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Chapter 1

Introduction

This dissertation explores some issues concerning the behaviour of coalitions
of individuals in a game theoretic set-up and also studies one aspect of a
society facing collective action of the masses. The common feature of the
issues explored in the dissertation is that it investigates the properties of
stable social states. Chapter 2 introduces a notion of a social state that is
unlikely to be displaced by any coalition of agents endowed with a certain
notion of rationality and a certain degree of farsightedness and explores the
properties of such states. Chapter 3 is also concerned with coalitionally
stable social states with a different social set-up and social norm. Chapter 4
is an analysis of a society where the prevailing social state is threatened with
collective action by the masses.

1.1 Coalitional Stability and Credibility

The theme of Chapter 2 entitled “Coalitional Stability with a Credibility
Constraint” is to study the properties of stable social states when the coali-
tions are restricted to deviate “credibly”. Later we shall explain the precise
meaning in which we use the term “credible deviations”.

Many social systems are inherently unstable to coalitional deviations -
whatever be the status quo social state, a coalition of agents has an incen-
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2 CHAPTER 1. INTRO,QUCTI ON

tive to enforce a different social state from it. The well-known example of
“paradox of voting” is a clear illustration of that. Suppose there are three
persons: 1, 2 and 3 and three social states: a, b and ¢. By z>;y we mean
that person i strictly prefers state x to state y. Suppose the persons order
the social states in the following manner:

b-1a>1c, cab>oa, a>3C>3b.

Suppose a majority coalition can enforce one state from another. Note that
if a is the stafus quo social state, then 1 and 2 can enforce b from it; if b is
the status gquo social state, then 2 and 3 can enforce ¢ from it and if ¢ is the
status quo social state, then 1 and 3 can enforce a from it. The key feature
of this example is that for every social state there is a majority coalition that
prefers a different social state. This somewhat disturbing aspect of a society
has generated a substantial body of literature proposing different rules that
identify outcomes which are immune to coalitional deviations. Of course, the
assumptions on the behaviour of agents vary from one rule to another.

The society under consideration in this essay is represented by a proper
simple game, a subclass of simple games.

DEFINITION 1.1.1 A simple game T is the tuple K N, Z, B, (>i);cpn >
where N 1is the finite set of players, Z is the set of outcomes, »—; is the
preference relation fori € N on Z and B C 2V is the set of winning coalitions

which satisfies the following:
SCTandSe B=T¢€ B.

A simple game is said to be proper if the following condition is met:
SeB = N\S ¢ B.

For each 1 € N, >; is a total and transitive binary relation on Z.!
If for some S € B and any a,b € Z, a>;b for all i € S then a dominates

IThroughout this dissertation, we have adopted the convention of Aliprantis and Border
(1999) for naming the properties of a binary relation.
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b via the coalition S which is denoted here as a>gb. ‘If there exists S € B
such that a>gb then we shall denote that as a>b.
The core is the most well-studied solution for simple games.

DEFINITION 1.1.2 The core of a simple game I, C(T') = {a € Z| there
isno b € Z such that b>-a}.

However, it has been noted by several authors that although the core has an
obvious interpretation and hence intuitive appeal, it has the following dis-
concerting features. First, the core as a solution notion presupposes that the
agents are completely myopic: when they enforce an outcome from another
they do not take into account the possibility of further moves by other coali-
tions. Secondly, there are many simple games for which the core is empty
(Le Breton (1987) explores this issue for a large class of simple games). So, a
number of less restrictive solution concepts have been introduced which pre-
suppose different notions of rationality and different degrees of farsightedness
on the part of the players (for example, Chakravorti (1999). Chwe (1994),
Dutta et al. (1989). Li (1991), Ray and Vohra (1997), Rubinstein (1980),
Xue (1998)). '

The ideas behind many of these solution concepts have the following fea-
ture in common. If a coalition decides to enforce an outcome b from an
outcome a, it anticipates that some other coalition may further deviate from
b. The degree of this foresight differs from solution to solution - a coalition
may foresee only one step further (as in Rubinstein (‘1980)) or it may foresee
arbitrarily many steps (e.g. Chakravorti (1999), Chwe (1994)). However,
whatever the degree of farsightedness, while making a move. a coalition is
assumed to take into account the resultant outcomes of subsequent deviations
— whether or not these will be beneficial for the players in the coalition.

The consistent set introduced by Chwe (1994) is an important solution
concept in this genre. Apart from some nice properties of such a set, its
intuitively appealing feature is that this concept incorporates the desirable
properties of consistency (Thomson (1996) has provided a detailed survey of

consistency in various economic situations) and farsightedness of an arbitrary
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order.?

In Chwe’s set-up of a game in effectivity function form, the agents con-
sider both direct and indirect domination of one outcome by another. We
refer to his paper for the formal definitions of the above ideas and restrict
ourselves to discussing the basic intuition behind a consistent set. A consis-
tent set is a set of outcomes for which the following holds. Let there be a
deviation from an outcome a in a consistent set Y to some outcome b via a
coalition S. Then there is at least one outcome cin V' itself which is either the
same outcome b or one that dominates b (directly or indirectly) but which
1s not strictly preferred by all the members of S to a. Moreover, no outcome
outside Y satisfies this property. So, the stability of the outcome a rests on
the ¢threat that any deviation from it may generate further deviations leading
to a stable outcome (i.e. an outcome in the consistent set) that may not be
liked by the coalition which perpetrated the initial deviation. Chwe showed
that there is a well-defined largest consistent set which is non-empty for all
games with a finite number of outcomes.

However, this idea has a number of conceptual drawbacks which have
been mentioned by Chwe himself. He noted that a consistent set may be too

inclusive. His intention was

...to define a weak concept, one which eliminates with confi-
dence... If Y is consistent and a € ¥, the interpretation is not
that a will be stable but that it is possible for a to be stable. If an
outcome b is not contained in any consistent Y, the interpretation
is that b cannot possibly be stable: there is no consistent story
in which b is stable. (Chwe (1994), italics in the original)

In this essay, we concentrate on one of the drawbacks. Very often an outcome
is a member of a consistent set under the tacit assumption that a coalition

2Solutions (not necessarily on simple games) incorporating the idea of consistency are
many (e.g. Dutta et al. (1989), Ray and Vohra (1997)). Greenberg (1990) devised a
general framework called situations for studying consistent solutions. Li’s (1991) notion of
farsighted core is an early attempt to analyse coalitional deviations with farsighted agents.
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would move to some outcome of the set even when a better outcome within

the set is avatlable to it.

...the largest consistent set does not incorporate any idea of
“hest, response”: coalitions will move to any. not just the best
of the outcomes which are better than the status quo. (Chwe
(1994})

So. the threat of further deviation to an outcomne not liked by the perpetrator
of the initial deviation which we have mentioned above is often an micredible

L Oe,
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Figure 1: Stability owing to Incredible Deviation

Consider for example the following situation. Let the plaver set he N andd
the set of outcomes he Z = {r. ... a¢}. Suppose there are two coalitions
S and T such that S can enforce .ry from .y and T can enforce @y and .y
from 2. No other outcome can be enforced from any other outcome. Let

the individual preferences be such that all members of S prefer oy to & bur
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some members of S prefer z; to x3. Moreover, all members of T prefer z;
to x5 and x4 to 3 and so prefer z4 to 5. For no other z, y in Z is it true
that all players of S or T prefer z to y. Then, {z1, z3, z4} is consistent.
Let S move from z; to zo. Then T can move to x3 which is preferred by all
its members. But this deviation is not liked by at least one player in S and
hence the threat of further deviation to z3 would deter the enforcement of
z, from z; by S. Notice however, that as all players in T prefer the “stable”
outcome z4 to 3, the move from x, to x3 by T is not a credible one: T would
rather move to z4. As S prefers x4 to z,, if players in S anticipate that the
further movements would be the credible ones they would surely move from
77 to z9. Thus the “stability” of x; rests on the threat of a deviation that is
incredible. These deviations by coalitions are illustrated in Figure 1.

To get rid of this shortcoming we introduce a modification of the consis-
tent set. We work with the class of proper simple games with a finite number
of outcomes and the additional assumption that the individual preference or-
derings are irreflexive and asymmetric. Our modification of a consistent set
turns out to be a refinement of the largest consistent set. The central idea is
that if a coalition blocks an outcome by another, then the blocking outcome
itself must not be a “dominated” one — it is not credible that a coalition would
move to an outcome when another outcome is available to it which is strictly
preferred by all its members. From any status quo outcome a if a coalition
S conceives of blocking it by moving to another outcome b then it must take
into account not all possible further deviations to “stable” outcomes from b
but only the credible ones.* We define a solution which is similar in spirit to
a consistent set but which takes into account the above constraint. We call
it a credibly consistent sef. Our choice of proper simple games is motivated
by the fact that in this set up we can define credible coalitional deviations

3The outcome z3 is in the consistent set because no outcome can be enforced from it.

4Wilson (1971) long ago analysed stable sets and bargaining sets of voting games with
coalitions restricted to make credible moves. Another solution concept that incorporates
both the ideas of credible coalitional deviations and consistency is the consistent bargaining
set introduced by Dutta et al. (1989).
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in a simple way.

We examine the issue of the existence and non-emptiness of such sets and
also investigate their relation to some other solution concepts prevalent in
'the literature concerning coalitional stability. One somewhat startling result
we get is that even in our restrictive set-up there are games for which no
non-empty credibly consistent set exists even if the core is non-empty. Thus,
credibility and consistency together seem to be too stringent a requirement
if one wants a prediction of stable social states in every situation.

1.2 Equity and Coalitional Stability

The concepts of equity and fairness have generated a substantial body of
literature in social sciences. However, an explicit consideration of coalitional
stability in a society with equitable social norms is quite recent. In Chapter
3 entitled “On the Equal Division Core” we study a set of stable social states
called the Equal Division Core (EDC) that is closely related to the norm of
equity.

Our set-up is a transferable utility game in characteristic function form,

a common representation of a society for studying coalitional behaviour.?

DEFINITION 1.2.1 A Transferable Utility Cooperative Game (TU game)
is a pair (N,v) where N is a finite set of players and v is a function that

associates a real number v(S) with each subset S of N. We assume v(0) = 0.

Theoretical analysis of equitable pay-off vectors for TU games started with
Shapley (1953). Equity-based or egalitarian solutions for the related area
of cooperative bargaining problems have been extensively studied (Thomson
(1994) provides an exhaustive survey). A novel but direct approach in this
area of study was introduced by Dutta and Ray (1989, 1991) in a couple of
papers. Later, we shall dwell on their contribution in greater detail.

SMyerson (1991) contains an account of the underlying logic of such a representation.
Ray and Vohra (1997) provide a good critique of such a representation
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Given a TU game (N, v), we introduce the following notation. The set of
efficient pay-off vectors for the grand coalition, X (N, v)={z € RN| T;enz:i =
v(N)}. For S C N, S # 0, a(S,v) = v(S)/|S|, the average worth of the
coalition S. For S C N, S # ( the equal division allocation for S, e(S,v) is
the vector z € RS such that z; = a(S,v) for all 7 € S. Given two vectors
z,y € R*, > y means that z; > y; for i =1,...n. Given a vector z € RV
we denote the restriction of z on a coalition S by zg.

DEFINITION 1.2.2 For a TU game (N,v), the equal division core (EDC)
of (N,v), L(N,v) = {z € X (N, v)| there is no coalition S for which e(S,v) >

:Es}.

So, in other words, “a pay-off vector is in the equal division core, if no
coalition can divide its value equally among its members and in this way
give more to each of the members than they receive in the pay-off vector”
(Selten (1972)).

Evidently, it is a solution concept related to the norm of equity. The
EDC was proposed by Selten (1972) to explain outcomes of experimental
cooperative games. It has been found that experimental “evidence clearly
suggests that equity considerations have a strong influence on observed pay-
off division” (Selten (1987)) in a laboratory set-up and the EDC has proved
to be quite successful as a solution in this context. Selten (1972) reports
that in 76% of the 207 experimental games he studied, the outcomes had a
“strong tendency to be in the equal division core”. He explains the intuitive
motivation behind the solution-notions like the EDC thus:

It is unreasonable to suppose that the experimental subjects
perform complicated mathematical operations in an attempt to
understand the strategic structure of the situation. It seems plau-
sible to assume that they look for easily accessible cues, such as
obvious ordinal power comparisons and equitable shares, in order
to form aspiration levels for their payoffs. (Selten (1987))
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Farell and Scotchmer (1988) also cite a number of real-life examples where a
coalition is observed to share its worth equally.

The EDC has a theoretical justification as well from a quite different
angle. It is obtained as one core-like solution of a game if the norm of
egalitarianism is used consistently for the coalitions (Dutta and Ray (1991)).
In a later section we shall explain this idea in greater detail.

- In our second essay we have provided axiomatic characterization of the
EDC as a solution on two classes of TU games.

DEFINITION 1.2.3 Let I'y be a set of TU games. A solution on Ty is a
mapping ¥ which associates with each game (N,v) € Ty a subset Y(N.v) of
X(N,v).

The literature on characterization of different solutions is vast (two surveys
by Peleg (1992) and Moulin (1999) may be cited as examples of the power
and scope of axiomatic method). The analysis of the egalitarian core-like
solutions for TU games in an axiomatic framework began with Dutta (1990)
who provided a characterization of the weak egalitarian solution (defined by
Dutta and Ray (1989)) on the class of convex games. Recent contributions in
this area include Hokari (2000), Hougaard et al. (1999), Klijn et al. (2000).
Since the EDC was proposed as an ad-hoc solution to explain experimen-
tal results, a theoretical justification of it from an axiomatic standpoint is a

worthwhile exercise. |

1.3 Upsetting Stability: A Model of Collec-

tive Action

In the final chapter entitled “A Model of Collective Action” we study the
phenomenon of revolt as a collective action. The analytical study of collec-
tive action possibly began with Olson (1971). He identified the problems
of “free-riding” behaviour that the self-interested agents must pursue when

"?g._’, *r o N
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10 CHAPTER 1. INTRODUCTION

faced with a choice to undertake collective action. This becomes all the more
problematic for the collective action of revolt where the cost of participat-
ing in a revolt may be too high. “Revolutions have been viewed by social
‘scientists and historians, for the most part, as largely inexplicable events”
(Roemer (1985)). So, revolts were thought to be ideologically driven be-
haviour not amenable to rational analysis.

There are several related aspects of revolt that have come to be analysed
albeit somewhat partially. The role of a government or the ruling class fac-
ing a revolt, the actual decision of the masses whether to revolt or not, the
informational aspects of revolt, the role of a revolutionary party or agent in
instigating the revolt etc. are some of the crucial issues.

Although Roemer (1985) and Grossman (1991) were amongst the first to
provide formal analyses of revolt, their models assumed complete information
on the part of the agents. However, there is pervasive asymmetry of informa-
tion in a revolutionary situation. A single individual does not know whether
another individual is willing to revolt, the masses as a whole do not know
whether the government they would fight is strong or weak, the government
does not know the revolutionary capability of the masses etc.. Some recent
papers have begun to grapple with these problems, notable among them Ace-
moglu and Robinson (1999a, 1999b), Chwe (1999, 2000). Their analyses are
also related to the questions addressed in the older literature, but in a more
realistic framework of incomplete information.

In Chwe’s (1999, 2000) model, the individuals in the society can be of
two types: they can either be willing to revolt or unwilling. He recognizes
the fact that a willing person would like to revolt only if he knows that suffi-
ciently many persons are also willing. He models the relationship among the
individuals as a directed network, if person 1 is connected to person 2, then
he knows the type of person 2. He shows that certain minimal amount of
information flow through establishing links between persons is necessary for
a willing person to revolt in equilibrium. He calls such a structure of links a
minimal sufficient network. He analyses the structure of such a network. He
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also shows that the role of an organization is quite crucial for revolt to take
place.

Acemoglu and Robinson (1999a in particular) have studied another as-
I;ect of the informational problems of revolt. The decision of the masses to
revolt depends on their information about the strength of the government:
its capability of (a) suppressing a revolt in case it breaks out, and (b) the
ease with which it can take preemptive measures that helps in thwarting the
revolt. In their model, the government can be any of three types: strong,
flexible and weak. The government knows its own type, but the type of a
government can be only imperfectly observed by the masses. The govern-
ment can signal about its type by taking actions like repressing or making
some democratic concessions. The masses update their belief about the gov-
ernment and decide whether to revolt or not. Acemoglu and Robinson look
at the Perfect Bayesian Equilibria of the above signalling game. They have
two contentions: (a) revolt takes place only owing to incomplete informa-
tion, and (b) a strong government always represses whereas a relatively weak
government makes a relatively large concession as a small dose of concession
may be construed as the sign of its weakness. '

Our third essay takes Acemoglu and Robinson (1999a) as a point of de-
parture. We also model a society facing a possibility of revolt as a signalling
game. Although, revolt is too complicated a phenomenon for identifying a
general behavioral pattern, we note an empirical feature of revolt that has
been observed a number of times. If a government is relatively strong and
confident that it can successfully quell a revolt, then often it does not un-
leash repression on the masses even under the threat of a revolt. It lets the
prevailing situation to continue or at best makes some trifling political re-
forms. In contrast, facing a revolutionary situation, very often a relatively
weak government takes the measure of repression. For example, during the
nineteen twenties and thirties, there was a widespread tendency toward radi-
calism, almost every country in Europe was threatened with social revolution.
However, countries like England did not unleash repression (even after the
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General Strike of 1926) comparable to the scale of that in Germany or Italy
where the ruling class was much weaker (Hobsbawm(1994)). Again, dur-
ing the revolt of 1956 in Hungary, the immediate response of the then Soviet
Union (which was effectively the ruling elite) was to put up Imre Nagy as the
Prime Minister, it did not start repression immediately. However, when this
step did not deter the masses from revolting, the Soviet authorities launched
repression and could suppress the revolt successfully (Vadney (1987)). The
examples of regimes where a palpably weak government has tried widespread
repression in the face of a revolt and then collapsed are also numerous (e.g.
Cuba under Batista, India under the Emergency regime of Indira Gandhi).
This feature has also been generalised in the radical political theory of Fas-
cism. The extreme measures of a Fascist regime is seen to be the response
of a weak ruling class which has lost confidence in itself.

However, this feature is not explained by the model of Acemoglu and
Robinson. In their set-up whenever one observes repression in a potentially
revolutionary situation, one should unambiguously infer that the government
is relatively stronger. But we show that in some situations, a stronger govern-
ment would unambiguously make concessions whereas a weaker government
would repress. We also identify certain situations for which this behavioral
pattern is the only pattern that would be observed.



Chapter 2

Coalitional Stability with a
Credibility Constraint

As we have mentioned in the introduction, the objective of this chapter is to
study a notion of coalitional stability that has the following desirable features:
(a) the agents are farsighted, (b) coalitions of agents are restricted to make
only credible deviations to stable outcomes and (c) a property of consistency
is built into the notion. Our framework of study is a proper simple game
with a finite number of outcomes. We call the set of outcomes stable with
respect to the above notion a credibly consistent set. In section 2.1 we give
some preliminary definitions and notation in addition to those introduced
in the introductory chapter. Section 2.2 deals with the issues of existence
and non-emptiness of credibly consistent sets. We find that in games with
veto players, every consistent set is credibly consistent as well but in games
without a veto player there is no close relationship between a consistent set
and a credibly consistent set. However, every credibly consistent set is in the
largest consistent set. Next we show that a stable set is credibly consistent.
Then we show that there are games for which there is no non-empty credibly
consistent set. Moreover, for many games there is no largest credibly consis-
tent set. In section 2.3, we investigate the relation of a credibly consistent set
to some other solution concepts prevalent in the literature concerning coali-

13



14CHAPTER 2. COALITIONAL STABILITY WITH A CREDIBILITY CONSTRAIN

tional stability. With respect to the core we find that for many games there
may not exist any non-empty credibly consistent set even though the core
is non-empty. The stability set of Rubinstein contains any credibly consis-
tent set and the top cycle has a non-empty intersection with any non-empty
credibly consistent set. There is no close relation between a credibly consis-
tent set and a consistent stability set, a relatively new solution concept due
to Chakravorti (1999). Finally, we give two examples to show that a credi-
bly consistent set often refines the largest consistent set in interesting ways
and it is able to pick up intuitively plausible outcomes as stable outcomes in
situations where most other solution concepts have no predictive power at all.

2.1 Preliminary Definitions

Throughout the chapter we assume that for each © € N, >; is an irreflexive,
total, transitive and asymmetric binary relation on Z : i.e., the individual
preferences are assumed to be strict.

The set of minimal winning coalitions will be denoted by W. So we can
represent a proper simple game as another tuple < N, Z, W, (>;),.y > as
well. Throughout this chapter we consider only minimal winning coalitions.
There is no loss of generality owing to this simplification.

Next we rephrase the concept of domination in terms of minimal winning
coalitions. If for some S € W and some a,b € Z, a>;b for all 1 € S then
a dominates b via the coalition S which is denoted here as a>gb. If there
exists S € W such that a>gb then we shall denote that as a>b.

Fora, be Z, b indirec‘tly dominates a. dcnoted as b > a, if there exist
ag, Q1,-.., Gy in Z where gy = a and a,, = b and minimal winning coali-
tions Sp, Sy, .., Sm-1 such that for j =0,..., m—1, an>s;a;. For general
games representable by effectivity functions the definition of >, the indirect
domination relation, is analogous. This was the approach of Chwe (1994).

Notice that the paths along which an outcome b can indirectly dominate



2.2. CONSISTENT SETS AND CREDIBLY CONSISTENT SETS 15

an outcome a can be of arbitrary length. Therefore, the definition of a cred-
ible deviation from within such a set of paths may be conceptually difficult.
However, it is easily seen that for a proper simple game an outcome b indi-
rectly dominates an outcome a if and only if b directly dominates a. This fact
considerably simplifies our analysis of credible deviations as we can confine
our attention only to the direct dominations. We define the notion of credible
domination from within a set as follows.

Given Y C Z and b € Z if thereis S € W and a € Y such that
a>sb and for no other ¢ € Y it is the case that c>ga then a dominates b
credibly from within Y. This is denoted as a>§(Y')b. If for some Y C Z there
exists S € W such that a>$(Y)b then we shall denote that as a >¢ (Y)b.

In the rest of the chapter we shall often call a proper simple game simply
a game with no possibility of confusion.

2.2 Consistent Sets and Credibly Consistent
Sets

The definition of a consistent set for the class of proper simple games is the
following:

DEFINITION 2.2.1 A set Y C Z is consistent if Y = {a € Z| V(S, d)
€(WxZ),3e€Y suchthate=d or e~-d and e f-sa}.

Moreover,

DEFINITION 2.2.2 The set A C Z is the largest consistent set (LCS
hereafter) of T if and only if it is consistent and it contains all the consistent
sets.

The key results regarding consistent sets relevant to our context are the
following which we state without proof.!

1Xue (1997) has generalised Chwe’s result concerning the existence of a non-empty
consistent set.
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PROPOSITION 2.2.1 (Chwe (1994)) (i) For any game there ezists a
unique largest consistent set.

(i1) For every game with a finite number of outcomes there ezists a non-empty
consistent set and hence a non-empty largest consistent set.

In the introduction we have illustrated that the concept of consistent sets
suffers from the possibility of dominated and hence incredible moves by tak-
ing an arbitrary game. We show that the same is true in the case of proper
simple games with the restrictions imposed by us. Consider for example the
following game:

EXAMPLE 2.2.1 N={1, ..., 6},Z={zy, ..., x4},W = {Sl, ceey S}
where

S =1{1,2,3}, S»={1,4,5}, S3={2,4,6}, S,={3,5,6}.
The players’ preferences over Z are the following:

1 2 3 4 )

[

T4 T2 T3 Z4 Z3 Za
I T4 T4 Ty T4 Iy
4y Z1 I T3 Iy T3

T3 I3 T T2 ) Ty

This generates the following domination relations:

$4>_Slxl) $4>'52$]_, I4>’Szx27 .'171>'S2$2, 'T1>'53$3 x3>‘$4$4'

For no other a,b € Z and S € W is it true that a>gb.

One can check that {z1, 3, x4} is consistent. However, consider the pair
(S1, z2) with respect to z;. Then z;>g,z2, but of course, z; $s,z;. This ren-
ders z; to be a possibly stable outcome. Notice however, that since 24> 35,71,
S»’s movement from z, to r; cannot be a credible one. The coalition S,
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~would rather move to z4 which is the unigque outcome that credibly domi-
nates zo from within {1, z3,z4}. Since z4>g, 1, the stability of z, rests on
an incredible move.

The idea of the credibly consistent set is motivated by the desire to rule
out outcomes like z; in Example 2.2.1 from being stable. Aset Y C Z is a
credibly consistent set if the following holds. Let an outcome a be a member
of Y and suppose some coalition S moves from a to another outcome b. If
b € Y then b is a plausibly stable outcome. If b /-ga, that implies this
deviation to a stable outcome b is not liked by at least one member of S.
IfbZY or b € Y but b>ga, then there should be some outcome c in the
credibly consistent set itself which dominates b credibly from within Y and
which is not strictly preferred to a by all the members of S. The stability of
the outcome a rests on the threat that any deviation from it would generate
a further credible deviation which will possibly lead to a stable outcome that
is not liked by some member of the coalition which perpetrated the initial
deviation. Moreover, for any outcome outside Y the above should not hold.

DEFINITION 2.2.3 A set Y C Z is said to be credibly consistent if Y =
{ae Z|VY(S, d) e Wx2Z),3eecVY suchthate =d ore = (Y)d and
e fsa}.

Notice that since @ satisfies this definition, a credibly consistent set exists for
all games. However, for many games no non-empty credibly consistent set
exists. Also, the example in the proof of part (i7) of Proposition 2.2.5 below
suggests that there may exist multiple credibly consistent sets for a game.

Let us first examine to what extent credibly consistent sets are refinements
of consistent sets. First, we look at the games with veto players. Recall that
i € N is a veto player of I' if 7 belongs to every winning coalition.

PROPOSITION 2.2.2 If there is a veto player of I’ then every consistent
set is a credibly consistent set.
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Proof: Let some Y C Z be consistent but not credibly consistent. Then,
there are z; € Y and (T, z3) € (W X Z) such that
(i) for all e € Y, if e = 5 or e >° (Y)z, then e~7z; and
(i) there is z3 € Y (z3 may be z; itself) such that z3>~z, and z3 fpz;.
Clearly it is not the case that z3 >¢ (Y)zs. So, there exists z, € Y such that
z4 > (Y)z3, 24 > (Y)zo, and z4>12;.

Let « € N be a veto player. Then, since for any a, b € Z, a>b implies
a>;b, we must have:

Ty iT3, TamiTy, T4 ;iTy

Now consider the domination z4>71z3, T' € W. Since Y is consistent and
z3 € Y, there must exist 5 € Y such that z5>14 and z5 /3. Evidently,
75 cannot be x;, z, or z3. Hence, we get that

T5>iZq, T5>iT3, T5~iT2, Ts>;T1.

Now consider the domination zs>wz4, T" € W. Proceeding in this
manner, for any positive integer k£ we find that there must exist z; € Y such
that

Tp*iTlk—1, .-, Tk>iT3, Tp>iT1

which is impossible as Z is finite. ]

Corollary 2.2.1 If |W| < 2 for a game then every consistent set is credibly
consistent.

Proof: By the definition of a proper simple game, for any S,T € W,
SNT # 0. So, if |[W| < 2, then there must exist a veto player of the game.
Hence, the corollary follows. n

REMARK 2.2.1 It can be shown that if |W| > 3, then there is a game for
which no non-empty credibly consistent set exists.
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Every credibly consistent set is contained in the LCS.

PROPOSITION 2.2.3 IfY C Z is credibly consistent then Y C A, where
A is the LCS.

Proof: Call X C Z internally consistent if a € X = V(S, d) € (W x 2),
Je € X such that e = d or e>d and e ga. Define ' =U{X C Z] X is
internally consistent}.

We claim that A’ is consistent. We need to show that a € Z \ A' =>
3(S,d) € (W x Z) such that for alle € A’, [e = d or e>~d] = e>sa. Suppose
not, i.e. let there exist @ € Z \ .\’ for which the following is true:

V(S, d) € (W x Z), 3 e € \'such that e = d or e~d and e fga.

Then clearly, A’U {a} is internally consistent which violates the definition of
A'. So, the claim is proved.

Now, since Y is credibly consistent, ¥ must be internally consistent. ‘Thus
YCA CA. (]

Next we discuss the relationship of a credibly consistent set to a stable
set. This will be useful in the subsequent discussion.

DEFINITION 2.2.4 Given >. a set Y C Z satisfies with respect to >
(1) internal stability if for alla.b € Y it is not the case that a>b or b>a,
(i) external stability if for alla € Z\'Y there exists b € Y such that b>a.
AsetY C Z is a stable set if iz is both internally and externally stable.

For more general classes of games one can define a stable set with respect
to >, the indirect domination relation, in an exactly analogous manner.
Chwe shows that every stable set with respect to > is in the LCS. Owing
to the equivalence of > and > for a proper simple game, a straightforward
translation of this result in the context of such a game is that every stable
set is in the LCS. In fact, for proper simple games one can prove the stronger
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result that every stable set is consistent and moreover, a consistent set must
be externally stable. The proof would be similar to that of Proposition 2.2.4
below. We have a similar set of results for credibly consistent sets:

PROPOSITION 2.2.4 (i) IfY is a stable set then Y is credibly consistent.
(i1) Moreover, every non-empty credibly consistent set is externally stable.

Proof: (i) Let Y be a stable set and let a € Y. Pick any (S,d) € (W x 2).
If d € Y then by internal stability of Y, d 4gsa. If d € Y then by external
stability of Y there is e € Y such that e>~d and by internal stability of Y,
e >° (Y)d. Again by internal stability of Y, e 4 sa.

Let a € Y. Then by external stability of Y there is d € Y such that
d>-a. By internal stability of Y, {e € Y| e ¢ (Y)d} = 0. So, there exists
(S,d) € (W x Z) such that for alle € Y, e = d or e >¢ (Y)d implies e>ga.
Hence, Y is credibly consistent.

(1) Suppose a non-empty Y C Z is not an externally stable set. Then
there is d € Z\ Y such that for alle € Y, e 4d. Take any a € Y and for any
S € W consider the pair (S,d). Sinced ¢ Y and {e€ Y|e > (Y)d} =0,V
cannot be credibly consistent. (]

We have noted above that a credibly consistent set is a refinement of
some consistent set. However, we find that a stable set is both consistent
and credibly consistent. So, the constraint of credible coalitional deviations
can refine a consistent set only if the set is not stable.

Now we show that with the imposition of the credibility constraint the
nice results of Chwe mentioned in Proposition 2.2.1 break down completely.

PROPOSITION 2.2.5 (i) If |Z| > 4, then there erists a game for which
there is no non-empty credibly consistent set.

(i8) If |Z| > 5, then there ezist games for which no largest credibly consistent
set exists.

Proof: (i) Consider the game in Example 2.2.1. It is easily checked that
the LCS for this game, A, is {z1, 3, z4}. Let, if possible, Y C Z,Y # 0 be
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a credibly consistent set. By Proposition 2.2.3, Y C A. However, Y can-
not be A. To see this consider the pair (S;,z2) with respect to z;. The set
{z € A| z »° (A)zo} = {z4}. But z4>35,2;, and thus ¥ # A. No singleton
subset of A is externally stable and hence, by Proposition 2.2.4, Y cannot be
singleton. Let Y = {a, b}, a,b € A. Let, without loss of generality, b>sa for
some S € W. This must be true because in this game, for any two a,b € A,
either a>-b or b>a. Now consider the pair (S,b) with respect to a. The set
{zeY|z>(Y)b} =0. Thus Y # {a,b}.

(i) Consider the following game:
N={1, 2, 3, 4, 5, 6}, Z = {z1,22,y1,¥2,d}, W = {51, S2, S3, S4} where
S =11,2,3}, S, ={1,5,6}, S3={2,4,5}, Sy ={3,4,6}.
The individual preferences are given by the following:

1 2 3 4
T3 Y2 Y1 T
1y T %N Y d
T T2 d Y2 I I
Y2 1 % 4 T2 Y
d d x> T2 B W

6
I3

Qo

This implies the following domination relations:
5,4, Y1>5,d, Y1>5,21, T2>5,Y1, Yo> 5352, T1>5,Y2.
For no other a,b € Z and S € W is it true that a>gb.

For this game both the sets X = {z,z2} and Y = {y;, y2} are stable sets
and hence, by Proposition 2.2.4, these are credibly consistent.

However, neither X U Y nor Z is credibly consistent. This is seen as
follows.

In the case of X UY consider the pair (Sy,d) with respect to ;. Then,
{ze XUY|z > (XUY)d} ={u} Since, y1>s5,21, X UY is not credibly
consistent. Similarly, for Z, consider the pair (S}, z;) with respect to the
outcome d. Then for both z; and y; (which is the only outcome that cred-
ibly dominates x, from within Z), z,>g,d and y;>g,d. Therefore, Z is not
credibly consistent. [
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REMARK 2.2.2 The possibility that a game may have no non-empty cred-
ibly consistent set may persist even if we add more restrictions. For example,
it can be shown that if |Z| > 5, then there exist games for which no non-
empty credibly consistent set exists even if the domination relation is total.

REMARK 2.2.3 One explanation of the fact that there may not exist any
non-empty credibly consistent set for a game may be as follows. The LCS
includes many elements that are stable owing to only incredible deviations.
If these elements are eliminated then the set of remaining outcomes becomes
too small to be internally consistent (an internally consistent set has been
defined in the proof of Proposition 2.2.3). As internal consistency is a nec-
essary condition for a set to be credibly consistent, any non-empty credibly
consistent set fails to exist.

2.3 Relation to Some Other Solutions

Here we investigate the relationship of credibly consistent sets with some
other solution concepts proposed in the literature concerning coalitional sta-
bility.

Let us begin with the core C(I") of a proper simple game T

PROPOSITION 2.3.1 (3) IfY is a non-empty credibly consistent set of T
then C(T) C Y.

(n) If = is a total relation on Z, then C(T') # 0, = C(I') is the unique
non-empty credibly consistent set.

(#12) If > is not total, then there may not exist any non-empty credibly con-
sistent set even if C(T) # 0.

Proof: (i) This follows from the fact that ¥ must be an externally stable
set.

(1) Let > be total and C(I') # 0. It is easily seen that C(I') must be a
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singleton set. Let C'(I") be {a}. Since > is total, evidently C(I') is a stable
set. Hence, by Proposition 2.2.4 it is credibly consistent.

By part (¢) of this proposition every non-empty credibly consistent set
contains a. Let Y be such a set and let there exist b € Y, b # a. Since >
is total, there exists S € W such that a>sb. By considering the pair (S, a)
with respect to b we find that Y cannot be credibly consistent.

(¢i1) Consider the following game which is a slight modification of the
game cited in Example 2.2.1.

N={1, ..., 6}, Z={z1, ..., z5}, W={S1, ..., Ss} where

S1=1{1,2,3}, S,={1,4,5}, S;=1{2,4,6}, S:={3,5,6}.

The players’ preferences over Z are the following:

1 2 3 4 5 6
Ts T2 I3 T4 Z3 Ty
Ta T4 T4 z T4 )
I | | X3 Iy Ty
T2 I3 T2 T2 o) Z3
T3 s Is Zs Ts T4

This generates the following domination relations:

T4r5,T1, Tar5,T1, T4 5,T2, 17 5,T2, T17S3L3 L3> 5,T4-

For no other a,b € Z and S € W is it true that a>gb.

Notice that z5 is in the core of this game but x5 dominates no outcome.
This implies {z5} cannot be a credibly consistent set as it is not externally
stable. Notice that in spite of the inclusion of zs the domination relations
remain the same as in the game in Example 2.2.1. So, analogous arguments
would show that there is no non-empty credibly consistent set for this game.m

Part (ii¢) of the result is driven by the fact that the core, even if non-
empty, may not be externally stable.
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The stability set, introduced by Rubinstein (1980), was one of the early
attempts to introduce a limited amount of farsightedness in the behaviour of
the coalitions. The intuition behind the stability set is as follows. Suppose
an outcome a is the status quo. Let it not be in the core. So there is a
minimal winning coalition S that can move to another outcome b such that
b>sa. However, the members of S must consider the fact that there might
exist another minimal winning coalition T which would then move from b
to some other outcome c such that c>7b but which may not be desirable to
some member in S in comparison to a. If such a possibility exists then S
would desist from making the move from a to b. Hence, although there may
exist a profitable deviation from a the threat that further deviations can be
harmful for the coalition which makes the initial move is likely to deter the
deviation. Hence, a is a stable outcome in a certain sense and it is a member
of the stability set. Formally,

DEFINITION 2.3.1 (Rﬁbinstein (1980)) The stability set, R = {a €
Z|V (S,d) € (W x Z), d~sa => 3 (e,1) € (Z x S) such that e~d and
ahe}.

The top cycle is the smallest subset of Z such that every outcome outside it
is dominated by at least one outcome in it.

DEFINITION 2.3.2 The top cycle, T is the smallest non-empty subset of
7 with respect to set inclusion satisfying [Va € Z\ T, Vb€ T, b>al).

PROPOSITION 2.3.2 (i) If Y C Z is credibly consistent then Y C R.
(1) If Y C Z is credibly consistent and Y # 0 then Y NT # 0.

Proof: (i) Since the players’ preferences are assumed to be strict, for any
SeWanda, b € Z, a f-sb = 3i € S such that b>;a. Hence the result is
straightforward from the definition of a credibly consistent set.?

2Similarly, it is also straightforward from the definitions of the LCS and the stability
set that for a proper simple game with strict individual preferences the LCS is contained
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() fY # 0 and Y NT is @ then Y cannot be externally stable. Then Y
cannot be credibly consistent. |

REMARK 2.3.1 One recent significant addition to the solution concepts
for coalitional stability is a consistent stability set (Chakravorti (1999)) which
is an attempt to blend the ideas of the stability set and a consistent set.
We find that there is no close relation between a consistent stability set
-and a credibly consistent set. There exists a game for which no consistent
stability set exists but Z is credibly consistent. The game cited in Section
11 illustrating the “paradox of voting” is an example in this regard. On the
other hand, a game may have a consistent stability set but yet may not have
any non-empty credibly consistent set. The game cited in the proof of part
(iii) of Proposition 2.3.1 has this feature.

Next we give some examples to show that when a credibly consistent set
is non-empty then often it performs better than many of the solution con- -
cepts in deterring unreasonable outcomes from being stable. In the examples
that follow, the LCS has no predictive power at all: it is the entire set of
outcomes. However, for each of these games there exists a unique non-empty
credibly consistent set that refines the LCS in interesting ways.

First we introduce two other solution concepts for the purpose of compar-
ison with a credibly consistent set. These have been defined in the literature
for games for which > is a total relation on Z. The first one is the uncovered
set introduced by Miller (1980).

DEFINITION 2.3.3 Given X C Z and a,b € Z, b is said to cover a in X
if and only if b~a and for all c € X, a>c implies b~c. The uncovered set of
X C Z, denoted uc(X ), is the set: {a € X| for no b€ X, b covers a in X}.

in the stability set. Chwe (1994) has shown this result for majority rule voting games with
odd number of players and strict individual preferences.



26CHAPTER 2. COALITIONAL STABILITY WITH A CREDIBILITY CONSTRAIN1T

The uncovered set of Z is simply called the uncovered set.
A covering set (Dutta (1988)) is defined as follows:

DEFINITION 2.3.4 Gwen X C Z, X; C X 1is a covering set of X if and
only if (3) uc(X1) = X1 and (4) if b € X \ X, then b guc(X; U {b}).

Dutta (1988) has shown that there exists a unique minimal covering set of
Z for every game for which the domination relation is total.

EXAMPLE 2.3.1 Consider the following game:

N:“{l, ...,6},Z={.’E1, ...,xe},Wz{Sl, ...,S4}where
S =1{1,2,3}, S2={1,4,5}, Ss=1{2,4,6}, S,={3,5,6},
The players’ preferences over Z are the following:

1 2 3 4 ] 6
I3 Zi ) I T3 z2
z Z2 Z3 Te Ts Ty
Ts Te T4 Iy Zg s
Iy I3 Ty I3 M) I
Te T4 Ty Is T4 Te

Ty Ty Tg Ty I I3

This generates the following domination relations:
Z1>5,T6, T2>5,T6, T3> 5, T4, T2 5, T4, T175,T5, T3> Ts,
Te> S, T4, TS5, T2, T3 5,Ts, T3~ 5,T2,
T4 53T5, T17S3L6, T17 5323, T6™ 53T3,
T5>5,T6, T2>S,T4, T4 5,T1, T2 5,T1-
For no other a,b € Z and S € W is it true that a>gb. Note that for this
game, for every a,b € Z, either a>b or b>a.
This example is less complicated than it seems. There are some under-
lying symmetries within Z and W captured by the following permutations.
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Define the permutation £ : Z +— Z such that £(z;) = z2, &(z2) = 3, &(z3) =
z1,&(z4) = x5, &(x5) = x6, £(T6) = Z4, and the permutation n : W — W
such that 1(S;) = S1,7(S2) = S3,7(S3) = S4,n(S4) = S;. We shall use these
symmetries in proving results later in the example.

Now let us partition Z into two sets: Zy = {x1, z2, 23} and Z; = {z4, %5, Z6}-
Notice that each outcome in Z; is dominated by two other outcomes whereas
~ each outcome in 7, is dominated by three other outcomes. So, intuitively,
elements in Z; are more suitable as stable outcomes.

The LCS for this game is Z. We can check this as follows. First, take z;.
Consider the pairs (Sy, z4) and (Sy, z2) with respect to z;. Then z3>z4 and
T3>T7 but x3 ;. For no other (S,d) € (W x Z) it is the case that d>gz;.
Then take z4. Consider the pairs (51, z2) and (S4, z2) with respect to z4. Then
T5>T9 but x5 S x4. Again, consider the pairs (S, z3) and (Sy, zg) with re-
spect to x4. Then z,>~x3, T,>1¢ but z; f,z4. For no other (S,d) € (W x Z)
it is the case that d>gz4. Thus, for £ € {z;,z4} it is true that V(S, d)
€ (W x Z),3 e € Z such that e = d or e~d and e /fgsz. Now invoke the
permutations ¢ and 7 and carry on applying the argument given above for
outcome z to &(z) using £(y) in place of each y € Z and 7(S) in place of
each S € W. Thus we can check that Z is indeed the LCS.

Therefore, the stability set as well is Z (see footnote 4). The core of this
game is empty and there is no stable set. One can also check that Z is the
top cycle and the uncovered set. So, a number of solutions quite common in
the literature have little predictive value for this game.

However, we can show that Z, is the unique credibly consistent set for
this game. First we show that Z; is credibly consistent. Take z;. Consider
the pairs (S, z4), (S € W) and (5'4,:1:2) with respect to z;. Then z3 >¢ (Z1)z4
and z3 ¢ (Z))ry but z3 /fz;. For any pair of the type (S, zs5) or (S, zg).
(S € W), 2, »° (Z;)zs and z; >° (Z1)zs. But, of course, z; /4x;. For no
pair (S,d) € (W x Z) other than (Sy,z9) and (Ss,z4), it is the case that
d>gz;. So, for zp, it is true that V(S, d) € (W x Z), 3 e € Z; such that
e=dore>°(Z)d and e fgsz,. Once again invoking the permutations §
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and 7 and replacing every outcome z by £(z) and every coalition S by 7n(S)
we can check that the same is true for x5 and z3.

Now we consider outcomes in Z5. Take z4 and consider the pair (Sy, z5)
with respect to it. Then zy>g,z4. The only element in Z; that credibly
dominates zo from within Z; is z3 and z3>g,z4. Similarly, by considering
(S1,z3) with respect to zs and (Sy,z;) with respect to zs we find that for
each a € Z,, it is true that 3(S,d) € (W x Z) such that foralle € Z), [e=d
or e »¢ (Zy)d] = e>sa. So, Z; is credibly consistent.

Next we show that no other Y C Z can be credibly consistent. Let Y C Z,
Y # Z, be credibly consistent. First we claim that if z3 € Y, then z4 € Y.
This is seen by considering the pair (S1,z;) with respect to z4. If 23 € YV
then the only outcome that credibly dominates x5 from within Y is 3. And
both z3>g,z4 and z3>g,74. So, the claim is proved. Similarly, by consider-
ing (51, z3) with respect to z5 and (S, ;) with respect to z¢ we find that if
z; €Y, then 75 € Y and if 2, € Y, then ¢ ¢ Y. This implies |Y| < 3. Now,
no singleton subset of Z is externally stable and so, by Proposition 2.2.4,
cannot be credibly consistent. Hence, |Y'| # 1. Since this game is strong, no
doubleton subset can also be credibly consistent. So, |Y| = 3.

Now let, if possible, Y = Z,. Consider (S5, z3) with respect to z4. Then,
only g credibly dominates z3 from within Z,. But zg>g,74. So, Z, is not
credibly consistent. Now let Y have two elements from Z, and one from Zs.
Let, without loss of generality, z;,z, € Y. Then, as we have shown above,
the element from Z; must be z4. But then considering the pair (S;, z2) with
respect to z4, we find that {z;, 22,4} is not credibly consistent. Using the
permutations £ and 7 in the same way as we have done above, we can easily
check that no such set with two elements from Z; and one from Z; can be
credibly consistent.

Now let Y have two elements from Z, and one from Z;. Let, without loss
of generality, x4, 5 € Y. Then, as we have shown above, the element from Z,
must be z5. Then Y fails to be externally stable as no outcome in {z4, 35, z2}
dominates z3. So, {z4, T5,Z2} is not credibly consistent. Once again, using
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the permutations £ and 7, we can easily check that no such set with two
elements from Z; and one from Z; can be credibly consistent. So, Z; is the
unique credibly consistent set.

We remark here that Z; is Dutta’s minimal covering set as well.

EXAMPLE 2.3.2 Consider the following game:
N={1, ..., 8}, Z = {z1, 22, Y1, Y2, 21, 22,4, b}, W = {8}, ..., S5} where

S1={1,4,5}, S, = {2,4,6,8}, Ss = {3,5,6}, S = {1,2,3}, S5 = {1,5,6, 7}

The players’ preferences over Z are the following:

1 2 3 4 ) 6 7 8
2 ) Yo a b b x b
21 I ) 2 Y2 I ) 22

a a Y M) 22 21 Y2
a 21 T T 2 a To To
! Y1 21 b a T Y2 a
Ty b b Z9 Y1 2 2 T
Y2 22 T2 Y2 I % a 21
T2 Y2 2 Ty oz Y b (7

This generates the following domination relations:
b~5,Y2, b5, T2, Ya>5,T2, a>s,Y1, G=5,T1, Y1>5 71,
b-s,22, b>=5,Y2, 22>=5,¥2, @>5,21, Q>5,U1, 21>8,U1,
b5,%2, b>s,22, Toa>5,22, A>5,T1, A>5,21, T1> 5,21,
2178, b,
22> 55 Q.
For no other a,b € Z and S € W is it true that a>gb. Like in the game in
Example 2.3.1, there are certain symmetries within Z and W in this game
as well which we shall indicate later.
Notice that the outcomes a and b are dominated by the least number of
outcomes - only one outcome dominates each of them. Moreover, these two



30CHAPTER 2. COALITIONAL STABILITY WITH A CREDIBILITY CONSTRAIN1

outcomes also dominate the maximum number of outcomes, both of them
dominate three other different outcomes. Therefore, intuitively a and b have
relatively superior claims to.be counted-as stable outcomes for this game.

We show that the LCS for this game is Z. This is seen as follows. Take
a. Consider the pair (Ss, 25) with respect to it. Then b>z; but b f-a. For -
no other pair (S,d) € (W x Z) is it the case that d>gsa. For b, consider the
pair (Sy, z1) with respect to it. Then a>z; but a /-b. For no other pair
(S,d) € (W x Z) is it the case that d>gb. Now take z,. Consider the pairs
(S1,41), (S1,a) and (Ss,a) with respect to it. Then z;>y; but z; f-zy,
and z2>a but 2, /-z;. For no other pair (S,d) € W x Z is it the case
that d>gsz,. So, for each z € {a,b,z,}, we find that V(S, d) € (W x Z),
J e € Z such that e = d or e>~d and e /sz. Now define the permutation
§: Z — Z such that £(z1) = 11, £(n1) = 21, &(21) = 21,€(22) = 29, E(12) =
Y2, &(z2) = 22,&(a) = a, £(b) = b and the permutation  : W ~ W such
that 7(S1) = S2,n(S2) = S3,7(S3) = S1,1(S4) = S, 1(Ss) = Ss. Then carry
on applying the argument given above for = to £(z) using £(y) in place of
each y € Z and 7(S) in place of each S € W. This will verify that each
z € {z1,y1, 2} satisfies the condition of consistency. Now apply a differ-
ent pair of permutations &' and 7' as follows. Define £ : Z +— Z such that
§(z1) = 22, &) = v2, §(21) = 22,8(22) = 21, E(2) = 01, §'(=) =
z1,€8(a) = b, €(b) = a and the permutation ' : W — W such that
n'(51) = S1,7'(S2) = S2,7'(S3) = S3,7'(S4) = S5,7'(S5) = Ss. Then ap-
ply the argument given above for z to &'(x) using &'(y) in place of each y € Z
and 7/(S) in place of each S € W. Then we find that for every z € {2, yo, 20}
also, it is true that V(S, d) € (W x Z), 3 e € Z such that e = d or e>d and
e fsx. Thus, Z is consistent.

Hence, the stability set for this game is also Z (see footnote 4). It can
also be checked that the top cycle is Z. So, like in Example 2.3.1, a number
of solutions have little predictive value for this game. However, {a, b} is the
unique credibly consistent set for this game.

First note that {a, b} is a stable set for this game and therefore, by Propo-
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sition 2.2.4, it is credibly consistent. Let Y C Z be any other credibly con-
sistent set. We claim that if @ € Y, then neither of z,,y; or 2; is in Y.
Take z; and consider the pair (S;,y;) with respect to it. If a € Y then the
only outcome that credibly dominates y; from within Y is a. But a>g,1;
and also yi>g,z1. So, z; ¢ Y. Similarly, considering (Ss, z;) with respect
to y; and (S3,z;1) with respect to 2; we find the claim to be true. Using
the permutations £ and 7’ in the same manner as we have done above, we
can show that if b € Y, then neither of x4, y; or z; is in Y. Now notice that
neither of the sets {a,z2,ys, 22} and {b,z;,y1, 21} is externally stable. So,
Y C {z1,y1,21, %2, 42, 22}

Notice that for ¥ to be externally stable, it must be that {z;,2,} C Y.
But then neither of y; and y, is in Y. To see this consider the pair (S, b) with
respect to y; and the pair (S;,a) with respect to yo. Then only z; > (Y)b
and z; >¢ (Y)a. However, zi>g,y; and 25>g,y2. So, Y C {z1, 21, T3, 25}.
However, this is not possible. Consider the pair (Ss,z;) with respect to z;.
Then z,>g5,2; and no outcome in ¥ dominates z;. So, Y # {z, 21, o, 22}
But no proper subset of {z1, 21,22, 22} is externally stable. Hence, {a,b} is
the unique credibly consistent set for this game.

2.4 Conclusion

In this chapter we have analysed one aspect of coalitional stability under the
constraint of credible coalitional deviations. Our analysis suggests that the
imposition of such a constraint can change the properties of a solution very
drastically. An analogous constraint with respect to the stability set yields
results somewhat similar to those relating to the credibly consistent sets.
However, the issue of coalitional stability with credible coalitional deviations
is largely an unexplored one. The analysis of such deviations is fraught
with conceptual difficulties for the general class of games representable by
effectivity functions.
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Chapter 3

On the Equal Division Core

The main theme of the present chapter is an axiomatic characterization of
the equal division core (EDC) on two classes of TU games. In section 3.1 we
briefly mention an alternative interpretation of the EDC owing to Dutta and
Ray (1991). In section 3.2 we describe a set of properties of a solution on the
class of TU games for which the EDC is non-empty and show that EDC is
the unique solution on that class which satisfies all the properties in the set.
In section 3.3 we show that almost a similar set of properties characterize
the EDC on the class of all TU games. In this chapter we shall often simply
use game for a TU game with no possibility of confusion.

3.1 The EDC and the Lorenz Core

We pointed out in the introductory chapter that the idea of EDC was con-
ceived to explain results of experimental TU games where it was observed
that the agents seem to follow an ad-hoc norm of fairness. However, it was
later found out that the concept of the EDC is quite crucial for the anal-
ysis of egalitarian core-like solutions on TU games. Dutta and Ray (1991)
arrived at the notion of EDC starting with an idea quite different from Sel-
ten’s. To get to their interpretation of the EDC let us recall the notion of
Lorenz-domination. Let A C R" be a set of n-person allocations of a given
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total. For any vector z € A, we denote by Z the vector in R™ obtained by
permuting the components of z such that z; < I, < ... < Z,.

For two vectors x,y € A, z Lorenz-dominates y if for every integer
k k

k,1<k<n-1,Y % > § with at least one strict inequality.
=1 i=1
By E(A) we denote the set {z € A| there is no y € A such that y Lorenz-
dominates z} A
Dutta and Ray defined the Lorenz core as follows:

DEFINITION 3.1.1 (Dutta and Ray) Given a game (N,v), the Lorenz
core of a singleton coalition {i} C N, A({:})= v({i}). Suppose we have
defined the Lorenz core for all coalitions of cardinality less than or equal to
k. Then the Lorenz core of a coalition S of size k + 1 is given by: A(S) =
{z € R®| Ticszi = v(S) and there do not ezist T C S and y € E(\(T))
such that y > z7}.

So, the Lorenz core is the set of imputations for the grand coalition that
remain unblocked when the following are true. All the subcoalitions of N
are commited to a norm of egalitarianism represented by Lorenz domination.
Moreover, an allocation for a coalition can be objected to by a subcoalition
only with an allocation which is egalitarian (in the sense of Lorenz ordering)
within its Lorenz core.

They proved the following result connecting the Lorenz core and the EDC:

PROPOSITION 3.1.1 (Dutta and Ray) For any game (N,v), A(N) = L(N,v).

This new interpretation of the EDC enhances its importance as an equity-
related solution on TU games.

3.2 Characterization of the EDC on I';

Throughout this chapter, the set of games for which the EDC is non-empty
is denoted by I';, and the set of all TU games is denoted by T.
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REMARK 3.2.1 The class 'y, is quite large: many games derived from
economic situations are in it. I'; contains the class of weakly superadditive
games (see Dutta and Ray (1991)).

Let us recall the definition of a solution.

DEFINITION 3.2.1 Let Ty C T. A solution on Ty is a mapping 1 which
associates with each game (N,v) € I'y a subset Y(N,v) of X(N,v).

Now, let us introduce the following axioms. Take (N,v) € T'y.

1. Non-emptiness (NE):

The set (N, v) # 0.

2. Weak Upper Hemicontinuity (WUHC):

Let {(N,v*)} be a sequence of games in 'y such that for all k, v*(S) = v(S)
for S € N and v*(N) — v(N). Let {z*} be a sequence such that z* €
¥(N,v¥) for all k and z¥ — z. Then z € Y(N,v).

This axiom states that if two games in I'y, (N, v!') and (N, v?), are close
enough - the differences in the worth of the grand coalitions being small
and the worth of the other coalitions being equal - then an allocation in
the solution of (IV,v!) will be close enough to one allocation in the solution
of (N,v?). Similar axioms are quite prevalent in the literature (e.g. Lahiri
(1998), Thomson (1983)).

3. Antimonotonicity (AM):
Let (N,v') € 'y, be such that ¢'(S) < v(S) for all S C N and v'(N)=v(N).
Then ¥(N,v) C (N, ).

The intuition is that if the coalitions get impoverished then the pay-off
vectors in the solution of the original game remain in the solution of the new
game and additionally some more pay-off vectors feasible for the grand coali-
tion may qualify as solution vectors. Keiding (1986) introduced this axiom
in the literature.

The next axiom is one of consistency. Usually the consistency properties
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of a solution on the class of TU games is defined in terms of reduced games
(see Thomson(1996)). Given a game (N, v) and a pay-off vector z € X (N, v)
a reduced game on a coalition S describes the pay-offs available to the differ-
ent subcoalitions of S. Different assumptions on the behaviour of the players
in S and the possibility of their cooperating with the players outside S gen-
erate different reduced games.

Let us define the following reduced game.

DEFINITION 3.2.2 Letz € X(N,v). The secession reduced game on S C
N, (S # 0) with respect to z, (S, vE) is given by:

VE(S) = v(N) = oot
v3(T) =v(T) forT C S.

The intuition is that if the players in N \ S leave, no cooperation with them
is possible any more. However, the commitment to their pay-offs has to be
honored by the grand coalition S in the reduced game. Moreover, since no
cooperation with the players in V \ S is possible, the worth of each ' C S
in the reduced game remains what it was in the original game.

Nagahisa and Yamato (1992) have used a somewhat similar reduced game
in their characterization of the core.
4. Secession Consistency (SC):
If z € ¥(N,v) then for any coalition S, (S, v%), the secession reduced game
on S with respect to z, is in I'; and z5 € ¥(S, v%).

The next axiom is a condition on subgames.

DEFINITION 3.2.3 Given a game (N,v), the subgame on a coalition S,
(S,vs) is given by:

vs(T) = v(T) for ol T C S.
5. Weak Internal Stability for Proximal Coalitions: (WISPC)
Let z € ¥(N,v) and let for some S C N with |S| = [N| -1, (S,vs) be in [';.
Then for all y € ¥(S, vs),

MaZTjecs Tj 2 MiNjes Yj-
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Suppose for a coalition S proximal to N (obtained by dropping only one
player) even the worst-paid player in a pay-off vector y in the solution of the
subgame on S gets more than that is given to any player of S in an allocation
z for the grand coalition. Then, this axiom specifies that if z is so bad for
such a large fraction of the players then x should nct be in the solution of
the whole game.

PROPOSITION 3.2.1 There is a unique solution on I'y that satisfies NE,
WUHC, AM, SC and WISPC and it is the EDC.

It is obvious that EDC satisfies NE, AM, SC and WISPC on I'y,. We prove
the rest of the proposition with the help of the following lemmata. Before
proceeding onto the proof of the theorem we define the notion of an equity
coalition that we shall use in the proof.

DEFINITION 3.2.4 Given a game (N,v) we call a coalition S an equity
coalition of (N,v) if

a(S,v) > a(T,v) for allT C S.
LEMMA 3.2.1 For any (N,v) € 'y, L(.) satisfies WUHC.

Proof: Let {(N,v*)} be a sequence of games in 'y such that for all k,
v*(S) = v(S) for S C N and v*(N) — v(N). Let {z*} be a sequence such
that % € L(N,vF) for all k and z* — z.

First we show that ;e yz; = v(N). Let s(.) : RY + R be the continuous
map such that for z € RY, s(z) = Ticnz;. Since % — z, s(zF) — s(x).
Now, for all k, s(z*) = vF(N). As v¥(N) — v(N), s(z) = v(N).

Now let z ¢ L(N,v). Then there is S C N such that e(S,v) > zs.
Choose € > 0 such that € < a(S,v)—mazjecsz;. Since z¥ — x, there is
(N,v") € {(N,v*)} such that ' € L(N,v') and mazies|zt — z5] < € (here
|.| stands for absolute value). But then clearly e(S,v) > z& and therefore,
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zt & L(N,"). |

LEMMA 3.2.2 If a solution v(.) satisfies NE, SC and WISPC on Ty then
for any (N,v) € T'r, z € (N, v) implies that for all i € N, z; > v({i}).

Proof: Note that every one-player game is in I'; and hence by NE, for
all ¢ € N, ¥({i},vq)) # 0. So, by the definition of a solution (in partic-
ular, the property that the pay-off vectors in a solution must be efficient),
Y({i},vy) = v({z}). Now, let |N| > 1 and z; < v({i}) for some ¢ € N. If
|N| = 2, then 9(.) clearly violates WISPC. If |[N| > 2, then pick j € N\ {3}
and construct ({1, j}, v{; ;;), the secession reduced game on {3, j} with respect
to z. Then by SC, (z;,z;) € ¥({i,j}, v}, ;). But then again, 9(.) violates
WISPC. |

LEMMA 3.2.3 If a solution y(.) satisfies NE, WUHC, AM, SC and WISPC
on 'y then for any (N,v) € T, L(N,v) C (N, v).

Proof: Take (N,v) € I';, and let z € L(N,v). Fix ¢ > 0 and construct the
game (N, v¢) as follows:

and for S C N,
v¥(S) = v(S).

Clearly, (N,v¢) € 'y, and the vector z¢, given by z{ = z; + ¢/|N| Vi € N, is
in L(N, v%).

Now, further construct the game (N, v%*) for which v%*(S) = v¢(S) for
every non-singleton coalition S and for all ¢ € N, v**({i}) = z{. Then
again, (N,v®) € I'; and hence, by NE, ¥(N,v%") # 0. Then, by the defi-
nition of a solution and Lemma 3.2.2, (N, v®®) = {z¢}. Therefore, by AM,
¢ € Y(N,v). Now, take a decreasing sequence of positive numbers {€*} such
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that €! = € and ¥ —» 0. For each k, construct a game (N,v¢") such that:

and for S C N,

Let z¢° be the vector given by z¢ = x; + €*/ |N| Vi € N. By our argument
above, for each k, z¢" is in (N, vfk). Then for the sequence {(N, v‘k)}, ve* (N)
— v(N) and ¢ — 2. Then by WUHC, z € (N, v). n

LEMMA 3.2.4 If a solution ¢(.) satisfies NE, WUHC, AM, SC and WISPC
on Ty then for any (N,v) € Ty, ¥(N,v) C L(N,v). ‘

Proof: Take (NV,v) € I'y and let z € ¥(N,v) \ L(N,v). Then there is an
equity coalition S for which e(S,v) > zgs. Notice that by Lemma 3.2.3,
e(S,v) € ¥(S,vs). Therefore, if |S| = |N| — 1, then ¢(.) violates WISPC.
Suppose |S| < |N| — 1. Then pick j € N\ S and let T be S U {j}. By SC,
zr € (T, vZ). But then once again 1(.) violates WISPC. ' n

This completes the proof of the proposition.
Below we show that every axiom is independent of the others. For each
of the above axioms we show that there is a solution on I'y, which satisfies

the other four but fails to satisfy it.

NE: Let (N, v) be the core of (N,v)'. Then (.) satisfies WUHC, AM, SC
and WISPC on I'; but not NE.

1Recall that the core of a game (N,v), C(N,v) ={z € X(N,v)| for every coalition S,

Y > v(S)}

€S
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WUHC: Fix (N',v') € Ty such that v'(N')/|N’| > v'(S)/|S]| for all S C N,
S # (. Let 1(.) on I';, be such that ¥ (N, v)=L(N,v) if (N,v) € T \{(V',v)}
and e(N',v') otherwise. Then ¥(.) satisfies NE, AM, SC and WISPC on I'g
but not WUHC.

AM: Fix G' = (N',v') € T and ig € N'. Define 9(.) on I'y as follows.
For (N,v) € T'r such that N = N', (N, v) ={z € L(N,v)| z;, = v({io})}
and ¥(N,v) = L(N,v) otherwise. Then 1(.) satisfies NE, WUHC, SC and
WISPC on I'y, but not AM.

SC: Define 9(.) on I'p as:

w(N,v) = {z € X(N,v)| there does not exist S C N such that |S| =|N| -1
and e(S,v) > zs}.

Then ¢(.) satisfies NE, WUHC, AM and WISPC on I';, but not SC.

WISPC: Fix a player set N' = {1,2,3}. Let I'y» be the family of games such
that if (N,v) € Ty then N = N’ and v({1,2,3}) = 9, v({1,2}) < 8, and
v(S) < 0 for any other coalition S.

Let 1(.) on I’ be as follows: ¢(N,v) = L(N,v)U{(3,3,3)} for (N,v) €
'y and ¥(N,v) = L(N,v) otherwise. Then 1(.) satisfies NE, WUHC, AM
and SC on I';, but not WISPC.

3.3 Characterization of the EDC on T

Although T'; is quite large, there are games arising from real-life situations
for which the EDC is empty. We cite one such example below.

EXAMPLE 3.3.1 (A modification of the Garbage game of Shapley-Shubik
(1969))
Suppose n persons reside in a locality. They may stay in different houses or
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any group of them may build a house for themselves and live together. There
~is an economy of scale in living together: if s persons move in together then
this economy is measured by an increasing function ¢(s). 1 unit of garbage
is generated owing to each person and this is to be dumped in the yard of
one of the houses. As garbage is a public bad, each person suffers 1 unit of
disutility if 1 unit of garbége is dumped in the vard of his residence. Like
Shapley and Shubik we assume that there is no free disposal outside the
yards of the houses.

The characteristic function representation of the situation is the follow-
ing:

v(N) = ¢(n) ~ n?,

o(S) = #(|S]) = |S|(n — |S]) for S € N, v(®) = 0.

Let N = {1,2,3} and ¢(|S|) = |S| for every non-singleton coalition while
#(1) = 0. Then it is easily checked that L(N,v) = 0.

The existence of such games motivates us to characterize the EDC on the
set I'. We find that the EDC can be characterized by a set of almost similar
axioms as in the case of I'y.

DEFINITION 3.3.1 Call U C R"™ weakly symmetric if there exists x € U
such that any vector obtained by permuting the components of = is also in U.

We introduce another axiom:

6. Irrelevance of y-asymmetric Coalitions (IRAC)

Suppose for no non-singleton and non-empty S C N it holds that ¥(S, vs)
is weakly symmetric. In that case, if there exists z € X(NNV,v) such that
z; > v({i}) for all i € N, then ¢(N,v) # 0.

The explanation of this axiom is that if a coalition is to affect the solution
set for the grand coalition, then the solution set for itself should have some
syminetry.
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Notice that the axioms WUHC, AM, SC and WISPC have been stated
for games in I'. If we replace 'z, in the statements of these axioms by T or

drop I'p, (as appropriate), then we get a set of exactly similar axioms. Let us
call them WUHC’, AM’, SC’ and WISPC’. We state them below.
Take (N,v) € T.

Weak Upper Hemicontinuity (WUHC’): -

Let {(N,v*)} be a sequence of games such that Vk, v*(S) = v(S) for SC N
and v*(N) — v(N). Let {z*} be a sequence such that z* € (N, v*) for all
k and ¥ — z. Then z € ¥(N,v).

Antimonotonicity (AM’):

Let (N,v') be such that v'(S) < v(S) for all S C N and v'(N)=v(N). Then
(N, v) CY(N, ).

Secession Consistency (SC’):
If € ¥(N,v) then for any coalition S, zs € ¥(S, vg).

Weak Internal Stability for Proximal Coalitions: (WISPC’)
Let £ € ¢(N,v). Consider any S C N such that |S| = |N| — 1. Then for all
Y€ "!)(S? US)a

MaTjes T; = MiNjes Yj-

PROPOSITION 3.3.1 There is a unique solution on T that satisfies WUHC’,
AM’, SC’, WISPC’ and IRAC and it is the EDC.

The fact that the EDC satisfies all these properties on T is quite easy to see.
We prove the rest of the proposition with the help of the following lemmata.

LEMMA 3.3.1 If a solution ¢(.) satisfies IRAC, SC’ and WISPC’ on T
then x € y(N,v) implies that for alli € N, z; > v({i}).

Proof: Note that by IRAC, for any single-player game (N, v), ¥(N,v) # 0.
The rest of the proof is exactly analogous to that of Lemma 3.2.2. [
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LEMMA 3.3.2 If a solution v(.) satisﬁes IRAC, WUHC’, AM’, SC’ and
WISPC? on T then for any (N,v) € T, L(N,v) C %(N,v).

Proof: Take (N,v) € T and let z € L(N,v). Fix ¢ > 0 and construct the
game (N, v¢) as follows:

and for S C N,
vé(S) = v(S).
Construct the vector z¢, given by zf = z; + ¢/|N| Vi € N.

Now, further construct (N, v%®) for which v*(S) = v¢(S) for every non-
singleton coalition S and for i € N, v**({i}) = z£.

We claim that for any S C N such that |S] > 1, ¥(S,vg") cannot be
weakly symmetric. Suppose otherwise. Fix S C N, |S| > 1, such that
(S, vg") is weakly symmetric. Let y € 9(S,v5") be such that any vector
obtained by permuting the components of y is also in ¥(S,vg"). Since z €
L(N,v) it must be true that there exist 7, j € S such that z; > y;. Suppose
not. Then, mazies Tr < Minges yx. Then, by the construction of (N, v**)
and the definition of a solution (in particular the fact that a vector in the
solution must be efficient), the following string of inequalities is true:

maTres Tk < Minges Ye < a(S, va.’x) =a(S,v).

But this contradicts the fact that z € L(N,v). Thus, there exist ,j € S such
that z; > y;. This implies that z§ > y;. Since v%*({i}) = z§ by construction,
Lemma 3.3.1 is violated. Hence, the claim is true.

By the claim and using IRAC we find that ¥(V,v“*) # 0 and by the
definition of a solution and Lemma 3.3.1, (N, v%*) = {z¢}. Therefore, by
AM’, z¢ € ¥(N,v¢). Now, take a decreasing sequence of positive numbers
{€*} such that ¢! = € and ¥ — 0. For each k, construct a game (N, ve)
such that:
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and for S C N,
v () = v(9).

Let z¢* be the vector given by z¢° = z; + */|N| Vi € N. By our argument
above, for each k, z¢ is in ¥(V, v*). Then for the sequence {(N, v¢*)}, v<" (N)
— v(N) and z¢ — . Then by WUHC’, z € (N, v). ]

LEMMA 3.3.3 If a solution 9(.) satisfies IRAC, WUHC"’, AM’, SC’ and
WISPC’ on T then for any (N,v) € T, ¥(N,v) C L(N,v).

Proof: The proof is identical to that of Lemma 3.2.4. [ ]

Once again, we can show that the axioms are independent of each other.
. IRAC: Let (N, v) be the core of (N,v). Then v(.) satisfies WUHC’,
AM’, SC’ and WISPC’ on I but not IRAC as the following example shows.

Let N'={1,2,3},v({1,2,3}) = 5,v({1,2}) = 5,v({2,3}) =4,v({1,3}) =
1, v({1}) =v({3}) = 1 and v({2}) = 3. In this game the core of none of the
subgames on the doubleton coalitions is weakly symmetric. However, the
core of this game is empty even though the vector (1,3,1) is individually
rational. '

The examples that we had provided for showing the independence of the
axioms in case of I'y are sufficient for showing the independence of the re-
spective axioms in this case as well.



Chapter 4

A Model of Collective Action

In this chapter we analyse a society facing the possibility of revolt by a
section of its population. We study a simple model of a society comprising
of two entities: a government and the masses. We model the actions of the
agents in the society as a signalling game. In particular, we assume that the
government can be either weak or strong, while the masses have incomplete
information about the type of the government. The government is threatened
with a possibility of revolt of the masses against it. Our principal objective in
this chapter is to identify situations where faced with this possibility of revolt,
a weak government would choose to repress whereas a strong government
would let the prevailing set-up to continue or make some minor concessions.
As we have mentioned in Chapter 1, this seems to fit a large number of

historical experiences.

4.1 The Society

There are two agents in the society, a government ruled by the elite of the
society (G), and the poor masses (M). There is a relatively liberal political
system prevailing in the society. However, the elite is faced with a potential
threat of revolution: below we shall make precise what we mean by this
potential threat of revolution.
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The government, G, can be of 2 types: strong (S) and weak (W). Its
type is determined by its capability of (a) suppressing a revolt in case it
breaks out, and (b) the ease with which it can take preemptive measures
that helps in thwarting the revolt. Once again, we shall make the notion of
the strength of a government precise below in terms of pay-off. The visible
features of the strength of a government are administrative coordination,
the level of competence of the military, certainty of intervention by friendly
nations in time of need etc.. These are observable by the government but
are only imperfectly observed by the masses. Thus, the government’s type
is known to itself, but is unknown to M. The prior belief of M about the
type of G is given by the probability distribution p® over T = {S, W}. The
support of p¢ is Tg.

The game proceeds in 2 stages:

e In stage 1, G declares a constitution and takes some preemptive polic-
ing measures: it can be tough (t) or be lenient ({). So, the action space
of G, Ag = {t,1}. Playing ¢ or acting tough implies increasing the
government’s military strength, purchasing sophisticated equipment,
deploying intelligence agents, crackdown on media and protest activi-
ties etc.. So, if G plays t, then the regime is repressive. The action !
implies that the government makes some minor liberal concessions (like
some cosmetic constitutional amendments which have little impact on
the agents’ pay-offs) or may be it lets the prevailing liberal set-up con-
tinue. There is a cost associated with playing ¢t. This cost differs across
the two types. For S, we denote this cost by Cs and for W by Cyy. We
normalize the cost of playing [ to 0 for either type of G.

o In stage 2, M observes G’s action and updates its belief about G. Then
M either revolts (r) or stays at home (z). Thus, the action space of
M, Ay = {r,z}.
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The pay-offs are affected in the following way. If the masses revolt, the
probability of success of the revolt, denoted by 7 (.), is dependent on:
(a) the type of G,
(b) whether G has played t or [.
So, m: (Tg x Ag) — [0,1].
If no revolt takes place then the masses get 0 and the elite get V: V can
be thought of as the surplus available to the society. If there is a successful -
revolt, the masses get a pay-off Vs > 0 and the elite in the government get
0. Note that V) is not necessarily the same as V : we allow for a change in
production structure in the post-revolutionary regime. If the revolt fails, then
M gets 0 and suffers a punishment of the amount I'y; and the elite continue
to get V. However, in the event of a revolt, there is a net expense for the elite
in fighting the civil war given by C. We assume that V is sufficiently higher
than C so that facing a revolt, G will choose to fight.! If the masses are in a
repressive regime, then the act of revolt is costly. We denote this cost by C, :
this is the cost associated with acts like organisation, propaganda, agitation,
collection of arms etc. under a repressive regime. We assume that this cost
is normalized to 0 in a liberal regime.

We denote this game as G.

4.2 The Pay-off Structure

We make a number of assumptions restricting the players’ pay-offs. We re-
tain these assumptions throughout this chapter.

First, we make the following assumption.
Al. Given any a € Ag, 7(S,a) < 7(W,a) and for any 8 € T, 7(0,t) <
n(8,1).

So, given any action of the government, the probability of success of revolt
is higher with a weaker government. Also, substantial preemptive measures

!The following pair of conditions is sufficient for this: (1 —7#(W,1))V > C and (1 —
(W, )7 > Cy + C.
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lowers the probability of success of revolt for both types of government.

Now, we make precise what we mean by a potentially revolutionary situa-
tion. We assume that if no finer information is revealed about the government
(i.e., if the masses hold the prior belief about the government), then in a le-
nient regime it is uniquely optimal for the masses to revolt with probability
1. Note that we identified a lenient regime to be the one where the pre-
vailing political set-up continues or where at best some insignificant political
changes have been made which have negligible impact on pay-off. So, this
assumption implies that if the government does not act, it is sure to face
revolt. Formally this implies:
A2. pS(W)[r(W, )Var—(1=m(W, )T p]+p% (8) [ (S, )Var—(1-7(S, 1)) T'f]
0.

Next we assume:
A3.C>Cw>Cs>0.

The intuition behind this assumption is that if a government is strong to
begin with, taking preemptive measures is relatively less costly for it than for
a weak government. And the cost of a civil war is quite high in comparison
to the cost of taking the preemptive measures.

Again, if a government is strong to begin with, it'does not make any ap-
preciable difference whether it has taken preemptive measures before or not.
Recall that we listed items like administrative coordination, competence of
the military etc. as some of the visible features of the strength of a govern-
ment. Thus, if the military is strong enough and the administration is quite
efficient to begin with, it is of little additional help to increase the strength
of the military further or to deploy more intelligence agents. Therefore, we
assume:

A4. 0 < 7(S,1) — n(8,t) < ¢, where € > 0 is infinitesimally small.
We maintain the assumptions Al to A4 throughout this chapter.
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4.3 The Equilibria

We look at the Perfect Bayesian Equilibria (PBE) of G. A strategy o¢ for G
is a map that specifies a possibly mixed action in Ag for every § € T; and a
strategy o) for M is a map that specifies a possibly mixed action in A, for
every m € Ag. Thus, o¢(.) : Tg — A(Ag) and op(.) : Ag — A(Ap), where
A stands for the unit simplex. For a € Ag, og(alf) denotes the probability
with which G plays a if it is of type 6 according to the strategy og. For
a € Ay, opm(alm) denotes the probability with which M plays a according
to the strategy o, after it has observed m € Ag. The strategy set of player
i € {G, M} is denoted by S;. Given a strategy tuple o = (o¢(.),om(.)), the
conditional expected pay-off of G if these strategies are played, (conditional
on G being of type ) is denoted by Ug(c|f). Similarly, given belief 1 €
A(Tg), the expected pay-off of M from a strategy o) after an action m € Ag
has been played is given by Up(m, o, 11).

DEFINITION 4.3.1 A PBE of G is a pair (o, i) where

(1) 0 = (0g,0m) € S¢ X Swu,

(13) p = (ue(.|a))ecag, such that for each a € Ag, pa(.la) € A(Tg)
satisfying the following: ‘

e Sequential Rationality: (i) For each 8 € Tg, Ug(0l0) > Ug(og, oml9)
for every o¢; € Sg. _
(11) For each m € Ag, Up(m,om, pe(im)) = Un(m, oy, pa(.|m)) for
every oy € Su.

e Bayesian Updating: If og(alf) > 0 for some a € Ag and 8 € Tg, then,

o6(al6).0°0)
3 06(al6) 098

¥eTe

pc(0la) =

We shall denote a PBE of G generically by a pair (o, ) as described above.
Now, we define a refinement of PBE which we shall use as a reasonable
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equilibrium notion. This is the notion of Perfect Sequential Equilibrium
(PSE), introduced by Grossman and Perry (1986). Below, we adapt the defi-
nition of a PSE to our context. Our choice of PSE as a reasonable equilibrium
notion is motivated by its well-known power of refinement.

For m € Ag and ¢ € A(Tg), the set of best replies by M to m with
belief ¢, BR(m, q) = {7 € Su| 7 maximises Upy(m, o, q)}- Let (o, 1) be a
PBE of G. For an action o € Ag, denote by & the strategy o € Sg such
that o5 (c|f) =1 for all § € Tg. For a 7 € BR(m,q), let K°(m,q,7) C Tg
be such that

6 € K°(m,q,7) = Ug(0|8) < Ug(m, 7/6)
and let K*(m,q,7) C T be such that
0 € K¥(m,q,7) = Ug(c|0) = Ug(m, 7|6)
Denote K*(m,q,7) U K¥(m,q,7) by K. Let h: Tg — [0, 1] be such that

=1 iffe K(m,q,7)
h(B){ €[0,1] if6 € K¥(m,q,7)
=0 iff¢K

and Y ger, h(0) > 0. Define ¢ : Tg — [0, 1] as follows:

02O pg e
«(6) = D hE)-0C®)

'eK
0 if0 ¢ K

The belief p € A(Tg) is consistent for m € Ag if there exist a K C
Te, K # 0, a7 € BR(m,p), and an h(.) as defined above such that ¢(§) =
p(6) for all § € Tg. For a PBE (o, 1), p is said to be credible with respect
to o if for any m € Ag such that og(m|f) = 0 for every 6 € Tg, ug(.|m) is
equal to some belief p € A(Tg) consistent for m whenever there exist some
belief consistent for m. The PBE (o, 1) is a PSE if y is credible with respect

to o.
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4.4 The Results

We are mainly interested in finding out the conditions under which we ob-
tain a separating PBE in which S plays [ and W plays t. Note that such a
separating PBE is trivially a PSE.

We begin by identifying a condition for which such an equilibrium never
exists.

PROPOSITION 4.4.1 Suppose [7(S,)Vyy — (1 — 7(S,1))T'y) < 0. Then
there is no PBE (o, i) for which og(l|S) =1, og(tjW) = 1.

Proof: For any such PBE, o3/(r|l) = 0. So, whatever be the value of o (r]t),
W will deviate to play ! surely and gain at least Cyy > 0. ]

Next we give a set of conditions which is sufficient for obtaining a sepa-
rating PBE in which & plays [ and W plays t.

C1. W(S,Z)VM - (1 - 7T(S, l))FAM Z 0,
C2. W(W,t)VM - (1 - ’/T(W, t))FM — CT Z O.,
C3. 7(W,1) — (W, t) > .2

PROPOSITION 4.4.2 Suppose C1, C2 and C3 hold. Then there erists a
PBE (o, ) given by:

oc(l|S) = 1, ag(tW) =1, om(r|l) = om(r]t) = 1, and pe(S|l) = 1, pe(W|t) =
1.

Proof: To verify that (o, 1) is a PBE we have to check that it satisfies the
condition of sequential rationality in Definition 4.3.1.

2Condition C1 implies that in a lenient regime revolt is always at least a weakly optimal
action. Condition C2 implies that if the government is revealed to be weak, then revolt
is always at least a weakly optimal action. We point out the implication of C3 in Lemma
44.1.
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First, take G of type S.
Ug(olS) = (1 — =(S,1))V - C.
Consider oy; € Sg such that 0 < o;(t|S) = ps < 1.
Then, Ug(og, oum|S)
=ps[(1 = 7(S, 1))V = Cs] + (1 = ps)[(1 = 7(S,1))V] - C
So, Ug(o|S) — Ug(og, om|S)
= ps[Cs — (7(S,1) = 7(S,1))V]
> 0 (by A3 and A4).
Similarly, for G of type W, consider o, € Sg such that 0 < o({|W) = pw <
1.
Then, Ug(og, om|W)
= pwl(1 = 7V, D)V + (1 — pw)[(1 = TOW, )7 = O] = C,
whereas, Ug(0|S) = (1 — #(W,t))V — Cw — C.
So, Ug(0|S) — Ug(og, om|S)
= pw[(Tr(W, 1) = (W, 1))V — Cw)]
> 0 (by C3).
By C1 and C2, it is clear that for each m € Ag, Upr(m, opr, pg(.|m)) >
Upt(m, o'y, pe(.|m)) for every o}, € Sy u

Now we show that if C1 and C3 hold, then for a condition stricter than
C2, for any PBE (o, i) it is true that o(l|S) = 1 and og(¢|W) = 1. First,
we prove the following lemma that would be useful for getting this result.

LEMMA 4.4.1 Suppose C8 holds. Then for any PBE (o,u) such that
om(r|l) =1, it must be that oc(t|W) = 1.

Proof: Suppose, C3 holds, but for a PBE (o, i), oar(7]l) = 1 and o¢(.|W) #
1. Let og(l|W) = pw > 0. We denote op(r|t) by pr > 0.

Then,

Us(og,omW) = pwl(1 = 7(W, D))V = Cl + (1 — pw)[pr (1 — 7(W, 1))V ~
C)+ (1 ~p,)V —Cw]

Consider the strategy oy € S such that o (¢t{W) = 1, o5(.|S) = 0c(|S).
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Then,

Us(ok, opW) = p,(1 =7 (W, 1))V = C) + (1 — p,)V — Cw.

So,

Ug(O"G,O'Ml]/V) e UG(Jg,O'MlW)

= pwlp (1 = 7(W, )V = C) + (1 = p)V = Cw = (1 = «(W, 1))V = C].

By rearranging terms, this expression is simplified to:

pwlp (W, 1) — (W, 1))V = O] + (1 = p,)[(w(W, D)V + C — Cw)]

> 0 (By C3 and A3). Thus, (o, 1) cannot be a PBE. ]

Now, we identify situations where in any PBE (o,p) it is true that
Ug(llS) =1 and UG(tIW) =1.

PROPOSITION 4.4.3 Suppose the following holds:

(1) p° W) [r (W, t)Var— (A=W, )) T ar]+0°(S) (S, ) Var— (1- (S, 1)) T ] -
C,>023

Then under C1 and C3, for any PBE (o, i) it is true that og(l|S) = 1 and
oc(tW) = 1.

Proof: We consider the following two cases.

Case 1: n(S, )V — (1 = n(S,1))Tse > 0.

In this case, we show that the unique PBE (3, i) is given by
5c(UIS) =1, Ga(tlW) =1, Gu(r|l) = aum(rlt) = 1,

Gc(SI) =1, pc(W|t) = 1.

Since condition (i) in this proposition implies C2, by Proposition 4.4.2,
the strategies and the belief specified by (7, fi) indeed form a PBE.

Now, take any PBE (o, u). By the condition for Case 1, op(r|l) = 1.
Then, by Lemma 4.4.1, og(¢{WW) = 1. Then, by the definition of a PBE,
pc(WIt) > pS(W). Then condition (¢) in the proposition implies ou(r(t) =
1. But then by A4, o¢(l|S) = 1.

3This implies that if the masses hold the prior belief about G, then in any regime it
is uniquely optimal for them to play r. Since 7(S,t) < 7(W,t), this condition is stronger
than C2.
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Case 2: n(S, )V — (1 = w(S,1))I'p = 0.
In this case, we show that for any PBE (o, p1) it is true that 0¢(1|S) = 1 and
Gg(tIW) =1.

Suppose, there is a PBE (o, u) such that og({|[W) > 0. Then, by Al
and the condition for Case 2, op(r|l) = 1. But then, by Lemma 4.4.1,
og(t|W) = 1 and we get a contradiction. Thus, og(t{W) = 1. Then, by
the de%nition of a PBE, ug(W|t) > p®(W). Then condition () in the propo-
sition implies opr(r|t) = 1. But then by A4, og(l|S) =1.* u

Next we show that if condition (i) in Proposiiton 4.4.3 does not hold,
then even under C1 to C3, there is at least one reasonable PBE, (i.e. a PSE
according to our criterion) for which it is not true that og(l|S) = 1 and
oc(tiWw) = 1.

PROPOSITION 4.4.4 Suppose C1 to C3 hold but

(@) pC W) [t (W, )V~ (1—m(W, 1)) T i ]+p%(S) [ (S, t) Ve — (1~7(S, £) ) T}~
C, <0.

Then (7, ) as given below is a PSE.

a(t|S) =1, ae(tIW) =1, au(r)l) =1, au(zlt) =1,

fa(-It) = p°(), Ba(SI) =1.

Proof: First, we show that (&, 1) is a PBE under C1 to C3 and (i'). We have
to check that it satisfies the condition of sequential rationality in Definition
4.3.1.

For a type 8 € {S,W} consider a strategy o; € S such that 0 <
o(ll6) = po < 1.
Then, Ug(og, om|0)
= (1= po)(V — Co) + pg[(1 — m(8,1))V — C] whereas,
Us(516) =V — Cs.
So, Ug(c]0) — Ug(og, ouml0)

4However, in this case, we shall not get any unique equilibrium. There are a continuum
of equilibria differing in the probability with which M would play r after observing .
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= po[n(0,1)V — Cy + C]
> 0 (by A3).
By C1 and condition (%) in this proposition, it is clear that for each
m € Ag, Uu(m,oum, Ba(.Im)) > Uy (m, oy, ic(.|m)) for every o}, € Sis.
Now, we show that (7, i) is a PSE. We consider two cases.
Case 1: Suppose there exists p, € (0,1) such that the following two inequal-
ities are satisfied:

V-Cs< pr[(l - W(S’ l))V - é] + (1 - pr)v'

and

V- CW > pr[(l - ’/T(W’ l))V - C] + (1 - pr)V'

Let 7 € Sp be such that 7(r|l) = p,. Then fig(.|l) is consistent for I. This
can be checked by setting 7 € BR(l, ig(.|l)), and h(S) = 1, A(W) = 0 where
the maps BR(.,.) and h(.) have been defined in the definition of a PSE.
Case 2: Suppose, for every p, € (0,1), whenever V' —Cs < p,[(1—7(8,1))V —
Cl+ (1 —p,)V, it is true that V — Cyy < p,[(1— (W, 1))V = C] + (1 -p)V.
Then we claim that there does not exist any belief consistent for [. Sup-
pose ¢ € A(Tg) is consistent for I. Let 7 € BR(l,q) be the strategy of
M for obtaining this consistent belief g. We show that 7(r|l) # 0. Suppose
otherwise, i.e., let 7(r|l) = 0. Then, K*(l,q,7) = {S,W} and therefore,
h(S) = 1, h(W) = 1. But then ¢(.) must be p(.). By A2, this leads to
a contradiction. So, 7(r|l) # 0. Moreover, 7(r|l) # 1, as then the set K
defined in the definition of a consistent belief is empty. Then 0 < 7(r|l) < 1.
But then, by the condition by which Case 2 has been identified, whenever
S € K, Wisin K*°(l,q,7). But this implies that g(W) > p%(W). Then, by
C1, 7(r|l) = 1 which leads to a contradiction. Thus, the claim is proved.
Therefore, [ is credible with respect to &. m

We discuss the significance of the above results in the form of the following

remarks.
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REMARK 4.4.1 We have noted in Proposition 4.4.1 that condition C1 is
necessary for G to have a PBE in which S plays I and W plays t. However,
condition C2 is not necessary in this respect. But it is easy to check that if C2
does not hold then there are situations when G has no PBE in which S plays
[ and W plays t surely. For example, this is true if w(wi?\l/ 5w Sf)'{, avol

REMARK 4.4.2 Our results show that when the masses are quite prone
to revolt (it is at least weakly optimal for them to revolt whenever they face a
lenient regime and whenever they get to know surely that the government is
weak) then the behavioal pattern that a weak government would repress and
a strong government would be lenient is a plausible outcome. The intuition
behind this result is that by playing [/, a stronger government signals to the
masses that it is capable enough to thwart a revolt in case it breaks out and
thus saves the expense of taking preventive measures. The masses respond
with revolting with a probability low enough. However, a weak government
cannot afford to do the same. When the situation is more conducive to revolt
(as represented in condition (z) in Proposition 4.4.3) this pattern of behaviour

becomes the unique one.

REMARK 4.4.3 There are a number of similarities of our model with that
of Acemoglu and Robinson (1999a). As in their model, in our model also the
probability of success of a revolt against a relatively stronger government is
lower. Repressive measures help in lowering the probability of success of a
revolt in our model as well. Again, in our model also, the stronger govern-
ment can take repressive measure relatively easily. However, the two models
differ to a significant extent.

Acemoglu and Robinson assume that the cost of repression is prohibitively
high (infinity) for a weak government so that such a type would never be able

to repress. So, whenever the masses face repression, they believe that the
government must be relatively stronger. Moreover, in their model revolt
always fails against a relatively stronger government, so that if the masses
know for sure that the government is strong, they have no incentive to re-
volt. Thirdly, unlike in our model, the acts of concession are more costly in
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the model of Acemoglu and Robinson. Therefore, a strong government has
no incentive to make concessions as it has the costless option of repression.
These are some crucial differences between the two models which have gen-
erated different sorts of results. So, the present model is complementary to
their model as the two models look at two different types of society.

4.5 Conclusion

We have examined one feature of a society facing revolt in a very special and
simple model. Our model is evidently skeletal. One immediate direction of
further exploration while retaining our simple framework might be to allow
the government to have continuous action spaces and examine whether quali-
tatively similar results hold. Moreover, in our model the players’ pay-offs are
specified exogenously. Another worthwhile exercise would be to endogenize
the pay-offs in a general equilibrium framework similar to that in Grossman
(1991).
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