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Notation:

1. For a metric space X, dX will often denote the metric.

2. A geodesic segment joining x and y in X will be denoted by [x, y].

3. For a subset S ⊂ X and k ≥ 0, NX(S, k) will denote the k-neighborhood of S in X.

4. A geodesic triangle with vertices x, y, z will be denoted by △xyz.

5. H
n = {(x1, ..., xn) ∈ R

n : xn > 0} is the usual hyperbolic n-space with metric

ds2 =
dx2

1+...+dx2
n

x2
n

.

6. S
n denote the usual n-sphere with center at origin and radius 1.

7. For x, y, a ∈ X, (x, y)a will denote the Gromov inner product.

8. For a proper geodesic metric space X, ∂X will denote its Gromov boundary and X

will be its Gromov compactification.

9. For a geodesic segment λ in X, πλ will denote a nearest point projection from X

onto λ.

10. Let H denote a collection of uniformly ǫ-separated closed subsets of X. Then

E(X,H) (or X̂ for short) will denote the coned-off space or electric space.

11. Let X be a space strongly hyperbolic relative to H. For H ∈ H, Hh will denote

the hyperbolic cone constructed from H. G(X,H) (or Xh for short) will denote the

hyperbolic metric space obtained from X by attaching hyperbolic cones Hh to H.

12. For an ordered quadruple (X,H,G,L), PE(X,H,G,L) (or Xpel for short) will denote

the partially electrocuted space.

13. For a tree of spaces P : X → T , v a vertex in T and e an edge in T , Xv will denote

the vertex space and Xe will denote the edge space.
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Chapter 0

Introduction

Let P : Y → T be a tree of strongly relatively hyperbolic spaces such that Y is also

a strongly relatively hyperbolic space. Let X be a vertex space and i : X →֒ Y

denote the inclusion. The main aim of this thesis is to extend i to a continuous

map i : X → Y , where X and Y are the Gromov compactifications of X and Y

respectively. Such continuous extensions are called Cannon-Thurston maps. This is

a generalization of [Mit98b] which proves the existence of Cannon-Thurston maps for

X and Y hyperbolic. By generalizing a result of Mosher [Mos96], we will also prove

the existence of a Cannon-Thurston map for the inclusion of a strongly relatively

hyperbolic normal subgroup into a strongly relatively hyperbolic group. Let us first

briefly sketch the genesis of this problem.

Let H be an infinite quasi-convex subgroup of a word hyperbolic group G. We

choose a finite generating set of G that contains a finite generating set of H . Let ΓH ,

ΓG be their respective Cayley graphs with respect to these finite generating sets. Let

∂ΓH and ∂ΓG be hyperbolic boundaries of ΓH and ΓG respectively. Then it is easy

to show that the inclusion i : ΓH → ΓG canonically extends to a continuous map

from ΓH ∪ ∂ΓH to ΓG ∪ ∂ΓG. But if H is not quasi-convex, it is not clear whether

there is such an extension. It turns out that for a wide class of non-quasiconvex

subgroups such an extension is possible. The first example of this sort was given

by J.Cannon and W.Thurston in [CT07] (1989). They showed that if G is the

fundamental group of a closed hyperbolic 3-manifold M fibering over a circle with

fiber a closed surface S and if H is the fundamental group of S, then there exists

a continuous extension for the embedding i : ΓH → ΓG. In [Min94], Y.N.Minsky

generalized Cannon-Thurston’s result to bounded geometry surface Kleinian groups

without parabolics. Later on, Mitra, in [Mit98a, Mit98b] (1998), gave a different

proof of Cannon-Thurston’s original result and generalized it in the following two

directions:

1



Chapter 0: Introduction 2

Theorem 0.0.1. (Mitra [Mit98a]) Let G be a hyperbolic group and let H be a

hyperbolic subgroup that is normal in G. Let i : ΓH → ΓG denote the inclusion.

Then i extends to a continuous map ĩ : ΓH ∪ ∂ΓH → ΓG ∪ ∂ΓG.

Theorem 0.0.2. (Mitra [Mit98b]) Let (X, d) be a tree (T ) of hyperbolic metric

spaces satisfying the quasi-isometrically embedded condition. Let v be a vertex of T .

If X is hyperbolic then there exists a Cannon-Thurston map for i : Xv → X, where

Xv is the vertex space corresponding to v.

Let Σ be a compact surface of genus g(Σ) ≥ 1 with a finite non-empty collection

of boundary components {C1, ..., Cm}. Subgroups of π1(Σ) corresponding to the fun-

damental groups of the boundary curves are called peripheral subgroups. Consider

a discrete and faithful action of π1(Σ) on H
3. The action is strictly type preserv-

ing if the maximal parabolic subgroups are precisely the peripheral subgroups of

π1(Σ). Let N be the quotient manifold obtained from H3 under this action. Let

inj(N) denote half the length of the shortest closed geodesic in N . inj(N) is called

the injectivity radius away from cusps. B.H.Bowditch, in [Bow07], proved that if

inj(N) > 0 then there exists a Cannon-Thurston map for the induced embedding

i : Σ → N . In [Mja], Mahan Mj. gave an alternate proof of Bowditch’s result and

generalized it to 3-manifolds where cores are incompressible away from cusps.

M.Gromov, in [Gro87], defined the notion of relative hyperbolicity for a geodesic

metric space. Let G be a finitely generated group acting properly discontinuously

and cocompactly by isometries on a complete and locally compact hyperbolic space

X. Then due to the Švarc Milnor Lemma (refer to [BH99]), the Cayley graph of

G is quasi-isometric to X and hence G is a hyperbolic group. Now if we replace

the cocompact action of G on X by an action such that the quotient space is quasi-

isometric to a finite union of rays emerging from a fixed point, then we get Gromov’s

notion of a relatively hyperbolic group. Benson Farb, in [Far98], studied relative

hyperbolicity from a different perspective. He gave an alternate definition of relative

hyperbolicity.

A finitely generated group G is said to be strongly hyperbolic relative to H (in the

sense of Farb) if the following two conditions hold:

1. The ‘Coned-off’ graph Γ̂G, obtained from the Cayley graph ΓG of G by coning

the left cosets, is hyperbolic.

2. Two quasigeodesics in Γ̂G joining the same pair of points satisfy a property

called ‘Bounded Coset Penetration’. Roughly, it means that

• if one quasigeodesic penetrates a left coset and the other does not then the
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distance between the entry and exit points of the quasigeodesic penetrating

the left coset is bounded, and

• if two quasigeodesics penetrate the same left coset then the distance between

the entry points is bounded; similarly for the exit points.

If the group G satisfies only the first condition then G is said to be weakly hyperbolic

relative to H . Similarly for a geodesic metric space X and a collection of uniformly

separated subsets H of X, we have the Farb’s notion of a strongly relatively hyper-

bolic space (X,H) (a brief definition is given before the end of this section). As in

this thesis we deal mostly with strongly relatively hyperbolic spaces, relative hyper-

bolicity will mean strong relative hyperbolicity.

In [Bow97], Bowditch proved the equivalence of the two notions of relative hyperbol-

icity. He also introduced the notion of a relative hyperbolic boundary for relatively

hyperbolic metric spaces. If S is a punctured torus then its fundamental group

π1(S) = F(a, b) (free group with two generators) is hyperbolic relative to the cusp

subgroup H =< aba−1b−1 >. In fact, π1(S) acts discretely on the upper half plane

H
2 and stabilizes a point on the boundary with stabilizer subgroup H . The relative

hyperbolic boundary for the Cayley graph of S is the Gromov boundary ∂H2 of H2.

In [BF92], a combination theorem for trees of hyperbolic metric spaces was

proved by Bestvina and Feighn. It states that a tree of hyperbolic metric spaces is

hyperbolic if it satisfy the ‘quasi-isometrically embedded’ condition and the ‘Hall-

ways flare’ conditions. Based on their work a combination theorem for trees of

(strongly) relatively hyperbolic spaces was proved by Mahan Mj. and Lawrence

Reeves in [MR08]. While proving this theorem they have extended Farb’s notion

of strong relative hyperbolicity and construction of an electric space to that of a

‘partially electrocuted space’. In a partially electrocuted space, instead of coning

all of a horosphere down to a point we cone it down to a hyperbolic metric space.

It is natural to ask for the existence of a Cannon-Thurston map for the inclusion

of a relatively hyperbolic space as a vertex space into a tree of relatively hyperbolic

spaces.

In this thesis, we prove the existence of a Cannon-Thurston map for the em-

bedding of a vertex space into a tree of relatively hyperbolic spaces. This is a

generalization of Theorem 0.0.2.

Theorem 0.0.3. [MP][Refer to Theorem 3.2.9] Let X be a proper geodesic space and

P : X → T be a tree of relatively hyperbolic spaces satisfying the quasi-isometrically

embedded condition. Further suppose that the inclusion of edge-spaces into vertex

spaces is strictly type-preserving, and the induced tree of coned-off spaces continue
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to satisfy the quasi-isometrically embedded condition. If X is strongly hyperbolic

relative to the family C of maximal cone-subtrees of horosphere-like sets, then a

Cannon-Thurston map exists for the proper embedding iv0 : Xv0 → X, where v0 is a

vertex of T and (Xv0 , dv0) is the relatively hyperbolic metric space corresponding to

v0.

Sketch of Proof: For a relatively hyperbolic space (Y,HY ), Ŷ will denote the

coned-off space and Y h will denote the hyperbolic space obtained from Y by gluing

‘hyperbolic cones’ ( brief definitions are given before the end of this section).

A Cannon-Thurston map for iv0 exists (see Lemma 3.1.4) if the following holds:

If the underlying relative geodesic λ (in Xv0) of an electric geodesic segment λ̂ in

X̂v0 lies outside a large ball in (Xv0 , dXv0
) modulo horospheres then, for an electric

segment β̂ joining end points of λ in X̂, the underlying geodesic segment β lies

outside a large ball in X modulo horospheres.

Let T C(X) be the tree of coned-off spaces obtained from the tree of relatively hy-

perbolic spaces, X, by coning horospheres in each vertex and edge space to a point.

As in [Mit98b], the key step for proving the existence of a Cannon-Thurston map

is to construct a hyperbolic ladder Ξλ̂ in T C(X) and a large-scale Lipschitz retrac-

tion Π̂λ̂ from T C(X) onto Ξλ̂. This proves the quasiconvexity of Ξλ̂. Further, we

shall show that if the underlying relative geodesic λ of λ̂ lies outside a large ball

in (Xv0 , dXv0
) modulo horospheres then Ξλ̂ lies outside a large ball in X modulo

horospheres. Quasiconvexity of Ξλ̂ ensures that geodesics joining points on Ξλ̂ lie

close to it modulo horospheres.

We consider here electric geodesics in the coned-off vertex and edge-spaces X̂v

and X̂e. In [Mit98b], it was assumed that each Xv, Xe are δ-hyperbolic metric spaces

and took λ = λ̂, hence it was necessary to find points in some C-neighborhood of λ to

construct Ξλ. Since there is only the usual (Gromov)-hyperbolic metric in [Mit98b],

this creates no confusion. But, in the present situation, we have two metrics dXv

and d bXv
on Xv. As electrically close (in the d bXv

metric) does not imply close (in the

dXv
metric), we cannot take a C-neighborhood in the d bXv

metric. Instead we will

first construct an electroambient representative λ of λ̂ in the space Xh
v and take a

hyperbolic neighborhood of λ in Xh
v .

Now choose a geodesic segment with length maximal in the electric metric such that

its end points lie in the intersection of a bounded neighborhood of λ and an edge

space, and then ‘flow’ the end points to the adjacent vertex space. Join the resulting

end points by geodesic segments in the corresponding vertex spaces. Repeating this

process, we obtain a ‘ladder’ Ξbλ. Finally we construct vertical quasigeodesic rays in

Ξλ̂ to show that if λ̂\⋃Hvα∈Hv
Hvα lies outside a large ball inXv, then (Ξλ̂\

⋃
Cα∈C

Cα)
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lies outside a large ball in X. The existence of a Cannon-Thurston map follows.

Our next objective is to generalize Theorem 0.0.1 for relatively hyperbolic groups.

Let K be a hyperbolic normal subgroup of a hyperbolic group G with quotient Q.

The following Theorem, due to L.Mosher [Mos96], proves that Q is hyperbolic.

Theorem 0.0.4. (Mosher [Mos96]) Let us consider the short exact sequence of

finitely generated groups

1 → K → G→ Q→ 1.

such that K is non-elementary word hyperbolic. If G is hyperbolic, then there exists

a quasi-isometric section s : Q→ G. Hence Q is hyperbolic.

We will generalize Theorem 0.0.4 to the following :

Theorem 0.0.5. [Pal][Theorem 2.1.6] Suppose we have a short exact sequence of

finitely generated groups

1 → K → G
p→ Q→ 1,

with K hyperbolic relative to a non-trivial proper subgroup K1 and G preserves cusp

i.e. for all g ∈ G there exists k ∈ K such that gK1g
−1 = kK1k

−1. Then there exists

a (R, ǫ)-quasi-isometric section s : Q→ G for some constants R ≥ 1 and ǫ ≥ 0.

Sketch of Proof: Let Π be the set of all parabolic end points and Π2 denote the

set of all distinct pair of parabolic end points. Let α = (α1, α2) ∈ Π2, then stabilizer

subgroups of αi’s are aiK1a
−1
i for some ai ∈ K, where i = 1, 2. Due to the bounded

coset penetration property, for any two relative geodesics joining left cosets a1K1

and a2K1, the diameter of the set of exit points of these relative geodesics from a1K1

is uniformly bounded. Let C be the set of all (α1, α2) ∈ Π2 for which the identity

element of K belongs to the set of exit points of relative geodesics from the left coset

a1K1 to a2K1. For g ∈ G, the automorphism Ig, defined as Ig(k) = gkg−1, acts on

the relative hyperbolic boundary of K and hence acts also on Π2. Fix an element

η ∈ Π2, let Σ be the set of all g ∈ G for which η ∈ Ig(C). Then we show that there

exist constants R ≥ 1 and ǫ ≥ 0 such that for all g, g′ ∈ Σ

1

R
dQ(p(g), p(g′)) − ǫ ≤ dG(g, g′) ≤ RdQ(p(g), p(g′)) + ǫ.

Following the scheme of the proof of 0.0.3, we will generalize Theorem 0.0.1 to

the following:

Theorem 0.0.6. [Pal][Theorem 3.3.5] Consider a short exact sequence of finitely

generated groups
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1 → K → G
p→ Q→ 1

with K hyperbolic relative to a proper non-trivial subgroup K1. Suppose that

1. G preserves cusp,

2. G is (strongly) hyperbolic relative to NG(K1) and,

3. G is weakly hyperbolic relative to the subgroup K1.

Then there exists a Cannon-Thurston map for the embedding i : ΓK → ΓG, where

ΓK and ΓG are Cayley graphs of K and G respectively.

In chapter 1, we survey some basic facts about relatively hyperbolic spaces. Here

we give two definitions of a relatively hyperbolic space. For a geodesic space X and a

collection of uniformly separated subsets H of X, we will construct a space G(X,H)

(or Xh for short) from X by attaching ‘hyperbolic cones Hh’ (analog of horoballs)

to each H ∈ H. Elements of H will be referred to as horosphere-like sets. X is said

to be hyperbolic relative to H in the sense of Gromov if G(X,H) is a hyperbolic

metric space. Let E(X,H) (or X̂ for short) be the ‘Coned-off’ space obtained from

X by coning each H ∈ H to a single point, then X is said to be hyperbolic relative

to H in the sense of Farb if

1. E(X,H) is hyperbolic.

2. Quasi-geodesics in E(X,H) joining same pair of points satisfy ‘bounded horo-

sphere penetration’ properties. It means that

• if one quasigeodesic penetrates a horosphere-like set H ∈ H and the other

does not then the distance between the entry and exit points of the quasi-

geodesic penetrating H is bounded, and

• if two quasigeodesics penetrate the same horosphere-like set then the distance

between the entry points is bounded; similarly for the exit points.

In Chapter 1, we shall prove that these two definitions are equivalent. Partial

electrocution and trees of relatively hyperbolic spaces are also introduced in this

chapter. In chapter 2, Theorem 0.0.5 is proven. In chapter 3, we first give a criterion

for the existence of a Cannon-Thurston map and then by constructing ‘Hyperbolic

Ladders’, ‘Retraction Maps’ and ‘Vertical Quasigeodesic Rays’ in trees of relatively

hyperbolic spaces, we proceed to prove Theorem 0.0.3. For a short exact sequence

of relatively hyperbolic groups, we make similar constructions and prove Theorem

0.0.6. Finally, in chapter 4, we give some examples and applications.



Chapter 1

Relative Hyperbolicity

1.1 Hyperbolicity and Nearest Point Projections

Definition 1.1.1. Let (X, d) be a metric space and x, y ∈ X. A geodesic path

joining x and y is an isometric map γ : [0, d(x, y)] → X such that γ(0) = x and

γ(d(x, y)) = y. X is said to be a geodesic metric space if for all x, y ∈ X there

exists a geodesic path joining x and y. A geodesic ray is a map γ : [0,∞) → X

such that d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0,∞).

Definition 1.1.2. Let (X, d) be a metric space.

• Geodesic Triangle: A geodesic triangle in X consists of three points x, y, z ∈
X (vertices) and three geodesic segments [x, y], [y, z], [z, x] (sides) joining them.

A geodesic triangle with vertices x, y, z will be denoted as △xyz.

• Slim Triangles:[Aea91] Let δ ≥ 0. Given x, y, z ∈ X, we say that a geodesic

triangle ∆xyz is δ-slim if any side of the triangle ∆xyz is contained in the

δ- neighborhood of the union of the other two sides.

• Thin Triangles:([Aea91])Let δ ≥ 0. Given a geodesic triangle ∆xyz, let

∆′x′y′z′ be a Euclidean comparison triangle with sides of the same lengths

(i.e. dE(x′, y′) = d(x, y), dE(y′, z′) = d(y, z), dE(z′, x′) = d(z, x)). There is

a natural identification map f : ∆xyz → ∆′x′y′z′. The maximum inscribed

circle in ∆′x′y′z′ meets the side [x′y′] (respectively [x′z′], [y′z′]) in a point cz

(respectively cy, cx) such that

d(x′, cy) = d(x′, cz), d(y
′, cx) = d(y′, cz), d(z

′, cx) = d(z′, cy).

There is a unique isometry t∆ of the triangle ∆′x′y′z′ onto a tripod T∆, a tree

with one vertex w of degree 3, and vertices x′′, y′′, z′′ each of degree one such

7
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that d(w, z′′) = d(z, cy) = d(z, cx) etc. Let f∆ = t∆ ◦ f . We say that ∆xyz is

δ-thin if for all p, q ∈ ∆, f∆(p) = f∆(q) implies d(p, q) ≤ δ.

Proposition 1.1.3. (Proposition 2.1, [Aea91]) Let X be a geodesic metric space.

The following are equivalent:

1. There exists δ0 ≥ 0 such that every geodesic triangle in X is δ0-slim.

2. There exists δ1 ≥ 0 such that every geodesic triangle in X is δ1-thin.

Definition 1.1.4. A geodesic metric space is said to be δ-hyperbolic if it satisfies

one of the equivalent conditions of Proposition 1.1.3 for that δ. A geodesic metric

space is said to be hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Example 1.1.5. 1. Trees are 0-hyperbolic metric spaces.

2. It is a standard fact that Hn = {(x1, ..., xn) ∈ Rn : xn > 0} with metric

ds2 =
dx2

1+...+dx2
n

x2
n

is 1
2
log 3-hyperbolic.

Definition 1.1.6. Gromov Inner Product: Let (X, d) be a metric space. Choose

a base point a ∈ X. The Gromov inner product on X with respect to a is defined by

(x, y)a =
1

2
(d(x, a) + d(y, a)− d(x, y)).

Definition 1.1.7. Let δ ≥ 0. A metric space X is said to be (δ)-hyperbolic if

(x, y)a ≥ min{(x, z)a, (y, z)a} − δ

for all a, x, y, z ∈ X.

Proposition 1.1.8. [BH99] Let X be a geodesic space. X is hyperbolic in the sense

of 1.1.4 if and only if there is a constant δ > 0 such that X is (δ)-hyperbolic in the

sense of 1.1.7.

The following Proposition allows us to replace length spaces by metric graphs.

Proposition 1.1.9. (Proposition 8.45, Chapter I.8, [BH99]) There exist universal

constants S ≥ 1 and ε ≥ 0 such that there is a (S, ε)-quasi-isometry from any length

space to a metric graph all of whose edges have length one.

Let (X, d) be a geodesic metric space, we will say that two geodesic rays c1 :

[0,∞) → X and c2 : [0,∞) → X are equivalent and write c1 ∼ c2 if there is a K > 0

such that for any t ∈ [0,∞), d(c1(t), c2(t)) ≤ K. It is easy to check that ∼ is an

equivalence relation on the set of geodesic rays. The equivalence class of a ray c will

be denoted by [c].
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Definition 1.1.10. ([Gro87],[BH99]) Geodesic boundary: Let (X, d) be a δ-

hyperbolic metric space. We define the geodesic boundary of X as

∂X := {[c]| c : [0,∞] → X is a geodesic ray }.

A metric space (X, d) is said to be proper if all closed metric balls of finite radius

in X are compact.

Lemma 1.1.11. (Visibility of ∂X)(Lemma 3.2, Chapter III.H, [BH99]) Let X be a

proper, δ-hyperbolic geodesic space, then for each pair of distnct points ξ1, ξ2 ∈ ∂X,

there exists a geodesic c : R → X such that c(∞) = ξ1 and c(−∞) = ξ2.

Notation: A generalized ray is a geodesic c : I → X, where either I = [0, R] for

some R ≥ 0 or else I = [0,∞). In case I = [0, R], we define c(t) = c(R), t ∈ [R,∞).

Thus X := X ∪ ∂X is the set {c(∞) | c a generalized ray}.

Definition 1.1.12. (The Topology on X = X ∪∂X)(Definition 3.5, Chapter III.H,

[BH99]) Let X be a proper geodesic space that is δ-hyperbolic. Fix a base point

p ∈ X. We define convergence in X by: xn → x as n → ∞ if and only if there

exist generalized rays cn with cn(0) = p and cn(∞) = xn such that every subsequence

of (cn) contains a subsequence that converges (uniformly on compact subsets) to a

generalized ray c with c(∞) = x. This defines a topology on X: the closed subsets

B ⊂ X are those which satisfy the condition [xn ∈ B, for all n > 0 and xn → x] ⇒
x ∈ B.

Proposition 1.1.13. (Proposition 3.7, Chapter III.H, [BH99]) Let X be a geodesic

space that is δ-hyperbolic.

(1). The topology on X = X ∪ ∂X described in 1.1.12 is independent of the choice

of the base point,

(2). The inclusion X →֒ X is a homeomorphism onto its image and ∂X ⊂ X is

closed,

(3). X is compact.

X will be said to be the Gromov compactification of X.

Let X be a δ-hyperbolic metric space and p ∈ X be a base point. We say that

a sequence (xn)n≥1 of points in X converges to infinity if limi,j→∞(xi, xj)p = ∞.

Note that this definition does not depend on the choice of base point. We shall say

that two sequences (xn) and (yn) converging to infinity are said to be equivalent

and write (xn) ∼ (yn) if limi→∞(xi, yi)p = ∞. It is easy to check that ∼ is an

equivalence relation on the set of sequences converging to infinity and that the

definition of equivalence does not depend on the choice of a base point p ∈ X. The

equivalence class of a sequence (xn) converging to infinity will be denoted by [(xn)].
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Definition 1.1.14. ([Gro87],[BH99],[Aea91]) Sequential boundary: Let (X, d)

be a δ-hyperbolic metric space. We define the sequential boundary of X as

∂sX := {[(xn)] | (xn) is a sequence converging to infinity in X}.

Lemma 1.1.15. (Lemma 3.13, Chapter III.H, [BH99]) If X is a proper geodesic

space that is δ-hyperbolic, then there is a natural bijection ∂sX → ∂X.

Example 1.1.16. 1. Boundary ∂Hn of Hn is homeomorphic to Sn.

2. The boundary of a locally finite regular tree with valence of each vertex at least

3 is homeomorphic to a Cantor set.

Definition 1.1.17. Let k ≥ 0. A subset S of a geodesic space X is said to be

k-quasiconvex if any geodesic joining x, y ∈ S lies in a k-neighborhood of S. A

subset S is quasiconvex if it is k-quasiconvex for some k.

Definition 1.1.18. Let K ≥ 1 and ǫ ≥ 0 . A map f : (Y, dY ) → (Z, dZ) is said to

be a (K, ǫ)-quasi-isometric embedding if

1

K
dY (y1, y2) − ǫ ≤ dZ(f(y1), f(y2)) ≤ KdY (y1, y2) + ǫ

for all y1, y2 ∈ Y . If f is a (K, ǫ)-quasi-isometric embedding and every point of Z

lies in a uniformly bounded distance from f(Y ), then f is said to be a (K, ǫ)-quasi-

isometry.

A map f : Y → Z is said to be a quasi-isometry if it is a (K, ǫ)-quasi-isometry

for some K ≥ 1 and ǫ ≥ 0.

Proposition 1.1.19. If φ : Y → Z is a quasi-isometry then there is a quasi-

isometry ψ : Z → Y such that, for all y ∈ Y, z ∈ Z, dY (ψ(φ(y)), y) ≤ K1.1.19 and

dZ(φ(ψ(z)), z) ≤ K1.1.19 for some number K1.1.19 > 0 depending only on constants

of quasi-isometries.

We refer to such a map ψ as a quasi-isometric inverse of φ. Quasi-isometric

inverse of φ will be denoted by φ−1.

Definition 1.1.20. A map f : X → Y between metric spaces is said to be proper,

if for all M > 0 there exists N(M) > 0 such that dY (f(x), f(y)) ≤ M implies

dX(x, y) ≤ N .

Lemma 1.1.21. Let Q ≥ 0 and suppose i : X → Y is a proper and length preserving

map between two length spaces X, Y such that i(X) is Q-quasiconvex in Y , then there

exists K1.1.21(Q) ≥ 1, ǫ1.1.21(Q) ≥ 0 such that i is an (K1.1.21, ǫ1.1.21)-quasi-isometric

embedding.
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Proof. Let x, y ∈ X. As i is length preserving, for any path α inX, lX(α) = lY (i(α)).

Therefore, dY (i(x), i(y)) ≤ dX(x, y). Now, as Y is a length space, for κ > 0 there

exists a path α : [0, 1] → Y such that lY (α) ≤ dY (i(x), i(y)) + κ.

Let 0 = t0 < t1 < ... < tn = 1 be a partition of [0, 1] such that lY (α|[tj−1,tj ]) = 1

for 1 ≤ j ≤ n − 1 and lY (α|[tn−1,tn]) ≤ 1. For each j, there exists pj ∈ X such that

dY (α(tj), i(pj)) ≤ Q with p0 = x and pn = y. Thus, dY (i(pj), i(pj+1)) ≤ 2Q+ 1 for

all 0 ≤ j ≤ n− 1. Since the map i is proper, therefore there exists R > 0 such that

dX(pj, pj+1) ≤ R. Hence, by triangle inequality, we have

dX(x, y) ≤ nR ≤ RlY (α) +R ≤ R(dY (i(x), i(y)) + κ) +R.

Taking κ→ 0, we have dX(x, y) ≤ RdY (i(x), i(y))+R. Taking K1.1.21 = ǫ1.1.21 = R,

we have the required result.

Definition 1.1.22. Let K ≥ 1 and ǫ ≥ 0. A (K, ǫ)-quasigeodesic in a metric

space X is a (K, ǫ)-quasi-isometric embedding γ : J → X, where J is an interval

(bounded or unbounded) of the real line R. A (K,K)-quasigeodesic in X will be

called as K-quasigeodesic.

Proposition 1.1.23. (Taming Quasigeodesics, Lemma 1.11, Chapter III.H, [BH99])

Let X be a geodesic space. Given any (K, ǫ)-quasigeodesic c : [a, b] → X, there ex-

ists a continuous (K1.1.23, ǫ
′
1.1.23)-quasigeodesic c

′ : [a, b] → X such that the following

holds:

(i) c′(a) = c(a), c′(b) = c(b);

(ii) ǫ′1.1.23 = 2(K + ǫ), K1.1.23 = K;

(iii) l(c′|[t,t′]) ≤ k1
1.1.23d(c

′(t), c′(t′)) + k2
1.1.23 for some constants k1

1.1.23 ≥ 1, k2
1.1.23 > 0

depending only on K, ǫ;

(iv) the Hausdorff distance between the images of c and c′ is less than K + ǫ.

Definition 1.1.24. Let X be a geodesic space and K ≥ 1 and ǫ ≥ 0. A path

α : [0, 1] → X is said to be (K, ǫ)-tamed if l(α|[t,t′]) ≤ Kd(α(t), α(t′)) + ǫ for all

t, t′ ∈ [0, 1].

Several authors take definition of a quasigeodesic to be arc length reparametriza-

tion of a tamed path. However, for both quasigeodesics and tamed paths, the fol-

lowing stability property holds:

Proposition 1.1.25. (Stability of quasigeodesics (Theorem 1.7, Chapter III.H,

[BH99]), Stability of tamed path (Proposition 3.3, [Aea91])): Suppose X is a δ-

hyperbolic metric space and x, y ∈ X. If α is a (K, ǫ)-quasigeodesic or a (K, ǫ)-tamed

path between the points x, y then there exists L1.1.25 = L1.1.25(δ,K, ǫ) > 0 such that

if γ is any geodesic joining x and y, then γ ⊂ NX(α, L1.1.25) and α ⊂ NX(γ, L1.1.25).
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For a metric space Z, note that if α is a (K, ǫ)-quasigeodesic then α followed

by a geodesic of length at most k is a (K, ǫ + k)-quasigeodesic. Thus we have the

following corollary:

Corollary 1.1.26. Given δ, k, ǫ ≥ 0, K ≥ 1 there exists L1.1.26 > 0 such that the

following holds:

Suppose (X, d) is a δ-hyperbolic metric space and x, y, z, w ∈ X such that d(x, z) ≤ k

and d(y, w) ≤ k. If α is a (K, ǫ)-quasigeodesic joining x, y and γ be a geodesic joining

z, w then γ ⊂ NX(α, L1.1.26) and α ⊂ NX(γ, L1.1.26).

Definition 1.1.27. Let k ≥ 0. A path α : [0, 1] → X is said to be a stable k-

quasiconvex path if for all t, t′ ∈ [0, 1], the Hausdorff distance between α|[t,t′] and

any geodesic joining α(t) and α(t′) is at most k.

All quasigeodesics and tamed paths in a hyperbolic metric space are stable qua-

siconvex paths.

Definition 1.1.28. Suppose (X, d) is a metric space and S is a subset of X. A map

πS from X onto S is said to be a nearest point projection if for each x ∈ X,

d(x, πS(x)) ≤ d(x, y) for all y ∈ S.

Suppose (X, d) is a δ-hyperbolic metric space and λ be a geodesic inX. Note that

for x ∈ X if there exist two points a, b ∈ λ such that d(x, a) ≤ d(x, y) and d(x, b) ≤
d(x, y) for all y ∈ λ then for the geodesic triangle △xab, due to δ-hyperbolicity

of X, there exist w1 ∈ [x, a], w2 ∈ [a, b], w3 ∈ [x, b] such that diameter of the set

{w1, w2, w3} is at most δ. Now d(w1, a) ≤ d(w1, w2) ≤ δ and d(w3, b) ≤ d(w3, w2) ≤
δ. Therefore d(a, b) ≤ d(a, w1) + d(w1, w3) + d(w3, b) ≤ 3δ. Thus if π1

λ, π
2
λ are two

nearest point projections from X onto λ, then d(π1
λ(x), π

2
λ(x)) ≤ 3δ for all x ∈ X.

Similarly, for a quasiconvex set S ⊂ X, nearest point projections πS are defined up

to a bounded amount of discrepancy.

Lemma 1.1.29. Let X be a geodesic metric space and λ : [a, b] → X be a geodesic.

Let x ∈ X and s ∈ [a, b] such that πλ(x) = λ(s), then arc length parametrization of

paths [x, λ(s)] ∪ [λ(s), λ(a)], [x, λ(s)] ∪ [λ(s), λ(b)] are (3, 0)-quasigeodesics.

Proof. Let α : [0, a] → X be the arc length parametrization of [x, λ(s)]∪ [λ(s), λ(b)]

such that α(0) = x, α(a) = λ(b). Let t0 ∈ [0, a] be such that α(t0) = λ(s). Now

for 0 ≤ t < t′ ≤ a, if t0 /∈ [t, t′] then α[t,t′] is a geodesic. Now we assume t0 ∈ [t, t′],
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consider the triangle ∆α(t)α(t0)α(t′). Then

|t′ − t| = |t′ − t0| + |t0 − t|
= d(α(t′), α(t0)) + d(α(t0), α(t))

≤ d(α(t′), α(t)) + d(α(t), α(t0)) + d(α(t0), α(t))

= d(α(t′), α(t)) + 2d(α(t), πλ(x))

≤ d(α(t′), α(t)) + 3d(α(t′), α(t)) = 3d(α(t′), α(t)).

Obviously, d(α(t′), α(t)) ≤ lX(α[t,t′]) = |t′ − t|. Hence

1

3
|t− t′| ≤ d(α(t), α(t′)) ≤ |t− t′| ≤ 3|t− t′|.

Similarly, [x, λ(s)] ∪ [λ(s), λ(a)] is a (3, 0)-quasigeodesic.

The following lemma is an easy consequence of δ-hyperbolicity. For the sake of

completion we include the proof here.

Lemma 1.1.30. Given δ > 0, there exist D1.1.30, C1.1.30 > 0 such that the following

holds:

1. (Lemma 3.1 of [Mit98b]) If x, y are points of a δ-hyperbolic metric space (X, d),

λ is a hyperbolic geodesic in X joining x, y, and πλ is a nearest point projection of

X onto λ with d(πλ(x), πλ(y)) > D1.1.30, then [x, πλ(x)] ∪ [πλ(x), πλ(y)] ∪ [πλ(y), y]

lies in a C1.1.30−neighborhood of any geodesic joining x, y.

2. Let α : [0, a] → X be the arc length parametrization of [x, πλ(x)]∪ [πλ(x), πλ(y)]∪
[πλ(y), y] then

(i) α is a (K1
1.1.30, ǫ

1
1.1.30)-tamed path for some K1

1.1.30, ǫ
1
1.1.30 depending only upon δ,

(ii) α is a (K2
1.1.30, ǫ

2
1.1.30)-quasigeodesic for some K2

1.1.30, ǫ
2
1.1.30 depending only upon

δ.

Proof. 1. Let D1.1.30 = 6δ. Let a = πλ(x) and b = πλ(y). Since X is δ-hyperbolic,

triangles are δ-thin, therefore there exist w1 ∈ [x, a], w2 ∈ [a, b] and w3 ∈ [x, b] such

that the diameter of the set {w1, w2, w3} is bounded above by δ. Now

d(a, w2) ≤ d(a, w1) + d(w1, w2) ≤ 2d(w1, w2) ≤ 2δ.

Since △xby is δ-thin, △xby is δ-slim. Thus there exists w4 ∈ [x, y]∪ [y, b] such that

d(w3, w4) ≤ δ and hence d(w2, w4) ≤ 2δ. If w4 ∈ [y, b], then

d(a, b) ≤ d(a, w2) + d(w2, w4) + d(w4, b) ≤ 2δ + 2δ + d(w4, w2) ≤ 6δ.
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This contradicts d(a, b) > D1.1.30 = 6δ. Therefore w4 ∈ [x, y] and d(a, w4) ≤ 4δ.

Similarly for b, there exists w5 ∈ [x, y] such that d(b, w5) ≤ 4δ. Now as the triangle

∆xaw4 (resp. ∆ybw5) is δ-slim, for each p ∈ [x, a] (resp. p ∈ [y, b]) there exists

q ∈ [x, w4] (resp. q ∈ [y, w5]) such that d(p, q) ≤ δ + 4δ = 5δ. Now consider the

quadrilateral aw4w5b, then for p ∈ [a, b], due to δ-slimness of triangles ∆aw4w5 and

∆aw5b, there exists q ∈ [w4, w5] such that d(p, q) ≤ max{2δ, δ + 4δ} = 5δ. Taking

C1.1.30 = 5δ, we have the required result.

2(i). Let 0 ≤ s < t ≤ a and s0, t0 ∈ [0, a] such that α(s0) = πλ(x) and α(t0) = πλ(y).

If {s0, t0} ∩ [s, t] is an empty set, then α[s,t] is a geodesic.

If {s0, t0} ∩ [s, t] is a singleton set, then by Lemma 1.1.29, there exists K1.1.29 ≥
1, ǫ1.1.29 ≥ 0 such that α[s,t] is a (K1.1.29, ǫ1.1.29)-tamed path.

Now let s0, t0 ∈ [s, t], then by (1), α[s,t] lies in a C1.1.30− neighborhood of any geodesic

[α(s), α(t)] joining α(s) and α(t). Thus for s0, t0, there exist rs0, rt0 ∈ [α(s), α(t)]

such that d(α(s0), rs0) ≤ C1.1.30 and d(α(t0), rt0) ≤ C1.1.30. Therefore

l(α[s,t]) = l(α[s,s0]) + l(α[s0,t0]) + l(α[t0,t])

= d(α(s), α(s0)) + d(α(s0), α(t0)) + d(α(t0), α(t))

≤ d(α(s), rs0) + C1.1.30 + d(rs0, rt0) + 2C1.1.30 + d(rt0 , α(t)) + C1.1.30

≤ 3d(α(s), α(t)) + 4C1.1.30.

Taking K1
1.1.30 = max{3, K1.1.29} and ǫ11.1.30 = max{ǫ1.1.29, 4C1.1.30}, we have

l(α[s,t]) ≤ K1
1.1.30d(α(s), α(t)) + ǫ11.1.30.

2(ii). Since α is the arc length parametrization of concatenation of three geodesics,

therefore l(α[s,t]) = |s− t|. Hence by the above inequality, |s− t| ≤ 3d(α(s), α(t)) +

4C1.1.30. Hence 1
3
|s − t| − 4

3
C1.1.30 ≤ d(α(s), α(t)). Also, d(α(s), α(t)) ≤ l(α[s,t]) =

|s− t|. Taking K2
1.1.30 = 3, ǫ21.1.30 = 4

3
C1.1.30, we have the required result.

The following lemma states that in a hyperbolic metric space if the distance be-

tween the nearest point projection of two points onto a quasiconvex set is sufficiently

large then the geodesic segment joining two points come close to the quasiconvex

set.

Lemma 1.1.31. Given δ, Q ≥ 0 there exist constants D′
1.1.31, C

′
1.1.31 > 0 such that

the following holds: Let X be a δ-hyperbolic metric space and S be a Q-quasiconvex

subset of X. For points x, y ∈ X, if d(πS(x), πS(y)) > D′
1.1.31 then there exist

p ∈ [x, y], q ∈ S such that d(p, q) ≤ C ′
1.1.31. Further, if α : [0, a] → X is an arc

length parametrization of [x, πS(x)] ∪ [πS(x), πS(y)] ∪ [πS(y), y] then α is a K1
1.1.31-

tamed path and also a K2
1.1.31-quasigeodesic for some constants K1

1.1.31, K
2
1.1.31 ≥ 1

depending only on δ, Q.
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Proof. Let D1.1.30, C1.1.30 > 0 be constants as in Lemma 1.1.30. Let D′
1.1.31 =

D1.1.30 − 2(3δ +Q) and λ be a geodesic segment joining πS(x) and πS(y).

First we prove that d(πS(x), πλ(x)) is bounded :

Consider the triangle △xπS(x)πλ(x). Since triangles are δ-thin, there exist w1 ∈
[x, πS(x)], w2 ∈ [πS(x), πλ(x)], w3 ∈ [πλ(x), x] such that diam{w1, w2, w3} ≤ δ. As

S is Q-quasiconvex, there exists w′
2 such that d(w2, w

′
2) ≤ Q. Thus, as πS is a

nearest point projection, d(w1, πS(x)) ≤ δ + Q. Also d(w3, πλ(x)) ≤ δ. Therefore

d(πS(x), πλ(x)) ≤ δ +Q+ d(w1, w3) + δ ≤ 3δ +Q.

Now if d(πS(x), πS(y)) > D′
1.1.31, then d(πλ(x), πλ(y)) > D1.1.30. By Lemma 1.1.30,

for any r ∈ [πλ(x), πλ(y)], we have d(r, [x, y]) ≤ C1.1.30. Therefore there exists q ∈ S

such that d(r, q) ≤ Q and hence BQ+C1.1.30(q) intersects [x, y]. Thus there exists

p ∈ [x, y] such that d(p, q) ≤ Q + C1.1.30. Taking C ′
1.1.31 = Q + C1.1.30, we have the

required result.

The proof of α to be a tamed path or a quasigeodesic is similar to the proof of (2)

in Lemma 1.1.30.

The next Lemma states that a nearest point projection from a δ-hyperbolic

metric space to a geodesic segment does not increase the distance much.

Lemma 1.1.32. (Lemma 2.2, [Mit98b] ) Let (Y, d) be a δ-hyperbolic metric space

and λ be a geodesic segment in Y . There exists P1.1.32 > 0 (depending only on δ)

such that d(πλ(x), πλ(y)) ≤ P1.1.32d(x, y) + P1.1.32 for all x, y ∈ Y .

Proof. It suffices to prove that if d(x, y) ≤ 1 then there exists P1.1.32 > 0 such that

d(πλ(x), πλ(y)) ≤ P1.1.32. Let D1.1.30 be the constant as in Lemma 1.1.30.

Let d(πλ(x), πλ(y)) > D1.1.30, then using Lemma 1.1.30, there exist K1
1.1.30 ≥ 1, ǫ11.1.30

such that β = [x, πλ(x)] ∪ [πλ(x), πλ(y)] ∪ [πλ(y), y] is a (K1
1.1.30, ǫ

1
1.1.30)-tamed path.

Therefore

d(πλ(x), πλ(y)) ≤ l(β) ≤ K1
1.1.30d(x, y) + ǫ11.1.30 ≤ K1

1.1.30 + ǫ11.1.30.

Let P1.1.32 = max{D1.1.30, K
1
1.1.30 + ǫ11.1.30}, then we have the required result.

Corollary 1.1.33. Let (Y, d) be a δ-hyperbolic metric space and S be a Q-

quasiconvex set. There exists P ′
1.1.33 > 0 (depending on δ and Q) such that

d(πS(x), πS(y)) ≤ P ′
1.1.33d(x, y) + P ′

1.1.33 for all x, y ∈ Y .

Proof. It suffices to prove that if d(x, y) ≤ 1 then there exists P ′
1.1.33 > 0 such that

d(πS(x), πS(y)) ≤ P ′
1.1.33. Let λ be a geodesic joining πS(x) and πS(y). Then by

Lemma 1.1.32, d(πλ(x), πλ(y)) ≤ P1.1.32. From the proof of Lemma 1.1.31, we have

d(πS(x), πλ(x)) ≤ 3δ+Q and d(πS(y), πλ(y)) ≤ 3δ+Q. Therefore d(πS(x), πS(y)) ≤
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(3δ+Q) + P1.1.32 + (3δ +Q) = 6δ + 2Q+ P1.1.32. Taking P ′
1.1.33 = 6δ+ 2Q+ P1.1.32,

we have the required result.

Lemma 1.1.34. Let X be a δ-hyperbolic metric space and S be a Q-quasiconvex set.

Suppose πS : X → S is a nearest point projection. Let p, q ∈ S and λ : [a, b] → X

be a (K, ǫ)-quasigeodesic in X joining p, q, then α = πS(λ) is a (K1.1.34, ǫ1.1.34)

quasigeodesic, where K1.1.34, ǫ1.1.34 depends only upon K, δ, ǫ, Q.

Proof. For t, t′ ∈ [a, b], from corollary 1.1.33, there exists P = P1.1.33 > 0 such that

d(α(t), α(t′)) ≤ Pd(λ(t), λ(t′))+P ≤ KP |t− t′|+ ǫP +P . Let γ be a geodesic in X

joining λ(a) and λ(b). Then by Proposition 1.1.25, there exists L = L1.1.25 > 0 such

that the Hausdorff distance between λ and γ is at most L. Thus, for t, t′ ∈ [a, b],

there exist x ∈ γ and y ∈ γ respectively such that d(λ(t), x) ≤ L and d(λ(t′), y) ≤ L.

Also d(x, πS(x)) ≤ Q and d(y, πS(y)) ≤ Q. Therefore d(λ(t), πS(x)) ≤ L + Q and

d(λ(t′), πS(y)) ≤ L + Q. Since πS is a nearest point projection and α = πS(λ), we

have d(λ(t), α(t)) ≤ L + Q and d(λ(t′), α(t′)) ≤ L + Q. Therefore d(λ(t), λ(t′)) ≤
d(α(t), α(t′)) + 2(L + Q). Since λ is a quasigeodesic, we have 1

K
|t − t′| − ǫ ≤

d(λ(t), λ(t′)) and hence 1
K
|t − t′| − ǫ − 2(L + Q) ≤ d(α(t), α(t′)). Let K1.1.34 =

max{KP,K} and ǫ1.1.34 = max{ǫP + P, ǫ+ 2(L +Q)}, then α is a (K1.1.34, ǫ1.1.34)-

quasigeodesic in X.

Lemma 1.1.35. Suppose X is a δ-hyperbolic metric space and p ∈ X. Let µ be a

stable L-quasiconvex path and λ be a geodesic in X joining end points of µ. Then

d(πλ(p), πµ(p)) ≤ L1.1.35, for some constant L1.1.35 > 0 depending only upon δ, L. In

particular, this is also true for any quasigeodesic or a tamed path.

Proof. From definition of a quasiconvex path, there exists a ∈ µ and b ∈ λ such that

d(πλ(p), a) ≤ L and d(πµ(p), b) ≤ L. Now consider the geodesic triangle ∆paπµ(p),

there exists w ∈ [p, πµ(p)] and w′ ∈ [a, πµ(p)], with d(w, πµ(p)) = d(w′, πµ(p)), such

that d(w,w′) ≤ δ. For w′, there exists w′′ ∈ µ such that d(w′, w′′) ≤ L. Therefore

d(w, µ) ≤ δ + L and hence

(p, a)πµ(p) = d(w, πµ(p)) ≤ δ + L.

Thus

(p, πλ(p))πµ(p) ≤ (p, a)πµ(p) + d(πλ(p), a) ≤ δ + 2L.

Similarly, (p, πµ(p))πλ(p) ≤ δ + L.

Therefore

d(πλ(p), πµ(p)) = (p, πλ(p))πµ(p) + (p, πµ(p))πλ(p) ≤ 2δ + 3L.

Taking L1.1.35 = 2δ + 3L, we have the required result.
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The following Lemma (due to Mitra [Mit98b]) says that nearest point projections

and quasi-isometries in hyperbolic metric spaces ‘almost commute’.

Lemma 1.1.36. (Lemma 2.5, [Mit98b]) Suppose (Y1, d1) and (Y2, d2) are δ-

hyperbolic metric spaces. Let µ1 be a geodesic in Y1 joining a, b and let p ∈ Y1.

Let φ be a (K, ǫ)-quasi-isometry from Y1 to Y2. Let µ2 be a geodesic in Y2 join-

ing φ(a) to φ(b). Then dY2(πµ2(φ(p)), φ(πµ1(p))) ≤ P1.1.36 for some constant P1.1.36

dependent only on K, ǫ and δ.

Due to Lemmas 1.1.35 and 1.1.36, we have the following corollary:

Corollary 1.1.37. Suppose (Y1, d1) and (Y2, d2) are δ-hyperbolic metric spaces. Let

µ1 be a stable L-quasiconvex path in Y1 joining a, b and let p ∈ Y1. Let φ be a

(K, ǫ)-quasi-isometry from Y1 to Y2. Let µ2 be a stable L-quasiconvex path in Y2

joining φ(a) to φ(b). Then dY2(πµ2(φ(p)), φ(πµ1(p))) ≤ P1.1.37 for some constant

P1.1.37 dependent only on K, ǫ, L and δ.

1.2 Electric Geometry

Let (X, d) be a path metric space. For ν > 0, let H be a collection of closed and

path connected subsets {Hα}α∈Λ of X such that each Hα is a intrinsically geodesic

space with the induced path metric, denoted by dHα
. The collection H will be said

to be uniformly ν-separated if d(Hα, Hβ) := inf{d(a, b) : a ∈ Hα, b ∈ Hβ} ≥ ν

for all distinct Hα, Hβ ∈ H. We assume ν to be greater than 1. The elements of

H are said to be uniformly properly embedded in X if for all M > 0 there exists

N(M) > 0 such that for all Hα ∈ H and for all x, y ∈ Hα if d(x, y) ≤ M then

dHα
(x, y) ≤ N .

Let Z = X
⊔

(⊔α(Hα × [0, 1
2
])). Define a distance function as follows:

dZ(x, y) = dX(x, y), if x, y ∈ X,

= dHα×[0, 1
2
](x, y), if x, y ∈ Hα for some α ∈ Λ,

= ∞, if x, y does not lie on a same set of the disjoint union.

Let E(X,H) be the quotient space of Z obtained by identifying each Hα × {1
2
} to

a point v(Hα) and for all h ∈ Hα, (h, 0) is identified with h. We define a metric

dE(X,H) on E(X,H) as follows:

dE(X,H)([x], [y]) = inf
∑

1≤i≤n

dZ(xi, yi),
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where the infimum is taken over all sequences C = {x1, y1, x2, y2, ..., xn, yn} of points

of Z such that x1 ∈ [x], yn ∈ [y] and yi ∼ xi+1 for i = 1, ..., n− 1. (∼ is the equiv-

alence relation on Z). In short, (E(X,H), dE(X,H)) will be denoted by (X̂, d bX). Ĥ

will denote the coned-off space obtained from H× [0, 1
2
] by coning H× 1

2
to a point.

Definition 1.2.1. (Farb [Far98]) Let H be a collection of uniformly ν-separated

and intrinsically geodesic closed subsets of X. The space E(X,H) constructed above

corresponding to the pair (X,H) is said to be electric space (or coned-off space).

The sets Hα ∈ H shall be referred to as horosphere-like sets and the points v(Hα)’s

as cone points.

Definition 1.2.2. • A path γ in E(X,H) is said to be an electric geodesic (resp.

electric K-quasigeodesic) if it is a geodesic (resp. K-quasigeodesic) in E(X,H).

• γ is said to be an electric K-quasigeodesic in E(X,H) without backtracking if

γ is an electric K-quasigeodesic in E(X,H) and γ does not return to a horosphere-

like set Hα after leaving it.

• For a path γ ⊂ X, there is a path γ̂ in E(X,H) obtained from γ as follows:

if γ penetrates a horosphere-like set H with entry point x and exit point y, we

replace the portion of the path γ lying inside H joining x, y by [x, vH ] ∪ [vH , y],

where vH is the cone point over H, [x, vH ] and [vH , y] are electric geodesic segments

of length 1
2

joining x, vH and vH , y respectively. If γ̂ is an electric geodesic (resp. P -

quasigeodesic), γ is called a relative geodesic (resp. relative P -quasigeodesic).

Definition 1.2.3. (Farb [Far98]) Let δ̂ ≥ 0, ν > 0. Let X be a geodesic metric

space and H be a collection of uniformly ν-separated and intrinsically geodesic closed

subsets of X. X is said to be δ̂-weakly hyperbolic relative to the collection H, if

the electric space E(X,H) is δ̂-hyperbolic.

Example 1.2.4. Consider the subset X =
⋃

a∈Z
({(x, y) ∈ R2 : x = a} ∪ {(x, y) ∈

R2 : y = a}) of R2 and H = {(x, y) ∈ R2 : x = a}. Then X is weakly hyperbolic

relative to the collection H.

1.2.1 Strongly Relatively Hyperbolic Spaces

Definition 1.2.5. Relative geodesics (resp. P -quasigeodesic paths) in (X,H) are

said to satisfy bounded horosphere penetration if for any two relative geodesics

(resp. P -quasigeodesic paths without backtracking) β, γ, joining x, y ∈ X there ex-

ists I1.2.1 = I1.2.1(P ) > 0 such that
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Similar Intersection Patterns 1: if precisely one of {β, γ} meets a horosphere-

like set Hα, then the distance (measured in the intrinsic path-metric on Hα) from

the first (entry) point to the last (exit) point (of the relevant path) is at most I1.2.1.

Similar Intersection Patterns 2: if both {β, γ} meet some Hα then the distance

(measured in the intrinsic path-metric on Hα) from the entry point of β to that of

γ is at most I1.2.1; similarly for exit points.

γ

β

γ

β

Hα Hα

≤ I

≤ I ≤ I

Figure 1.1: Similar Intersection Patterns.

Paths which satisfy the above properties shall be said to have similar intersection

patterns with horospheres.

Definition 1.2.6. (Farb [Far98] ) Let δ̂ ≥ 0. Let X be a geodesic metric space and

H be a collection of uniformly ν-separated and intrinsically geodesic closed subsets

of X. Then X is said to be δ̂- hyperbolic relative to the collection H in the sense of

Farb if

1) X is δ̂-weakly hyperbolic relative to H,

2) Relative P -quasigeodesic paths without backtracking satisfy the bounded horo-

sphere penetration properties.

X is said to be hyperbolic relative to a collection H in the sense of Farb if X is

δ̂-hyperbolic relative to the collection H in the sense of Farb for some δ̂ ≥ 0.

Warped products of metric spaces (Chen [Che99]):

Suppose (X, dX) and (Y, dY ) are two metric spaces. Let γ = (r, s) : [0, 1] → X × Y

be a curve and f : Y → R+ be a continuous function. Suppose τ : 0 = t0 < t1 <

... < tn = 1 be a partition of [0, 1]. One defines the length of γ by

l(γ) = lim
τ

∑

1≤i≤n−1

√
f 2(s(ti−1))d

2
X(r(ti−1), r(ti)) + d2

Y (s(ti−1, s(ti)))

Here the limit is taken with respect to the refinement ordering of partitions over

[0, 1]. The distance between two points x, y ∈ X × Y is defined to be

d(x, y) = inf{l(γ) : γ is a curve from x to y}.
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Proposition 1.2.7. (Proposition 3.1, [Che99]) d is a metric on X × Y .

Definition 1.2.8. (Definition 3.1, [Che99]) The warped product of (X, dX) and

(Y, dY ) with respect to the warping function f is the set X × Y equipped with the

metric d. We denote it by (X ×f Y, d).

Definition 1.2.9. (Hyperbolic Cones:) For any geodesic metric space (H, d), the

hyperbolic cone (analog of a horoball), denoted by Hh, is the warped product of

metric spaces [0,∞) and H with warping function f(t) = e−t, where t ∈ [0,∞), i.e.,

Hh := H ×e−t [0,∞). We denote the metric on Hh by dHh.

Note that the metric dHh is described as follows:

Let α : [0, 1] → H × [0,∞) = Hh be a path then α = (α1, α2), where α1, α2 are

coordinate functions. Suppose τ : 0 = t0 < t1 < ... < tn = 1 be a partition of [0, 1].

Define the length of α by

lHh(α) = lim
τ

∑

1≤i≤n−1

√
e−2α2(ti)dH(α1(ti), α1(ti+1))2 + |α2(ti) − α2(ti+1)|2,

Here the limit is taken with respect to the refinement ordering of partitions over

[0, 1]. Thus the distance between two points x, y ∈ Hh is defined to be

dHh(x, y) = inf{lHh(α) : α is a curve from x to y}.

Remark 1.2.10. The metric dHh satisfies the following two properties:

1) dH,t((x, t), (y, t)) = e−tdH(x, y), where dH,t is the induced path metric on H×{t}.
Paths joining (x, t), (y, t) and lying on H × {t} are called horizontal paths.

2) dHh((x, t), (x, s)) = |t − s| for all x ∈ H and for all t, s ∈ [0,∞), and the

corresponding paths are called vertical paths. The vertical paths are geodesics in Hh

as if α = (α1, α2) : [0, 1] → Hh is a path in Hh joining (x, t), (x, s) then for any

partition τ : 0 = t0 < t1... < tn = 1, we have

∑

1≤i≤n−1

√
e−2α2(ti)dH(α1(ti), α1(ti+1))2 + |α2(ti) − α2(ti+1)|2

≥
∑

1≤i≤n−1

(|α2(ti) − α2(ti+1)|)

≥ |t− s|.

Hence lHh(α) ≥ |t− s|.
3) Let (x, t) ∈ Hh and α = (α1, α2) : [0, 1] → Hh be a path such that α(0) = (x, t)

and α(1) ∈ H × {0}, then t ≤ lHh(α):
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as for any partition τ : 0 = t0 < t1... < tn = 1, we have

∑

1≤i≤n−1

√
e−2α2(ti)dH(α1(ti), α1(ti+1))2 + |α2(ti) − α2(ti+1)|2

≥
∑

1≤i≤n−1

(|α2(ti) − α2(ti+1)|)

≥ t.

Hence lHh(α) ≥ t.

Proposition 1.2.11. (Proposition 4.1, [Che99]) Let (Y, dY ) be a complete, locally

compact metric space and (X, dX) be a geodesic metric space. Let function f : Y →
R+ be a continuous function. Then (X ×f Y, d) is a geodesic metric space. In

particular, Hh is a geodesic metric space.

Consider the region [0, a]× [1,∞) in H2, where [0, a] is a horocyclic arc of length

a. For t ∈ [1,∞), let zt = it, wt = a+ it ∈ H2 and at be the length of the horocyclic

arc joining zt, wt. Now

dH2(zt, wt) = log
|zt − w̄t| + |zt − wt|
|zt − w̄t| − |zt − wt|

= log
| − a + 2it| + a

| − a+ 2it| − a

= log

√
a2 + 4t2 + a√
a2 + 4t2 − a

= log
a2 + 2t2 + a

√
a2 + 4t2

2t2
. (1.1)

Therefore

ed
H2 (zt,wt) =

a2 + 2t2 + a
√
a2 + 4t2

2t2

=
(ae−t)2 + 2(te−t)2 + ae−t

√
(ae−t)2 + 4(te−t)2

2(te−t)2

(multiplying numerator and denominator by e−t)

=
a2

t + at

√
a2

t + 4(te−t)2

2(te−t)2
+ 1

≥ a2
t + at

√
a2

t

2(te−t)2
+ 1

≥ a2
t + 1, since te−t ≤ 1.

Thus

at <
√
ed

H2 (zt,wt) − 1. (1.2)
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Lemma 1.2.12. Let H be a geodesic metric space and Hh be its hyperbolic cone.

(i). The elements of the collection {H × {t} : t ∈ [0,∞)} are uniformly properly

embedded in Hh, i.e, for all M > 0 there exists N1.2.12(M) > 0 such that for all

t ∈ [0,∞), x, y ∈ H × {t} if dHh(x, y) ≤ M then dH,t(x, y) ≤ N1.2.12, where dH,t is

the induced path metric on H × {t}.
(ii). If {xn}, {yn} are two sequences in H such that dHh(xn, yn) → 0 as n → ∞,

then dH(xn, yn) → 0 as n→ ∞.

(iii). Let H1, ..., Hn be geodesic spaces xi, yi ∈ Hi, then
∑

1≤i≤n dHi
(xi, yi) ≤

2((e
P

1≤i≤n d
Hh

i
(xi,yi)

) − 1).

Proof. (i) Let x, y ∈ H × {t} such that dHh(x, y) ≤ M and let α = (α1, α2) :

[0, dHh(x, y)] → H × [0,∞) = Hh be a geodesic in Hh joining x, y, where α1 :

[0, dHh(x, y)] → H , α2 : [0, dHh(x, y)] → [0,∞) are coordinate functions. Note

that image of α1, denoted by im(α1), does not contain any non-trivial loop, as if

im(α1) contains a non-trivial loop, then there exist distinct s, s′ ∈ [0, dHh(x, y)]

such that α1(s) = α1(s
′) and α2(s) 6= α2(s

′). Let α′ be the subsegment of α joining

(α1(s), α2(s)) and (α1(s
′), α2(s

′)). As im(α1) contains a non-trivial loop, α′ is not

vertical. This is a contradiction, as the vertical path is the only geodesic joining

(α1(s), α2(s)) and (α1(s), α2(s
′)).

Let a denote the length of α1 in the metric space (H, dH), then the subset im(α1)×
[0,∞) with the induced metric from Hh is isometric to a closed region bounded

by two vertical asymptotic geodesic and a horocyclic arc of length a in the upper

half plane, i.e., im(α1) × [0,∞) is isometric to the region [0, a] × [1,∞) in H2. Let

at denote the length of the path βt(s) := (α1(s), t), where s ∈ [0, dHh(x, y)], then

at = e−ta. Using equation 1.2, we have dH,t(x, y) ≤ at ≤
√
ed

Hh(x,y) − 1 ≤
√
eM − 1.

Taking N1.2.12 =
√
eM − 1, we have the required result.

(ii). This follows easily from the inequality dH(xn, yn) ≤
√
ed

Hh(xn,yn) − 1.

(iii). Let ai = dHi
(xi, yi) and pi = dHh

i
(xi, yi) for i ∈ {1, ..., n}. Using equation 1.1

and putting t = 1, for all i ∈ {1, ..., n}, we have

pi ≥ log
a2

i + 2 + ai

√
a2

i + 4

2
.

Thus, (a2
i + 2 + ai

√
a2

i + 4) ≤ 2epi for all 1 ≤ i ≤ n. Hence

∏

1≤i≤n

(a2
i + 2 + ai

√
a2

i + 4) ≤ 2ne
P

1≤i≤n pi.

Now,

2n−1
∑

1≤i≤n

ai

√
a2

i + 4 + 2n ≤
∏

1≤i≤n

(a2
i + 2 + ai

√
a2

i + 4)
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and ai ≤ ai

√
a2

i + 4 for all 1 ≤ i ≤ n. Therefore

2n−1
∑

1≤i≤n

ai + 2n ≤ 2ne
P

1≤i≤n pi.

and hence ∑

1≤i≤n

ai ≤ 2(e
P

1≤i≤n pi − 1).

Lemma 1.2.13. Let H1, H2 be two geodesic spaces and ϕ : H1 → H2 be a

(K, ǫ)-quasi-isometry. Let Hh
1 , H

h
2 be hyperbolic cones over them, then ϕ induces

a (K1.2.13, ǫ1.2.13)-quasi-isometry ϕh : Hh
1 → Hh

2 where K1.2.13 ≥ 1, ǫ1.2.13 ≥ 0 depends

only upon K, ǫ.

Proof. Define ϕh : Hh
1 → Hh

2 by ϕh(x, t) = (ϕ(x), t). We will show ϕh is a quasi-

isometry. First we prove that there exists P1 ≥ 1 such that for (x, t), (y, s) ∈ Hh
1 if

dHh
1
((x, t), (y, s)) ≤ 1 then dHh

2
((ϕ(x), t), (ϕ(y), s)) ≤ P1.

We assume s ≤ t. Now dHh
1
((x, t), (y, s)) ≤ 1 implies that dHh

1
((y, s), (y, t)) ≤ 1.

Therefore dHh
1
((x, t), (y, t)) ≤ 2. Since horosphere-like sets are properly embedded

in its hyperbolic cone, there exists N(2) > 0 such that dH1,t((x, t), (y, t)) ≤ N(2).

As ϕ is a (K, ǫ)-quasi-isometry, dH2,t((ϕ(x), t), (ϕ(y), t)) ≤ KN(2) + ǫ. Now

dHh
2
((ϕ(y), t), (ϕ(y), s)) ≤ 1. Thus dHh

2
((ϕ(x), t), (ϕ(y), s)) ≤ KN(2) + ǫ + 1 =

P1 (say).

Now let α : [0, l] → Hh
1 be a geodesic in Hh

1 joining (x, t) and (y, s). We parti-

tion [0, l] by points t0, t1, ..., tn−1, tn such that α(t0) = (x, t), α(tn) = (y, s), for each

0 ≤ i ≤ n−2, dHh
1
(α(ti), α(ti+1)) = 1 and dHh

1
(α(tn−1), α(tn)) ≤ 1. Thus, by triangle

inequality, we have dHh
2
((ϕ(x), t), (ϕ(y), s)) ≤ P1dHh

1
((x, t), (y, s)) + P1.

Now there exists K1 ≥ 1, ǫ1 ≥ 0 such that ϕ−1 is (K1, ǫ1)-quasi-isometry, therefore

there exists P2 ≥ 1 such that

dHh
1
((ϕ−1(ϕ(x)), t), ((ϕ−1(ϕ(y)), s)) ≤ P2dHh

2
((ϕ(x), t), (ϕ(y), s)) + P2.

Since ϕ is a quasi-isometry, there exists r > 0 such that for each y ∈ H2 there

exists x ∈ H1 such that dH2(ϕ(x), y) ≤ r and dH1(ϕ
−1(ϕ(z)), z) ≤ r for all z ∈ H1 ,

therefore dHh
2
(ϕh(x, t), (y, t)) ≤ r and dHh

1
((ϕ−1(ϕ(z)), t), (z, t)) ≤ r. Thus

dHh
1
((x, t), (y, s)) ≤ P2dHh

2
((ϕ(x), t), (ϕ(y), s)) + P2 + 2r.

Hence there exist K1.2.13 ≥ 1, ǫ1.2.13 ≥ 0 such that ϕh is a (K1.2.13, ǫ1.2.13)-quasi-

isometry.
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For a connected graph L, Bowditch, in [Bow97], proved that the hyperbolic cone

Lh is a hyperbolic metric space with Gromov boundary a singleton set. (The proof

of this fact is presented on page numbers 18,19 of [Bow97], where the notation

cusp(L) is used for Lh). In view of Lemma 1.2.13, Proposition 1.1.9 and the fact

that hyperbolicity is a quasi-isometry invariant, we have the following proposition:

Proposition 1.2.14. [Bow97] For any geodesic metric space (H, d), the hyperbolic

cone (Hh, dHh) is a hyperbolic metric space with Gromov boundary a singleton set.

Gromov’s definition of relative hyperbolicity [Gro87] :

Let (X, dX) be geodesic metric space and H = {Hα : α ∈ Λ} be a collection of

uniformly ν-separated, intrinsically geodesic, closed subsets of X.

Let Z = X
⊔

(⊔α∈ΛH
h
α). Define a distance function dZ on Z as follows:

dZ(x, y) = dX(x, y), if x, y ∈ X,

= dHh
α
(x, y), if x, y ∈ Hα for some α ∈ Λ,

= ∞, if x, y does not lie on a same set of the disjoint union.

Let G(X,H) be the quotient space of Z obtained by attaching the hyperbolic

cones Hh
α to Hα ∈ H by identifying (z, 0) with z, for all Hα ∈ H and z ∈ Hα.

We define a metric dG(X,H) on G(X,H) as follows:

dG(X,H)([x], [y]) = inf
∑

1≤i≤n

dZ(xi, yi),

where the infimum is taken over all sequences C = {x1, y1, x2, y2, ..., xn, yn} of points

of Z such that x1 ∈ [x], yn ∈ [y] and yi ∼ xi+1 for i = 1, ..., n−1. (∼ is the equivalence

relation on Z). dG(X,H) is a metric:

dG(X,H) is indeed a pseudometric. Let [x], [y] ∈ G(X,H) such that dG(X,H)([x], [y]) =

0. If x (or y) lie in Hh\H , then dHh(x,H) > 0. For any ǫ > 0 there exists a sequence

{x1, y1, x2, y2, ..., xn, yn} such that x1 = x, yn = y, yi, xi+1 ∈ Hi (1 ≤ i ≤ n−1, H1 =

H) and
∑

1≤i≤n dX(xi, yi) +
∑

1≤i≤n−1 dHh
i
(yi, xi+1) ≤ ǫ. Therefore, dHh(x, y1) ≤ ǫ

which implies dHh(x,H) ≤ ǫ. Taking ǫ → 0, we have dHh(x,H) = 0. Hence x must

equals y.

Now let x, y ∈ X. For each k ∈ N, there exists a sequence {x1, y1, x2, y2, ..., xn, yn}
such that x1 = x, yn = y, yi, xi+1 ∈ Hi and

∑

1≤i≤n

dX(xi, yi) +
∑

1≤i≤n−1

dHh
i
(yi, xi+1) ≤

1

k
.
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Now, by (iii) of Lemma 1.2.12, we have

∑

1≤i≤n−1

dHi
(yi, xi+1) ≤ 2(e

P
1≤i≤n−1 d

Hh
i

(yi,xi+1) − 1)

≤ 2(e
1
k − 1).

Also,
∑

1≤i≤n dX(xi, yi) ≤ 1
k
. Therefore, by triangle inequality, we have

dX(x, y) ≤
∑

1≤i≤n

dX(xi, yi) +
∑

1≤i≤n−1

dHh
i
(yi, xi+1)

≤ 1

k
+ 2(e

1
k − 1) → 0 as k → ∞.

Thus, x = y and hence [x] = [y].

In short, (G(X,H), dG(X,H)) will be denoted by (Xh, dXh).

Observation 1.2.15. We have the following simple observations:

(1) The path metric induced from dHh on H is dH ,

(2) Let α : [0, 1] → X be a path, then lX(α) = lXh(α).

Proof. (1) Let α be a geodesic in H joining x, y ∈ H . As H is embedded in Hh, we

can write α = (α1, α2) where α2 is a constant function. For all partitions τ : 0 =

t0 < t1... < tn = 1, we have

∑

1≤i≤n−1

√
e−2α2(ti)dH(α1(ti), α1(ti+1))2 + |α2(ti) − α2(ti+1)|2

=
∑

1≤i≤n−1

√
dH(α1(ti), α1(ti+1))2

= dH(x, y).

Thus lHh(α) = dH(x, y).

(2) Note that α is a concatenation of paths of the form αX : [a, b] → X, where

αX((a, b)) ∩ (∪H∈HH) = ∅, and αH : [a, b] → H for some H ∈ H. Now αX is a

concatenation of two paths α1, α2 such that only one of the end points of αi may

lie on horosphere-like sets. Thus, it suffices to prove that for paths β : [0, 1] → X,

with β([0, 1)) ⊂ X \ ∪H∈HH , and γ : [0, 1] → H , we have lX(β) = lXh(β) and

lX(γ) = lXh(γ).

First we prove that lX(β) = lXh(β):

Let 0 ≤ s0 < 1, then β(s0) /∈ ∪H∈HH . As H is uniformly ν-separated

and horosphere-like sets are closed in X, therefore there exists δ > 0 such
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that B(β(s0); δ) ∩ (∪H∈HH) = ∅. Thus, there exists T ∈ (s0, 1) such that

lX(β|[s,t]) ≤ δ
10

for all t ≤ T . Note that for any s, s′ ∈ [s0, T ], dX(β(s), β(s′)) =

dXh(β(s), β(s′)). Let η = β|[s0,t]. Let 0 < ǫ < δ
10

, then there exists a par-

tition {t0, ..., tn} of [s0, t] such that lX(η) − ǫ <
∑

0≤i≤n−1 dX(η(ti), η(ti+1)) ≤
lX(η). Now for all i, dX(η(ti), η(ti+1)) = dXh(η(ti), η(ti+1)), therefore lX(η) − ǫ <∑

0≤i≤n−1 dXh(η(ti), η(ti+1)). As
∑

0≤i≤n−1 dXh(η(ti), η(ti+1)) ≤ lXh(η), therefore

lX(η) − ǫ < lXh(η). Taking ǫ→ 0, we have lX(η) ≤ lXh(η).

Now for any ǫ > 0 there exists a partition {t′0, ..., t′m} of [s0, t] such that lXh(η)− ǫ <∑
0≤j≤m−1 dXh(η(t′i), η(t

′
i+1)) ≤ lXh(η). Now dXh(η(t′i), η(t

′
i+1)) ≤ dX(η(t′i), η(t

′
i+1))

for all i and dX(η(t′i), η(t
′
i+1)) ≤ lX(η). Therefore, lXh(η)− ǫ < lX(η). Taking ǫ→ 0,

we have lXh(η) ≤ lX(η). Hence lX(η) = lXh(η).

Now define F : [0, 1] → R by F (t) = lX(β|[0,t]) − lXh(β|[0,t]).

Let [0, s0] be the maximal subinterval of [0, 1] for which F (s) = 0 for all s ∈ [0, s0].

Now from above there exist s0 ≤ T ≤ 1 such that lX(β|[s0,T ]) = lXh(β|[s0,T ]). There-

fore F (T ) = 0 and hence s0 must be equal to one. Thus lX(β) = lXh(β).

Next we prove that lX(γ) = lXh(γ):

There exists a sequence of paths γn : [0, 1] → Hh such that γn → γ as n → ∞,

γn(0) = γ(0), γn(1) = γ(1), γn((0, 1)) ∩ H = ∅ and im(γn) ⊂ (im(γ) × [0,∞)) for

all n. Thus, lXh(γn) → lXh(γ) as n→ ∞. As γn((0, 1)) ∩H = ∅, similarly as above

we can prove that lXh(γn) = lHh(γn). Thus, lXh(γ) = lHh(γ). Now the metric on

H is induced from the metric dX on X, therefore lH(γ) = lX(γ). Also, by (1) the

metric dHh on Hh induces the metric dH on H , therefore lHh(γ) = lH(γ). Hence,

lXh(γ) = lX(γ)

Definition 1.2.16. Let δ ≥ 0, ν > 0. Let X be a geodesic metric space and H be

a collection of uniformly ν-separated, intrinsically geodesic closed subsets of X. X

is said to be δ-hyperbolic relative to H in the sense of Gromov, if the quotient space

(G(X,H), dG(X,H)) is a δ-hyperbolic metric space in the sense of (1.1.7). X is said

to be hyperbolic relative to H in the sense of Gromov if X is δ-hyperbolic relative to

H in the sense of Gromov for some δ ≥ 0.

Note that if (X, dX) is a proper geodesic metric space then G(X,H) is a proper

path metric space. Hence G(X,H) is a geodesic space.

The following lemma proves that the vertical paths in a hyperbolic cone are

geodesics in G(X,H)

Lemma 1.2.17. Let X be a geodesic metric space and H be a collection of uniformly

ν-separated (ν > 0), intrinsically geodesic closed subsets of X. Let H ∈ H and

γ : [0,∞) → Hh be a vertical path in the hyperbolic cone Hh, where γ(0) ∈ H, then

γ is a geodesic in Xh.
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Proof. Let t ∈ [0,∞) and α : [0, l] → Xh be a path in Xh joining γ(t) and γ(0),

where α(0) = γ(t), α(l) = γ(0), then there exists t0 ∈ [0, l] such that α(t0) ∈ H

and α[0,t0] ⊂ Hh. Now γ is a geodesic in Hh. Since lHh(α|[0,t0]) = lXh(α|[0,t0]) and

lHh(γ|[0,t]) = lXh(γ|[0,t]), therefore lXh(γ|[0,t]) ≤ lXh(α|[0,t0]) ≤ lXh(α). Thus for all t,

γ|[0,t] is a geodesic in Xh.

Lemma 1.2.18. (Hyperbolic Cones are uniformly properly embedded in G(X,H)):

Let X be a δ-hyperbolic space relative to a collection H of uniformly ν-separated

(ν > 0), intrinsically geodesic and uniformly properly embedded closed subsets of X

in the sense of Gromov. Let Hh = {Hh : H ∈ H}, then elements of Hh are uniformly

properly embedded in G(X,H), i.e., for all M > 0 there exists N1.2.18(M) > 0 such

that for all Hh ∈ Hh and for all x, y ∈ Hh ∈ Hh, dXh(x, y) ≤ M implies that

dHh(x, y) ≤ N1.2.18.

Proof. Let x, y ∈ Hh such that dXh(x, y) ≤ M . By definition of the metric dXh,

there exists a path α : [0, l] → Xh joining x and y such that α is a concatenation

of geodesics from X and hyperbolic cones and lXh(α) ≤ dXh(x, y) + 1. Therefore,

lXh(α) ≤ M + 1. Let Hh
1 , ..., H

h
N1

be the hyperbolic cones penetrated by α, where

Hh
N1

= Hh. We partition [0, l] by points 0 = s0 ≤ t0 < s1 < t1 < ... < sN1 ≤ tN1 = l

such that

(i) α(0) = x, α(tN1) = y, α(t0) ∈ Hh, α(sN1) ∈ Hh,

(ii) α[sj ,tj ] is a geodesic in Hh
j ,

(iii) α[ti,si+1] is a geodesic in X,

where 0 ≤ j ≤ N1, 0 ≤ i ≤ N1−1 andHh
0 = Hh. Hence

∑
0≤j≤N1

dHh
j
(α(sj), α(tj)) ≤

M + 1 and
∑

0≤i≤N1−1 dX(α(ti), α(si+1)) ≤ M + 1. Therefore, by (iii) of Lemma

1.2.12, we have
∑

0≤j≤N1

dHj
(α(sj), α(tj)) ≤ 2(e

P
0≤j≤N1

d
Hh

j
(α(sj ),α(tj)) − 1)

≤ 2eM+1.

Thus
∑

0≤j≤N1
dX(α(sj), α(tj)) ≤

∑
0≤j≤N1

dHj
(α(sj), α(tj)) ≤ 2eM+1. Hence

dX(α(t0), α(sN1)) ≤
∑

1≤j≤N1−1

dX(α(sj), α(tj)) +
∑

0≤i≤N1−1

dX(α(ti), α(si+1))

≤ 2eM+1 +M + 1.

Let N2 = 2eM+1 +M + 1. Since elements of H are uniformly properly embedded in

X, therefore there exists N3(N2) > 0 such that dH(α(t0), α(sN1)) ≤ N3. Hence

dHh(α(s0), α(tN1)) ≤ dHh(α(s0), α(t0)) + dHh(α(t0), α(sN1)) + dHh(α(sN1), α(tN1))

≤ M + 1 + dH(α(t0), α(sN1)) +M + 1

≤ 2M +N2 + 2.
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Taking N1.2.18 = 2M +N3 + 2, we have the required result.

Lemma 1.2.19. (X is properly embedded in Xh) Let X be a geodesic space δ-

hyperbolic relative to a collection H of uniformly ν-separated (ν > 0), intrinsically

geodesic and uniformly properly embedded closed subsets of X in the sense of Gro-

mov, then the inclusion i : X →֒ Xh is a proper map i.e. for all M > 0 there exists

N1.2.19 > 0 such that for all x, y ∈ X if dXh(x, y) ≤M then dX(x, y) ≤ N1.2.19.

Proof. Let dXh(x, y) ≤ M . By definition of the metric dXh, there exists a path

α : [0, l] → Xh joining x and y such that α is a concatenation of geodesics from X

and hyperbolic cones and lXh(α) ≤ dXh(x, y) + 1. Therefore, lXh(α) ≤ M + 1. Let

Hh
1 , ..., H

h
n be the hyperbolic cones penetrated by α. We partition [0, l] by points

0 = t0 < s1 < t1 < ... < sn < tn < sn+1 = l such that

(i) α(0) = x, α(sn+1) = y,

(ii) α[sj ,tj ] is a geodesic in Hh
j ,

(iii) α[ti,si+1] is a geodesic in X,

where 1 ≤ j ≤ n, 0 ≤ i ≤ n.

Then
∑

1≤j≤n dHh
j
(α(sj), α(tj)) +

∑
0≤i≤n dX(α(ti), α(si+1)) ≤M + 1.

Hence
∑

1≤j≤n dHj
(α(sj), α(tj)) ≤ 2eM+1. Therefore, by triangle inequality, we have

dX(x, y) ≤ ∑
1≤j≤n dHj

(α(sj), α(tj)) +
∑

0≤i≤n dX(α(ti), α(si+1)) ≤ 2eM+1 +M + 1.

Taking N1.2.19 = 2eM+1 +M + 1, we have the required result.

Definition 1.2.20. (Definition 8.17, Chapter II.8, [BH99])(Busemann Function):

Let (X, d) be a metric space and let γ : [0,∞) → X be a geodesic ray. The function

bγ : X → R defined by

bγ(x) = lim
t→∞

(d(x, γ(t)) − t), x ∈ X

is called the Busemann function associated to the geodesic ray γ.

Definition 1.2.21. [CP93] Let (X, d) be a geodesic space and k ≥ 0. A function

f : X → R is said to be k-quasiconvex if for each geodesic path c : [0, 1] → X

parameterized proportional to arc length, we have

f(c(t)) ≤ (1 − t)f(c(0)) + tf(c(1)) + k for all t ∈ [0, 1].

Lemma 1.2.22. (Proposition 3.3, Chapter 3, [CP93]): Let δ ≥ 0 and X be a

geodesic space which is δ-hyperbolic. Let γ : [0,∞) → X be a geodesic ray, then the

Busemann function bγ : X → R is 4δ-quasiconvex.
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Corollary 1.2.23. Let δ ≥ 0 and X be a geodesic space which is δ-hyperbolic. Let

γ : [0,∞) → X be a geodesic ray, then the set b−1
γ ((−∞, 0]) is 4δ-quasiconvex in X.

Lemma 1.2.24. Let δ ≥ 0. Let X be a geodesic metric space and H be a collection

of uniformly ν-separated (ν > 0) and intrinsically geodesic closed subsets of X.

Suppose Xh is a geodesic space and X is δ-hyperbolic relative to H in the sense of

Gromov. Then for any H ∈ H, the hyperbolic cone Hh is uniformly 4δ-quasiconvex

in Xh. Moreover, for each s ∈ [0,∞), (Hs)h := H × [s,∞) is also 4δ-quasiconvex

in Xh.

Proof. Let γ : [0,∞) → Hh be a vertical path in Hh, where γ(0) ∈ H . Then by

Lemma 1.2.17, γ is a geodesic in Xh. First, we prove that b−1
γ (0) = H .

Let x ∈ H , we will prove that bγ(x) = 0. Note that

dXh(x, γ(t)) − t ≤ dXh((x, 0), (x, t)) + dXh((x, t), γ(t)) − t

(x is identified with (x, 0))

≤ t+ dH,t((x, t), γ(t)) − t

= e−tdH(x, γ(0)) → 0 as t→ ∞.

Therefore bγ(x) ≤ 0. Also,

t = dXh((x, 0), (x, t))

≤ dXh(x, γ(t)) + dXh(γ(t), (x, t))

i.e.− (dXh(x, γ(t)) − t) ≤ e−tdH(γ(0), x) for all t ∈ [0,∞)

Hence bγ(x) ≥ 0 and so bγ(x) = 0. Thus H ⊂ b−1
γ (0).

Now we prove that x ∈ b−1
γ (0) implies x ∈ H .

Case (i): Let x = (w, s) ∈ H × [0,∞) = Hh. Then

0 = bγ(x) = lim
t→∞

(dXh((w, s), γ(t)) − t)

≤ lim
t→∞

(dXh((w, s), (w, t)) + dXh((w, t), γ(t)) − t)

≤ lim
t→∞

(t− s+ e−tdH(w, γ(0)) − t)

≤ −s.

Therefore s = 0 and x = (w, 0) ∈ H .

Case (ii). Let x ∈ Xh \ int(Hh) and πH(x) be a nearest point projection of x

onto H . For t ∈ [0,∞), let [x, γ(t)] be a geodesic in Xh joining x and γ(t). Let

xt ∈ [x, γ(t)] ∩H , then t ≤ dXh(xt, γ(t)). Now,

dXh(x, πH(x)) ≤ dXh(x, xt)

= dXh(x, γ(t)) − dXh(γ(t), xt)

≤ dXh(x, γ(t)) − t.
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Taking t → ∞, we have dXh(x, πH(x)) ≤ bγ(x). But bγ(x) = 0. Thus x = πH(x) ∈
H . Hence b−1

γ (0) = H .

Now let t0 ∈ [0,∞) and γt0(t) = γ(t + t0), where t ∈ [0,∞), then similarly as

above we can prove that b−1
γt0

(0) = H × {t0}. It is easy to check that for p ∈ Xh,

bγt0
(p) = 0 ⇔ bγ(p) = −t0, thus b−1

γ ((−∞, 0]) = Hh. Hence by corollary 1.2.23, we

have that Hh is 4δ-quasiconvex.

Note that for t0 ∈ [0,∞), we have b−1
γt0

((−∞, 0]) = (H t0)h, thus again by corollary

1.2.23, we have that (H t0)h is 4δ-quasiconvex.

Let X be a geodesic space and H be a collection of ν-separated (ν > 0), intrinsi-

cally geodesic closed subsets of X. Let E(G(X,H),Hh) be the space obtained from

G(X,H) by coning off H × [0,∞) for all H ∈ H. In short, E(G(X,H),Hh) will be

denoted by X̂h.

For H ∈ H and r ∈ [0,∞), let Hr = H × {r} and Hr = {Hr : H ∈ H}. Let

Hh
r = Hr × [0,∞) be the hyperbolic cone over Hr with metric dHh

r
, then the

space H × [r,∞) with the induced metric from Hh is isometric to (Hh
r , dHh

r
). Let

Y = G(X,H) \ ∪H∈Hint(H × [r,∞)).

Define g : G(X,H) → G(Y,Hr) as follows:

Let x ∈ G(X,H). If x ∈ Y , define g(x) = x. Now, if x ∈ int(H × [r,∞)) for some

H ∈ H, then x = (h, t) for some h ∈ H, t ≥ r. Define g(x) = ((h, r), t− r).

Note that g is an isometry.

Lemma 1.2.25. There exist K1.2.25 ≥ 1, ǫ1.2.25 ≥ 0 depending on r such that g|X :

X → Y is an (K1.2.25, ǫ1.2.25)-quasi-isometric embedding.

Proof. Note that g(X) is r-quasiconvex in Y . Let x, y ∈ X and dY (g(x), g(y)) ≤M ,

then dXh(g(x), g(y)) = dY h(g(x), g(y)) ≤ M . As X is properly embedded in Xh,

there exists N(M) > 0 such that dX(g(x), g(y)) ≤ N . From definition, g(x) =

x, g(y) = y, thus dX(x, y) ≤ N . Proof then follows from Lemma 1.1.21.

Lemma 1.2.26. g will induce a (K1.2.26, ǫ1.2.26)-quasi-isometry ĝ : E(G(X,H),H) →
E(G(Y,Hr),Hr) for some K1.2.26 ≥ 1 and ǫ1.2.26 ≥ 0 depending on r, ν.

Proof. Let Xh = G(X,H) and Y h = G(Y,Hr). Define ĝ : X̂h → Ŷ h as follows:

Let x̂ ∈ X̂h,

i) if x̂ is a cone point over Hh for some H ∈ H, then define ĝ(x̂) to be the cone point

over Hh
r .

ii) Let x̂ lie on the interior of an edge joining some point (h, t) ∈ Hh and the cone

point v(Hh) over Hh,

a) if t ≤ r then define ĝ(x̂) to be the interior point on the edge joining (h, r) and
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cone point v(Hh
r ) over Hh

r such that ddXh(x̂, (h, t)) = dcY h(ĝ(x̂), (h, r)).

b) if t > r then define ĝ(x̂) to be the interior point on the edge joining (h, t) and

cone point v(Hh
r ) over Hh

r such that ddXh(x̂, (h, t)) = dcY h(ĝ(x̂), (h, t))

iii) If x̂ ∈ Xh, then define ĝ(x̂) = g(x̂).

Let x, y ∈ X ⊂ Y . From definition of metric dcY h , there exists a sequence

{x1, y1, ..., xn, yn} such that

• x = x1, y = yn and for each i, [xi, yi] is a geodesic in Y , [yi, xi+1] is a geodesic (of

length at most one) in the coned-off space of Hi × [r,∞) for some Hi ∈ H, and

• ∑
1≤i≤n dY (xi, yi) +

∑
1≤i≤n−1 lcY h([yi, xi+1]) ≤ dcY h(x, y) + 1.

Now, dX(x1, H1) ≤ dY (x1, y1), dX(Hi, Hi+1) ≤ dY (xi+1, yi+1) and dX(yn, Hn1) ≤
dY (yn, xn). Therefore,

ddXh(x, y) ≤
∑

1≤i≤n

dY (xi, yi) +
∑

1≤i≤n−1

lcY h([yi, xi+1]) ≤ dcY h(x, y) + 1.

For the other inequality, using definition of metric ddXh, there exists a sequence

{z1, w1, ..., zm, wm} such that

• x = z1, y = wm and for each i, [zi, wi] is a geodesic in X, [wi, zi+1] is a geodesic

(of length at most one) in the coned-off space Ĥh
i for some Hi ∈ H, and

• ∑
1≤i≤m dX(zi, wi) +

∑
1≤i≤m−1 ldXh([wi, zi+1]) ≤ ddXh(x, y) + 1.

Let P = K1.2.25, ǫ = ǫ1.2.25. For each 2 ≤ i ≤ m − 1, dY ((zi, r), (wi, r)) ≤
PdX(zi, wi) + ǫ + 2r, dY (z1, (w1, r)) ≤ PdX(z1, w1) + ǫ + r and dY ((zm, r), wm) ≤
PdX(zm, wm) + ǫ+ r.

Now

dcY h(x, y) ≤ dY (z1, (w1, r)) +
∑

2≤i≤m−1

dY ((zi, r), (wi, r))

+dY ((zm, r), wm) + ( cardinality of {H1, ..., Hm−1})
≤ P

∑

1≤i≤m

dX(zi, wi) + 2r(m− 1) +mǫ+ (m− 1)

≤ PddXh(x, y) + P + (2r + 1)(m− 1) +mǫ.

As H is ν-separated, therefore m− 1 ≤ dd
Xh

(x,y)

ν
+ 1. Hence

dcY h(x, y) ≤ (
2r + 1 + ǫ

ν
+ P )ddXh(x, y) + P + 2r + 1 + 2ǫ.

Therefore

ddXh(x, y) − 1 ≤ dcY h(x, y) ≤ (
2r + 1 + ǫ

ν
+ P )ddXh(x, y) + P + 2r + 1 + 2ǫ.

Let P1 = 2r+1+ǫ
ν

+P and ǫ1 = P+2r+1+2ǫ. Now for any point p̂ ∈ X̂h , there exists

p ∈ X such that ddXh(p̂, p) ≤ 1 and dcY h(ĝ(p̂), ĝ(p)) ≤ r + 1. Note that ĝ(p) = p.
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Therefore, by triangle inequality, we have

ddXh(p̂, q̂) − (2r + 4) ≤ dcY h(ĝ(p̂), ĝ(p)) ≤ P1ddXh(p̂, q̂) + 2P1 + ǫ1

for all p̂, q̂ ∈ X̂h. Taking K1.2.26 = P1 and ǫ1.2.26 = max{2P1 + ǫ1, 2r + 4}, we have

the required result.

Note that if α̂ is a K-quasigeodesic path in E(G(X,H),H) without backtrack-

ing and α1, ..., αn are (consecutive) components of αb = α̂ ∩ X, then ĝ(α̂) is a

quasigeodesic in E(G(Y,Hr)) with g|X(αi) being quasigeodesic paths in G(Y,Hr).

g|X is an identity map, therefore g|X(αi) = αi for all i. Let xi, yi be end

points of αi. For each i ∈ {1, ..., n − 1}, we join yi and xi+1 by the path

[yi, (yi, r)] ∪ [(yi, r), v(Hi)] ∪ [v(Hi), (xi+1, r)] ∪ [(xi+1, r), xi+1] of length 2r + 1 in

G(Y,Hr). Consequently, we obtain a path µ̂ without backtracking in E(G(Y,Hr))

such that

• µ̂ \ ∪H∈HH
h = αb,

• µ̂ is a (K + 2r + 1)-quasigeodesic path.

Hence, quasigeodesics in G(X,H) have similar intersection properties with hyper-

bolic cones if and only if quasigeodesics in G(Y,Hr) have similar intersection prop-

erties with hyperbolic cones. Thus, we have the following corollary,

Corollary 1.2.27. Xh is hyperbolic relative to Hh in the sense of Farb if and only

if Y h is hyperbolic relative to Hh
r in the sense of Farb.

Next we prove that the space E(X,H) embeds quasi-isometrically into the space

E(G(X,H),Hh).

Lemma 1.2.28. Let X be a geodesic space and H be a collection of ν-separated

(ν > 0) intrinsically geodesic closed subsets of X. Then the natural inclusion X̂ →֒
X̂h is a (K1.2.28, ǫ1.2.28) quasi-isometry for some numbers K1.2.28 ≥ 1, ǫ1.2.28 ≥ 0.

Proof. Let j : X →֒ Xh denote the inclusion. Then j induces a natural inclusion

ĵ : X̂ →֒ X̂h, therefore ddXh(ĵ(x̂), ĵ(ŷ)) ≤ d bX(x̂, ŷ) for all x̂, ŷ ∈ X̂.

Let x, y ∈ X. By definition of the metric ddXh, there exists a sequence

q0, p1, q1, ..., pn, qn, pn+1 of points in Xh such that x = q0, y = pn+1, [qi, pi+1]

(0 ≤ i ≤ n) are geodesics in Xh with [qi, pi+1] ⊂ X, and
∑

0≤i≤n dXh(qi, pi+1) +∑
1≤j≤n ddHh

j

(pj, qj) ≤ ddXh(x, y) + 1.

Since [qi, pi+1] ⊂ X, dXh(qi, pi+1) = dX(qi, pi+1) for all 0 ≤ i ≤ n. Let ej be the

edge path of length one from pj to qj passing through the cone point v(Hj), where

1 ≤ j ≤ n. Then, by triangle inequality,

d bX(x, y) ≤
∑

0≤i≤n

dX(qi, pi+1) +
∑

1≤j≤n

l bX(ej) ≤ ddXh(x, y) + 1 + n.
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Now, n − 1 ≤ dd
Xh

(x,y)

ν
, therefore d bX(x, y) ≤ ddXh(x, y)(1 + 1

ν
) + 2. Now j restricted

on each edge over horosphere-like sets in X̂ is an isometry, therefore

ddXh(ĵ(x̂), ĵ(ŷ)) ≤ d bX(x̂, ŷ) ≤ ddXh(ĵ(x̂), ĵ(ŷ))(1 +
1

ν
) + 2

for all x̂, ŷ ∈ X̂.

Also the Hausdorff distance between ĵ(X̂) and X̂h is at most 1. Taking K1.2.28 =

1 + 1
ν
, ǫ1.2.28 = 2

1+ 1
ν

, we have the required result.

Corollary 1.2.29. With above notation, X is hyperbolic relative to H in the sense

of Farb if and only if Xh is hyperbolic relative to Hh in the sense of Farb.

Definition 1.2.30. Let X1, X2 be two geodesic spaces and HX1,HX2 be collections

of uniformly ν(> 0)-separated and intrinsically geodesic closed subsets of X1, X2

respectively. A quasi-isometry φ : X1 → X2 is said to be strictly type-preserving if

φ(HX1) ∈ HX2 and φ−1(HX2) ∈ HX1 for all HX1 ∈ HX1 , HX2 ∈ HX2, where φ−1 is

quasi-isometric inverse of φ.

Now we prove that a strictly type-preserving quasi-isometry induces quasi-

isometries between the coned-off spaces as well as between the hyperbolic spaces

obtained by gluing hyperbolic cones.

Lemma 1.2.31. Let K ≥ 1, ǫ ≥ 0, ν > 0, r ≥ 0. Suppose X1, X2 be two

geodesic spaces and HX1 ,HX2 be collections of uniformly ν-separated and intrin-

sically geodesic closed subsets of X1, X2 respectively. Let φ : X1 → X2 be a (K, ǫ)-

quasi-isometry such that for each H ∈ HX1 there exists F ∈ HX2 such that the

Hausdorff distance between φ(H) and F is at most r in X2, and the Hausdorff dis-

tance between φ−1(F ) and H is at most r in X1.

Then φ : X1 → X2 will induce

1) a (Kh
1.2.31, ǫ

h
1.2.31)-quasi-isometry φh : Xh

1 → Xh
2 for some Kh

1.2.31 ≥ 1, ǫh1.2.31 ≥ 0,

and

2) a (K̂1.2.31, ǫ̂1.2.31)-quasi-isometry φ̂ : X̂1 → X̂2 for some K̂1.2.31 ≥ 1, ǫ̂1.2.31 ≥ 0.

In particular, if φ is a strictly type-preserving quasi-isometry, then φ will induce

strictly type preserving quasi-isometries φh : Xh
1 → Xh

2 and φ̂ : X̂1 → X̂2.

Proof. By Lemma 1.2.26, we can assume ν to be greater than 2.

1) Define φh : Xh
1 → Xh

2 as follows:

Let z ∈ Xh
1 , define φh(z) = φ(z) if z ∈ X1, and

if z = (w, t) lies inside some hyperbolic cone Hh, then there exists f ∈ F for some



Chapter 1: Relative Hyperbolicity 34

F ∈ HX2 such that dX2(φ(w), f) ≤ r, define φh(w, t) = (f, t).

Note that for each (f ′, t) ∈ F h there exists (w′, t) ∈ Hh such that

dXh
2
(φh(w′, t), (f ′, t)) ≤ 2r.

Since φ is a quasi-isometry, therefore the Hausdorff distance between X2 and φ(X1)

is uniformly bounded. Hence, the Hausdorff distance between Xh
2 and φh(Xh

1 ) is

uniformly bounded.

Now first we prove that there exists P ≥ 1 such that for all a, b ∈ Xh
1 with dXh

1
(a, b) ≤

1 implies that dXh
2
(φh(a), φh(b)) ≤ P . By definition of the metric dXh

1
, there exists

a path α : [0, 1] → Xh
1 joining a and b such that α is a concatenation of geodesics

from X1 and hyperbolic cones and lXh
1
(α) ≤ dXh

1
(a, b) + 1. Therefore lXh

1
(α) ≤ 2.

Note that α can intersects at most one hyperbolic cone, say Hh. Let a ∈ X1 and

b ∈ Hh. We partition [0, 1] by points 0 = t0 < s1 < t1 < ... < sn ≤ tn = 1 such that

(i) α(0) = a, α(tn) = b,

(ii) α[sj ,tj ] is a geodesic in Hh,

(iii) α[ti,si+1] is a geodesic in X1,

where 1 ≤ j ≤ n, 0 ≤ i ≤ n− 1.

Note that
∑

1≤j≤n dHh(α(sj), α(tj)) =
∑

1≤j≤n lHh(α[sj ,tj ]) ≤ 2.

Now ∑

1≤j≤n−1

dH(α(sj), α(tj)) ≤ 2(e
P

1≤j≤n d
Hh(α(sj ),α(tj )) − 1) ≤ 2e2.

Also
∑

0≤i≤n−1 dX1(α(ti), α(si+1)) ≤ 2. Therefore by triangle inequality, we have

dX1(a, α(sn)) + dHh(α(sn), α(tn)) ≤ 2e2 + 2 + 2 = 2e2 + 4 = D, say.

There exist hn ∈ H, l ∈ [0,∞) such that α(tn) = (hn, l). As dHh(α(sn), α(tn)) ≤ D,

we have l ≤ D. By triangle inequality, dHh(α(sn), hn) ≤ 2D. Therefore,

dH(α(sn), hn) ≤ 2e2D and hence

dX1(a, hn) ≤ dX1(a, α(sn)) + dX1(α(sn), hn) ≤ D + dH(α(sn), hn) ≤ D + 2e2D.

Now there exists F ∈ HX2 such that φ(H) ⊂ NbhdX2(F ; r). By definition,

φh(α(tn)) = (fn, l) for some fn ∈ F such that dX2(φ(hn), fn) ≤ r. Thus

dXh
2
(φh(a), φh(b)) = dXh

2
(φh(a), φh(α(tn)))

≤ dXh
2
(φ(a), fn) + dXh

2
(fn, (fn, l))

≤ dX2(φ(a), fn) + l

≤ dX2(φ(a), φ(hn)) + dX2(φ(hn), fn) +D

≤ KdX1(a, hn) + ǫ+ r +D

≤ K(D + 2e2D) + ǫ+ r +D, where D = e2 + 4.

Taking P = K(D + 2e2D) + ǫ + r + D, we have dXh
2
(φh(a), φh(b)) ≤ P . Similarly,

there exists P ≥ 1 such that the above inequality holds if both a, b lie in hyperbolic
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cones or in X1.

Now for any x, y ∈ Xh
1 , by definition of metric dXh

1
, there exists a path λ in Xh

joining x, y such that

• λ is a concatenation of geodesics of X1 and hyperbolic cones,

• lXh(λ) ≤ dXh
1
(x, y) + 1.

We partition λ by points x = p0, p1, ..., pn = y such that for 0 ≤ i ≤ n− 1, length of

the subsegment joining pi, pi+1 is equal to one and length of the subsegment joining

pn−1, y is at most one. Then dXh
1
(pi, pi+1) ≤ 1 and hence dXh

2
(φh(pi), φ

h(pi+1)) ≤ P

for all 0 ≤ i ≤ n − 1. Thus, by triangle inequality, we have dXh
2
(φh(x), φh(y)) ≤

nP ≤ P lXh(λ) + P ≤ P (dXh
1
(x, y) + 1) + P ≤ PdXh

1
(x, y) + 2P .

Let ψ = φ−1, then define ψh : Xh
2 → Xh

1 similarly as φh. Note that by definition

of quasi-isometry, for all z ∈ X1, dX1(ψ(φ(z)), z) ≤ K. Let ψ be (K1, ǫ1)-quasi-

isometry, then by a calculation, it can be shown that for all z ∈ Xh
1 , we have

dXh
1
(z, ψh(φh(z))) ≤ K1r+ r+K+ ǫ1. By above argument, there exists P ′ ≥ 1 such

that dXh
1
(ψh(φh(x)), ψh(φh(y))) ≤ P ′dXh

2
(φh(x), φh(y)) + P ′. Therefore,

dXh
1
(x, y) ≤ P ′dXh

2
(φh(x), φh(y)) + P ′ + 2(K1r + r +K + ǫ1).

Taking Kh
1.2.31 = max{P, P ′}, ǫh1.2.31 = max{P, P ′ + 2(K1r + r +K + ǫ1)}, we have

the required result.

2) Now we define φ̂ : X̂1 → X̂2:

Let x ∈ X̂1 and x is not a cone point, i.e., x ∈ X1. Define φ̂(x) = φ(x). If x is a

cone point over some H1 ∈ HX1 or lies in the interior of an edge, then define φ̂(x)

to be the cone point over φ(H1). As the metric on X̂1 is defined by taking infimum

on chains (refer to Definition 1.2.1), proof of this fact is similar as (1).

Corollary 1.2.32. With hypothesis as in above Lemma 1.2.31 , we have

1) X1 is hyperbolic relative to H1 in the sense of Gromov if and only if X2 is

hyperbolic relative to H2 in the sense of Gromov,

2) Xh
1 is hyperbolic relative to Hh

1 in the sense of Farb if and only if Xh
2 is hyperbolic

relative to Hh
2 in the sense of Farb,

3) X1 is hyperbolic relative to H1 in the sense of Farb if and only if X2 is hyperbolic

relative to H2 in the sense of Farb.

Proof. 1) Follows from (1) of Lemma 1.2.31.

2) Only thing we require to prove is the similar intersection properties of quasi-

geodesics with hyperbolic cones. Let quasigeodesic paths in X̂h
2 have similar intersec-

tion patterns with hyperbolic cones. By Lemma 1.2.31, there exists K1 ≥ 1, ǫ1 ≥ 0
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such that φ induces (K1, ǫ1)-quasi-isometries φ̂h : X̂h
1 → X̂h

2 and φh : Xh
1 → Xh

2 .

Let λ̂ : [a, b] → X̂h
1 be a P1-quasigeodesic path, there exists P̂2 ≥ 1 such that

φ̂h(λ̂) : [a, b] → X̂h
2 is a P̂2-quasigeodesic in X̂h

2 .

But φ̂h(λ̂) may not be a continuous path, we construct a quasigeodesic path α̂ in

X̂h
2 such that outside hyperbolic cones, φ̂h(λ̂) and α̂ lie in a bounded neighborhood

of each other in Xh
2 :

Let λ1, ..., λn be connected components of λ̂ \ (∪Hh∈Hh
1
Hh), then each λj is a

P1-quasigeodesic path in Xh
1 . As φh is a quasi-isometry (by Lemma 1.2.31), there

exists P2 ≥ 1 such that each φh(λj) is a P2-quasigeodesic in Xh
2 .

Let t0 < s1 < t1 < ... < sn < tn < sn+1 be a partition of [a, b] ∩ Z such that

• for each j ∈ {0, ..., n}, λ̂|[tj ,sj+1] ⊂ λj and

• for each i ∈ {1, ..., n}, λ̂|[si,ti] penetrates a hyperbolic cone Hh
i with λ̂(si + 1),

λ̂(ti − 1) lies in the coned-off space Ĥh
i .

Then dXh
1
(λ̂(si), H

h
i ) ≤ P1|si − (si + 1)| + P1 = 2P1 and dXh

1
(λ̂(ti), H

h
i ) ≤ P1|(ti −

1) − ti| + P1 = 2P1.

Now for each Hi, there exists Fi ∈ H2 such that the Hausdorff distance between

φ(Hi) and Fi is at most r. Let µ̂ = φ̂h(λ̂), then for each i, we have dXh
2
(µ̂(si), F

h
i ) ≤

2K1P1 + ǫ1 + r and dXh
2
(µ̂(ti), F

h
i ) ≤ 2K1P1 + ǫ1 + r.

Let P ′ = 2K1P1 + ǫ1 + r. For each i, let βi : [si, ti] → X̂h
2 be a reparametrization of

a geodesic in X̂h
2 joining µ̂(si) and µ̂(ti), then ldXh

2

(βi) ≤ 2P ′ + 1.

As φh(λj) is a P2-quasigeodesic in Xh
2 and φ̂h|X1 = φh|X1 , for k, k+1 ∈ [tj , sj+1]∩Z,

we have dXh
2
(µ̂(k), µ̂(k + 1)) ≤ P2|k − (k + 1)| + P2 = 2P2. Let ck : [k, k + 1] → Xh

2

be a linear reparametrization of a geodesic in Xh
2 joining µ̂(k) and µ̂(k + 1). For

each j, let αj : [tj , sj+1] → Xh
2 denotes the concatenation of ck’s. Let α̂ : [a, b] → X̂h

2

denotes the concatenation of paths α0, β1, α1, β2, ..., βn, αn.

Let P = max{2P ′ + 1, 2P2} and [t] be the integer part of t, then for all t ∈ [a, b], we

have ldXh
2

(α̂|[t,[t]]) ≤ P . Thus for all t, t′ ∈ [a, b], we have

ldXh
2

(α̂|[t,t′]) ≤ P |t− t′| + 3P.

As µ̂ is a P̂2-quasigeodesic, we have

1

P̂2

|t− t′| − P̂2 ≤ ddXh
2

(µ̂(t), µ̂(t′)) ≤ P̂2|t− t′| + P̂2.

Therefore ddXh
2

(µ̂([t]), µ̂(t)) ≤ 2P̂2. Note that either α̂([t]) = µ̂([t]) or there exists l ∈
{sj, tj} with α̂(l) = µ̂(l) such that ddXh

2

(α̂(l), α̂([t])) ≤ P and ddXh
2

(µ̂(l), µ̂([t])) ≤ P .

Thus, by triangle inequality, ddXh
2

(µ̂([t]), α̂([t])) ≤ 2P and hence

ddXh
2

(µ̂(t), α̂(t)) ≤ P + 2P + 2P̂ = R, say.
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Thus,

|t− t′| ≤ P̂2{ddXh
2

(α̂(t), α̂(t′)) + 2R} + P̂ 2
2 = P̂2ddXh

2

(α̂(t), α̂(t′)) + (2RP̂2 + P̂ 2
2 ).

Let S = 2RP̂2 + P̂ 2
2 then S ≥ P, P̂2, thus we have

1

S
|t− t′| − S ≤ ddXh

2

(α̂(t), α̂(t′)) ≤ S|t− t′| + S.

Thus, α̂ is a S-quasigeodesic path in X̂h
2 such that αi lie inside P

2
-neighborhood of

φh(λi) in Xh
2 and φh(λi) lie inside 2P2-neighborhood of αi in Xh

2 .

Note that αj constructed above may intersects hyperbolic cones other than those in-

tersected by φ̂h(λ̂). Let q = P
2

+2P2, then αi and φh(λi) lie inside q-neighborhood of

each other. Let Hh
2 q = {F × [q,∞) : F ∈ H2} and Y2 = Xh

2 \ ∪F∈H2int(F × [q,∞)).

Then by Lemma 1.2.26, there exists a quasi-isometry ĝ : X̂h
2 → Ŷ h

2 and hence

ĝ(α̂) is a quasigeodesic in Ŷ h
2 . As φh(λj) lie outside hyperbolic cones in Xh

2

and αj lie inside q-neighborhood of φh(λj), therefore ĝ(αj) does not intersect

any elements from Hh
2 q. Note that for all j, there exist xj , yj ∈ Fj such that

dXh
2
(αj−1(sj), xj) ≤ P ′ and dXh

2
(αj(tj), yj) ≤ P ′. Also note that dcY h

2

(xj , yj) ≤ 2q+1.

Thus dcY h
2

(αj−1(sj), αj(tj)) ≤ 2P ′ + 2q + 1. We join αj−1(sj) and αj(tj)) by a

geodesic [αj−1(sj), αj(tj))] in Ŷ h
2 . Let η̂ be the concatenation of paths αj ’s and

[αj−1(sj), αj(tj))]. Thus, from α̂ we obtain a path η̂ in Ŷ h
2 such that

• η̂ is a S ′-quasigeodesic path in Ŷ h
2 for some S ′ ≥ 1,

• outside hyperbolic cones in Y h
2 , η̂j and ĝ(φ̂h(γ̂j)) (j=1,2) lie in the q + P ′-

neighborhood of each other in Y h
2 , and

• horosphere-like sets intersected by η̂ are those which lie in the Hausdorff distance

r + q of the images of horosphere-like sets penetrated by λ̂ under the map ĝ ◦ φ̂h.

Now, as (Xh
2 ,Hh

2) is relatively hyperbolic in the sense of Farb, (Y h
2 ,Hh

2 q) is

relatively hyperbolic in the sense of Farb. Suppose γ̂1, γ̂2 are two P1-quasigeodesic

paths in X̂h
1 without backtracking joining same pair of points in X1. By above

there exist S ′ ≥ 1 and two S ′-quasigeodesic paths η̂1, η̂2 without backtracking in

Ŷ h
2 such that outside hyperbolic cones in Y h

2 , η̂j and ĝ(φ̂h(γ̂j)) (j=1,2) lie in the

q + P ′-neighborhood of each other in Y h
2 . For each j = 1, 2, horosphere-like sets

intersected by ηj lie in a bounded Hausdorff distance from the images of hyperbolic

cones intersected by γj under the map ĝ◦φ̂h. As (Y h
2 ,Hh

2 q) is relatively hyperbolic in

the sense of Farb, η1, η2 have similar intersection properties with the sets from Hh
2 q.

Since ĝ ◦ φ̂h is a quasi-isometry, therefore γ1, γ2 have similar intersection properties

with hyperbolic cones in Xh
1 .

3) Follows from Corollary 1.2.29 and (2) of this Lemma.
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For a metric space Z, note that if α is a (P, ǫ)-quasigeodesic then α followed by

a geodesic of length at most k is a (P, ǫ + k)-quasigeodesic. This fact will be used

in the following lemma.

Lemma 1.2.33. Let X be hyperbolic relative to H in the sense of Farb. Let x ∈ X,

H ∈ H and vH be the cone point over H. Suppose λ1 and λ2 are two P -quasigeodesic

paths in E(X,H) joining x and vH . Let en1 and en2 be entry points to H of λ1 and

λ2 respectively. Then dX(en1, en2) ≤ I1.2.33, for some I1.2.33(P ) > 0 depending only

on P .

Proof. Fix some y ∈ H and join y to vH by a geodesic [vH , y] of length 1
2

in E(X,H).

Let λ′1 = λ1 ∪ [vH , y] and λ′2 = λ2 ∪ [vH , y]. Then there exists P ′(P ) > 0 such that

λ′1 and λ′2 are two P ′-quasigeodesics in E(X,H) joining same pair of points x, y and

having the same entry points as λ1 and λ2. By similar intersection pattern 2, there

exists I1.2.33 > 0 such that dX(en1, en2) ≤ I1.2.33.

Farb’s definition implies Gromov’s definition

Here we prove that Farb’s definition of relative hyperbolicity implies Gromov’s def-

inition. This is proved by Bowditch in [Bow97], here we propose to give another

proof. To prove this we use the following criterion (due to Hamenstädt) for the

hyperbolicity of a geodesic space:

Lemma 1.2.34. ([Ham05]) Let (Y, d) be a geodesic metric space. Assume that

there is number S1.2.34 > 0 and for every pair of points x, y ∈ Y there is a path

c(x, y) : [0, 1] → Y connecting c(x, y)(0) = x to c(x, y)(1) = y with the following

properties:

(1) If d(x, y) ≤ 1 then the diameter of the set c(x, y)[0, 1] is at most S1.2.34.

(2) For x, y ∈ Y and 0 ≤ s ≤ t ≤ 1, the Hausdorff distance between c(x, y)[s, t] and

c(c(x, y)(s), c(x, y)(t))[0, 1] is at most S1.2.34.

(3) For any triple (x, y, z) of points in Y , the arc c(x, y)[0, 1] is contained in the

S1.2.34-neighborhood of c(x, z)[0, 1] ∪ c(z, y)[0, 1].

Then the space (Y, d) is δ1.2.34-hyperbolic for a constant δ1.2.34 > 0 depending only

on S1.2.34. Moreover, for all x, y ∈ Y the Hausdorff distance between c(x, y) and a

geodesic connecting x to y is at most b1.2.34, for some number b1.2.34 > 0 depending

only upon δ1.2.34.

Theorem 1.2.35. Given δ̂ ≥ 0, ν > 0 there exists δ1.2.35 ≥ 0 such that the following

holds: Let X be a geodesic metric space and H be a collection of uniformly ν-

separated and intrinsically geodesic closed subsets of X. If X is δ̂-hyperbolic relative
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to the collection H in the sense of Farb then X is δ1.2.35 hyperbolic relative to the

collection H in the sense of Gromov.

Proof. In view of Corollary 1.2.27, we can assume ν > 1. By Proposition 1.1.9, we

can assume Xh to be a metric graph. Hence Xh is a geodesic metric space. As X

is δ̂-hyperbolic relative to the collection H in the sense of Farb, by Lemma 1.2.28,

there exists δ̂1.2.28 ≥ 0 such that Xh is δ̂1.2.28 -hyperbolic relative to the collection

Hh in the sense of Farb. Therefore triangles in X̂h are δ̂1.2.28-thin.

To proveXh hyperbolic, we require to find a number S1.2.34 > 0 and a path c(x, y)

joining each pair of points x, y ∈ Xh satisfying the three properties of Lemma 1.2.34.

Let x, y ∈ Xh. As Xh ⊂ X̂h, we have x, y ∈ X̂h. Let ĉ(x, y) be an electric geodesic

in X̂h joining x and y. Now we construct a path c(x, y) from ĉ(x, y) in Xh joining

x and y:

• If x, y lie inside a hyperbolic cone Hh, then c(x, y) is a geodesic in Hh joining

them.

• If x lies inside a hyperbolic cone Hh penetrated by ĉ(x, y), then we replace the

subsegment of the geodesic ĉ(x, y) joining x and its exit point from Hh by a geodesic

in Hh.

• If ĉ(x, y) penetrates a hyperbolic cone Hh with p as entry point and q as exit point,

we replace the subsegment of ĉ(x, y) joining p and q by a geodesic in Hh joining p

and q.

• If y lies inside a hyperbolic cone Hh penetrated by ĉ(x, y), then we replace the

subsegment of the geodesic ĉ(x, y) joining y and its entry point to Hh by a (hyper-

bolic) geodesic in Hh.

• Outside hyperbolic cones, c(x, y) is same as ĉ(x, y).

(1) c(x, y) satisfies property 1 of Lemma 1.2.34: Let x, y ∈ Xh such that dXh(x, y) ≤
1. As Xh is a graph of edge length one, therefore by construction of c(x, y) and def-

inition of the metric dXh, c(x, y) is a subsegment of concatenation of at most two

edges in Xh. Thus diameter of the set c(x, y)[0, 1] is at most two.

(2) c(x, y) satisfies property 2 of Lemma 1.2.34: Let s, t ∈ [0, 1], µ1 = c(x, y)[s, t],

µ2 = c(c(x, y)(s), c(x, y)(t)). Let µ̂1 be the subsegment of ĉ(x, y) joining c(x, y)(s)

and c(x, y)(t) and µ̂2 = ĉ(c(x, y)(s), c(x, y)(t)). Then µ̂1 and µ̂2 are electric geodesics

joining same pair of points, so they have similar intersection patterns with hyperbolic

cones. We will show that there exists a number P > 0 such that for any p ∈ µ1

there exists q ∈ µ2 such that dXh(p, q) ≤ P .

Let p ∈ µ1. If p lie in a hyperbolic cone Hh penetrated by both µ̂1 and µ̂2, then
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due to similar intersection pattern 2, the distance between entry points (resp. exit

points) of µ1 and µ2 to Hh is bounded by some number I > 0. Due to stability of

quasigeodesics, portions of µ1 and µ2 lying in Hh
1 are at bounded distance from each

other. Thus there exists q ∈ µ2 such that dXh(p, q) ≤ P1 for some constant P1 > 0.

Now let α1 : [a, b] → Xh, α2 : [a, b] → Xh be subsegments of µ1, µ2 respectively such

that p ∈ α1 and the followings hold:

i) hyperbolic cones penetrated by α1|(a,b)
, α2|(a,b)

are different,

ii) either α1(a) = α2(a) or α1(a), α2(a) lie on a same horosphere-like set, and

iii) either α1(b) = α2(b) or α1(b), α2(b) lie on a same horosphere-like set.

If end points of α1, α2 lie on horosphere-like sets, then due to similar intersection

pattern 2, there exists I > 0 such that dXh(α1(a), α2(a)) ≤ I and dXh(α1(b), α2(b)) ≤
I. Let α̂i be the corresponding subsegment of µ̂i in X̂h joining αi(a), αi(b), where

i = 1, 2. By stability of quasigeodesics, there exists a natural number P̂ > 0 such

that α̂1 and α̂2 lie in a P̂ neighborhood of each other in X̂h. Let q̂ be a nearest point

projection from p onto α̂2, then d bXh(p, q̂) ≤ P̂ . Let λ̂ be a geodesic in X̂h joining p

and q̂, then ldXh(λ̂) ≤ P̂ . Thus λ̂ intersects at most P̂ -many hyperbolic cones.

Suppose γ̂a, γ̂b are the subsegments of α̂2 joining α2(a), q̂ and q̂, α2(b) respectively.

Now, by Lemma 1.1.29, γ̂a ∪ λ̂ and γ̂b ∪ λ̂ are (3, 0)-quasigeodesics in X̂h. As q̂ is

nearest point projection, this quasigeodesic γ̂ ∪ λ̂ does not backtrack. We need to

find q ∈ α2 such that dXh(p, q) is bounded. If q̂ ∈ α̂2 \ ∪Hh∈Hhint(Hh), then let

q = q̂, otherwise q̂ lie on an edge path of length one over some horosphere-like set

H . Let λ̂ be defined on the interval [c, d], then there exists d0 ∈ [c, d] such that

λ̂(d0) ∈ H . Suppose α2(a1) and α2(b1) are the entry and exit points respectively of

α2 to H . Let q be a nearest point projection from λ̂(d0) onto the geodesic segment

joining α2(a1) and α2(b1).

Let λ1 be the path in Xh obtained from λ̂|[c,d0] by replacing the edge paths over

the horosphere-like sets (penetrated by λ̂) by geodesics in the respective hyperbolic

cones and λ2 be a geodesic in Hh joining λ̂(d0), q. Let λp,q = λ1∪λ2. We shall prove

that lXh(λp,q) is bounded.

Suppose ηa, ηb are the subsegments of α1 joining α1(a), p and p, α1(b) respectively.

Let η̂a, η̂b be the corresponding coned-off geodesic paths in X̂h. Due to similar

intersection patterns of

1) η̂a and γ̂a ∪ λ̂,

2) η̂b and γ̂b ∪ λ̂
with hyperbolic cones, if λ̂ penetrates a hyperbolic cone Sh with entry and exit

points being xS and yS respectively, then dSh(xS, yS) ≤ I1 for some number I1 > 0.

If q̂ lie on an edge path of length one over some horosphere-like set H , due to similar
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Figure 1.2: p, q lie in same hyperbolic cone.
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Figure 1.3: p, q lie in different hyperbolic cones.

intersection patterns of η̂a and γ̂a ∪ λ̂, dH(λ̂(d0), α2(a1)) ≤ I1, where α2(a1) is the

entry point of α2 to Hh. Since q is a nearest point projection from λ̂(d0), we have

dHh(λ̂(d0), q) ≤ I1. Thus, lXh(λ2) ≤ I1.

Due to similar intersection patterns of α̂1, α̂2 with hyperbolic cones, the lengths of the

portions of α1 lying inside hyperbolic cones are at most I. If p lie inside a hyperbolic

cone Kh with λ̂(c0) ∈ K being the exit point from K of λ̂ and α1(a0), α(b0) are the

entry, exit points respectively of α1 from Kh, then dKh(α1(a0), α(b0)) ≤ I and

dK(α1(a0), λ̂(c0)) ≤ I1. Therefore, dKh(p, λ̂(c0))) ≤ I1 + I.

Now as ldXh(λ̂) ≤ P̂ , therefore lXh(λp,q \ ∪F∈Hint(F
h)) ≤ P̂ . λ̂ can intersects at

most P̂ -many horosphere-like sets, therefore lXh(λ1) ≤ (I1 + I) + P̂ + P̂ I1. Thus,

lXh(λp,q) = lXh(λ1) + lXh(λ2) ≤ (I1 + I) + P̂ + P̂ I1 + I1 = 2I1 + I + P̂ (1 + I1). Let

P2 = 2I1 + I + P̂ (1 + I1), then dXh(p, q) ≤ P2.

Taking P = max{P1, P2}, we have that for each p ∈ µ1 there exists q ∈ µ2 such that

dXh(p, q) ≤ P .

(3) c(x, y) satisfies property 3 of Lemma 1.2.34: Let x, y, z ∈ Xh, α = c(x, y), β =

c(y, z), γ = c(z, x), α(t) = γ(1− t), β = β(1− t) and γ = γ(1− t), where 0 ≤ t ≤ 1.

Case (A): If α, β, γ penetrates a same hyperbolic cone Hh, then H-distance be-

tween the entry points of the pairs (α, γ), (β, γ) and (β, α) to H is at most I for some

I > 0. Thus we get a hexagon in Hh whose length of alternate sides are bounded.

Hh is hyperbolic, thus there exists B′
1 > 0 such that the subsegment of α inside Hh

lies in B′
1-neighborhood of β ∪ γ.

Now there exist s0, t0 ∈ (0, 1] such that α(s0), γ(t0) lie in H , then dXh(α(s0), γ(t0)) ≤
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Figure 1.4: Triangle for Case (A): Three sides of △αβγ penetrate Hh
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Figure 1.6: Three sides of △αβγ penetrate distnct horosphere-like sets.
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I. Now by property (2), the Hausdorff distance between α|[0,s0] and γ|[0,t0] is at most

B′′
1 for some B′′

1 > 0. Similarly, there exists s1, t1 ∈ [0, 1] such that the Hausdorff

distances between α|[0,s1] and β|[0,t1] is at most B′′
1 . Let B1 = max{B′

1, B
′′
1}, then

α ⊂ NbhdXh(β ∪ γ;B1).

Case (B): α, β, γ does not penetrate a same hyperbolic cone:

Since triangles are δ̂1.2.28-thin in X̂h, therefore there exists a0 ∈ [0, 1] such that

ddXh(α(a0), β̂) ≤ δ̂1.2.28 + 1 and ddXh(α(a0), γ̂) ≤ δ̂1.2.28 + 1. As in the proof of prop-

erty (2), there exist paths λα(a0),β(b0) and λα(a0),γ(c0) in Xh joining α(a0), β(b0) and

α(a0), γ(c0) respectively such that the lengths of λ̂α(a0),β(b0), λ̂α(a0),γ(c0) in X̂h are at

most δ̂1.2.28 + 2. Let

• α1 = α|[0,a0], α2 = α|[a0,1],

• β1 = β|[0,b0], β2 = β|[b0,1],

• γ1 = γ|[0,c0], γ2 = γ|[c0,1].

Note that the following pairs of quasigeodesics satisfy similar intersection patterns

with hyperbolic cones:

Pair (a): α̂1 and γ̂2 ∪ λ̂α(a0),γ(c0),

Pair (b): α̂2 and β̂1 ∪ λ̂α(a0),β(b0),

Pair (c): λ̂α(a0),γ(c0) ∪ γ̂1 and λ̂α(a0),β(b0) ∪ β̂2.

Now we prove that if β, γ penetrate a same hyperbolic cone Hh, then H-distance

between the exit points β and γ from H is uniformly bounded:

Note that α does not penetrateHh. By Lemma 1.2.33, theH-distance between entry

points of β, γ to H is uniformly bounded. Hence by property (2), the Hausdorff

distance between the subsegments of β, γ joining z to the respective entry points is

uniformly bounded. Thus, without loss of generality, we can assume z ∈ H .

If β(b0), γ(c0) does not lie in Hh, then due to similar intersection patterns for Pair

(c), the H-distance between the exit points of β, γ from H is uniformly bounded.

If β(b0) or γ(c0) lie in Hh, then ddXh(H, α̂) ≤ δ̂1.2.28. Let τ̂ : [l,m] → X̂h be a

shortest geodesic from z to α̂ = ĉ(x, y), then ldXh(τ̂ ) ≤ δ̂1.2.28 + 1. Let α̂x and α̂y

be subsegments of α̂ joining x, τ̂ (m) and joining y, τ̂(m) respectively. Then τ̂ ∪ α̂x

and τ̂ ∪ α̂y are quasigeodesic paths. Due to similar intersection patterns of pairs

(β̂, τ̂ ∪ α̂y) and (γ̂, τ̂ ∪ α̂x), the H-distance between the exit points of β̂ and γ̂ from

H is uniformly bounded.

Therefore, by stability of quasigeodesics, portions of β and γ lying inside Hh are at

bounded distance from each other.

Thus, without loss of generality, we can assume that the hyperbolic cones pene-
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trated by α, β and γ are different.

By construction of λ̂α(a0),γ(c0) and λ̂α(a0),β(b0), note that the above quasigeodesics

does not backtrack. Now we have the following three situations:

(I) If λ̂α(a0),γ(c0) penetrates a horosphere-like set H that λ̂α(a0),β(b0) does not pene-

trate. Then, by Pair (c), length of the subsegment of λα(a0),γ(c0) inside Hh is at most

I1 for some I1 > 0.

(II) If λ̂α(a0),γ(c0) and λ̂α(a0),β(b0) both penetrates a same horosphere-like set H but α̂

does not penetrates H , then by Pair (a) and Pair (b), length of the subsegments of

λα(a0),γ(c0) and λα(a0),β(b0) inside Hh is at most I1.

(III) If λ̂α(a0),γ(c0), λ̂α(a0),β(b0) and α̂ penetrates a same horosphere-like set H , then

we have the following two cases:

Case (i): Let α(a0) /∈ Hh. Now either α1 intersects Hh or α2 intersects Hh. Suppose

α1 intersects H , then by Pair (b), length of the subsegment of λα(a0),β(b0) is at most

I1. Also, due to Pair (c), H-distance between the entry points (resp. exit points) of

λ̂α(a0),γ(c0) and λ̂α(a0),β(b0) to H is at most I1. Thus, by triangle inequality, length of

the subsegment of λα(a0),γ(c0) lying inside Hh is at most 3I1. Similarly, if α2 intersects

Hh, then using Pair (a), we have that the length of the subsegment of λα(a0),γ(c0)

lying inside Hh is at most 3I1.

Case (ii): Let α(a0) ∈ Hh, xα, yα respectively be the entry and exit points of α

to Hh. Let e1, e2 be the exit points of λ̂α(a0),γ(c0), λ̂α(a0),β(b0) respectively from Hh.

Then,

• from Pair (a), we have dH(xα, e1) ≤ I1,

• from Pair (b), we have dH(e2, yα) ≤ I1,

• from Pair (c), we have dH(e1, e2) ≤ I1.

Thus, dHh(xα, yα) ≤ 3I1. Therefore dHh(α(a0), ei) ≤ 3I1 + I1 = 4I1 for i = 1, 2.

Since lengths of λ̂α(a0),γ(c0) and λ̂α(a0),β(b0) are bounded, therefore there exists B′
2 > 0

such that lXh(λα(a0),γ(c0)) ≤ B′
2 and lXh(λα(a0),β(b0)) ≤ B′

2. Applying property (2),

there exists B2 > 0 such that

• the Hausdorff distance between α1 and γ2 is at most B2, and

• the Hausdorff distance between α2 and β1 is at most B2.

Thus, α ⊂ NbhdXh(β ∪ γ;B2)

Taking B = max{B1, B2}, we have the required result of property (3).

Note 1.2.36. Note that due to Lemma 1.2.34, the above paths c(x, y) are stable

b1.2.36-quasiconvex paths for some number b1.2.36 > 0 depending only upon the hyper-

bolicity constant of X̂h.
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Gromov’s definition implies Farb’s definition

In this subsection, we prove that Gromov’s definition of relative hyperbolicity implies

Farb’s definition. In general, G(X,H) may not be a geodesic space, but by Lemma

1.1.9, there exists a metric graph Γ of edge length one such that G(X,H) is quasi-

isometric to Γ via a map, say, Φ. By Lemma 1.2.26, we can assume ν to be large

such that for all H1, H2 ∈ H, dΓ(Φ(Hh
1 ),Φ(Hh

2 )) ≥ 1. Let Φ(H) = {Φ(H) : H ∈ H}.
Then (X,H) is relatively hyperbolic in the sense of Farb if and only if (Γ,Φ(H)) is

relatively hyperbolic in the sense of Farb. Note that since Γ is a connected graph,

the coned-off space Γ̂ is a geodesic space. So, throughout this subsection, we assume

that

• X is a geodesic metric space,

• ν > 0 and H is a collection of uniformly ν-separated, intrinsically geodesic and

uniformly properly embedded closed subsets of X, and

• G(X,H), E(X,H) are geodesic spaces.

Definition 1.2.37. (Visual Size of a horosphere-like set): Let H ∈ H be a

horosphere-like set and let γ be a path in G(X,H) not intersecting Hh. Let T be the

set of points p ∈ H so that there exists some t for which a geodesic [γ(t), p] joining

γ(t) and p intersects H in a singleton set {p}. Then the visual size of H with respect

to γ is defined to be the diameter of T in the intrinsic metric of H. The visual size of

the horosphere-like set H is defined to be the supremum of the visual size of H with

respect to γ, where supremum is taken over all geodesics γ in G(X,H) not meeting

any H ∈ H.

Lemma 1.2.38. Let δ ≥ 0, k ≥ 1. Suppose X is δ-hyperbolic relative to H in the

sense of Gromov. Then there exists S1.2.38 > 0 depending on δ, k such that for a k-

quasigeodesic path γ in G(X,H) lying outside a hyperbolic cone Hh, the H-diameter

of the set πHh(γ) is at most S1.2.38.

Proof. Let H t = H × {t} and H th = H × [t,∞). By Lemma 1.2.24, H th is

4δ-quasiconvex for all t ∈ [0,∞). Let x, y ∈ γ and Q = 4δ. Using Lemma

1.1.31, there exist D′ = D′
1.1.31(δ, Q) > 0, C ′ = C ′

1.1.31(δ, Q) > 0 such that if

dXh(πHth(x), πHth(y)) > D′ then there exists p ∈ [x, y] and q ∈ H th such that

dXh(p, q) ≤ C ′. By stability of quasigeodesics, there exists r(k) > 0 such that [x, y]

is contained in r-neighborhood of γ in Xh. Thus dXh(q, γ) ≤ C ′ + r, therefore γ

intersects C ′ + r-neighborhood of H th.

Let t = C ′ + r + 1, then H lies outside C ′ neighborhood of H th. But γ in-

tersects C ′ + r-neighborhood of H th, therefore γ intersects Hh. This is a con-

tradiction as we have assumed γ ∩ Hh = ∅. Thus dXh(πHth(x), πHth(y)) ≤ D′
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and hence dXh(πHh(x), πHh(y)) ≤ dXh(πHh(x), πHth(x)) + dXh(πHth(x), πHth(y)) +

dXh(πHh(y), πHth(y)) ≤ t+D′ + t = D′ + 2(C ′ + r+ 1). Let S ′ = D′ + 2(C ′ + r+ 1),

then dXh(πHh(x), πHh(y)) ≤ S ′. As hyperbolic cones are properly embedded and

horosphere like sets are properly embedded in its hyperbolic cone, there exists

S1.2.38(S
′) > 0 such that dH(πHh(x), πHh(y))) ≤ S1.2.38. This holds for all x, y ∈ γ,

therefore the H-diameter of the set πHh(γ) is at most S1.2.38.

Lemma 1.2.39. [Far98] (Horosphere-like sets are visually bounded): Let δ ≥ 0 and

X be δ-hyperbolic relative to H in the sense of Gromov. Then there exists V1.2.39 > 0,

depending on δ, such that the visual size of each horosphere-like sets H ∈ H is at

most V1.2.39.

Proof. Suppose x ∈ X and let Tx be the set of all points s ∈ H for which [x, s]∩H =

{s}. Let s ∈ Tx and consider the triangle △xπHh(x)s in Xh, then △xπHh(x)s is

δ-slim. Therefore [πHh(x), s] ⊂ Nδ([πHh(x), x] ∪ [x, s]). As [πHh(x), x], [x, s] lie in

the complement of int(Hh), portions of [πHh(x), s] lying in Hh will lie within a

δ-neighborhood of H in Xh. Since Hh is 4δ-quasiconvex, the geodesic segment

[πHh(x), s] lies in the 4δ-neighborhood of Hh. Thus the geodesic ray [πHh(x), s]

lies within 4δ-neighborhood of H in Xh. Let αs = [πHh(x), s], then the Hausdorff

distance between αs and πH(αs) in Xh is at most 4δ. But this Hausdorff distance

approaches ∞ as dXh(πHh(x), s) → ∞ . Therefore, dXh(πHh(x), s) ≤ R1.2.39 for some

constant R1.2.39 > 0, independent of x. Hence diameter of the set Tx is bounded by

2R1.2.39.

Now let γ be a geodesic not intersecting H and x ∈ γ, then the visual size of H

with respect to γ is at most 2diamTx + diam(πHh(γ)) ≤ 2R1.2.39 + S1.2.38. Taking

V1.2.39 = 2R1.2.39 + S1.2.38, we have the required result.

By replacing the geodesic γ by a quasigeodesic path in the above proof, we have

the following corollary:

Corollary 1.2.40. (Visual size of horosphere-like sets with respect to quasigeodesics

is bounded): Let δ ≥ 0, k ≥ 1 and X be δ-hyperbolic relative to H in the sense of

Gromov. Suppose H ∈ H and γ is a k-quasigeodesic path not intersecting H, then

there exists V1.2.40(δ, k) > 0 such that visual size of H with respect to γ is at most

V1.2.40.

Definition 1.2.41. A collection Q of uniformly C-quasiconvex sets in a δ-hyperbolic

metric space Z is said to be mutually B-cobounded if for all Qi, Qj ∈ Q, πQi
(Qj),

i 6= j, has diameter less than B. A collection is mutually cobounded if it is

mutually B-cobounded for some B > 0.
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We have the following corollary of Lemma 1.1.31:

Corollary 1.2.42. [Far98](Hyperbolic Cones are mutually cobounded): Let δ ≥ 0,

then there exists B1.2.42(δ) > 0 such that the following holds: Let X be δ-hyperbolic

relative to H in the sense of Gromov, then the collection H is mutually B1.2.42-

cobounded.

Proof. Let H1, H2 ∈ H and x, y ∈ H1. Suppose γ is a geodesic in Xh joining x and y.

From Lemma 1.2.24, the hyperbolic cone H t
2
h

:= H× [t,∞) is 4δ-quasiconvex for all

t ∈ [0,∞). Let t = 4δ+1, then as Hh
1 is 4δ-quasiconvex and H is ν (> 0)-separated,

γ cannot intersects H t
2
h
. Therefore, using Lemma 1.2.38, there exists S1.2.38 > 0 such

that diameter of the set π
Ht

2
h(γ) is at most S1.2.38. Hence dXh(π

Ht
2

h(x), π
Ht

2
h(y)) ≤

S1.2.38. Therefore,

dXh(πH2
h(x), πH2

h(y)) ≤ dXh(πH2
h(x), π

Ht
2

h(x)) + dXh(π
Ht

2
h(x), π

Ht
2

h(y))

+dXh(πH2
h(y), π

Ht
2

h(y))

≤ t+ S1.2.38 + t = 8δ + S1.2.38 + 2.

Taking B1.2.42 = 8δ + S1.2.38 + 2, we have the required result.

In [Far98], Farb proved the hyperbolicity of the electrocuted space E(X,H),

where X is a pinched Hadamard manifold and H is the collection of uniformly

separated horospheres in X. Next, we prove the general versions of Farb’s theorem

ensuring the hyperbolicity of electric space. Let Z be a subset of G(X,H)(= Xh).

N bX(Z,R) will denote the R-neighborhood about the subset Z in the electric space

(E(X,H), d bX).

Lemma 1.2.43. ([Far98], [Szc98]) Let δ ≥ 0 and ν ≥ 1 + 2D1.1.30, where

D1.1.30(= 6δ) is as in Lemma 1.1.30, then there exists δ̂′1.2.43, δ̂1.2.43 ≥ 0 such if

X be δ-hyperbolic relative to H in the sense of Gromov, then the following proper-

ties hold:

(1). There exists Q1.2.43 > 0 with the following property:

Electric geodesics electrically track hyperbolic geodesics: Let x, y ∈ X, β be any elec-

tric geodesic from x to y in E(Xh,Hh), and γ be a geodesic from x to y in G(X,H),

then

β ⊂ NdXh(γ,Q1.2.43) and γ ⊂ NdXh(β,Q1.2.43).

(2). E(Xh,Hh) is δ̂′1.2.43-hyperbolic and E(X,H) is δ̂1.2.43-hyperbolic.

Proof. (1). First Part: Let D = D1.1.30, C = C1.1.30 > 0. Suppose β ′ is a maximal

subsegment of β lying completely outside NdXh(γ;C). Let β ′ starts from p and ends
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at q, then ddXh(p, γ) = C and ddXh(q, γ) = C. Let β ′ penetrates the hyperbolic cones

Hh
1 , ..., H

h
N . Since hyperbolic cones are uniformly ν-separated, therefore (N − 1)ν ≤

ldXh(β
′) and hence N ≤ ld

Xh
(β′)

ν
+ 1.

Let xi be the entry point and yi be the exit point for β ′ penetrating the hyperbolic

cone Hh
i , where 1 ≤ i ≤ N . For each i, we join xi and yi by a geodesic [xi, yi] in

Xh. Let βyj ,xj+1
, (0 ≤ j ≤ N), be the subsegment of β ′ joining yj and xj+1, where

y0 = p and xN+1 = q. Since βyj ,xj+1
lies outside hyperbolic cones, it is also a geodesic

in Xh. Now for each i, j, dXh(πγ(xi), πγ(yi)) ≤ D and dXh(πγ(yj), πγ(xj+1)) ≤ D

otherwise, due to Lemma 1.1.30, [xi, yi] or βyj ,xj+1
would intersect C-neighborhood

of γ. Therefore we have:

ldXh(β ′) = ddXh(p, q)

≤ ddXh(p, πγ(p)) + ddXh(πγ(p), πγ(q)) + ddXh(πγ(q), q)

≤ 2C + dXh(πγ(p), πγ(q))

≤ 2C +
∑

0≤j≤N

dXh(πγ(yj), πγ(xj+1)) +
∑

1≤i≤N

dXh(πγ(xi), πγ(yi))

≤ 2C + (N + 1)D +ND

≤ 2C + 2D(
ldXh(β

′)

ν
+ 1) +D

Therefore ldXh(β ′) ≤ (2C+3D)ν
ν−2D

(note that ν > 2D). Let K = (2C+3D)ν
ν−2D

and

Q1
1.2.43 = K + C

2
. Then we have β ⊂ NdXh(γ,Q1

1.2.43).

Second Part: Recall that γ : [0, dXh(x, y)] → Xh was a geodesic in Xh. Let

[s0, t0] be a maximal subinterval of [0, dXh(x, y)] such that γ|(s0,t0) lie outside Q1
1.2.43-

neighborhood of β in X̂h. Then there exists p̂ ∈ β such that ddXh(p̂, γ(s0)) ≤ Q1
1.2.43

and ddXh(p̂, γ(t0)) ≤ Q1
1.2.43. Then [γ(s0), p̂] ∪ [p̂, γ(t0)] intersects at most N =

[2Q1
1.2.43]-many horosphere-like sets H1, ..., HN , where [r] denotes the integer part of

r ∈ R. Let {pi} = ∂Hh
i , where 1 ≤ i ≤ N . For each 1 ≤ i < N , we join γ(t0) to pi

by a geodesic ray [γ(t0), pi) in Xh. Let [γ(s0), p1), (p1, p2), ..., (pN−1, pN), (pN , γ(t0)]

be geodesics in Xh such that

([γ(s0), p1) ∪ (∪1≤i≤N−1(pi, pi+1)) ∪ (pN , γ(t0)]) \ ∪1≤i≤N int(H
h
i )

= ([γ(s0), p̂] ∪ [p̂, γ(t0)]) \ ∪1≤i≤N int(H
h
i )

Since Xh is δ-hyperbolic, therefore ideal triangles are δ-thin. Thus, for z ∈ γ|[s0,t0]

there exists z′ ∈ ([γ(s0), p1)∪(∪1≤i≤N−1(pi, pi+1))∪(pN , γ(t0)]) such that dXh(z, z′) ≤
δQ1

1.2.43. Hence ddXh(z, z
′) ≤ dXh(z, z′) ≤ δQ1

1.2.43 and so

γ ⊂ NdXh(β, δQ1
1.2.43 +Q1

1.2.43).



49 1.2 Electric Geometry

Taking Q2
1.2.43 = δQ1

1.2.43 +Q1
1.2.43, we have

γ ⊂ NdXh(β,Q2
1.2.43).

Taking Q1.2.43 = max{Q1
1.2.43, Q

2
1.2.43}, we have the required result.

(2). Let x, y, z ∈ Xh. Suppose △̂xyz is a triangle in the electric space X̂h. Consider

the triangle △hxyz inXh. AsXh is δ-hyperbolic, △hxyz is δ-thin. From (1), △̂xyz is

(electrically) (2Q1.2.43 +δ)-thin. Let δ̂′1.2.43 = 2Q1.2.43 +δ then X̂h is δ̂′1.2.43-thin. Now

from Lemma 1.2.28, the natural inclusion E(X,H) →֒ E(Xh,Hh) is a quasi-isometry.

Therefore, there exists δ̂1.2.43(δ̂
′
1.2.43) > 0 such that E(X,H) is δ̂1.2.43-thin.

Next we prove that the relative geodesics satisfy bounded horosphere penetration

properties with horosphere-like sets.

Lemma 1.2.44. [Far98] Let δ ≥ 0 and ν ≥ 1 + 2D1.1.30, where D1.1.30 is as in

Lemma 1.1.30. Suppose X is δ-hyperbolic relative to H in the sense of Gromov,

where H is uniformly ν-separated, then the following properties hold:

Let β be an electric geodesic in E(X,H) (resp. in E(G(X,H),Hh)) and γ be a

geodesic in G(X,H) joining the same pair of points in X (resp. in G(X,H)). Then

β, γ have the following similar intersection patterns with horosphere-like sets (resp.

hyperbolic cones)

1. Similar Intersection Patterns 1: if precisely one of {β, γ} meets a

horosphere-like set H ∈ H, then the distance (measured in the intrinsic path-

metric on H) from the first (entry) point to the last (exit) point (of the relevant

path) is at most I1
1.2.44 for some I1

1.2.44 > 0.

2. Similar Intersection Patterns 2: if both {β, γ} meet some H ∈ H then the

distance (measured in the intrinsic path-metric on H) from the entry point of

β to that of γ is at most I2
1.2.44; similarly for the exit points for some I2

1.2.44 > 0.

Proof. 1). Let us first assume that γ intersects H ∈ H and β does not intersect H .

Let p be the first entry point and q be the last exit point of γ to the horosphere-

like set H . We will prove that H-distance, say dH , between p and q is bounded.

Recall from Lemma 1.2.39 that the visual diameter of a horosphere-like set is at

most V1.2.39 for some V1.2.39 > 0 and from Corollary 1.2.42 that hyperbolic cones are

mutually B1.2.42-cobounded. From Lemma 1.2.43, there exists Q1.2.43 > 0 such that

β ⊂ NdXh(γ;Q1.2.43). Let V = V1.2.39, B = B1.2.42, Q = Q1.2.43.

Let [a, b] be the domain of β. For each t ∈ [a, b] there exist a point pt ∈ γ such that

ddXh(β(t), pt) ≤ Q. Suppose γ1, γ2 be two components of γ \ int(Hh) containing p, q

respectively. Let [a, s0] and [t0, b] be the largest subintervals of [a, b] such that for
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each t ∈ [a, s0) ∪ (t0, b], electric geodesics joining β(t) and pt does not intersect H .

Let β1 = β|[a,s0), β2 = β|[s0,t0] and β3 = β|(t0,b]. For s ∈ [a, s0), suppose λs be

an electric geodesic in X̂h joining β1(s) and ps. As length of λs is at most Q, it

penetrates at most Q-many horosphere-like sets. Let λb
s be the subset of λs lying

outside horosphere-like sets and N(λs) be the union of λb
s and horosphere-like sets

penetrated by λs. Let γpsp be the subsegment of γ joining ps and p, then diam-

eter of the set πHh(γpsp) is at most V . Also diameter of πHh(N(λs)) is at most

(V + B)Q. Therefore diameter of πHh(N(λs)) ∪ γpsp)) is at most V + (V + B)Q.

This is true for each s ∈ [a, s0). Since p ∈ ∩s∈[a,s0)πHh(N(λs) ∪ γpsp)), we have

dHh(p, πHh(β(s0))) ≤ V + (V +B)Q.

Using similar argument for β3, we have dHh(πHh(β(t0)), q) ≤ V + (V +B)Q.

Now for β2, ddXh(β(s0), πHh(β(s0))) ≤ Q and ddXh(β(t0), πHh(β(t0))) ≤ Q. As β2

is a geodesic in X̂h, therefore the length of β2 is at most 2Q. Let N(β2)(⊂ X)

be defined similarly to N(λs). Then the diameter of the set πHh(N(β2)) is at

most 2Q(V + B). Thus dHh(πHh(β(s0)), πHh(β(t0))) ≤ 2Q(V + B). Therefore

dHh(p, q) ≤ 2{V + (V + B)} + 2Q(V + B) = I ′1(say). Since horosphere-like sets

are properly embedded in hyperbolic cones, there exists I1
1.2.44(I

′
1) > 0 such that

dH(p, q) ≤ I1
1.2.44.

The proof of the case when β intersects H and γ does not intersect H is similar.

2). Let y, p be the first points of entry for the geodesics β, γ respectively into

the horosphere-like set H . We will prove that there exists I2
1.2.44 > 0 such that

dH(p, y) ≤ I2
1.2.44. Let β ′ be the component of β \ int(Hh) containing y and γ1

be the component of γ \ int(Hh) containing p. Let Q = Q1.2.43 > 0 be as in

Lemma 1.2.43, then and let [l, b] be a maximal subinterval in the domain [a, b]

of β ′ such that for all t > l, ddXh(β
′(t), Hh) ≤ Q. For l, there exists an elec-

tric geodesic λl joining β ′(l) and a point pl ∈ γ1 such that the length of λl is

at most Q and diameter of the set πHh(N(λl) ∪ γplp) is at most V + (V + B)Q.

And as above dHh(p, πHh(β ′(l))) ≤ V + (V + B)Q. Since ddXh(β ′(l), Hh) = Q,

length of β ′|[l,b] is at most Q. Therefore dHh(πHh(β ′(l)), y) ≤ (V + B)Q. Hence

dHh(p, y) ≤ V + (V + B)Q + (V + B)Q = I ′2(say). Since horosphere-like sets

are properly embedded in hyperbolic cones, there exists I2
1.2.44(I

′
2) > 0 such that

dH(p, y) ≤ I2
1.2.44.

The same argument works for the exit points of the geodesics β, γ from the

horosphere-like set H .

Note 1.2.45. The above Lemma 1.2.44 is also true when geodesics are replaced by

quasigeodesic paths.
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Combining Lemma 1.2.43 and Lemma 1.2.44, we have the converse of the The-

orem 1.2.35 :

Theorem 1.2.46. [Far98, Bow97] Let δ ≥ 0 and ν ≥ 1 + 2D1.1.30, where D1.1.30 is

as in Lemma 1.1.30, there exists δ̂1.2.43 ≥ 0 such that the following holds: If X is

δ-hyperbolic relative to a collection H in the sense of Gromov, where H is uniformly

ν-separated, then X is δ̂1.2.43-hyperbolic relative to H in the sense of Farb.

Thus, from Theorems 1.2.35, 1.2.46, we have the following equivalence of two

definitions of relative hyperbolicity:

Theorem 1.2.47. Let δ, δ̂ ≥ 0 and ν ≥ 1 + 2D1.1.30, where D1.1.30(= 6δ) is as in

Lemma 1.1.30, then there exists δ1.2.35 ≥ 0 depending only on δ̂ and there exists

δ̂1.2.43 ≥ 0 depending only on δ, such that the following holds:

(1) if X is δ-hyperbolic relative to the collection H in the sense of Gromov then X

is δ̂1.2.43-hyperbolic relative to H in the sense of Farb,

(2) if X is δ̂-hyperbolic relative to the collection H in the sense of Farb then X is

δ1.2.35-hyperbolic relative to the collection H in the sense of Gromov.

By Lemma 1.2.26, we have the following Theorem:

Theorem 1.2.48. Let δ ≥ 0, ν > 0 then there exist δ̂1.2.48, δ̂
′
1.2.48 ≥ 0 depending only

on δ, ν such that the following holds:

Let X be δ-hyperbolic relative to the collection H in the sense of Gromov, where H
is uniformly ν-separated, then

1) X is δ̂1.2.48-hyperbolic relative to the collection H in the sense of Farb,

2) G(X,H) is δ̂′1.2.48-hyperbolic relative to the collection Hh in the sense of Farb.

Proof. Let D1.1.30 > 0 be as in Lemma 1.1.30, r = 1 + 2D1.1.30. For H ∈ H, let

Hr = H × {r}, Hr = {Hr : H ∈ H} and Hh
r = Hr × [0,∞) be the hyperbolic cone

over Hr with metric dHh
r
. Let Y = G(X,H)\∪H∈Hint(H

h
r ). Note that the collection

Hr is ν + r-separated and we have ν + r > 1 + 2D1.1.30. Now as X is δ-hyperbolic

relative to the collection H, Y is δ-hyperbolic relative to the collection Hr. Thus,

from Theorem 1.2.47, there exists δ̂1.2.43, δ̂
′
1.2.43 ≥ 0 such that Y is δ̂1.2.43-hyperbolic

relative to Hr in the sense of Farb and Y h is δ̂1.2.43-hyperbolic relative to Hh
r in the

sense of Farb. By Corollary 1.2.27, there exist δ̂1.2.48, δ̂
′
1.2.48 ≥ 0 depending on δ, ν

such that the properties (1) and (2) hold.

Definition 1.2.49 (Electroambient Paths [Mjb]). Let δ ≥ 0 and X be δ-hyperbolic

relative to the collection H in the sense of Gromov. We start with an electric quasi-

geodesic path λ̂ : [0, 1] → X̂h without backtracking with end points in Xh. For any
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Hh ∈ Hh penetrated by λ̂, let xH and yH be the first entry point and the last exit

point of λ̂ respectively. We join xH and yH by a geodesic segment in Hh. If λ̂(0)

(resp. λ̂(1)) lies in some Hh, then we join λ̂(0) (resp. λ̂(1)) to the exit point (resp.

entry point) by a geodesic in Hh. This results in a path λ in G(X,H). The path λ

will be called an electro-ambient path.

The following Lemma (proved in [Mjb]) proves that an electroambient path is a

quasigeodesic.

Lemma 1.2.50. (Lemmas 3.8, 3.9 of [Mjb]): Let δ ≥ 0 and X be a δ-hyperbolic

relative to the collection H in the sense of Gromov. Suppose λ̂ is an electric (K, ǫ)-

quasigeodesic path in X̂ without backtracking and with end points x, y ∈ X. Then

an electro-ambient path representative λ of λ̂ is a K1.2.50-tamed quasigeodesic path

G(X,H) for some number K1.2.50 > 0 depending on δ,K, ǫ, ν. In particular, λ is a

Q1.2.50 quasiconvex path in G(X,H) for some Q1.2.50 > 0.

Electric Projections

Let δ ≥ 0 and X be a geodesic metric space with HX a collection of uniformly

ν > 0-separated, intrinsically geodesic and closed subsets of X. Further, assume

that G(X,H), E(Xh,Hh
X) are geodesic spaces. Let X be δ-hyperbolic relative to the

collection H in the sense of Gromov. Let X̂ = E(X,HX), Xh = G(X,HX) and

i : Xh → X̂h = E(Xh,Hh
X) denote the inclusion. Recall that from Lemma 1.2.48

that there exist δ1.2.48, δ
′
1.2.48 ≥ 0 such that X̂ is δ1.2.48-hyperbolic and X̂h is δ′1.2.48-

hyperbolic.

Define f : X̂h → X̂ as follows: f(x) = x if x ∈ X̂, f(x) = v(H), if x ∈ int(Hh)

or x lies in an edge (of length 1
2
) joining the cone point over Hh to some point of

int(Hh) for some hyperbolic cone Hh and v(H) is the cone point over H .

Recall that from Lemma 1.2.28, that the natural inclusion ĵ : X̂ →֒ X̂h is a

(K1.2.28, ǫ1.2.28) quasi-isometry for some K1.2.28 ≥ 1, ǫ1.2.28 ≥ 0. It is easy to check

that f is a (Kf , ǫf)-quasi-isometry for some Kf ≥ 1, ǫf ≥ 0 and it is a quasi-isometric

inverse of the natural inclusion ĵ.

Let µ̂ be a geodesic in X̂, µ be an electro-ambient representative of the geodesic µ̂

and πµ be a nearest point projection from Xh onto µ.

Definition 1.2.51. (Electric Projection) Let y ∈ X̂ and µ̂ be a geodesic in X̂.

Define π̂bµ : X̂ → µ̂ as follows:

For y ∈ X, define π̂bµ(y) = f(i(πµ(y))).

If y is a cone point over a horosphere-like set H ∈ HX , choose z ∈ H, define

π̂bµ(y) = f(i(πµ(z))).
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If y lie on the edge (of length 1
2
) joining the cone point over a horosphere-like set H

and z ∈ H, define π̂bµ(y) = f(i(πµ(z))).

π̂bµ will be called as Electric Projection.

The next lemma, shows that π̂bµ is well-defined up to a bounded amount of

discrepancy with respect to the metric d bX .

Lemma 1.2.52. Let δ ≥ 0. There exists a constant P1.2.52 > 0 depending only upon

δ such that the following holds:

Let X be δ-hyperbolic relative to a collection HX in the sense of Gromov. Then for

any H ∈ HX and z, z′ ∈ H, if µ̂ be a geodesic in X̂ then d bX(π̂bµ(z), π̂bµ(z′)) ≤ P1.2.52.

Proof. Let D′ = D′
1.1.31, C

′ = C ′
1.1.31 be as in Lemma 1.1.31. If dXh(πµ(z), πµ(z′)) ≤

D′, then ddXh(i(πµ(z)), i(πµ(z′))) ≤ D′.

Let us assume dXh(πµ(z), πµ(z′)) > D′ then, by Lemma 1.1.31, [z, πµ(z)] ∪
[πµ(z), πµ(z′)] ∪ [πµ(z′), z′] is a quasi-geodesic in Xh. Thus for πµ(z) there exists

pz on the geodesic [z, z′] in Xh such that dXh(πµ(z), pz) ≤ C ′. Since hyperbolic

cones are 4δ-quasiconvex, there exists p ∈ Hh such that dXh(πµ(z), p) ≤ C ′ + 4δ.

Similarly there exists q ∈ Hh such that dXh(πµ(z′), q) ≤ C ′ + 4δ. Therefore

ddXh(i(πµ(z)), i(πµ(z′))) ≤ 2(C ′ + 4δ) + 1. Taking P ′
3 = max{D′, 2(C ′ + 4δ) + 1},

we have ddXh(i(πµ(z)), i(πµ(z′))) ≤ P ′
3. Since f is a quasi-isometry, there ex-

ists P1.2.52(P
′
3) > 0 such that d bX(π̂bµ(z), π̂bµ(z′)) = d bX(f(i(πµ(z)), f(i(πµ(z′))) ≤

P1.2.52.

Further, if x, y ∈ X̂ and d bX(x, y) ≤ 1 then similarly we can prove that there

exists a constant R > 0 (depending only upon δ) such that d bX(π̂bµ(x), π̂bµ(y)) ≤ R.

Thus we have the following lemma:

Lemma 1.2.53. Let δ ≥ 0. There exists a constant P1.2.53 > 0 depending only upon

δ such that the following holds:

Let X be δ-hyperbolic relative to a collection HX in the sense of Gromov and µ̂

be an electric geodesic segment in X̂. Then for all x, y ∈ X̂, d bX(π̂bµ(x), π̂bµ(y)) ≤
P1.2.53d bX(x, y) + P1.2.53.

Note 1.2.54. Electric projection may not be a nearest point projection from an

electric space onto an electric geodesic but analogous to Lemma 1.1.32, the above

lemma says that electric projections does not increase the distance much.

As a consequence of Lemma 1.1.36, we have the following Lemma which says that

electric projections and strictly type-preserving quasi-isometries ‘almost commute’

in electric spaces.
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Lemma 1.2.55. Let δ ≥ 0 and ν > 0. Suppose X1, X2 are two geodesic spaces such

that for each i = 1, 2, Xi is δ-hyperbolic relative to the collection HXi
of uniformly

ν-separated sets in the sense of Gromov. Let φ : X1 → X2 be a strictly type pre-

serving (K, ǫ)-quasi-isometry, φ̂ be the induced quasi-isometry from X̂1 to X̂2, µ̂1 be

a quasigeodesic in X̂1 joining a, b and µ̂2 be a quasigeodesic in X̂2 joining φ̂(a) to

φ̂(b). If p ∈ X̂1 then d bX2
(π̂bµ2(φ̂(p)), φ̂(π̂bµ1(p))) ≤ P1.2.55, for some constant P1.2.55

depending only on δ,K, ǫ, ν.

Proof. Let q ∈ X1, µ1 and µ2 be electroambient representatives of µ̂1 and µ̂2 respec-

tively. There exists P ′
1.1.37 > 0 (by Corollary 1.1.37) such that

dXh
2
(πµ2(φ(q)), φ(πµ1(q))) ≤ P ′

1.1.37.

Therefore ddXh
2

(πµ2(φ(q)), φ(πµ1(q))) ≤ dXh
2
(πµ2(φ(q)), φ(πµ1(q))) ≤ P ′

1.1.37.

Now the map f : X̂h
2 → X̂2 is a quasi-isometry, therefore there exists

P ′′
1.1.37(P

′
1.1.37) > 0 such that dcX2

(π̂bµ2(φ̂(q)), φ̂(π̂bµ1(q))) ≤ P ′′
1.1.37.

If p ∈ X̂1, there exists p′ ∈ X1 such that d bX1
(p, p′) ≤ 1. As φ̂ is a quasi-isometry,

d bX2
(φ̂(p), φ̂(p′)) ≤ S1 for some S1 > 0. From Lemma 1.2.53, there exists P1.2.53(S1) >

0 such that d bX1
(π̂bµ1(p), π̂bµ1(p

′)) ≤ P1.2.53 and d bX2
(π̂bµ2(φ̂(p)), π̂bµ2(φ̂(p′)) ≤ P1.2.53.

Since φ̂ is a quasi-isometry there existsK2 > 0 such that dcX2
(φ̂(π̂bµ1(p)), φ̂(π̂bµ1(p

′))) ≤
K2. Therefore d bX2

(π̂bµ2(φ̂(p)), φ̂(π̂bµ1(p))) ≤ P1.2.53 + P ′′
1.1.37 + K2. Taking P1.2.55 =

P1.2.53 + P ′
1.1.37 +K2 we have the required result.

1.2.2 Relatively Hyperbolic Groups

Let us consider two isometries a, b of H2 such that it generate a free group, F(a, b),

which acts properly discontinuously by isometries on H2 and the quotient space

H2/F(a, b) is homeomorphic to a once punctured torus S. Further, H2/F(a, b) is

quasi-isometric to the ray [0,∞). Let K = π1(S), then K = F(a, b). Let ΓK be the

Cayley graph of K with respect to the generating set {a, b}. Let p ∈ ∂H2 be the end

point of a lift of this ray to H2 and K1 be the stabilizer subgroup of p. For k ∈ K,

let HkK1 denote the closed set in ΓK corresponding to the left coset kK1 of K1 in K.

Then ΓK is strongly hyperbolic relative to the collection HK1 = {HkK1 : k ∈ K}.
Motivated by this example we give the definition of a relatively hyperbolic group.

The groups and its subgroups in the following definitions are assumed to be infinite.

Definition 1.2.56. (Gromov [Gro87])

(1) Let δ ≥ 0. A finitely generated group G is said to be δ-hyperbolic relative to the

finitely generated subgroups H1, ..., Hn in the sense of Gromov (A) if it acts freely

and properly discontinuously by isometries on a proper δ-hyperbolic metric space X

such that the following holds:
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(i) The quotient space X/G is quasi-isometric to union of n-copies of [0,∞) joined

to 0.

(ii) For i ∈ {1, 2, ..., n}, there exists a lift ri : [0,∞) → X of the ith copy of [0,∞)

such that Hi is the stabilizer subgroup of ri(∞) ∈ ∂X. The subgroups Hi’s are said

to be Parabolic or Cusp subgroups and the end points ri(∞) in ∂X are said to be

parabolic end points.

(2) G is said to be hyperbolic relative to finitely generated subgroups H1, ..., Hn in the

sense of Gromov (A) if G is δ-hyperbolic relative to the finitely generated subgroups

H1, ..., Hn in the sense of Gromov (A) for some δ ≥ 0.

Thus for a group G strongly hyperbolic relative to a subgroup H (in the sense

of Gromov (A)) there is a natural bijective correspondence between parabolic end

points and parabolic subgroups of G. In fact, a parabolic end point corresponds to

a subgroup of the form aHa−1 for some a ∈ G.

In reference to Definition 1.2.16, we have another definition of a strongly relatively

hyperbolic group.

Definition 1.2.57. Let δ ≥ 0. Let G be a finitely generated group and H be a finitely

generated subgroup of G such that the generating set of G contains the generating

set of H. G is said to be δ- hyperbolic relative to H in the sense of Gromov (B) if

the Cayley Graph ΓG is δ-hyperbolic relative to the collection HH = {KaH : a ∈ G}
in the sense of Gromov (refer to Definition 1.2.16), where KaH is the closed set in

ΓG obtained by left translating the Cayley graph ΓH by a in ΓG.

G is said to be hyperbolic relative to H in the sense of Gromov (B) if G is δ-hyperbolic

relative to H in the sense of Gromov (B) for some δ ≥ 0.

Note that as the generating set of G contains the generating set of H , KaH is an

intrinsically geodesic closed subset of ΓG and as ΓG is locally finite and symmetric

about each point, the elements of HH are uniformly properly embedded.

Definition 1.2.58. (Farb [Far98]) Let δ̂ ≥ 0. Suppose G is a finitely generated

group and H is a finitely generated subgroup of G. Let ΓG be a Cayley graph

of G. For each left coset gH of H in G, let KgH be the corresponding closed

set in ΓG. We say that G is weakly δ̂-hyperbolic relative to the subgroup H if

ΓG is weakly δ̂-hyperbolic relative to the collection of closed sets HH = {KgH :

gH is a left coset of H in G} (refer to definition 1.2.3).

The process of attaching a cone point to the closed set KgH above will also be

called as coning the left coset gH to a point.
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Lemma 1.2.59. (Corollary 3.2, [Far98]) Let G be a finitely generated group. Sup-

pose Γ1,Γ2 are two Cayley graphs of G with respect to finite generating sets S1, S2

of G respectively. Let H be a subgroup of G. Then Γ̂1 is quasi-isometric to Γ̂2. In

particular, the property of a group G being hyperbolic relative to a subgroup H is

independent of the choice of generating sets for both G and H.

Recall that geodesics in the coned-off space E(ΓG,H) = Γ̂G were called as electric

geodesics. For a path γ ⊂ ΓG, there is an induced path γ̂ in Γ̂G obtained by replacing

the portion of γ inside a left coset by edge path of length 1 passing through the

cone point corresponding to that left coset. If γ̂ is an electric geodesic (resp. P -

quasigeodesic), γ was called a relative geodesic (resp. relative P -quasigeodesic). If

γ̂ passes through some cone point v(gH), we say that γ̂ penetrates the coset gH .

Recall that γ̂ is said to be an electric (K, ǫ)-quasigeodesic in (the electric space) Γ̂G

without backtracking if γ̂ is an electric K-quasigeodesic in Γ̂G and γ̂ does not return

to any left coset after leaving it.

The pair (G,H) is said to satisfy bounded coset penetration property if elec-

tric quasigeodesics without backtracking starting and ending at same points

in ΓG have similar intersection patterns with elements from HH = {KgH :

gH is a left coset of H in G}.
Next we recall Farb’s definition of relatively hyperbolic group (in the strong

sense) from [Far98]:

Definition 1.2.60. (Farb [Far98]) Let δ̂ ≥ 0. G is said to be δ̂-hyperbolic relative to

H in the sense of Farb if G is weakly δ̂-hyperbolic relative to H and the pair (G,H)

satisfies bounded coset penetration property.

More generally, we can define a group hyperbolic relative to a finite set of sub-

groups. Let G be a finitely generated group and let {H1, ..., Hm} be a finite set of

finitely generated subgroups of G. We form a new graph Γ̂G = Γ̂G(H1, ..., Hm) from

the Cayley graph ΓG of G as follows: for each left coset gHi (1 ≤ i ≤ m) of Hi in G,

add a vertex v(gHi) to ΓG, and add an edge of length of length 1
2

from each element

ghi of gHi to the vertex v(gHi). We call this graph Γ̂G the coned-off Cayley graph

of G with respect to {H1, ..., Hm}.

Definition 1.2.61. [Far98] Let δ̂ ≥ 0. A finitely generated group G is said to be

δ̂-hyperbolic relative to a finite set of finitely generated subgroups {H1, ..., Hm} in the

sense of Farb if the following conditions are satisfied:

1. The coned-off graph Γ̂G is δ̂-hyperbolic.
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2. Any two geodesics in Γ̂G with same end points satisfy bounded coset penetration

properties with respect to each left coset gHi.

G is said to be hyperbolic relative to a finite set of finitely generated subgroups

{H1, ..., Hm} in the sense of Farb if G is δ̂-hyperbolic relative to a finite set of

finitely generated subgroups {H1, ..., Hm} in the sense of Farb for some δ̂ ≥ 0.

In [Bow97] (Theorem 7.10 of [Bow97]), Bowditch showed the equivalence of fol-

lowing two definitions:

Definition C1 : We say that a group G is hyperbolic relative to a set G of infi-

nite groups, if G admits a properly discontinuous isometric action on a path-metric

space, X, with the following properties:

(1) X is proper and hyperbolic,

(2) every point of the boundary of X is either a conical limit point or a bounded

parabolic point,

(3) the elements of G are precisely the maximal parabolic subgroups of G, and

(4) every element of G is finitely generated.

Definition C2 : We say that G is hyperbolic relative to G, if G admits an action on

a connected graph, K, with the following properties:

(1) K is hyperbolic, and each edge of K is contained in only finitely many circuits

of length n for any given integer, n,

(2) there are finitely many G-orbits of edges, and each edge stabilizer is finite,

(3) the elements of G are precisely the infinite vertex stabilizers of K, and

(4) every element of G is finitely generated.

In [Dah03], (Annexe A of [Dah03]), Dahamani showed that definitions C1, C2 and

Farb’s definition 1.2.60 of relatively hyperbolic groups are equivalent. Farb (Propo-

sition 4.6, Proposition 4.10 of [Far98]), Szczepański (Theorem 1 of [Szc98]), and

Bumagin (Theorem 1.6 of [Bum05]) showed that if a group G is hyperbolic rela-

tive to {H1, ..., Hm} in the sense of Gromov (A) then G is hyperbolic relative to

{H1, ..., Hm} in the sense of Farb. Conversely, Groves and Manning (Theorem 3.25

of [GM08]) showed that if G is hyperbolic relative to {H1, ..., Hm} in the sense of

Farb then G is hyperbolic relative to {H1, ..., Hm} in the sense of Gromov (A). Thus,

we have the following theorem:

Theorem 1.2.62. ([Bow97], [Szc98], [GM08], [Bum05]) G is strongly hyperbolic

relative to {H1, ..., Hm} in the sense of Farb if and only if G is hyperbolic relative

to {H1, ..., Hm} in the sense of Gromov (A).

The following theorem is the group theoretic version of Theorem 1.2.35 and

Theorem 1.2.48.
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Theorem 1.2.63. Let G be a finitely generated group and H be a finitely generated

subgroup of G such that the generating set of G contains the generating set of H. G

is hyperbolic relative to H in the sense of Farb if and only if G is hyperbolic relative

to H in the sense of Gromov (B).

Note 1.2.64. Thus we have the following equivalence:

G is (strongly) hyperbolic relative to H in the sense of Farb ⇔ G is hyperbolic

relative to H in the sense of Gromov (A) ⇔ G is hyperbolic relative to H in the

sense of Gromov (B).

Definition 1.2.65. (Bowditch [Bow97]) Relative Hyperbolic Boundary: Let

G be a group hyperbolic relative to H, then by Definition 1.2.57, G acts properly

discontinuously on the hyperbolic space Γh
G obtained from ΓG by gluing hyperbolic

cones. The relative hyperbolic boundary of G is the Gromov boundary, ∂Γh
G, of Γh

G.

We denote the relative hyperbolic boundary of the pair (G,H) by ∂Γ(G,H).

Bowditch in [Bow97] showed that ifG acts properly discontinuously by isometries

on a proper hyperbolic space X and the action of G on ∂X is geometrically finite

(i.e. every point of ∂X is either a conical limit point or a bounded parabolic point)

and minimal (i.e. if the limit set ΛG = ∂X) then ∂X is homeomorphic to ∂Γ(G,H).

1.2.3 Partial Electrocution

The notion of Partial Electrocution was introduced in [MR08]. This is a modification

of Farb’s [Far98] construction of an electric space described earlier. In a partially

electrocuted space, instead of coning all of a horosphere down to a point we cone

only it to a hyperbolic metric space.

Definition 1.2.66. [MR08] Let δ ≥ 0, ν > 0 and (X,H,G,L) be an ordered quadru-

ple such that the following holds:

1. X is a geodesic metric space and H = {Hα : α ∈ Λ} is a collection of uniformly

ν-separated, intrinsically geodesic and uniformly properly embedded closed sub-

sets of X. X is δ-hyperbolic relative to H in the sense of Gromov.

2. L = {Lα : α ∈ Λ} is a collection of δ-hyperbolic geodesic metric spaces and

G is a collection of (uniformly) Lipschitz onto maps gα : Hα → Lα i.e. there

exists a number P1.2.66 > 0 such that dLα
(gα(x), gα(y)) ≤ P1.2.66dHα

(x, y) for

all x, y ∈ Hα and for all index α. Note that the indexing set for Hα, Lα, gα is

common.
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The partially electrocuted space or partially coned off space PE(X,H,G,L)

corresponding to (X,H,G,L) is the quotient space obtained from X as follows:

PE(X,H,G,L) = X ⊔ (⊔α(Hα × [0, 1])) ⊔ (⊔αLα)/ ∪α {(x, 0) ∼ x, (x, 1) ∼ gα(x) :

x ∈ Hα}. (The metric on Hα × [0, 1] is the product metric.)

PE(X,H,G,L) is equipped with the quotient metric and the metric is denoted by

dpel. In short, PE(X,H,G,L) will be denoted by Xpel.

dpel is a metric: dpel is indeed a pseudometric (Refer to [BH99]). Now, let x, y ∈
Xpel such that dpel(x, y) = 0. If x (or y) lie outside sets in {Hα×{0}, Hα×{1} : Hα ∈
H}, then there exists η > 0 such that dpel(x,Hα×{0}) > η and dpel(x,Hα×{1}) > η

for all Hα ∈ H. (Note that Hα × {1} is identified with Lα in Xpel). Therefore, x

must equals y. As dHα×[0,1](Hα ×{0}, Hα ×{1}) = 1, therefore if x ∈ Hα ×{j} then

y /∈ Hα × {j + 1}, where j ∈ {0, 1}(mod 2).

Now, let x, y ∈ Hα × {1}, then for 0 < ǫ < 1 there is a sequence of points

p0, q0, p1, q1, ..., pn, qn in Hα × {1} such that p0 = x, qn = y; [pi, qi] is a geodesic

in Hα × [0, 1]; [gα(qi), gα(pi+1)] is a geodesic in Lα and

∑

0≤i≤n

dHα×[0,1](pi, qi) +
∑

0≤i≤n−1

dLα
(gα(qi), gα(pi+1)) ≤ ǫ.

As Hα × [0, 1] is equipped with product metric, therefore dHα×[0,1](pi, qi) =

dHα×{1}(pi, qi). Also, dLα
(gα(pi), gα(qi)) ≤ P1.2.66dHα×{1}(pi, qi). Therefore,

dLα
(gα(x), gα(y)) ≤

∑

0≤i≤n

dLα
(gα(pi), gα(qi)) +

∑

0≤i≤n−1

dLα
(gα(qi), gα(pi+1))

≤ P1.2.66ǫ+ ǫ → 0 as ǫ→ 0.

Hence gα(x) = gα(y). Now gα(x) = x and gα(y) = y in Xpel. Thus, x = y. Similarly,

if x, y ∈ Hα × {0} then x = y.

In Farb’s construction Lα is just a point. Here, in our context partial electrocution

will occur in case of tree of coned-off spaces where Lα will turned around to be a

tree.

In a hyperbolic metric space geodesics diverge exponentially, the following lemma

‘quasi-fies’ this statement:

Lemma 1.2.67. (Proposition 4.10, [Mit98b]) Given δ, A0 ≥ 0, there exists σ1.2.67 >

1, B1.2.67 > 0 such that if [x, y], [y, z], [z, w] are geodesics in a δ-hyperbolic metric

space (Z, dZ) with (x, z)y ≤ A0, (y, w)z ≤ A0 and dZ(y, z) ≥ B1.2.67, then any path

joining x, w and lying outside a D-neighborhood of [y, z] has length greater than or

equal to σD
1.2.67dZ(y, z), where D = min{dZ(x, [y, z]) − 1, dZ(w, [y, z]) − 1}.
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Corollary 1.2.68. Given δ ≥ 0, there exists σ1.2.68 > 1, B1.2.68 > 0 such that the

following holds:

Let (Z, dZ) be a δ-hyperbolic metric space, x, y ∈ Z and λ be a geodesic segment in Z

such that dZ(πλ(x), πλ(y)) ≥ B1.2.68 then for any path joining x to y and lying outside

a D-neighborhood of [x, y] has length greater than or equal to σD
1.2.68dZ(πλ(x), πλ(y)),

where D = min{dZ(x, πλ(x)) − 1, dZ(y, πλ(y)) − 1}.

Proof. Consider the triangle △xπλ(x)πλ(y). Since Z is δ-hyperbolic, triangles are δ-

thin. Therefore, there exist w1 ∈ [x, πλ(x)], w2 ∈ [πλ(x), πλ(y)], w3 ∈ [x, πλ(y)] such

that diam{w1, w2, w3} ≤ δ. Since πλ is a nearest point projection, dZ(w1, πλ(x)) ≤ δ.

Thus, (x, πλ(y))πλ(x) = dZ(w1, πλ(x)) ≤ δ. Similarly, (y, πλ(x))πλ(y) ≤ δ. By Lemma

1.2.67, we have the required result.

Corollary 1.2.69. Given δ, Q ≥ 0 there exist B1.2.69 > 0, σ1.2.69 > 1 such that the

following holds:

Let (Z, dZ) be a δ-hyperbolic metric space and S be a Q-quasiconvex set. Suppose

x, y ∈ Z and dZ(πS(x), πS(y)) ≥ B1.2.69. Let β be any path in Z joining x to y such

that β lie outside D-neighborhood of S, where D = min{dZ(x, πS(x)), dZ(y, πS(y))},
then

lZ(β) > σD−Q−1
1.2.69 dZ(πS(x), πS(y))

Proof. Let λ be a geodesic segment joining πS(x) and πS(y). It is proved in

the first part of the proof of Lemma 1.1.31 that dZ(πS(x), πλ(x)) ≤ 3δ + Q

and dZ(πS(y), πλ(y)) ≤ 3δ + Q. Let B1.2.69 = max{B1.2.68 − 2(3δ + Q), 4(3δ +

Q)}. Since dZ(πS(x), πS(y)) ≥ B1.2.69, we have dZ(πλ(x), πλ(y)) ≥ B1.2.68 and

dZ(πλ(x), πλ(y)) >
1
2
dZ(πS(x), πS(y)). Since β lie outside D-neighborhood of S,

it lie outside (D −Q)-neighborhood of λ. Therefore by Corollary 1.2.68, we have

lZ(β) ≥ σD−Q−1
1.2.68 dZ(πλ(x), πλ(y)).

Then,

lZ(β) >
1

2
σD−Q−1

1.2.68 dZ(πS(x), πS(y)).

Taking σ1.2.69 = 1

2
1

D−Q−1
σ1.2.68, we have the required result.

Partially Electrocuted Space is Hyperbolic

Throughout this subsection, we assume that

• X is a geodesic metric space,

• ν > 0 and H is a collection of uniformly ν-separated, intrinsically geodesic and

uniformly properly embedded closed subsets of X, and
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• G(X,H), E(X,H) are geodesic spaces.

Recall from Lemma 1.2.24 that the hyperbolic cones Hh are 4δ-quasiconvex.

Lemma 1.2.70. Let δ ≥ 0 and X be δ-hyperbolic relative to the collection H in the

sense of Gromov. If λ be a geodesic in G(X,H), then the followings hold:

1). Let N(λ) denote the union of λ and hyperbolic cones penetrated by λ then N(λ)

is a Q1.2.70-quasiconvex set in G(X,H) for some Q1.2.70 > 0 depending on δ.

2). Let NX(λ) = N(λ) ∩X, then NX(λ) is a Q1
1.2.70-quasiconvex set in X for some

Q1
1.2.70 > 0.

Proof. 1). Let x, y ∈ N(λ) and [x, y] be a geodesic in G(X,H) = Xh joining x

and y. We assume x, y lie on different hyperbolic cones Hh
1 , H

h
2 respectively. Fix

p ∈ N(λ)∩Hh
1 and q ∈ N(λ)∩Hh

2 . Let µ̂ be an electric geodesic in X̂h joining x and

y. Let x1 be the exit point of µ̂ from Hh
1 and y1 be the entry point of µ̂ respectively

to Hh
2 . We join p to x1 by an edge path ep of length 1 and join q to y1 by an edge path

eq of length 1. Let µ̂1 be the concatenation of ep, subsegment of µ̂ joining x1, y1

and eq; then µ̂1 is a (1, 2)-quasigeodesic path without backtracking. By Lemma

1.2.50, there exists Q1.2.50 > 0 such that any electroambient path representative µ1

of µ̂1 and λ lie in Q1.2.50-neighborhood of each other. Let µ be an electroambient

path representative µ of µ̂, then the subsegment of µ joining x1, y1 lie in the Q1.2.50-

neighborhood of λ and hence µ lie in Q1.2.50-neighborhood of N(λ). Also, by Lemma

1.2.50, geodesic [x, y] in Xh lie in the Q1.2.50-neighborhood of µ, therefore [x, y] lie

in 2Q1.2.50-neighborhood of N(λ).

If x, y lie in same hyperbolic cone Hh, then as hyperbolic cones are 4δ-quasiconvex,

[x, y] lie in 4δ-neighborhood of N(λ). Taking Q1.2.70 = max{2Q1.2.50, 4δ}, we have

the required result.

2). Let Q = Q1.2.70. For δ, Q ≥ 0, there exists B1.2.69 > 0, σ1.2.69 ≥ 1 such that the

Lemma 1.2.69 holds.

Let a, b ∈ NX(λ) and α : [0, dX(a, b)] → X be a geodesic in X joining a and b.

Let [s, t] be a maximal subinterval of [0, dX(a, b)] such that α|[s,t] lie outside a D-

neighborhood of NX(λ) in Xh (D will be chosen later).

Let B = 1 + B1.2.69. We partition [s, t] by points s = p0 < p1 < ... < pn−1 <

pn = t such that dXh(πN(λ)(α(pi)), πN(λ)(α(pi+1))) = B for 1 ≤ i ≤ n − 2 and

dXh(πN(λ)(α(pn−1)), πN(λ)(α(pn))) ≤ B. Let di = dXh(α(pi)), πN(λ)(α(pi))). Now

consider the subsegment α|[pi,pi+1]. Let σ = σ1.2.69. Assume di ≤ di+1, then by
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corollary 1.2.69, we have

σdi−Q−1dXh(πN(λ)(α(pi)), πN(λ)(α(pi+1))) ≤ lXh(α|[pi,pi+1])

= lX(α|[pi,pi+1]) (1.3)

= dX(α(pi), α(pi+1)).

Now D ≤ di, therefore

σD−Q−1dXh(πN(λ)(α(pi)), πN(λ)(α(pi+1))) ≤ dX(α(pi), α(pi+1))

for 1 ≤ i ≤ n− 2.

Therefore by triangle inequality,

dXh(πN(λ)(α(s)), πN(λ)(α(pn−1))) ≤ 1
σD−Q−1dX(α(s), α(pn−1)).

Now dXh(πN(λ)(α(pi)), πN(λ)(α(pi+1))) = B for 1 ≤ i ≤ n− 2 and

dXh(πN(λ)(α(pn−1)), πN(λ)(α(pn))) < B. Since X is properly embedded in Xh, there

exists B1 > 0 such that dX(πN(λ)(α(pi)), πN(λ)(α(pi+1))) ≤ B1 for all 1 ≤ i ≤ n− 1.

For 1 ≤ i ≤ n− 2,

dX(πN(λ)(α(pi)), πN(λ)(α(pi+1))) ≤ B1

≤ B1dXh(πN(λ)(α(pi)), πN(λ)(α(pi+1))).

By triangle inequality,

dX(πN(λ)(α(s)), πN(λ)(α(t))) ≤ B1dXh(πN(λ)(α(s)), πN(λ)(α(pn−1))) +B1

≤ B1(
1

σD−Q−1
)dX(α(s), α(pn−1)) +B1

≤ B1(
1

σD−Q−1
)dX(α(s), α(t)) +B1....(∗)

Now dXh(α(s), πN(λ)(α(s))) ≤ D , dXh(α(t), πN(λ)(α(t))) ≤ D. Since X is prop-

erly embedded in Xh, there exists D1(D) > 0 such that dX(α(s), πN(λ)(α(s))) ≤
D1 , dX(α(t), πN(λ)(α(t))) ≤ D1

Therefore, dX(α(s), α(t)) ≤ 2D1 + dX(πN(λ)(α(s)), πN(λ)(α(t))).

Thus,

dX(α(s), α(t)) ≤ (2D1 +B1)σ
D−Q−1

σD−Q−1 − B1

.

We choose D such that σD−Q−1 −B1 ≥ 1. Thus lX(α|[s,t]) ≤ (2D1 +B1)σ
D−Q−1.

Let W = (2D1 + B1)σ
D−Q−1. Taking Q1

1.2.70 = D1 + W
2

, we have the required

result.

Remark 1.2.71. With the notation as Lemma 1.2.70, by equation (∗), we have that

if α : [0, 1] → X is a path in X such that α lie outside a D-neighborhood of N(λ) in
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Xh, then there exist σ > 1, B1 > 0 (where σ,B1 depend only upon the hyperbolicity

constant δ of Xh and the quasiconvex constant Q = Q1.2.70 of N(λ)) such that

dX(πN(λ)(α(0)), πN(λ)(α(1))) ≤ (
B1

σD−Q−1
)lX(α) +B1.

Corollary 1.2.72. Let δ ≥ 0 and X be δ-hyperbolic relative to the collection H in the

sense of Gromov. For a k-quasigeodesic path µ in Xh, there exists Q1.2.72(δ, k) > 0

such that

(i) N(µ) is a Q1.2.72-quasiconvex set in Xh,

(ii) NX(µ) := N(µ) ∩X is a Q1
1.2.72-quasiconvex set in X.

Corollary 1.2.73. Let (X,H.G.L) be quadruple as in Definition 1.2.66, then Hα ∈
H, Lα ∈ L are quasi-isometrically embedded in X and Xpel respectively.

Proof. By Proposition 1.1.9, we can assume Xpel to be a connected graph of edge

length one. As (X,H) and (Xpel,L) are strongly relatively hyperbolic space, by

Lemma 1.2.70, Hα, Lα are quasiconvex in X,Xpel respectively. Hα is properly em-

bedded in X by hypothesis, therefore Hα is quasi-isometrically embedded in X. To

see Lα is properly embedded in Xpel, let x, y ∈ Lα such that dXpel
(x, y) ≤ M and

λp be a geodesic in Xpel joining x, y. Now lXpel
(λp) = l dXpel

(λp), therefore λp is a

(1,M)-tamed path in X̂pel. Let λi : [0, 1] → Xpel, i ≤ i ≤ N , be N components

of λp \ Lα and λ̂i be the coned-off path in X̂pel obtained from λi, then each λ̂i is a

(1,M)-tamed path without backtracking in X̂pel. By similar intersection pattern 2,

for all i, dLα
(λi(0), λi(1)) ≤ I for some I > 0. Thus,

dLα
(x, y) ≤

∑

1≤i≤N

dLα
(λi(0), λi(1)) +

∑

1≤i≤N−1

dLα
(λi(1), λi+1(0)) ≤ NI +M.

As Xpel is a graph, N ≤ M . Therefore, dLα
(x, y) ≤ MI +M. Thus, Lα is properly

embedded in Xpel and hence quasi-isometrically embedded in Xpel.

Remark 1.2.74. Note that in the proof of the Lemma 1.2.70, if the geodesic α in X

is replaced by a K-quasigeodesic for some K ≥ 1, then also there exists Q1.2.74 > 0

such that α lies in the Q1.2.74-neighborhood of NX(λ). (Without loss of general-

ity, by Lemma 1.1.23, we can assume that α is a K-tamed path. At equation 1.3,

incorporate lX(α[pi,pi+1]) ≤ KdX(α(pi), α(pi+1))+K, rest of the argument is similar)

Let j : X →֒ Xpel denote the inclusion. We define a map ĵ : X̂ → X̂pel as follows:

If x ∈ X, then define ĵ(x) = j(x).

If x is a cone point over some horosphere-like set Hα, then define î(x) as the cone

point over the hyperbolic space Lα.



Chapter 1: Relative Hyperbolicity 64

Let h ∈ Hα and e : [0, 1
2
] → X̂ be the edge of length 1

2
joining h ∈ Hα ∈ H and the

cone point v(Hα) over Hα and let e′ : [0, 1
2
] → Xpel be the edge of length 1

2
joining

g(h) ∈ Lα and the cone point v(Lα). If x = e(t), where t ∈ (0, 1
2
] , then define

ĵ(x) = e′(t).

Let x, y ∈ X, then there exists a sequence of points in x = p0, q0, ..., pn, qn = y

in X such that for each i, [pi, qi] is a geodesic in X and [qi, pi+1] is a geodesic in the

coned-off space Ĥi for some Hi ∈ H; and

∑

1≤i≤n

dX(pi, qi) +
∑

0≤i≤n−1

dcHi
(qi, pi+1) ≤ d bX(x, y) + 1.

Now qi, pi+1 ∈ Hi and recall that Hi × {1} identified with Li. Let ei be the edge

path of length one joining (pi, 1), (qi, 1) and passing through the cone point v(Li)

over Li. Then for each i, αi = [qi, (qi, 1)] ∪ ei ∪ [(pi+1, 1), pi+1] is a path in X̂pel of

length 3. Therefore,

dpel(x, y) ≤
∑

1≤i≤n

dX(pi, qi) + 3n

≤ (d bX(x, y) + 1) + 3(
d bX(x, y)

ν
+ 1)

≤ (1 +
3

ν
)d bX(x, y) + 4

Similar to the proof of Lemma 1.2.28, we have d bX(x, y) ≤ d dXpel
(x, y)(1 + 1

ν
) + 2.

Thus, we have the following lemma:

Lemma 1.2.75. There exist K1.2.75 ≥ 1, ǫ1.2.75 ≥ 0 depending on ν such that ĵ is a

(K1.2.75, ǫ1.2.75)-quasi-isometry.

Thus, if X̂ is a hyperbolic metric space then so is X̂pel. Also, note that if

dHα
(x, y) ≤ D for any x, y ∈ Hα ∈ H then dLα

(gα(x), gα(y)) ≤ P1.2.66D. Hence,

quasigeodesic paths in X̂pel satisfy similar intersection pattern with horosphere-

like sets in L if quasigeodesic paths in X̂ satisfy similar intersection pattern with

horosphere-like sets in H. Thus, if X is hyperbolic relative to H in the sense of Farb,

then Xpel is hyperbolic relative to L in the sense of Farb. Therefore, by Theorem

1.2.35, there exists δp(δ, ν, P1.2.66) ≥ 0 such that the space Xh
pel = G(Xpel,L) is a

δp-hyperbolic metric space.

Let µ̂ = î(λ̂) then µ̂ \ ⋃
Hα∈H

(Hα × [0, 1]) = λ̂ \ ⋃
Hα∈H

Hα. Let

• N(λ̂) be the union of λb and the hyperbolic cones from Hh intersected by λ̂, where

λb = λ̂ \ ⋃
Hα∈H

Hα.

• N(µ̂) be the union of µ̂ \⋃
Lα∈L

Lα and the hyperbolic cones Lh
α intersected by µ̂.
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• NX(λ̂) := N(λ̂) ∩X and NXpel
(µ̂) := N(µ̂) ∩Xpel.

By Lemma 1.2.50 and Corollary 1.2.72, N(λ̂) is Q1.2.72-quasiconvex inXh and NX(λ̂)

is Q1
1.2.72-quasiconvex in X. Since Xpel is δp-hyperbolic relative to L, therefore there

exist Qp(δp), Q
1
p(δp) > 0 such that N(µ̂) is Qp-quasiconvex in Xh

pel and NXpel
(µ̂) is

Q1
p-quasiconvex in Xpel.

Lemma 1.2.76. Let K ≥ 1. Let z, w ∈ NX(λ̂) and βpel be a K-tamed path in Xpel

joining z, w. Then the following holds:

1) There exists Q1.2.76 > 0 such that βpel ⊂ NbhdXpel
(NX(λ̂);Q1.2.76) and λb ⊂

NbhdXpel
(βpel;Q1.2.76).

2) Let H ∈ H be a horosphere-like set that βpel intersects but λ̂ does not, then the

H-distance between the first entry point and last exit point of βpel to H is at most

I1.2.76 for some I1.2.76 > 0 depending on the hyperbolicity constant δ of Xh and K.

Proof. 1) Let µ̂ = ĵ(λ̂) as above. From Remark 1.2.74 it follows that there ex-

ists Q = Q1.2.74 > 0 such that βpel ⊂ NbhdXpel
(NXpel

(µ̂);Q). Now the Haus-

dorff distance between NX(λ̂) and NXpel
(µ̂) in Xpel is at most one. Therefore,

βpel ⊂ NbhdXpel
(NX(λ̂);Q+ 1).

Second part: Let βpel be defined on the interval [l,m]. Let l = s0 < s1 < ... <

sn = m be a partition of [l,m] such that for all i < n, lXpel
(βpel|[si−1,si]) = 1

and lXpel
(βpel|[sn−1,sn]) ≤ 1. For each i, there exists qi ∈ NXpel

(µ̂) such that

dXpel
(βpel(si), qi) ≤ Q. Now there exist q̂i ∈ µ̂ such that d dXpel

(qi, q̂i) ≤ 1. Let

µ̂i be the subsegment of µ̂ joining q̂i and q̂i+1. If qi, qi+1 does not lie on the same

horosphere-like set, then due to similar intersection patterns of [pi, p̂i]∪µ̂i∪[p̂i+1, pi+1]

and βpel|[si,si+1] with the sets in L, there exists Q′ > 0 such that µ̂ \ ∪Hα∈H(Hα ×
[0, 1]) ⊂ NbhdXpel

(βpel|[si−1,si];Q
′). Now µ̂ \ ∪Hα∈H(Hα × [0, 1]) = λb, thus for

x ∈ λb there exist i and x′ ∈ βpel|[si−1,si] ⊂ βpel such that dXpel
(x, x′) ≤ Q′. Taking

Q1.2.76 = max{Q+ 1, Q′}, we have the required result.

2) From above, for each i, there exists pi ∈ NX(λ̂) such that dXpel
(βpel(si), pi) ≤ Q+1.

Then dXpel
(pi, pi+1) ≤ 2(Q+1)+1. Now NX(λ̂) is properly embedded and quasicon-

vex in Xpel, hence it is quasi-isometrically embedded in Xpel. Thus, for each i, there

exists a path λi ⊂ NX(λ̂) joining pi, pi+1 such that lXpel
(λi) ≤ Q′

1 for some Q′
1 > 0.

Let λa be the concatenation of paths λi and Q1 =
Q′

1

2
+ Q, then λa ⊂ NX(λ̂) with

end points z, w and λa ⊂ NbhdXpel
(βpel;Q1).

Let λa be defined on the interval [0, 1], then for each s ∈ [0, 1] there exists

ps ∈ βpel such that dXpel
(λa(s), ps) ≤ Q1. Let [s0, t0] be a maximal subinter-

val of [0, 1] such that λa|[s0,t0] ⊂ NbhdXpel
(H ;Q1). Due to maximality of [s0, t0],

there exist ps0, pt0 ∈ βpel such that geodesics [λa(s0), ps0], [λa(t0), pt0 ] in Xpel does

not penetrate H but dXpel
(λa(s0), H) ≤ Q1 and dXpel

(λa(t0), H) ≤ Q1. Hence
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d dXpel
(λa(s0), λa(t0)) ≤ 2Q1 + 1. Suppose λ′a is the subsegment of λa joining

λa(s0), λa(t0), then the coned-off path λ̂′a intersects at most 2Q1+1-many horosphere-

like sets. Let N([λa(s0), ps0]) be the union of

• subsegments of [λa(s0), ps0] lying outside horosphere-like sets and are in X and

• horosphere-like sets in X penetrated by [λa(s0), ps0].

Note that N([λa(s0), ps0]) ⊂ X and similarly N([λa(t0), pt0 ]) is defined. As lengths of

subsegments of [λa(s0), ps0] lying outside horosphere-like sets are uniformly bounded

in Xh, hence they are all uniform quasigeodesics in Xh.

Let πH : X → H be a nearest point projection. Now horosphere-like sets are mu-

tually co-bounded and visually bounded. Therefore there exists I1
1.2.76 > 0 such

that the diameter of the set πH(N([λa(s0), ps0]) ∪ λ′a ∪ N([λa(t0), pt0 ])) is at most

I1
1.2.76 (proof of this fact is same as the proof of property 1 of Lemma 1.2.44). Thus

dH(πH(ps0), πH(pt0))) ≤ I1
1.2.76.

Note that dXpel
(ps0 , πH(ps0)) ≤ 2Q1 and dXpel

(pt0 , πH(pt0)) ≤ 2Q1. Hence

dXpel
(ps0, pt0) ≤ 2Q1 + I1

1.2.76 + 2Q1 = 4Q1 + I1
1.2.76. Let β ′

pel be the subsegment

of βpel joining ps0 and pt0 , then as βpel is a K-tamed path, we have lXpel
(β ′

pel) ≤
4Q1K+I1

1.2.76 +K. Let β̂ ′
pel be the coned-off path in X̂ obtained from β ′

pel by replac-

ing all the subpaths joining the first entry point and last exit point to horosphere-

like sets in H by edge paths of length one. Then as length of β ′
pel is at most

4Q1K + I1
1.2.76K +K, hence β̂ ′

pel is a (1, 4Q1K + I1
1.2.76K +K)-tamed path. Suppose

xH , yH are the entry and exit points respectively of βpel toH then xH , yH respectively

are also the entry and exit points of β̂ ′
pel to H . By applying Lemma 1.2.33, there

exists I1.2.33 > 0 such that dH(xH , πH(ps0)) ≤ I1.2.33 and dH(yH, πH(pt0)) ≤ I1.2.33.

Hence dH(xH , yH) ≤ I1.2.33 + I1
1.2.76 + I1.2.33 = 2I1.2.33 + I1

1.2.76. Taking I1.2.76 =

2I1.2.33 + I1
1.2.76, we have the required result.

Theorem 1.2.77. [MR08, MP] Let δ ≥ 0 and suppose X is δ-hyperbolic relative

to H in the sense of Gromov. For (X,H,G,L) an ordered quadruple as in Defini-

tion 1.2.66 above, (PE(X,H,G,L), dpel) is a δpel
1.2.77-hyperbolic metric space for some

δpel
1.2.77 ≥ 0 depending on δ, P1.2.66, ν.

Proof. To prove hyperbolicity of (Xpel, dpel), it suffices to prove that for all K ≥ 1

there exists W = W (K) such that for all a, b ∈ Xpel, K-quasigeodesics bigons in

Xpel are W -thin, i.e, they lie in W -neighborhood of each other in Xpel. We assume

a, b ∈ X as Hausdorff distance (in the metric dpel) between X and Xpel is at most

one. Let β1, β2 be two K-quasigeodesics in Xpel joining a, b and λ̂ be a geodesic

in X̂ joining a, b. In view of Lemma 1.1.23, we can assume β1, β2 to be K-tamed

quasigeodesic path.
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Now β1 (resp. β2) and λ̂ track each other outside a Q1.2.76-neighborhood of

horosphere-like sets in Xpel, hence β1 and β2 track each other outside Q1.2.76-

neighborhood of horosphere-like sets in Xpel.

Let β ′
1, β

′
2 be the portions of β1, β2 respectively, lying inside Q1.2.76-neighborhood of

a horosphere-like set L in Xpel. Note that the Hausdorff distance between L and

NbhdXpel
(L;Q1.2.76) is at most Q1.2.76. As L is hyperbolic, NbhdXpel

(L;Q1.2.76) is also

a hyperbolic space. Since the end points of β ′
1, β

′
2 are at a bounded distance from

each other in Xpel, therefore by stability of quasigeodesics, β ′
1, β

′
2 lie at a bounded

distance from each other in NbhdXpel
(L;Q1.2.76). Thus there exists W = W (K) > 0

such that the Hausdorff distance between β1 and β2 in Xpel is at most W . Hence

Xpel is a hyperbolic metric space.

Lemma 1.2.78. [MR08][MP]

Let δ ≥ 0 and suppose X is δ-hyperbolic relative to H in the sense of Gromov. Let

(X,H,G,L) be an ordered quadruple as in Definition 1.2.66 above.

Let βpel : [a, b] → Xpel and λ̂ : [c, d] → X̂ (resp. λ : [c, d] → Xh) denote respec-

tively a (Kp, ǫp)-quasigeodesic path in (Xpel, dpel) and a geodesic in (X̂, d bX) (resp.

(G(X,H), dXh)) joining p, q ∈ X. Then there exists Q1.2.78 > 0 depending on

δ, ν,Kp, ǫp such that for x ∈ λb = λ̂ \ ⋃
Hα∈H

int(Hh
α) (resp. x ∈ λ \ ⋃

Hα∈H
Hα)

there exists y ∈ βb
pel = βpel \

⋃
Hα∈H

(Hα × [0, 1]) such that dX(x, y) ≤ Q1.2.78.

Proof. Without loss of generality, by Lemma 1.1.23, we can assume βpel to be

(Kp, ǫp)-tamed quasigeodesic path. Recall that N(λ̂) is Q1.2.72-quasiconvex in Xh.

Let Q = Q1.2.72.

First we prove that there exists Ra > 0 such that each component of βb
pel lie in the

Ra-neighborhood of NX(λ̂a) in X:

Let β ′
pel be a maximal subsegment of βpel such that β ′

pel does not intersect the sets

of the form H × [0, 1] penetrated by λ̂, where H ∈ H and H × [0, 1] as in Definition

(1.2.66) of partial electrocution, then the end points of β ′
pel lie on NX(λ̂). Let β ′

a be

a path in X obtained from β ′
pel by first removing each portions of βpel lying inside

the sets of the form H × [0, 1] and then joining the first entry point and last exit

point to H by a geodesic in H . Let β ′′
a be a maximal subsegment of β ′

a lying outside

R-neighborhood of N(λ̂) in Xh (R will be chosen later). Suppose p′′, q′′ are the end

points of β ′′
a , then dXh(p′′, N(λ̂)) = R and dXh(q′′, N(λ̂)) = R. As X is properly

embedded in Xh, therefore there exists R1 > 0 such that dX(p′′, π
N(bλ)(p

′′)) ≤ R1

and dX(q′′, π
N(bλ)(q

′′)) ≤ R1. By Lemma 1.2.76, there exists I = I1.2.76 > 0 such

that the length of the subsegment of β ′′
a lying on a horosphere-like set in X is at

most I. Thus, there exist x′′, y′′ ∈ β ′′
a lying outside horosphere-like sets such that

dX(p′′, x′′) ≤ I and dX(q′′, y′′) ≤ I. Let β ′′
pel be the subsegment of β ′

pel joining x′′ and
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y′′.

lXpel
(β ′′

pel) ≤ KpdXpel
(x′′, y′′) + ǫp

≤ KpdXpel
(p′′, q′′) + 2KpI + ǫp

≤ Kp{2R1 + dXpel
(π

N(bλ)(p
′′), π

N(bλ)(q
′′))} + 2KpI + ǫp

≤ Kp{2R1 + dX(π
N(bλ)(p

′′), π
N(bλ)(q

′′))} + 2KpI + ǫp

≤ Kp{2R1 +B1e
−(R−Q−1)lX(β ′′

a) +B1} + 2KpI + ǫp, by Remark 1.2.71.

Let P be the number of horosphere-like sets penetrated by β ′′
pel, then P ≤ lXpel

(β′′
pel

)

ν
+

1. Let lX(β ′′
a \ ∪H∈HH) be the sum of the lengths of the connected components of

β ′′
a lying outside horosphere-like sets. Then from above, we have

lXpel
(β ′′

pel) ≤ Kp{2R1 +B1e
−(R−Q−1)(lX(β ′′

a \ ∪H∈HH) + PI)} + 2KpI + ǫp

≤ Kp{2R1 +B1e
−(R−Q−1)(lXpel

(β ′′
pel) + I(

lXpel
(β ′′

pel)

ν
+ 1))}2KpI + ǫp.

Thus,

lXpel
(β ′′

pel){1 −Kpe
−(R−Q−1)(B1 +

I

ν
)} ≤ 2KpR1 +B1e

−(R−Q−1)KpI + 2KpI + ǫp.

We choose R sufficiently large such that 1 − Kpe
−(R−Q−1)(B1 + I

ν
)) ≥ 1

2
, then for

that R, we have, lXpel
(β ′′

pel) ≤ 2(2KpR1 +B1e
−(R−Q−1)KpI + 2KpI + ǫp) = W (say).

Thus, lX(β ′′
a \ ∪H∈HH) ≤ W and P ≤ W

ν
+ 1. Thus lX(β ′′

a) ≤ W + (W
ν

+ 1)I.

Let L = W + (W
ν

+ 1)I. Now consider the path βa in X obtained from βpel by

replacing the subsegment of βpel lying on sets of the form H × [0, 1] by geodesics

in H joining the first entry point and last exit point to H . Let Ra = R + L
2
, then

βa ⊂ NbhdX(NX(λ̂);Ra).

Let [l,m] be the domain of βa and l = s0 < s1 < ... < sn = m be a partition of

[l,m] such that for all i < n, lX(βa|[si−1,si]) = 1 and lX(βa|[sn−1,sn]) ≤ 1. As NX(λ̂) is

quasiconvex and properly embedded in X, similar as the proof of second part in (1)

of Lemma 1.2.76, by projecting βa(si) to NX(λ̂), we obtain a path λa ⊂ NX(λ̂) such

that λa \ ∪H∈HH = λb and λa ⊂ NbhdX(βa;R
′
a) for some R′

a > 0. Now if H is a

horosphere-like set that βa intersects but λa does not, then the H-distance between

the entry and exit points of βa to H is at most I. Taking Q1.2.78 = max{Ra, R
′
a + I

2
},

we have the required result.

As λ̂ and λ track each other outside horosphere-like sets, therefore the Lemma is

also true for the geodesic λ in Xh.



69 1.3 Trees of Spaces: Hyperbolic and Relatively Hyperbolic

1.3 Trees of Spaces: Hyperbolic and Relatively

Hyperbolic

Let S be a manifold and φ : S → S be an orientation preserving homeomorphism.

Let M be a manifold fibering over the unit circle S1 with fiber S, i.e.

M =
S × [0, 1]

{(x, 0), (φ(x), 1) : x ∈ S} .

Suppose S̃ and M̃ are universal covers of S and M respectively. Then M̃ is home-

omorphic to S̃ × R. Now R can be treated as a tree with vertex set as Z and the

interval [i, i + 1] as an edge between i and i + 1. For each i ∈ Z, let S̃i = S̃ × {i}
(called a vertex space). Let e(i) be the mid point of the interval [i, i + 1] and let

S̃e(i) = S̃ × {e(i)} (called a edge space). Then M̃ can be viewed as a tree of spaces

with vertex spaces S̃i, edge spaces S̃e(i). Edge spaces S̃e(i) are identified to the vertex

spaces S̃i by a lift φ̃e(i) of the map φ to the universal cover.

Now, let S be a closed hyperbolic surface of genus greater than equal to 2, then

S̃ = H
2. φ induces an automorphism φ∗ of the fundamental group π1(S) of S and

φ∗ induces a quasi-isometry on the Cayley graph of π1(S). Now π1(S) acts properly

discontinuously and cocompactly on H
2, therefore H

2(= S̃) is quasi-isometric to the

Cayley graph of π1(S). Hence there exists a (K, ǫ)-quasi-isometry Φ̃ : S̃ → S̃ in-

duced by φ for some K ≥ 1 and ǫ ≥ 0. Thus M̃ can be regarded as a tree of spaces

with edge spaces identified to vertex spaces by a quasi-isometry.

Definition 1.3.1. (Bestvina-Feighn [BF92]) Let K ≥ 1, ǫ ≥ 0. P : X → T is said

to be a tree of geodesic metric spaces satisfying the (K, ǫ)-q(uasi) i(sometrically)

embedded condition if the geodesic metric space (X, dX) admits a map P : X → T

onto a simplicial tree T , such that there exist ǫ and K > 0 satisfying the following:

1) For all s ∈ T , Xs = P−1(s) ⊂ X with the induced path metric dXs
is a geodesic

metric space Xs. Further, the inclusions is : Xs → X are uniformly proper, i.e. for

all M > 0 there exists N > 0 such that for all s ∈ T and x, y ∈ Xs, dX(is(x), is(y)) ≤
M implies dXs

(x, y) ≤ N .

2) For a vertex v in T , Xv = P−1(v) will be called as vertex space for v. Let e be

an edge of T with initial and final vertices v1 and v2 respectively. Let Xe be the

pre-image under P of the mid-point of e, Xe will be called as edge space for e. There

exist continuous maps fe : Xe×[0, 1] → X, such that fe|Xe×(0,1) is an isometry onto

the pre-image of the interior of e equipped with the path metric. Further, fe is fiber-

preserving, i.e. projection to the second co-ordinate in Xe×[0, 1] corresponds via fe

to projection to the tree P : X → T .
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3) Let v1, v2 be end points of e. fe|Xe×{0} and fe|Xe×{1} are (K, ǫ)-quasi-isometric

embeddings into Xv1 and Xv2 respectively. fe|Xe×{0} and fe|Xe×{1} will occasionally

be referred to as fe,v1 and fe,v2 respectively.

Let δ ≥ 0. A tree of spaces as in Definition 1.3.1 above is said to be a tree of

δ-hyperbolic metric spaces, if Xv, Xe are all δ-hyperbolic for all vertices v and edges

e of T .

• Define φv,e : fe,v−(Xe) → fe,v(Xe) as follows:

If p ∈ fe,v−(Xe) ⊂ Xv− , choose x ∈ Xe such that p = fe,v−(x) and define φv,e(p) =

fe,v(x).

Note that in the above definition, x is chosen from a set of bounded diameter.

Since fe,v−|Xe
and fe,v|Xe

are quasi-isometric embeddings into their respective

vertex spaces φv,e’s are uniform quasi-isometries for all vertices.

Now, let S be a hyperbolic once punctured surface with finite volume. π1(S)

acts properly discontinuously on H
2 and S̃ = H

2. Let N denote S minus cusps

and B be the collection of horodisks in H2 such that each element B of B projects

down to the cusp under the quotient map q : H
2 → H

2/π1(S) , then Ñ is equal

to H2 minus horodisks in B. π1(S) acts properly discontinuously and cocompactly

on Ñ , therefore Ñ is quasi-isometric to the Cayley graph of π1(S). Let φ : S → S

be an orientation preserving homeomorphism fixing the puncture. Then φ̃ : S̃ → S̃

preserves corresponding horodisks. Therefore φ̃ induces a (K, ǫ) quasi-isometry Φ̃ :

Ñ → Ñ . Let N = Ñ/π1(S) and Nφ = N×[0,1]
{(x,0),(φ(x),1):x∈N} . Then Ñφ can be treated as

a tree of spaces with vertex spaces and edge spaces homeomorphic to Ñ .

Definition 1.3.2. Let δ ≥ 0, ν ≥ 1, K̂ ≥ 1, ǫ̂ ≥ 0 and X be a geodesic space. A tree

P : X → T of geodesic metric spaces is said to be a tree of δ-relatively hyperbolic

metric spaces if in addition to above three conditions of Definition 1.3.1, we have

the following conditions:

4) for each vertex space Xv (resp. edge space Xe) there exists a collection Hv (resp.

He) of uniformly ν-separated, intrinsically geodesic and uniformly properly embedded

closed subsets of Xv (resp. Xe) such that Xv (resp. Xe) is δ-hyperbolic relative to

the collection Hv (resp. He) in the sense of Gromov,

5) the maps fe,vi
above (i = 1, 2) are strictly type-preserving, i.e. f−1

e,vi
(Hαvi

),

i = 1, 2 (for any Hαvi
∈ Hvi

) is either empty or some Hβe ∈ He. Also, for all

Hβe ∈ He, there exists v and Hαv, such that fe,v(Hβe) ⊂ Hαv, and

6) the induced maps (see below) of the coned-off edge spaces into the coned-off vertex

spaces f̂e,vi
: E(Xe,He) → E(Xvi

,Hvi
) (i = 1, 2) are uniform (K̂, ǫ̂)-quasi-isometric

embeddings. This is called the qi-preserving electrocution condition
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We shall denote E(Xv,Hv) = X̂v and E(Xe,He) = X̂e.

Given the tree of relatively hyperbolic spaces with vertex spaces Xv and edge

spaces Xe there exists a naturally associated tree of spaces whose vertex spaces

are E(Xv,Hv) and edge spaces are E(Xe,He) obtained by simply coning off the re-

spective horosphere-like sets. Condition (5) of the above definition ensures that we

have natural inclusion maps of edge spaces E(Xe,He) into adjacent vertex spaces

E(Xv,Hv). The resulting tree of coned-off spaces P : T C(X) → T will be called

the induced tree of coned-off spaces. The resulting space will be denoted by T C(X)

when thought of as tree of spaces.

Let ν ≥ 1. Note that by condition (4) of the above Definition 1.3.2, as each vertex

space Xv (resp. edge space Xe) is δ-hyperbolic relative to the collection Hv (resp.

He) of ν-separated sets, therefore by Theorem 1.2.48, there exists δ̂1.2.48 such that

each coned-off space E(Xv,Hv) (resp. E(Xe,He)) is δ̂1.2.48-hyperbolic. By Lemma

1.3.4 (proven below), the spaces E(Xv,Hv) are uniformly properly embedded in

T C(X). Thus P : T C(X) → T is a tree of δ̂1.2.48-hyperbolic metric spaces.

The cone locus of T C(X), (the induced tree of coned-off spaces), is the graph

(in fact a forest) whose vertex set V consists of the cone-points in the vertex set

and whose edge-set E consists of the cone-points in the edge set. The incidence

relations are dictated by the incidence relations in T . To see that the cone locus is

a forest, note that a single edge space cannot have more than one horosphere-like

set mapping to a common horosphere-like set in a vertex-set. Hence there are no

induced loops in the cone locus, i.e. it is a forest.

Note that connected components of the cone-locus can be naturally identified

with sub-trees of T . Each such connected component of the cone-locus will be

called a maximal cone-subtree. The collection of maximal cone-subtrees will be

denoted by T and elements of T will be denoted as Tα. Further, each maximal cone-

subtree Tα naturally gives rise to a tree Tα of horosphere- like subsets Θα (depending

on which cone-points arise as vertices and edges of Tα) as follows:

Let xv ∈ V(Tα), then xv is a cone point over a unique horosphere-like set Hαv for

some vertex space Xv and similarly for an edge e = [w1, w2] ∈ E(Tα) there exists a

unique horosphere-like set Hαe in some edge space Xe such that fe,w1(Hαe × {0}) =

Hαw1 and fe,w2(Hαe × {1}) = Hαw2 . Define

Θα := (∪xv∈V(Tα)Hαv)
⋃

(∪e∈E(Tα)fe(Hαe × (0, 1))).

Θα will be referred to as a maximal cone-subtree of horosphere-like spaces.

gα := P|Θα
: Θα → Tα will denote the induced tree of horosphere-like sets. G will

denote the collection of these maps. The collection of Θα’s will be denoted as C.
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Lemma 1.3.3. There exists ζ > 0 such that C is uniformly ζ-separated.

Proof. Let Θα,Θβ be two distinct elements of C. Let x ∈ Θα and y ∈ Θβ. If x and

y lie in different vertex spaces, then dX(x, y) ≥ 1.

First, let there exist two distinct edges e1, e2 incident on a vertex v such that P(x) ∈
e1,P(y) ∈ e2. Since Xv is properly embedded in X, there exists a non-negative

function ǫ(n) → 0 as n → ∞ such that the following holds: if dX(x, y) < 1
n
, then

there exist xv ∈ Θα ∩Xv, yv ∈ Θβ ∩Xv such that dXv
(xv, yv) < ǫ(n).

But horosphere-like sets in Xv are uniformly ν-separated, where ν ≥ 1, therefore

there exists ζ1 > 0 such that dX(Θα,Θβ) ≥ ζ1.

Now, let P(x) and P(y) lie on a same edge e (resp. vertex v) of T . Similarly as

above, since Xe (resp. Xv) is properly embedded in X and horosphere-like sets in

Xe (resp. Xv) are uniformly ν-separated, therefore there exists ζ2 > 0 such that

dX(Θα,Θβ) ≥ ζ2.

Let ζ = min{1, ζ1, ζ2}, then C is uniformly ζ-separated.

Consider the partially electrocuted space PE(X, C,G, T ). Recall that it was

denoted by Xpel.

We define Ipel : PE(X, C,G, T ) → T C(X) as follows:

Let x ∈ PE(X, C,G, T ).

i) If x ∈ X, define Ipel(x) = x.

ii) Let x ∈ Θα × (0, 1], then x = (θα, t) for some θα ∈ Θα and t ∈ (0, 1],

a) if θα ∈ Hαw for some vertex w and EHαw
: [0, 1

2
] → X̂w is the edge of length 1

2

joining θα and the cone point v(Hαw) over Hαw, define Ipel(x) = EHαw
( t

2
).

b) if θα ∈ fe(Hαe × {s}) for some edge e, s ∈ (0, 1); and Efe(Hαe×{s}) : [0, 1
2
] →

f̂e(X̂e × {s}) is the edge of length 1
2

joining θα and the cone point v(fe(Hαe × {s}))
over fe(Hαe × {s}), define Ipel(x) = Efe(Hαe×{s})(

t
2
).

Note that Ipel is a bijection. Define dT C(X)(x, y) := dXpel
(I−1

pel (x), I
−1
pel (y)).

As dXpel
is a metric, therefore dT C(X)(x, y) is a metric.

Lemma 1.3.4. Let δ ≥ 0 and ν ≥ 1. Let P : X → T be a tree of δ-relatively

hyperbolic metric spaces such that the collections Hv,He are uniformly ν-separated

for each vertex v and each edge e. The induced maps îv : X̂v → T C(X) are uniformly

proper embeddings, that is, for all M > 0, v ∈ T and x, y ∈ X̂v, there exists N > 0

such that dT C(X)(̂iv((x), îv(y)) ≤ M implies d bXv
(x, y) ≤ N .

Proof. Since the natural inclusion iv : (Xv,Hv) → (X, C) takes a horosphere-like set

Hαv to a horosphere-like set Θα and the image of no two horosphere-like sets inXv lie

in the same horosphere-like set Θα, iv will induce an embedding îv : X̂v → T C(X).
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Let x, y ∈ X̂v such that dT C(X)(̂iv((x), îv(y)) ≤ M , then there exists a path λ̂ in

T C(X) joining îv(x) and îv(y) such that

• λ̂ concatenation of geodesics in X and geodesics in the sets of the form Θ× [0, 1],

and

• lT C(X) ≤M + 1.

Since horosphere-like sets are uniformly ν-separated, λ̂ can intersects only finitely,

say k, many horosphere-like sets of X, where k depends only upon M, ν. Also

λ̂ intersects only finitely many, say n, vertex spaces of T C(X), where n depends

only upon M . For T ′ ⊂ T , let V(T ′) denote the set of vertices of T in T ′. Let

V(P(λ̂)) = {v1, ..., vn} and ei be the edge between vi and vi+1.

Let λb be the portion of λ̂ lying outside horosphere-like sets in X. Then

λb = λ0 ∪ λ1 ∪ .... ∪ λk, where λ0 starts at x, λk ends at y and λi’s are paths

in X between horosphere-like sets Θi and Θi+1 with length of λi at most M . As iv’s

are uniformly proper embeddings, without loss of generality, we can assume each λi

to be of the form λi1 ∪ .... ∪ λiri
, where each λij is either a geodesic in some vertex

space or of the form [p, φv,e(p)].

Let βn be the union of those λij’s which lie in the vertex space Xvn
and such that

the end points of βn lie in the edge space fen−1,vn
(Xen−1). Then the length of βn in

T C(X) is bounded above by a constant N1 depending only upon M, k, n. Recall that

φvn−1,en−1 was the (K, ǫ)-quasi-isometry from fen−1,vn−1(Xen−1) to fen−1,vn
(Xen−1).

Suppose xn and yn are the end points of βn, then xn, yn are also the end points of two

paths λlm, λl′m′ respectively such that λlm and λl′m′ are of the form [p, φ−1
vn−1,en−1

(p)]

for some p ∈ fen−1,vn
(Xen−1). Since f̂en−1,vn

(X̂en−1) is quasiconvex in X̂vn
, with-

out loss of generality, we can take βn in the edge space fen−1,vn
(Xen−1). Since

length of βn is bounded, therefore there exists a constant N2 > 0 such that

d bXvn−1
(φ−1

vn−1,en−1
(xn), φ−1

vn−1,en−1
(yn)) ≤ N2.

Proceeding in this way, in going down from vn to v, we get a number N > 0 such

that d bXv
(x, y) ≤ N .

Thus a tree of relatively hyperbolic spaces P : X → T induces a tree of coned-off

spaces P : T C(X) → T satisfying the quasi-isometrically embedded condition.

The following corollary is a consequence of Theorem 1.2.77 and Lemma 1.2.78:

Corollary 1.3.5. Let δ ≥ 0 and ν ≥ 1 and X be a geodesic space. Let P : X → T

be a tree of δ-relatively hyperbolic metric spaces such that the collections Hv,He are

uniformly ν-separated for each vertex v and each edge e. If X is δ-hyperbolic relative

to the collection C in the sense of Gromov, then the followings hold:

1) There exists ∆pel
1.3.5 ≥ 0 such that T C(X) is a ∆pel

1.3.5-hyperbolic metric space.
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2) Let βp : [a, b] → T C(X) and λ̂ : [c, d] → X̂ (resp. λh : [c, d] → Xh) denote re-

spectively a (Kp, ǫp)-quasigeodesic path in (T C(X), dT C(X)) and a geodesic in (X̂, d bX)

(resp. (Xh, dXh) ) joining p, q. Then there exists Q1.3.5 > 0 such that for x ∈ λ̂∩X
(resp. x ∈ λh ∩X) there exists y ∈ βp ∩X such that dX(x, y) ≤ Q1.3.5.



Chapter 2

Relatively Hyperbolic Extensions

of Groups

Let us consider the short exact sequence of finitely generated groups

1 → K → G→ Q→ 1

such that K is non-elementary word hyperbolic. In [Mos96], Mosher proved that if

G is hyperbolic, then Q is hyperbolic. To prove Q hyperbolic, Mosher (in [Mos96])

constructed a quasi-isometric section from Q to G, that is, a map s : Q → G satis-

fying
1

k
dQ(q, q′) − ǫ ≤ dG(s(q), s(q′)) ≤ kdQ(q, q′) + ǫ,

for all q, q′ ∈ Q, where dG and dQ are word metrics and k ≥ 1, ǫ ≥ 0 are constants.

In [Mit98a], existence of Cannon-Thurston map for the embedding i : ΓK → ΓG was

proved, where ΓK , ΓG are the Cayley graphs of K, G respectively. Here in this

chapter, we will generalize these results to the case where the kernel is strongly

hyperbolic relative to a cusp subgroup. This is motivated by the following example:

Let S be a once-punctured torus then its fundamental group π1(S) = F(a, b) is

strongly hyperbolic relative to the peripheral subgroup H =< aba−1b−1 >. Let M

be a 3-manifold fibering over the circle with fiber S such that the fundamental group

π1(M) is strongly hyperbolic relative to the subgroup H
⊕

Z. Then we have a short

exact sequence of pairs of finitely generated groups:

1 → (π1(S), H) → (π1(M), H
⊕

Z) → (Z,Z) → 1.
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2.1 Quasi-isometric Section

Definition 2.1.1. Let 1 → K → G → Q → 1 be a short exact sequence of finitely

generated groups with K strongly hyperbolic relative to K1. We say that G pre-

serves cusps if for all g ∈ G there exists ag ∈ K such that gK1g
−1 = agK1ag

−1.

Definition 2.1.2. (Mosher [Mos96]) Quasi-isometric section : Let 1 → K →
G→ Q→ 1 be a short exact sequence of finitely generated groups. A map s : Q→ G

is said to be a (R, ǫ)-quasi-isometric section if

1

R
dQ(q, q′) − ǫ ≤ dG(s(q), s(q′)) ≤ RdQ(q, q′) + ǫ,

for all q, q′ ∈ Q, where dG and dQ are word metrics and R ≥ 1, ǫ ≥ 0 are constants.

Let K be a group strongly hyperbolic relative to a cusp subgroup K1. For each

parabolic end point α ∈ ∂Γ(K,K1), there is a subgroup of the form aK1a
−1. Now,

Hausdorff distance between the two sets aK1 and aK1a
−1 is uniformly bounded by

the length of the word a. Hence α corresponds to a left coset aK1 of K1 in K.

Let 1 → K
i→ G

p→ Q→ 1 be a short exact sequence of finitely generated groups

with K strongly hyperbolic relative to a subgroup K1.

We use the following notation:

• Let Π be the set of all parabolic end points for the relatively hyperbolic group

K with cusp subgroup K1.

• Let Π2 = {(α1, α2) : α1 and α2 are distinct elements in Π}.

• For a ∈ K, let ia : K → K denote the inner automorphism ia(k) = aka−1 and

La : K → K denote the left translation induced by a.

• For g ∈ G, let Ig : K → K be the automorphism Ig(k) = gkg−1 and Lg : G→
G be the left translation.

Lemma 2.1.3. For g ∈ G, Ig will induce a quasi-isometry Îg : Γ̂K → Γ̂K.

Proof. Since G preserves cusps, there exists ag ∈ K such that for all a ∈ K we have

gaK1g
−1 = gag−1agK1a

−1
g .

Define

Îg(k) = Ig(k), for k ∈ K

Îg(v(aK1)) = v(gag−1agK1), for cone points v(aK1) over the left cosets aK1.
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To prove Îg quasi-isometry it suffices to show that if λ̂ is an electric geodesic

between v(K1) and v(aK1) and λ̂ does not penetrate any other left cosets then

length of Îg(λ̂) is bounded by some constant. First note that

d(gK1g
−1, gaK1g

−1) ≤ 2l(g) + d(K1, aK1).

Therefore

l(Îg(λ̂)) ≤ 2l(g) + l(λ̂) ≤ 2l(g) + 1.

Also note that since a left translation preserves distance between two left cosets, Lk

will induce an isometry in the coned-off space.

Lemma 2.1.4. Let G be a finitely generated group hyperbolic relative to a subgroup

H. For k ∈ G, the left translation Lk and the inner automorphism ik induce same

map on the relative hyperbolic boundary.

Proof. Let X = ΓG and Xh be the hyperbolic space obtained by gluing hyperbolic

cones. Let α ∈ ∂Xh, then there exists a sequence {an} ⊂ Xh such that an → α. Now

if an ∈ ΓG for some n, then dX(Lk(an), ik(an)) = dX(kan, kank
−1) = dG(1, k−1). If an

lies in some hyperbolic cone, then an = (kn, tn) for some kn ∈ ΓG and tn ∈ [0,∞) and

dXh(Lk(kn, tn), ik(kn, tn)) = dXh((kkn, tn), (kknk
−1, tn)) ≤ e−tndX(kkn, kknk

−1) ≤
dX(1, k−1). Therefore Hausdorff distance between two sequences {Lk(an)} and

{ik(an)} is bounded and hence Lk(α) = ik(α).

G preserves cusps, so for each g ∈ G there exists ag ∈ K such that a−1
g g ∈

NG(K1). If b ∈ K, then dK(agK1, gbg
−1agK1) ≤ dK(K1, bK1) + 2lK(a−1

g g). Since

Ig(bK1) = g(bK1)g
−1 = gbg−1agK1a

−1
g and Hausdorff distance between gbg−1agK1

and gbg−1agK1a
−1
g is bounded, Ig will induce a map Ĩg : Π → Π and Ĩg is a bijection.

Therefore, Ĩg will induce a bijective map Ĩ2
g : Π2 → Π2. For convenience of notation

we will use Ig for Ĩg and Ĩ2
g . Similarly, for a ∈ K, ia and La will induce bijective

maps (with same notation) from Π to Π and Π2 to Π2.

Recall that for a relatively hyperbolic group (G,H), G and H are assumed to be

infinite.

Lemma 2.1.5. [Far98] Let G be a finitely generated group hyperbolic relative to a

subgroup H. Then gHg−1 ∩H is finite for all g ∈ G \H.

Proof. Let g ∈ G \H . If gHg−1∩H is infinite then there exists an infinite sequence

{hn} ⊂ H such that g−1hng ∈ H and length of hn is strictly increasing. Let λ be a
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relative geodesic joining 1 (the identity element) and g, then hnλ is a relative geodesic

joining hn and hng. This contradicts the bounded coset penetration property 2, as

hng ∈ gH and length of hn is strictly increasing.

For a relatively hyperbolic group (G,H), if gHg−1 = H for some g ∈ G, then

gHg−1 ∩H is infinite. Therefore by above Lemma 2.1.5, g must belong to H . Thus

NG(H) = H .

Theorem 2.1.6. Suppose we have a short exact sequence of finitely generated groups

1 → K
i→ G

p→ Q→ 1,

such that K is strongly hyperbolic relative to a non-trivial proper subgroup K1 and

G preserves cusps, then there exists a (R, ǫ)-quasi-isometric section s : Q → G for

some R ≥ 1, ǫ ≥ 0.

Proof. First note that if aK1a
−1 = a′K1a

′−1 for some a, a′ ∈ K then, due to Lemma

2.1.5, aK1 = a′K1.

Let α = (α1, α2) ∈ Π2, then the stabilizer subgroups of αi’s are aiK1a
−1
i for some

ai ∈ K, where i = 1, 2. Let Bα be the set of all exit points from a1K1 of relative

geodesics which starts from a1K1 and end at some point of a2K1. Then, due to the

bounded coset penetration property 2, Bα is a bounded set with diameter at most

D for some D > 0.

Let C = {α ∈ Π2 : eK ∈ Bα}, where eK is the identity element in K. We fix an

element η = (η1, η2) ∈ Π2. Let Σ = {g ∈ G : η ∈ Ig(C)}. Σ will be proved to be a

set containing the image of a quasi-isometric section.

Step 1 For any g ∈ G, ∪a∈KIga(C) = Π2:

Let α = (α1, α2) ∈ Π2. Now αi corresponds to a left coset aiK1, where i = 1, 2.

Let λ be a relative geodesic in ΓK with starting at some point of a1K1 and ending

at some point of a2K1 and let xα be its exit point from a1K1, then xα ∈ Bα. Now

there exists k ∈ K such that Lk(xα) = eK . Since Lk is an isometry, Lk(λ) will be a

relative geodesic joining points from ka1K1 and ka2K1 with eK being the exit point

of Lk(λ) from ka1K1. There exists βi ∈ Π such that βi corresponds to the left coset

kaiK1, i = 1, 2. Then β = (β1, β2) ∈ Π2 and eK ∈ Bβ. Therefore Lk(α) = β ∈ C.

Since Lk and ik are same on the relative hyperbolic boundary (from Lemma 2.1.4),

we have ik(α) ∈ C and thus ∪a∈K(ia(C)) = Π2. Consequently, for any g ∈ G,

∪a∈KIga(C) = ∪a∈KIgia(C) = Ig(∪a∈K(ia(C))) = Ig(Π
2) = Π2.
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Step 2 p(Σ) = Q:

Let q ∈ Q, then there exists g ∈ G such that p(g) = q. Now ∪a∈KIga(C) = Π2 for

any g ∈ G. Therefore for η ∈ Π2 there exists a ∈ K such that η ∈ Iga(C). Hence

ga ∈ Σ and p(ga) = p(g) = q.

Now we prove that there exist constants R ≥ 1, ǫ ≥ 0 such that for all g, g′ ∈ Σ

1

R
dQ(p(g), p(g′)) − ǫ ≤ dG(g, g′) ≤ RdQ(p(g), p(g′)) + ǫ.

We can choose a finite symmetric generating set S of G such that p(S) is also

a generating set for Q. Obviously, dQ(p(g), p(g′)) ≤ dG(g, g′) for all g, g′ ∈ G. To

prove dG(g, g′) ≤ RdQ(p(g), p(g′)) + ǫ for all g, g′ ∈ Σ, it suffices to prove that there

exists R ≥ 1 such that if dQ(p(g), p(g′)) ≤ 1 for some g, g′ ∈ Σ, then dG(g, g′) ≤ R.

Let dQ(p(g), p(g′)) ≤ 1 for some g, g′ ∈ Σ. Then g−1g′ = ka for some k ∈ K and

a is either the identity in G or a generator of G.

Since g, g′ ∈ Σ, Ig(C) ∩ Ig′(C) 6= ∅. Hence Ika(C) ∩ C = Ig−1g′(C) ∩ C 6= ∅. Now

Ika = ik(Ia), therefore ik(Ia(C)) ∩ C 6= ∅.
For each α ∈ Π2, we choose an element aα ∈ Bα. Define a map F : Π2 → ΓK by

F (α) = aα.

Since Lk is an isometry, for k ∈ K, kaα ∈ Bkα and hence

dK(akα, kaα) = dK(F (kα), kF (α)) ≤ D, (2.1)

where kα denotes the image of α under the map Lk : Π2 → Π2.

Let BD(eK) be the closed D-neighborhood of eK . Now F (C) is contained in the

union of Bα’s containing the identity eK . Therefore F (C) is contained in BD(eK).

Since G preserves cusps, there exists s ∈ K such that F (Ia(C)) is contained in the

union of Bα’s containing s and hence F (Ia(C)) ⊂ BD(s), where BD(s) is a closed

D-neighborhood of s. From (2.1), Hausdorff distance between two sets F (kIa(C))

and kF (Ia(C)) is bounded by D. For a set A ⊂ ΓK , let ND(A) denotes the closed

D-neighborhood of A. Thus

F (kIa(C)) ⊂ ND(kF (Ia(C))) = kND(F (Ia(C))) ⊂ kB2D(s).

Now K acts properly discontinuously on ΓK , therefore

BD(eK) ∩ kB2D(s) 6= ∅

for finitely many k’s in K. This implies F (C)∩F (kIa(C)) 6= ∅ for finitely many k’s

in K. And hence C ∩ Lk(Ia(C)) = C ∩ kIa(C) 6= ∅ for finitely many k’s in K. Lk

equals ik on the relative hyperbolic boundary, so C ∩ (Ika(C)) 6= ∅ for finitely many
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k’s in K. Thus g−1g′ = ka for finitely many k’s. Since number of generators of G is

finite, there exists a constant R ≥ 1 such that dG(g, g′) ≤ R.

Now we define s : Q→ G as follows:

Let q ∈ Q and let there exist g, g′ ∈ Σ such that p(g) = p(g′) = q. Then by

the above inequality dG(g, g′) ≤ R. We choose one element g ∈ p−1(q) ∩ Σ for each

q ∈ Q and define s(q) = g. Then s defines a single valued map satisfying :

1

R
dQ(q, q′) − ǫ ≤ dG(s(q), s(q′)) ≤ RdQ(q, q′) + ǫ.

for some constants R ≥ 1, ǫ ≥ 0 and for all q, q′ ∈ Q.

Note that, due to bounded coset penetration properties, there exists S1 > 0

such that for a group G hyperbolic relative to {H1, ...Hm}, the diameter of the

intersection of any two left cosets gHi and g′Hj is bounded above by S1. Taking Π

to be the set of all parabolic end points corresponding to the subgroups H1, ..., Hm

and mimicking the proof given in Theorem 2.1.6, we have the following corollary:

Corollary 2.1.7. Suppose we have a short exact sequence of finitely generated

groups

1 → K
i→ G

p→ Q→ 1,

such that K is strongly hyperbolic relative to {K1, ..., Km} and for each g ∈ G there

exists a1, ..., am ∈ K such that gK1g
−1 = aiK1a

−1
i for all i = 1, ..., m, then there

exists a (R, ǫ)-quasi-isometric section s : Q→ G for some R ≥ 1, ǫ ≥ 0.

Corollary 2.1.8. Suppose we have a short exact sequence of finitely generated

groups

1 → K
i→ G

p→ Q→ 1

Let K1 be a finitely generated subgroup of K such that K is strongly hyperbolic

relative to the subgroup K1 and let Q1 = NG(K1)/K1. If G preserves cusps, then

Q1 = Q and there is a quasi-isometric section s : Q→ NG(K1) satisfying

1

R
dQ(q, q′) − ǫ ≤ dNG(K1)(s(q), s(q

′)) ≤ RdQ(q, q′) + ǫ

where q, q′ ∈ Q and R ≥ 1, ǫ ≥ 0 are constants. Further, if G is weakly hyperbolic

relative to K1, then Q is hyperbolic.

Proof. Let q ∈ Q, then there exists g ∈ G such that p(g) = q. Since G preserves

cusps, gK1g
−1 = aK1a

−1 for some a ∈ K. Therefore a−1g ∈ NG(K1) and q =

p(a−1g) ∈ Q1 and thus Q1 = Q.
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Let Π2
K1

= {(α1, α2) ∈ Π2 : α1 corresponds to the subgroup K1} and C = {α ∈
Π2

K1
: eK ∈ Bα}, where Bα is defined as in above theorem. We fix an element

η ∈ Π2
K1

and set Σ = {g ∈ NG(K1) : η ∈ Ig(C)}. We choose a finite generating set

S of G such that it contains a finite generating set of K1, K,NG(K1) and p(S) is

also a generating set of Q. As in the proof of Theorem 2.1.6, by replacing G with

NG(K1), we get a quasi-isometric section s : Q→ NG(K1) satisfying :

1

R
dQ(q, q′) − ǫ ≤ dNG(K1)(s(q), s(q

′)) ≤ RdQ(q, q′) + ǫ.

for some constants R ≥ 1, ǫ ≥ 0 and for all q, q′ ∈ Q.

Since dQ(q, q′) ≤ dG(s(q), s(q′)) ≤ dNG(K1)(s(q), s(q
′)), we can take the quasi-

isometric section s : Q→ NG(K1) such that

1

R
dQ(q, q′) − ǫ ≤ dG(s(q), s(q′)) ≤ RdQ(q, q′) + ǫ.

Now, let E(G,K1) denotes the electrocuted space obtained from ΓG by coning

left cosets of K1 in G. Since G is weakly hyperbolic with respect to K1, E(G,K1) is

hyperbolic. We will prove that Q is hyperbolic.

Let i : ΓG → E(G,K1) denote the inclusion. The quasi-isometric section s : Q →
NG(K1) will induce a map qs : ΓQ → ΓNG(K1). Let ŝ = qs ◦ (i|ΓNG(K1)

). Now for all

q, q′ ∈ ΓQ, dGel(ŝ(q), ŝ(q′)) ≤ dG(s(q), s(q′)) ≤ R dQ(q, q′)+ǫ, where dGel is the metric

on E(G,K1). For q, q′ ∈ Q, let α̂ be a geodesic in E(G,K1) joining s(q) and s(q′).

Let α̂ penetrates left cosets g1K1, ..., gnK1 of K1 in NG(K1). Let xi be the entry

point and yi be the exit point to giK1 of α̂. Since xi, yi lie on the same left coset,

p(xi) = p(yi). Let α = ∪0≤i≤n[yi, xi+1], where y0 = s(q), xn+1 = s(q′) and [yi, xi+1]

is a geodesic in ΓNG(K1) joining yi, xi+1. Note that α may not be a connected path,

but p(α) is a connected path in ΓQ joining q, q′. Therefore dQ(q, q′) ≤ lQ(p(α)) ≤∑
0≤i≤n l[yi,xi+1] ≤ dGel(s(q), s(q′)).

Therefore dQ(q, q′) ≤ dGel(ŝ(q), ŝ(q′)). Hence ŝ is a quasi-isometric section from

Q to E(G,K1). Therefore ŝ(Q) is quasiconvex in E(G,K1). Since E(G,K1) is hy-

perbolic, Q is hyperbolic.
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Chapter 3

Cannon-Thurston Maps

3.1 Preliminaries on Cannon-Thurston Maps

For a proper hyperbolic metric space X, the Gromov compactification will be de-

noted by X.

Definition 3.1.1. Let X and Y be proper hyperbolic metric spaces and i : Y → X be

an embedding. A Cannon-Thurston map i from Y to X is a continuous extension

of i to the Gromov compactifications X and Y .

An embedding i : Z → W is said to be a proper embedding if for all P > 0 there

exists Q > 0 such that for x, y ∈ Z, dW (i(x), i(y)) ≤ P implies that dZ(x, y) ≤ Q.

The following lemma, given in [Mit98b], gives a necessary and sufficient condition

for the existence of Cannon-Thurston maps.

Lemma 3.1.2. [Mit98b] Let X and Y be proper hyperbolic metric spaces and i :

Y → X be a proper embedding. A Cannon-Thurston map i from Y to X exists for

the proper embedding i : Y → X if and only if there exists a non-negative function

m(n) with m(n) → ∞ as n→ ∞ such that the following holds:

Given y0 ∈ Y , for all geodesic segments λ in Y lying outside an n-ball around y0 ∈ Y

any geodesic segment in X joining the end points of i(λ) lies outside the m(n)-ball

around i(y0) ∈ X.

Note that the above statement is also true if geodesics are replaced by stable

quasiconvex paths.

Let δ ≥ 0. Let X (resp. Y ) be δ-hyperbolic relative to the collections HX (resp.

HY ) of uniformly ν (≥ 1)-separated subsets of X (resp. Y ) in the sense of Gromov.

Let i : Y → X be a strictly type-preserving proper embedding, i.e. for HY ∈ HY

83
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there exists HX ∈ HX such that i(HY ) ⊂ HX and images of distinct horospheres-

like sets in Y lie in distinct horosphere-like sets in X. As X is uniformly properly

embedded in G(X,HX), the proper embedding i : Y → X will induce a proper

embedding ih : G(Y,HY ) → G(X,HX).

Definition 3.1.3. A Cannon-Thurston map is said to exist for the pair (Y,X) of

relatively hyperbolic metric spaces and a strictly type-preserving inclusion i : Y → X

if a Cannon-Thurston map exists for the induced map ih : G(Y,HY ) → G(X,HX)

between the respective hyperbolic cones.

We now give a criterion for the existence of Cannon-Thurston maps for relatively

hyperbolic spaces. Let Y h = G(Y,HY ), Ŷ = E(Y,HY ), Xh = G(X,HX), X̂ =

E(X,HX) and X̂h = G(Xh,Hh
X). Recall from Theorem 1.2.48 that there exist

δ̂1.2.48, δ̂
′
1.2.48 ≥ 0 such that X̂ is δ̂1.2.48-hyperbolic and X̂h is δ̂′1.2.48-hyperbolic. Let

Bh
R(Z) ⊂ Xh denotes the R-neighborhood of Z in (Xh, dXh).

Lemma 3.1.4. Let δ ≥ 0 and X, Y be proper geodesic spaces. Let X and Y be δ-

hyperbolic relative to the collections HX and HY respectively in the sense of Gromov.

Let i : Y → X be a strictly type-preserving proper embedding. A Cannon-Thurston

map for i : Y → X exists if and only if there exists a non-negative function m(n)

with m(n) → ∞ as n→ ∞ such that the following holds:

Suppose y0 ∈ Y , and λ̂ in Ŷ is an electric geodesic segment starting and ending

outside horospheres. If λb = λ̂ \ ⋃
K∈HY

K lies outside an Bn(y0) = {y ∈ Y :

dY (y, y0) ≤ n}, then for any electric geodesic β̂ joining the end points of î(λ̂) in X̂,

βb = β̂ \ ⋃
H∈HX

H lies outside Bm(n)(i(y0)) = {x ∈ X : dX(x, i(y0)) ≤ m(n)}.

Proof. Let λ be the electroambient representative of λ̂. Since λb lies outside the

ball Bn(y0), there exists n1(n) > 0 such that a geodesic λh in Y h joining end points

of λ̂ lies outside the ball Bh
n1

(y0) in Y h. By Lemma 3.1.2, we note that a Cannon-

Thurston map exists for the pair (Xh, Y h) if and only if there exists a non-negative

function m1(n1) with m1(n1) → ∞ as n1 → ∞ such that the following holds:

If a geodesic λh ⊂ Y h lies outside Bh
n1

(y0) ⊂ Y h, then any geodesic βh ⊂ Xh joining

the end-points of i(λh) lies outside Bh
m1(n1)(i(y0)) ⊂ Xh.

Let β be an electroambient representative of β̂, then β is a stable quasiconvex path.

Since βh lies outside Bh
m1(n1)

(i(y0)), there exists m2 > 0 such that β lie outside

Bh
m2

(i(y0)). X is properly embedded in Xh, therefore there exists m(m2) > 0 such

that βb lie outside Bm(i(y0)).
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3.2 Cannon-Thurston Maps for Trees of Rela-

tively Hyperbolic Spaces

Throughout this section, we will assume that trees of relatively hyperbolic spaces

are as in Definition 1.3.1 and horosphere-like sets are uniformly ν-separated, where

ν ≥ 1. In view of Lemma 1.1.9, all metric spaces in this section are assumed to be

connected graphs of edge length one.

3.2.1 Construction of Hyperbolic Ladder

Let P : X → T be a tree of δ-relatively hyperbolic metric spaces. Given a geodesic

segment λ̂ ⊂ X̂v0 with end points lying outside horospheres-like sets, we now con-

struct a quasiconvex set Ξbλ ⊂ X̂ containing λ̂.

The (K, ǫ)-quasi-isometric embedding fe,v : Xe → Xv will induce a map

fh
e,v : Xh

e → Xh
v in the following way:

Let x ∈ Xh
e . If x ∈ Xe, then define fh

e,v(x) = fe,v(x). If x lies in the hyperbolic

cone Hh
e of the edge space Xe, then x = (xe, t) for some xe ∈ He, t ∈ [0,∞). Define

fh
e,v((xe, t)) = (fe,v(xe), t).

Recall from Definition 1.3.2 that f̂e,v : X̂e → X̂v are (K̂, ǫ̂)-quasi-isometric embed-

dings.

Lemma 3.2.1. For fh
e,v defined above, there exist C3.2.1 ≥ 0, Kh

3.2.1 ≥ 1, ǫh3.2.1 ≥ 0

depending on δ,K, ǫ, K̂, ǫ̂ such that fh
e,v(X

h
e ) is a C3.2.1-quasiconvex set and fh

e,v is a

(Kh
3.2.1, ǫ

h
3.2.1)-quasi-isometric embedding.

Proof. Since f̂e,v : X̂e → X̂v is a quasi-isometric embedding, therefore f̂e,v(X̂e) will

be a quasiconvex subset of X̂v (as X̂v is a hyperbolic space). Let x, y ∈ fe,v(Xe),

γ be a geodesic in Xh
v joining x and y and λ̂ be a geodesic in X̂v joining x and

y. Suppose Prv : X̂v → f̂e,v(X̂e) is a nearest point projection, then by Lemma

1.1.34, Prv(λ̂) is a quasigeodesic in f̂e,v(X̂e) joining x and y. Thus λ̂ and Prv(λ̂)

are quasigeodesics in X̂v joining same pair of points . Note that Prv(λ̂) may not

be a continuous path, but in view of Lemma 1.1.23, we can assume Prv(λ̂) to be

a continuous quasigeodesic path. Also, we can modify Prv(λ̂) to a quasigeodesic

path such that it does not backtrack, so we assume Prv(λ̂) does not backtrack.

Since f̂e,v is a quasi-isometric embedding, we can assume Prv(λ̂) ⊂ f̂e,v(X̂e). Due to

similar intersection patterns, electroambient representatives λ, Prv(λ) of λ̂v, P rv(λ̂),

respectively, lie in a bounded neighborhood of each other. Also, the Hausdorff

distance between λ and γ is bounded. As Prv(λ) ⊂ fh
e,v(X

h
e ), therefore fh

e,v(X
h
e ) is

C3.2.1-quasiconvex for some C3.2.1 > 0.
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Next we prove that the map fh
e,v is proper, i.e., for M > 0 there exists N(M) > 0

such that for x, y ∈ Xh
e if dXh

v
(fh

e,v(x), f
h
e,v(y)) ≤M then dXh

e
(x, y) ≤ N .

Let γ be a geodesic in Xh
v joining fh

e,v(x) and fh
e,v(y), then its length is at most

M . Let λ̂ be a geodesic in X̂h
v joining fh

e,v(x) and fh
e,v(y), then due to similar

intersection patterns of γ and λ̂ with hyperbolic cones there exists N1(M) > 0

such that the length of an electroambient representative λ of λ̂ is at most N1. Let

Prv(λ) be an electroambient representative of Prv(λ̂) in Xh
v , then due to similar

intersection patterns of λ̂ and Prv(λ̂) with hyperbolic cones, length of Prv(λ) is at

most N2 for some N2 > 0. Now as fe,v : Xe → Xv is a quasi-isometric embedding

and fh
e,v|Hh

e
: Hh

e → fh
e,v(H

h
e ) is a quasi-isometry (by Lemma 1.2.13), there exists

N(N2) > 0 such that dXh
e
(x, y) ≤ N .

Now we show that fh
e,v is a quasi-isometric embedding:

By the first part of the proof of Lemma 1.2.31, there exists R ≥ 1, ε ≥ 0 such that

dXh
v
(fh

e,v(x), f
h
e,v(y)) ≤ RdXh

e
(x, y) + ε for all x, y ∈ Xh

e . Now to prove the other

inequality let x, y ∈ Xh
e and α be a geodesic in Xh

v joining fh
e,v(x) and fh

e,v(y). We

partition α by points a0, a1, ..., an such that dXh
v
(ai−1, ai) = 1 (0 ≤ i ≤ n− 1) and

dXh
v
(an−1, an) ≤ 1 with a0 = fh

e,v(x) and an = fh
e,v(y). Since fh

e,v(X
h
e ) is C3.2.1-

quasiconvex, there exists bi ∈ fh
e,v(X

h
e ) such that dXh

v
(ai, bi) ≤ C3.2.1. Now for each i,

we have dXh
v
(bi−1, bi) ≤ 2C3.2.1 +1. There exists ci ∈ Xh

e such that bi = fh
e,v(ci), then

as the map fh
e,v is proper, there exists R′(C3.2.1) > 0 such that dXh

e
(ci−1, ci) ≤ R′.

Therefore, by triangle inequality, we have dXh
e
(x, y) ≤ R′dXh

v
(fh

e,v(x), f
h
e,v(y)) + R′.

Taking K3.2.1 = max{R,R′}, ǫ3.2.1 = max{R′, ε}, we have the required result.

Let e denote the directed edge from v− to v.

• Define φh
v,e : fh

e,v−
(Xh

e ) → fh
e,v(X

h
e ) as follows:

If p ∈ fh
e,v−

(Xh
e ) ⊂ Xh

v−
, choose x ∈ Xh

e such that p = fh
e,v−

(x) and define φh
v,e(p) =

fh
e,v(x).

Note that φh
v,e are all uniform quasi-isometries. Let C1.1.30 be as in Lemma 1.1.30

and fh
e,v(X

h
e ) be C3.2.1-quasiconvex. By Lemma 1.2.50, there exists Q1.2.50 > 0

such that electroambient path representatives of electric geodesics are stable Q1.2.50-

quasiconvex path, we assume them to be stable Q1.2.50-quasiconvex path for some

Q1.2.50 > 0. Let C = C1.1.30 + C3.2.1 +Q1.2.50.

For Z ⊂ Xh
v , let NC(Z) denote the C-neighborhood of Z in Xh

v , where C is as

above.

Hyperbolic Ladder Ξbλ

Recall that P : T C(X) → T is the usual projection to the base tree.

For convenience of exposition, T shall be assumed to be rooted, i.e. equipped

with a base vertex v0. Let v 6= v0 be a vertex of T . Let v− be the penultimate vertex
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on the geodesic edge path from v0 to v. Let e denote the directed edge from v− to

v.

Recall that we have defined φv,e : fe,v−(Xe) → fe,v(Xe) in the following way:

If p ∈ fe,v−(Xe) ⊂ Xv− , choose x ∈ Xe such that p = fe,v−(x) and define φv,e(p) =

fe,v(x).

Since fe,v− and fe,v are quasi-isometric embeddings into their respective vertex spaces

φv,e’s are uniform quasi-isometries for all vertices. We shall denote E(Xv,Hv) = X̂v

and E(Xe,He) = X̂e.

Step 1

Let µ̂ ⊂ X̂v be a geodesic segment in (X̂v, dcXv
) with starting and ending points lying

outside horoballs and µ be the corresponding electroambient path representative in

Xh
v (cf Lemma 1.2.50). Then P(µ̂) = v. For the collection of edges e′ incident on v,

but not lying on the geodesic (in T) from v0 to v, consider the subcollection of edges

{e} for which Nh
C(µ) ∩ fe,v(Xe) 6= ∅ and for each such e, choose pe, qe ∈ Nh

C(µ) ∩
fe,v(Xe) such that dXh

v
(pe, qe) is maximal. Let {ei}i∈Iv

be the further subcollection

of {e} for which d bXv
(pei

, qei
) > D1.1.30 where D1.1.30 is as in Lemma 1.1.30. Let vi

be the terminal vertex of the edge ei. Let µ̂v,ei
be a geodesic in X̂v joining pei

and

qei
. Define

Ξ1(µ̂) = iv(µ̂) ∪
⋃

i∈Iv

Φ̂v,ei
(µ̂v,ei

)

where Φ̂v,ei
(µ̂v,ei

) is an electric geodesic in X̂vi
joining φv,ei

(pei
) and φv,ei

(qei
).

Step 2

Step 1 above constructs Ξ1(λ̂) in particular. We proceed inductively on m ∈ N.

Suppose that Ξm(λ̂) has been constructed such that the vertices in P(Ξm(λ̂)) ⊂ T

are the vertices of a subtree. Let {wi}i = P(Ξm(λ̂)) \ P(Ξm−1(λ̂)).

Assume further that P−1(wk) ∩ Ξm(λ̂) is a path of the form iwk
(λ̂wk

) , where λ̂wk
is

a geodesic in (X̂wk
, d bXwk

) and note that P−1(wk) = X̂wk
.

Define

Ξm+1(λ̂) = Ξm(λ̂) ∪
⋃

k

(Ξ1(λ̂wk
))

where Ξ1(λ̂wk
) is defined in step 1 above.

Define

Ξbλ = ∪m≥1Ξ
m(λ̂)

Observe that the vertices comprising P(Ξbλ) in T are the vertices of a subtree, say,

T1.
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bλv

Xv

Cα

Ch
α

bµw

qe

Xw

bλw

pe

NC(λw)

fe,w(Xe)

Hαv

Hαw

Hh
αw

φv,e(pe) φv,e(qe)

fe,v(Xe)

Figure 3.1: Hyperbolic Ladder for an edge e with vertices w and v.

Roughly speaking, what we have done is that at each stage we take a geodesic

λ̂v look at all edge spaces which hit X̂v near λ̂v, ‘break’ λ̂v into maximal subpieces

coarsely contained in the images of these edge spaces and then ‘flow’ them (via the

[0, 1] direction in X̂e × [0, 1]) into adjacent vertex spaces. The maximal subpieces

are the µ̂’s.

3.2.2 Retraction Map

In order to prove Ξbλ is quasiconvex in T C(X), we will construct a retraction map

Π̂bλ from T C(X) to Ξbλ which is coarsely Lipschitz. For convenience of exposition,

we shall define Π̂bλ only on the union of vertex spaces of T C(X).

For a tree T , let V(T ) denote the vertex set of T .

Definition 3.2.2. (Retraction Map) Let π̂bλv
: X̂v → λ̂v be an electric projection

from X̂v onto λ̂v (See Definition 1.2.51).

Define Π̂bλ :
⋃

v∈V(T1) X̂v → Ξbλ by

Π̂bλ(x) = îv(π̂bλv
(x)) for x ∈ X̂v.

If x ∈ P
−1((V(T ) \ V(T1))), choose x1 ∈ P

−1(V(T1)) such that dX(x, x1) =

dX(x,P−1(V(T1))) and define Π̂′
bλ(x) = x1, dX is the metric on X. Next define

Π̂bλ(x) = Π̂bλ(Π̂
′
bλ(x)).



89 3.2 Cannon-Thurston Maps for Trees of Relatively Hyperbolic Spaces

The following is the main theorem of this subsection.

Theorem 3.2.3. There exists P3.2.3 ≥ 0 such that

dT C(X)(Π̂bλ(x), Π̂bλ(y)) ≤ P3.2.3dT C(X)(x, y) + P3.2.3 for x, y ∈ T C(X).

In particular, if T C(X) is hyperbolic, then Ξbλ is uniformly (independent of λ̂) qua-

siconvex.

Recall that λ̂v = X̂v ∩Ξbλ and λv is the electroambient representative of λ̂v. The

following lemma says that points in the corresponding edge space and which are at

bounded distance from λv’s are also at a bounded distance from ‘maximal subpieces’.

Recall that fh
e,v(X

h
e ) are uniformly C3.2.1-quasiconvex and C = C1.1.30+C3.2.1+Q1.2.50.

Lemma 3.2.4. ([Mit98b]) Let µ̂1 ⊂ X̂v be an electric geodesic with end points a

and b lying outside a horosphere-like set. Let µ1 be the corresponding electroambient

representative in Xh
v . Let p, q ∈ NC(µ1)∩fh

e,v(X
h
e ) be such that dXh

v
(p, q) is maximal.

Let µ̂2 be a geodesic in X̂v joining p and q and µ2 be its electro-ambient represen-

tative. If r ∈ NC(µ1) ∩ fh
e,v(X

h
e ) then dXh

v
(r, µ2) ≤ P3.2.4 for some constant P3.2.4

depending only on C,D1.1.30, δ.

Proof. Let [a, b] and [p, q] be geodesics in Xh joining a, b and p, q respectively. Then

µ1, [a, b] lie in an Q1.2.50-neighborhood of each other and [p, q], µ2 lie in an Q1.2.50-

neighborhood of each other. Let π1 be a nearest point projection from Xh
v onto [a, b].

If π1(r) ∈ [π1(p), π1(q)] ⊂ [a, b], then there exists C ′ > 0 such that dXh
v
(r, µ2) ≤

C + C ′.

Let π1(r) /∈ [π1(p), π1(q)] and we assume that π1(r) ∈ [a, π1(p)] ⊂ [a, π1(q)]. Then

we have

dXh
v
(π1(r), π1(q)) ≤ dXh

v
(r, q) + 2C

≤ dXh
v
(p, q) + 2C, as dXh

v
(p, q) is maximal. (3.1)

Now

dXh
v
(π1(r), π1(q)) = dXh

v
(π1(r), π1(p)) + dXh

v
(π1(p), π1(q))

≥ dXh
v
(π1(r), π1(p)) + dXh

v
(p, q) − 2C (3.2)

Thus from equations 3.1 and 3.2, we have dXh
v
(π1(r), π1(p)) ≤ 4C. This implies

dXh
v
(r, p) ≤ 6C and therefore dXh

v
(r, µ2) ≤ 6C.

Taking P3.2.4 = max{C + C ′, 6C}, we have the required result.

The following lemma says that the images of the edge space onto λv’s and ‘max-

imal subpieces’ under nearest point projections are at bounded Hausdorff distance.
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Lemma 3.2.5. ([Mit98b]) Let µ̂1 and µ̂2 be as in Lemma 3.2.4. If s ∈ fe,v(Xe),

then dXh
v
(πµ1(s), πµ2(s)) ≤ P ′

3.2.5 for some constant P ′
3.2.5 > 0 depending only on

δ, C,D1.1.30. Moreover, if s ∈ f̂e,v(X̂e), there exists P3.2.5(P
′
3.2.5) > 0 such that

d bXv
(π̂bµ1(s), π̂bµ2(s)) ≤ P3.2.5.

Proof. Recall that [a, b] is a geodesic joining end points of µ1 and [p, q] is a geodesic

joining end points of µ2. Let π1, π2 be nearest point projections from Xh
v onto

[a, b], [p, q] respectively. Let D1.1.30 be as in Lemma 1.1.30. If dXh
v
(π1(s), π1π2(s)) ≤

D1.1.30, then dXh
v
(π1(s), π2(s)) ≤ D1.1.30 + C.

Let dXh
v
(π1(s), π1π2(s)) > D1.1.30, then by Lemma 1.1.30, [s, π1(s)]∪[π1(s), π1π2(s)]∪

[π1π2(s), π2(s)] is a quasigeodesic. Since fh
e,v(X

h
e ) is C3.2.1- quasiconvex, there exists

r ∈ fh
e,v(X

h
e ) such that dXh

v
(r, π1(s)) ≤ C1.1.30 + C3.2.1. This implies dXh

v
(r, µ1) ≤

C1.1.30 + C3.2.1 + Q1.2.50 = C and therefore r ∈ NC(µ1) ∩ fh
e,v(X

h
e ). By using

Lemma 3.2.4, there exists r′ ∈ [p, q] such that d(r, r′) ≤ P3.2.4 + Q1.2.50 and hence

dXh
v
(r′, π1(s)) ≤ C1.1.30 + C3.2.1 + P3.2.4 +Q1.2.50 = P3.2.4 + C.

Since π2 is a nearest point projection, (s, r′)π2(s) ≤ 2δ. Therefore

(s, π1(s))π2(s) ≤ (s, r′)π2(s) + dXh
v
(r′, π1(s)) ≤ 2δ + C + P3.2.4.

Since π1 is a nearest point projection, (s, π1π2(s))π1(s) ≤ 2δ. Thus

(s, π2(s))π1(s) ≤ (s, π1π2(s))π1(s) + dXh
v
(π1π2(s), π2(s)) ≤ 2δ + C1.1.30 + C3.2.1.

Now dXh
v
(π1(s), π2(s)) = (s, π1(s))π2(s) +(s, π2(s))π1(s), therefore dXh

v
(π1(s), π2(s)) ≤

2δ + C + P3.2.4 + 2δ + C1.1.30 + C3.2.1 = K(say). Thus from Lemma 1.1.35, we have

dXh
v
(πµ1(s), πµ2(s)) ≤ K + 2L1.

Taking P ′
3.2.5 = max{D1.1.30 + C,K + 2L1}, we have the required result.

Suppose x, y ∈ T C(X) and dT C(X)(x, y) ≤ 1. Since îv’s are uniformly proper

embedding from X̂v to T C(X), there exists a constant M > 0 such that d bXv
(x, y) ≤

M .

Let P = max{P1.1.32, P1.1.36, P1.2.52, P1.2.53, P1.2.55, P3.2.4, P3.2.5,M}.

Proof of theorem 3.2.3

It suffices to prove that if dT C(X)(x, y) ≤ 1 then dT C(X)(Π̂bλ(x), Π̂bλ(y)) ≤ P3.2.3.

Let dT C(X)(x, y) ≤ 1.

Case 1: Let x, y ∈ P−1(v) for some v ∈ T1. Using Lemma 1.2.53, there exists a

constant K0(P) > 0 such that

dT C(X)(Π̂bλv
(x), Π̂bλv

(y)) ≤ d bXv
(π̂bλv

(x), π̂bλv
(y)) ≤ K0.
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Case 2: Let x ∈ P−1(w) and y ∈ P−1(v) for some v, w ∈ T1 such that v 6= w.

Now v and w are adjacent in T1 and x ∈ fe(Xw) since dT C(X)(x, y) ≤ 1. Without

loss of generality we can assume that w = v−. Let e be the edge between v and w.

Recall that Ξbλ ∩ P−1(v) = λ̂v, Ξbλ ∩ P−1(w) = λ̂w, λ̂v = Φ̂v,e(µ̂w,e), where µ̂w,e

is the geodesic in X̂w joining pe, qe ∈ Xw, pe, qe lie in a C-neighborhood of λw,

d bXw
(pe, qe) > D1.1.30 and Φ̂v,e(µ̂w,e) is the geodesic in X̂v joining φv,e(pe) and φv,e(pe).

For simplicity, we denote µ̂w,e by µ̂w and the quasi-isometry φv,e by φv.

Step 1: From lemma 3.2.5,

dT C(X)(Π̂bλw
(x), Π̂bµw

(x)) ≤ d bXw
(π̂bλw

(x), π̂bµw
(x)) ≤ P.

Step 2: f̂e,v(X̂v) and f̂e,w(X̂w) are uniformly quasiconvex in X̂v and X̂w respec-

tively. Let Prw : X̂w → f̂e,w(X̂w) be a nearest point projection, then from Corollary

1.1.33, we have Prw is coarsely Lipschitz. Therefore, by Lemma 1.1.34, Prw(µ̂w) is

a quasigeodesic in f̂e,w(X̂w). Let µ̂′
w = Prw(µ̂w). Using Lemma 1.1.35, we have

d bXw
(π̂bµw

(x), π̂bµ′
w
(x)) ≤ K ′ for some constant K ′ > 0. (3.3)

By using Lemma 1.2.55, there exists a constant R > 0 such that

d bXv
(φ̂v(π̂bµ′

w
(x)), π̂bλv

(φ̂v(x))) ≤ R. (3.4)

dT C(X)(Π̂bµw
(x), Π̂bλv

(φ̂v(x))) = dT C(X)(π̂bµw
(x), π̂bλv

(φ̂v(x)))

≤ dT C(X)(π̂bµw
(x), π̂bµ′

w
(x)) + dT C(X)(π̂bµ′

w
(x), φ̂v(π̂bµ′

w
(x))

+dT C(X)(φ̂v(π̂bµ′
w
(x)), π̂bλv

(φ̂v(x)))

≤ K ′ + 1 +R.

Step 3: dT C(X)(x, y) = 1 = dT C(X)(x, φ̂v(x)). Then d bXv
(φ̂v(x), y) ≤ 2M . Thus using

lemma 1.2.53, we have

dT C(X)(Π̂bλv
(φ̂v(x)), Π̂bλv

(y)) ≤ d bXv
(π̂bλv

(φ̂v(x)), π̂bλv
(y)) ≤ 2PM + P.

Thus from above three steps, there exists a constant K1(P) > 0 such that

dT C(X)(Π̂bλ(x), Π̂bλ(y)) ≤ K1.

Case 3: Let P([x, y]) be not contained in T1. Then P(x) and P(y) belong to the

closure of the same component of T \ T1. Then P(Π̂′
bλ(x)) = P(Π̂′

bλ(y)) = v for some

v ∈ V(T1) by the second part of Definition 3.2.2. Let x1 = Π̂′
bλ(x) and y1 = Π̂′

bλ(y).

Now x1, y1 ∈ fh
e,v(X

h
e ) for some edge e with initial vertex v.

If dXh
v
(πλv

(x1), πλv
(y1)) < D1.1.30 then

dT C(X)(Π̂bλ(x), Π̂bλ(y)) ≤ d bXv
(π̂bλv

(x), π̂bλv
(y)) ≤ D1.1.30 + 2.
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Let us assume dXh
v
(πλv

(x1), πλv
(y1)) > D1.1.30, then by Lemma 1.1.30 [x1, πλv

(x1)]∪
[πλv

(x1), πλv
(y1)]∪ [πλv

(y1), y1] is a quasi-geodesic lying in a C1.1.30-neighborhood of

[x1, y1].

Since fh
e,v(X

h
e ) is C3.2.1-quasiconvex in Xh

v , there exist x2, y2 ∈ fh
e,v(X

h
e ) such that

dXh
v
(πλv

(x1), x2) ≤ C1.1.30 + C3.2.1 ≤ C and dXh
v
(πλv

(y1), y2) ≤ C1.1.30 + C3.2.1 ≤ C

and thus x2, y2 ∈ NC(λv)∩fh
e,v(X

h
e ). Now there exist x′2, y

′
2 ∈ NC(λv)∩fe,v(Xe) such

that ddXh
v
(x2, x

′
2) ≤ 1 and ddXh

v
(y2, y

′
2) ≤ 1. Therefore d bXv

(x′2, y
′
2) ≤ ddXh

v
(x′2, y

′
2) ≤ 2.

Let D1 > P1.2.53D1.1.30 + P1.2.53. If D1 < d bXv
(π̂bλv

(x′2), π̂bλv
(y′2)), then by Lemma

1.2.53 d bXv
(x′2, y

′
2) > D1.1.30. This implies that the edge P([x, y]) of T would be in T1,

(because we would be able to to continue the construction of the ladder Ξbλ beyond

the vertex v) which is a contradiction. Therefore d bXv
(π̂bλv

(x′2), π̂bλv
(y′2)) ≤ D1.

dT C(X)(Π̂bλ(x), Π̂bλ(y)) ≤ d bXv
(π̂bλv

(x1), π̂bλv
(y1))

≤ d bXh
v
(πλv

(x1), πλv
(y1)) + 2

≤ d bXh
v
(πλv

(x1), x2) + d bXh
v
(x2, y2) + d bXh

v
(y2, πλv

(y2)) + 2

≤ dXh
v
(πλv

(x1), x2) + dXh
v
(πλv

(y1), y2)

+d bXv
(x′2, y

′
2) + 2 + 2

≤ 2C + d bXv
(x′2, π̂bλv

(x′2)) + d bXv
(y′2, π̂bλv

(y′2))

+d bXv
(π̂bλv

(x′2), π̂bλv
(y′2)) + 4

≤ 4C +D1 + 4 = K2(say).

Taking P3.2.3 =max{K0, K1, K2, D1.1.30 + 2}, we have the required result. 2

3.2.3 Vertical Quasigeodesic Rays

Let δ ≥ 0. Let P : X → T be a tree of δ-relatively hyperbolic metric spaces

with (X, dX) is δ-hyperbolic relative to the collection C maximal cone subtree of

ν (≥ 1)-separated horosphere-like spaces. Then the tree of coned-off spaces T C(X)

is hyperbolic. Let λ̂v0 be an electric geodesic segment from a to b in X̂v0 with a and b

lying outside horosphere-like sets and λv0 denotes its electroambient path represen-

tative in Xh
v0

. Recall that we have constructed a set Ξbλv0
=

⋃
v∈V(T1) îv(λ̂v), called

as hyperbolic ladder, in T C(X) satisfying the following properties:

(i) Ξbλv0
is a quasiconvex set in T C(X) containing λ̂v0 .

(ii) P(Ξbλv0
) = V(T1) and for v ∈ V(T1), X̂v ∩ Ξbλv0

= λ̂v, where λ̂v is a geodesic in

X̂v.

(iii) Let v, w ∈ V(T1) be adjacent vertices with e being the edge between them and

w = v . There exists a geodesic µ̂w with its end point lying in Xw and its elec-
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troambient representative µw lies in a bounded neighborhood of the electroambient

representative λw of λ̂w. λ̂v is a geodesic in X̂v joining the end points of φ̂v,e(µ̂w).

Let

• λc
v be the union of geodesic subsegments of the electroambient path representative

λv lying inside the hyperbolic cones penetrated by λv.

• λb
v = λv \ λc

v. (Note that λb
v ⊂ λ̂v).

• Ξλb
v0

=
⋃

v∈V(T1) iv(λ
b
v). (Then Ξλb

v0
⊂ Ξbλv0

).

If x ∈ Ξλb
v0

, then there exists v ∈ T1 such that x ∈ λb
v. Let S = [vn, vn−1]∪ ...∪ [v1, v0]

be the geodesic edge path in T1 joining v and v0.

We will construct a map rx : S → Ξλb
v0

satisfying

• dS(w,w′) ≤ dX(rx(w), rx(w
′) ≤ R3.2.3dS(w,w′) for all w,w′ ∈ S.

• rx(vi) ∈ Xvi
.

rx will be called a R3.2.3-vertical quasigeodesic ray.

Recall that φu,e : fe,u−
(Xe) → fe,u(Xe), φ

h
u,e : f

h
e,u−

(Xh
e ) → fh

e,u(X
h
e ) are quasi-

isometries, for the sake of simplicity of notation, here we will denote φu,e by φu

and φh
u,e by φh

u.

Construction of rx:

• For vn ∈ S, define rx(vn) = x

Let v = vn, w = vn−1, ei = [vi, vi−1], ψvi
= φ−1

vi
: fei,vi

(Xei
) → fei,vi−1

(Xei
) and

ψh
vi

= (φh
vi
)−1 : fh

ei,vi
(Xh

ei
) → fh

ei,vi−1
(Xh

ei
) for all i = 1, ..., n. Then ψvi

, ψh
vi

are quasi-

isometries.

Since x lies outside horosphere-like sets and ψv preserves horosphere-like sets (by

the strictly type-preserving condition), ψv(x) will lie outside horosphere-like sets.

Let [a, b] be the maximal connected component of λb
v on which x lies. Then there

exist two horosphere-like sets H1 and H2 such that a ∈ H1 (or is a initial point of

λv) and b ∈ H2 (or is a terminal point of λv). Since ψv preserves horosphere-like

sets, ψv([a, b]) \ {ψ(a), ψ(b)} will lie outside horosphere-like sets.

As [a, b] lies outside horosphere-like sets, ψh
v ([a, b]) = ψv([a, b]) ⊂ Xw and

ψv([a, b]) is a quasigeodesic inXh
w. Let Ψh

v([a, b]) be a hyperbolic geodesic in Xh
w join-

ing ψv(a) and ψv(b). Then ψv([a, b]) will lie in a bounded neighborhood of Ψh
v([a, b])

and therefore there exists R1 > 0 such that dX(ψv(x),Ψ
h
v([a, b])) ≤ R1. By Lemma

1.2.44, there exists an upper bound on how much Ψh
v([a, b]) can penetrate hyper-

bolic cones, that is, for all z ∈ Ψh
v([a, b]) there exists z′ ∈ Ψh

v([a, b]) lying outside

hyperbolic cones such that dX(z, z′) ≤ I. Hence there exists y1 ∈ Ψh
v([a, b]) such

that dX(ψv(x), y1) ≤ I +R1 and y1 lies outside horosphere-like sets.

Again, Ψh
v([a, b]) lies at a uniformly bounded distance ≤ R2 from µv (the elec-
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troambient path representative of µ̂v in the construction of Ξbλv0
). Let c, d ∈ µv

such that dX(a, c) ≤ R2 and dX(b, d) ≤ R2. Then Ψh
v([a, b]) and the quasigeodesic

segment [c, d] ⊂ µv have similar intersection patterns (Lemma 1.2.44 ) with hyper-

bolic cones. Therefore [c, d] can penetrate only a bounded distance ≤ I into any

hyperbolic cone. Hence there exists y2 ∈ µv and y2 lies outside horosphere-like sets

such that dX(y1, y2) ≤ R2 + I.

Since end points of µv lie at a bounded neighborhood of λw, there exists R3 > 0

such that µv will lie at a R3 neighborhood of λw. Therefore there exists y3 ∈ λw

such that dX(y2, y3) ≤ R3. Now y3 may lie inside a hyperbolic cone. Since µv and

πλw
(µv) lies in a bounded neighborhood of each other, by Lemma 1.2.44 they have

similar intersection patterns with hyperbolic cones. Therefore there exists I > 0

and y ∈ λw such that y lies outside horosphere-like sets and dX(y3, y) ≤ I.

Hence dX(x, y) ≤ 1 +R1 +R2 +R3 + 3I = R3.2.3(say).

• Recall that w = vn−1. Define rx(vn−1) = y.

Thus we have 1 ≤ dX(rx(vn), rx(vn−1)) ≤ R3.2.3.

Using the above argument repeatedly, inductively replacing x with rx(vi) in each

step, we get the following. Since rx(v) ∈ Xv, we have dS(v, w) ≤ dX(rx(v), rx(w)).

Lemma 3.2.6. There exists R3.2.3 ≥ 0 such that the following holds:

For all x ∈ λb
v ⊂ Ξb

λv0
, there exists a R3.2.3-vertical quasigeodesic ray rx : S → Ξb

λv0

such that rx(v) = x and dS(v, w) ≤ dX(rx(v), rx(w)) ≤ R3.2.3dS(v, w), where S is

the geodesic edge path in T1 joining v and v0 and w ∈ S.

The following is the concluding Lemma of this subsection.

Lemma 3.2.7. Let R3.2.3 > 0 be as above:

Fix a reference point p lying outside the horosphere-like sets in Xv0. Bn(p) denotes

the n-ball around p in (Xv0 , dXv0
). Let λb

v0
lies outside Bn(p) (and hence entry and

exit points of λ̂ to a horosphere-like set lie outside Bn(p)). Then for any x ∈ λb
v(⊂

Ξb
λv0

⊂ Ξbλv0
), x lies outside an n/(R3.2.3 + 1)-ball about p in X.

Proof. Since rx(v0) ∈ λb
v0

, rx(v0) lies outside Bn(p). Let m be the first non-

negative integer such that v ∈ P(Ξm(λ̂v0)) \ P(Ξm−1(λ̂v0)). Then dT1(v0, v) = m,

and dX(x, p) ≥ m (since rx(v) = x ∈ λb
v).

From Lemma 3.2.6, m ≤ dX(rx(v), rx(v0)) ≤ R3.2.3m.

Since rx(v0) lies outside Bn(p), dX(rx(v0), p) ≥ n.

n ≤ dX(rx(v0), p) ≤ dX(rx(v0), rx(v)) + dX(rx(v), p) ≤ mR3.2.3 + dX(rx(v), p).

Therefore, dX(rx(v), p) ≥ n−mR3.2.3 and dX(rx(v), p) ≥ m.

Hence dX(x, p) = dX(rx(v), p) ≥ n
R3.2.3+1

.
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3.2.4 Proof of Main theorem

Let P : X → T be a tree of relatively hyperbolic metric spaces with (X, dX) is

strongly hyperbolic relative to the collection C maximal cone subtree of horosphere-

like spaces.

Let

• λ̂v0 = electric geodesic in X̂v0 joining a, b ∈ Xv0 with λb
v0

lying outside an n-

ball Bn(p) around p in Xv0 , for a fixed reference point p ∈ Xv0 lying outside the

horosphere-like sets.

• λv0 = electroambient path representative of λ̂v0 in Xh
v0

constructed from λ̂v0 .

• µ̂ be a geodesic in the electric space X̂ joining a, b.

• µ be an electroambient representative of µ̂.

• βp =quasi-geodesic in the space T C(X) joining a, b.

• β ′
p = Π̂Ξbλv0

(βp), where Π̂Ξbλv0

is a nearest point projection map from T C(X) to the

quasi-convex set Ξbλv0
.

Recall that by Corollary 1.3.5, T C(X) is hyperbolic. By Lemma 1.1.34, β ′
p is

a K1.1.34-quasigeodesic for some K1.1.34 ≥ 1 in the space T C(X) joining a, b and

lying on Ξbλv0
. We will construct a tamed quasigeodesic path γp from β ′

p in T C(X)

joining a, b such that γp ∩ X lie in a C2-neighborhood of Ξλb
v0

. Let [l,m] be the

domain of β ′
p and P = {l,m} ∪ (Z ∩ (l,m)). For two successive points ti, ti+1 ∈ P,

we have dT C(X)(β
′
p(ti), β

′
p(ti+1)) ≤ 2K1.1.34. Let β ′

p(ti) ∈ X̂ui
, β ′

p(ti+1) ∈ X̂ui+1
, then

dT (ui, ui+1) ≤ 2K1.1.34. Recall that for w ∈ P(Ξbλv0
), X̂w ∩ Ξbλv0

= λ̂w, where λ̂w is

a geodesic in X̂w. By construction of Ξbλv0
, there exists a vertex v in the geodesic

[ui, ui+1] such that λ̂ui
= Ξbλv

∩X̂ui
and the geodesic joining β ′

p(ti), β
′
p(ti+1) in T C(X)

intersects X̂v. Now for each i there exists ai ∈ λb
ui

such that dT C(X)(β
′
p(ti), ai) ≤ 1.

By Lemma 3.2.6, there exist xv, yv ∈ λb
v such that dX(ai, xv) ≤ 2K1.1.34R3.2.6 and

dX(ai+1, yv) ≤ 2K1.1.34R3.2.6. Therefore, by triangle inequality,

dT C(X)(xv, yv) ≤ dX(xv, ai) + dT C(X)(ai, ai+1) + dX(ai+1, yv)

≤ 2K1.1.34R3.2.6 + (2K1.1.34 + 2) + 2K1.1.34R3.2.6 = K1 say.

Now X̂v is uniformly properly embedded in T C(X), therefore there exists P =

P (K1) > 0 such that dcXv
(xv, yv) ≤ P . Let λ̂′v be the subsegment of λ̂v joining

xv, yv; [β ′
p(ti), ai] be a geodesic in T C(X) and [ai, xv]X , [bi, yv]X be geodesics in X.

Let βi = [β ′
p(ti), ai] ∪ [ai, xv]X ∪ λ̂′v ∪ [yv, bi]X ∪ [bi, β

′
p(ti+1)], then the length of βi in

T C(X) is at most 2 + 4K1.1.34R3.2.6 + P . Let γp = ∪iβi, then γp is a tamed quasi-

geodesic path in T C(X). Let C2 = 2K1.1.34R3.2.6 then for z ∈ γp ∩ X there exists

w ∈ λb
v ⊂ Ξλb

v0
such that dX(z, w) ≤ C2.
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Now a, b are end points of λ̂v0 , therefore a, b ∈ Ξbλv0
and end points of γp are a, b.

By Lemma 1.3.5, there exists C1 ≥ 0 such that if x ∈ µb = µ̂ ∩X, then there exists

y ∈ γb
p = γp ∩ X such that dX(x, y) ≤ C1. For y ∈ γb

p, there exists y1 ∈ Ξλb
v0

such

that dX(y, y1) ≤ C2.

It follows from lemma 3.2.7 that dX(y1, p) ≥ n
R3.2.3+1

.

So, n
R3.2.3+1

≤ dX(y1, y) + dX(y, x) + dX(x, p) ≤ C2 + C1 + dX(x, p),

i.e. dX(x, p) ≥ n
R3.2.3+1

− C1 − C2 (=M(n), say).

Thus we have the following proposition :

Proposition 3.2.8. Let δ ≥ 0, ν ≥ 1 and X be a proper geodesic space. Let P : X →
T be a tree of δ-relatively hyperbolic metric spaces such that the collections Hv,He

are uniformly ν-separated for each vertex v and each edge e. Let X be δ-hyperbolic

relative to the collection C in the sense of Gromov. For a vertex v0 of T , let λ̂v0 be

an electric geodesic in X̂v0 joining a, b ∈ Xv0 with λb
v0

lying outside an n-ball around

p in Xv0, for a fixed reference point p ∈ Xv0 lying outside the horosphere-like sets.

Let µ̂ be a geodesic in X̂ joining a, b and µb = µ̂∩X. Then for every point x on µb,

x lies outside an M(n)-ball around p in X, such that M(n) → ∞ as n→ ∞.

It is now easy to assemble the pieces to deduce the existence of Cannon-Thurston

maps.

Theorem 3.2.9. Let δ ≥ 0, ν ≥ 1 and X be a proper geodesic space. Let P : X → T

be a tree of δ-relatively hyperbolic metric spaces such that the collections Hv,He are

uniformly ν-separated for each vertex v and each edge e. If X is δ-hyperbolic relative

to the collection C in the sense of Gromov, then a Cannon-Thurston map exists for

the proper embedding iv0 : Xv0 → X.

Proof. A Cannon-Thurston map exists if it satisfies the condition of Lemma 3.1.4.

So for a fixed reference point p ∈ Xv0 with p lying outside horosphere-like sets, we

assume that λ̂v0 is an electric geodesic in X̂v0 such that λb
v0

= λ̂v0 ∩ X ⊂ Xv0 lies

outside an n-ball Bn(p) around p in Xv0 . Since iv0 is a proper embedding, λb
v0

lies

outside a f(n)-ball around p in X such that f(n) → ∞ as n → ∞. From the

Proposition 3.2.8, if µ̂ is a geodesic in X̂ joining the end points of λv0 , then µb lies

outside an M(f(n))-ball around p in X such that M(f(n)) → ∞ as n → ∞. From

Lemma 3.1.4, a Cannon-Thurston map for i : Xv0 → X exists.
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3.3 Cannon-Thurston Maps for Relatively Hy-

perbolic Extensions of Groups

Here, we will work with the following short exact sequence of finitely generated

groups :

1 → K → G
p→ Q→ 1

Let K1 be a finitely generated non-trivial proper subgroup of K such that K is

strongly hyperbolic relative to the subgroup K1 and G preserves cusps. Since all

groups are finitely generated, we can choose a finite generating set S of G such that

S contains finite generating set of K,K1, NG(K1) and p(S) is also a finite generating

set of Q. There exists a (R, ǫ)-quasi-isometric section s : Q→ G such that

1

R
dQ(q, q′) − ǫ ≤ dG(s(q), s(q′)) ≤ RdQ(q, q′) + ǫ.

From Corollary 2.1.8 and using a left translation Lk by an element k ∈ K1, we

can assume that s(Q) contains the identity element eK of K and s(Q) ⊂ NG(K1).

Further, we assume that G is strongly hyperbolic relative to the subgroup NG(K1)

and G is weakly hyperbolic relative to the subgroup K1. We have assumed that

generating set of G contains the generating set of K,K1, thus the Cayley graphs of

ΓK ,ΓK1 are connected subgraphs of ΓG. For a ∈ G, let La denotes the left translation

by a. La acts by isometry on ΓG. Let HaK1 = La(ΓK1), HK1 = {HaK1 : a ∈ G}
and E(G,K1) = E(ΓG,HK1). Similarly we have HgNG(K1) and HNG(K1). As G is

weakly hyperbolic to K1, E(G,K1) is a hyperbolic metric space. Since G is strongly

hyperbolic relative to NG(K1) (Here the definition of a relatively hyperbolic group

will taken in the sense of Gromov (B), 1.2.57), (ΓG,HNG(K1)) is a strongly relatively

hyperbolic space.

Let Λ be a subset of G such that the identity element eG ∈ Λ and for two distinct

elements g, g′ ∈ Λ we demand gNG(K1) 6= g′NG(K1). Let (Qg, dQg
) = (Q, dQ) and

Q = {Qg : g ∈ Λ}.
For each g ∈ Λ, define Fg : HgNG(K1) → Qg by Fg(gb) = p(gb) for all b ∈ NG(K1).

As dQ(p(a), p(a′)) ≤ dNG(K1)(a, a
′) for all a, a′ ∈ NG(K1), therefore

dQg
(Fg(x), Fg(x

′)) ≤ dHgNG(K1)
(x, x′) for all x, x′ ∈ HgNG(K1).

Let F = {Fg : g ∈ Λ}. Since ΓQ is quasi-isometrically embedded in E(G,K1) (from

Corollary 2.1.8), ΓQ is hyperbolic and hence Qg is hyperbolic for all g ∈ Λ. Then,

according to Definition 1.2.66, PE(ΓG,HNG(K1),F ,Q) is a partially electrocuted

space. Let Γpel
G = PE(ΓG,HNG(K1),F ,Q), then from Theorem 1.2.77 is a hyperbolic

metric space.
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Since (K,K1) and (G,G1) are relatively hyperbolic groups, due to Theorem

1.2.63, (ΓK ,HK1) and (ΓG,HG1) are relatively hyperbolic metric spaces both in the

sense of Gromov (B) (Defn. 1.2.57) and Farb (Defn. 1.2.6). Let λb = λ̂\HK1 denote

the portions of λ̂ that do not penetrate horosphere-like sets in HK1 . The following

Lemma gives a sufficient condition for the existence of a Cannon-Thurston map for

the inclusion i : (ΓK ,HK1) → (ΓG,HG1). For proof refer to Lemma 3.1.4.

Lemma 3.3.1. A Cannon-Thurston map for i : (ΓK ,HK1) → (ΓG,HG1) exists if

there exists a non-negative function M(N) with M(N) → ∞ as N → ∞ such that

the following holds:

Given y0 ∈ ΓK and an electric quasigeodesic segment λ̂ in Γ̂K if λb = λ̂ \ HK1

lies outside an N-ball around y0 ∈ ΓK, then for any geodesic µ̂ in Γ̂G joining end

points of λ̂, µb = µ̂ \ HG1 lies outside an M(N)-ball around i(y0) in ΓG.

3.3.1 Construction of Quasiconvex Sets and Retraction Map

Recall that for g ∈ G, Lg : G→ G denotes the left translation by g and Ig : K → K

denotes the automorphism Ig(k) = gkg−1. Let φg = Ig−1 then φg(a) = g−1ag. Since

Lg is an isometry, Lg preserves distance between left cosets of G1 in G. Hence Lg

induces an isometry L̂g : Γpel
G → Γpel

G . The embedding i : ΓK → ΓG will induce an

embedding î : Γ̂K → Γpel
G .

Let λ̂ be an electric geodesic segment in Γ̂K with end points a and b in ΓK . Let

λ̂g be an electric geodesic in Γ̂K joining φg(a) and φg(b).

Define

Ξbλ =
⋃

g∈s(Q)

L̂g .̂i(λ̂g).

Recall from definition 1.2.16 that Γh
K = G(ΓK ,HK1) is the hyperbolic metric

space obtained from ΓK by hyperbolic cone construction. For g ∈ G, let π̂bλg
: Γ̂K →

λ̂g be the electric projection. (Refer to Definition 1.2.51).

From Lemma 1.2.53, there exists P1.2.53 > 0 such that

dbΓK
(π̂bλg

(k), π̂bλg
(k′)) ≤ P1.2.53dbΓK

(k, k′) + P1.2.53

for all k, k′ ∈ Γ̂K , where P1.2.53 depends only on the hyperbolic constant of Γ̂K .

For each g ∈ G, φg : ΓK → ΓK is a quasi-isometry and it induces a quasi-isometry

φ̂g : Γ̂K → Γ̂K . Thus from Lemma 1.2.55, there exists a constant P1.2.55 > 0 such that

if x ∈ Γ̂K and λ̂ is a geodesic in Γ̂K joining a and b then dbΓK
(φ̂g(π̂bλ(x)), π̂bλg

(φ̂g(x))) ≤
P1.2.55.
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s(Q)

s(eQ)

gK1

s(q) = g

bLg(bλg)

gK

K

K1
bλ

bλg

Figure 3.2: Quasiconvex set Ξbλ.

Analogous to the Definition 3.2.2, we define the Retraction Map in a group

theoretic setting.

Definition 3.3.2. (Retraction Map) Define Π̂bλ : Γpel
G → Ξbλ as follows:

Let x ∈ Γpel
G . There exists a unique g ∈ s(Q) such that L̂g (̂i(k)) = x for some

unique k ∈ K, define Π̂bλ(x) = L̂g (̂i(π̂bλg
(k))). Π̂bλ will be called a Retraction Map.

The following theorem says that the Retraction Map Π̂bλ is coarsely Lipschitz.

Theorem 3.3.3. There exists a constant P3.3.3 > 0 such that for the short exact

sequence of pair of finitely generated groups

1 → (K,K1)
i→ (G,NG(K1))

p→ (Q,Q) → 1

with G preserving cusps; K,G strongly hyperbolic relative to the subgroupsK1, NG(K1)

respectively, and G weakly hyperbolic relative to the collection K1, the following in-

equality holds:

dpel(Π̂bλ(x), Π̂bλ(x
′)) ≤ P3.3.3dpel(x, x

′) + P3.3.3

for all x, x′ ∈ Γpel
G , where (Γpel

G , dpel) is the coned-off space corresponding to the pair

(G, i(K1)). In particular, if Γpel
G is hyperbolic then Ξbλ is uniformly (independent of

λ̂) quasiconvex.

Proof. Since cone points in Γpel
G lie within a unit distance from the points of

ΓG, it suffices to prove the theorem for points lying in ΓG. Also, it suffices to

prove that there exists P3.3.3 > 0 such that for x, y ∈ ΓG if dpel(x, y) ≤ 1 then

dpel(Π̂bλ(x), Π̂bλ(y)) ≤ P3.3.3. The embedding i : ΓK → ΓG induces an embedding

î : Γ̂K → Γpel
G , so we identify x with its image î(x).
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Case i: Let x and y lie in the same left coset gK of K in G.

Then using Lemma 1.2.53, there exists a constant P1.2.53 > 0 such that

dpel(Π̂bλ(x), Π̂bλ(y)) ≤ dbΓK
(π̂bλg

(x), π̂bλg
(y)) ≤ P1.2.53dbΓK

(x, y) + P1.2.53 = 2P1.2.53.

Case ii: Let x and y lie in different left cosets. Therefore dpel(x, y) = 1 and hence

dQ(p(x), p(y)) = 1. Recall that s : Q → ΓG is a quasi-isometric section. Therefore

there exists k1 > 0 such that dG(s(p(x)), s(p(y))) ≤ k1.

Now there exists g0 ∈ s(Q) and g ∈ G with length of g is bounded above by the

constant k1 such that x ∈ Lg0(ΓK) and y ∈ Lg0g(ΓK). Therefore x = Lg0(x1), y =

Lg0g(y1) for some x1, y1 ∈ ΓK . By definition, Π̂bλ(x) = L̂g0 π̂g0(x1) and Π̂bλ(y) =

L̂g0π̂g0(y1).

Now for all k ∈ K, d(Lg0(k), Lg0gφg(k)) = d(k, kg) ≤ k1. Therefore

dpel(L̂g0(π̂bλg0
(x1)), L̂g0gφ̂g(π̂bλg0

(x1))) ≤ k1.

Also we have,

dpel(L̂g0g(π̂bλg0g
(φ̂g(x1))), L̂g0gπ̂bλg0g

(y1))) = dpel(φ̂g(π̂bλ(x)), π̂bλg
(φ̂g(x)))

≤ dbΓK
(φ̂g(π̂bλ(x)), π̂bλg

(φ̂g(x)))

≤ P1.2.55

Since x1 ∈ ΓK , φ̂g(x1) = φg(x1). Thus

dpel(φ̂g(x1), y1) = dpel(φg(x1), y1)

≤ dpel(xg, y)

≤ dpel(xg, x) + dpel(x, y)

≤ k1 + 1.

Now Γ̂K is properly embedded in Γpel
G therefore there exists a constant M1(k1) > 0

such that dbΓK
(φ̂g(x1), y1) ≤ M1. Since L̂g0g is an isometry, we have

dpel(L̂g0g(π̂bλg0g
(φ̂g(x1))), L̂g0g(π̂bλg0g

(y1))) = dpel(π̂bλg0g
(φ̂g(x1)), π̂bλg0g

(y1)).

From Lemma 1.2.53, there exists a constant P1.2.53 > 0 such that

dpel(π̂bλg0g
(φ̂g(x1)), π̂bλg0g

(y1)) ≤ dbΓK
(π̂bλg0g

(φ̂g(x1)), π̂bλg0g
(y1))

≤ P1.2.53M1 + P1.2.53.
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Thus, finally we have

dpel(Π̂bλ(x), Π̂bλ(y)) = dpel(L̂g0(π̂bλg0
(x1)), L̂g0g(π̂bλg0g

(y1)))

≤ dpel(L̂g0(π̂bλg0
(x1)), L̂g0gφ̂g(π̂bλg0

(x1))) +

dpel(L̂g0gφ̂g(π̂bλg0
(x1)), L̂g0g(π̂bλg0g

(φ̂g(x1)))) +

dpel(L̂g0g(π̂bλg0g
(φ̂g(x1))), L̂g0g(π̂bλg0g

(y1)))

≤ k1 + P1.2.55 + P1.2.53M1 + P1.2.53.

Taking P3.3.3 = max{2P1.2.53, k1+P1.2.55+P1.2.53M1+P1.2.53}, we have the required

result.

3.3.2 Proof of Theorem

Since i : ΓK → ΓG is an embedding we identify k ∈ K with its image i(k). Let

• µ̂g = L̂g(λ̂g), where g ∈ s(Q).

• µb
g = µ̂g \ HNG(K1).

• λb
g = λ̂g \ HK1.

• Ξλb =
⋃

g∈s(Q) µ
b
g.

• Y = ΓK and X = ΓG.

Lemma 3.3.4. There exists A > 0 such that if λb lies outside BN (p) for a fixed

reference point p ∈ ΓK, then for all x ∈ µb
g ⊂ Ξλb ⊂ Ξbλ, x lies outside a f(N)

A+1
ball

about p in ΓG, where f(N) → ∞ as N → ∞.

Proof. Let x ∈ µb
g for some g ∈ s(Q). Let γ be a geodesic path in ΓQ joining

the identity element eQ of ΓQ and p(x) ∈ ΓQ. Order the vertices on γ so that we

have a finite sequence eQ = q0, q1, ..., qn = p(x) = p(g) such that dQ(qi, qi+1) = 1

and dQ(eQ, p(x)) = n. Since s is a quasi-isometric section, this gives a sequence

s(qi) = gi such that dG(gi, gi+1) ≤ R + ǫ = R1 (say). Observe that gn = g and

g0 = eG. Let BR1(eG) be a closed ball around eG of radius R1, then BR1(eG) is

finite. Now for each g ∈ G, the automorphism φg is a quasi-isometry. Thus there

exists K ≥ 1 and ǫ ≥ 0 such that for all g ∈ BR1(eG), φg is a (K, ǫ) quasi-isometry

and K, ǫ are independent of elements of G. Let si = g−1
i+1gi, then si ∈ BR1(eG),

where i = 0, ..., n− 1. Hence φsi
is a (K, ǫ) quasi-isometry.

Since s(Q) ⊂ NG(K1) so we have si ∈ NG(K1) for all i. φsi
will induce a (K̂, ǫ̂)

quasi-isometry φ̂si
from Γ̂K to Γ̂K , where K̂, ǫ̂ depends only K and ǫ.
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Now x ∈ µb
gn

and Lg preserves distance between left cosets for all g ∈ G, hence

there exists x1 ∈ λb
gn

such that x = Lgn
(x1).

Let [p, q]gn
⊂ λb

gn
be the connected portion of λb

gn
on which x1 lies. Note

that [p, q]gn
is a geodesic in Y h. Since φsn−1 is a strictly type preserving quasi-

isometry, it induces a quasi-isometry φh
sn−1

: Y h → Y h and as λb
gn

lies outside

horosphere-like sets, φsn−1([p, q]gn
)(= φh

sn−1
([p, q]gn

)) is a quasigeodesic in Y h ly-

ing at a uniformly bounded distance ≤ C1 from λgn−1 in Y h, where λgn−1 is an

electroambient representative of λ̂gn−1. Thus there exist x2 ∈ λgn−1 such that

dXh(φsn−1(x1), x2) ≤ dY h(φsn−1(x1), x2) ≤ C1. But x2 may lie inside a hyperbolic

cone penetrated by λ̂gn−1 . Due to bounded coset (horosphere) penetration properties

there exists y ∈ λb
gn−1

such that dXh(x2, y) ≤ I for some I > 0.

Thus dXh(φsn−1(x1), y) ≤ C1 + I. Since X = ΓG is properly embedded in Xh,

there exists M > 0 depending only upon C1, I such that dG(φsn−1(x1), y) ≤M .

Hence dG(Lgn−1(φsn−1(x1)), Lgn−1(y)) = dG(φsn−1(x1), y) ≤ M and Lgn−1(y) ∈
µb

gn−1
.

Let z = Lgn−1(y), then

dG(x, z) ≤ dG(x, Lgn−1(φsn−1(x1))) + dG(Lgn−1(φsn−1(x1)), Lgn−1(y))

≤ dG(x, xsn−1) +M

≤ R1 +M = A(say).

Thus, we have shown that for x ∈ µb
gn

there exists z ∈ µb
gn−1

such that dG(x, z) ≤ A.

Proceeding in this way, for each y ∈ µb
gi

there exists y′ ∈ µb
gi−1

such that dG(y, y′) ≤
A.

Hence there exists x′ ∈ λb such that dG(x, x′) ≤ An.

Since ΓK is properly embedded in ΓG there exists f(N) such that λb lies outside

f(N)-ball about p in ΓG and f(N) → ∞ as N → ∞.

Therefore dG(x′, p) ≥ f(N), thus

dG(x, p) ≥ f(N) − dG(x, x′) ≥ f(N) −An.

Also we know that dG(x, p) ≥ n, therefore dG(x, p) ≥ f(N)
A+1

, i.e., x lies outside
f(N)
A+1

-ball about p in ΓG.

Theorem 3.3.5. Consider a short exact sequence of finitely generated groups

1 → K
i→ G

p→ Q→ 1

with K hyperbolic relative to a proper non-trivial subgroup K1. Suppose that

1. G preserves cusp,
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2. G is (strongly) hyperbolic relative to NG(K1) and,

3. G is weakly hyperbolic relative to the subgroup K1.

Then there exists a Cannon-Thurston map for the embedding i : ΓK → ΓG, where

ΓK and ΓG are Cayley graphs of K and G respectively.

Proof. It suffices to prove the condition of Lemma 3.3.1.

So for a fixed reference point p ∈ ΓK , we assume that λ̂ is an electric geodesic

segment in Γ̂K such that λb(⊂ ΓK) lies outside an N -ball BN(p) around p. Let βpel

be a quasigeodesic in the partially electrocuted space Γpel
G joining the end points

of λ̂. Let Π̂Ξbλ
be a nearest point projection from Γpel

G onto the quasiconvex set

Ξbλ which satisfies the Lipschitz’s condition. Let β ′
pel = Π̂Ξbλ

(βpel), then β ′
pel is a

quasigeodesic in Γpel
G lying on Ξbλ. So β ′

pel lies in a P -neighborhood of βpel in Γpel
G .

Let C = {CgNG(K1) : g ∈ G}. As in proof of Proposition 3.2.8, there exists a tamed

quasigeodesic path γpel obtained from β ′
pel in Γpel

G joining a, b such that γpel ∩ ΓG lie

in a R1-neighborhood of Ξλb in ΓG for some R1 > 0.

Let µ̂ be an electric geodesic in Γ̂G, there exists R2 ≥ 0 such that if x ∈ µb = µ̂\∪C,

then there exists y ∈ γb
pel = γpel ∩ ΓG such that dG(x, y) ≤ R2. For y ∈ γb

pel there

exists y1 ∈ Ξλb
v

such that dG(y, y1) ≤ R1.

Since y1 ∈ Ξλb , by Lemma 3.3.4, dG(y1, p) ≥ f(N)
A+1

.

Therefore, dG(x, p) ≥ f(N)
A+1

− R2 − R1 (= M(N), say) and M(N) → ∞ as

N → ∞. By Lemma 3.3.1, a Cannon-Thurston map for i : ΓK → ΓG exists.
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Chapter 4

Examples and Applications

We first recall a combination theorem for trees of hyperbolic spaces (due to Bestvina

and Feighn [BF92]), which ensures its hyperbolicity. Using this, in [Mos97], Mosher

extended a closed hyperbolic surface group by a free group generated by some suf-

ficiently large powers of hyperbolic automorphisms, i.e. pseudo-Anosov mapping

classes. In [MR08], the combination theorem was generalized for trees of relatively

hyperbolic spaces. Analogously, in [MR08], Mosher’s result was generalized to punc-

tured surface groups.

4.1 Examples

4.1.1 A Combination Theorem

Let X be a tree of hyperbolic metric spaces.

Definition 4.1.1. (Bestvina and Feighn [BF92])

A disk △ : [−m − 1
4
, m+ 1

4
] × I → X is a hallway of length 2m if it satisfies :

1. △−1(
⋃
Xe : e ∈ E(T )) = {−m, ...,m} × I.

2. (a) △ maps i× I to a geodesic in Xe for some edge e;

(b) image of (i− 1
4
, i+ 1

4
)× I under △ lies in fe|Xe×(0,1)(Xe × (0, 1)) such that

dX(△(t, s),△(t′, s)) = 2|t− t′| for all t, t′ ∈ (i− 1
4
, i+ 1

4
), s ∈ I, and

(c) if △(i × I) ⊂ Xe with e = [v−, v+], then △((i − 1
4
) × I) ⊂ Xv− and

△((i+ 1
4
) × I) ⊂ Xv+.

Definition 4.1.2. (Bestvina and Feighn [BF92])

1. A hallway is ρ -thin if dXv
(△(i+ 1

4
, t),△((i+ 1)− 1

4
, t)) ≤ ρ for all i, t, where

Xv is the vertex space for which △(((i+ 1) − 1
4
) × I),△((i+ 1

4
) × I) ⊂ Xv

105
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2. A hallway is λ -hyperbolic if

λl(△({0} × I)) ≤ max(l(△({−m} × I), l(△{m} × I))

3. A hallway is essential if the edge path in T resulting from projecting X onto

T does not back track (and is therefore a geodesic segment in the tree T ).

4. The girth of the hallway △ is length of △({0} × I).

Definition 4.1.3. [MR08] An essential hallway of length 2m is cone-bounded if

△(i× ∂I) lies in the cone-locus for i = {−m, ....,m}.

Definition 4.1.4. (Bestvina and Feighn [BF92]) The tree of spaces , X, is said to

satisfy the hallways flare condition if there are numbers λ > 1 and m ≥ 1 such that

for all ρ there is a constant H(ρ) such that any ρ− thin essential hallway of length

2m and girth at least H is λ−hyperbolic.

The main theorem of Bestvina and Feighn which ensures the hyperbolicity of

trees of hyperbolic spaces is as follows:

Theorem 4.1.5. (Bestvina and Feighn [BF92]) Let X be a tree of hyperbolic metric

spaces satisfying the quasi-isometrically embedded condition and the hallways flare

condition. Then X is hyperbolic.

Using the theorem of Bestvina and Feighn, in [MR08], a combination theorem

for trees of strongly relatively hyperbolic spaces was proved, where the following

new condition was introduced :

Definition 4.1.6. Cone-bounded hallways strictly flare condition [MR08]:

The tree of spaces, X, is said to satisfy the Cone-bounded hallways strictly flare

condition if there are numbers λ > 1 and m ≥ 1 such that any cone-bounded hallway

of length 2m is λ-hyperbolic.

Theorem 4.1.7. (Mj-Reeves) [MR08]

Combination Theorem for trees of strongly relatively hyperbolic

spaces:

Let P : X → T be a tree of strongly relatively hyperbolic spaces satisfying

1. the qi-embedded condition (refer to Definition 1.3.1)

2. the strictly type-preserving condition

3. the qi-preserving electrocution condition
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4. the induced tree of coned-off spaces satisfies the hallways flare condition

5. the cone-bounded hallways strictly flare condition

Then X is strongly hyperbolic relative to the family C of maximal cone-subtrees

of horosphere-like spaces.

4.1.2 Examples

Let S be a hyperbolic surface of finite volume with finitely punctures and MCG(S)

be the mapping class group of S. Let Φ1, ...,Φm ∈ MCG(S) be m orientation

preserving pseudo-Anosov homeomorphisms of S preserving punctures with different

sets of stable and unstable singular foliations. By taking a suitable power, we can

assume that each homeomorphism Φi fixes punctures. For each puncture p ∈ S,

there exists an open region N(p) around p such that N(p) is homeomorphic to

interior of D2 \ (0, 0). Let N be the compact surface with boundary obtained from

S by deleting N(p) from S for each puncture p, then int(N) admits a hyperbolic

structure. Each Φi induces a homeomorphism (with same notation) from N to N

fixing the boundary components.

Construct a complex M as follows: Let N1, ..., Nm be m homeomorphic copies of

N via homeomorphisms fi : Ni → N , where i = 1, ..., m. Let M be the quotient

space obtained from (
⋃m

i=1Ni × [0, 1]) ∪ N by identifying (xi, 0) ∼ fi(xi), (xi, 1) ∼
Φi(fi(xi)), for xi ∈ Ni, i = 1, ..., m.

For a puncture p ∈ S, let Kp = π1(N(p)). Then π1(S) is hyperbolic relative to the

finite collection of subgroups {Kp : p is a puncture of S}. K(p)’s are often called

peripheral subgroups. Let N = {N(p) : p is a puncture} and E(N,N ) be the

electric space (or coned-off space) obtained from N by coning each N(p) to a single

point. Let α be a geodesic in E(N,N ) and αb = α \∪N(p)∈N )N(p) then components

of αb are geodesics in N . Let Φ ∈ MCG(S) be such that Φ is an orientation

preserving pseudo-Anosov homeomorphism fixing the punctures. We say Φ stretch

α by a factor of k if the length of each component of Φ(αb) is greater than k-times

the length of that component of αb. The following lemma plays a crucial role in

proving the relative hyperbolicity of the fundamental group π1(M) (viz. Theorem

4.1.9). This is essentially the generalization of Mosher’s ‘three out of four stretch’

([Mos97]) lemma.

Lemma 4.1.8. [MR08] For any k > 1, there exists positive integers r1, ..., rm

such that for any geodesic α in E(N,N ), at least 2m − 1 elements of the set

{Φr1
1 ,Φ

−r1
1 , ...,Φrm

m ,Φ−rm
m } stretch α by a factor of k.
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As an application of the Combination Theorem 4.1.7, we have:

Theorem 4.1.9. [MR08] Let S be a hyperbolic surface of finite volume with finitely

many punctures. Let Φ1, ...,Φm ∈ MCG(S) be m orientation preserving pseudo-

Anosov homeomorphisms of S with different sets of stable and unstable folia-

tions. Then there are positive integers n1, ..., nm such that the homeomorphisms

Φn1
1 , ...,Φ

nm
m generate a free group F and the group π1(M) is given by the short exact

sequence:

1 → π1(S)
i→ π1(M)

p→ F → 1

and π1(M) is (strongly) hyperbolic relative to the finite collection of parabolic sub-

groups {NG(Kp) : p is a puncture of S}.

4.2 Applications

1) Let S be a hyperbolic surface of finite volume with finitely many punctures and

let Φ1, ...,Φm be m orientation preserving pseudo-Anosov homeomorphisms of S

fixing punctures. Recall from the above example 4.1.2 that N is a compact surface

with boundary obtained from S by deleting a disc around a puncture. Let M be

the complex as constructed in the above example 4.1.2. Let S̃, Ñ and M̃ be the

universal covers of S,N and M respectively. Then Ñ is obtained from S̃ by deleting

horoballs corresponding to the punctures.

From above we have a short exact sequence of relatively hyperbolic groups

1 → π1(N)
i→ π1(M)

p→ F → 1,

where F is a free group generated by Φn
1 , ...,Φ

n
m for some large n. Let ΓN ,ΓM ,ΓF

be the Cayley Graphs of π1(N), π1(M), F respectively. Since F is free, ΓF is a tree.

ΓM can be treated as a tree of spaces with vertex and edge spaces homeomorphic to

ΓN and the tree as ΓF . Each Φi (1 ≤ i ≤ m) induces an automorphism Φ∗
i of the

fundamental group of N . Hence each Φ∗
i induces a (Ki, ǫi)-quasi-isometry from ΓN

to ΓN . Thus edge spaces in the tree of spaces are quasi-isometrically embedded in

the vertex spaces. Since Φi fixes punctures of N , π1(M) preserves punctures of N .

Now Ñ, M̃ are quasi-isometric to the Cayley graphs ΓN ,ΓM respectively. Therefore

M̃ can be treated as a tree of spaces with vertex and edge spaces homeomorphic to

Ñ .

By Theorem 3.3.5, a Cannon-Thurston map exists for the inclusion i : Ñ → M̃ i.e.

the inclusion i can be extended continuously to a map ĩ : ∂relÑ → ∂relM̃ , where

∂relÑ, ∂relM̃ are the relative hyperbolic boundaries of relatively hyperbolic groups

π1(N), π1(M) respectively. Now ∂relÑ is homeomorphic to the unit circle S1.
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Let H = π1(N), then H acts on the relative hyperbolic boundary ∂relM̃ . Let ΛH

be the limit set of H in ∂relM̃ . As H is a normal subgroup of π1(M), ΛH = ∂relM̃

and therefore ĩ(∂rel(N)) = ΛH = ∂relM̃ . Since ∂rel(N) is homeomorphic to S1, we

have an example of space filling curve.

2) [Bow07, Mja] Let Sh be a punctured hyperbolic surface with finite volume.

Let ρ : π1(S) → PSL2(C) be a discrete and faithful representation such that the

3-manifold Nh = H3/ρ(π1(S)) has injectivity radius bounded below by some ǫ0 > 0

and maximal parabolic subgroups of π1(N
h) are precisely the parabolic subgroups

of π1(S). (Injectivity radius is the half of the length of the shortest closed geodesic

in N). Let N denote Nh minus cusps, S denote Sh minus cusps and S̃ be the

universal cover of S. Fix a base surface in N and identify it with S. In [Mja] it is

shown that the universal cover Ñ of N is quasi-isometric to a tree T of relatively

hyperbolic metric spaces where each vertex and edge spaces are copies of S̃. And

T is a semi-finite interval or a bi-infinite interval in R according as N is one or two

ended.

Let ih : Sh → Nh be a proper homotopy equivalence then ih induces a proper ho-

motopy equivalence i : S → N . Let ĩ be a lift of i to their universal covers. Then

by Theorem 3.2.9, ĩ : S̃ → Ñ extends continuously to the relative hyperbolic bound-

ary i : ∂relS̃ → ∂relÑ . Let Λ denotes the limit set of π1(S) in ∂relÑ(= S2), then

i(∂relS̃) = Λ. Now ∂relS̃ is homeomorphic to S1 and continuous image of a com-

pact locally connected space is locally connected ([HY61]). Therefore Λ is locally

connected.

4.2.1 Problems

1. Let us consider the short exact sequence of hyperbolic groups

1 → K
i→ G→ Q→ 1

with K non-elementary. It was shown by Mitra in [Mit98a] that a Cannon-

Thurston ĩ map exists for i. In [Mit97], Mitra gave an explicit description of

the Cannon-Thurston map ĩ. It was proved (in [Mit97]) that the end points

(in ∂K) of a “leaf” of an “ending lamination” are precisely the points which

are identified to a single point in ∂G under ĩ. In reference to Theorem 3.3.5,

analogously, for the short exact sequence of relatively hyperbolic groups

1 → (K,K1)
i→ (G,NG(K1))

p→ (Q,Q) → 1,

give an explicit description of the Cannon-Thurston map ĩ.
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2. In [Bow02], Bowditch constructed a “Stack” of hyperbolic spaces which

roughly consists of a path metric space decomposed into “sheets” of uniformly

hyperbolic spaces. We assume that the stack is hyperbolic. For a closed hyper-

bolic surface S, a hyperbolic surface stack consists of a proper hyperbolic stack

of hyperbolic planes isometric to H
2, together with a sheet preserving isometric

action of π1(S), such that the induced action on each sheet is properly dis-

continuous and cocompact. The main theorem of [Bow02] states that if there

are two stacks arising from a surface and having the same ending lamination

then there is an equivariant sheet-preserving quasi-isometry between them. In

view of relative hyperbolicity, the whole theory should have generalizations for

non-compact hyperbolic surfaces.
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[Szc98] Andrzej Szczepański, Relatively hyperbolic groups, Michigan Math. J. 45

(1998), no. 3, 611–618.


