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ABBREVIATIONS AND NOTATIONS

nbhxeviagians
v randam yarjiahble
iid independent and identlically distributed
cdf cumulative distribution function
Wapel with probability one
Bel s almost surely
febeps free boundsry breblem
SPRT sequential probability ratio tset
AS K average sample number
Notations
Ig in .cator Function of set 5
I{5,T) I .
ST 2 0}
N{a,b) normal with meapn a and variance b
¢(- ) denseity functien of N(0,1)
(- ) cef of N{0,1)
AAB symmetric difference of the setes A and B
EP a pxp makrix whaoge all elements ars one
~ md nd mum
' mex i mem
~ distributed as
. approximately equal to
ﬁ} {fimpliea that -

Lpnnuerges in distribution
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CHARTER I

INTRODUCTION AND SUMMARY

lal_ Introduction

Tha area of sequential testing of statistical hypothesess is an
important part of sequential anelysise The ldea of & sequential test
qoes back to Dodee and Romig (1929) who constructed a double sampling
precedure for sampling inmespectione They were motivated by the obser-
vation that the double sampling plan reguires a smaller number of
observations on the average when compared with the corresponding single
gampling plan. Later schemes like multiple sampling vide Walter Bartky
(1943) and interesting practical application of lsrge scalc cxperiments
in successive stages vide Mahalanobis (1940) started coming upe

The formal theory in ssquential analysis bepan in sbout 1943 with
the work of As Wald in Amerieca (vidse Wald {1943)) and G.A. Barnard {vids
Barnard {1946))} in Britain in war time indusirisl advisory groups. Tha
discovery of Wald's sequentizl probability ratic test (SPRT) was
considered to be most Lmportant. An elsgant theory of SPRT is giuen
in Wald (1947) and a roview with a Iist of referances can be found in
Johnson {1961). Barnerd (1947) elso gives a review of Wald (1947).

The subjsct of sequentizal analysis hag undergone a rapid developw
ment since the formal theory came upa For some more references in this

aTea one may look into Watherill (1966} and Ghosh (1970).



This thesis dezsls with the problem of testing of hypotheses.
sequentiallylarising from identificetion and selection problems. It
alse gives a numerical solution to a froe bourdery proklem (fe be po)
arising from the problem of testing sequentially the sign of the drifg
parameter of a Wiepsr orocesss

The problem of identification or clasgification of an individual
into one of the two categories is well known in statistical literaturss
iIf the two categories asre completsly spacified than one can adopt a
sequential test with an aim to control the errors of misclassifications
This has besn done by Rao (1948}, Armitage (1950) and Mallows (1953).
Spquential techniques are adopted even when the categories are partially
specified vide Spivastava {1973) and Chosh and Mukhopadhyay {1580). A
mare detailed discussion of these works can be found in Section 2.1 of
Chapter Z.

Selection and ranking of populations is another important erea of
Statisticss B vast litersture iz acvallahle in this erea. The saguential
methods for selection and ranking are summarised beautifully by .Bechhoefer,
Kiefer' and Sobel (1968). Both sequsntial and nop~sequential methods
useful {or selection and ranking preoblems can be found in Gupta and
Panchapakeshan (1979) as well as in Gibbons, 0lkin and Sobel (1977).

The problem of selecting one population ('best' or fworst' in
some well defined sensa) out of k-many populations (k > 2) is most

common in selection problems. IFf the populations are reascnahly



specified then once agein sequantial procedures cam be adopted with a
target cf reaching the prespecifisd probabllity of corrsct sslection
namely P* Tha idea of saquenktizal procadutes of choosing ans out of
kemany hypotheses using likelihoods goes back to Wald (1947, Chapter 10
and subsequently by Sobel and Wald (1349), Armitage {1950}, Meilijson
(1569), Hoel {1971), Robbins (1970}, Khan (1973) and recently by
flukhopadhyay (1983} » Some more details on thess investions are piven
in Saction 5s1 of Chapter 5 »

A relatively modern tool in seguential analysis is optimal
stopping theory uhiech has been in 2 state of rapid development since
about 1960 , however some particular optimel stopping problems have a
long history in probability thecrys For a modern treatment of this
topic one may lecok into the book by Chow, Robbims and Siesgmund (1971)
as well es Chapter 2 of Neven (1972) « Chernoff in a series of papers
considered a continuous time optimal stopping problem in connection with
a problem of testing the sign ©f o rovnel agan (without an indifference
zone) in presence of 2 normal prior of ths mpan-. Some more referencas

regarding thia problem ere available in Section 61 of Chapter §

12 Suymmary of the Results

Chapter 2 deals with an identifica2tion problem where the populati
are ynivariate. pormal differing in their upknown means and the common

variance may be known ar unknaune A sample of fixed size K 4s given



from RD the population to bo identified and from the aother two popu-

lations 7, and T, one can sanple seguentially or non-sequentiallye

1

This formulation (specially the multivariate version which is considered

2

later} fits quite well in many problems in anthropelogical surveys »

A parameter 50 is intreduced to specify the indiffersnce zona
Iﬂi - ”2} z.ﬁﬂ whera Hi denotes the mean of Mi‘ for 1 = 1,2 and
invoking invariance the problem is reduced to a testing problem* Tha one
aidod (ul*z,ué + 50) ‘and the known variance case has been taken up by
Ghosh and Mukhopadhyay {1980) -

R truncated inveriant SPRT is proposed as a solution as the un=
truncated SPRT doss not terminate with probability one » Numerical
rosults show substential saving achieved by the truncated invariant SPRT
with respect to the most powerful ipveriant fixed semple procedures
Unlike the one sided case we du not have MLR here and so Thaﬂramlif Ghosh
{1960) does not any longer lead to the monotonicity of error probebilities
of the SPRT in iy -~ Hﬁl + However we could bound the error probability
by a simple techrndque-. For the most powerful invariant fixed sample teat

of the error probabilities
HPKE inequality ylelds partial monotonicity/s Further investigation mey
be made to establish monotonicity of the error probabilities both in the
seguaential and in the non=sesquential case «

Chapter 3 deals with a similar problem in multivariate set ups

The same techrigue {as in the univariate case) yislds bounds on the



error prababilities of  the proposed imvariont 5PRIs The monotonicity
of the error probsbilities of the corresponding most pouwerful fixed sample
teat has been obtained only for the case where the two kinds of error pro-
habilitics are kept at the same prescribed level by using the reeults of
Dasgupta (1974) as ths HPKE condition does not hold here « The. study of
monotonicity of "the error probsbilities hoth in the segusntial and non=
sequantial caese requires further investigation- This chapter devotes a
large part to the study of termination properties of the propased SPAT's

Chapter 4 deals with the asvmptotic distributions of the stopping
times of the SPRTs proposed in Chapter 2 and Chapter 3 ¢« A general
thecrem regarding the asymptotic study of stopping times is given first
from which the limiting distributions of the SPRT's follow both in the
truncated and thoe untruncated casp- The trunceted casa is partially
aplved »

Chaptér 5 deals with & sslection problem of choosing the population
with the largest mean among k-populations (k 2 2) with the taréet of
reaching a prespecified probability of correct sslection namsly p* The
problem is formulated with an indifference zome and following the lines of
Mukhopadhyay (1983) an extension of invariant SPRT for choosing ona out
of kemany hypotheses is suggested » The asymptotic distribution of the
stopping time of the proposed procedure and an asymptotic expression for
ASN are aobtained as P* -» 1 « Ths saquential procedure shows substantial

saving in sample size when compared numerically with the corresponding



fixed sample progcedure - A comparison with the twé stage procedurs of
Bechhofer, Dunnet and Sobsl (1954) is also madas It will be interssting
to develop & purely sequential and truncated {Faulson type) procedurs {or
this probleom-

Chapter 6 solves s free boundary problem numerically {(by the
method of lines vide Sackett (1971)) arising from the problsm of testing
the sign of a drift perameter M of a Wieper process {X(t), t € Ej,m)}
in preasnce of a known normal prior of M « The problem of tasting the
sign of M with cost of incorrect decision |#| and cost of sampling ¢
par ynit time, has beoen considerad by Chernoff in a series of peperse
He reduced the problem tc 2 Pree boundary problem (f» b pe) and gives

{uith Breakwsll (1964))
asymptotic expression of the optimal boundary as ¢ < ® / and as &t - 0.
The purpose of solving the f-bsps numerically is to have a complete view
of the optimal boundary+s Theso results agree with those of Chernoff and
Patkau (1986) who used a different method to solve the same testing

problem numsrically.



CHRPTER 2

AN TAWARTIANT SORT FOR TDENTIFYING
A UNTUYARIATE MORMAL PGRULATION

The problem of identifying or classifying an irdividual into one
of the twe cetegories is well known in statistical literaturs. There is a
comprehensive review on this subject by 055gugta {1973}, Howsver the usae
of sequential technigqus in classification is much less common. If the tuwo
categories are completsly specifiad then one can adopt a sequential test
{may be an SPRT) with an aim %o control the srrors of misclassificaticn.
Such attempt has been made by Rao {194B) and Armitage (1950) whers.in the

later thare are k (> 2} completely specified categaries.

Mallows (1953) studied e similar problem from a slightly different
viegw point. Here he takes obesrvationc on a single individusl sequentially
(zesuming that there is a sequence of characters which may ‘be measured
progressively) and carcied out an oPRT with independent but not identical
pheervations. Here also the categories to which the individusl is to be

classifisd 1s assumed to be completely known-

Srivastava (1973) considered a classification problem where the
populations ere multivariate normal with common unkriown variance-cavariance
matrix and the difference of the mean vectors is assumed to be known. A

saguential procedurs with an aim to keep hoth kinds of error probabilities



at the same prescribed level is suggested. Here he samples sequentially

from twe populotions instesd of threes at a3 tine.

Recently Ghosh and Mukhepadhyay {1988} {hemceforth will be peferrad
a8 GM ) have developed tuo seqguential preocedures for identifying populaticn
HQ, as having the sams distribution a5 ore of the tweo other pooulations ﬂl
and n2 on the basis of sawples from the three populabions. They assume a
sample of fixed size k is given from nn while unlimited sampling is-

pecmitted from %, ‘and W, . Assuning further, normelity of all the three

i
popylations, with common known variance J2 arfd the one sided situaticon
My > My (”1 denotes the mean of M, for i = 1,2} they reducs the probiem

to a testing problem and then use a truncated imwariant SPRT.

Wg parry out here a similer investigation of both sequential and
ren-seduential procedurses. with the object of removing the assumption
M2'> Hi and known 02. This requires substantial modifications in tha
treatment. Following &M . (1980) we have invoked invariance end used a
truncated invariant SPRT as a solution and permitted two kinds of errcrs
to he at tuo different levels unlike Stivastava {(1973). The sampling scheme
used here {same as in GM . {1980)) is alsa different from that of Srivastava
{1973). The setup used hers fits quite well in anthropological studiss vide

GM . (1980) and Schaafsma and Vanvark {1977,1979).

- For some more references on sgquential discgrimination oae mey look

into Lachenbruch (19?5)»



In this chapter, the case Wwhere ,!J-l v H? but 0 is known is
considerad first. A paramotar.ﬁg iz introduccd to specify the lndifference
zene and we proceed. to test the following hypotheses (with M denoting the

mean of T }
5]

Hy 8l =R b, F My L=l = 8,
Hy e My by By =y Ly = = S
with P (Rejection of Hl) = -
1
} eea(24151)
P, (Rejection of-Hz) = B

fy

where & and B ars preassigned numbers. .

0f course the idea is that a reesopable solution of the above

problem (2.1.1) will satisfy the following stronger requirements &

a(8) = P (Reject H;) & @ df | My 1 =626
def {Mmkby My 54y)
caa(22122)
B(8) = P (Reject H,) & B if L i, | =628

daf  (Kisth ghhy 14, )

"Ag a solution of (2.1.1), an inveriant truncated SPRT of H,ue H,
is proposed as tha untruncated SPRT does not torminate w.p. 1. Unlike the

cne sided case we do not have MLR herse and so Theorem 2 of Ghosh (1960)
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doss not eny longer lead to the monctonicity of error probabilitiss in

P - I+ Haowsver we sball bound the error probsbilities sufficiently

1L
i

well to make it plausible that our solutlon doos Mot have error probabilities
greater that @y B for | M, ~i |2 50 « Numerical studies reperted in

Section 2.5, confirm this:

Uging the HPKE inesquality we are alsa able o prove mopctondicity
of af{d) (B{5Y) (as defined in (2;142) for tha corresponding mest pouwerful
invariant fixed sampls test 4F the cut of f constant is negative (positive).
These results of sequential as well as non=sequential proceduras are given

in Section 2.2.

Similar results are proved in Section 2.3 when “1 f’ﬂz and 02 is

Lnknewn .

Some alterrative simpler procedurss are develoned in Section 2.4
and in Section 2.5, numerical studiss rclating to the performance of the
proposed procedures #re made. Mumerical comparisoms show substantial saving
in sample size for the truncated S5PRT when comparaed with that of the
corrasponding mast powerful irwariant fixed sample test. The bounds on
error probabilities are found Lo be conservative. Lastly Section 2.6 gives
the proofs of the theorems regarding the. termination properties of the

urtruncated SPRT for the known as well as uskrown O case.

This chapter is = revisad version of Ghosh and Ray Chaudhuri (1984).
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2.2 Procedurss For Conmon Koown Yariencs Case

Let X,Y,Z with suffixes be the random variables sssocizted with

T
nm’ 1

R g ¥yaVyee

Let I(S,T) denote the indicator fungtion of the set 48T > gt

and HQ respectively UWe hove a somple xl,x

A « from 7T
n

2,.,.Xk of slze k from

1 and zl.zg,...zn,u.~ from R24

e

New the hypotheses defiped inm Ssction 2.1, can be reuritten as

Hl i

-

Ty

Hy

I

where @

Note

the group of

g =% (60) = (501 égv 1), 1‘ o (202.1)
& =8, (6) =(6,8,0) )
(120, =y 1y b =ty 1y T(20-0 - H-l-#vz)] vaa(2.2.2)

that (.'fk, Vn ) 'i-“n) is sufficient Por (ky i, IJQ). We ccrsider

transformation "(Xk,'\"n, zn] a»(exk + by aY +byal + b)

whers a =+ 1L and « w < b < m. Then u = (IR1,181,1(R,3)) v0a(2.2.53)

is maximal imvariant under this group of transformation where

4 R = zxk ""{n - Zn| E} =Yn b Zn Jd.(2¢2;a)

The ipvariant sutfficiency of tie aﬁnue.ﬁtatistic-un follows from tha

basic theorsm of Hall st al (1965). The distribution of u. depends on the

meximal ipvariant parameter B defined above, which raducss to (60, 60, 1)

and (601 60'

0) under Hlland H2~raspaﬁtiuely. Now it is reguired to find

a test setisfying condition (2.1.1} of Section 2.1.




Fixed Sampla Size Procedurs

f, (u ) .
H Iy GCSh (mu R - HQ))
G m nnl - . 2 Zrk
LEt Uﬂ,k(qﬂ) FH {Un:l Q' 44;(2.2:5}
1 cosh { -*( =Rt nd )

The fixed scmple most pawsrful ipvariant tost {PD} of H, va Hy is as follous

Reject H if 1nV (63) > c veu{2.2.6)

n,k

The constant o and the sample size n_ are chosen to satisfy (2.1.1). Due to
complexity of the distributien of the test statistic un’k (60) » ©oand n_
ara approximated by computer simulakicn, for given a, 8, k and 66. Figure I
and Figure, I¥ on page 139 give 2 pigtorial view of the rejectiorn repgion of

Hy {vida (2.2.6)) for the case o € B and a » B respectively.

Upper and lower bounds of c and n, can be obtained by using upper and

lower bounds of error probabilities wnich are as follows .

Errer (ct) < Fl‘a_f (1n v k(&_) » ©} £ Error {c) 2us(2.2.7)
:l inv (o]

Pouer {cf) < PH (anv_ (6 )2 c) < Power {c) s04(24248)
- ) ﬂ'i"- a —
F: = o] Is i - !
whera Error () @(-c/?éo gt Jﬂﬁa) @(wcfzégja Gaﬁa)
= ; 4, P
Power (c) = @(—G/ZQSUH + ano) ¢(-g/25535 + dBéo}

+ m(mﬂfzﬁojp‘ - JALSD) (P(wC/ZUDUE - 08’50) ..a..('2..2-1(])
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i 2 ~1/:

1y "ﬁB :-{Zﬁl) ard é@{x) danctss

for o = o+ 12, ﬁﬁ = ’4E1+25 }
the normal o.d-f. Tha shovs inequnlities are obtzined with the assumption
c 7 0. For ¢ € 0, similar results cen be cotaired. These beunds given in

(2.2.7) and {2:2.8) ars helpful for having = raugh idea of c and n, befors

auing for simulatinn

The procfs of {2.2.7; and (2.2.8) moke use of tha following simple chssrvations:

1 nash(sl+52)
= _ - b I 5 b
(1) 5 exp{ IS 48, 1 = 15,6, 1} & wmeme 5,5, < axp( IS 45, | 151-82:)
-
for 5152 70

(2} {i51+52| - ISl-SZL > a'} =2 {J_.n sosh I51+323 “l.n cosh ISJ_"SJZI s c}

= Jis - > gl > o,
RISy cj for ¢ 2 O

(3) Independance of R and Q.

The obssrvations (1} and (2} ars also wseful for drawing Figire I- and

Figore IZ given on page 139 .

Now one needs = mipimum numbsr of Dbsarwatinns-kg from RQ to have a
most powerful invariant fixed sample test subject to (2;1;1) vide Sechion 2.1
of GM (1980). The samg problem can be restated in a slightly differsnt way
ise for fixed k, 4 and B is 50‘1argu gncugh to ensure the aexistance of =z
fixed sample most poustful inwvariant test 7 For the ore sided case we already
know the sclution vide (1) of gh {15B0). Now for the two eidsd case we

proceed as follows o



= J4 -

5 Kn

5 K ’ ko kmlﬁm*kﬁ !
w3 ig‘“’"ﬂ‘*‘ nut
i
I+e

=(5 (12n+k R1ANQ I Hr }1LHFaG} 4+ (=0 (12n+k Rl inG ) )+e );(HQ, 0)

-a;':‘ |-~--~ (R P
( l+E “i“k

)

whers r*n = 1In

kn .
=0 lz=em= {+ nli]
14e g 2tk

—> U a«s. as n —>» @ uwhenever Ho# oo

5k

Thus 88 n = @, 1p i (5 } =y - 22X ..,:_z, ~ 11((2}( -U— "“Lz)("’t"uzj‘: 0y

sﬁk

el iy S (CTSNTINTIO T{TATIS: O D

WhEnBUBr ul f u?t‘ oa!izazjll)

By (2.2.11), P "

(Inv_ (8 )x) = P, (< x}fori=1,2a8 n= m
1 Mgik' 0= S

for all x & TR, n”(2.2.12)
g 8 “K

wheras X =N ((-1) éuzk) under H

i
for i = 1,2.

Now for the ons sided case vide Gi . (1980},
~2  kn

D — e
oty = 5) (o (zx -V - zn) < %)



=0 K

o i ._’J ] ": ,\
7 p(u:ui,ul—u-zmé) (-3 tzyk“ﬂlﬂﬁg X
cen{2.2.13)

!

|

cq \‘

R bl J7C TR !

Let e, and G be the cub of P constants for the one sided and the two sided
case respectively to keep the error probabilities of Tirst kind st level d.

tet Bln and an'be the corresponding errors of second kind for the ane sided

and two sidead case respectively.

It now Follows easily from (2.2.12) and (2.2.13) thet

lim g, = 1im ¢ = c where ¢ is such thet
@l neal
_ -c:-éi_k
c:P( - ) = a and
V=
o
1/2
lim B = lim B = (T -8k ).
n o=y oo Zn n = @m in o ©

Thus it fallgws that for given &, By k :3 a Fixed sample tast with grrors ag

lavel a and B if

= ~.> ) ii“' Bl B
< 5 (1:0:+'_|:B}k (2.2.14)
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Since the MLR propsrty does not hold here, it is natural to turn to
tha HPKE inecuality {vice Proposition 2.4 of Perlman apd Olkin {1980)) to
prove the monotoricity of error probsbilities. The version of HPKE inequality

&

that is velevent for us is as followus I

""Let v, be a J-finite measurc on B, for B & (R}

Jd'j. = l,Z,--;, p, FDI: '{'.'.lIJD pﬂints X = (Xl,iaa, Xp) Elrtd y = (yl’)‘Z""YP}

of TRp dafine,

XAY = (xlh Yir Xo A Voreons R ”\yp)’

-

K‘_}_)' if xi_}_yi* i=l,2'dovi p._:

Suppose ¢l and @2 are two probability density functions on the rectangle

P P
s Ei with respect to the prcduct meazsurg W vy satiafying the HPKE
i=1 i=1

condltion L.c.,

P ()@, (¥) £ 9 (xay) @, (xvy) coe(242415)
Then for a-measurable weakly inereasing function h i.e. h(x) 2 h{y) for
% 2 Vs
I
J}ﬁl < jh@z.fi vwe(242.18)

Let c = {fﬁi(é)(u) for 5 2 60" is= 1,2} whero Fﬁi{é){u)

denotes the density functiom of u (for fixed n call u = u) when 91(5} is



the true parsmeter. If a pair of density functicns (f-Plp ‘592) from the faniity
C; had satisfied (2.2.15) with

. _. [ T R S T
() ﬁl(u) = ﬁﬁéiél)\u;, ﬁZ\uJ = @-(u ){u, fur Jé > 6 > é

(u) for é >5, > 6

F 12

7
90

)

(11} @, (u) = 7. .~ +{u}, 9. (u}
3 ei(éz} ? Yo N

i

(111} fﬁ (5)(u}/Fﬁ (éﬁxu} is & weakly increasing function of u,

then the error probabilitiss a{&), B(6) of the most powerful invarisnt test
would have been monctone in O by an easy application of HPKE inequality.
Unfortunately the situation iz much more complex here. We first collect in
Lemma 2.1, the HPKE conditions partizlly satisfied in our problem. The last
assertion in Lamma 2.1 plays & crucial rocls for chtaining the bounds in

sacuantial cese.

- [
lomma 2.1 .+ Let _62 > al > au, 5 = i

\!(5) = fﬁz{ﬁj(uwf&l(é){u)“ Then
(i) f‘al(él}(ul}- fﬁ_lcaz:}(uzy < fﬂl{él)(ulf\ug),- fﬁl(f!z)(u \ruz)

far ul, u2 £ &
(1) f (ug)- f (u)< e (u, Aw,)e f (u,vu,)
o, (6,417 Ta(6,)' 27 = Tg (5 )V 27 T (6,) Yt
for uy » uy € 5¢
(1i1) V(&) is weskly decreasing on 5 and weskly increasing on 5° when

gonsidered as a2 function of u.

(31v) V(6) is decrsasing function of & on S5 and an increasing function

of a on Sc»



Procf . The proofs of {i) and (iii) follow From dirset computation ang {ii)

o 18

{ Y

is just a reformulation of (i).

The proof of part (iv) follows from tha fFact that the function
glt) = cbsh{tsl)/aosh(tsz} on }:%, @) is increasing in t if 181 2

8. 1. This is esspntially the MLR property of a non-central chievariable. 1

2

Thecrem 2.1 ! Gansider procadure P and let y(o) = v k(é), with
ANBCLeR L2 e

U k(n) as in (24245)-
k2
4 i ] : 5 > )
(i) If c<£ 0, then p&lmz)(lnu(»m) <c})?2 pﬁlw )(lnb'(ﬁn) < c) whare

8,(6,) =(5, 8, 1) for i=12,uith 5, > & 2 5.

i’
{i1} IP c > 0, then Pgé(ézj(lnu(ﬁm) >c) 2 Peé(éi}(lnu(éu) > &) where

® ;
28,1 = (5 N

gt :’ai, ) for i = 1,2, with 52 >5. 2 65

- Tt = y{& < i -
Progf - Let p Pﬂi(él)(lnﬁ{dn) ,.C) with © £ 0

Then p = J l{ln\!(ﬁa}gf:]r f‘ﬁlwl}(u)‘ du (where du stands for

5u5° dIRidiGl on sus®.)

fl

5 {an(a )<c} -5- (s )(u} du f(as 1 f-l 'u'(5 k#u) 0 en S°

for o< O. )
i j oot #

sus®
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. Loy nk
COgh == ( e 1| e i8]
=5 | (1 — LK S
ber
5 cosh ﬂf (LAY NTD
-’r"-'[/
5
-1 . ok
™ cosh ”J?\ngg R1 + nial)
Lo nk oy LA 1 i | - 2
& 5ot S el © + 3 0%)
g du

w8 o y(u)due
gf | Ei(ol) uJscu

éy (1r{lnu(én}\i 53" p{1+u(£,17) f&l(élj(u)du =0

=% ) {1 ?an(éa) ﬁ,é}ﬁ p(1+U(62))) fai(él}(u)du Z 0 {by past (iv)

of Lemma 2.1)

[
j ]

2
= ég (1 {}nﬂ{ﬁn) ﬁac}” P(1+U(52))} F&1(527{u)du

by HPKE-imequality (2.2.16) with h{u) = 1 A6 Y < b~ p(l+U(52)
~ D _— 4

{weakly increasing in u by part (iii) of Lemma 2.1} and

¢, = o, fﬁi(él}(u), @2(u) = czfgj(éz){u} for u & 5 (where c, and ¢,

arg normalising constants and by part {1} of Lemma 2.1 $1’ @2 satisfy

HPKE condition {(2.2.15))..

6 }&c)Z TCRES  proc
5o pﬂi{az) (Au(s )} g o) Zp = ﬂi(° }(ln (6.) ¢ ¢). Tha proof

of part (ii)} fellows by similar reasoning. 13
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-Sequential Frocedure

Now the BPRT based on the inveriant sufficignt sequence u_ (as in
{2.2.2Y) iz to be investigabed. For oglven o and B, we choose

a= Ln (BA{l=a)) and b =1n {(1~3)/a). The stopping time N, and the

&
-

cdecision Tule in ©hisz pesz 1s as follows

th . >
At n" stage, decide W=7, if In un,k{ﬁp}__ b

2

n. if 1n Un,k(én) < a

it
o 1

it

and continue the oxperiment by taking one more observation from sach of the
tuo populetions %, and 7, if & < In un’ktéa) < b. This SFRT does not
terminate with probability one {see Theorem 2.3 in Section 2.6), which
emphasises the need of a truncaetion point. We choose the truncation point
at m = EnQ, where My is the semple size of the best inverdant fixed

sample procedure Pg, as in GM {1980). The modified procedurs Ry is as

follows .

Continue the experiment as in usual SPRT (as dafined sarlier) until

n< m and at n = m., s decide

= 4 >
m =", if In umg,k (603_ 0

mo=7, if In Umm,k (6) 20

1
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Now the performance of this truncatsd SPRT Rl can bg examiped.
The sufficient rondition for monctonicity due to Ghosk {1680) does not
hold and that due to Hoel {1978} also seams inepplicable. Morsover as
noted earlier vide Lemma 2.1, pyvan for the marginal distribution the HPKE
condition holdes only partially, whereos to use HPKE inequality in the
sequential case one would need the KPKE conditicn for the joint distribution
of the Un 's. So an altogsther different approach is made in the following

proposition which yields bounds rather than mopotonicity but assumes much

lass than the HPKE conditinna

Thearem 2.2 » Sugpose Coo 9y g’g and gt are the jeint probability density
functicns of Xl, XZ, veay Kn under the hypothasas HD, Hl’ HE and Hi

respactively such that for all n 2 1,

n

G >8=»0¢>8 ¥ 3>1 -
n z cre{2.2.17)
f
!

<CA=roe <A ¥ A1
ang G 7 e A

i

wharse Gf‘l g}. (xlg )‘:2, vea g Xn)/gu(xl, XZ, b5y xﬂ}

and GE = gi {Xl, Xz, 2aay Xn)/gﬁkxl, XZ' anay Xn)‘

For given o and [ consigder the usual SPRT for H‘:J versus Hl' with

the usual boundary limits B/{1-a) and (1-8)/a.-
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Let a = P# (Rejestion of K}, 6 =7 x (Hejection of H ) and N the
o 1

#* -
stopping time of the SPRT. Then Wald's Ipequalities hold for o  and &,

namely

e s -8, f e R -d") and
. c.e§2.2.18)

e

£ e
a +83 < a+tp
if the untrurncated SPRT terminates with probability ons.

Moreover if tha 5PRT is trunzated st mD and the decision at m{3

is taken in faveur of H, and H_ accordingss G “lorG <1
o D
respectively then

* o 2 ¥y LKL > > { N, »
o < 7 B - 15 pH; (NZm s cmG 1) + PH: {”-”n’ﬁmu 1)

e e o{2:2.19)

iv

* o L gty - A .
B L 1= (1a7) ~ 352 PH: (N2m,C 1)+ P % (Km0 <1).

n] Hl (o]
Remark 2.l. The first set of inequalities (2.2.18) is wsll known to ke
consacvative. The sgcond st of inequalities (Q.Z.lQ}Iéuggaéta that

* *
¢ and B are unlikely tc excesd q,3 when FH* {n z-ma) and
o

PH*-{N > mg} ere small comparsd with « and- 8;
1

Though the above Theorem is self evident, it has some usaful

applications.



We shall nouw see how it provides bounds For error probabilities for

% #*
the Tuls R. tet H , H,, H end H, be the hypothases corresponding %o

. * * .
the paramcter points € (503; 8, (53), & {67} and 8, (8 ) respectively
% . % * .
for & > & . lat f_, .,y f and f, bhe the density functions of u_ under
0 o 1 g 1 n
+* %
the hypotheses H_, Hyy H_ and H, respectively. Then from part {iv} of
temma 2.1, it is evident that condition (2.2.17) is satisfied For the

truncated SPAT R, Hence tne bounds given in (2.2.19) are valid for Rye

Thus if the probabilities ‘e (5 }{N m ) for 1 = 1,2 are small

compared with Qa.B, the scror probab&lltlas st & are unlikely to sxceeds

a,8,y stipulated for 55‘ Monte Carlo studies confirm that the trungation

probabilitiss are small (provided n, is not too small) end a?, B~ ars
less than &,B respectively. Of course (é )(N ) can be bounded as

*
in Wald {1947, section 3.8) and the bcunds_tend to zero es &  tends to

infinity.

2.3 Proecesdutres For Unknown Common Variance Casg

In this case a'ltul - H?t ¢ 8  is considered with § 2 positive
-0 -0
real number as in the known variancs cases The following hypotheses are to be

tested,’

I

o7k - ) = 0, 07N uA,) # 0, 67, | =6,

H, : c“l(m -)91) # 0, d'l(%} = g, Pt My =k
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with the prescribed error levels a and 3 as given in {z.1.1). The

prahlem acw can be reduced by invariznes as in Sgetion 2.2.  Hers

1

- - 2
(Xk, Y g 2 o Tn:' is sufficisnt for (Mg H l' M 50 g% ) uhere

n® "n
k 2 n A iy o 2 ( .
o _“‘ ; - | + (2. =12 aatlZ:3.
T, E(Xi X * I (v, =Y z (z, -2)

" Coneider the group of transformation
(xk, Yoo 2o Tn)__-}{axk + by &Y + by al +bya Tn}

uhere =@ < b< my ~m < &< m and"afﬂ.

z - % w—. -H.f. T -—Ki 2,3;‘2

Dafine #ln (Exk v n)/»JTn 2(2.43.2)
ty, = (¥, -2 /T

‘then W = (tln’th’I(tln,tzn” v e(2.3.3)

is maximal inverisft undef this group of tramsfeormation and thes invariant

sufficiency follows from the basic theorem of Hall et al (1965). Hsre also

By

the maximal inveriant parameter € reduces to (50, ﬂo, 1} . and {69,60,5)

undsr M, and H2 respectively where

R Canl IR B TR TR R (G eI TR P oMk, ~))) (2.304)

= - @ 233;5
Lot 8, (60 =, (ud/r, () (2.3.5)

®
J;ash(z Vﬁ?2n+k 1n =" tEn)) Q(tln’ San? Tyt .. +{2.3.6)

s}
cosh(-ﬁgﬁ +li< ln +on t2 3} g(tln tt T)dT

ja LY H1<
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where
2 i3

QUER-vmr )

Y

. - g} i . 2 4
g{tln’ Lpr 147 oxp( = ;‘%Kh}gaijtln+ 7 tont 1 -e{2.5.7;

L]

The most powsrful invariant fixed sample procedure as in Section 2.2
can be defined with the test statistic & (6. )} in place of Vv, (& Y. Here
n,k G I‘Egk 0
alse one needs to have a minimum number of observations kD from HB for
having 2 fixed sample moest powenful invariant procedure subject to {(2.1.1),
Dbtaining an exact valuc of kc involves tediocus numerical computation.

Howgyer an upper bound of kﬁ may be obtained by a much simpler msthod as

follows -

For given &« and (3, consider the harder problem with a'=3'=sy Af.

For this harder problew the probability of correct identificatien is
~-1/2 2
- ~] =]
rd G ) & C S8 &
PHl (b1, By, 2 ) 2 (PO {ax™ +2n ") )} for £ ,&, as in (2.3.2)
Now the minimum value of k {say kl) necessary for having a sclution in

n for the following equation

-1 2
( <§{ﬁn(ﬁkyl + Zi"l-l) /2)) - "1 e ! “.(243.8)

, %,
yields an upper bound of ko The solution in n"(Bay'ﬂD) for equation
in (2.3.8) (far k 3-“1) is an upper bound of n_, whers n, denotes the

gample size of the most powerful inveriapt fixed sampls procadure.



The monctunieity of the error probabilities for this fixed sample
procedure can be shown by diveeh mooputation For the case @ = 3. This
result is comparable to that of Schasfsma and Vanvark {1977) whore they
show that the likelihood ratic test (for the same problem as in this

section with k = 1) has monotanz crrer probsbilitics.

A truncated irveriart SPRT e in the previous section can also be
defined with the test statistic U (6 ) in place of ¥ {& ) as the
My o Nyk o
untruncated SPRT does not terminata w.p. 1 {see Theorsm 2.4 in Section 2.5).
*
Ore mey choose the ftruncation point as m,= ZnU . Here also the srrer
probabilitiass of the trunceted SPRT can be boundsd s in the known J case

vide the follouing lemma.

. L3t
Lemme 2.2. for 82 1 angd A< 1 and & 7 60, we have

- % -
(1} nn’k(ao} <A => un’k(s Yy < R

¢ i
(11) RO RS ==y N CORAS

: ), < & impli > 0 anc
Proof. For part (i}, Qn,k(aa} S #implies &, %, 7 O and

@ '-l C(G:’T)
j(l'—-ﬁ '*"("";?T)Eﬁ.T)g(tl.tst)dT?ﬂ
]

whare Cl(éo,T) = cosh (2 JT {2n+k 1n t 0 tzn))

&
- i _
C,(8_,T) = cosh (3 ST {2ﬁ+p In =0 th))s
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c(ST}
From the proof of part {iv) of Lemma 2.1, nwrg-?y- ie ap increasing

function of 9, {for fixed T} when t,_ t, 2 0. Honce

LTl
mr 1 e, (34,7) N
j (,}, - R El—(';" -F?f ,. I‘J (D ,T) Ly (ul N t n? T}dT 0.

a

(5 5T )

[N}

fa, C, (& ,TYa{t, 5,6 ,T) T>Q
et 9.(T) g 1oLt In® “2n otherwise
1 k_U
o R
i 8. L '(0 ,T)g(t ,t gT) Tiu
'CPZ(T) = <; 21 n “Zn otheruwise
« 0

whers a,s &, are constants, so that ¢l and @, become probability
density functions. SlnBE ¢l and $2‘ satisfy MLR condition and
R(T) = 1 _192(5 AN i ing functicn of 1, {for fixed &)
=1 - is an ingrousing function of or fixe
Cp{BsT) |
the proof of part (i) follows immediately (see Lehmann (1955), page 74},

Froof of pert (ii) follous by similer ressaning. =)

Ws havn't carried out numerical comparison of the truneated SPRT
to the fixed sample procedurs. But we feel that the behaviour is similar

to that of the known 0 case.

2.4 Spms Cther Procedures
Since M hers has only two cholces namoly “1 and Ua, ohe may

look at the following formulation based on sampling from -nl and HO onlys
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One may test Hl iHru-Hll = 01 versus Hy o id - Bi= 50“ Here the

reiectian of H is comsidered as identifying ﬂo with 7,

Let 'Pl denote the basst fixed sample Invariant procadure in this

case and n, the sample size required for keepging the twc kinds of srror

1

at pre-assigned level © and B. If @ and B ere small anough to have

bt ) =g (2T ~T )T P( ) =0 then
B a2 B: B

“ﬁ" l
n, =k { s - 1Y

(Tafg + tB)

One can alse look at a similar procedurs Pz ko test the hypothesss

Hy L - MEI = 5D versus H, « i ~ i | = 0 with the prescribed error
probabilities as given in {2«1.1). Here the acceptence of H, Zleads to
identification of Hm with ﬂla As in procedure, Pl, the sample size Ny, of

. . 2 J_
thie procedure P, is given by k(uokjftﬁfz + ta) - i) if o and’ B

ars small enough to have,
Fla) ~ Plamg, 1) = J)

Though P, end P, seem to ba e&n unsatisfactory way of discriminati

1 2
{(sirce nne of the populations is not sampled at all), they are simple to usg;

A simulation study is made to judge the performance of the procedurss PD, Pl

and Pz“ Tha results reported in Table 2.3 of Section 45, seem to Favour P

decisively.

ﬂ!
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2.5 Numerical Studies

Ir this gcciin~ pureniaorl oheias arp pade for +he procedures
described in Section 2.2 and in Section 2.4. Tho sempls size iy of the

procedure PD is first estimated from the Monte-Carlo exporimants and

then the truncated SHRY Hl is shudied.

A
Table 2.1 shows the sstimated type I and type Il errors o - and

N , ‘
B respectively, which are brought near to the given values of o = ,05
and B = .025 by edjusting ¢ and n. Ffractional values of n have not

been allowed hare and the pearest integer exceeding this is gonsidered (for
S

this reason our © and £ are little lower than o and B respectively,
P i N
in some cases)e The procedure P_ -is used 1000 timas for each & and B

0

given in Table 2.1.

Table 2.2 shows thai psrformance of  the truncatad SPRT R, as
defined in Section 2.2, For ¢ = .05 and B = QD?S, ZnD has been used as
the truncation. point whare N, is the simulated sampls size of procedurs PG
as given in Table ?.l. The results in Table 2.2 are based on 200 repetitions
of the rule Rl. The ASN and the type T and fype II errors of ﬁl (involving
6& in the test statistic) are studied both for Wy My m—ﬁﬂ- and 1tk i, | > 6a:
Only the resulte for Ik, =i, | =0 =zre reported in Table 2.2 for cifferent
valuge of & . Numsrical results indicate a saving in sample size (as
reflected by Columns 3 and 4 of Table 2.2) when compared with n,e The saving

2 £ x
is mores promlnept for smallar 5ik. As 5Dk increases the results indicate



a tendency for ASN aof ﬂl to approach towards a constant multiple of n_s

2 . - : . .
noamaly T Tha airulotsd tvon T o~nd bype TT arrors zre Tound to be much
lower than « and B, and the numbsr of casos leading truncetion is alse
very few- The bounds (2 .2.18) given in Theorem 2.2 swam to be quite

conservative.

The simulation studies (not presented hers) show a decline in

misclessification probatilitios as well as in ASKN when the ruls Hl

(irvolving 6o in the test statistic} is used for the samplss having
- > 6 .
I“l “21 60
In Chapter 4 asymptotic distribution of the stopping time Ml

{truncatad as well as untruncated) is obteined as Kk - ® . The simulated

performance of R {given in Table 2.2) is discusaed in Chapter 4, kesping

1

in visw these ssymptotic results.

Table 2.1 shows the sample sizss of three different test preceduras

P.s P, and P.. Hero ny dorotes the semple size of procedure P far

0* " 2 17

1 =10, 1, 2. For Pﬂ the observations ars taken from sach of the two

populations 7, end 7, at eech drav, vhile for Pl(PQ} only one

cbservation is takon at a time from nl(ﬁzj‘ For this raason EnD ia
compared with ny and m, « Results in Takble 2.3, show savings 1n sample

gize for Pﬂ when compered with P and Pz.

1.
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TABLE 2.1

of g and c© for Frocedure PD

re the Simulated Type I and Type Il Errors

»

) P " ~ Fztimated 2 Eatimat%i
o "a k s.c. of @ s.c¢. of B
p  4-0000 3 - 0,50 0485  .00679 205 . 00448
4.5000 1 -~ 0.50 ,0495 .D0EBE 3200 00443
s 17889 11 - 0,50 .0485  .O0679 ,0285 L00526
2.2889 3 ~ D.40 D445 . 00852 (240 . 00484
1p 1-2649 22~ 0.50 L0485  .00679 0225 00469
: 1.7649 4 = 0.50 .D4%5 > 00666 L0245 . 00488
20 0.8944 Ad w 0,57 0515 +00699 255 . 00495
1,3944 6  ~ D45  J0AGS . D0666 245 . 00488
gp 05657 108 - D.50 L0480 00676 . 0255 « 00485
1.0657 g -~ 0.45 .0515 . 00699 L0260 L0053
g D-4800 216 - 0:85 L0515 . 00693 .0220 , 00464
0.5000 12 - 0,50 .0/70 00669 0265 . 00508
200 0.7828 i8 ~ 0.55 + 0490 «D0E83 L0245 «00488
Here k = Size of the fixed sample given from ﬂa;
60 = | UlfM% !
Ny = The estimated sample size of procedure ﬁﬂ from fMonte Carloa

H

sxperiments, needed %o Kenn

a= 05 and B = .025.

The cut=ogff constant for PG needed t0 controld

a and B

85 ahave.



'—Szm

TABLE 2.7

Porformance of the Bule R

st

15 166293 {.3854 #5973

o Aﬁﬁmg?hﬂmﬁstimatad F.. . thber of
k 69 s ﬁl 5.5. of ASN I'11 (Accept Hl) truncation
. |
1 4.0000 3 1.02 0.0099 1 o
4.5000 1 1.00D 0. 0064 1 a
g 1.7880 11 2,46 0.0613 955 o -

2.2889 3 1.429 0.0427 L9095 C
10 1.2649 22 403200 0.1315 .99 0
' 1.7649 & 4 .465 0.1230 .99 g
20 0.8944 A4 9.425 0.3847 .585 0
- 1.3944 6 4.155 0.1510 .97 1
507 0.5657 108 15.344 0,5382 .99 0
1.0657 9 5, 094 C.1550 1 o
ﬁlﬂn 0.4000 216 30.5 1.2282 . 985 0
C.o0a0 1z 8.035 0.2522 .95 1
200  0.782% 0

ky &, i

)

are as defined in Table 2.1,
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A o
R -

LT < 4
R RS2 B o PR e

. Bample Size Mehoviour of PG’ Pl anid Pz

5 o Ty iy

) 4.000D 3 25 17
4.5000 1 4 3

s 1.7889 11 122 84
2 .2889 3 8 7

10 1.2649 22 24 168
1.7643 4 10 18

20 C.8944 44 486 336
1.3044 6 14 13

50 0.5657 108 1213 540
1.0657 5 19 19

0 0.4000 216 2426 1680
0, 9000 12 24 T2y

ks 65 ara as defined in Table 2.1. n, denotes the

i

gample gize of procedurs P, needad to kaap

i
a=.05 and B = .25, for i = 0,1,2.

Heoro 2nU is cvompared wikh ny arid My ¢
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2:5 Termination Properties OFf The 5PRTs

In this section we prove that the untruncated invariant SPRYs
defined in Section 2.2 and Secktion 2.3 do not terminate w.p. 1. Firstly
Theorem 2.3 deals with the known ¢ case and finally Theorem 2.4 doals

with the case of unknown J.

Thecrem 2.3 =m) 2 0, for fixad (M, &y, H4,)-

"y, 1) M

Progf. Nete N, =n ==p ann,k( J2b oor 1nun’k(5o) <a

Par | K K
== | LR -nQ {~yFE=R+nl ()25

2k 2k
5u kn Ko
- . T L= >
o 5{} Yoy R+ nt | iE_ " R nE 1) - .

— ¢ KO >
=5 O, {5 RIAlnd )25

. kn
or 60 (|2ﬂ+k

kn -
% 50 5T IRI." bl\(-ﬁ:l
i onn 1-
i LY > .
L = Arf {r\ s 12 b A(=a) ¢

34
>
Z Nl and

REAING )2 -2

sk}

r
@®
o
=
P
#

P{“w Hey s HZ) (Ni =wm) >0 (by Theorem 2 of GM (1980))

imply the reguired result. [
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For the unknown J case let us define,
!

R |
= oant "o 1,.3 (] ‘.*- - B ar LwJ é < lul e“,—
- n,k( u) d {

2 In 1 n,k' o
o

= m otheruise

|

'y

7

wol246.1)

with Q@ k(ﬁn) as glven in (2.3.6) and A and B8 ars real numbers
?

s.t. A<l and B~ 1.

Theorem 2.4 P (N

'B(Z

u14L2 I > 0.

=@) >0 for &= (U Moy My ) fixed and

Proof. We shall first bound Nz by a smaller stopping time and then

prave the required result for the later.

=172

0
Observe Dn’k(’%) = - 17 12 g
Jcosh(s T Je T 2
o

=L <1, kn yi
, e + {o
vhere s, =27 £ & T 1 {«1)"n ty, l

[w]
¥
kn 42 +-2rlt§ +1)

with ¢ = ( z=5m &) f

and &, as in {2.3.2) for i =1, 2 and

= 2n 4+ K.

e _

e

Dafine hix) = j 8 t dt for x & IR

3

fcnsh{sl T ) e T 2 dr
dt

ees(2.6.2)

veel2.6.3)

vai(2.6.8)
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his. )
: i - 1n -
u‘n,kloﬂ) h Ezn (2 e
4
Now O {63} = h(sl”) h{-sl”)
nek' o Hfazn) + h(-.gzn‘j

(by substituting /T =t in (2.62))

h(neln)
I+ hzs 5
=0 (6)¢( )
nskt o h-sQH
I+
by gﬁn
i 9 _ktﬁo) B
= 914 > 8,
N n(=s;,) ) hl=sy,)
htlgln: - h(E‘an

(as h{+} is an increasing function)
L §
. _
i Qn,ktéa) st Qn,k(éa)

h) "“l ’ r "'l
- = < -
Similarly Qn,k{ao} <A = S > &1 >3 an,k(én) __Qn’k(ﬁa)

This fact will bs used to obtain a lower bound for Ny
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Mow define
N, = inf *(n 1nq (6 )Y | > 1nfBA A'l) L 3 . {2.5.6)
2 | ] Mgk o | v : j | e
= m otherwise 'g
1
It i=s casy to see Ny £ 1, see{2.647)

) ~ 1n h(s, )
Mow 1n Qn,k = 1n h(sln ~ 1nh 50

]
) h : {by Mean Vaiue Theorem) ca0{2.6.8)

It

£ ' N
where s (sln Moy 8y Y an)

o,
2
J’ te-t f2- n*-.l
o e £ dt 1/2 3% (a')
o T -y )
. . = | -
his “ ts-tzﬂ- N2 :In*,z s
fe t dt
a
@ nxt-ntzﬁ M= > ' -
whers Jn,?‘»(x) = JB t dt for n2Aand &8 = s/ /n#* .
a

As 8! is bounded, by (3.3.14) of Wijaman (1979) (page 256)

=
Jn*l(s ) 2o

@
e‘f-m?}(a

n ,2

. . ] . -
for n 22 and % s (boundod).-«(2.6.9)

wheres © is a positive constant.
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From (2.56.8) and {2.6.9)

oA

' #,7/ i 2c - .
| 10 Goud8) < (8T oy o R
ry . 2%, v
= - ‘} rl . - > h
Let N, inf o {rn ) Isln Sint e p 1 2
i -d ;‘-. XY
= m ctheruwise ~
for ¢! = 321:, 1n{E fxﬁl)u'
Then it follows from {2.6.6), {2.6.7), (2.6.10) and (2.6.11)
i L . .
thet Ny, £ Ny wes{2.8
12 1/2 ~1
* _ " - __kn
Now (pn } [B1n = %201 = {2r+k) b 6 Trr il AT ton
6akn
< £, 1%
(2mi)2 Inn
& kn ~1/2
< = J-_- “ln‘( % tin)
(Zrtk) '
£ fg_nmalﬂ .:.t,'g_‘gui
T Ve 2k ey
n
12X ¥ ~Z | _ :
i 6Gk _k “n I '¥«!(2!6F1§
Y »d |§
non
Lot N;=inf’ Sn?ék-ﬂ-t(hn’cq(

e

= otharwise

v {2.6.14
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Cflow {z.6-11), (2.6.12), (2.6.13) and (2 &.14) imply N; &n,  ..-(2.6.15)

By Theorem 2 of GM (1980}, for any positive numbar as

B

-l - mw me
N ST AT
%%k 07 X AN <a, #al lt > a {2.6.18)

pﬁ n n

ey

gnd for fixed € 2 0 (to be chosen suitably later)

-] . B
Pe {a IV, =2, - (k2 "“’2)| <E ¥op? 1} >0 veu{2.6.17)

6 hypothesis @) = 5t by =By} >0
Cheoss & < @, then c‘z“l_ 7. =T = ()| <t
D GV - |>e ~5>0 v (2.6.18)

Thus {2.6-17) and (2.6.18) imply

-] = = L
- > - } \? ) Hae Fw
pa{? Yo =278 -5 * n_lj 0 (2.6.19)}

From (2»5-‘15);

N R 3 - :
. ir o o=l - - P - ) ] > LI 0w
Fg ,!Luo KO [2R = me ) <t (B = E) o0 2 1} 0 {2.6.20)

Independence of the svents described in (2.85.18) and (2.6.20) together

(' =@)Y> 0 .(2.6.21)

with (246-1%9) and (2.6.20) imply P N

4

The theorem now follows from (2.6.15) and (2.6.21). 3
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Raomark 2«2 + The proof of Theorem Z.4 uses the normality of Xk’ ?;

— —

sl Z anly Lo estsblisn the indeposndence of ¥+ T and Y =2
n n n n n

Tt iz interesting to note that the theorem follows even without wsing

A

' ' 1 '
the normality assumption, as given belcw. Lat Xk ’ Yn 3 Zn ] ”i ] “2

stand for 0_1 X ' 0-1’ *\7 ' G-l z s D‘-J’ M, and CT"]‘ . Tespectively.
K n 1l 1 2
Define
5 ] i z'l
 KI2X,, =Y =7 | .
L . o "k~ 'n n St '
P Yo 2.0 = . - - for Y # 2
IYn - Zni

Then f is a continuous function in each of its argument on the set
i 1 - 1
Yo # Z « Thus for given any & o & st
t T t ' ! 1 t t ¥ ' 1
- )< - / . -
{"’n Bt €6, 2 =1 < 5} > L!f{xk, Yoo 2.0 = P(Xpy By B <€
vee (1#)
, t 1 1
{Here Iy =yl > 0 which implies that ane can choose 6 - amell enough
L 1 t I T
to have Y and Z_ sufficient.y apart so that fiX , ¥, Zn} is
definede.)
| ( ¥ L ) ,.' T f 6' N
Eall Aé (8)*- (Jivn‘-u-ll‘:-a M lZn--HQI{ *ﬂml}

Note EB_(AS'(E)) >0 (by Theorem 2 of GM {1880)) ere (20)

Now for any € < a (a, asin {2 v6.15))
4 1 T f ™
g if(xk, Hyy i) <o = ej >0 cee (3%)
r T t 1 -
Mlso  Ag'(ay 0 (F(Xr Hys ) < 2 = €]
P N T | ’
2 zLi_"’(Xk, Yng zn) < a, ¥ 2; lj o (ﬁ*}

(by using {1#})«
. ' ¥ ! L]
Indepandence of ’qa'(e) and {f(xk, .Ulp Hz) < &, - 8} together with

{24}, {3#) and (4%) L{mply {2.6.21).



CHAFTER 3
SOME INVARIANT SEwdENTLAL A0 WUNGEJUENTIAL RULES
FOR IDENTIFYING A MULTIVARIATE wWORMAL POPULATION
3.1 Intrgdudtion
This chapter deals with ths multivariats versiop of the problem
taken up in the previous chapter. As mentioned earlisr the set up fits
guite well in anthropological studiss (vide e (1980) and Schaafsma

and venvark (1977, 1979)},a multivariate extension has a wider cope.

Here Mg, 7, and 7, denote p=variate normal populationswith
unkncwn maans M, M1 and Hﬁ raspectively and the common variance -
covariance matrix - L may be kmown on unknown. A sample of fixed size
fs given from HD which is to be identified with orme of two othexr
populations Hl and ﬂz from which sampling can be done sequantially or
nop=soquentially. The case wherc sequential sampling is psrmitted from

all the three populations is elso considered.

Let X, Yy, 2 with suffixes dencts random variables associated

with HD’ ?Tl and T, respectively.

Thae problem can be formulated in the following way. Tast

Hl M= .Ul versue ‘L
ceo{3.1.1)



with the restriction

P {Aejection of H,} = a
Hy 1

M
-
ot
L
1 3

p  (Rejection of H,) = A
Hy 2

A parsmeter ilo is introduced {as in the univariste case) to specify

the indifference zone and the Pollouing hvpothesses are tested

Ry TH= Ly F L, By -l = AT
. R G T A
Hy @ g by Hom by LIy =l b= A
| _ ) 51011 12
where 1k = My Il = ({1 ) E (k= ) voa{3.14

It fs natural to expect that any reasapable procedure for teating the
hypotheses deseribed in {3.1.3) will also work (in fact in a better way

- > L
perhape) when the true |l Hy L 0

The following thres schames are considered here ¥
(s1) Three fixed samples of size k {k predetermined, k z'ku)’ n, and

n, are taken from T Rl and Hz ragspectively. Hare kn denctes the

D!
minimum sample size from EG, needed for the identification problem
subject to conditiop (3.1.2) {vide Section 2.1 of ;M (1980}). Clearly

k, depends on G B and A\O
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(52) A sample of fixed size k (k i.ka' as given in 51) is taken from

nﬂ where Hl and Wz are sanpled seguentialiy.

(53}  All the three populations are sampled sequentizily.

Under sampling scheme £1, the best inuvsriant fixed sampls procedure
ia considered. This procedurs has error probabiljtiss monotamically

decrsasing as Ilﬂi - MEIIE increases when @ = B (vide Dasgupte 1974).

Under sampling schemes 52 and 53, the invariant SPRTe based on
the maximal irnwvariant are considerad ovnce with (i;, ?&, E%) and ance
with (?n, Vﬂ,'z'n) as sufficient stetistic for (Hy My M,) for the
known % case. Thess procedures are discussed in Ssction 3.2. Procedures
for the pade of unknown L are given in Section 3.3. The errocr probabili-
ties of all these saguential procsdures cen be bounded as in tihe univariate
rasg vide Theorem 2.2 of Chapter 2. The termination properties of all

these sequential procedurss are studied in Section 3.4«

This chapter is a revised version of a part of Ray Chaudhuri (1985).

3.2 Progedures For Kpown % Case

If ¥ 1is known, it may ba assumed to be 1‘p without loss of

generality.
Now the hypotheses described in (3.1.3) can be restated as

i

H - 8= (A, A, 1) } s
ses{3.2.1
-

H2 : 8 = (ﬁﬂl Au:"l>
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(Zw#) (k=44
i iELl--lil-uz Pla bk~ !

whers £ = {12 ~ H1 - Hzli, iiﬂl = iy }M.(3<E

and {IX]} = IJXQ&

T.Y .z a mean ve j
let Xk, Yn, n denote the usual sampls mean vectors of !TU, Tfl and ?Tz

rospectively.

Here (X , ¥ , 7 ) is sufficient for (u,u:,uil with ¥k and n defined
k R n 1

as follows for different schemes. For scheme 51, k z,ku} R & nuhere

both X and n, are fixed, k is predetermined and N, is determined

subject to {3:1.2). Here such a shoice of n, is possible as k > K

ko as describad in scheme Sl. For scheme 52, K is prodetermined,

k2> kcn a8 in scheme S2 and n = 1,2,3,.+. and for schems $3,

k=n=1,2,... .

The group of transformation applied here is (?k, V;, E;) s
(a&’k +C, B'\"n +C, afn +C) where B is p x p orthogonsl matrix and
£ 3s a px 1 scalar vector. The maximal invariant under this transfor=
mation is A= (nzxk N, -2, lwn -znn ,(2xk-vn-zn) [vn-zn)).
By the basic theorem of Hall et al (i%65) A is invariantly sufficient

for ® Let &Jpxp be srthogenal such that ‘jj’(ﬂu U?) ={ A ,ﬂ U...D)

Then § = E?(Z?L - ?; - i%) is normally distributed with mean

{ £XB,D,D,-N»,D)' under H, end (= gan,ﬂ,ﬂ,ﬁ»;,ﬂ)i under H, and
variance~covariancs matrix (&k-i + zn“l)xp. And T = 3f(?h - i%) is
indspendent of 5 and is normally distributed with mean ( ﬁkutﬁ,ﬂ,»..,ﬂ}

. s
and varianpeg~covaricnce matrix 2n Ip‘



2 1
y S T) is noncentral

The distributicn of A = (IISIIZ, LITEI
Yishart (vide Section 2 of Anderson and Girshick (1944)) with the

tensity function

S
Lz L%, W™ .
R I e T 2-3 Bz
. =1 T e a (m)
f,(R) = b, | (Kb, ;I (k fb., )
R 0 &{ 2) ) ij n 11 - é{p—E ny 1l
p ~5lp=2) > | e 2
T e
for m = 1'2' 1—6(3-2¢3}
2 _ .2, =l =l el o N |
vhere k= AL (as 0. ), s 2n"y Op = 2n coal(Za2.4)
g a _
(m) Ie'e 8" ml Lo’ . -1 7
by’ = ( 3y 59 + 5 TT+ {(=1) 25 T (as + cT)

bi;‘} = (=)™ 5"s+(c_r-as s T+(~1)" 0 T'T)(CISWT)"ll(tiisfh,;i’l‘f2 +(3.2.5)

() _ . ° 2, ! r -l
by = (s 5+{~1) 285 T+ T T) (g + OT)

(m))z

12 for m= 1,2

0= DD -

L ( . ) is a Bessel function of imaginary argument. The trace
Hp-2)

L bj{ and the determinant lbij ™| both remain unchanged under the
i=1

twe hypotheses.



: =k (ot e
Define Z = = n bll )
afe 1! kL .t 12
55 TT | 25 T
= A () 5 (5 2.6
P ST

fer m = 1,2.

Than the test statistic reduces to
fHZ(ﬂﬁ) |
W =
n,k( Au) " ) o (3.2.7)

= .{3.2.8)

= wEfz£7 seef{3.2.9)

1 Bsd
vhers wp(x) = Jrcnsh (gt}(l-tz) 2 dt ..(3.2.10)
o)
The equality of {3.2.8) and {3.2.9) is an sasy consequence of the series

representation of cosh{x) apd I Ex) ) {vide Whittaker and Watson
D

{1958) page 373).

Aemark 3.1 . One may obtain this form (as im 3.2.9) of density ratio of
maximal invariant ﬁn by integrating over the group of transformation
{vide Wijsman (1967, 1379)). One may avoid tho complicated series expansior

of density by this method.



- 47 -

For schema 51 the procedurs is as follows ‘<
ot i f Lnlw > ﬂd!3l1
neJect H, if in n,k( iln} C {(3.2.11}
uhere c and n_ = 8re chosen. to satisfy {.1.2). If a=p3 then

=0 = 9 A Y >
o and lr‘tﬂk(h}a) 0]

¥

1
<=y - < 0.

JS Q'T
By Theorem 2.1 of Dasgupta {1974), both types of error probablili-

ties ars monotonically decrsasing function of ilﬂl - Uitt when a4 =f «

But the density of' the maximal ifaveriant in the multivarlate case
does not saetisfy HPKE conditien on the critical region for ths o #=B
casa. Thus the monotenicity of error probebilitigs for this caese doss

not follow by reasoning as in the univariate case.

Now tc implement the fix:d sample rule of 51 (vide 3.2.11}, aone
needs the velus of kD or at least an uppsr hound of ka* Jepivation of
oxact valuoe of ka involves todicus nuwmerical ecalcoulation as the distri-
bution of wn,k(133) is oxtremely complicated, whereas an uppar bound of

kg, can bhe abtained by & much simpler method as givern helow.

If a# B, consider the harder problem with a' = 8' =g AR
(if ¢ =8, then o' = ' = 3). The prochability of correct identification

for this harder problem is



- AR =

Zp

3'T > f .1: a it . N
Py (5’"0— <0) 2 ([ T lf‘Z-‘U {hy using indepandence of
1 757 plak +2n
5 and T)
Neow for having a solution in n . for
- /2
g ""J. =1 -] "\2 i
{ CP(&D;! {4k +2n ) ),‘p= 1 - C(r.2.12
. s T2 A%
one fieeds 'to have k 2 L?Ta QZED J = k, (say) . (3.2.13

o .
uhere Ta‘ is sft--§(1q:) = (l-a')lfzp and Lx} is the smallest
P p
integer 2 x. Dne may take Kk 2 k, to implement the fixec sample rule

for schems S1L.

AUZ -] ~1 ]
Czll n, = [}“- — - 2k ) for k > k ca{3.2.14
1 212 -1
o
o
p
Thean r‘:_,L is an upper bound of nD
Both these bounds kl ancd n1 are conservative.

For schems 52, the truncetsd invariant SPRT with test statistic
W (A Y is considered with the uaual houndaries L. and 18 Here
nk' O * 1 o
the untruncated SPRT does net terminate with probability one {by Thecrem

3.1 in Section 3.4), which emphasises the need for a truncetion point.

Cne may choose the truncation point My = 2n1, with n, a8 in(s.z.l&}*

Tor scheme 53, tha irnvariant S5PRT wikh usual boundaries i1s studied.
The test stetistic in this cass is W n(flm)a This SPRT terminates with
¥

probability one which is aenaured by Theorem 3.2 in Section 3.4.



Buth kinds of error probabilities of the invarizpnt SPRTs for
schemes 52 and 53, can be LWounded as given in Theurem 2.2 of Chapter 2.

For applying Thecrem 2.2 the following lemma 3.1 is needed.
*
Lomms 3.1. For A< 1l, BZ” 1 ana A" > &D>U,

/ . *
Wy 8 gr=r (A Sh and

() v (A2 e=> u (A2 s.

The proof of Lemma 3.1 follows in exactly similar lines as the proof of
Lemnma 2.2 of Chapter 2. Thus Lemma 3.1} orsurss the fulfilment of
condition (2.2.17)} .of Theorem 2.2 of the previous chapter and the

following bounds can be obtained.
For scheme 52, we have

® Qo K o L

L= - == p #{N, * i > 1

a's ygli-B ) 18 pHZ(Nl - Mg m oK 1)

> 1)

+ pHéi(Nl > moy W K
L

ot
s Zl—q!il’“' ) A= pH;(Nl =~ Mgt wmnik < 1)

> :
*(‘Nl g Uy K S 1

Hy Mo

veo{3.2415)

+p

whara l'\l1 is the etopping time' of the untruncated SPRT .
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My T e= (AT A, Dy Ey 8= (A, A, A1) with AT XA

(with # as in {3.2.2) and m, the truncation p

*

and g = p % (Rejection of H.)
Hy 1

A" = p # (Rejection of H,)
Hy 2

For scheme 53, the bounds are much simpler {as in page 46 of Wald (1947))
Fer then

* o *y #® B “+ )
a 5_125(1-6 )3 ] S {12 ) and thus L (5216

d? + B* g a+ B ,f

3.3 Procedurses for Unknown £ Case

L bhaing not known, the situation here is more complicated. The

hypotheses tested here are as follows -

Hl‘: ?_,= {AU'AO' l) .
o(3.3.1)

e

Hy 8= (D _,B ,-1)

Z

G (T

where € = {112H-4h o §lsy Tikh=d 1is, T TZHL =y T TH 5 T

Yoo:(3.3.2)

Here (E;, Yn’ Zﬂ, Sn) is sufficient for (M.Hlyﬂn,ﬂ)

=

- — n _ - —_— T N — [
uhere §_ = E (xi.xk)(xiumk) + E (v =Y v, )+ ? (ziazn}(zi-zn) .

ot
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Hare pnp and k For different schames are ss dafined in S5action 3.2,
Tho group of trensiormatlon cousidered is
- - - = - —-— 1

{4+ T 1 T + T, 3 -
(xk, Yoo 2o sn} s {Exk Cy Bf_+E, BZ_*+T, EBnB) where B is pxp
nopsingular matrix and C  is pxl scalar voctor

(N, | P oLl 1 L1
= 5 .5
o En (Yln n Y1n' YEn ﬁlYZn’ Vlnsn

and by the basic theorem of Hall ot =1 {1965}, B is invariantly sufficient

YZn) is maximal invariant

for € whers
_n-e"

(zi'k-?n-i' 3 7 -7
Y = u—-—-——-—-—-—Dﬂ ¥ Y - -—E-vn——ﬂun——
In 1 o1 Zn -1
Ak TH2n Zn

The density of En under both hypotheses are given as follows (vide

Sitgreaves (1952))

La%u2ad) B
= 5 A KprG)

* 7
Eﬂ—? ) s Bl
Wi T eE 2y [ni=ptly - [p-1, 71 (2,
7 '('n?”' ) E”;‘j ) Epz )E-z—}tna: Z
»
T2 L
5 =+ 3) 143, (23
g T ()°(u ) - . -(3.3.4)
04t [(Bagy 270 ‘
2 % » mel 2wl
Uy By lKbyp +2kpky by, (<17 G by ") 2 for m=1,2. 0. (3.3.5)
el 2
byg* = by +byy Byg—bys)
$ _ - 2
byy = b {byy+hyybyp=byy) =+ +(3.3.6)
*_ =1
b, = B by,

' _ 2
wherg b = l+bll+b12+bllbl2-blz
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L] wl LI | t i

P11 = Yintn Y1n? %22 T Yorn Yan? P12z T Yietn T2n? 7
b, b, 177, A . 1
B o= ) n = dnt ked, A = LHLL LI > (3.3
'blZ b22 a 1 2 =
172 - ~1/2 \
1, =1 . -
ky = (ak™TH2n7) yoky o= (20 J
Following Sitgrsaves (1952} we have
. B “‘12*) 1 0 L ,
B (b P Yn(snwnvn) v, where Y = (Y, .Y, Cau(3.3.8
12 22 -
The test statistic reduces to,
+2 “1.1
(5 T [l anid &
2 ____Jj=u
U (& ) f' {B ) EN ) (3:369

[ F m . =
R [2aycarlg s &

@ l( ) _ ) Egg' 1 _tz
( ']cush( Jﬁuztu)(l-u 3 £ e dudt
= 0 0

.-{3.3.10
1 N -5 % 2
_ > Ez- n+l =t
cosh( f2U,tv){1v ) © ¢ e dudt
S

The equality of (S;Eﬂg} and (323;10)_13 once agein an easy oonsequence of

: .*.123' L
the series representation of cosh{x)and the fact thet ri@ + 2. r(:a)

233y T I3
for all ronnegative integer j . (22 - 3-t2

Here alsa ane may obtain the density ratio {of thes form given in 3.3.10)

by integrating over the group of transformation.
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The proceduras for schemss 51, S2 and &3 are similar to the

procedurss for the known Y casa with (iﬁg} in place of un k(ﬂho).
?

Un,k

>1 e
For schems S, Unﬂ,k(zko) 1 &3 by, <0

;o =1
==/ ¥ < 0.
G Ylnsn an

L T I - | ) -
Now vlnSnIYZn = Ylnp (P lsﬂ P )Pvzn vhere P 1is pxp nongingular

1 ' . t -
g.t. PLP = Ip and p(“i““gj = {ﬁhm, O4-:4,0) + Invoking part (ii)
of Theoreq 2.2 of Dasgupta (lQ?&),‘ﬁhe manatunicitylaf'bath typaes af error

for a =8 cesa; can be obbained.

For schems &2, the usual truncated invariant SPRT with the test
statistic V_ k(ﬁlg} can be used. The necessity of truncation is ensured
] .

by Theorem 3.3 of Section <

For schems 53, the usual invariant SPRT with test statistic
Un n(ékc) terminates with prabability one. ThooTem 3;a of Section 3.4
] . '\.
ensures this;
Erxror probabilities of both kihds of the truncated SPRT (of scheme
32) ms well as the untruncated SPRT {of scheme $S3)} can be bounded es in the

known I case. For that the fulfilment of condition 2.2.17 of Thecorem 2.2

of Chepter 2 is necessary, which is assurad by the following Lemma 3.Z.
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Lemma 3.2 . 'For A< 1, B¥ 1 and Al >4{\4~G > 0,

(1) v (A R = v (8T

A
T

7 > s Y > op
(;i) un‘k(,n.‘aa) > g == ¥y (AN} 2E

Froef: The test statistic can be written as
o e .
/ ‘cash(lﬁ%uz u)F( uddu

_Un,k( ﬁﬂ) =

)
m .
cnsh(JEUlu}f(u)du
b
for . _
where f{u) > 0 /0 < u <w «The proof now follows in the exactly similar

lines as the proof of Lemma 2.2 of Chapter 2.

3.4 Termination Propertiss of the SPRTe  for Yarious Schemes
This section supplis® the proafs of four Theorems as menticned in

preceeding sections. Let us first provs Theorem 3.1.

[ ] - r}
1 3 —_ b r g i3
Iheorem 3.1 ¢ Let N = inf {n un,k( AQ) 8 or un.k(&n) <A

L

- W otherwise

Then PN, =@)”? 0 8= (U, Py “2} fixad.

f# 1

?ruaf . Llet mn’k(isu) < A

ot

sy -1
= w8 > a7t

i

1 s

(cosh(Z,tH1-t") © ot

-Ju R } "'l
1 3 g

jcosh(lzt)(l-tz) 2 g

[+3

(R
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== 2 21 > ZE whera Zl and 22 are as given in {3.2.6)-

1 1 [}

Let Uy = EEE-, u, = 151 y U o= -»m§e£::¢ and in this case K u £ 1.
Og I3 SBIS 1T
. ) B=S
 cosh(2,t) _— cosh(Z,8){1-t") *
How a} m f{t)de A where T{t) = 1’(_ E.".‘;.
z
P, uosh(lzt)(l-t ) 2 et
; v
cosh Zl -1 cosh Z.%
oy Py >R e I e ] is an increasing function of &
2 2 .
for 2y >23 .
. ap
N cosh (ﬂka(u%_+ u, +2 yhluzg)) > o=l
— if
cosh (ﬁlo(ul tuy = 2,/uu,0))
cosh {& (Jo, +./0.)) ~1
= £ Vf 1 \/ Z ~ Fiy
cosh ( &4/, = /4,))
- I R
Thus lena%« LY
cash {Au(‘ﬁl _‘/62)}
o ﬁ P =]
= 2 4y, 7 log (BAAT) e (3.4.1)

{following similar lings &s in proof of
Theorem 2.3 of Chepter 2},
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J iﬁolﬂiﬂ 1 ’;
Let M = inf . n ST (G112 In (BAATTY
J Al (3.4.2)
=@ otheruwise ]
i ™ =g P G
Noting thet fu, = 7.7 LIS1l where Jy = Ak T42n ant from {3.4.1)
we have <N » 3400

L

Now by Theorem 2 of Gv  (1980) we have for any positive number a,
_lfz

kn ™
{Zrﬂ-k 1551 < @p 0 1_] >0 v-j = 1,2, rep » . (3.4.4)

where 5 = (sl, Syy v Sp)“

4 ulﬁ
Now noting that the events ;wl 5.1 <ap ¥n~ D-- 2 = 142 yeaep
\Lzrﬁ-k 3 - J
are indeperdent (as § is Ip hera ) we have
( —kn =172 3
i == A g y ) > e
Pol Tk S4! <@ % 3§ = 1y2,+:.p and *n_lj 0 (3.4.5)
("
Kkn ' >1L >
Alislnempnyei 2 £ = D o e
= o {Emk b il a n_lf (3.4.6)
= { ~‘~mm} >0 coa(3.8.7)

The proof now fallews from (3.4.3) and (3.4.7). =

From now orwards we shall write Xn — C;Q» s [ === @© t0 mean that

xn converges in distribution to a contipucus random variebls as n == ®

inf {n: Lﬂnm{&a}f_’_B or W (A)-:A‘

Theorem 3.2 - Let N }

2

= m othorwise

Then Pg (N, < m)} =1 #& fixed, uhere &= (i My, M)
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Proof | It is erough to show Pa (A <« mn n( zﬁg) < H) wey 0. asn =2 m
. 9

Theorem 3.7 of Ghosh (1970) says it is enough to have convergence of

=1 )
n /2 I!.erlJr,I n( AU} to a contirucus T.v {in distribution) or to + ® or
]

-l ;‘2

Yo -® in probability. For then n it and . n--l/i InE hoth go

to zeroc and the convergencs of F_ (A < ‘uin h( &D) < B) +to zero is
’

=
immediate.
w (nzzn) )

a m = . i >y
Now ngh( ﬁg) —%——Mp W whare uy (.Y a8 in (3.2.10)
and z = ”‘-]2 (uith k=n in Z_ ogiven in (3.2.6))

fin m m

_ 1
= &G {5“25=3 + z"zrw + (..J.)'"+1 s”ls*T)\ for m = 1,2. {3.4.8)

a -, g - 2 - -1 -
with § = (2xn-vn-zn} WNP((zuu.ul “2)- 5n Ip) )

S,
T = (?n ~'fn) ~ N, A i 207 Ip) J «..{3.4.8)

The approximation formula (3.3.4) of page 255 of Wijeman {1979) simplifiss
the situation ss follows , -

A< W < B
log < lng ﬁ,n( ﬁa} log

1, ,
=> logh -c<: iZ, ~% (p-l) log (L4rz, 5

21

- .Gz, -3 (p1) log (1402, )} < loga+ o --o(3.4:10)

with ¢ a positive real numbers



w GH .

Let Zﬁ__n O g a a-5. as n -» @m for @m = 1,2 Then the possihle

CASRS I

(13 a, # 2 {2) a =a, Since z'mn 20 ¥n, a 20 for m= 1,2,

If a = 0 then nlfzzmn > B0 a5 n =~ m© and thus

n'llen(l+n2 ) = n 2 1n(n1!2) + nw]'/zln(n'"J“"'ﬂ2 + %z ) =02 (1)
mn mn p
If & > 0 then n«&/? 1n(l+n2mn) = ngijzln(n) + n—llen(n-l+zmn)

e {J a5, B8 n o~ @.

Thus the large sample behaviour of n 1f2(22n = Zln) iz of main intersat.

Lot us now take up tuo different ceses °

Y . 1f2, ] i )
Casg 1 . 3 # a, = n izzn -Zlnl -fa ™ @we- A% N W @D

implying the required rasult.

s 1/, -
= =~ - C.0.
Case 23l a; = a, = 0 = n (ZZn Zln) -3 [.D. as n < @ as in th
case the distribution of nl/z{zzn - zln) is free of n Ffor asach Pixed

#

Casg 2h° g, =a >0

1 2
= = ' "y =
2, =8, > (E5)YY(ET) = O
-1z
- = | \ - 1Ty
Now Z, =~ 2y (7, *+ 2, B 57 (8T

Ry nlfi(S-ES}‘(TwET) # nterer + 11 P70es o 0t lesyr(ET)

~r ED. @88 n-% ® and 22n+zln — 2a1 a.8. 83 N« m-
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Thus nlfz(zzm ~ zln) —>» C.D. (precisaly a pormal distribution)

85 N v @, Laplying boe Pequiled Desulb.

il

3 5 nk o Agk 8.

e

Theorem 3.3 . Let- N inf JniV_ (L )28 o ¥ (&}5.&};
= m : otheruise

= W8 = i : > 0.
Then P (N, - ®}? 0 ve={), M, My 1) fixed and VI, 11, > 0

Proof of Theorem 3.3 . The proof is similar to that of Theorem 2.4. Firstly

wa bourid N, (Ffrom bslow) by " (arguing as in 2.6.7)  where

3 3
"
N! = inf {n . Hn Ut (A)In(8 A R )}
? - myk { eo(3.4411)
= m atheruise
a 1.
{ J " Z-ﬂé:a' *e1 2
e i Oaxp(,/‘z Uy tu ) e ) " St duat
when U { Y == ' ,
ngk’ T 0 m 1 P.".'.S, *
7. N -t
J exp{y/Z Uy vl g e auae
o o
Lo p=3
cj: Dj a:-:p(,fz_ U, tv}(l-uz} Z R t dtdv
= l m E-’é- ns-(B.Q.lZ}
j jsxp(ﬂ Uy tu](lwuz) 20 ! t’ dtdu
oc
1 ”;1 B 2
r - -t
Lat h-(Lim) = 1n j ‘} exp (/7 L tv)(l--vz) R Y
a o

for m= 1,2.

4

Than an (A]

n ok h (“2) - n(ul)

(uz-ul) b"{(U) for UE (ulf\ Uy s uluuz) co(3.4.13)
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pa Egi 1 tz
exp(/2 U tv){1") " & (tvff) dedy
Eﬁ}&- H 2

i +1 -
) LI R

fl

Now B'{U)

G {,..f';: L wiLley

O, ,.,.\1-* O ﬁi—'
v ~Blow_ 8

p=5

m—— 2 2 n-*é:
expl /2 U tv)(1-v") £ e dtdy
p=3

= 2,2 ,ni4l -
exp(/2 U tv)3(1-v") t 8 dtdy

A
B

* 2.2 1
.
exp(¢§Hl UF sud{lev' ) © 8 e duds

ﬂ
Zﬁ
=
0 P F O i e b2

2} s e duds

Owr Bl 8 o —Bio.- B

axp(¢5hl*u' gy I 1wy

(;y substituting s = t//n*

=
il

Upfn, "

*
where ng,= n+3 = Zp+k .

1
( Y R
Jo3x (uw) ()7 o
=}

T = coef{3.4.14
' 2y 2
_f Ix  (yv) (1) dv
n "
1,2 -

L) 0(3044-15
far n 2 A

as in (3.3.5) of Wijsman (1979}
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Now noto that U' is bounded and thus by {3.3.14) of Wijsman (1979) and

arguing as in {2.6.9) (of Chapter 2) we have

3% (u'v)
w2 2 |
F0 ¢ R ¢ EF e u(0,1)
g (Ul .. -
N1,2 and¥n, 2 2. . A{3.4.16)

{here we have ni > 3}

where © 1is & positive constant.

(3.4.13), (3.4.24) and (3.4.156) together imply

1
| in uh:k( ALY L& (A ) o TR (3.4.17)
Now el VS 2 A (ky VB ARy B)
£ 28, kl"'ﬁ{l |
= 2 8K = o =
- o'y VIRK =Y -z il {Vide (3.3.8)
"N (s 4y ¥!)
nonn
-1

2 - = I ' voe - waomm T
2.ci‘,\nkl ((2X ¥ =2} 8 (s e wBY Y B) B(2X Y - Z 0

(Mhem B is pxp ﬁﬂnsingulai matrix such that
BRI A = I, and B(K,) = . ﬁ(&,& pere B) 2ou(3.4.28)
with A= |y »U-l-IJ? ”E > 0 (by hypmtheeis)}
<2 A ok21 T {z'fk_?‘n“in) {1 .(largest migsn valus of

1 L) 7 .
(88 + B Y gy-iy1/2 v {3.4.19)



- 2

-1

1 t ot

Now the largest eigen value af (HshB ey B )

t 1 a1 -1

< trace (85 B + BY Y B8)
- y nn

P p £h

b / B oa_ k. (mheza &= (3,5 cofactor of
j=1 "13 j=1 d3 ij e

8

! 1
v v
B(S Y ﬁ} 2 and

th Y
= (31} element of B(5 +Y Y )8).

g - - -1 1
(/A ki(Bj (Y, - Zn))z) whera Bj is the jth row of 8.
1 .

iA

.. o{3.4,

Hi8(2X, Y —YnJII

' 1
Thus 1Y (B 31 < (2m k) ﬂz& i k"'l ‘e
fykt o' - 2 1/2
(f\ (B (Y <))

=L
2c na(z .E Y1l
f-_ &D, k & ‘!-‘-(3!’#4#
/\ {5 (V. -Z.)|
3:!
using {3.3.7)
[ 18{2 32' ¥ o7 )il
it .
Let N, = dinf {ﬁ. ﬁﬂfk' . e gmtmﬁl}f“
! b=l .
:‘:i-—\-\l](B {Y“_z“”
= (D ctherwise

(38022
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Clearly W < N, < N co{3.4.23)

Now Fram (3.4.6) for any positive number a_

.N- — -."‘ -.n , - } N q
Py il Agk 1% =¥ =T 1, <a ﬁ"n“lz( 9 (3.4 24)

Proceasding a2s in the proof of Theorem 2 of GN {1980) we have for
fixed positive £ (to be chosan suitably later) and. ¥ j = 1,..-ps
gt (7. -7y a-i

Py !
1

Mow by hyputhﬁses iﬂ > 0, and choose € <4 p ¢ then

L <& 'd‘*nz_lj >0 +..{3.4.25)

3

-l ' -
<e = (Y ~Z)1>D
| + 18y, Ry p

Vo 2
¥ ~F) - —& 20 4..(3.4.
iEj (vn zn) Ab =€ 20 5.4(3.4.286)

*j =l’2,lﬂlp

Thus (3.4-25) and (3.4.26) together imply # i = 1.2,...p,
'S _—
™ } ""’s [ :') } kw - alda
Pe éLlaj v, zn)l__ Ap $ n 2 1} 0 (3.4.27)
-~ -1
'“ -
Note that the svents 4 ’54(Yn -'Zﬁ)l >Ap

i
e

are independent, which impliss

" -lﬂ . N
I P | - - 1
Pa 8 A IE(Y =7 YI *Ap  weg ¥n>1;> 0 «v:(3.4.28)
1.4 i n - .j
=1
Now the independence of the two everts described in {3.4.28) and (3.4.28)
and the fast 11B(2X, - Y_ -zn)n=_- H2X, ~ ¥ -znni imply
' o
= } [ R} - n.
Pg (N, =m) >0 (3.4.29)

The proof now follows From {3.4.23) and (3.4.29). c:
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- i r “’1
Th 3.6 ° Lot inf on .V / > B or V AYy<nt
Thearem 3.4 * Let N irf ¢ n n,n(ihcj > B or n,n( a) R

e’

= otheruise

then P__&(N" <m) =1 faor all fixed & = (i, Hyp by g Y.

For proving Thaorem 3;&, we need the following twe lemmas.

Lepma 3.3 1 If x lies in a bounded subset of IR then

m
Ll(x) < 1n 'jrexp(— %rntz)wp(nxt) L < Lz(x}_ whera
/ ,
L {x) = 30 yx .30 . L in{n} + low (3‘1'}2 nx) + constant
gl 2 2 "2 P '
2
Lz(x) ='%F’ln3 - %F - % In(n) + X {1+ x| )+lnw (3 fznx)+co
4 (w12 M2

where mp(x) is given ss in (3.2.10).

Remark 3.1 ! The purpose of this lemma is to provids bounds for
1n mf exp {~ -%"- ntz)wp(hxt} " P4t uhich sre essier to taskle
aspélially for the CESE.Nhén'thB bounded subset of x is not away
from zero. For the case mhén x is known to be bounded and away
from zerd, ons may look inte {3.3.18) of wijsman (1979).

Lemma 3.4 ¢ If X = =( 11 Et‘zz +(-1122.b ) | ~ 0 a.s. as

nwey @ for m=1,2 then nﬂxmrn}c.ua as n = ® for

m=1,2. Here b;; e as in (3 3.6 or 3.3.8) with k =



Proof of bLemma 3.3 .

F

Zn-Gdt

. 2
Consider exp(-—%- nt” ) mp {rxt Yt

a Ty

1 Pl
=2 [0 (wid + 3 (=) (1=2) 2 o
2 A Mg Nyl .

{by changing the order of integration)
@
where Jn 3t[y} = Jaxpf-% nt? + nyt}tz‘“*a dt fornZ 1 v00(3.4,30)
y

u)

By the approximation formula (3.3.13) of page 256 of Uijsman (1979)

one gets
tn 2 (y) - n (8(y) - §)~+ 1 In{n}l < ¢ o.-{3.4.31)
rl,3 2 Z
for y belonging $o0 2 bounded subsek of IR,
n?1 and ¢ is a real constant.
Here  B(y) = 3 yoly) + 3inoly) oo o(3.4.32)
Uyt = 5 Ly + \y + 12)° ;" e {3.4.33)
e, ; |
Thus —2—": i‘exp (nB( Ixv]) - %E - %‘- La(n) J+rexp{aB(~ixy i)-%”‘ - 21 1n{n))
;;r(S-ﬁoﬁﬁ)
l ]
<3 { n,3 (Ixui) + 3 03 (niwl}} voo(3.4.35)
) ;
1 ‘. 3 1 1
< -iﬂ{exp {rB( Ixyl) - -5'1 -5 1n{n) Hexp{nB{=Ixvi)- w,.f -5 ln(n))dr

(with Gyr Gy both constanrt} «..(3.4.36)



Using Taylor's expansion of B (ixuvl} apg B {=lxvi) around the point
ZeTd upto the second trder term.one gets the following lower bound of

(3.4.34) (and hence a louer bound of (3.4 35)) as

+ exp i- 22~ = 1n(n) + nB(D)j cexp (n(lxv I3 (0) + 25" BT (8 Ixvi)
i
! lxulz e
+ exp{n{-{xv1p (G) + 5= B '.(-Gélmi))
vee(348.37
31 ' i : 1
where B(0) =-!—2r-'-3- , B{0} =13 /2, B (x) = __EE(ELI.ﬁ.:E(l* > X y:
(x"+12} {(x"+12)
8 and 8, both lic between U and L. voo{3.4.38

Thus a lowar bound of (3.4.37) and hence @ further lower bound of (3.4.35

can be obtained as

2
o, 8Xp (n{B(0) “g) - %-ln(n) + n ’;f} B"(uaélxut))cush{ésnku)
Sln3 3 1 = . o
> c, eXp (n 3 _,,5'1_, nzn )cash;‘fﬁnxu} «ve(3.4.38

Similarly an upper bound of (3.4.36) {and hence an upps?T bound of (3:4;35

2 e
c, exp {n 3103 -3, 1_n{_rll + & L x] cnsh(ﬁnﬁ(\l) eea{3.4.40
2 2 2 2 Z (x2+12)1 .

alixl). 1 Il .
where EE-&Z_F% = 3 (1+-—-—--—~(x2+]2)1/2 )

Pultiplying (3.4.39) and (3.4.40) by (l~y") 2 and integrating out

v over (0,1}, one gets the required result-
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Proof of Lemma 3.4 °

S *
by by
As roted in (3.3.8),8 ={ «
Piz By
t o=l . Kk = : _
=Y P, Y with = . co{3.4.41)
1 — e — L
Whare, Yl 6 1/2(2X i
' n 1.2 nonon
v,=0, ) = a7 /7 ( 2 ) -+(3.4.42)
Y “lf2 = =t
2n 2 (Yn - Zn)
P a5 v v = BN, T K T T ) (2 W2 T
n- n Yn n “&Eﬁc.i”xn (xi-xn +(Yi'¥n (Yinyn) +(Ziﬁzn)(zi"zn}j
1
+ YnYn caa(3.4.43)
Thus x2 = v, +(-1)" '( = dv +{=1)" v, ) and h
" X ™ f_l_.r; ) Yapf (o F’n){_;a 7 Iop) And ®he typathases

\/E - VE...; \/g -~ . "{2.
of Leamma 344 says Mm% E(,\Q;Z' Y. (‘"_')hafi YZH) = 0.
Thus it can be shown that nan‘~¢> C:D. as n = @ by alementary

argument and hence Lemma 3.4 follows.

Prgof of Theorem 3.4 .

he menticned in the proof of Theoxem 3.2 it is enough to show that
~1 f2 ' ~1 /2 . -
noo ln(Un'n(AD)) ~3 C.D. or In 1n(un’n(.&n))l «» @ in probability

88 n = m.
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m.
z:»xp(- — nt ) w (-;U t‘l g3 ok
Now V n( &G) 323
Ny ) a
| EXpL— %‘nt ) m LnU t3 tSn -3 dt
¥
a
~1/2 ) . _
vhere U = n o {with U_ as in (3.3.5) with k = n)
mn m m
26, 1/2
= A ( bzz + (~1)" ~22)
JZe6
= zxu !I%_ + (=1)" Y2n|| for m=1,2 vonl(3.4,
Ve ~2 P
with Y. Y, o P as in (3.4.42) and (3.4.43) respectively and w {x)
Iny 20" n p

is as in {3.2.10).

et Umn e trm a.s. as n- o for m=1,2. Then there are tuc

cases namely,

Case 1 : bl 2 I:.2

Casg 2 . bl = L-,z .
- > : =
Subcase le . b 2 0 for m=1,2 and b, # b, -

(1979}
By formula {3.3.18) of Uijaman.ﬂ:f page 257,

nlﬂ (B(UZn) - ﬁ(uln” - cn.lﬂ L n*lﬁlnumn(,ﬁ,c) s nlﬂ(B(UZn}-ﬁ{uln..}H

where U belonge to @ bounded subsst of IR and B(:) is a8 given in

{3.4.32)

Nou B (I.Emn) - B(hm) a.8. a@s n-=> m % m=1,2 and hlf b, =
nl/? I8 (Uzn) - B(Uln}l => @ &ass. as n <>@ (as the B{.) function

is continuous and strictly increasing)

Thus lrn_'l/2 In Um{ AO)I — @m@ AauB. as n = m .
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Subease b . b, = 0, b2>u

ALy g TSl 5 l

From Lemma 3.2 apd tormula (3.3.18) of wijsman (1979} one qets,

T (80 2 e Ay ) ¢ s, ) = 30 - B an(ed) - e

- 2
- ri L
= L/ L’ Snin'.i 2 a0 _ 1n{n) -~ ""J.h (1 - 1n ,2 fw 1w (\/Sr.u
+ 0 gy, ) - -f- -5 ln(n):l + o (1)
u? {
"1/2 plc) 1 - n 3+ /2}' U
{2 BT S

h
o 1/2 {3(1}2“} - g— 1n3‘i,+ ap(i).

By Lemma 344; n lfz{lln ~y C.0:. 25 n < mo.

Thus the first term goes to zero in probability, the second term comwverges
in distribution to 2 continuous random variable (vide Formula 3.3.4 of

the third term
Wijsman {1979)) and/fgoss to ® a.s5. as

- 3

3(uy ) = B(b) > p(O) = & 1n3.

-1/2 ) 5
Thus n “Inv. (A )= ® in P as n - m.

Ngn [w]

Subcase Ic ¢ L, =0, by > 0.
By Lemma 3.3 and formula {3.3.18) of Wijsgan {1973),
~1/2 ~rf2 f -2y . B
v (A0 <0 ,{LZ(UZH) - (n(Blu; ) ~3) - & In(n)) + .:}
Now reasoning as in Subcase 1b, it follows that

iy (A) — =® in P 88 n=rm.
nen' o

J
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Subgase 2a : bl = bb = (3

Mo 0 s T
G —ounhid J.a.

2 ) = LU ) < an VAR S L, ) - L)

b i _l L] I = -l'/?! i E 2l bl Fa i
Now (L (Y, )~ 0y D) = klnmp(ﬂ nl, ) 1nblp(.f3 nUln) +°p(
By Lemma 3.4 and formula (3.3.14) of uijsman {1978), one can ensure

-1 . ny
a LUy ) < (6 3) <> C.0. es e m end n /T(L{0, - L,
converges to the same C.D0.

ga n = @, uwhich implies the regquired

result.

5 S b, =8 " 0.
ubcase Zb bl hz >0

nﬁllen Un:n( &n) = nlﬁ(B(UZn) - B{Uln-)) + Op(l)

{by (3.3.18) of page 257 of Wijsman (1979)).

= 0y, ~ Uy BT + e (1)

where U € (U AUy 5 Uy ¥ u2n)
Now U_ el by a.s. (as U, and U

1n n both comverge to bl 2.8 )

=> B‘(Un} - B‘(bl) a.a. {as B’(,) =al.) is a contipuous function)

and B'(hl) = aln,) > 0

_ 2,.,4=lf2 12 *
AP, WU, )= 20 (2) i 2
2n in (uzn + uln)
4[552 nlﬂa byo
(12)175

2
+ +h, -
(uln UZn}(l By b22+bllb22 blZ)
As the denominstor converges to e positive constant a.s. as n —m

and
1 | |
n by, wp C.0., a8 n -=> ® {by standard argument) we have

-2 Ay g
n in Un.n{ 0) > C.0. 88 n = m.

Thus the proof of Theorem 3.4 follous.
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Remerk 3.3 ¥ One can meks @ similar comment om the praof of Theorem 3.3

ags in Hemark 2.2 of Chapter 2 with

F(8K,, BY , €2 )
1a(2X, =¥ = Z )|} . ,
. . k 1] n — —
- o P 4.tre = Al For aj‘fnfajzn
Plal(¥ -7

* j = 1,2,?",p
1

(whers B8, Bj are a8 in (3+4.18) and

(3+4+20) respectively «)

] ¥ t
in plece of F(Xk, Yo» Zn) .



CHAPTER 4

ASYMPETOTIL DISTRIBUTIONS OF STOPPING TIMES

4.1 TIptroduction

In Sequential Apalysis obtaining the sxact distribution of a
-stopping time is In general a tedious task. [Uspecially in case of an
SPRT it is practically impossible to obtain the distribution of a
stopping time analytically (except in & few cases like SPRT with
Bermoulli r.ve}. Thus it is naturael to turn to asymptotic study or to
the Mofle Carlo study of stopping times.

Asymptotic distributions of stopping times arising in the ares
of Sequential Apnalysis, have been obteimed by Siegmund (1968}, Bhattachar
and Mallik (1973) {(henceforth will be referred as B1) and Ghosh and
Mukhopadhysy (1975). Siegmund {1968) extends some results of Heyde (196f
1967b) on limit theorems of random walk. The result in 81 is based an
the asymptotic normality of sample sum with random index. They also
giva an alternate proof of Siegmund's (1968) result. The idea of Ghaosh
and Mukhopadhyay (1975) ie similar to that of B but the stopping rulss -
there need not be expressed im terms of sample aum. They have made use
of asymptotic normality of U-statistics with random indices (vide Sprauh
(1969)) to obtain asymptotic normality of stopping times arising in
sequential estimation problems.

Mare recently the method of nonlinear renewal thecory adopted in:
Seguential Analysis gives a revealing way of studying the second order

asymptotic behaviour of stopping times. The work of Lai and Sisgmund
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(1977, 1979) and that of Woodroofs {1982) make & major step in this area.

Ope may look inta Chapter 8 and Chapter 9 of Siegmund {1985) For a complete

© discuyssion in this area.

In this chapter & general theorem studying the asymptobic distri-
bution of a class of stopping times is given First. This is then used to
obtain the asymptotic distribution (as k —> @ with k the sizé of the
fixad sample from "nu) of stopping times of the SPRTs discussed in the
preceeding chapters. The general theorem here can bs thought of as &
version of Thearem 2 (Theorem 1) of 8" (Ghosh and Mukhopadhyay (1975))
based on the ideas of Anscombe (1952) with little modification suitable
for the present context.

The main theorem is given in Section 4.2. Section 4.3 and Section 4.4
deal with its applicaticons to the stopping times {both truncated and untrun-—
cated) of the invariant SPRT in the multivariate known £ ocase and in the
© yniveriate known O case respectively. For an elaborate discussion on
truncated SPRT (with Brownian motion approximetion) one may look into
~ Chapter 3 and Chapter 10 of Siegmund (1985).

This chapter is a reovised version of a part of Ray Chaudhuri (1985).

4:2 The Main Result

This section glves the main thsorem regerding the asymptotic

. distribution of a class of stopping times.
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|
[ ' dencte a ssquence of randem variables

|
Theortem 4-1 . fet ju
I

for ¢ [0, o).

-
Let fb(‘ be a real sequence s.t« b w=d ® B85 I - a
{

r ) T
3 ! ; . 1 -
let T_ = inf (n » W~ h_ E
T } noee e \ ‘
! { colA42s
= cthervwise - 2

Suppose the following conditions hole o
{a1) L0 a.t. b;E'Tr--} Wt oin P oas T —3 m .

) T |
For any ssquence of positive inteper im for which b~ m, oty M

1
g

as r"—-‘? @

(2} E] a distribution functien F({.) and z real sequence i}i

LB

:l"

converging te M{M as given in (Al}) as r —3% m®, such that the
following holds for all contlnuity points t of F,

,{b;lfz(umr ~m k) < t} — Flt) e =% w. sos{ai2

{A3) for niven any £ apd N q r, {large) and =, {small) such that

>
wr2r
li)ﬁ ur < 7 '
T m? ’ "'1/2 L l;_: ' > "‘u ”‘:
p {I E:_ ~ = I(Em_ ¥m s o i <o m?J - 10 eac(4.243

Then (2} P( irr > nr,xl A %mfl <b} ) =3 0 as T -~ @

’ j r’x
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yhere N,y = ft: - blfzuu 1 x—| s With x 2 continuity of Fo
X . T iy .

[yj denotes the smallest integer greater than o'r"équal to y- and
£ A B denotes the symmetric differenca of the twc sets A and B.
. _ r -l -]
() Moreaver for all ssguences 1”3: sebe br n. ~ T ag T S @

Moy fz[Tr = b)) = =by fz(mnr -y )+ DF‘“)

angd hence the limiting distribution of w Hbiﬁ(Tr - n, “’r) Is F .

3

pmark 4«1 = In applications of Theorem 4-1,ur cannot be replaced by

|

# in general.

Romark 4.2 ¢ Cbsexve that if (A2) and (A3} are satisfied for ona sequence
-s-l -l ] ]

{mr} sebe t-r m, - LL as T = @, then {(A2) and (A3) aroc satisfied

for all ssQuences «inr} gty b:l n. —ty M."l as © =% m, with the same

;J' and Fe

¥ £
Remark 443 &+ Let T_ = inf < n & lﬂ_r +¢c >k } where wr, b are as in

1
Theorem 4.1 and c© is a real constante Suppose (Al) {with T, in place

s t IR
of T}y (A2) and (A3) are satisfied. Then P(f[l:r }-nr,x?&’(wnr ) < br}) 3 0
) K 1

& r~ o. The proof iz aleny similar lines as the proof of Theorem 4el.

Uz now procesd to tha proof of Theorem 4el. Let us first state a

lemma »
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Lamma 4.1 . Lat fu re ]D u}}} and AV r e Do J5% be tuwo

stochastic processes satisfying the following conditions,

b

(1) p_{'urét.)r 3 G(t) a8 r > o,
L |
for 2ll continuity point & of G, where G is a distribution functi
(2) For all continuity point t of G and for sll € z 0y

1im Pfur<t-€,u ?t}= G
T~ o ]_ - T .

lim P ‘dr>t,ur<t-6}
TS |

Then Y, = U, = °, (1).

i
e ]

The proof of Lemma 4.1 follows from the proaf of Lemma 1 of
Ghosh {1971).

Proof of Theorem 4:1 -

Proof of Part (s}  For simplicity in notetion let us denots " x by

in the proof of Part {a).
> 1 ﬂ(uf < 1{
AR 't - L bIL)
l

Pf':r < ny yEF o< br-} {By the definition of ¥ as given in {4:2;
T

il

gl
< plt <n, W <b,l* b’lu-lms
- r r? n. r! T T T 1
-l’ - ] ’ 'y ﬁnzaﬂ.
+p{i1:rbr i 11_53__7} ( }

whers 0O < &y < 1, is to be chosen suitably later.
For any fixed €, ® 0, the second term of {4.2.4) goes to zerc as r —> W

(by {Al) and the fact that Mo =% K as = - )
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Fix 52 ? 0, Let Ry be the smallest integer less than or equal to

{1-¢e)b M~ . Thus ., is less than n_ for largs T
rr 1 T

Now the first term on {4 2.4)

. J T Vn T 2
_nl-‘-’-q*inr T
i 1/2 r 1 : \
- < ’< -wa ﬁz..
+ P {br &, b/ £ unr b, j e s{4.245)

The second term of {4.2.5), can be made as small as we plsase ifr &, * g,
is chosen sufficiently small and then r.—> m (by using (A2) and the

fagt that x is & oontinuity point of F).

o 1z
The first torm on (4.2.5) < P max h.ig - l:J"‘:'1 2 €, by }
nl<3<na: T
i - I M:I = JJ'r ™
X P Jmex j(:'j Z - rj_ )}Ezhiﬂj (As nr?‘jand
n,<jsn S
1o for large .M ” )
P e
i 1
= P g max ] (Fj’" - —r%j * “ﬁi = Ny H’r} (EL' = }'}';‘ €y br/z
ny<3<n J r 'p r
<P/ pax  n 1= a=fFep
- T . T 3 n, 2
nl-(g{nr T

C a | _ _
v %r & I—Nf‘r = Ry M Jel max tﬁl - 1)1 7 .?‘23’2}
J

1% F<
nljnr T
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The first term on (4.2.5) goes tc zerc by (A1) and the fact

f?';l Pl - e F—-ﬁul E0 T B @ - The secand tern on (4.2.6) goes ta
zero by (AZ) and the fact that max (-;-:l; ~ 1} can be made arbi -

h i< j<nr T
trarily small by first making €, sufficisntly small and then making

T — @ . Thus Part {a) is proved.

Proof of Part (b) -

Observe P{’tr > nr,x ’ mir f: b-}» = 0 (by definition of T‘r}
> )
(o Lf2 -l -1/2 =1 T > -1
=4 Pt#-br (‘Kr-brur)'ix-ubr ’br/z(mnrx‘"r.x“r) x K
¥
aaa(a-2-7)

Using Part (a),

ey 1y s L2 T -1
P {; BB T, - b My )7 oxy B T (W - L B <ox M

T 94X

o]l
ut
-3 0 88 r = @ .o+(4.2.8)

: . . = _ y=Lfz or
Now condition (2) of Lemma 4.1 with U= b (unr n, ”i}

ang ¥ = —_u.b;lfz (x, - b, H-;l} cen be seen to be satisfied using

{4.2.7), (4.2.8) (#2) and the fact b;1/2 (Mﬁ -n M) - Elfzcur -n
r n
=g (1) Tax
p
{which follows from (A2}, (A3} and

T ,xy'ri

Remark 4.2}. Condition (1) af Lemmna 4.1 follous from (A2) and thus the

proof of Part{hk) follows from Lemma 4.1.
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43 Application to SPRT for the Muitivariste known & Cesg -

This section gives the asympiotic distribution of the stepping
time of the irvariant SPRT proposed {in Chapter 3) for identifying a
nultivariate normal distribution {with kpown %) for the cases M = .U-:L
and M= 11«2 - Since the original problem iz an identification problsm
these two cases are most important.

The asymptotic study of the SPRT {(for the known I case} for
the aampling scheme 52 (es in Chapter 3) is made here 8s Kk = @© uwhers
k iz the size of the fixed sample avajilables from TIQ « The case’ far
scheme 53 {for «AB —=> 0 ipstesd of k = ® =as in 52) is much simpls
and follows from the existing results in the literature without any further
modificetion (as well as from Thecrem 4.1 &s a particular case with

r - Az
Up =lip s M =M br_r)‘

Tra wersion of Ny (of Ch pter 1) considere:! here is

; N Fa > ﬁi
= - i A . L, )
N‘k inf {n i 1n ok { ﬂ) 17 bk‘._‘} “\
(7 ion(d&aal)
= @ otheruwise j
. . Yo - - L ]
where In i (@) = 1n uy (25) = 1o w, (Z)) vaa(803.2)

Ba in {3.2.5) with 2, 4 Z

, @8 in (3.2.6); u, (.) as in {3.2.10), and

bk -5 m as k=% @ s.t. I-e:-l bk o, al:' D . .“(4.3.3)
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Let 2= My = U

9 = O 1l )BII-Ebkk“l
voo(4.3.4)
223 2&0 II:a}il-Zal
g = (Za &3 |i)5|1)1/2{& [ [=2a )-2
P 1 o o b

. - >
for &Oll-bil Zal 0

Theorem 4s2 - For M= Moo M= uz, ﬁ(N -b el} is

asymptotically (as Kk =% @ ) normal with mean zero and varianca
2 >
Up ifr A . 12 1] j Zalt

Proof of Thearem 4.2 » For H =4 , it is enough to consider

N = i *inu A B 1

- k -' lnf {n - f n,k ( 1‘_‘!_} S_ L bkj ‘1

- .“n(d.sS JE}

= m otherwise J(
1 -
as Pp,-_-u.l(mk:Nk)_} 1 a5 K > ® .

f
We now approximate Nk by two other stopping times -Flk. and Lk which

arg simpler to handls

WL
i . -1 L3

Nkﬁ Lﬁf’fﬂezznzl+2 {p_l)lnm;.a::i—hk}

o0 (4.3.6
= o ctheruise -

l+Zl

L = J.nfﬁrn‘22-21+2 (pml} 1n s—== Z+c<_bk}

L.

2
coelde 3.7
= m

!

where 2,y Z, @re as in {3.2.8)»



1
moSN SL by (4.3.5), (4.3.5)}, (4.3.7) and the approximstion

formula 5.3.4 of Wijeman {1579).

Let us first study My -
+7
1+Z .

- ef - "'l _ LY -m_g.. - » ? . -}
inf .ﬂ_n " {2k n 41){21-«124*'? (p-l)ln 1_:,21 - 2k T thk-m) S B - cr_

L=
i

S Fm otherwies i
L 0(4 03 -E)

first we shall show (2} and {b) of Theorem 4.1 are satisfied with

r =k, b:r“bkﬂbk-«c,
uf:; = wf_: = (2k™In +1) (21-22+2‘1(p-1)1n ;:—zgl-) -2kt g b;(
T =T, =M
b=ty = &= D111~ 2™ b, +++(4.3.9)
L =8 = E.‘.\O (RSN - 2a, >0 by hypathesea:

l

Fix) ﬂ‘iﬁ{xf A { (45 + 2))1f23 ‘P( ) denotes the normal c.d.f.

Now (A1) (with T =% _=m) , (A2) and {A3) with terms defined in (4.3.9)

are satisfied vide Lemma 4.2, Lemma 4.3 and Lemma 4.4 given below.

Thus (a) and (b) of Theorem 4.1 hold with terms as described in (4.3.8)
Now from part (b) one gets, as k ~> m,

“1/2 =1, 2 el -l
&bl (m -bke-') =n {0, A& (42, & +2)

a2 (m, ~ bk 9!'(..)' => n (0o, J_\.i a, & (4519‘"14-2))

> B2 (m, = b &) =Sn (0, A% a,
1

kk..ba-)-j.\nask-}m

873 -{aal-a"lﬂ)) . ..(4.3.10)

as RI/Z (b
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Similarly one cam show

I I . 2 =4 ) R ,
K " ii—. . bk k } = i (U’ &D dl & (45:‘1% '4'2}) zac(dss-l}g
Observe
2 ] el - 2 o Y o " -4 .
A e, # {4a 87 42) = AT a)( A P -2a)7 (24 1120
= {52
P

Thus the proaf For the cess H =L, follows from (4+3.410), (4.3.11) and

1
tha fact that mk ﬁ:NR < Lk .
The proof far the case M= K, follows along similar lines. it

Let us now provide a motivation for the lemmas mentioped in the proof of

Theorem 4.2.

. LBt A= Zxk L Yn L Zn § T = Yn Ll Zn adl(d#ztu}
- S= P I~ 2 d .1 f
Then Z, = AU I (=t 5—==) + ﬂ(d +5-) {1 vosf8.3.13)
5 s Iq
for GS, GT as in (3-204), zl ag in (392&5) Bnd =‘> as in {4‘3.&)4

For K =M, the fizet toTm on the RHS of {4.3.13) is expectsd

to bs smaller compared to the secand for large n and K. Thus meking

=1

first order expersion about ;>(US + d;l) and doing the same with Z,,

we get
7. i = 2 A ﬂﬂl ” > “_1 5'75 + R ido(fhs-lﬂ)
174 *o Vs Nk
._1 ~ 3 _’lﬁ ¥ R | . . _1/2
where 2 A o Rn,k - Un,k n,k( ¥ 7> + an,k) +2Unk P (> » +an.,k)
1y ! Y ' (3 y 22 4
- P HTTY -y ,k (-;;’15+b k +2un'k {( ’”l?n,'k') It > 11

# ,_,(4..3;15}
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with U szgT;b_FTGJ s V kth';} -—To?.)

Ma g T M 5 T ~
e (i 1yt . = gtl) 4’ 5

nk = (G5 * 5 U B T O Pkl fo k27 )
‘ S oo(823.16)
S S S - - al2) v

Bk CGT 5 Yokt B = Bk By (8 2 )

0< Bﬁai < 1 for j=1,2 {eppears from the first
4 .
ordar expansion)

If {nk is a senuence of positive integer s-ts k_'lnk Sa {a ’ a)
-

B8 k — @ then 1t is easy to see from (4.3.15) and {4+3.16) that
1/2
= R L — axrs L™ ]
ﬁnk*k o, {(n/%) for =4k, (4.3.17)
iz, o )
Rlso for U = “‘1 and |1 11 ” O, lﬁ(w)—}; lh("i;'; ) ass.
1

as Kk —* (11 !00(4!3!18}

uhere 2,, 2, as given in (3.2.6) having n, in place of n.

Similar results a2s in (4.3.14) - (4.3.18) can alsc be obtained for
b=t

These facts will be used in the prosfs of Lemma 4.3 and Lomma 4.4.
They alsc motivate Lemme 4.2 but the proof of lemma 4.2 rums along a

different line.
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- ! . -~
Lemma 4.2 - - bk I’ik - B l_ 8. 38 K = @

Proof of temma 4.2 . Proceeding along similar lines as in Thoorzem 3.1

(of Chapter 3}, one can show thet i"'ik does not terminate wlith probehill

ong for fixed k: However, hl‘{ I‘ﬁk doss admift ¢ limit as k > @m. &

show that chouss Ly and €, both positive evts

, -1 ‘ _
282*65“’3“ ey < Zlonvf’u-zaiandez<al ws il

 J = — T .. - - i
Define 8 ' ={i 5T w {2u--vn - zn} (vn-zn)i <E,#K < k} oau{n

Then for given any 7 and €, (as in (4.3.19), we can choosa Ky

large s.t.

P (5, )2 1an - oo(ad
1 .

Let k; bs chosen using (4.3.3} s.t.

-1

f . .
Ik hk"al[{az*kzkz’ Y.

Let k=W V k |
t - - n o a— -

Let ", inf (n 5 2 ﬂ‘ﬁuzx,,-vk_mznuaslkl’al 2

w c o '&

=m otherwise. J

it

Then 112X, =¥ =7 11 07" K™ = 0 aws. as k d@ (uith n fixed)

1
which Impliss {"":lkw;‘r @ 3.8+ 88 K - ®©

By (4.3.22) and procesding as in the proof of Theotem 3.1 we have

¥
M, <M

'} - i i R =2 "“-"“' -
" *f-k_ikn Thizs mk-'.}m a.5 as k-~ m

k
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Lot B = infin o (242 Y ((20F T T T 32 A (e St ]
g n,_;-n»n'12 Ynn nenl cj(-s-ﬂ (
P B sy &
T2k (p=L) dn ({02, ) (142,)77) 7 ey # sz} i
= m otheruise ‘}
Fop fixed ky, and n > w, nhl Ei — 2-1 &D 12 |l awss For 1 = 1,2,
) o — ; - — {
and {20 - ¥ _ = zn) (vn - zn) w3 2 m.s. Thus the choice of
| ]
agssures p( M (k)< @) = 1.

£,, &

v 2

e
Nowon B oM % Mo ¥ kZk
o

Thus, B (B, -5 M < @ #k z k,) - vas({4.3.23)
a

Thus, we now concentrate on Eik
"a

] .
On B, ur‘fi > by 2 m; 1 eas(d:3.24)
=] k k
17
P R " B L PO -l 2 -1 !
Now M, umk = (26" + M) (2, =2, + 27 (p=1) 1n _Ml) -2k b

uhere Z., 2, (defined in (3.2.6}) both have ¢, in place of .

-1

{2k ~L

o
+0) (2, -2) =270, (2) - 7,)
G

-1 A 5 65
a . {IT GT )

(Here Og, o {as in 3.2.4)) both have M

in place of n}

. 0. 0. -1
=2 & s T} m=+TH + Jim=TI(1) eeo(843.26)
o g a
5 -8
“1
Expression in (4-3.26) is more corwenient to handle as == is boundsd
S

ghove by 1:
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8] o]

Mowy Ilsls+T [1+ 11545 <1 I
3 5
= llal(su;;a)+(T =)+ D ) 0
3

9s -
s (5w} = (T =3 )+ > (5~ 1) 1l o.s(4.5.

g 5

{for U= iy £5 = €T = 2 3

"’"‘a’ 2 II )j |I BaS s asg K ""‘) m -w~(4;3;ﬁ?§

For (4.3.28) add and subtract Z |i = 11 to (4+3.27) and then hreak

UT. GT
wp -2 115 H==((1+57) Ll lle(3==1) 112 11) Thie
5 5

exprassion of =2 || {| together with (4+3.27) can be shown to converge

o Zera 8.5+ as K = @ .

Thus (2Kh+0h) (2, =2,) D2 A w3 @il 20 = A 1M1l e
as k =>»'m

from (4.3.26) and (4.3.28). : o vee{4:3.28
Mz w
" B | 2 | -1, =1 ‘
Now {;k My Y1 e ';ﬁ"z';}* < {2k "+ M) 1n(1+} z, - 21_‘)
= (2k ‘+ M. ) l_n(zk +‘ M, ) (1+_i22 -ZJ-__I)') (zk M )y -1n{2k i )
= 0 aw. as k3@ (using (4.3.29)) oo 443430

Thus fzom (4.3.25), (4.3.30% and (4.3.3}, ue have

["I;l w;k .é.. &{3 i1 ))li - Zal E:S: as  k -'> 4 7] .n{&-ﬁa.’_’.ﬁ

Similarly foru . S A 1) )1 =23, 8ess 88 kD ®  sae{dd3.32)
k I"'Ik -1 o 1 -
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Thus from {(4-3-243, (4.3-31) and (4-3+32), Ja.P-null set Ny Sete

.y |
on NTHB o, BT M = (A Y |1 - zaﬂ)'l =l as k=2 m v {4-3.33)
o ko K ke o 1
. ~1 =1y > . =3 ___l‘
Thus P {1im B! @, = Y2 P {lim B M. =8, 5 } 2 15 and the
ks oy _ _ ke m 9

fact that N is arbitrary implies Lemma 4.2. [

temma 4.3 . Let zmks be any sequenca af integers s«
. WA

l | | -1

' -1 X [} mk - ' ' = 2
by W > & @& k3 ®. Then bl (“"k M ek} is asymptotically

normal with mean 0 and variance ﬂi g1 (&al PR 2).

Proof of Lemma 4.3

..]_fz

DTS o)
Y )
= b (m __0“3“! :-(Zk "‘kﬂ}ﬁmk,k
-1 -1 1+ Z2
+ (2, + 1) (B9 1n (7 22\))

. {by 4.3+ and 443+14)
1
~1/2 i Al (5. 0
K k TESEE

+ o, (1) oy (4-3417), (4-3.18), (4.3.3)

and the cholce of mk)

Du (o, a2 67 (4n, 871+ 2))
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Lenma 4<4 » For glven € and M q kg {large) and c, (small) s-t-
K

W K
(M o 12 {»
b, Pt eI ce mt vt sat o <ome” 1A e (aes3)
Ly e m ' k o k;
! K m I
Par m  sets B > 8T as A
k k % T
Proof of Lemma 4.4 ©
K
N L% -7 «T Yy Ty o R
Note E:“ = o 11 ¥ K -'vmk - ka) {2k ~ m m ok
I+Z_,m
+(k"l + 270 oo ) (P ~1) 1In (~*ﬂ3-5) c o2 {4+3.35)
1}2 oMy,
-Ym Y ~1Z

whare Zi n = [l ar =) +{ l}l+l —EL4:EE—1E for 4 = 1,2 »
! sty 2a™t 2m '

For proving Lemmza 4+4 it is encugh to check (4+3.34) with LI in
¥

place of m-l WE for sach J = 1,2,3 where tj 0 danotes tha jth

?
term on the RHS of {4.3435). Now (4-3-34) with t; o (in place of
9
m“d Nﬁ) follows immediately from Theorem 3 of Anscombe (1952 )-

=1 k) follows from Lomma 45

{4-334) with 'tz,m {in place of m
(given below), (4-3416) and Theorem 3 of Anscombe {1952). For

tg mf aonce again Lemma 4.5 implies the required condition
'

Thus the proof of Lemma 4-4 follous. o
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Lamma fe5 . Let x_fmk:-i be a sequence of integer s-t- m, ~>m 3838 k =m e

{ L "y )
let <X 4 ' k"\’ N be twe sequences of random variahble such
1- i kL.

that the Following conditions hold o

{(Dfor a1 862>19, vff A (depending on &) s-te P(gmi‘-’? Xm P> A < bk«
. k

{2) For given any €& and 7 (toth positive real numbers) Elku {large) and
ke i >
g {emall) s+t @k 2k,
~
'1’}'2 = ot *imt - >
P{ixmk-xm,|<8mk ¥ m' _m mk1<camk% 1.7
{3} Ymk == constant a«s. as Kk -5— w

Then for given any €& and T (both positive real numbers) t} kn (largs)

end o (smell) s+t ¥k > kg

_1‘,2 ] 1_ | }
P{;ka‘{mﬁa-xm, Ym't<6mk #omt . Im m " < Do“‘k} 1=-7n

Proof_of Lemma 4.5 &

I}'imk Ymk - Xt Ymt,! = !ka "i’mk -.ka“{m, + ka Yot = Xgr Yool
. < ;xmk! _[Ymk ~Y TN lxmk =%y eee(423.36)
%ﬁﬁfnl‘ givan. E and 17 , %kn' and CD gele ﬁ-kz. kg .

3 N Sy o
SALULER RS Dbl .rm'-mk;ccnmkj(n N2 »ea(803.37)

by (1) ang (2))-
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e «l . ~1/2 . 1
P 2 - g T 'ﬁ . £, > M
and P i wm‘ [gxm xm“ < 2 P ¥ mt,.im mk[ < oM i f2 {

{by (2) and {3)).
The proof now follows from (4-3-26), (4.3.37) and (4-3.38) »

Thegrem 43 ., Llet N, be a stopping time such that k-lﬂ{Nk - ';i‘k)

k
corwercges in distribution tc §F {F a distribuiion Tunction)- Let Mo
denote a sequence s-t- k-‘l Mot w8 {a > o) and k"l Nk = b (b > o) o
88 Kk = @+ Then for b < ay, N A m . has the same limitirg distriby

F while for b 2 a, Nkf\ W e asymptotically degenerate at Tok *

Propgf of Theorsm 4+3- [ase 1 « @ > b

In this case, we shall show Nk_ﬁmak - Nk = up(l) .

For that, P (mk -N Al > D)

= P(mk A Ty < Nk)

P{mak < Nk)

P(k"lfz{mk -2) > k'lfz{mnk -0

—> 0 as k-lfz(mck - “ﬁ‘k) _— @ {for a > b)
and k‘ifz(mk - >>k}-#> F a8 k= @
Thus k"lfz{Nkf\mak ~P )HF 8 k3 ws

Case 2 . a < b




For that, P(mgk =Moo Y )
= PO Ay € mg )

)

1

P(, < m .
= P(k_l/E(Nk -) < k'lfzimak - )
sy O as k-iﬂ(mok - y=-m (for 2 < b)
and k“lIE(Nk ~») S F e kS @

Thus. #, Amy is asymptotically degenerate at CIT

Remerk 4.5 . Theorem 4-3 glves us the asymptotic behaviour of N; when
truncated. The case a = b (a,b are as in Theorem 4+3) remsins open-
Theorem 4+2 gives the asymptotic distribution of N, {untruncated) for

the cass a =8 - For a # 8 one can obtain a similar result-

-4 foplication to SPRT  for the univariate known J  case

This section gives similar results as in the preuvious section for
the SPRT proposed \an Section 2.2 of Chapters 72 as wl} for identifying a2
upivariate normal population {(with known ©) + Here also we consider two

cases namaly = “1 apd I = u2 .

The version of N, {of Section 2-2) considered here is

f 3
Ny = inf.in IR Un,kcﬁu)i > b&?

1? cae(dadal)
= m aotheruviag

with 1oV k(é-m) as in (2-2+5) and b, as in (4.3.3)
?

k
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1 ~

. L o e N T T o .
& = 601 sy | = 28, {al mkli?u: k = b, =s in (4 3.3)) era{478.2)

_ 3, 1 - -
= (Ealﬁa f”’li) fz(éul f‘li haad zal)

for 501 :-)11 > :?,al

_ . _ wl
Theorem 444 . For M=-‘_Ml axr M=L-’72 1 K /zmlk ~ b B;Lk} is
_ : z
asymptotically (ss k = ® ) normel with mean zera and variance 94 ir
} -
5,151 ~2a

1 >0~

Proof of Theprem 4-4 . For M= “‘1 y 1t is snough %o consider the ons

sided stopping rule namsly
]

Ny, = J'.nf’_ {n - In Unk(éa} < - bk}
_ ' . - —Z l"'{d'a'a]

@ otierwise _j

1
as Pﬂ - Mlcﬂlk = le) - 1 as k= m

cash F’
Observe 1n U (5 ) = l”*cush P "'

P, =P, + 1In (‘!""E——‘-) where
Z 1 1+
€

13

P,
i

il

I kn i+l n _
& {&n+2k R +(~1) d] for 1= 1,2

with R and G as in (242.4).
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Thus P

~Fy =1n2 < In unrkléa} <P, -F, +1n2 er(Bobod)

L]

= ,f‘r -’] ’
Let M = inf a0 By = Py=1n2z g - B >

- ;; aua(do&wﬁ)
= ® aotharuyize 5
andg
L = F .:“ r — 4 i N -:
1 = inf , N Fz Pyt ln2 g By % ,
[ : - o
? ses{dede5)
= @ otherwisa )

O F wfie - wi}
rom (4=4+3) ~ (4.4.5), _MlkS_lejile

T

U l 8 =1 -] ' . |
Note My, = iof {:n v {2k T +l){$l-P2} - 2K n{bk ~1in2) > b - ln2€

m othoruise

(]

“sulhnleT)
Thus mlk iz mow comparable with mk given in (4.3+8)» Now procesding
as in the proof of Thecrem &4+«2 {in fact in an easicr way) one can shou (a)
and {b) of Theorem 4-1 hold wit.. terws similer to these given in (4.3.9) -
The proof of Theorom 4«4 now follows along exactly similar lines
as Whe proof of Tiealem G-z -
Remagk 4«6 ¢ Horo also Theorem 4.3 gives the asymptotic distribution of
Ny {of Section 2-2) when truncatsd for the cese a # b {a, b as in the
statement of Theorem 4-3)- One may have similar comments as in Remark 4s5

for the univerizte case too-
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Hemark 4.7 . One may make use of the identity

vl = u=vi =20AND 1o 5 0y = 20IEAND 1, o g9

for proving Theorom 4-4 ¢+ This will simplify some of the complicated
calculations-
Remark 4«8 + Simulation results given in Table 22 of Chapter 2 may be
comparad with thg mean and variance of the limiting distribution of Nl
(vide Theorem 4.4) - For smaller values of (601131[ - 2.211)"":L the simulated
values are found to be closed to. the theorstical values given by Theorem 4«4«
This is probably because of the fact that the variance of the limiting
distribution of N; (namaly Gi as in {4«4+2}) is proportiomal to
(60i Wyl «-‘Zal)-4 and smaller variance has led to the smaller sampling
fluctuations -
Remark 4.9 7 The stopping timc (NDk gay) of the invariant SPRT for the
univariete one sided case (u1 %t &  yide GM{1980)) alsc admits a
similar limiting distribution as k ~ o« 1In fact the limiting distribution
can be ohtained % M I |28 - “1 -y | 5> 22, (i-e#; not only for L= ey
i=1,2 as glven in the two sidad casg) -

Faor the one slded case the truncation point can he found explicitly
vide GM (1980) as
M = K :(ézk/(‘ra * -EB)?') 'E] -..l .

Assume (as in (4+3.3)) kliTar K 1n ({1 - sk)/ﬁk) = kli?m]k'l(l - )/B,)

:ﬁal>ﬂu



Thus -k*l 1n ., and k-l In Bk bath tend ta a as Kk = ®
o ] -l 2
Now ”Caklnczk-p-z as K = w Sk ‘Eak—}-Eal as k = ® and
- wl .2
similarly k ~ T, «~3 238, as k= @ -
B, 1

Thus for &7 > 82, , k Mg = ({5 /Bal] -1y .

Now by Theorem 4«1, N, is. asymptotically normal if 5;%} > 28, whers
;?-)n =721 - ”'1 - uz and ch Al ~admits the same asymptotic distribution

-1 2, -1
if ey (812 1 = 28y) < (6" fBa; ~ 1)

= 2
=% Sl» 1 =678 >a

Far g;)ni >6, .62 > 2al = 612.>D| > 231 * Thus Nnk is asymptotically
pormal if 52 > 251 for 1251 2 O + Now Piﬂk /\mnk is asymptotically

1

condition needed for Nukf\mak to e asymptotically normal ciostributaion

2
normal if. & > -3- a; which holds when & > Ba, - Thus the extra

-1
when lﬁ'ﬂi > & , is the condition under which k Pk admits a finite
positive limit as k -_} @y lem+y when 52 > Bay -
Remark 4.10 & The next chapter gives an asymptotic study of ASN using

the technique of Lai (1975). This kind of study is not carried out here

1

as EKIN, as uell as E kv, is infindte ¥ k.

i Y
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Thius -k-l in @, end k™ 1n Bk both tend to a

1
o3 1 .l 2
Now 'l.rrk :an;k-p-z as K = @ kK Tfi.k-?rzal as k o o and

similarly k"l'c‘g — 23, a k¥ @
K

x as kK~ @

2 i 2 =l
Thus for &7 > 8a; , k Mope == ({5 fBag) = 1) -

Now by Theorem 4=1, N is asymptotically normal if B>y 1 > 2a; whers

k
?)U =20 =M ~H  end .Nuk"'\mok  admite the same asymptotic distribution

| -l 2 -l
i1 a; (812 1 =2a)™ < (8 fBa, ~ 1)

. ] <2
= 8@ 1 =8 >a

For 5;)01 >6, 8 > 2a, = 6|:z>gi >2&, ¢« Thus N is asymptotically

1 ok
. 2
normal if & ?Qal for |22 >0« Now bfak Am, is asymptotically
2 ?
normal if. & > g— El which holds wvhen & > Bal' « Thus the extra

condition needed for Nak AR, to ube. asymptotically normal ciotribution
when ii)ul > 6 , is the copdition under which knl M, "dmits a finite
positive limit 8s k = m, issy when & > Ba; »

fRagmark 4.10 I The next chapter gives an =zsymptetic study of ASN using
the technique of Lai (1975). This kind of study is not carried out here

- -l

as fFk Nk e well a3 E & N is infipite ¥ ke

1k



Following Mukhopadhyay (1983), the present problem may be
trerted 2o 2 kehypothones tostdpg groblon wikh a target of attaieing
the given probability of correct selsction Pwv The sequential procedurs
suggested hara is an extension of an inwvariant SFRT to more than two
hypotheses.

The basic idea of chossing one out of k(k 2 2) many hypotheses
using likelihoods, goes back tao Wald {1947, Chapter 10}.. Sobel and Wald
(1943) used & combipation of twp SPRT8 to decide one out of thres
hypothesss concerning the unknown.mean of a normal distribution.
Moiliison (196%) followsd the reasoning of Schal and Wald {1949) for
choosing one out of k(k > 2) decisions (regarding the unknown mean of &
normal pspulaticn} but applied it to Andsrson's (1960) modification of
SPRT. The form of the procedure is similar to that of Paulson (1963) but
requires less number of ohservations (than that of Paulson (1963)).
Armitege (1958) extended the idea of Wald's SPRT to k{k Z 2) many
hypothesas and gave interesting applications. Robbins {1970) made use
of similar technigque to defire a gereral stopping time for sstimating an
integer mean of a normal distribution. Later Khen (1973 developed thils
idea, emphasising on its application to seguential distinguishability
problem.

Recently Mukhopadhyay (1983) suggestsd a gimiler seguential
procedure for selecting the normal population having the largest mean

among k normal peopulstions, when the common variance is knouwn. This
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sequential procedure showed substantial seving in sample sizo when
Conpargt asymptobically as P% - 1l; with tne corresponding fixed
sample procedure. This fact encouraged the author to investigats the
performance of a similar sequential procedure whep the common variance
02 is unknoun.

Hare the problem is filrst reduced to a k«hypotheses testing
problem by inveriance technicuez and then an extesnsion of invariesnt
SPRT to k hypotheses is used. Asyaptotic distribution of the stopping
time of the proposed procedurs is obiainod as ?* — 1. Tho limiting
distribution is precisely the maximum of (k-l)} normal variates whose
joint distribution is {k-l1) variate normel. Asympiotic exprassion of
the ASN is also ohtained following the technigque of bai (1975). This
asymptotic expression of the ASN shows substantial saving in sampla size
when compared with the corresponding Fixed sample procedurs. We also
compare our pracedyre with the two stage procedure of Bechhofer, Dunnet
and Sobel {(1954) {henceforth will be denoted by E5). As the formulation

of the indiffersnce zore in HS differs from the present one, the comparison

has besn made as follows .

Lot L)% = (L) R* x &t T > 6* (12)
=} 5 - I_V’U x - i:[(] EZ(HQ — L

denocte tho parameter space considersd by 5. Suppose J  is bounded

zhove by & kmown constant fa' Then our indifference zone is contained

1 1
in that of IS if ad =8  Thus in this sase our procadure providas
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more protection 1.2 i1t guerantees {Correct Selectinn) i P*,

")
(ﬁ.p.f-vmwtb? :E:n %Piﬁ& Vineovem .2 ) fOr a larger set of
perameters. 1IF in sedition 500 2 a(S,k,p’) (as given in(g.4.1))than
our ASN {asymptotically as P =g 1) is zlse smaller than that of HDS.
This comparison is discussed in detail in Section 5.4 while in
ection 5.3 asymptotic behaviour of the proposed procedure is studied.
In the beoinning, Section 5.2 deals with the formulation of the problem

and the statement of the procedure with somz of its properties.

This chapter is a revised version of Ray Chaudhuri-{lgsﬁ)Q

5.2 Formulation of the Problem and Statement of the Procedure

Let Xil' X denote a sequence of iid random variables

|
from ﬂi,i = l,24..4k. The samples from different populations ara
assumad to be indepsndent. For the parameter space ijé {as in I1})

M M He - SR
the confiquration -iél = .i&l = = ,“ﬂﬁzg = ki~ © 18

d g J d
considered as a least faveurable configuratinn (LFC).

Here a sequential procedure is proposed which assures the
*

probability of correct selsction P under the LFC.. Since for any
rgasonable procedure it is patural to expect to perform in a still
better way {than the LFC) for other configurations, the problem is -

formulated with an aim to attain P* under LFC.  The problem is

lookeod into as 2 kehypotheses testing problem. The hypotheses are as

follows,
: - = '.l-» =.-'1 = ,='-1 — _=-1 PR
H, 'U"Lk] 49 0 Mf_l] g ”‘[23 . g ulk-_l g uLkl 6

for 1 = 1,2,...k.
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Thia can be re-~uwritten as

Hy - {%j = == 2,3, 0 .K)
Hi:(gi=6’ 'E'lzﬂ* l'ﬂz,rn,k ﬁndl?‘-i) FDri’-‘—Z,S,-;k
- _ _ogml, ~1 _ - o
where ﬁ“-;(?gz' ez,mak} = {0 (;.:,2-41.1), 57 (;-JS—Ml),, . O (uk-ui}) 2o (5.2.13}
Let vz ceall 0 (&) ﬁ[(}.ﬂ-,ﬂ) £ QG T8 =8 tuhere & is the
H. Lm H.‘ H.
i _ i} i
value af € under H,, for 1 =1,2,...k. A5.2.2)
T 1R
ot S5 = c'r'l{z L (x, %, )2%
" 1=l m=l A7
X, = A3 (5.2.3)
X, = n & X -.(5.2.3
in =1 im
X, =X 1f2
' n oin =1 kin-l .
o, = R EREn T e, .

n
Inder the transformation X -9 a¥th, 0< a< @, =®w< b< .
L
Jn is meximal inyariant and the ipvariant sufficiecccy follows fraom

the basic thecrem of Hzall et al (1965). The distribution of u, is

woncentral multiveriate t as oiven below {vide Kshirsagar (1981)}).

l . -l b1 l i
-z 8IR7e - =y -1/2 - -l = >%m)
: — Y 1l 42
w)=ec 2 " Nevm PR (TEN (Y ufu) 0
(}r}+m0+m}
w T 2 1/2 el
E * \ -1 Taw] '_) ﬁl“l Un)
— @ os # 2y Bu )
noon
\ 1/2
= (I
here @ -{2) g
ﬁi = 2(1I ~E1£ ) where E iz a
= el ki’ ¥herse . i
Kp matrix whosa all elemants are ane. ﬂ..(EZZ.a)

) = { p~1?
m = kel
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The stopping rule comsidered here is

N = inf -:.}n zi° sup -1;;'-‘-— < ( ) for some 1, uhere{, 7
{ ) \
- 3 :}#i 1,3 = 1,240 k ,j j} "*(59?-'*5)
= m . otharuwise -
Hare, _f‘i n denates the density of Un under Hi for 1 = 1,24-<-K.
&

The termination of N w.p.l is guarantesd by the following thecrem.

; 1l ' <@)=1 uh e LI
Thearen 5.1 P(%ﬂ) (_N @) whers {H0) & 24 5

Proof_of Theorem 5.1 0 Far any (M0} & '”Q&' L Ek] = Mi for some

i=1,2,...k, Lat us first suppose that u[k] o ;,Ll

“‘Now, N = inf {% : sup -J*ﬂ < ( ) For some i, whare i,} = 142..:K

f
3TIFL i.n
m I »4m — m
z (mr) i { )(V?ﬂ %. 3
) F. n =0 Jym
sup =B = sup
f. chags @ 3 +m
FIA i,m JUIA s )T
* l’tl
m=0
Yl
5 R Y
where X, A = mﬂ-’%’:‘“-ﬂiﬁ nl w.(ﬁS;E.G)
B2 R)

with gn,i denoting 'En under H,, i=1,2,.-.k

(0 9]

§-~ﬂt2/2+xj ot {kn=2 )}
e ' t dt
= gup 2
 F s g o o
J”J?e"" ~riE /2+xi nnt (kn=~2)
¥

t d%
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853
7 -nt /2 + nt(sup X, ) {kn-2}
| s Jrdpe Ty dt
= 0
0 1]
g ent? 2 + ne(x, ) (kne2)
: )
8 t dt
0
5 ( ) “
3S§§i xJ,ﬂ _'~nt /2 +ntx  kn=2
(x whoTs 3 (x) t dt
|f'|
0
for n?2,k22,
1/2
Observe Ix, < (52(5;&)) *1=1,2404:k-
iyn —~ k
Using the approximation formula 3.3.14 of Wijsman (1979) one gete # n > 2,
< is ¢ : (5.2,
o 3 50 J=n Hx, Y <e, o is o constantand k Fixed (5.2.7)
L
, = —
HE!‘E, 1.:‘(.3':) Ll B(x)“% - Zn ln(ﬁ) .u(S-Z-B)
1
Blx) = F xalx)=kln a(x) eea{5.2.9)
i/2
alx) = %{H(xzmk} ) .e:{5.2.10)
- > Y
Let M =anfsn ;n(B(x }-B(sup x, Yy* 1n:(£:EJ - 2¢
Fyn' - k-1
i
for somne i, 13 = l,z,cclkf . uc(S-Z ll)
= @ . . otherwma
]
M= inf ;(n :n(,B(x )*B(Hup xj N2 1n( } + 2¢ )
A T % \
for some k, ij = 1,244k ) ‘E ﬁna(s.z,lz)

gtherwise
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i
Then M ENLR {5.2.13)

Thua for Theorem 5.1, it is enough to shouw

' .
p(;:L’J)(M < m) = l an(S-zalﬁ)
Now for, “”k‘“ s lat § = (=& S,d.e,—ék) whers éj 28
o,
’d‘j = 2,3,@:&'!( as -5’3,. = '-jg"'};' and (-u”o) E"';?“é\

-1/t wl/2, : _ -
ThLIB ER fzun —9 2- fz(.-éZ’ﬂaﬁ"“’-ék) a8 as n ""@ T s

] =1 1 K
Alan 27 (ab,=D,.0ay=8) R~ (= -53,.5,,-6 } = 5 & 6,
= 7

-vl ) ‘.-
(627 )0, T aty pobyy om0, ) = (K 6 5 6,066 ¥5 = 2,..uk

3=
whera o 3 1 a (k=~1} dimensional vector whoss (jwl}th alement is
ore and all other slements are zero.
k
Kk -35 z 6j
. Thus X e = : ' a.s.
l,n !"‘l l
(k+ 5; & & 5k (26, ¥)
k
& &, )=5.56
(et z j) p

x. -+ -. ﬁas; * jg 2,3,;;»!{.
JaR k 1f2

(1t 3 6j—El{z:<5 )

L5

Thus for Mﬁ‘}; = .lil,. B(xl,n) - 6?1?1;;1 xj,n) —, Cg 3+8+ 38 N - ® }”(SQZ.IS)

uhera Cy iz a pmsitiua constant depending on 8 .

7 L
i{a(x } - S[aup X )‘3 «% @ a.s. which proves (5.2.14)
ipn $

1<;<k 3 iA
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if H}F} = Mj, 5 = 2,3;-::5ky the proof of Theorem 5-1 follows by
crcetly simllar reasoning. it

Now we define procedurs R as follows ° Toks M (as defined in 5.2.5)
number of aobservations fram sach population and select Ri as having
the larcest mean if Hi is accepted, for 1 = 1,2,...k.

About the probability of correct selection (CS) of the procedure R
we have the following theorem.

. uge , 3
Theorem 5.2 ° H{H?U)E_fla, ) {correct selection) 2 27 -1 ceo(5.2,15)

P
(17
Moreover for the slippage configuration i.e for (My0) s.t.
-1 t‘.'t"i * -
; : LR - - L - > ;
a (Mi_lj Q“’,Lz] 9 pau'lk‘}) (t,t’ t,t = ) whele & il < and t € R,

piuﬁjf' {correct selsction) 2 B <ua(5.2.17)

Proof of Theorem 5.2 . Let {iyd) ¢ ilé” be such thet M, Is the largest

among all other My 48y {Hi denotes the ith coordinate of H).

. - . Lf
Call 'B( = flﬂ Gl(u?"‘“.’l’ %—Hl,s.a, ,u‘k-g-jfl) $+l(5!2DlB)

1yo)
=zl/2(..52, ..53,...,...5k)’ o+a(5.2.19)

where {:j O M3 =23,k

-1

. - :
Re .26 8 +smallest eigen valye of f-
140 ) (y0) {1o) (0]

1
Now
(

(B' 2e given in (5.2.4)).

ot -1
= Ba) Buyo)
k .
= it z 8% > El(kﬁl)éz -(5.2,20)

= 1~
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Thus for given E'( ane can find

o)

#(”Wo)? = (GQQF. n’G, ﬁ“fﬂéi 5D9¥‘D) ﬂ-ja o 2,m4¢kJ

with 51/2[_\. at tha (jn-l)th position uhere
e Y
(03 © Fago)!

¥

o= {k(k-l)"l £

=]

' -1
e, fROB ) L= o = 2 v

Je

i+

- 1 * NE L
Also for each i # 1, = 7 /2({52 » O, peeesl }

)
(E?G)jm

* %
&, = 57 =86, -0, W =2, .. i
where jo ﬁjo and 5 5675 5 .” 24-..k and i#io

e

= 9‘ el
(o), (g,a}

ot
Here also -B( R

let S, = .is.elsctian of njmj, 30 = 2,3 ,.0.k

5(&&,0 )

For provimg (5.2.16) it is enough to prove

2= o = 2,3y emepko

Plup)®se) & T3 S Mo = 7Sseenk

. @ , o
p“i!”)(sjﬁ} - ,.il \f(p_tf.f:)(ul'uz*"””n)dwl'uz"“”n)

.} ;’Sjag = n}

C.{5.2.21)

{5 2.22)

4n4(5.2¢23)

. (5.2.24)

-4u(5b2#25)

cae{5.2.26)

.{5.2.27)

where P(&,G){Ul’”“un) denctes the ;p;nt density of (Ul,uz,,..un) when

(0) is the true parameter.

> Frugyitpee o)

") f(&ﬁ)jﬂwl’“‘Un}w(%ﬁ)zg (Upslppere)

{sjd,s\ann}

?(&F)jutul”“'Un)uf(&_,ﬁ)sjawl’uz"’“Un)

d(Ul,LPZ oo ’Un)

ee.(5.2.28)
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Plueg)bratps---Up )

Mow, =

f{ng) (ul,uz,.ﬁ Nt )hfi-"“_w_j}h3 PP
= (UHG)(U ) , - N
FU—L,J) (U )UP(M’G}S (U T (as Un s 1”\’arlﬂﬂtly SUfflclent).,
2 2
j-nt /2+n{::-<(E{:’G[)M_| K pye?
) £t dt
) ..(5.2.29)
m
(‘ﬂt frratlx | a ) kn=2
(“ﬂ) oY,
-EIJB Jﬂ n r\.} joun & dt
! -]
= RU
‘ ST n
where X = . ' (e.2.30)
Wa?dor = 'm Y72
i n
¢ =1
o), .
-e(5.2.3
(H-,J)jﬂm (’D+U|ﬁlu }Iﬁ
1
...(5.2.32)

A =] =
o dss (s)+UnR Un?*fz

Y = U B R(ls S, . D, D, ..eb, )

11
U RH(8 -3 .
Nows 11 (g7 ) Uya) o n M jo' e jo
12
= -?. 6 e -29-
Ujo,n je {5.2.33)
where U is the 3™ coordinate of U .
io,n n} n
. - P .
Also on <§, 5 Nen 4 a2 hore is as in (5.2.5).
J } f. - e isn
; Q - JD,n
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= u'fe y =2ty s<o
n,l n,J 3l
[BE R a i -'ii F‘A‘"
{whers £npl i as in 5.2.6)
Y >
- uj #0 0
o

=7 L CTI 3-21ﬁu, &ag 6, 5 0O
Jgsn dg Jgom I -

= . it - < 0
> K(%,G),n (E‘,’G)j ,hi Xliﬂ g~
Q

by {5-2.30), (5.2.31), (5.2.33), (5.2.34), (5.2.36) and (5.2.6).

Now suppoas X > X gy then
Wl m = By 8

(5.2.29), {5.2.37) and the Pact that x{ugj)

together with Lemma 5.1 (given below) imply the

*
o 18
term on {5.2.29) £ 373
Ir x < X 8 then
g}, 3
(i )C'o'“ (ty )jam
(5.2.37) < %y

. <

> M)

Thus, using iemma 5.1 as in the earlisr casse we have thsg

l—P

term on (5.2.29) & === =

Thue {5.2.38) and (5.2,40) and ths fact that

) (ul,uz..;du )UF( g)? (ul,uz,pa.uﬁ}
E:l [»}
{Sjn’ Nzﬂ} ﬁ(Ul’u2’4dcun)) 5'-_2
imply (5.2.27)

A{5.2.34)

{5.2.35)

 2{5.2.36)

e {5.2.37)

__x. cm{s ,N=n%
j "y SELAL ju -4

.+{5.2.38)

veo{5.2.39)

... (5.2.40)



- 108 ~

Thus (5.2.16) holds for (M,0) s . t. M

1 is the largest coordinate.

For otlier cases also, the proof follows by similar reasoning.

For the slippage configuration, E%ﬁ%a} = ﬁﬁuyﬁ}s and thus the
kg it hl

o o
proof of {5.2.17) follows in a much simpler way

. 2+
Remark 5.1 - Although the above theorem says P{M J)(E.b.) 2 2P -]
) 6
H{ggs)all.é, the author believes that ﬂ(uﬁj}{tss+} 2 P . Morsover,
L] Fa )

P
if the boundary coratant %:3 is replaced by the mors consarvative

A NCEWES P w(u,0)e L,

valua 7Y () the same proof shous DQE?G
S * & _
and for the slippage configuration P&Fij)(C‘SQ) z‘ﬁi(p +1) > B,  This
- ') S %
: . . 4] 1-P . _ 1P
fact makes the suthor feel that the use of §TE:IT in place of )

glves more conirol to the error than actually needed, reguiring a larger

%
sampls size. However, for large P , this change in the boundary constant

becomes negligible as
k3 .
= 1.p . "
Il InGemp) = L e P L

Thus the asymptotic distribution of N and the asymptotic expression of ASN
3+

: *

remaln unchanged, sven if we use 3 i:i = In place of (%E%)-

Remark 5.2 ° For the knowun O case {considered by Mukhopadhyay {15B33)

one can have a stropger result than Thesorsm 5.2 i;e, #{Mgl)é‘fl !
pll

<}
Y e
P(LLIO_)(DQS‘) _-P @
e

L 12 F _-. T ey P >
amna_S OF X=X LYY L 0 and ®y LYy
o, m
j’ atx, “fnixo
g ® gl ot g e oltddt
- L (5.2.41)}

f htyl mJ( nty

5. ol t)dt e “olt)ot
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where g(t} 18 a real valued continucus funciion s t.

w3
- +
0« i} e "™ gty dt<®m ¥x® R and o(t}2 0 on R
0
rty, ® nty, -1
Proof of lemma 5.1 . Let {for i = 0,1} h (t) = e = eltd(ie T glt) de)
9
for 0 € £ < m
=0 otherwiss

_ +
Then hl[t)/ho(t) is a non-decreasing function of t on R and the

fact exp (ntxl4ntyl) is a pop=decreasing function of t on R impliaes,

LHS of (5.2.41)

exp (ntxl-ntyl) hl{t) dt

exp (ntxl-ntyl) hn(t) gt {As in page 74 of Lehmahn(lgsg))

v
[} \..-—w-.,\B [} ‘\.,,..__S

@
{-exp (ntxﬁmﬂtya) ho(t) dt

-

al

iv

RHS of (5.2.41).

5.3 Asymptotic Study of N

This section is devoted to study the asymptotic behaviour of N
Firstly the asymptotic distribution of N is obtsined (using Theorem 4.1
of Chapter 4) and thep the esymptotic expressicn (based on the ideas of

Lai (1975)) for E {N) ie given (Fer {E?U) E ixﬁ) as P wd Lo

(Ly0)
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Here the symbol '=»' will be used to denote ‘converges in
distribution' as well as 'Tinplies that''! at suitable places.

Theorem 5.3 . Under B, s 1< i Lk, i fixed, (a) and (b) of

i
N - P I s
iheorem 4.1 are satisfied with © = = 1n {::i”) 1 Tr =N,
ujf_l = u_ o= n{ Blx;, +n) = Blsup X.,nfvl =u_ . (say)
_ a joaA J 5

b = = . N (1-P

r .

b = M= B, (%)

..1_/'2

wnere B(8) = B(6% (KL (1" (KLY "

K=l
) = B(~ -(k+€> ( )) )
with P{x) as in (5.2.9).
] .. '
Proof of Theorem 5.3 © As noted in (5.2.13), that M & N £ M {uhere
r . . .
M and M ars given in (5.2.11) and (5.2.12) raspectiuely) the theorem

]
follows if the same is true with ‘Er =M and- 't:r: =M .

k
Let us first concentrate on M= A M, uhere
i=1
- [
Lo .
Mm, = inf {n : n(B{x )-ﬁ(aup X, 1) 2 1n(7) = 20} coe(5.3.1)
i i Fer7 T = k—L
Jeifi
=W . otherwisa
Loeock at M, = inf }'n W, 42e ? rEl -
i g Nyi -
G L. o 4
= (B otheruise

Clearly M, =¥ ® asr~» © ard P {Mi < m) =1, by Theorem 5.1.

o i o
a
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j b + ' >y +
Naw M. i 2c 1 LUM‘ 1,1 + 2c
R ] 5 —
o C
=] ], =1 g .
= u +20)? M, ¢ 7
my{ m. 1 a)?> ﬁi r > (wﬁ' 1,1 +2¢)
o i o o o i o
g o
= T (O, e 1 e.s. as A- -~ B8.{8) a.s.
'fl .iD ngiu ! : l

@8 n < w under H,  and Bl(ﬁ) > 0.
o

Thus (A1) of Theorem 4.1 is satisfisd with T, =‘mi
0

Sirnca 'c!' in the definition of Mi, is just 2 constant, it is enough to

" wverify (A2) ang (A3) with u s (vida Remark 4.5 of Chapter 4).

o

Lemma 5.2 and Lemma 5.3 (given below ensure that U i satisfiss (A2)
and {A3). Thus (a) and (b) hald for T =M and haaga the same is
trus with Tr =M as
pHi (F,=M) = 0 ¥ifi as T~ @
o
The result with ‘fr = !"l' follows in exactly similar lines. Thus the
proof of Theoram 5.3 is campleta except for Lemma 5.2 and Lemma 5.3

which are given below. U]

Lemma 5.2 - Under Hy #1 24 £ ky
@

Elfz(wn’iu-nﬂJ = nl/Z(B{xi ’n)~B(sup I-B,(83)

*3
FE ’
3.3,

is asymptotically (as n -3 ® ) distributed as F{.) where F{.) is the
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Jistribution function of Y = min Y. with
Zijgk
2 - 2

N Y o= B L 2 e
(Vg pYugeeag¥ )i _1(044) ana v == It 5 {10 J2K)(trka a)
va(brkel a)tab L £ :
5 e
shiere a@,b are given in (5.3.7).

>rpof of lemma 5.2 ! Let us first consider i, =1

w 11

Then U = n(g(x-’;}-ﬁgsugl XJ,;))
=j?§_;1 n(BFXl'n)"ﬁ(xj’n))»‘- -

a ket

To obtain the asymptotic joint distribution of (B(xl n}—ﬁ(xj n) .
% i L

5= 2,300k}
v¢ proceed as follows o )
X, %, Y -X X X T .
’ﬁ(( no;' nv Sna in e _5.533__‘1' “E‘)’(*‘S:-&r'é:l})
_ o G

Under Hl.n
= Nk(D,Ul) where

Ekml k=l A“kwﬂ. %‘LED is a p dimensional vector whoss

= {
{
\ mkml 2/k /i k n . 2

iEl mil(xim-xi”)
ail elements are zerg and T = - #
n k{nel)

X

'n-xln
Let Y . = —1—7 5
g0l (ZTn)l

. (5-3.2)

(5.3.3)



then by Theorsm 4.2.5 of Anderson (1972).

1 h - , .
W2 s e (v, +@ 2y 2 wo,6'v,t) %t e RETS uhera
smp 4 dal 2
J
v, = 3—:(1 -4-(1+62 2K, ) (5.2.4)
2 2 el | .
lQ b L1 ""‘lfz « A T
= / 5.5..00
= n {(Yi,n’yz,n’ Yk,n)+2 (340,-2-0))

L]
: ' i iﬁlun
Now, as defined earlisr in (5.2.6)}, X. s .
R T

.
e frly
] = 'n;fk r%aY Y oo o(5.3.5)
(v Ry )
as Y = :1/2 U and €, = ﬁlfzﬁ ,“
n n i iyl
. eiﬁlvn
Define x, = .o (5.3.6)

ign v 5L, 1172

(kY R v h ?

Now, the limiting distribution of (B(x, n)-ﬁ(xj“n)i §=2,...k) 48
1 ¥ -

* s -
same as the limiting distribution of (B(x, n)-ﬁ(xj'n)¢j=2,.a-k) as -
¥ i

* . . -
Ko =X, = Q(nlfzj i =12y.2sky Thus it is enough to get the
1ef1m 14N -

* L
limiting distribution of (B(k: B ) 3= 243,...k)
' - N Jan

Now  x: i=2,..k)

l,h
i= l,z,lllkjand B{x) {vide {5.2.5)) is also = nice differsntiable

is a differentisble function of {Yj "y
: ®

function of . Thus by repsated appiication of Theorem 4.2.5 of

Anderson (1572), one gets
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k
1/2 3 * '
= nf
n jZ Ej(B(xl’n)-ﬁ(xj,n)—Bl(éj} plO,. v C) uwnere

C o= (L, ot T ) € rM -

YV = BZ UZ 52 whoere 1

E% = 3 Ek~i+b1k—1 with

a = 621/2(k+62(~'5-;;3&);3f2 (1462 2kJa, (5)cc, (8)

b = 521ﬂ£k+62('-‘i-351 (=, (8))  (5:3.7)

a, (6= oS (K (r6? (KRyy 177
1, ()= o A(er () ) share

al{x) is as defined in (5.2:9).
A, is clearly nonsingular and. V, as defined in (5.3.4) is positive

dafinite which implies that V is positive definite. Herse

2
a.

V=L ot {(1+52/2k)(h+k-1 a) +a(b+k-l a}—l-ab}’ Lol ea{5.3.8)

where a ang b arg as defined in {5.3.7)}.

Thus nl/z((ﬁcxl'n)—ﬁ(xj’n)-ﬁl(éj}i j# '3 gsaak) =} Nk_l(U,U).

The proof for cther valves of iD, foliows in exactly similar lires
1
apd one cgn Find that the limiting distribution of (n /2((B{xi n)
¥
[

-B(xi’n}—ﬁl(ﬁjjt L= 132,00k, if;a) under Hiu iz same for
all i = 1,2y...k. Thus the limiting distribution of

K : _
P, g =000 = o ALy D-plxy 9)-6,(6))

= a

1§

undexr Hi is F. Thus the proof of Lemma 5.2 is complste. U



Lemma 5.3 : Far given & and 7 (both pasitive real numbers) 3 N, {large)

and © \small) such that + n < i

n?i n',i ] T
B 3 i-r;e nlf"zﬁrn' 'ln-—n"l(c r’-r
H

rn n! o

i U -

Proof of Lemma 5.3 : First let us copsider iB = 1.

L

Note that nlfzl(B{xl,n)-—B(xjm))"(B(xl!n,)-'B(xj"n.)),< €

*jf-z,ﬁ,n--k aﬂﬂ‘d'ﬂ' ‘n""n'l <Coﬂ

] ]
: r - .
= l Z‘Ll - nngll <& r‘\lf2 ¥ n' lnent i< e N+

Thus to prove (5.3.9) 4% i5 enough to show, for given €

ﬂno and cm such that h‘v‘nhno-} .

: {hlﬁ1(B(x1’n}-'&(xj’n)}-(ﬁ(xl’n,)wﬁ(xj’n))i ot =2k

H nt In=-nt!{ < ¢ n]zf 1-7
° )

For (Smﬁ-lﬂ) it is sufficient to show, for given €& and n :-:I_nn

g, such that, Wi =1,2,.0:k,%n2n,

1 F
P {n“ﬁiﬁ(xim)%(xim,)_ <E¥nt L inentl < cgn7 1.

Wow B(Xi;ﬁ)”‘etxi,n‘} = a(zin)(xi,h#i,n‘)

= E ] L. : Al . . WX
%1 1.2’ k" where Z;L,n E(Ki,n . xi;n‘ 'xl.,n xi,n'

Now for all j =2,3,...k, @88 n > © (under Hy)
CI[stn) -'9‘ G,Z{':,) E-IEG

and -cz(Zl‘ﬂ) “> ,(8) as

e {5.3.9}

nh(S:s !J-D}

and

es.(5.3.11}

cae{5.3.12)

vee{5.3.13)

whare al{é) and 052(5) are given in (5.3.7) and both are pasitive.
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Also from (5.3.5) and {5.3.6) one can see % 1 = 1,2,...k that

nl/ifx_ - Q* } o« 0 onm oan o on e @ ..-{5.3.14)
i

ML 190
tow by (5.7.12), (5.3.13), (5.3.14) it is enough to show for

(53.11) that for given © and 7M. —n_ and & s t.

#i=1,2,...k, and ¥ nZ n,s

p ' ' t ' o
p );I/EIX? - fl <EW¥n ln-n I <enp? 1A e.e(5.3.15)
\m iyn ien o

Nouw x: n as defined in (5.3;5) can be looked into as
1

* o
xi'ﬂ - fi(vzgn, Y3’n"unv Yk’n) i= 1,2 !""'k-
where each ¢, is a differentiable function of (¥, ...Y, _)}. Hers
i 2,“ k,n

gach Yj n ¥ j=2,..+ky is again a differsntiabls function of
k]

X, =X .3.2)). From 2 Ans:
(Xj,n xl,n) and Tn(Tn as in (5.2.2)) rom Theorsm 3 of Anscombe
(1952) (which guerentees similar condition as (5.3.15) for T, end
- N uj=2,3,u.-,k .
(Mj R nlﬁ Yand hy repeated application of Taylor's Theorem of

| ]
seyeral variable one can show (5.3.15) holds. Thus (5.3.9) holds for

iD = 1.

The proof for other values of i, follow along similar lines.

Asymptotic Study For ASHN

Rs already noted in (5,2.15), ws have

W) & Ll max (Blx, J-Bloup x. )} - gg(’ 0) a.s.

,n - J,n \
1<k NEN e :{5.3.16)

as n -f} .
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flargovaer if ;U-;kg = M, then

max (B8{x, J=-plsup X5 ))-—(ﬁ(xi J)-Blsup x.n))-éo D ea.s

1<k Jen iTi#i LA - 3'7*1 Js ( }
b 5#3*‘17

as n - @

. -]
{5.3 .16) and {5.3.17) play important role to prove that © M and

- r ) w] f
rlM both converge to Cg @8 &8 T —> @ My M as in (5.2.11)

and (5.2.12) respectively)}. This fact together with (5.2.13) imply

“IN - c B:8. 88 T =3 ® which motivates the Tollowing theorem.

Theorem 5.4 - ¥ {E'JG) s_Qa,, E(g,o) (F‘T'N} —-% E’; ag

Proof of Theorem 5.4 - Fix (u-,o) £ ﬁé' then M- for some

1kJ

i = 1424000k

Considaer M, inf ij . m }
i nyi }

=@, Lotheruise

u

whers _ . w—n(B{x )-'B(SUP x. J) and r' = pe2c.
¥ a 0 J jfi 39
1
Then U r 2
T My e1,1
gty a o
- by =1
...:\ -wl } 1 l I > < F @ oxd A B
S F ZW o AW (5.3.18)

. K .
a i ;i el &} Piﬂ"’l,ln
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'

—l ‘
=y ) r —»cgas. asr -3 @ (a2s W, ~» m & r—>wm,
0 a

and both sides of (5.3.18) converge *o Cq 848 85 T — m by (5.3.16}).
-l

-]
t o
% T i“'kic S Cg @.s-

We now proceed as in the proof of Theorem & of Lai (1975)

By fatou's lemna lim inf Eg oy (Fm, )25 ceo{5.3.19)
r =m ,&" 0
For givem any small € » 0, define for i = 1,2,...k
(o2t e o i -
= 3 " - ; - - E
Li sup(Ln Z1 xin “i | or X “i i
n - n
— ~ 2 - 2 -
where X, ==nl Z X, Xin = nl LXK, .
j=]_ 13 - 3:1 *3
Then EU{J} (Li) <m ¥i=1,2,...k (by Lamma 6 of Lai {1975) and
H

4 s N T
the fact E.(E’o} (xij J)<o %32 l,and i=1,2,...k.)

Let L = max L,. Then E ,
gigk ()
2

it 7Y o By K il )

where o is a continuous function in sach of its argumsnt and

clearly olHg, My gocobh s Ui + 02,.“-5112(_ + 02) = Cg

pefine P(E) = min {Ej(ul’ Uypeesl s U_'L, UZ’”'uk) p 1ui - J.Lil < E and
e, - u; - 5% <E Wi =l,2,...k}

Thus p(E} ~> Cy (7 0) as € = O



- 118 =

i Al < b + : \ 1
ou 1 S {L+1) 1(L+lf:j*'l, ) Mi l(i""h 5 L~i~lj(Hare . denotes the
: 1 ° e indicator function
r . ) . t of 5)
On 2w, = 410, (M, -1} p(e) < u <
3 I F 1 s [ 5w
N, O J ) it}—l’lo

r
=% My =1<r p(e) (for sufficiently small &, P(€) > q)
[
]

r .
This B € (413 1, > TN {pray 9 Hn, > 1)

@] [w}
.t
< L+ —h' + 2
3, ( miﬂ J 1
.o=» 1im sup £ — <p-c—}-
7 r Y o {,0) T &
¥,
(=9 < 3 {5.3.20)
Now letting € —> 0O we have limswp E,, 4 (—F) & . {5.3.
P o (Efg} r ®
M
, i, A
Thus from {5.3.19) and (5.3.20) we have 1lim E (—F) =cg ...45.3.21)
rSm (ilyd) r '
(I
Recall from {(5.2.11), M = ihf‘(n Pomex W .21 5 =
L o1ggex ™7 S
= m otherwise
- = ;I} M % Eé. B8, eiss{SlSlzz)
in

(From (5.3.16), (5.3.17) and by similar reascning ssjthe proof of
L e, " L
Y Niﬂ > Cg @ o)

k
Observe N = /A N, =» KM Cess(5.3.23)
i=1 1 T 1



Thus cl < 1im ::.nf‘ E ) (rt %} {by Fatou's Lemma and {5.3.22);

RN (o
< lim sup E {(r* m)
T @ GhO)
‘ﬁc'l ) (ny (5.3.23))
< lim sup L 1§ i By {5.3.23
-]
= o
& .
-1 1 -] :
T  E T M) — o and as ' w31 a2 s
hus (i’g) (x* ™) }‘ g A0 IT 5 5§ I = m
be have E, . (‘::l m} "9’ E:'l . | HDD(E 4342&}
(kya) €

Similarly for M' defined in (5;2;12),' E(Mg)i"lﬂ'-é E‘i
]
. i 1-&:(5‘3#25)
ag I =3 @
The proof now follows Prom (5.3.24), (5.3.25) and (5.2.13).

Corollary 5.1 © lim Ey TN = (Bl(é))"l # 1= 1,2,.a.k uwhere
r 2o i

8,(8) = p(&° (K (w6 (dyy~1/ >-s(——<k+62(k“1>)‘1f2) with
B(x} as in (5.2.9) and © = - In T 1)

Proof of Corollary 5.1 . The proof follows at once from Theoram 5.4

K
noting the fact that cg = (6} ¥ (o) e U where
=1 M3

'QH is as given in (5.2.2).- Lt
i
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Bemark 5.3 1 1t can be shown by standard argument that

“ > 2] 5 > ‘ — lemﬂiﬂ.‘mw -
AR C) R e Tt Dol
R sy (2lers? (s
i i
2

2,‘} Bl(?)/ﬁlz — I as o - 0
Thus for small O, Bl(é} can be approximated by . The numerical

tables in Section 5.4 also verify this.
Remark 5.4 . Following as in the proof of Theorem 6 of lLai (1975} one

can show for any o~ O, E (&t ) & oas > m.
' (1,0) €

Remark 5.5 - feor the known O case, ASN is asymptotically equal to
-
rd wvide Mukhopadhyay (1983, pags 177). Fromp Corollary 5.1, ASN for

-2
unknown I ease (under H ) ie E, (n) :“f{ﬁl(é)}-l Zrd
i

(by Remark 5.7) which is expected.

5.4 . Mumsrical Study for ths "rocedurg R

This section is devated to the asymptotic comparison (as P*-qﬁ'lm
af rroozdure R wibhk shp oo - oeoonding fixed sample procedure Ha: and
the ES's tuo stage prnﬁedura, numerically .

Let ué fiﬁst taka up the comparison of R with HU. The
proeadﬁra RD suggests to take sample of size n, from each one of
the k populationg and sslset the population corresponding to tha

maximum of X, i-e. meximum of X
. in¥Tn in

(5.3.2)). This procedure is invariant under the transformaetion

For i = 1424.0eKy (Tn as in

X —3 aXth, a = 0, =@ <B<m.
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One can easily verify that the requirec sample size n, for

attaining P, {cs) =P ¥ 41i=1,2,...k is same &s that of the gorres-
i
ponding selection procedure for the known J case {due to Pechhofer

2
(1954)). Thus nhere alse g = 32 Tt where Tt is tabulated in
Table 4.1 of Gibbons st al {(1577).
M
E 1=+ 22
: - Y &
H,(N) N (=)

Thus-ﬁ-—n A S
o T, B, (8)

]

* .
8(5, k’ p ) (Bay) \r&(S#ail)
L i = l,z,oaakq

From now opwards we shall write EN  for EH M.
i

By Remark 5.3 for small values of 6, the ratio Ei EN is
approximately equsl to that for the known o case (vide (2.7} of
Mukhopadhyay (1563)). This implies the efficiency of the seguential
procedure R to the corresponding fixed sample procedura Hﬂ (for
urnknown O casa) is approximately same as that for the krown O cass.

Values of e(ﬁ,k,P*) are computed for different velues of
8, k and Pt The values show substantial saving in sample size for

procedure R with respeect to HBQ

Now to compare R with B05's two stage procedure one has to
put special consideration as the formulatior in S is different from

the present ons. 5o hore we procssd as follows
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'Let D“{ g0 £ a and suppose a 1is knaan Consider ED5 in the

1 ] : @ om e o ; "E‘J & Sl& - G an i
region -JL(E:’G) M.!‘ij _ i;_k--el}*-‘ o ) mhert_j | al ceo{5.4.2)
- - - - - e Lo o
Then u'f_kl MiE(__lE e = “‘Lk} r E}F“’lj - ad
B U e 1°
7R ke 97

Thus for this region (given in (5.4.2)) @08 pute more protection than
our procedura R, and we restrict our comparison to this parametric
region anly:

Now, call the sample size in E05, NB~ Then

. " .

s
. 23
£ (NB} 2 2 (vide the footnote at page 174 of B80S ) -
M ' »
EN T 842 2 . - 1P
e ENBS'W(G) Ty with ro=-In{Es
If 0 =a,t TP S i (5,k,P") (5.4.3)
= dy hen ENE"— m 12 = B P L] wid s
t

Tables {given below) show all the tabulated values of e(&,k,ﬁw)
are less than one. In fect the highest and the lowest calculated valuss
of e(8,k,F") are .64839 (= o{1,3,.9))and .33808 (= e(1,10,.939))
:gspectiuely: Thus for sufficiently simall 8 and large k and ﬁ‘,
procedurs R shows saving in semple size w.r.t. B5{uhen < = a).

If o < s, then (EN) (ENB)-}' <1 if

% 2 (a(6pk,p N

= (S4k ,P*) (53)')
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from tho tables, the numsricel valuss of oY (ﬁ,k,P*) gre found
to liep betueen 58145 {:(.SSSDSBl/?) tﬁ Jaaszs.{=(.aa539}l/2}. Thus
for sufficisntly small $& and large k oand P, the tables show low
a reasonably

W
values of 2(8,k,P ! which indicates in favour of R in

large set of values For o



- 1n(£’£} 52
Tables below show valucs of ey e fOp
B S 2
1 T
t
'5 = --1, 62’ -39 -'A’HS, 1'-
k = 3y 4y...10
k:
F = .500, .553, .975, .0S0, .559
TABLE 1 7 k=3
5 B, (&) P*= .oo0 P*= .o50 P'=.ops P* = .o00 P%= .g99
.01 .0099517 +60250 50242 .44837 40534 .35229
84 - .039867 .60401 .50387 44049 +40635 «35317
(05 .0B9334 +60649 50574 J45134 LADB02 35462
Jd6  L157922 .50952 508860 45389 441033 35663
.25  .245000 51428 51224 45714 L41326 ,35918
1 -928455 .64835 54068 48252 LA3E21 37912
TABLE 2 1 k = 4
5 B, (5) P*< .oo0 B = 050 F'= .ovs %= .u9p PY= .o99
01 .C099937 5 6E36 L48130 L46129 .35625 234822
04 4039900 456742 +46220 ~46215 39699 +34887
.09 L,0BI500 ,56916 L48359 L46357 .39821 .34994
16 .15B4A34 571589 <GB375 ~AE55 6 L3999] +35144
25 W246219 S7469 0 L.48839 .46608 L40208 +35334

1 .344858 «59503 250807 48790 41911 «36831




TABLE 3 7 k=5

£ 't H

2 5,(2) = om0 F'= g5 = .97 P=.90 P=.009
.01 .0099958 GAG22  L47019 (42617 35016 ,34514
L04  .039320 54700 47094 .42685 39078 34569
.08 .085600 54844 .47210 42730 39174 34654
16 L158743 55032 47372 42937 39309 234773
25 246960 55270 47571 43123 .39479 34923

1 .955032 STI7L L49213 45606 40836 .36124
ThREE 4 ! k=5
r ; * *

&2 p,(5) P*= tooo P'= .os0 P¥= Loms  F®= Looo  F*= Loog
.01 .0099963 53320 46117 42035 .38614 34313
04 .038933 53380 LABL77 42070 30665 34357
,09  .OBI6ES 53499 46272 62157 ,3B744 .34428
.16 .158950 53652 LAB404 42277 . L3BBSS 34526
25 J247458 53047 46573 42431 .38996 34652

1 .8g1991 55406 47921 AT 40125 «35655
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TABLE 5 k=7

*

2 # 3

8 B,(8) F=.o00 Fl=.sso Pf= Lo pYs Losn P= Loss
«01 +0099946 52328 V45625 41622 38321 34118
.04 2039943 52375 #65 665 41659 .38355 «34149
.09 089715 52467 45746 41733 38422 34209
W16 59008 52596 «45858 41836 38517 34293
.25 247814 52761 #4002 41567 38638 34401

1 «967062 54081 47153 +43017 39604 35261
TRBLE 6 § k = 8

52 B8) o%= w00 p'= .50 e'=. o5 %= om0 PYs Lo
.01 .0099969 51616 45114 41313 +38112 34010
.04 039950 51664 45156 «41352 38148 J3A0AZ
.05 .089748 51745 45227 1416 38207 34095
J6 . 2159209 51856 45324 «41505 38289 J34169
25 +248083 51895 5448 41613 38394 34263

1 #£970827 52145 #4545 0 =42537 «35241 235018




TABLE 7 & k=9

5% By () o= .o00 F*=050 PY= Loys P'= Loo0 PM= Loog
.0l 0099973 S1014 L4472 41011 L37510 33509
.04 039551 51082 J44755 4150 37946 .33941
.03 ,0B9776 S1127 44811 L1102 .37994 .33984
.16 159296 51225 .44898 41181 .38067 .34050
25 248293 51351 L45007 41282 ,38160 «34133
1 .973975 52363 .45894 42095 .38913 34806
TRALE 81 k=10

)

& 8,(6) p*= .900 P'= 950 P'= .975 A" = .990 P = .009
.01  .0099975 50613 L4411 L40B102  .37709 .33808
.04 039960 S0651 L4444 40861 37738 .33834
.09 .089799 S0713 L,44409 240891 «37784 33876
A6 4159366 .50801  .44577 .£0362 37850 33534
25 .248461 50013 LALETS 41063 J37933 .34009

1 « 976442 51821 «A5471 41784 38609 «34E15




CHAPTER &

NUMERICAL SOLUTION FOR BAYES SEGQUENTIAL PROBLEM OF TESTING THE SIGN
OF THE DRIFT PARAMETER OF A WIENER PROCESS

Gl Introduction

So far we have been dealing with invariant 5PRT and its extensicn
in the context of classification 2nd selection problem.

In this chapter we deal with the problem of testing sequentially
the sign of the drift pearameter K of a Yiener process jﬁ(t), tﬁ[ﬁ,ué} .

Here the data conpsists of a Wiener process X(%) with unknown
drift K and knoun variance 62 por unit timse The unknown dreift K
has a prior distribution which is normal with fixed mean Uh' and variance

2

O The problem is fto test

evs {6olal)

H

Hl:uga versus 1
tH<D )

2

when tha cost of incorreet decision is 4] and the cost of } : )
Belas2

sampling is c {units of money) per unit time. J; '
Cheonoff in a : .

/series of paper (1961), (1964 with Breskwell}, (1965) and {1972) consi-
dered the problem of finding an optimal Bayss procedure for testing the
hypotheses described in {6.1.1) with the cost structure given in (6ele2)e

A similar problem as in (6.l.1) with indifference zone {which is an

interval around M = 0} has been solved and generalised by Schuwarz (1962)»
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Chernoff (1961) showsd that the postsrior distribution of AU
iz given hy
J[(u{x(t'). o< £ < t) = N(v(s), s)
where
¥(s) = (1 a;’g + X% 0+ v 0™y,
(o2 ~2y-1

8 = (0
a + &t

and N{=z,b) is 2 normal distribution with mean a and variance b «
He also showed that Y{s) is 2 standard Wisner process in -8 scale,

- 2
originating at (yn, Sm) = (”h' Go) .

Let dly,s) = ¢ oF 8t + a1/ 1J(ys“1f2) -513;2 a> R Gi'z 8 >0 «

with  ¥(y) =@u) ~ jui(l = §C1ur))

where @®{u} = {zn}—ijZ exp(auzjzj for = < u<me
u
$(w) =~fm(xm :
PR

Cherneff reduced the above testing problem to the following
stopping problem 5 The standard Wiensr process ¥(s) is observed in
~s scale. The statistician may stop at any value of s{s ® 0) and
pay d{Y(s), 2)+ Problem is to find the stopping rule, that minimizes

the expected cost.



By taking,

. %
Vs ) =av{s)

* 2
8 =8 8

where a = c~1/3_§-2/3

*, *
one can mormalize the problem tov ¢ =1, c=1 and ¥ (s ) 14 a

. . : 2
standard Wiener process in - scale, starting at “(aﬂb, & g, )
Now d(y,s) = a-id*(f*,sﬁ) - G;QO“2 cee {Bo1s3)

- where d*(y*,s*)-a s“lj? ?Ty*e*'ifz} + {s*)'l vee (Gelod)

The copstart fa'  and © ﬁ;Fdz in the expression of vdiy.s) {vide

{6+1+3)) has ro effect on the optimal procedurs. . Thus ane can work
"

with d#{y*,s ) in etosd of d{y,s)e

Let

p(y*’$*) = inf E }f’d*(y* + Y*(T)’ S* -‘t)l . eaa (601'5)
T

L J

* where the irnfimum is taken over the set of all stépping times T .

From now onward we shall work on the sbove normalized problem and

for notational simplicity we shall write &,y and d for é*,ﬁ* and d
Chernoff shouwed that P{y,s)} satisfies the follouing free

boundary problem,

%‘-P”_,(y,s) = Pa(y.s) in €,

]

P(y,s)} dy,s} on ¢ 7
\;r see {(Bela6)

py(Yls) = dy‘Y;S} on <§CQ

py{a,s)' = 0
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whers ED is the optimal continuation region which is open and
3DD iz the boundary of €, » Scme modern techniques useful for
obtaining {(6.l.6) are available in Friedman (1975,1976)«

Chernoff obtained (with Breakiell for & <+ 0) the following

asymptotic expansicns for the optimal boundary y(s) ,

e - o~ : s 3 5
als) =8 lfzy(s) = -‘% /2 %‘l —-‘;—2—+ 15?'15 g® .--j for 8 = 0 «o(B.247)
' 1

O:-(S) =8 lfzy(ajm lnaa — lnEﬂT L E{lﬂas) l +-ir-l} Fﬁr 8 % [1 2] ..(5-1-5)

Here we find out the optimal boundary yls) (which is also the
S8ayes boundary) numerically by solving the free boundary problem (febspe)
given in (6.1.6}+ The purpuse is to throw light on the Bayes boundery.
Following Sackett (1971) we use here tha method of linss {introdueced by
Rothe {1930)) for solving the fabepe This is given in Section 6.2+

Chermoff and Petkau (1986) used a different numerical method
for solving the same testing problem (as given in (6+l.1}). They used
the technigua of backward induction which iz followsd by a contlnuity
correction, unlike the present case where we solve the Psbspe {(given in
(5;1-6))numerically. Our resulte are found to be very close to those of
Chernoff and Petkau (1986) asg indicated by Table G2

Thus the present chepter deals purely with a pumerical investi-
gation unlike the previocus onese. The problems in previous chapters are
with indifference zone and they were looked into with Neyman=Fearsonian
vigw point while the present problem is a Bayes sequential testing

problem without an Iindifference zone.
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This chapter is & revisad versicn of Ghesh, Mallik and

Ray Chaudhuri (1986}.

G+2 Computation of- the Baves boundary by Method of Lines

Lt 5‘ = 2—13 eee {Bs2e1)
U(y,sl) = p(y,at) - a!l/z*f(y371/2) eoe (Ga2o2)

By using symmetry and {6.2.1), (B+2+2),the fabeps (6ele6) changss to
T ?

the following fres boundary problem |

uw(yss') = “5'(:1,8'}5 0<y<ylsy

[} -1 .
U{ﬁs ),5')3 (25'} S, >0 noa'.(ﬁn'\Z'SJ
RER AT
, 1 1 '
U)'( .0 98 )= 5" g 20,

P
where y(s ) is the free boundarye.
1 p A
To remove the singularity at s = 0, Sackett (1971) decomposed

1
U{y,s ) as follows,

Wyee') = Wlyys') +Ulyss') s ces (6:208)
whare
Wyo' ) = =i 5 (-1)" ol soe {64245)
28 =0 (2n)Le:
Then the free boundary problem given in {6e2.3) reduces to the

follawing free boundary problem,
f ! Fo i
(i) UYY(YrB ) = va‘(v,s Yy 0<y<y(s Yo
T 1
(33) v (0 ) =2 for 8 >0
yﬂ" 1 , e ¥ i ' s (6-2&6)
(i11) v(y{s Y,e')= Fly{s )y ) for s >0 !

() v 5la'ee) = syl he) ror ' >0, J



where
® ot -
t 1 Al Nt 2 ekl _
F(.Y!E' ) =5 ("’1} A3 Vi at ito{ﬁ.?,o?)
2 nel iZnJ.
' m 1 nt 2 M= o
Glyse ) =2£ 5o (-1 T yh20=1)g, ={rm+1) vee{642.8)
n=1 »

The Mathod af L:_i.‘ges Aloorithn

t
In this algorithm by discretizing the tims scals 8  @e e~

place the squation (6+2.8) (1) by the system of ordinary differsntisl

squations,
2 | v (x) -V . (x}
_d?u (x) = 2 Nt '] DL x< s e N = 1.,2'--1 ovo(SoZ-g)

whera s is to be chosan so that,
=1 Y = '
L=}, =rF,m, A

£ v (s 3= s s oh) J

V(%)

seef 502 410}

and

Un(x), x <8

veu{ 502 #11)

Lt

F(an, nh) + E(en, nh){x ~ sn), x>s8 e

Te initiate this procedure, it is necessary to specify ﬁ;(x)q The
choice of Fﬁ;(x) ia taken as x/2 (with 8, = 0+ As described in

' '
Sackett {1971) it is rsascnabls to expect F(;E; }» 8) to tanc to



- 135 -
. in
zero as s  tends to zero,flight af the asymptotic sxpansion of the
optimal boundery given by Breakwsll and Chernoff (2964 {vide {6+1.7))

-y

Thus the choice of Uo(x) is justified by (G6e2.6(1i)) and {(6+246{1i1}},

Now the eguation (6.2.9) has the following explicit solution,

Un(x) = A cnah(xh-1f25 + B, ainh(Xh—ljz)

j' ) - qsi(ﬁlZJlZ)
1 - . -] /z‘
- V. sinh{{x-t)n /)
1 1 :
ni/2 0

whers A_ and ‘B are Functions of h, n and’an .

n
Using the conditions. in (642.10) and (6+2.12) ons can shouw

that e is the zerno of tha following non=linear function,

'gn(a) = F(a,nh) sinh(sh-lfz);hlfz G{s,nh) cush(ah'lfz}
- -cu(ﬁl2t13)
+ % 1‘11/’2 - 1"1-}1"‘a f’i}"n_'l(g} cnsh(&hwlﬂ)dg
8]

The method of line alporithm is as follows 3

l. Find the roct of the sgquation ‘7n(s) = 0 and denote
it by 8, =

2.+ Using the conditions in (642 410) and {52 +12) comoute
Hn and Bn »

3. Using these A and B, compute Un(x).Frum (B+2.12)

Eal
far 0 < x E'Bn and then compute Un(x).
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Ssckett {1971) used this method to sclve the free boundary
problem piven in {6.2.6) for U< s < 2. e extended his computation
for 0< s‘ £ 50. Faor, 0 < 9' £ 5, we used h = J0i, for § < s £ 25,
we used h = 04 and for, 25 < s| < 50, ve uged h = 5

In Table 6.1 we heve tabulated &(s) = ?15)8—1/2 where ?ts}
is the optimal boundary obtained by the method of lines?dascribed ag
sn(the zora of the fanction ‘qn(s} vide (6«2+13)) for various values of
n « An estimete of the nominal significance level ézs) =1 ~n§fﬁls))
{say ézs) =1~ %(d?s Y) and ﬁ?ﬁ,s), the estimated Sayes risk obtained
by the method of lines are also tabulated in Table 6el« In Table 6+2 we
heve tabulated E{s} given by the method of line boundary as well as by
Chernoffe=Potkau (1986) boundery. Cemparing the sacond and third columns
of Teble &+2 one can conclude that the method of lines and Chernoff=
Fetkau methed are of same accuracy. Chernoff and Patkau (1986) used a
continuity correction on the boundary cbtained by the method of backward
induction, while in the present case no such boundarny correckion is

needad to attain the same level of accuracys
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TABLE Gl
) c?ts} = %E/% é\(S)F 1 -~ '15-({;25)} SEDiB}
8

ol «06294 w4745 2 J74238
+6 w11432 4545 1+95364
1.0 23431 LAQ74 1434134
2 a0 53502 2953 -B0B744
3.0 77882 2181 72458
440 97170 e1655 -635 U6
5 o0 1.126828 1296 57539
100 1.62829 D517 42646
200 2.11418 L0173 32026
3040 2439143 0084 27365
400 2 57008 051 224342
50,0 2470303 0034 22137
6040 2 .81972 20024 20575
7040 2 ,30822 0018 $19277
800 2 +08214 0014 18169
900 3.04568 0012 «17201
100.0 3.10135 0010 16340

%(s) = The optimal boundsry obtainsd by the method of lines s

A ‘
P(0,5) = The Bayes risk abtained by the methad of linses.
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TABLE 6.2

E{s) = 1 - ‘:5(63\, &)

8 Mathod of Lipne Chernoff-Petkau
o4 «4749 T4
Yol «4074 4073
2.0 «2 963 2964
5«0 « 1295 «1300
1C.0 0517 522
20.0 +0173 +0176
500 0034 #0306
160.0 L0010 #0810

M ]
Figure 111 on the page 140 gives a graphical view of afs) (by
mothod of lines) together with afs) for s + ® (using the

first throe terme of the RHS of (Swl,s))w
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