let XppesoaXy be mutually independent a.s. positive random vari-

tlas and lat

& k
f=1/ px, ¢t D<p, <1 § p, =1L
igl t -1 izl i

lseume that Esz is finite for every i. Then

EFIEFZ > min Ex;lffxiz
l<lck

froof The theorem is trivial for k =z 1. It will he proved for k = 2 from

which the sxtensiona to higher valus of k will be ocbvious. To ayoid
subscripts, let p,x,y stand for Pir %30 %3 respectively and let
n= Hin{Ex'lffx'z, Ey-ley'ZJa Then

niﬁ‘pEnﬁlex”z + {lup)Ey'ley'z = [pEu“IEy'Z+(1wp}Ey'lEx-z]ffEﬁ“zEy'z}

= E[px'lr“z + (lnply'l x'z}ftfx'z r“zJ (A.7)
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since x and y are independent. Now, define g = p/y+{1-p)/x and note that

fg = ! §1. Then (A.7) cen be written aa:
m < E(tu)/E(tv) {A.B)

where t = gz; usz fyvs fZ, Obviously, t + y and u/v 4+ y. Also,
E(kv|x) /E(v|x) = E{fzqz]x}fﬂ{rzlx} x [(k”z ynzfx}fffx*Z y'z thlix)

s Ey“zfx)ftfy_zt'llx} + x, Bince t 4 x ; and, E{u]x)/E{v|x) =
E(FEs}fE[f2|x) 4+ x, since its derivetive with respect to x is:
pLECE]E(P %) = E2(F2 ) 162 @2 x) > 0, in view of an well-known
inequality concerning absolute moments. Hence, using Theorem A,1, (A.8)

givesa:

m < Eu/Ev = EF/EF?

ke

This campletes the proof For k = 2. When k> 2, § Py Xy Can be written
i=1

. k-1

in the form: q x + (1-g, )y, where x :izz 0% ¥ =X U0 <<l

k=1
E q; = 1. Hence, it ie easy to see that the result follows by induction.
=1

We shall derive two mere inequalities, for which we need the following

lommas:

Lewmn A.1 Let, F = 1/(y+h}; T = 1/h, where h = p-gy, y is & real variable

and p,q are constants, Let primes dennte derivetion with respect to y, Then

(1) provided y £ 0,
f' = fpfz-f}fT H Fl = fp?z - FJKT

{i1) provided h £ D

F =(gf - pF2)/h
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f Tlementary snd hence omitted

W A2 Let ¥ be a function of (y,y), where y is a rendom variable and

1 a conatant which can assume valuea in a specified renge, Let

g EF/Ef? (A.9)
ame that (i) the distribution of y doeas not depend on y; and for every
Hlype e () 5> 0 as. (150) EFY < o (iv) T is differentinble with
ipect to y and,
_ 2

f1 =z gf - pf (A.10)
ere p is a function of {y,y}; q is a fumction of y only and the prime
ands For derivation with respect to y{v) p is measurable in y and we have

ither p > 0 a.a, or, p < 0 a.a. Then, for any given vy e (yy,v,),
D OEF <0 = g'>0 if (vi): F SD pfly
B} EFf? 20 = g'<0Q if (vit) F 0D pfiy

‘roof  First essume that p > 0 m.s. Note that (il) and {iii) imply

) ¢ Ef‘z < ?w, 0 < Ef ¢« =, Hence in view of (i}, (A.9) glves ;
g' = (EF* EFZ - 26F EFF1) fE2FE

veing {A.10). This expression reduces to

g' = (2Ef Epf-EpflEfl - g f £rl)elel (A.11)

Also from (A.10)
_ 7 . y fof? 1P £
gEf < Epf if EF <03 oEf > Ip if EF'> 0O
\ b
Using this {A.11) gives :

g' >C if Eft <0y ot <C if Ef'x O (a.12)
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here
C = 2(6F EpP - €F Epfoy/ete? (A.13)
Iy Theorem A.1

Tvi} «:aEpifJprf'z > EF{’EFZ => [ >0
(A 10}

(vii) == EpF/Epf < EF/EF = C < 0

The desired results follow From {A.12) and {(A.14). If p <0 a.a. we

can write (A.13) as:

3 z

€= - 2EfEp, P - EflEp 1)/E0F?

where p, = - p > 0 a.8; Note that, f 5D (O0) pfly <e £ 0D (SD) p,fly.

Hence, by Theorem A.1,

{vi} = Ep*f‘jftp,l'z < EFEFY = € > D
{A.15}

1) = R F/p, 2 > £1/Ff2 ==L < 0

The desired results now follow from {A.12) end (A.15).

lemma A.3 Let f be a function of (y,y), where y i a random varisble

srd y is a constant, Let ¥ be s memsursble function of y only., {et
g = Ef/E(FT) {A.18)

Assume that (i) the distributlion of y does not depend on y; and for every
Y E {11, Tz}* (ii) F> 0 m.5. ({i1Y P> 0 a.e. {iv) EFf < o (v) E(f) ¢« =
(vi) f is differsntieble with respect to y end,

f' = qF - pf2 {A-l?)

where p 1a s function of {y,y); g inm a function of vy only and the prime
stends for derivation with respect to y (vii) p is measurable in y and we have

efither p > D a.8. or p<G a.ns. Then, for any given vy ¢ f'fp*fz} ¥
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Y g'>0 if (viid}) T S0 pfiy

B) 9 <D if  {ix) T oD pfiy

ropf  Note thet (ii), (1ii} and (v) imply : O < E(fF) < o D < EF < =,

e i

lnce in view of (1), (A.16) gives:

& = LEFEUT) - EFECPPEL(RT)
using {A.17), thia expression becomes,

G = [EFE(FET) - ECFRELRFY) 17620 (A.18)
Firat assume that p > 0 a.s. Then by Theorem A.1,

(vi1) =  E(pfiP/E(pf®) > E(FT)/EF
(A.19)
(ix) =  E(eFPAPr) < E(T)/er

The desired results follow from (A.1B) and (A.19). If p < 0 a.a., a

modification of the ahove arguments yield the deaired results as in the

proof of the previoud lemma,

Lemma A,4 Let f and F be measurable functions of a random varimble y

such thet (1} f > 0 s.8. {i1) F< T a.s. (i4i) €F < = (iv) T 50 F/F}y.
Then

Ef?Efz 3_[?}5?2
Proof In view of {1} ~ (iii},

EF/EFE » EF/E(TH) (A.20)
Also, in view of {i) - (iv), thoorsm A.1 gives

EF2/E(Tr) > EF/ES (A.21)

The desired result follows from (A.20) and (A.21}.
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f = 1/[y+hiy)y] {h.22)

where h{y) = p-qy , y ia a random variable, y is a parameter ond q,d
are given eonstants., Assume that (i) d > 0 (i1} p > max{D,q) (iil) y > @
a,a. (iv) Ey“z <= (v} the distribution of y does not depend on y. Let,

gly) = EffEFZ; n = inf g(y) ; n, = inf gly), where Yy {0,1);
YE{Ufl} TF(GyYu]

p/q i &y = mex[§,,da h(1}] ;

1]
il

a Ey_lffyﬁz ; & = dep ;1 &

(4] 1

l

8y max[ﬁz, danh{Tm]]' Then,

(A) n=6; 3 m =& if qzx0O
(8) n>Min{d,, &)1 7, 2 Min(4,,8,) if q>0 (A.23)

Proof  Assume throughout that +y e (0,1). Then assumption (11) implies:

h >0, Hence hy lemma A.l

' = (qf-pf)/h (A.26)
Asaumptiona (1), {ii) and (iil)} imply: D < £r o ®m; 0 <« Ef <« =, It is now
easy to see that f,y sstisfy sll conditions of part A of lemma A.2. Hence,
by that leewss,

Eff <O=sg' >0 (A.25)

From (A.22), it is emey to see that f" > D. This meana ' and hence Ef' 4 vy,
Hence

EFf <0 for some y=vy; ¢ (0,1) = E€F' <0 ¥y 0, y)) (A.26)
(A.25) and (A.28) together imply that g+ v ¥ v ¢ (G,Tl) iF EF' < 0 for
some y = yy ¢ (0,1}, Hence

g>q{l) = da_p if Ef' <O (A.27)
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bow, using {A.24),

q<0= f' <0 =» Ef <D, ¥ye (0,1} (A.28}
(A.27) and (A.28) proves the part A, From {A.28), note that Ef'> 0=> g > O,
Hence, it follows from (A,24) that,

g > p/q if Ef* >0 (A.29)
(R.27) and (A.29) imply

T > 'Sn T ] Gn if g>» 0 (A.30)

where & = min(g,, 8,). Now, let, T = 1/fdhiy)y]. Then, by lemma A.4,

g = EF/EF? > EMEFY = da hly), ¥y e (0,1 (A.31)
Note that g & 0 implies that h{y} + vy, ¥ y ¢ (0,1}. Hence, {A.31}
gives:

m > da h(1} 3 m, > dah(y ) if q>0 {A.32)
{A.30) and (A,32) imply

%> Mn[dnuhtl},ﬁu)]i 1, ‘3_ mex [ﬁﬂnh('\fn},ﬂu] if > 0{A.33)

Nate that q > 0 => da h(1) < da h(y) < da h(0) = &, ¥ y ¢ (0,1). Hence,
it is ensy to see that (A.33) ie equivalent to (A.23).

Lemma A.6 Let Fl sim"n‘i'f’.2 be functions of a pair of rendom variables x snd
y. Let 5 denote ths support of x and lot the symbol Et atand for the
conditional expectation with respect to y given x = t, Then Ef lef‘z >

inf £ F./E.F..
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roof  The proof is simple and hence omitted. We now prove

Theorem A,3 Let

f = 1/M0Gy) (A.34)

where x 18 a random varisble; y ie a parameter; h(xjy) = p()-q(x)y; and
p{x}, gy{x} are measurable functions of x, which do not depend on y. Avsume

that p(x} > max{0,q{x)}] o.e., {il}) Efz <o, ¥y [0,1] (iii) The distribution
of x does not depend on vy, Let, T = lfhiﬁ{h{x;n},h(xgyu];

T = Ifmin[h(xiyn}, h{x:1)], whare Y, € (0,1). Let gly) = EFFEFI; gly) =

EF/E(FP); G{y) = EF/E(FTY; % =  inf gly)sm, = inf gly). Then,
yel0,1) TE{G'TQ}

(A) =2 min[g(0),g(1)] & m, > §(G) if (iv) £ OO pflx, ¥ y e {0,y )

f 50 pfl:ﬁ’., ¥re {Tﬂil)‘

(8) « > min[§(0), g(1}] if 4n addition to (iv), we have (v):

(v): p SO Flx, ¥ye (Tﬂ,l}.

Prgof Assums throughout thet y e (0,1). Then by {i}, p,f,?,¥ and hence
pf are oll a.s. positive. This together with (ii) imply that EFf, EFF and
Eff are all positive snd Finite along with EFZ. Let primes denote
derivation with respect to y. Then using lemms A.1, {A.34) gives

fr = [p{xJF2~F]fY = q,f - PuF? (A.35)

where p, = - plx)/yi g, = -1/y. Clearly, we have : £ SD Fix, ¥y ¢ (0,y,);
FSDFlx, ¥ye (yys1). Hence, (iv) implies : T SD p,fx,¥ y e {0,y };

TOD p,Fix, Vye (yn,l}. Hence, by lemma A.Z, we have:

9(y) t vy ¥ve¢ fﬂqu}i gly) + v 2{70,1}. Hetvwea ,

gly) > §(0), ¥y e (Oy) (A.385)

g{y) > D, ¥y« (v l) (A.37)
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{ 18 ensy to see thet: F < F, ¥ y ¢ (D‘Tm}; F<¥, ¥ye {Yn,l). Herce,
{¥) 29(y), Yye {U,TQ}; aly) > G iy), ¥Yye {Tn,l). Thias proves part (A)
"In view of (A.386) and (A.37). The additionnl asaumption in part (B} implieal
E[F'fx}f’z} > Elplx)] Efz s ¥Yye (ﬁrﬂ,l}. Hence using (A.35), we have:
(Ff « 0 = qly} > Ep{x}, ¥y ¢ (Yﬂ,}}. (n the other hand by lemma A.2,

(F! >0 = gly) > ofl), ¥vye {TD,H. Henne

aly) > minfCp{x}, g(1)], ¥y e (y,.1) (A.38)

(A.36) and {A.38) give: n > min [g(0), Ep(x},q(1}], This proves part (B)
gince,

3(0) < gt0) = E{p0x) 1" IEp() 172 < Eplx)

Theorem A.4& Let, f = 1/[y+dh(xjy)y], where x,y nre rendom variables; vy,d
are constants which can assume values in aper;i.fiad ranges; h(x;y} =

p{x} - g{x}y: and p,q are measurable functiona of x, which do not depend on
y- Assume that (i) d > 0 (ii) p{x) > max[0,g{x)] a.s. {iii} y > 0 a.s.
{iv}Ey"z < @ [v} x and y are independent (vi), the distribution of (x,v)
does not depend on y. Let £, = L/h{xiy); T, = ;fmin[h{x;ﬂ},h('x;yn]];;
. = min[h(xy ), hix;1) 1 gly) = EF/EFYS g, (y) = ERJEFS 5 G,ly) =

Ef/EC,FD) Gly) = ER/E(RT): n= dnf  gly)s n, = inf g(y), where
“fl-:(ﬂ,lj "Ir 'TD‘S

e (0,1). Let 5 be the support of x and let, S, = {t|t ¢5, q{t) > O},

inf plt} ; 8y = inf  p{t)/q{t);
te5 tes

Yo
Lﬂt, ﬂﬂ = E?“IIEY_Q; 61

il

8 = max(6;, da 8,07 6, = min(a,(0}, §,(1)] # 65 = min[g,(0),q,(1)] ;
“1 = Min(ﬂﬂuﬁl,ﬁs}; ﬂz = min{dﬂm ﬁ]? Gaj‘ Then, 3

(A) T2 oM M2y (A.39)
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(8) n > mex{ny, da b;)3 my 2 max[ny, dn @, (0)] if (vil):

FODpflx, Yye {D,Tn); FSD pffx, ¥y ¢ (Ta'”

(€} w2 max{ny, da &g}, if ir addition to (vii), we have (viii): p 5D fix,
Yye (v, 1.

Proof  iat, &,(t) = da p(t); &,;(t} = p(t)/a(t) ;

ﬁ}{t} = max [§,(t), ds h{tj1)]; 54‘4{“ = max[dzﬁt}, dmﬂhft;?ﬂﬁ $

my(t) min{§,{t), 6,(t)] 1f t 5,

= ﬁl(f‘.} if t e 5-5,;

b1 |

my{t) min{4,(t}, 8,(t)] if teS5,

it

§,{(t) 1f t eSS, ;

Let, % = EthEtf‘z, whare Et atands Tor conditional exonectation given

x =ty #(t) = inf Gy 5 n,(t) = inf % - By lemmm A.5,
ve({D,1) ~ yel0,v,)
m{t) 2 omplt)y A (t) 2 m (b (A.40)

It is easy to mee thut,

111{1:) 2m 8 “Z(t} 27T, ¥Ytesd (A.al)

By lemma A.8,

g2 inf g,
tesS ~

Uaing (A.42), (A.4D) and {A.41),

x> inf inf g inf  a(t) > inf w(t) > m,.
ye{0,1) t £ 5 te$ t § 5

Similarly, =, > ;. Thie proves part A, Now, let F = 1/[dhixsy}y).  Then,

L F

using lemma A.4,
g2 EFEF = dag, (A.43)

eince y is independent of x. Ueing thearem A.3, Part (B) and part {C)
fellow from (A.39) and (A.83).
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