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Chapter O

Introduction

The main theme of this thesis is to study the theory of aleebraie oveles on
singular varieties over a field, This has been studied before extensively by
Collino, Barbieri-Viale, Levine, Srinivas among several others, Our interest
in this thesis is to address some well known problems in the theory of zero-
cveles over normal varieties. The use of K< theoretie technigues in onr proofs
lustrate the interplay between the study of algebraic cveles and algebraic

K-theory.

For & quasi-projective surface X over a field k. we define FPRR(X) to
be the subgroup of the Grothendieck gronp Ky(Y) of vector bundies gen-
erared by the classes of smooth codimension 2 points of X By o result
of Levine [L3] (see also [BSD), one knows that if & 15 algebraically closed,
then F2RG(N) is naturally isomorphic to CH* (X'}, the {cohomological) Chow
group of zero eyeles on X modulo rational eguivalence. We recall here that
7ero cveles are elements of the free abelian group on smooth. codimension 2
points of X Following Levine and Weibel [LW], the cveles rationally equiv-
alent to 0 are defined to be sums of divisors of suitable rational functions
on “Cartier carves” in X, It is known by the work of Blach and Levine
[L2; that CH*{X) = H*{ XN, Ko v} for any quasi-projective surface X over an
algebraically closed field.

For any closed subscheme 2 of X, we denote by A [ X, 7). the relative K-



group as defined, for example, in [CS], and let F2K,(X, Z) be the subgroup

of Ko(X, Z) defined by the classes of smooth points of X"\ Z as in [CS].
These definitions are particular instances of the more general theory of

[TT]. where for example the negative relative K-groups are defined as well.

In Chapter 1, we set up various definitions, notations etc. and discuss
some background material. We also prove some lemmas and other results
needed for the rest of this thesis. In Chapter 2. we consider the problem of
understanding the relation between the Chow group of 0-cvcles on a normal
quasi-projective surface .X over a field, and that on its desingularization. Let
7: X — X be a resolution of singularities of .X, with reduced exceptional
divisor E. We prove a formula, conjectured by Bloch and Srinivas. This
formula describes the Chow group of 0-cycles CH2(X) of X, as an inverse
limit of the relative Chow groups -F2R,(.X, nE) of X relative to multiples
of E. Later in Chapter 4, we prove a result, which will imply that, if the
ground field & is algebraically closed of characteristic p > 0, then the relative
Chow groups of X relative to all non-zero multiples of E are same. Hence in
this case, C H?(X) is isomorphic to the relative Chow group F 21\'0(}:’, E) of
X relative to E. In the end of Chapter 2. we demonstrate the necessity of
taking higher multiples of the exceptional divisor in characteristic 0 (see [S5]).

In Chapter 3, we study some problems which are analogues in the singular
case of conjectures of Bloch-Beilinson and of Bloch. The first result of this
chapter is motivated by a conjecture of Bloch and Beilinson, that the Chow
group of 0-cycles of a smooth projective surface over the field Q of algebraic
numbers is always “finite dimensional”. This is in contrast to Mumford’s
infinite dimensionality theorem for complex projective surfaces with positive
geometric genus. Equivalent formulations of the conjecture are:

(a) for smooth projective surfaces over Q, the Albanese map is always injec-
tive on cycle classes of degree 0, or

(b) the Chow group of O-cycles of a smooth affine surface over Q is always 0.
We will prove that for a 2-dimensional graded normal affine domain over



Q, the Chow group of 0-cycles vanishes, and all projective modules are free.
We remark here that this result is not true in general when Ry = C, by an
analpgue of the Mumford theorem: examples can be found in {S3].

This result suggests that the Bloch-Beilinson conjecture, as formulated in
(a) or (b) above, should be valid even for singular surfaces. Here the Chow
group is to be taken in the sense of [L\W]; the Albanese variety in (a) should
be that defined in [ESV].

As an explicit example, if A = Q[r,y, z]/(z" +y" +2"), where n > 4, then
F2Ky(A) = 0 (in fact all projective A-modules are free), while F2Ky(A® C)
has uncountable rank (and is in fact infinite dimensional, in an appropriate
sense). As far as we are aware, our result yields the first known examples
of this phenomenon for normal (but singular) affine surfaces. In contrast,
as far as we are aware, there is no similar example known at present of this
phenomenon for a smooth affine surface, though the Bloch-Beilinson con-
jecture predicts the abundance of such examples. For example, the ring
B = Q[z,y,2]/(z" + y™ + z" — 1) is expected to have the same property:
conjecturally F2Ky(B) = 0, while Mumford’s theorem implies F2Ky(B ® C)
has uncountable rank.

The characteristic 0 part of our other main result of Chapter 3 is a relative
version of the famous Bloch Conjecture, which says that if X is a smooth
projective surface over C with py(X') = 0 (or equivalently if H?(.X, Ox) = 0),
then the Albanese map

ay : Ag(X) — Alb(X)

is an isomorphism (here Ap(X) = F2K(X )geg0). This conjecture is known
in certain cases, e.g., for X which is not of general type. We show that if
X is a normal projective surface over an algebraically closed field % of char-
acteristic 0, and if X and E are as before, then CH?(X) = CHQ(X"), when
H}(X,0y) & HQ(K', Ox). If k is uncountable, the converse also holds. In
the case of characteristic p > 0, the isomorphism of the cohomology groups
above is replaced by the surjectivity of the natural map Pico():’) — Pic®(E).
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We remark that one can restate the condition for isomorphism of Chow
groups in positive characteristics in the following equivalent wavs, using ¢-
adic cohomology:

H} (X, Qi(1)) = Hi (E.Q(1)), or

HE (X, Qe(1)/NS(X) ® Q = HE (Y. Qu(1))/NS(X) @ Q.

We also prove some interesting corollaries of this, about normal rational sin-
gularities.

The final chapter of this thesis is devoted to proving Roitman’s torsion
theorem for normal varieties over algebraically closed fields. We show that the
torsion in the Chow group of 0-cycles on a normal projective variety coincides
with the torsion subgroup of its Albanese variety. This is a culmination of
work of Roitman, Milne, Collino, Levine, and Srinivas, the last progress being
in the mid 1980’s. The outstanding open problem remaining, after the above
earlier work, was the case of p-primary torsion for singular varieties in positive
characteristic p > 0. This technically difficult case has been resolved in the
present work, completing the proof of the theorem in the correct generality.

As a consequence, we prove that the Chow group of 0-cycles on a nor-
mal affine domain over an algebraically closed field is torsion free. This was
known before in characteristic 0, and also in positive characteristics for nor-
mal varieties (see [S6]) of dimension three and higher. So the new result of
this kind in this thesis is for affine normal surfaces.



Chapter 1

Preliminaries

In this thesis, a wvariety X will mean a reduced, connected and separated
scheme of finite type over a field. We will usually restrict to quasi-projective
varieties. X will be called a surface, if it is 2-dimensional.

1.1 The Chow group of 0-cycles on a singular
variety

Let X' be a quasi-projective variety of dimension n over a field k. Let X,
denote the smallest Zariski open set containing all non-singular closed points
of X which have codimension n, i.e., which lie on n-dimensional irreducible
components of X. Let X, = X \ Xyeg. A zero-cycle on X is an element of
the free abelian group Z™(.X') on the set of closed points of X,.;. For a 0-cycle
d=3"T_ nzin; # 0V, let supp & = {zy,---,z,}, denote the support of
J.

A Cartier curve C on X is a purely 1-dimensional closed subscheme of X'
such that no component of C is contained in Xy, and C is a local complete
intersection in X at all points of C' N X,,. From the definition, it is clear
that if C is a Cartier curve on X, then any Oc-module has finite homological
dimension as an Oy-module and hence there is a well-defined homomorphism
Ko(C) — Ko(X). Here Kp(X) is the Grothendieck group of vector bundles
on X (i.e., of locally free coherent Ox-modules).



Let C' be a reduced Cartier curve on X and let Cy,---,C, be its irre-
ducible components with generic points ny, - - - , 1) respectively. For a closed
point £ € Xyeg N Cj, denote by O, ¢,, the local ring of C; at . Let f €
k(C)* = [I'=, k(C;)*, which is a unit on C N Ngng, and let f; = a,/b, be its
component in k(C;)*. We set

(fi)Ci = Z (I(O-’l',ci/al‘ol,ci) - l(OI,C" /bIOI.C;‘))'[‘T]'

T€C;

Here I(A) denotes the length of an Artinian module M. Finally, we set

(Ne =Y (e

t

It is easy to see that this definition of (f)c is independent of the choice of
chosen local expressions for the f;’s. Also (f)c¢ is a O-cycle on X supported
on C. Let Z"(X') denote the free abelian group on the set of closed points of
Xreg and let R*(XX') denote the subgroup of Z”(.X) generated by the cycles
of the form (f)¢ for all reduced Cartier curves C on X, and all f € £(C)*
which are units on C N Xy

Definition 1.1.1 The Chow group of 0-cycles CH™(X) = CH™X, Xing) 15
defined to be the quotient

CH"(X) = ;Ef;

If X is irreducible, and normal, then it follows from the results of [L3]
(see also [BS1], section 2) that
Z"(X)
CHY(X) = ——
( ) RH(X)I
where R*(X)" is the subgroup of Z"(X) generated by the set
{(f)c| C is irreducible, C N Xgng = @, and f € k(C)"}.

The reader is referred to [LW] and [BS1] for more details regarding the Chow
group nof O-cycles on singular varieties.



Let Ky x be the Zariski sheaf on .X' associated to the presheaf U +—
K,(T'(U, Oy)), where K, denotes Milnor's (or equivalently Quillen’s) K-
group of a ring (see [Mi], [S4]). The following theorem relates 0-cycles on a
surface with Zariski cohomology.

Theorem 1.1.2 (Bloch, Levine, [L2]) Let X be quasi-projective surface
over an infinite field k. Then, there s a natural isomorphism

CH*(X) = H2(X, Ko x).

Next we give another kind of identification of the Chow group of 0-cycles
on a surface .X. This relates CH?(X) with a subgroup of Ky(X). Let
F'Ky(X) be the kernel of the rank map Ko(.X) — Z, and let F2h(.Y)
be the kernel of the determinant map F'Ky(X) — Pic(X). Then one has
F'/F? & Pic(X).

Theorem 1.1.3 (c¢f. [L3], [BS]) There is a natural isomorphism
CH*(X) = F2Ky(X).

We see that the (cohomological) Chow group as defined above, is closely
related to the Grothendieck group Kg(XX') of locally free sheaves, just as
the (homological) Chow group defined by Fulton (see [S4]) is related to the

Grothendieck group Gy(.\') of coherent sheaves.

1.2 Relative K-groups

In this section, we recall the definitions and some properties of relative K-
groups. Let T be a Noetherian scheme. Let P(T) denote the exact category
of coherent locally free Op-modules, and let K(T) = BQP(T) be the sim-
plicial complex defined by Quillen whose homotopy groups 7;+,(K(T)) are
the Quillen K-groups K;(T') (see [S4] for example). As usual, the base point
is the class of a 0-object. Let S C T be a closed subscheme. Let F' denote
the homotopy fiber of the natural map K(7T') — K(S) of topological spaces,



induced by the exact functor P(T) - P(S) given by restriction of locally
free sheaves; then we define

I\’i(T, S) = ’/T,‘_H(F)

for all : > 0. Using the long exact sequence of homotopy groups associated
to a fibration, the relative A'-groups fit into a long exact sequence, which we
refer to as the relative K-theory ezact sequence of the pair (T, S),

-« = Ki(T,S) — Ki(T) — K;(S) 2, K (T,S) = --- = Ko(T) = Kol(S5).

The relative K-groups satisfy some functorial properties (see [CS]). For
example, a morphism of pairs f : (T',S") — (T,S) induces maps f* :
Ki(T,S) = K;(T', S") giving a commutative diagram of the associated long
exact sequences. Another property is that if W C T is a closed subscheme
of finite homological dimension, such that Ow and Og are Tor-independent
over Or (for instance, if 1 is disjoint from S), then the scheme theoretic
intersection W N S has finite Og-homological dimension, and there are nat-
ural maps K;(W,SNW) — K;(T,S) compatible with the natural (“Gysin”)
maps K;(W) — K;(T) and K;(WNS) — K;(S). Here “natural” means that
if f:(T",S") — (T, S) is a morphism of pairs which is flat over the support
of IV, and if W' = W x¢ T”, then we have commutative diagrams

K,Ww.wns) — K(T,5)
1 Tf
K;,(W,WwnS) — K(T,9)
In particular, for a quasi-projective surface X and a closed subscheme
Z, taking 1V to be a smooth codimension 2 point of X \ Z, and i = 0, we
can define the relative cycle class [W) € Ko(X, Z) as the image of the unit
element of Ko(1W) = Z under K¢(W) = Ko(W, W N Z) - K¢(X,Z). Then
the relative Chow group F?Ky(X, Z) is defined to be the subgroup generated
by such classes [1V]. With the relative K-groups and relative Chow groups
defined, we prove the first lemma in this thesis, which will be used in the
sequel.



Lemma 1.2.1 (a) For any quasi-projective surface X and closed subschemes
S C Z C X of dimension < 1, the natural map F?Ky(X,Z) —
F?K,(X,S) 1s surjective. If U C X is an open dense subscheme, then
F?2Ky(X, Z) is generated by the classes of smooth codimension 2 points

of U\ Z.

(b) If X, X' are quasi-projective surfaces, Z C X, Z' C X' closed sub-
schemes, and f : (X', Z') = (X, Z) is a morphism of pairs such that
X'\ Z' = X'\ Z is an isomorphism, then f* : Ko(X,Z) — Ko(X', Z')
induces a surjection f*: F2Ry(X,Z) = F*Ko(X', Z").

Proof. The assertion (b) is obvious from the functoriality properties of rel-
ative K-groups listed earlier, since F2Ky(X, Z) and F?Ky(X', Z') have the
same sets of generators, namely the relative cycle classes of smooth codimen-
sion 2 pointsof X \ Z = X"\ Z'.

The first assertion in (a) is an immediate consequence of the second,
which we now prove. Let U C X be dense open, and z € X \ Z a smooth
codimension 2 point. By Bertini’s theorem, choose a reduced hypersurface
section C C X such that z € C is a smooth point, C N U is non-empty,
C N Z is finite, and C does not contain any associated point of Z. Then
Oc and Oy are Tor-independent over Oy, so that there is a natural homo-
morphism Ko(C,C N Z) = Ko(X, Z). This induces a homomorphism from
the relative Picard group Pic (C,C N Z) — F?Ky(X, Z) such that the class
[z] € F2K(X, Z) is in the image. It is standard that Pic (C,C N Z) is gen-
erated by the classes of smooth points contained in any dense open subset of
C\ Z, for instance (CNU)\ Z. a

1.3 The group SK;,(T) as Zariski cohomology

In this section, we define another A’-theoretic notion and its cohomological
interpretation in some situations. Let T be a Noetherian scheme. Let S be
the finite set of associated points of T, and let Ost denote the semi-local



ring of S on T. We define
SK(T) = Ker(K(T) — K1(Os1))-

It is easy to see that SK(T) can also be expressed as the kernel of the
natural map K;(T) — I['(T, OF). We recall that this map is naturally split
and surjective. The splitting is given as follows.

Fix an element a € T'(T, O7). Then a determines a unique morphism

7a : T — Spec(Z[t,t71}),

such that 7,*(t) = «. Here, t € (Z[t,t7'])* = Ky(Z[t,t™']) is the standard
class. Now we map « to the image of ¢ in K;(T) under the induced map

7" K((Z]t, t71)) — K (T).

This gives the required splitting. Thus, one has the following short exact
sequence, which is naturally split.

0 — SK(T) — K\(T) — T(T, 0}) — 0.

We prove the following lemma to give a cohomological understanding of the
group SK;(T) in some situations.

Lemma 1.3.1 Let T be a quasi-projective scheme of dimension < 1 over a

field k.
(a) There is a natural isomorphism
SK\(T) — HYT,Kar).
In particular, if dim T = 0, then SK{(T) = 0.
(b) If T' C T, the restriction map SK,(T) — SK,(T") is surjective.

(c) If T is a closed subscheme of a smooth surface Y over k, then there
is a surjection SKy(Y) — HY(Y, Kyy) making the following diagram
commute

SKi(Y) ——— H'(Y,Kyy)

l l

SI\'l(T) _— HI(T, KQ,T)

10



Proof. The proof of (a) is based on the Brown-Gersten spectral sequence
constructed in [TT]

E3? = Hp, (T, K_g1) = K_4_,(T).
Since dimT < 1, EP? =0 for p # 0, 1, so we compute easily that
FUK(T)/F'K\(T) = EX ' = E)™' = HYT, K1 1),

F'K\(T)/F*Ky(T) = EL™? = E} ™% = H\(T, Kax),

and
FiI\"l(T)/Fi+11\’1(T) =0V i>2

= F*K,(T) =0.
Hence we get a short exact sequencé
0— HY(T,Ky7) — K\(T) — HY(T, K, 7) — 0

which gives the desired isomorphism of (a). The assertion (b) is a conse-
quence of (a) and the following

Sublemma 1.3.2 For any scheme T and a closed subscheme T', the canon-
ical map of sheaves Ky — Ky is surjective.

Proof. It is enough to prove the surjectivity at stalks. But we know that
for a local ring A, K,(A) is generated by Steinberg symbols (see [S4]), and
hence the map on K3 is surjective for surjective map of local rings. a

To prove (c), we use the BGQ-spectral sequence for smooth varieties
(which is a special case of that of [TT])

EP?=HE (Y,K_gyv) = K_g_,(Y)

to get F'R1(Y) = SK (Y) and F'R\(Y)/F?K,(Y) = EL™2 = HY(Y, K, y).
Hence, there is a surjection

SK1 (}/) —» Hl(}/’, KQ,Y)-

-
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The commutativity of the diagram follows from the functoriality of the spec-
tral sequence of [TT]. O

Remark We remark here that the more sophisticated methods of [TT] give
generalizations of the relative K-groups also for negative indices 7, and yield
a Brown-Gersten spectral sequence in the relative case (see [PW]): for a pair
(T, S) there is a spectral sequence

EY? = HY(T,K_q(r,5) => K_,(T,5).

Here K 1,s) is the sheaf associated to the presheaf U +— K;(UNT,UNS), and
in this spectral sequence, the indices of the A’-groups and sheaves are also
allowed to be negative integers (this is exploited in {We]). For an irreducible
surface .X and a closed subscheme Z of dimension < 1, we obtain from the
spectral sequence an exact sequence

0= H*(X,K, (5 2) = Ko(X,Z) = H'(X,K, 5.4) =0 (1.1)
where

HY(X,K, 5.2) = H'(X,0% ,) % Pic(X, Z)

(X,2)

is the relative Picard group of isomorphism classes of pairs (£, s) where £
is an invertible sheaf on i’, and s is trivialization (i.e., a nowhere vanishing
section) on Z of £ |z= L® Oz. One can show using Proposition 1.4.4 below
that the subgroup HY(X Ky (%,2)) C Ko(X, Z) coincides with our relative
Chow group F?Ky(X, Z), at least when Z is contained in the exceptional
divisor of a resolution of a normal surface. We will not explicitly use any of
these remarks in the sequel; however, a result of [PW], used in the proof of
Theorem 2.0.5 in a latter chapter, is a consequence of (1.1) combined with
[GW]. If, however, we define the relative Chow groups to be the appropriate
K-cohomology groups, then one gets a version of Theorem 2.0.5 expressed in
terms of these groups, which can be proved “by elementary methods”, i.e.,
without the use of [TT]. A similar comment applies to the remaining results

12



of this thesis, which are phrased in terms of relative Chow groups.

Next we prove a simple lemma, which we will refine later in a special
situation. This will give us a bound on the kernel of the map from the
relative Chow group of the pair (., Z) to the absolute Chow group of X" in
terms of the group SK(Z), if the underlying subscheme Z is ‘small’. This
often reduces the problem of understanding the Chow group of 0-cvcles on
surfaces to the understanding of relative Chow groups and groups SAh, of
subschemes.

Lemma 1.3.3 Let X be a quasi-projective surface over a field k and let Z
be a closed subscheme of X. Then

ker (F2Ko(X, Z) — F2K,o(X)) C image (9 : SK1(Z) — Ko(X, Z)).

where 0 : K,(Z) — Ko(X,Z) is the boundary map in the ezact sequence
for the pair (X, Z), obtained in Section 1.2. In particular, if dim Z = 0, then
F*Ky(X,Z) — F?Ky(X) is an isomorphism.

Proof. Let a € ker(F?Ko(X, Z) — F2Ky(X)), so that a = 9(3) for some
B € K\(Z). Write 3 = o + 3, with 3y € I'(Z,05) and 3, € SK,(Z). We
claim 9(0) = 0, so that a = 9(f,).

Indeed, let 6 be a O-cycle representing «, and let D = suppé. Then
DNZ =19 and D is a finite set of points. Clearly a = 0in Ko(X \ D, Z),
so that there exists v € K)(X \ D) with v — 3 under the restrittion map
Ky(X'\ D) — Ky(Z). Write 7 = v + 71, with 99 € T(X\ D,0%), m €
SK{(X\D). Then ~; — ;. But D consists of smooth, codimension 2 points
of X, so that o extend to a global section ¥y € I'(X,05%) C K(X), which
restricts to Sy, and so d(fp) = 0.

In the case when dim Z = 0, we have SK;(Z) = 0, so lemma 1.2.1 implies
F?Ky(X,Z) = F?Ry(X). &

13



1.4 K-groups of blow-ups

This section will be devoted to proving some results about the K-groups of
blow-ups of Noetherian schemes. We will be particularly interested in the
case of blow-up of normal quasi-projective varieties. Recall that a morphism
f: X — Y of Noetherian schemes is said to be of finite Tor dimension, if
there exists a positive integer N such that the Ox-modules Tor®* (Oy, F) =
0 for all coherent Oy-modules F for all i > N.

Proposition 1.4.1 Let f : X — Y be a proper morphism of finite Tor-
dimenston between schemes supporting ample line bundles. Then there is a
push forward map f, : Ki(X) — K(Y'), such that the projection formula
holds, i.e., for any x € Ko(.X), y € Ki(Y'), we have the formula

L@ f1 () = ful=z) -y
Proof. See [S4], Proposition 5.12. O

Proposition 1.4.2 Let 7 : X! — X be a proper morphism of finite Tor-
dimension between Noetherian schemes supporting ample line bundles. As-
sume that for a dense open subscheme V" C X, the restriction 7~ '(V) — V
is an isomorphism. Then the natural maps n* : K, (X) — K,(X') are split
injective for all 1 > 0.

Proof. From Proposition 1.4.1, there are homomorphisms 7, : K;(X’) —
Ki(X), such that m,on*(z) = m,(1)-z for z € K;(X). Here m.(1) € Ky(X) is
the image of the unit element 1 = [Ox/] € Kp(X'). Since 7 is an isomorphism
over a dense open subscheme V of X, 7,(1) € Ky(X) restricts to the unit
element in Ky(V'), and hence m,(1) € Ko(X) is a unit in the ring Ko(X'). We
see that 7* clearly splits the push forward map. O

Corollary 1.4.3 If X s integral, and 7 : X' — X 1is the blow-up along a
local complete intersection proper subscheme, then n* : Ki(X) — K;(X') is
split injective for all 1.
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Proof. 7 is an isomorphism outside the local complete intersection closed
subscheme. a

In fact 7,(1) =1 € Ko(X) in the situation of the corollary, but we don’t
need to use this.

To conclude this section, we prove the following refinement of lemma 1.3.3.
When £ is algebraically closed of characteristic 0, and X, X are defined over
a number field, this was proved in [S8] by a different method. Though one
can get by without using this result in the proofs of the theorems given in
this thesis, it has a certain conceptual significance, since
(i) it gives a formula for the kernel of the map on Chow groups under a
resolution of singularities, instead of just an upper bound, in terms of SK)
of exceptional divisors

(ii) using [TT], it implies that Ko(.X,Z), which was defined in a formal
way using homotopy theory, is in fact generated by the classes of relative
0-cycles and by elements of Pic (X, Z), and that there is a “Bloch formula”
F’Ky(X,Z) = H3(X,Kyx.2))

(iii) it suggests that the sheaf R‘W,ICQ’X, satisfies a Formal Function Theo-
rem,if 7 : X — X is a resolution of singularities of a normal quasi-projective
surface X. For technical reasons (basically, in order to use results of Levine
as formulated in [S4], Chapter 9), we assume the ground field k is infinite,
though presumably this hypothesis can be eliminated with some more work.

Proposition 1.4.4 Let X be an integral normal quasi-projective surface over
an infinite field k, and w : X — X a resolution of singularities, with reduced

ezceptional divisor E. Let Z be a closed subscheme of):' supported within E.
Then

ker (FQKO(X’, Z) — F2K0(X’)) = image (a . SK1(Z) = Ko(X, Z)) .

15



In particular, there is an ezact sequence
SK1(X) = SK\(Z) = F*Ko(X.Z) = F?Ky(X) = 0
Proof. By lemma 1.3.3 it suffices to prove that
image (a - SK1(Z) = Kol X, Z)) C F2K,o(X, 2).

Clearly Z is a subscheme of nE for some positive integer n. From lemma 1.2.1
and lemma 1.3.1, we are reduced to considering the special case when Z =
nk.
Let W =X X x Spec Og v, where § = X,  is the singular locus. Then
W is regular, and (lemma 1.3.1) there is a commutative diagram
SKy(W) — SK\(2)

+ =
Hl (IV, K:z,w) —_— HI(Z, Kz’z)

and hence by composition with 0 : SK(Z) — KO(,{', Z), an induced map
o : H'(W,Kyw) = Ko(X, Z).

We claim that the image of this map lies in F2Ko(X, Z).
In fact, we claim this map has the following “more concrete” description.
Comparing the Gersten resolution (see [S4], Chapter 5) for K, g,

0K, 5~ WK (k(X)) = @, piinnk(z) = @ 1.2 0

TEX?
and its restriction to W, a 1-cocycle for @ € H'(W, Ky ) is an element

ae & k(z)'c @& k(z)°,
IGW‘ IE}‘

and hence by taking the coboundary on X, yields a 0-cycle 6 supported on
X \ E; the class of this 0-cycle in F2Ky(X, Z) depends only on the element
in H'(W, Kq1y), and is the element p(a) (up to sign). To see this, note that
if D = supp 4, there is a commutative diagram with exact rows

SK(X) — SK|((X\D)—> KyD)—

=l 1 10
SK\(X) —SKi(Z)—» KoX,2)-
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where the top row is a localization sequence for the inclusion of the open
subset X' \ D C X, and the bottom row is the exact sequence of the pair
(X, Z). This is induced from the commutative diagram of spaces

K (X)

T~

K (X \ D)

/

K (2)

and standard properties of homotopy fibers. The homotopy fiber of K (J’\v) -
K (X\D) is identified with K (D) by Quillen’s localization theorem (see [S4],
Chapter 5). One verifies from the definitions that if F' is the homotopy fiber
of K(X) = K(Z), then the induced map K (D) — F from the above
commutative triangle coincides with the “Gysin” map, inducing K;(D) —
I\’,-(}:’, Z) on homotopy groups. In particular, the induced map 9 : Ko(D) —
Ko(}? ,Z) is just the relative cycle class map restricted to points of D. Now
& determines an element of H'(X \ D,K, z\p)s which lifts to an element
o € SKI(‘{' \ D). So it suffices to observe that the localization boundary
map SK;(X \ D) — Ko(D) maps o to the class of 4.

So we are reduced to proving that the natural map H'(W,Kw) —
HY(Z,K, z) is surjective. Now from results of Levine (see [S4], Chapter 9,
pp- 221-224) one knows that

Hl (IV, Klg,w)/imageH,l;(W, ’Cz,w) = SK()(C),

where C is the category of Og x-modules of finite length and finite projective
dimension ([S4] deals with the case when S is a single point, i.e., Og x is a
local ring, but the arguments there are easily adapted to the semi-local case),
and SK(C) is the kernel of a natural map Ky(C) = Go(E) (here Go(E) is
the Grothendieck group of coherent Og-modules). Now SA(C) remains
invariant under étale base change of Spec Og x-schemes (preserving residue
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fields of Og x); so does the subscheme Z = nE, and also H(W, K,u). So,
after passing to a limit, we reduce to proving the surjectivity of

HI(W", K:f_)yu'h) - Hl(nE, ’C2,nE)v

where W" = W Xgpec 05 Spec O% . is the base change to the Henselization
of Os.x with respect to its Jacobson radical.

Since nFE is Cohen-Macaulay, for each closed point P € E, the total
quotient ring of Op g is the product of the local rings O, .k, of the generic
points 7; of the irreducible components E; of E which contain P. If Hp is the
category of Op,g-modules of finite length and finite projective dimension,
we have a localization sequence

Kx(Opne) = @ KofO,nr,) = Ki(Hp) =0 (1.2)

(the surjectivity of the right hand arrow is because the Cohen-Macaulay
property implies that K)(Opne) = Op,p injects into @;K\(Oy ng;) =
&, :,j,nE,-)- If P is a smooth point of E, then in fact Opng = Op g[t]/ (")
is a truncated polynomial algebra, and so Ky(Op,g) injects into K5 of its
total quotient ring (see [Gr], or [B], [BL1]). Hence we obtain an exact sheaf
sequence (compare [S2], lemma 2.1)

0-S5— K2,nE — @jz'j_Kz(O,,j,nEj) - Pg«jl ip,Kl(Hp) -0

analogous to a Gersten resolution, where 7; € E; are the generic points of
irreducible components of E, ij.I\"g(O,,j,Ej) is a constant sheaf on Ej, and
ip.K1(#Hp) is a constant sheaf on the closed point P € E. The sheaf S is
supported on the finite set E;,y. This yields a presentation for H'(nE, Ko ng)
as

H'(nE,Ky,g) = coker (EB Kay(Oy, ng;) — %I{l(ﬂp)) . (1.3)
j
Similarly there is an exact sequence

0— Kyun — i.}(:z,specos wh 1) izk(z)" > ® ip.Z—0
’ ze(Wh\EN PeE
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where Og j1-» is the 1-dimensional semi local ring of the generic points of E
on W" and i : Spec O yy» — W" the natural map. This is a consequence
of the Gersten resolutions for K, on 1#* and on Spec Og yy». Since W is
birational to Spec O% ., each z € (11" \ E)! is such that its closure in W' is
of the form {z, P} for a unique P € E (since O% y is Henselian!). Hence if
we write

A = ker ( &  ink@) - & ip,Z) ,
TE(WH\E)! PEE

then in fact

A= & A(P)

PEE

where

A(P) = ker ( ) izk(z)" — ip,Z) .
ZE(WA\E)!, 2+ P

The map HY(W" Ky 40) > H'(nE, Ky,.g) is clearly that induced by the

sheaf map Ky w» — ig.Kong, where ig : E — W is the inclusion. From the

commutative diagram with exact rows (we omit the symbol ig, for simplicity)

0— Kypyn — 1.K2 Spec Opwn > BPeE A(P)—>0

1 A3 l
0- K:2,nE/S — @j ij.]\’g(o,u,gj), — ip,]\’l(HP) =0

whose vertical arrows are surjective, and since H' (Spec O s, K2 spec Opwh) =

0, we obtain a commutative square

@®rcE Ho(Wha A(P)) — H' (I’Vha ’Cz,wh)
4 4
®prce Ki(Hp) — HY(nE,Kayng)

Hence we are reduced to proving that Ho(W", A(P)) —» Ky(Hp) for each P.

Now by the Gersten resolution for K3(Opy4), we see that

H°(W", A(P)) = ker ( < k(z) — Z)

Ie(WH\E), z~~P
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= coker (I\’Q(Op,wh) — Kz(OUjEj,wh))

where E; ranges over the components of E containing P. Now it is clear from
comparison with the presentation (1.2) for K;(Hp) that H'(1¥", A(P)) —
K\(Hp) for all P. O

1.5 Reduction ideals

In this section, we review the notion of reduction ideals and different equiva-
lent conditions for reduction ideals. Reduction ideals will play an important
role in the proof of Theorem 2.0.5 in the next chapter and also in Chapter 3.
Throughout in this section, R will denote a commutative Noetherian ring.

Definition 1.5.1 An ideal I is called a reduction ideal of an ideal J, if I C J
and there exists a positive integer n so that IJ" = J"*+1.

We give an alternate interpretation of reduction ideals. First, recall that an
element z € R is said to integral over I, if there are a; € I* so that

™oz gt - a, = 0.

Lemma 1.5.2 Let I C J be two ideals of R. Then I is a reduction ideal of
J if and only if J is integral over I in the sense that every x € J ts integral
over I.

Proof. See [We], Lemma 1.2. O

Before stating the next result related to reduction ideals, we recall some
basic facts about the blowing-up of SpecR along I, i.e. the scheme Proj(R[It]).
Ifz € I and T denotes zt, then R[It)[T!] = R'[T,T~!], where R' = R[I/z].
Thus the affine open subsets D, (zt) of Proj(R|[It]) are isomorphic to SpecR'.

Theorem 1.5.3 Let I C J be ideals in a Noetherian domain R. Then I is
a reduction ideal of J if and only if Proj(R{Jt]) — Proj(R[[t]) is a finite
morphism.
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Proof. See [We], Theorem 1.5. O

The following result will show that there is an abundance of reduction
ideals generated by syvstems of parameters.

Proposition 1.5.4 Suppose that (R, m) is a d-dimensional Noetherian local
domain, with infinite residue field. If J = (z1,--- ,z,)R is an m-primary
ideal. Then for any sufficiently general d xr matriz (r;;) over R, the elements
Yi = )_;TijT; satisfy:

(1) the ideal I = (y1,--- ,ya) is a reduction ideal of J;
(2) the elements yy,- -+ ,yq form a system of parameters of R;
(3) If R ©s Cohen-Macaulay, the y;’s form a regular sequence on R.

Proof. See [Ma], 14.14 and 17.4. O

Remark. When R/m is finite, the conclusions still hold for some power
J¢ of J, except that the term “ sufficiently general” should be replaced by
terms like “most”. This was proved by Northcott and Rees ([NR], theorem

3.4).

21



Chapter 2

Inverse limit formula

Let X be a connected (equivalently, integral), normal quasi-projective sur-
face over a fijeld k and let S C X be the singular locus of X. Let 7 : XX
be a resolution of singularities of X. Let E = 7 !(S) denote the reduced
exceptional divisor on X, and let nE denote the n-th infinitesimal neigh-
bourhood of E in X. Then (as explained in [S2]) there is a commutative
diagram as follows, for each n > 1, with surjective arrows.

F2Ko(X)

F2Ky(X,nE) ——— F2Ko(X, (n — 1)E) ——— F2Ky(X)

The surjectivity of each arrow is a consequence of Lemma 1.2.1. It was conjec-
tured by Bloch and Srinivas (see [S2] and [S8]) that the maps F2Ky(X,nE) —
F2Ko(X, (n—1)E) and F2K,(X) — F2Ky(X, nE) should be isomorphisms
for all sufficiently large n. This chapter is devoted to the proof of this con-
jecture. In precise terms, we prove:

Theorem 2.0.5 Let X be a connected normal quasi-projective surface over
afieldk, 7 : X = X a resolution of singularities, with reduced ezceptional
divisor E. Then for all sufficiently large n, the maps

(i) F2Ky(X,nE) — F2Ky(X,(n - 1)E) and
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(ii) F?Ko(X) — F2K,(X,nE)
are isomorphisms. In particular,

F?Ko(X) = g_ m F2K,(X, nE).

We will also discuss special cases of this theorem when the characteristic of
the ground field is 0 or it is p > 0. In particular, we will see that it is in
general really necessary to take higher thickenings of the reduced exceptional
curve.

2.1 Proof of Bloch-Srinivas Conjecture

Our proof df Theorem 2.0.5 is inspired by a technique in [We], of factoring
the morphism 7 : X - X into a composition of morphisms X — X' and
X' — X, where X" — X is the blow-up of a local complete intersection sub-
scheme supported at the singular locus, and X — X' is the normalization
map. The morphism X’ — X is a proper morphism of finite Tor dimen-
sion, and hence the maps K;(X) — K;(X’) are split inclusions, inducing in
particular an isomorphism F2K,(X) = F2Ky(X’). On the other hand, the
relation between Ay(.X') and Ko():’) is governed by a suitable Mayer-Vietoris
sequence.

We proceed with the proof of Theorem 2.0.5 in detail. We first note that
if E' is the reduced exceptional divisor on X’, then for alln > 1, nE is an
effective Cartier divisor on X with ideal sheaf Oz(—nE). We give the set
S, the reduced subscheme structure and denote by nS, the n-th infinitesimal
neighbourhood of S in X. By [Li], 7 is the blow-up of X along a sheaf of
ideals Z of the structure sheaf Ox such that the subscheme Y defined by T
has support S. Thus one has

X = Projx (®30T"), E = Projy((®n20T"/T"")req)-
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Putting ¥ = Projy (®n»eI™/I"*!), we get S C Y C nSand E C Y C nE
for all sufficiently large n.

Next, as in [We], we observe that by the Northcott-Rees theory of reduc-
tions of ideals (see Section 1.3), there exists m > 1 for which there exists
a minimal reduction ideal sheaf J of Z™; here one may take m = 1 if the
ground field k is infinite (see for example [Ma}, Theorem 14.14). Replacing T
by Z™ if needed, which doesn’t change the blow-up, we may assume m = 1.
Then J will have the following properties:

(a) J € T and JI™ = I"*! for all sufficiently large n (this is a direct
consequence of the definition of a reduction ideal given in Chapter 1)

(b) the stalks of J at points of S are generated by 2 elements (minimality
of J); since X is 2-dimensional and Cohen-Macaulay, J is a local
comﬁlete intersection ideal sheaf in Oy.

From (a), the Rees algebra of 7 is, locally on X, a finite module over that
of J; further, the subscheme of X = Proj (®Z™) defined by the ideal sheaf
generated by J (in degree 1) is empty. Hence, if 7’ : X’ — X denotes the
blow up of J on X, then the graded inclusion &J" «— &I" induces a finite
morphism f : X — X' of X-schemes, i.e., the map 7 : X — X factories as

1™
|

i

Here f is the normalization morphism, i.e., X is the normalization of X".
Note that since 7 is a reduction ideal sheaf of Z, one has J = Zg, the ideal
sheaf of S in Oy, and so we have inclusions

I"cJgcT

for all large n. Hence if Y} denotes the local complete intersection closed
subscheme of X defined by the sheaf of ideals J then the support of Y7 is S.
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Let

-t - -r -t - -1 v - =
Y =Y xy X', Y =Y xx X7, Y=Y xx X,

}71 = }’1 Xx zi;, S’ = (S X x Xl)red.

Also let Z C X' be the conducting subscheme for the normalization mor-
phism f, i.e., Z is the subscheme of X' defined by the Ox:-annihilator of the
coherent sheaf frO5/Ox in (’)\: Let Z = Z xx» X. The  support of Z is
contained in f~1(S ) and hence Z,ed C E. We have Zred cZc nZ,ed for all
sufficiently large n. This implies ZcC nZ,ed C nFE which in turn implies that
for every given m > 0, we have mZ C nE for all sufficiently large n.

Hence for a given m > 0 we have, for all sufficiently large n, the following
commutative diagram with surjective arrows.

F2Ky(X,nE) —— F2Ky(X,mZ) ——— F?Ky(X)

T T T

F2Ko(X',nS") ———— F2Ko(X', mZ) ——— F2Ko(X")

F2Ky(X,nS) —————— F2Ky(X)

Diagram A

The surjectivity of all the maps in Diagram A follows from lemma 1.2.1.
Furthermore the map F2Ky(X,nS) — F2K,(X) is an isomorphism by
lemma 1.3.3.

Now by corollary 1.4.3, the map F?Ky(X) — F2Ky(X') is also injective,
and hence in fact an isomorphism. This, combined with the surjectivity of
all arrows in Diagram A, gives the following diagram, all of whose arrows are
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omorphisms.
FURGIN nS) e FPRIN 2 e FPR (X

1 \\ ,.,/‘”"’de

— o

— e

FIR(X, nS) ———— F*R,(X)

Dingram 13

Next. we study the relation between FZRG(X' . 102) and F2R,IN, m7)
for m > 0. By [PW]. Corollary A6, one has for cach m > 0 a functorial
exact sequence

HYMZ, Tz /Ty © Q5,000 — Ko(X',mZ) — KolN.Z)  (2.1)
(as remarked) carlier, this follows from (1.1) combined with [GW]). Compar-
ing the exact sequences for m = 1 and 2, we have the following commutative

diagram
S HYW2Z, Tz /15, @ Qi) - = KN, 27) ——— Ky (X, 22

HWZ, Tp/T% @ Q5 ,) s N[N, Z) e KV 2)

But

Loz /L7 ® W3y ~— T2/T5 093,
- is the zero map, and hence it is zero on cohomology {compare [BPW]. The-
- orem 3.3). Note that the isomorphisms in Diagram B for cach = imply that
FING(X',2Z) — FERG(X', Z) is also an fsomorphism,
Now let Ay = ker{P2RG{N' mZ) —3 F2Ro(N,mZ)). Then we have the
following commutative diagram of short exact sequences

0t Ay FPRH(X',22) —+ FPRy(X,22) —— 0

N |

0— 4y —— FPRGN, Z) -t F2R(X, Z) 0
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From the discussion above, we see that the [eft vertical map is zero, and
the middle vertical map is an isomorphism. Hence a simple diagram chase
shows that FPRL(N', 27} — F2R(X.2Z) is an isomorphism. This. com-
bined with the isomorphism FRRY(N . 18") = FIRG(X.27) obtained in
Diagram B. and a simple diagram chase in Diagram A. gives us the iso-
morphism F2RG (N, nS) — Fih},(,‘? nE) for all sufficiently large n. This

implies the desired isomorphisms
FEI\H[}{.{F. nE) — F*’KU(,{', (n—1E), FIR(N) — F“’I\"D(..t nk’}
for all sufficiently large n, as well as the formula

FAR(N) = lim F2Ro(N . nE).

7l

This proves the theorem., L

2.2 Special cases in different characteristics

The above theerem sayvs that the Chow group of 8-cyveles on X is isomorphic
ta the relative Chow groups of the desingularization X relative to “sufticiently

large” thickenings of the reduced exceptional divisor £ on the desingulariza-

- tion X of V. We disenss here the special cases of the theorem, if one considers

ground field of different characteristics.

Positive characteristic. Let the ground field £ be algebraically closed
of characteristic p > 0. In this case, it will follow {rom proposition 4.2.9,

proved fater in the last chapter, that the nataral maps
FERo(X) — FING(X nE)

FIRX, nF) — FIR(X, E)

are isomorphisms for all n > 0, and hence

FPRG (N2 FPRG(X . F).

[av]
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This is a stronger statement than that w Theorem 2,0.5.

Characteristic 0. If the ground field 1 has characteristic . we consider
swo different possibilitics.
In the first case, when & = @, the situation turns out to be same as

the positive characteristic case. That is. the maps
FIRG(NY —s FIR,(N . nE)
F“’f\'g(_{', nkE) — P'z}’\'g(.i', F
are isomorphisms for all n > 0, and hence
FAR,(NY 2 FPRG(NLE).

This is corellary 3.1.8 in the next ciapter of this thesis.

In the second case, when & contains transcendental elements, we give
examples to demonstrate that it may, in general, be necessary to take non-
trivial thickenings of the reduced exeeptional divisor, That is, if ehar(k) = 0,

and £ is not algebraic over , then the map
FURUNY — FPRG(X.E)

is mot an isomorphisin in gencral.
To give cxamples, let € C PT be a projectively normal curve over € such
that HYC, O (1)) # 0, e asmooth curve of degree at least 4 in P2 Let V'
- be the affine cone over €, and let 2 be the isolated singular point of ¥, Let
a1 Y — Y be the blow-up of ¥ along the point P, with the exceptional
divisor £. Then we know that there is a morphism o : 17— ¢, such that
¢ is an Al-bundle, with a section given by I
Now we bave a commutative diagram of K-theory long exact sequenees

of pairs

R (F) == K(P) —— WY, Py~ KlY)

o l

By (7) =2 Ky (E) —— Ky(F, E) —— Ky(5)
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But since o is an Al-bundle. we have isomorphisms

K(V) = Ki(E)
N

\\

IXYI(C)!
which implies that v is an isomorphism. Now we see from the above com-
mutative diagram of exact seguences that the map

FIRa(Y, E) — FPRy(Y)

is an isomorphism. But Y is a non complete birationally roled surface and
hence F*RG(Y, E) = F?R,{(Y) = 0. However, it is follows from Corol-
fary 3.3.5 (see also [S3]) that FARH(Y) is not trivial.

29



Chapter 3

Analogues of Bloch-Beilinson
and Bloch Conjectures

Our aim in this chapter will he to prove the following two of the wain results
of this thesis. The first result is motivated by a conjeciure of Bloch and
Beilinson, that the Chow group of D-cvcles of a smooth projective sorface
over the field © of algelwaic numbers is always “finite dimensional™. This is
in contrast to Mumford's mhnite dimenstonality theerem for complex projec-
tive surfaces with positive peometric genus. Equivalent formulations of the
gonjecture are:

{a} for smooth projective surfaces over @, the Albanese map is always injec-
tive on cycle classes of degree 0, or

{b} the Chow group of G-cyeles of a smooth affine surface over Q s always

0. Our first main result of this chapter is

Theorem 3.0.1 Let R = @50l be ¢ 2-dimensional graded normal affine
domain over the field Ry = Q. Then Ko(R)Y = £, and iu fuct every projeclive
medule over IT is free.

- We remark here that the above result is not true in general when Ry = C,
“ by an analogue of the Mumford theorem; examples can be found in [S5).
- Theorem 3.0.1 suggests that the Bloch-Beilinson conjecture, as formulated
- in {a) or (b) above. should be valid even for singular surfaces. Here the Chow
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group is to be taken in the sense of [1AW]; the Albanese variety in (1) shoulkl
be that defined in [ESV.

As an explicit example, il A = Glroy, =)/{3™ + §™ + 2"}, where n > 1L
then FPAG(4) = 0 from Theorem 3.6.1 {in fact all projective A-maodules are
free}, while F?Rg(4 @ C) has uncountable rank. as shown in [S3] (and it
is in fact infinite dimensional, in an appropriate sense}. As far as we are
aware, Theorem 3.0.1 yields the first kuewn examples of this phenomenon
for normal (but singular) surfaces. In contrast, as far as we are aware, there
i5 no similar example known at present of this phenomenon for a smooth
surface, though the Bloch-Beilinson conjecture predicts the abundance of
such examples. For example, the ring B = Qle,y. o]/a” + 47 + 5 = 1)
is expected to have the same property: conjecturally FPR{3) = 0, while
Mumford's theorem implies F?Ry(2 @ C) has uncountable rank.

Before stating our next result of this chapter, we veeall Bloch's Congecture:
if X is a smooth projective surface over € with p, (V) = 0 (or equivalently
il HYN, Q) = 0), then the Albanese map

by 1 Ap(X) = Alb (X

is an isomorphism (here Ag{N') = F*Ry{ X )argo). This conjecture is known
in certain cases, e.p., for X wlm'h is not of general tvpe. The characteristic
0 case of our result below is then a relative version of this conjecture, for
normal projective surfaces,  We now state the second main result of this

chapter.

Theorem 3.0.2 Let X be a conneceted normel projective surfece over an
elgebraically closed field k. Let = - X — N be a resolution of singularities of
X, with reduced, normal crossing exceptional divisor E.

{a) If char k = 0, then CHA(N) = CHYX) i HH X, Oy) = HAHX,04),
L s uneountable, the converse also holds.

{b) If k is of characteristic p > 0, then CH*{(X) = CHX) if Pic®(X) —
PicY(E); if & is uncountable, the converse also holds.

We remark that in {b) above, ane can restate the condition for isomorphism

of Chow groups in positive characteristics in the following equivalent ways,
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using f£-adic cohomology:

H (X Qi) — HE(E.Q(1)). or

HE (X Q(D))/NSIV) @ G = HE (XL Q)NS5 8 Q.

We will obtain some inferesiing corollaries of this theorem towards the
end of this chapter.

To obtain the main results of this chapter, we refine technigues used
earlier by Srinivas in several papers (see for example [S1], [S2]. [S3]). Apart
from the fundamental inverse limit formula given by Theorem 2.0.5, the main
new ingredient in the characteristic O proofs (Theorems 3.0.1 and 3.0.2{a))

is an exact sequence
HY (X, T /T3 o Qiq —r SK(nE) -2 SK(E) -0 (3.1)

where X = X is a resolution of singularitios with a reduced normal crossing
exceptional divisor E. This is proved by a detailed analysis of the Kp-sheaves
of the non-reduced Cartier divisors 25 © N, as in the earlier works cited.
and finally reducing the result to the Granert-Riemenschoeider vanishing
thearem. This allows one to get the detalled results stated above,

Before going into the proofs of above results, we will prove some technical
lemmas, which will be used crucially in the proofs of main results,

3.1 Analysis of SA'|(n£) in characteristic 0

‘In this section, we obtain a general result, lemma 3.1.7, which is uscfu! in com-
puting SK;(nFE), where I is a normal crossing divisor which is the reduced
‘exceptional divisor of a resolution of singularities of a pormal suifiace over an
algebraically closed ficld of characteristic 0. More generally, we will analyze
the structure of ker{SK (nkE) - SA{E}) where E is any reduced normal
erossing divisor on a smooth surface X in characteristic 0 (see lemma 3.1.6);
this will be done by first considering the case when E is a smooth curve, and
then in general via a Maver-Vietoris argument.
We first recall a theorem of Bloch [B] which we use below.
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Theorem 3.1.1 Let B be a locel Q@ algebra, A an avgmented 13-elgrbra and
gsume the kernel J of the cugmentation homomorphism sabisfies J¥ = Q.
Write QY and Q} for the groups of absolute Kidbder differentials and let

Q‘i_u = ker(Q, — QL)
oA ) = ker(Ra(A) — Ko{03))
Then there is a canonical wsomorphism
7o QLT = KA T)

As an application of Bloch's result we obtain the following corollary. The
reader is referred to {S3] for a proof.

Corollary 3.1.2 Let X be a Q-scheme, Y an infinttesimal ertension of X
Suppose that Oy — Oy s locally splil (re., for cach 2 € Y, O,y 13 an
augmented O, y algebre). Define

Q(EY,_\')JZZ = I-c[}r(Q%.fZ — Q-l’f"ii)'

Let T be the deal sheef of X on Y. Then there 15 a natural tsomorplicsm of

sheaves

d(I)

Qe -
U = per (K > Kax ).

Let X be a smooth quasi-projective surface over &, algebraically closed of
characteristic 0, and let 17 be a nonsingular closed irredncible subvariety of
X of dimension at most one with ideal sheaf T. We fix the following notations
which will be used in the rest of this section.

For ¥V as above, we define for i > 0,

I = the ideal sheal of V

I" = the ideal sheafl defining the subscheme 217 C X
I, if Vs a curve,
or

I, =

the ideal sheaf locally defined by (2™, y™), if V' is a closed point
locally defined by the maximal ideal (r, y}
V2 = the subscheme of X defined by Z,,.
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Note that if 17 is a carve then V), and »V coincide. but this is noet the case if

¥ is a closed point, and this distinction will be crucial in what follows,

With the above notations, we have for every n > 0. the following com-

mutative diagram of exact sequences of Kahler differentials (the terms in the

top row of the middle and right hand cclumns are defined by the exactuess

of the respective colnmmns).

0 —3 K)i_‘fz @L‘ I/In __ﬁ‘m;--—{‘}l‘_"jl{-’_g

+ ~

)— QL’E i Ol,‘“ _— ﬂ{}.ﬂi _ 5)—“ ik

)— ﬂi;.: &y Oy

| |

{3 ( &

Diagram C

Let
K:g!(l,;hr] = [’\'E‘I'(n"\:g\!ll—;1 —F K:Q;‘y)_

Then by corollary 3.1.2, there is an isomorphism of sheaves

0L
[ R e

MUECNIG .

d(1/1,) &)

Note that by lemna 1.2.1, there is an exact sequence

Hl“"‘: KE.{‘}"@“H.Y]) —F SI'L’l(.‘ ;‘i+1) -} Sjr\r[(it) — 0.

Our next step is to unravel the isomorphism {3.2}.

3

1 1
0 A Q{\'n Vi T {

1 ] ,
3 Q\',-’:; ; Q\‘,’k SRS

(3.3)



Lemma 3.1.3 Let V' be o nonsingular irreducible closed subvariety of X
@' dimension < 1. Then, with the above notation. there is g shorl eract

bmguence

1
Q'\'erfuﬂ‘):‘k

HL/T )
Proof. We claim that, with the above notation, the natural map
I
- - i - 3
In—+1 how b ik

is Injective, where we recall that

0— Qe @ I/ Tner — Ko,y — —+ 0

y b . 1 1
Qe = ker{ | — Oy

Proof of the claim. We can check this locally.

Case 1. V" is a nonsingular irreducible curve,
Let P €V and let my> = (&, y) be the maximal ideal of the local ring ), ¢
with « the dehning ideal of 17, Let

5=0, _,t,/(;zrﬂ'+']) and R = Opy- = O, ¢ /{x)
Since R is a regular local ring essentially of finite tvpe over & and hence

smooth over K as char(k) = 0, this implies that 52 Rixl/(z""!) and I is a

discrete valuation ring with uniformising parameter ». Thus we have
Qoo = @ S @ i lr
Sik = Ypy Spo :;;E(J

. |
Olg e = Ko — Q)

~ T Vo & g
o SIERE,,\, Qa8 O Jledr

Any e € (z) C § can be written as fa" - - b S, where f; € RV and so
fi=wy™ (1 <1< n) with w; € J2*. This implies

"

dio) = 3 (&'dfi + i fdr)

1=1
= (Ot + (X i )
=1
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Clearlya # 0= 577 ar'™ ' fidr # O using the expression for 52[15_}““,,\_ aned for fis.

Hence "
{r)

(.1-111-1)

& .o
" Qgs‘.m;‘k 15 Injectve.

Case 2. When 1 = {P} is a closed peint of X,
Put

mp={ry). S=Q0p:/ "y, R= O/l =k

We need to show

(-7\ i d .
T T ) e Qzlq Ry 18 Hjective,
(.rn.i,.] ynfl) {5. R}/ A

b AL

Ientifying 1 with &, we can write § = ke, y]/(#" "1y} This gives

_ Sdre Sdy o

atSdr + yt Sy pa

|
0l

which implics that €}, is a finite dimensional b-veetor space with a basis
sy

given by the the union of the following sets
ol 7.1,
{z df}ogr_:nq R ‘fy}a;f;;{n-l

(G + D2 drtosicion, 15+ LT+ DN} Ccn aejen-t-
Applying a linear isomorphism to the span of the third and fourth sets above,

we get anather k-basis of Q2 as
{I'd"t}f]-‘:i{'.u—l’ {'?J'in?f}ag;gnA
{i;'z:i“'lyjrfj_'+j.a.'i;,fj"’lci,g}igl_an . it dy ﬁE;“‘e";;"’i_"'1(151}15513.?”.
Further from the definition of the map d we see that
Image(d) = @i yenkay ,where ay = (ir' "y/dr + jz'y? " 'dy).

But _
(T.\ ﬂ) ) — 2

dimk(m n® = dimg(Pyey jonk(g])
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This implies

(.4} 4
—_

(J,n-e-‘.T U?H—i)

B

[ ;E‘;‘jgn;‘-'(f'}:‘;:}

is an isomorphism and hence d is injective. This proves the claim.

A

¢ Now the factorization

v

; T o 1
. s T Ql"'k.-; P IET
: Iy: -1
pnplies that the map
I o
:z-rl +1

is also injective.

1
Q(I'E,,_, R R

Using the isomorphisin (3.2}, the injectivity in (3.4) and Diagran C, we

gbtain the following comnmtative diagram

0 ()
I/E-n-!»l P I;JITE-‘-]
o gri

[ R, Q;lﬁ-,i:s: G T/ Thy —— ﬂ(g‘km-

J

"1
wyz S e —— 0

() e Q}Efz {‘Qk I{(Iﬂ—i-l E— K:'l-fl'ln-inlj"‘f} —F .__1_..:5."',*“ bl —{}
l PR
Q 0

Y - . " _
where the vertical sequences on the middle and right, as well as the two hor-

izontal sequences, are exact, and the left hand vertical map is the identity

The bottom row is the desired exact sequence. This finishes the proof of the

lemma.
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T The pext lemma will further clanfy the strneture of the sheaf K 0 FRR
Let ﬁ{;"‘m‘k = A (Ql i Then one has a nataral {exiedior denvative)

o IEERSFAL

aorphism of sheaves of abelian groups

. ! %
1 R 6 )
L“mﬁu-‘ Wk g Thaenik
Since o = 0, we get an induced map
7l
SNHD BT R N oo
= (3.5

d IjI:; )

Lemma 3.1.4 ke map o in 3.5 4s un somorphisin of sheaves of abelian

© groups.

Proof. It is enough to check the isomorphism of d localive We prove this

separately for curves and closed points on X,

Case 1. 17 is a nousingnlar irvedueible curve,

As before, putting & = O o/ ) and B o= Opye for any elosed poind
P el we have 95 (SRR = i-!* @ O rs ;%rf;r andd wie have abso seen thiad
T/ = 51{5‘”}% nueler the map o

We claim that

O
SEIE e o
. B 5'}[5 e ;L rh (SU)

d((r)/ (e )

We have the surjection

S s
1 2oy Ty o2 O _ .}L’,__Lci‘
g“H."J’l" {:}R 75 J.”‘S‘ff.l', SRk (I}f 14 l

Any element o ¢ (2)/("7") can be written as

a = L;:Lﬂ‘f:i = dn = Z, [df, 0 0t) @ Z!_!(?f{-.ri L.

clearly

a0 = Z::sf_a'f,.r"“]d.r) F0 = dad ), SprS.



This implies

{1,
TR K -

0 15 injective. {3.7)

I
Rik R J((r) /(e

Next for any element foidr (0 <1< n - 1) € S/ SYdre, with f € B We
have

. j‘ 1 _ _f“i-l .
{0y = ftdr —l— if
foe +1
Af foitt
= fridr— : T AL | e a—
frdr = o ¢ T
: af
= image{ fridy) = image{ ———0
e (f { '] h‘( 7( 7+ l))
under the surjection
o Ol
. SRS
{) ' ruH Bl 1. Ml e JEEEE PR i
ik It (1 uﬂ} H’((_}f)/’(i’” :JJ
- This imgplies that .
an‘rem

EI}F R B T T
" )/ ()

is surjective and henee by {37001t 1s an isomorphism whicl proves the chan.

] ; I I
Now once we have established (3.6), to prove the lemima, it 15 enough to show

that
t + ol 2 ~ @ .
g‘.".n& 9[{ .f-'.(.’ 4 ﬂg;;k = e '*“*‘(f.f A ”rf_,f
i L (-JP .

= ..Lj(h Aoily

E“*s : —
d(L fidy & ') r— Ll_zi:z'f,;:z""]d;r' Ay

=l
i5 an isomorphism.
We define a map
[1‘ g_“ Lk s f)}r‘)“k @R .JI.'.S’
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by “integrating” the expression on the right with respect to x to define
the in\'erse map to d. Every element in QQ s/ can be written uniquely as
(i, fiz')dr Ady with f; € R, and so it is enough to define d for elements

of the form (fr')dz Ady where f € Rand 0 < i < n— 1. For such elements,
define d as

[

d(tfz')dz A dy) = T

f
(i4+1)
Note that for ¢ > n, this is zero, and d is a well defined homomorphism. Now
from the definition of d and (7, it is clear that they are inverse to each other.
This proves the lemma when V is a curve. »

Case 2. V" = {P} is a closed point of X. As before, let mp = (z,y) be the
maximal ideal of Op 5 and let

Opx X
S —A—-———————~( T ) and R = ) ~ k

By Theorem 3.1.1, this implies

1
Qs.mye > BiciicnkB:
d((z,y)/ (@, yrn) T TS
where §;; = ixi“yjd;r — jxyl~ldy. Also we have
ql Q! ~ Sdr & Sdy
sie = Swm T ey y"Sdy

R
|
‘EL
o
|
&

and hence taking the second exterior power, we get

S =
0%, 2= _drAdy = PYX _deAd 3.8
S/k A(In’yn)s ; y (.’L‘",y") y ( )
We have the differential map
1] ' Qé
d: — /L S 0}
d((z,y)/(z"+1,yn+1)) SIk
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and hence using the above isomorphism in (3.7). we get a map

1 4 -
R Op s

p— __n,_:. e
) (. )

1 d{(x, ) /(ens 1 gt

di Aoy

fven by
dir™dr — Jr'yY = (Gt T Nde Ady — e Ty dy Ade
= 1 o o Vet Aoy - de Ady
= (2050 Nde A dy
t Or 3
:& basis for Fy
dydocjcn-1 and

d(

dr A dy as a k-vector space is given by the set {rfyfdr A

—_ (i + D e = G D)) = efde Ay
2(1+i}(1+1)(( )y (7 + 1yl dy), !

This shows that the elements of the basis of £37, are In the miage of the map
#, and since d is k-lincar we see that o is surjective, and henee an isomer-
phism, on comparing dimensions of the two A-vectar spaces. This proves the
femma in all cases. ]

Next we prove
Lemma 3.1.5 Let Vo be as abowve. Then there is @ natural isomorphisi

w! v 9

Vinrn ke

Inf.b“{?
Proof. We have a natural surjection

¢ L ¢
“2)\:/1: *’Q‘-ina-wf*
and taking the second exterior power on both sides we get a surjection

7
wf ———— SZUM‘ k
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T show that this induces an isomorphism as defined in the lenuna, we can
gheck locally. 1f V' is a enrvel then at a point P of V) we have stalks
i R

wip = OpgdrAdy and OF o = T}_r‘ll}ri.rf\dy

This immediately gives a short exact sequence

)

0— Iﬁll"“‘i’ —r g 4 {1 —: i

e
LIHJ.»'!:M‘,‘

which proves the lemma in this case.
Similarly for Vo= {P},
U-!._v::!p ~ c‘)

PN
S L
(etyteg  (my7) ’

and from (3.8)

EOR e

2le.‘! kT l{_r:! . i){:t) b A (i},‘.
This proves the lemma in the second case. O

Now let X — X he a resolution of singularities of a normal, gquasi-

projective surface X over an algebraically closed field & of arbitrary char-

sheaf of £ on X, Lot § = {£1. L B be the set of irreduetble components
of E. Set §; = £y 1 £y, 1< i< j<r By [Mi, 6.4, we have an exact

{Mayer-Vietoris) sequence of sheaves

Klfu-}-}]ﬂ — @igigr"cz,{u 1}, — @lff{jir@[‘gﬁ” K‘.-;-jpi"_!_“ — 1} (3‘3}

The surjectivity of the last map iy easily seen from the surjectivity of the
vestriction maps Koy g, — Ko g . which follows from sublennma 1.3.2.
Forn > 0, let

Kapninye = image (E;z;'nq)ﬁ: — O Kﬁ,(n+l)[z‘]) . (3.10]

1<a<lr



This gives a short exact sequence

ﬁ*—% Kl{n-.]kg — ;:f:-“‘l“-;'_!i(r‘(.i.[n SUE, T :.-E."‘;_";_fr~:.j\'r‘=i~i§‘f;b: i\'_’..f’,, o
(211

Let

K?.(rz-‘~l) == ]f\i‘[(h-,’fnLlli — Ki f) '%12:'
Ye then have the following comumative diagrian of short exaet sequences.

0 i) il

|
!
|

<+

!

0= Ky mity — TrciorKasonm iy = SrcigorBres, Koy, o — 0

| f : |
| | |

0= Ry — Proeceho o e, — == BorDees, Ao, o)
i |
} ; :
| | |

00— Kop Bicioro g, ——— = B cigertbipes Ko p ——s )

o m—
—
—

Here Xojuane, £y and }\;Jg!(-pwwk,n; are defined to make the corresponding
cohurmns exact. In the above disgram, the middie and bottom rows are exact
from the previous exact sequence (3.11), and fron the snake lemma, we see
that the top row is also exaect. We write below the exact sequence of the top
row separately as this 1s the part of the above diagram which will be used
later in this section.

b— K:ztml} — ﬂ);g‘ggrﬁ:—?,({n-jv Pk ) T ‘:'fi-?]f:‘c:,}tir'i}!'ﬁ:'-‘ﬁ',j‘I\j‘lw(l"

-1 = (1l

py oo 0
{3.13)

Remark. We make an importaut remark here that the above diagram. and

(3.13), are valid for an algebraically closed ground field of arbitrary charac-

teristic.  This observation will he used to prove the positive characteristic
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wersion of Theorem 3.0.2. in the next chapter.

The following lemma will be our main twdl to compure the coliomology
groups of the sheaf Ky, o1y in characteristic 0. We will nse these cohomology
groups to compare SK (L) and SA (nE) for any thickening n£ of E.

bemma 3.1.6 For each ni > 1 there is a short eract sequence

0 — ﬂ;w”f- & Ij/’f}l ol — Krgr‘m‘!_,,u — Wy f}ﬂg — 1)
Proof. Note that for all n, there is an exact sequence

00— Ong ~— 8100, Onp, — iy Dpss, Op, — 0

This follows because F has smooth-components with normal crossings and

w0 locally at any closed point 2 of some S

4. the sequence

A, - . O, = O
b— ;“m{...l.‘\f_ — _A‘.I__l (o e A — tw_}' A i [)
()" (™)

(“n) [L:;tri_. L"”)

is exact, where mp = (1, ¥} is the maximal ideal of the local ring @, ¢. Ten-
soring the above exact sequence of coherent sheaves on X with the canonical
bundle wiof X, we get the following exact sequence.

0w ®Oup ~— Ocinrw v @ Oupy — Plciajzr ipes, Wy @0p, — 0
(3.14]

Combining lemmas 3.1.3, 3.1.4 and lemma 3.1.5, we get for any nonsin-
gular irreducible closed subvariety V' C X of dimension < 1, the following
short exact sequence

00— ﬂ;‘;g &g f/l'"_:_,l —F }C:’»‘("‘}r|+1}:"'} —wy = th s ) (313}

Letting Tz = (ideal sheaf of E;), (1 €< ¢ < r}, and Ip = (ideal sheaf of
the closed point P on Y), and putting V" = E, (1 <i<r}),andl = P,
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in the exact sequence {3.13), we get the following commutative diagram

g 0 0
e Qi,f::: Qki’fﬁfﬁ;q ; E;:f g 2 Oup e
=& Qi’fi"?- “* Ir. 'HI:’ET b £ E‘J.H !‘:P{“)}f‘;[.f;‘[;‘ ey Sy E‘T Oy ——mms 1)
3 ] . Leptip e - 7 1
By res, s O Il e+ p — Dicj Bres, Ror . m — Bicj Bpes, Wi ©Op, — 0
0 o ;

In the above diagram, the middle and bottont rows are exact from the
gxact sequence (3.13). The exactness of the middle and right hand colnnns
foliow from exact sequences {3.13)and (3.14) respectively, and it is easilv seen
that the sequence in the left hand column is exact, Now by a diagram chase
we see that the maps it the top row are defined, and the top row is exact.

This proves the lemma. [

Finally, we specialize Turther to the situation where £ is an exceptional
divisor and charactenstic of the ground field is 0, which leads to the exact
sequence {3.1) stated in the beginning of this chapter.

Lemma 3.1.7 Let X be a connerted smooth quast-projective surface over
an algebraically closed field k of characteristie 0. Let B C N be o normal
crossing divisor which 18 eontained i the reduced erceptional divisor of a
proper birational morphism w - X = XN fo ¢ normal surface X. Then for

any n > 2, there 15 an eract sequence

HY(nE,Tx/Th) @k Qs — SK(nE) = SK(E) - 0.



Proof. First from (3.9}, we see that Ker(Ka,p f-_,|,[,;._v} is supported on
and 3.1.6, we are reduced to proving that the group H{nk. LR nnr) =
fi. From the right exactness of H' on I-dimensional schemes, it suflices to
prove this when E is the {ull exceptional divisor of 7 : X — X (£ may not
have normal crossings); further. it suffices to prove that
lim H! (nF wy@Oup) = 0
n

From the Formal Function Theorem. this is equivalent to Rir*;s‘;. = (). which
holds by the Grauert-Riemenschneider Vanishing Theorem {see [EV]. or [Li]
for the surface case). This proves the lemma. O

Corollary 3.1.8 Lel v X — X be o reselution of stugularitics of a con-
nected normal quasi-projective surface X over Q. Then the maps

Wy . . g s N

FERGINY — FPRGN B
and

D orr g - "y e s ;
FPRIN, nEY — FPR(X.E), ¥ n> 1

are isomorphisms.
Proof. We immediately reduce to the case when X and X are projective.
From Theorern 2.0.5 and lemma 1.2.1, we see that both the conclusions are
equivalent and are independent of the resolution X —- X chosen, since
any two resolutions are dominated by a third. So we may assume that £
is a normal crossing divisor. From propesition 1.4.4d, we get the following

commutative diagran of exact sequences

SKy(X) — SKy(nE) = FXRo(X, nE) -+ F2{X)

| v l |

SK\(X) — SK(E) —— F2R)(X, E) — F2Ko(X).

Now the corollary follows from lemma 3.1.7 and a diagram chase, since
QL | =0 O
Qe
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3.2 0-cycles on normal affine surfaces over ¢

This section contains the proof of Theorem 3.001. But we hegin with an

analysis of a more weneral situation. Let
Rii«“ﬁ\@jfli?j?g

be a finitely generated 2-dimensional normal graded alzebra over a field
E{in particular. IV is an integral domain). We recall a constrietion of
Grothendieck, generalizing the blow-up of the verrex singularity of a coue
{see W] for an expusition).

Let m € R be the irrelevant graded maximal wdeal. Put [, = 2,1,
(thus 7y = m, but [, # It in general). Define

R=Ralal, - and ' = [E/mR =Lal/mloL/ml g
Then we see that there is an wsomorphism of graded k-algebras
Rag=kGL/ L@ lLm =]

Set
X=8pech, UU=X-—{m}. ¥V ="ProjR*,

C=ProjRl. S=Projl ;=Y. V=V -8

Note that € is a normal projective curve over & sinee the ring 218 normal
af dimension 2,

The inclusion of graded rings 8 — B given by R, — 1, induces a surjec-
tive morphisin 7 1 Y — (' also, the inclusion of K as the subring of degree
zero elements of 75 gives the restriction map 0 Y — X Thus there is a

commitutative diagram

PRI —
//
e
‘ E:\:\ }ir - Y
R
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Note that since J,Op = Oy ¥ 7 = 0, the morphism ¢ induces an somor-
fsm 3 - 5 =V 2L and henee 1t s bivational {thongh 10 1s not exaer]y
¢ blow-up morphism at the closed point m, v general). with § as the
ceptional set.

Now one easily verifies the following properties {compare [W1).

. The induced morphism between S and O 1s anisomorphism, giving a

section of = (sinee JU_, = R}

LA

. wis an afline morphist, whose fiber over anv € ' is somorphic to
a monomial curve Spec (A0 0 ), sueh that the nrersection

7~ Hr)NS is the origin (determined by the maxnmal ddeal (221, 0 #4))

3w is Zanski locally trivial over a non-empty open subset of ) In faet.
let {fi.. S} be hemogenecus generators of 12 as a k-algebra with;

d, = deg fi. and let ¢ = T, fiz then for the open subset D, (7]

Spec (e € O (notation as in [H]), one has that = (D () =

D:w(}'}'} ® S Hf’f‘- . ) If!f,J,

Let ¢ - Z —— 1 he the normalization morphism. Then we have the
following properties:
~

L g is bijective, apd ¢ Y17 22V (since Vs smooth)

2 e Sy — S = is birational, hence an isomorphism (since € is

smooth)

3(mog) YD () = D, (g) x4 AL, such that the intersection with

TS 18 Dy g} ¥ {0} where 0 € AL s the origin
4. all iibers of % o ¢ are monendal curves.

Let p: 7 — &£ be a resolution of singularities of 2 (and henee of ¥ and
X)L Put

]}:L'!-'O;Oﬁ:é—}_\—,_ %’:rogof:fﬂ(w.
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Then 771 Di(g)) = Do(g) %« AL is also generically an Al-bundle. Note
that Y, € S and Zane € 7S e Lot By = ch.»_'m E' be the redueed
exceptional divisor for p, with irreducible components E'. and let S be the
strict transform of =7 '{5),.q under the map p. Then the reduced exceptional
divisor for the resolution of singularities map p Z4XNisE= E,+8§

Now since o7H(8) e — S is an isomorphism. so is 5 — 8. Hence S isa
section of 71 Z — €, and the image of £, is a Anite set of points in &, Let Z
be a smouth compactification of Z. such that thete is an induced morphism
71 Z — Cextending 7. Then Z — € is a possibly non-minimal ruling. such
that S is a section, and E, consists of curves contained in fibers.

From the classification of surfaces (sce [H]) we mayv choose a relative
minimal model 11" over €, which is a P'-bundle, such that there is a birational
morphism p: Z — 11" making the following diagram commute.

“\“-\
M
fia
B -
(A8
S
e

|

-
Here p is a composition of point blow-ups, and thus all fibers of T are trees
of smooth rational curves.

It is now casy to see that £ = §+E1 has normal crossings, 1ts dual graph
has no loops and all irreducible components {except possibly S) are smooth
rational ¢urves. This implies that

Pic(E) = Pic(S)& (&Pic (EY))
= Pic(C)a Z!
where E; has t irreducible components.
Now since B = Ey 4+ S is exceptional for the resolution of singulari-

ties w : ¥ — .\ = Spec R, the intersection pairing matrix of E is nega-
tive definite. This implies that under the homomorphism on Néron-Severi
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proups NS(Z) = NS(Ey = 21 the imnges of the elasses of components
ot B generate a subgroup of finite index. Combined with the isomorphisins
Pic" ) = Pic”{?) = P-lt‘ﬂ(.;;;). we deduee casily that the natural homo-
morphism PicZ — Pic £ has 2 finite cokernel. Sinee this factors through

Fic(Z). we deduce:
Pi['{_fi") G kT e Tie{F) &R s surjective (3.16)

minee £ 15 a divisible group.
The produet maps in A-theory induee a natural cup product map

XN K ) @ HY(Y. K Le) — YL Koy,

and we may identify JIT(N, K o) with Pie(X) for any gquasi- projective va-

gety X, We thus have the following diagram

PielZ) oo bt — ——— Pie(£) o &
| |
E |
HYZ K, ) — —— I Ky )

We see that the top arrow 1s surjective by (3.16) above,  Also, since £ s
reduced, the right vertical arrow is surjective {sce [G,1.27) for example, or use
the presentation (1.31). This nuplhies that the botton arrow is also surjective.

Now from the commmtative diagram (by lemna 130 1{¢)

SK(Z) ———— HY(Z K, 3)
§

J

SR ) —— = (L K

we eonclude that

SK(Z) ————+ SK|(E) (3.17)



Now assume we are in the situation of Theorem 3.0.1, so that & = Q.

Then (g = 0. so that from fernma 317 we have
SNi{nE)y=SK{(E) ¥ n.
Combining this with {3.17} above, we grr
SKUZ) — SKy(nE) = SN ¥ n. (3.18)

Now by leuna 13,3, v follows thar FRRG{(Z nk) &= 12 f\})(frf'_]‘ B f’fh},(,}f) =
-0 since Z is a non-cemplete smeootl beationally raled surface over Q. Henee
JFARG(X) = 0 from Theerem 2.0.5.

Simee 17 3s a normal graded ring. Pie X = 0 as observed by Murthy.
Hence, using the filtration on Ra(?) as discussed in Section L 1L we see that
Ko(R) = Z. This implies that if /7 is any finitely generated projective fi-
module, then P is stably free. Now the canceflation theorem of Murthy and
Swan M5] implies that £7 is [ree. r

Remarks. We remark Lere that i, instead of working over & == 1, we
work over an algebraically elosed field & of characteristie p > 0. then (3.17)
i still valid, se thar FARG(Z, E) = 0 From Proposition £.2.9 in the next
chapter, 1t will follow that when % s algebraically elosed of characteristic
p> 0, then

FRRZ 0l o= FPRG(Z.F) ¥ n > |
and hence we conclude as above that PRGN} =0, ie, Kp(X) = Z, and
projective f-maodules are free, in this sitnation as wetl. This recovers the
characteristic p result tn (S5, from a new perspective.

We further remark here that, for any novial quasi-prajective surface X
over O, and a resolution of singnlaritios 5 N ALt will follow from
the proof ¢f Theorem 3.0.F above and from Theorem 2,05 that FER (X)) =
th'g{.?)g providded another case of the Bloch-Beilinson Cenjecture holds:
for any smooth projective curve € over . the natural map SK () —s g

is an isomorplism.



33 Relative Bloch Conjecture for normal sur-
faces

Let X be a conrected normal projective surface over an algebraically closed
field of characteristic 0, and let 7 1 X — .\ be a resolution of singnlarities
gf X as in Theorem 3.0.2. In this section, we will give the proof of part {a)
af-the theorem. The other part will be considered in the next chapter.

First note that the groups FRo(X} = CHP(N) and H(X.O¢) are bi-
}atianal invariants for the smooth projective surface N This we can assimme
fby further blow-up of Xl necessary) that the reduced exceptional divisor
'E has smooth components with normal crossings. Let {F,.-- [ F,} be the
jrreducible components of £, As before Iet nE be the n-th infinitesimal

thickening of £

morplism, then e map
SKi(nE) — SKy(I7) is also an dsomarphism ¥ n > 1.
Proof. By lemma 3.1.7, it suflices to prove
HYX T /T2y = 0¥ no> 0,

By [FGA]., Expose V. we know that for all . Dic?(nF) is a connected
algebraic group with LiePie®(nE) = IH'Y(nE Q.0

By the Leray spectral sequence for o, we have an exact sequence
H l(.-‘:', Q) = H ”(.\’,1’1’.]':7’,@5;] —ey AN, Ox) — H )({ Q) 20

Now since £ is 1-dimensional, {J71 0 Ot} L, i an inverse svstenn of
surjective maps of finite dimenusional vector spaces and so it stabilizes. Hence

by the Formal Function Theorem, one gets

HUX.R'7.05) = lim 1" (nE. Opp) = H'(1E, Our) for all Jarge
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Hence we see that
H}(X.0y) = H"’(.{', O3) implies
HI(X,053) —— H'(nE, Ong) ¥n
This implies o
LiePico(‘{') ——+» LiePic%(nE) Vn.
We deduce that the nafil.ral map
Pic®(X) — Pic®(nE)

is surjective for all n > 0.

Thus we get the following commutative diagram with surjective arrows

Qn

Pi(:o(.{') » Pic’(nE)

' Pic®’(E)

Now the map Pic®(nE) — Pic?(E) is affine by [FGA] Expose V. This
implies that kerf3, is affine. On the other hand the surjectivity of a, ixilplies _
that Pic®(nE) is an abelian variety for all n, since Pic®(X) is an abelian
variety (as X is a smooth projective variety). Hence ker 3, must be a finite
subgroup scheme of Pic®(nE). Since the characteristic is 0, one has a sheaf
exact sequence '

0o T YT B 05— Of_yyp = 0
(with exp(a) = 1+ a since a® = 0). From the resulting cohomology sequence

HY(E,T2"'/T2) - PicnE — Pic(n — 1)E =0, .

we see that ker(Pic (nE) — Pic(n — 1)E) is divisible for all n > 1, since the
# group on the left in the above exact sequence is a finite dimensional vector



gace over a characteristie 0 fold aond 35 henee divisible, But thie short exaet

sequence
0 — PI%(nE) - o Pie(nd) — VS{E) —— 0

far all o implies that ker{Pic%(nE) = Pie®(n - 1E) = ker(Pic{nE) =
Pic(n = 1)E), aud hence also ker 3, 15 divisible, Henee ker 3, = 00 and 4, s
an isomorphism for all ».

This implics thar

Lie PicY(nL) w LiePu?(1).
that is,
HimE, Qo) = HYUE, Op) forn > 1. (3.10)
The sheal exact sequence
O T fT3 T s O — Op =3 0
gives an exact cohomology soquence
B+ DE, Opeip) — HNE, Op) — 0+ BE, /77 =

H'Y{n+1E, Opye] — HYE, O) —3 0

Now the surjectivity of H'((n + DE. Ope) — HOCE O and (3.19)
give
H'n+ DE, Ip/TiM) = D¥an = 0,

Ll

Lemma 3.3.2 Lot X and E be as in the prevous feowma, Then the map
SKUX) —» SK((nF)

18 surjechive for elln = 1.



Fepdf. From lemuma 3.3.1, i suffices to take no= 1. We have scen in he
previous lemma that

Pie"{ N — Pic{£).
B E has r irreducible components, the natural map

NN = NSy =7,

gven by taking the intersection numbers with the components of F. has
Bmite cokeruel, sinee the =abeyonp of NS(X) spanned by the components of
£ has an image of iintte index, v the negative deliniteness of the intersection

matnx of these components. Henee

coker (IMe (X)) — Dic (F))

i8 Brite, and hence

Pio (N) & b7 — Pre ()Y S k7 (3.2

since A* is divisible as b s algebradeally elosed. Now consider the following

two commmtative dingrams

Pie (\:) G

et
| |

BN Ky g) — s HYE K )

SH(X)— s (XK, §)

| l

57 {-; (F) — = H'(E.Kap)

In the fivst diagram, Pic (Fye bt - YL K, ) (For example, see [G]L 1,27,
or use the presentation (1.2). wheve K {7p) = &* Tor all simooth points 7).
Hence using (3.20), it follows that f-fl{j",f\fgp;_;) — HYE Ksp) Noew in
. the second diagram (obtained from lemma 1.3.1(c}), the bhottom arrow 15 an

isomorphism by lemma 1.3.1(a) and hence we have

SK{N) = SK({E).

[l |
St



Now we complete the proof of Theorem 3.0.2 in characteristic 4. Suppose
st that
From lemma 1.3.3.
ker{ FA RGN, nE) — TR ¢ coker (SRIN Y = SR (0271
B lemma 3.3.2 we conclude that
FERGNL nb) e FERG(Y),

and henee by lemma 12,00 15 an isomorphism for sdl o0 Now by Theorem
205, it follows that

CHUOX) = FERNY = IPR0N) - CHAND.

Conversely, suppose & is uncountable, an
CHYNY = CHAX),

- orequivalently
P‘E ]\Vﬁ {_-\—) = !“;21".’[] ( .\—)_.

This implies that all arrows in the diagram

_“ PR
_ . ) & :
PN XN nFy s PRGN
are isomorphisms. Now supposs
HYX.Ox) & HY(N,05).
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Then by the Leray spectral sequence, as in the proof of lemnma 3.3 1.0 we see
that HE(.{:,@,{;} — YD, O, is not surjective for some no (10 Choose
thesmallest such value of v 1t is proved 1o [S2], Section 3, that for this », the
map F‘ZA’{](:‘E,”E) — F"’.Kl-;(_{) has & non-trivial kernel. This contradiets
the isomorphisms in the above diagram.

This completes the proof of the theoren 3.0.2 in characteristic 0. L

Assuming the Bloch Coujecture for stiooth surfaces, Theorem 3002 in-

miediately gives

Eorollary 3.3.3 Let X be @ connecicd novinal projective surfoce veer €
Fhen the Chow group of O-cycles on X is “findte dinienstonal ™ of and ondy of
HY{X.Oy) is zero.

Proof, Let w: X — X\ be a resolution of singularities of X. Then
X, Ox) - N 00

Now the corollary follows from the characteristic 0 version of Theorem 30,2
[

o d

Corollary 3.3.4 Let X be a connected normal quasi-projecties surface over
an algebraically closed field ko of eherectersstio 0 weth only rationad sign-
larities, and let 2 X — X be a resolubion of singularities of X Then
CHYX) = CHYX).

Proof. We immediately reduee to the case when X is projective. That the
surface X has only rational singularities means that the higher diveet nages
of the structure sheaf of X vanish, 140 Ii”'ﬁ*(’?_;‘. = 0 Vi > (0 Henee
by the Leray spectral sequence, as in the proof of lemma 3.3.1, we see that
HYX, Oy) H'Q(f"?, Q¢ ). Now the result follows from Theoreny 3.0.2 in

characteristic 0. l

This result was known earlier in a special case of quotient singularities (ser

N



[S4], Chapter 9).

Another immediate consequence of Theorem 3.0.2 is the following con-
verse to the main result of [S3] on vector bundles on cones.

Corollary 3.3.5 Let X C P¢ be a projectively normal curve, and C(X) C
A the affine cone over X. Then Ko(C(X)) = Z if and only if n =
deg(X) —genus (X)), or equivalently, the curve is embedded by a “non-special
linear system”, (i.e., HY(X,Ox(1)) = 0).

Remark. We remark here that without the projective normality of X, the
same conclusion holds with C(X) replaced by its normalization.
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Chapter 4

Roitman’s torsion theorem for
normal varieties

This chapter will be devoted to thelast main vesule of this thesis. Here owe
prove the analogne of Roitman’s tarsion theorem for O-cveles on normal pro-

jective varietios.

Let ¥ be a conneeted normal projective variety over an algebraicaliy
gosed field k. Then we define the Albanese variery AlL(X) a5 given in
LI X is a surface, then ATLIY) coineides with the Albanese variety of
its desingularizations. Let § 0 X, — » AIB{N) be the Albancse mapping.

obtained by fixing a base point on X, One obtains a group homomaorplism
ey s CHG{N ) — AIB[Y).

and its restriction to the subgroup Ay (XY of degroe 0 zero eyeles is indepen-
dent of the base point. Henee one sbtains a well defined group homomor-
phisim

ey AN o ALY
It was known bv the works of Roitman amd Milne that this map is isomor-
phismt on torsion subgroups, when X is smooth. Tor X possibly singular,
this was known in characteristic 0, and for torston of order prime to p,

characteristic is p > U, by works of Collino and Levine. So the new resul of

[ §
]



this thesis will be the proof of torsion theorem for p-primary torsion cycles
in characteristic p. However, we will also give a new proof for the theorem
in the other cases as well. As a consequence, we will obtain an important
result about the Chow group of 0-cycles on normal affine varieties. We will
also give the proof of part (b) of Theorem 3.0.2 mentioned in Chapter 3.

Our main result of this chapter is

Theorem 4.0.6 Let X' be a connected normal projective variety over an
algebraically closed field k of arbitrary characteristic. Then the Albanese
map

ay @ Ag(X) — Alb(X)

is an isomorphism on torsion subgroups.

We proceed with the proof of this theorem. We first remark that ax s sur-
“jective on torsion subgroups. Let ¥ C X be a smooth complete intersection
curve missing the singular locus of X. Then one knows that the composite
map Pic®(Y) — Ap(X) — AIb(X) is a surjective map of abelian varieties,
and hence is surjective on torsion subgroups (see [L1]).
Now we prove injectivity of ay on torsion subgroups. As in Bloch’s proof
of Roitman’s theorem, this is done by first reducing to the case of surfaces,
by induction on the dimension of X.

4.1 Reduction to the case of surfaces

In this section, we discuss injectivity of the Albanese map on torsion sub-
groups for higher dimensional normal varieties, assuming that this holds for
surfaces and using induction on dimension. This reduction has been shown
by S. Bloch in [BL] in case of smooth varieties. For normal varieties, this was
proved by M. Levine (see [L1]), following the ideas of Bloch in the smooth
case. We will give below an outline of the argument in [L1]. The proof of
injectivity for surfaces will be given in the next section.
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Let X' be a normal projective variety over an algebraically closed field & of
arbitrary characteristic with dim.X' > 3. Let é be a 0-cycle such that [6] # 0
in Ag(.Y'), while n[d] = 0 for some n > 1. We will show that ax([d]) # 0.
Since n[d] = 0 in Ay(.X), this implies that there exists a finite collection
of irreducible projective curves C; contained in U = X \ Xsing and rational
functions f; € k(C;)" such that né = Y (fi)c, as O-cycles. Let 7 : N — X
be the successive blow-up at smooth points such that if D; is the strict trans-
form of C; on X. then
(i) D;’s are all smooth,

(i) D;’s are pairwise disjoint and
(iii) D;'s meet the reduced exceptional divisor of 7 transversely at smooth

points.
Let &' be a O-cycle on UD; such that =,(§') = 6. Now f; can be con-
sidered as a rational function on D; and we get 7. (fi)p, — né') =

Put 5 = nd’ - Y (fi)p,- Then we have w,(n) = 0. Thus. as explained in
[BL], we can find smooth complete rational curves Lj, with #(L;) = point.,
and rational functions g; on L; such that 5 = 3 (g;)r,. This gives né’ =

2 (f)p + 22095,

Put D = (UD;) U (UL;). One can choose L;'s in such a way that the
curve D is reduced with spnpoth components and only ordinary double point
singularities. In particular, the curve D has local embedding dimension two
(sce [BL]). Suppose that X is a closed subvariety of P" with the embedding,
given by a line bundle £. Let T be the ideal sheaf of D on X, and let
p: Z — X denote the blow- -up along Z. Put Y = p~!(D). Then Iy ® p*L™
is a very ample line bundle on Z for large m. By [S], we can find an element
Zy in the linear system |Zy- ® p*£™|, which is irreducible and geometrically
normal outside of }". On the other hand, since D has embedding dimension |
two, one can choose Z; so that X, = p(Z,) is smooth along D and hence >.\',
is irreducible and normal.

Now by ([L], Chap.8, Sec.2, Theorem 5), the natural map Alb(Z,) —

’Alb(Z ) is an isomorphism of groups. Further, since p is birational, we have




»

following commutative diagram with all arrows isomorphisms,

Alb(Z,) — Alb(2)

Alb(X}) — Alb(X)

By induction and from the proof of the theorem for surfaces below, the map
ay, 1 Ag(X1) — AlLLX) is isomorphism on torsion subgroups. This implhies
that ag([0’]) # 0, as 8" is a torsion cycle on Xy by choice (since D c X,
Now it follows from the commutative diagram

-

Ap(N) —2 Al(.X)

that ay ({6]) = ax o 7. ([0']) # 0, since the right vertical arrow is an isomor-
phism. This completes the reduction to the surface case. O

4.2 The case of surfaces

In this section, we will be concerned with the proofl of injectivity of ay
and hence the proof of Theorem 4.0.6 for normal projective surfaces. The
main focus will be on the case of characteristic p > 0, which is the new result,

Since the Albanese variety of the normal projective surface X' remains
unchanged if one takes the resolution of singularities of X, it suffices to

prove that if # : X — X is a resolution of singularities of X, then the
induced compaosite map

GHZ{-Y}tnrsiun L CH?{-i-}:ursEnn i +'ub{j:}mrsmn

is an inclusion.



By the results of Roitman [R] and Milne [M], we know that o3 is isomor-
phism on torsion subgroups. Hence it suffices to prove that «* is injective
on torsion subgroups, i.e., it is enough to show that 7* : F?2Ro(.X), rs0n <
F?2Ko(X) orsion- _

Let E be the reduced exceptional curve on .X' as before and let nE be
the n-th infinitesimal thickening of E. Then by Theorem 2.0.5, we see that
it is enough to prove that 6, : FQKO(X’, nkE) R FQKO(X')
injective for all n > 0. We may assume, choosing X suitably, that E has

torsion torsion 15

normal crossings, i.e. all the irreducible components of E are smooth and
they intersect transversely.

Let F, = ker(F?Ko(X,nE) = F2Ky(X)) for any n > 1. Our goal is thus
to prove that F,, is torsion-free for each n.

We recall below a structure theorem, a corollary of which will be used
lafer in this chapter. '

Theorem 4.2.1 Let R be a smooth local ring which is essentially of finite
type over a perfect field k of characteristic p > 0, and let n > 1. Then

ket (a(RIE)/(°1)) — Ka(RIE/(¢7)))
is isomorphic with one of the following (unlessn =1, p=2):

Q}z/z ifn# 0, —1 modp
Qiz/z ® R/RF ifn=mp"—1, (mp)=1,r>1n>2
Q}?/Z/Der ifn = mpr’ (m7p) = 11 T 2 1

Here D, p is the subgroup of Qp ., generated by the forms a” ~lda with 0 <
j<r.
Ifn =1 and p = 2, then there is an ezact sequence of F,-vector spaces
0 — R/R* — ka(R[t]/(£%), (1)) — Qpyjz — O,
which splits, but not naturally.

The reader is referred to [KS] (see also [BL1]) for a proof of this theorem.
Note that Q}z/z = Q}Q/k since k is perfect of char p > 0. This result has
the following immediate corollary, which is what is used in this thesis.
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Borollary 4.2.2 Let ) be a smooth cwrve on the smooth surfoce X over K,
where ks algelbraically closed of charocterstio po Then ker(Ka o oop o
Kap) is a sheof of p¥-torsion abelten groups. for some N = 0 depending

aily on n and p.

Fixan integer n > 1, and consider the following diagram with exact rows

0-—— F, EIRG(N. nE) e PP (X = 0
g-an..} i i ‘I
“:' . - y H; . ~

b—t £y RGN, EY e FERG (Y -0

Diagram D

Eemma 4.2.3 If k has charactervistie p > 0, thon k("]’(ﬁ,u F, oy Fl) s a

forsion group of finite exponent p’ .

Proof. By lemma 131 and lemma 133, 10 s enough 1o prove that the

kernel L, of the map

HYRE, Kaop) HNE Ky

NP—— r ......

image( H! ({ A, ) i-nmge(ﬂl.{”.f, .I\;'.J__.q 1)

15 torsion of finite expanent p .
Let {Ey,- | E;} be the set of irveducible components of E and let Ko
and K, be the sheaves on 1 F defined in Chapter 3 (Section 3.1) (see (3.10),

{3.12) and (3.13)). Since H'nE Kopp) = H'(nE Koy for all n > 1) the
gxact sequence

O —r Ky, ~ Koy — .K:"?J-f —3 { (!])

yields a diagram with exact rows
Cod

| !

7 H U (nE, Ky op) C_HNE K
L Tl Tamage( (N, Ky o) image(HT(N, K, o))

HYRE. Kan) == HYnE, Kang) —— HU(E, Kayp)——0
E
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From the snake lemna, we deduce that
s
HY(nE, Kig) ™ Ly

The exact sequence (3.13) and corollary 4.2.2 imply that Koq 18 itself a sheaf
of p™-torsion abelian groups. for some N = 0. and hence 50 is any cohomol-

ogy group of this sheaf. This proves the lemma. O

\We rocall the following result, which qumnarizes in convewient farrn son
woll-known properties about the sheaf Ka. and I -cohiomology of smooth

curves and guriaces.

Lemma 4.2.4 {a) Lel D be an irreducible non-singular curve over an al-

gebraically closed field k. Then we have the followiny.
(1) Kqap 15 0 divisible sheaf of abelian groups. and if characteristie
k=p>0, it has 1o ;._r}-tm‘sinn..

(i) If k has characteristic 0. o1 1f chark = p I m, its m-lorsioh
subsheaf is tsomorplic to the imuge of the symbol map O & tm —

Ko p, where jigp 18 the qroup of i-th roots of unity k.

(1i1) If D 18 projective, then the natural maps
Pic(D) @z k" — HYD,Kaop) — Filk) = 32
hoth induce isomaorphisms on torsion subgroups.

(b) LetY be o non-singilur projective surfrce oveT algebraically closed
field. Then

- HY(Y, Kay) = .{'Hmmiwmi divisible subgroup) © (finite group)

Proof. The proof of (a)(i) and (i) is by a standard argument, using
(1) Suslin’s deseription of the torsion subgroup of K, of any field (see 1S4].
Theorem 8.24),

{3] the divisibility of Kz of the function field of a curve Over an algebraically
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closed field (or more generally of any Oy field K. in the sense of Lang. for
which the norin map Ny [+ — I is surjective for any finite algebraw
extonsion field L; see [S1], Lemma 8.4), and

(3) the Gersten resolution for Kp and the Bloch-Ogus resolution for the étale
cohomology sheaves (see [BL], Chapter 4 and [S4]. Section (8.4)).

From the resulting exact gheaf sequence

i, g

0= @;J &z dm =7 Kop — Kop— 1]
for anv m with 1/m € k, the induced map
{Pii: D] @2 Man .i} Hll(D. C];} & .”m]' =3 mHl{D. -P“:'."_.I’.?ll'

is a surjection. Now (Pic D) @z ptm = ftm vin the degree homomorphisn
Pic D — Z, since Pic’(D) is divisible. On the other hand, the composite
(PicD) @z k7 = HYD.Kyp) — I (k) = k" is the map (Pic D) @z k" — k-
indueed by the degree homomaorphism Pie D — Z: henee this composition is
an isomorphism on torsion subgroups. This proves (a)(iii)-

The proof of (b) is by using the exact sequence (so¢ [S4], Section (8-1))
0= HYY. Ksy) @ Z/mZ — HY(Y, Koy @ Ef/mZ) — SOH (Y)Y =26

valid for any m = 1. combined with

(1) the Roitman theorem on torsion O-cyeles for ¥

(2) the Merenrjev-Suslin and Bloch-Ogus theorems, if I/m € k, and

(3) analogucs involving logarithmic de Rham-\Witt sheaves of 2-forms, ifm =
p*, where k has characteristic p > 0.

First consider the case when 1/m € k. Then (see [S4], Chapter 8) one has

isomorphisms
HU(Y, Koy @ Z/mZ) = H () 122y = Hom (Pic Y’ )
while the Roitman theorem gives

CHY(Y) = nAlbY = Hom (mPie®(Y). im)-
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Since NS(Y) = Pic (Y)/Pic®(Y) is a finitely generated abelian group, we
deduce that H'(Y,K2,p) ® Z/mZ = o NS(Y), which implies (b) in char-
acteristic 0. Milne, in his proof in [M] of the Roitman theorem for p-
primary torsion 0-cycles in characteristic p > 0, gives an analogous descrip-
tion of H'(Y,K2y) @ Z/p"Z,."a_nd deduces that in arbitrary characteristic,
H(Y, K2,y) modulo its divisible subgroup is a finite abelian group. 0O

=

Next, returning to our situation, we prove:

Lemma 4.2.5 Let Kok be the sheaf as defined by the ezact (Mayer- Vietoris)
sequence

0 Kone = © Kopp, 2 & 9 Ka,p, = 0
1<i<r 1<i<j<r PES,

where E;, 1 <1< 1 are the irreducible components of E. Then
(a) mKaor = ®1<i<rOF; ®i fn ifptm
(b) if k has character'ist%c P }_0, then ,,_K—I-g—:,._;'= 0
(c) Ko is @ divisible sheaf of abelian groups .,

(d) if k has characteristic 0, then KonEg 18 divisible for anyn > 1, and the
restriction map '

Kone = KoE
induces an isomorphism on torsion subsheaves.

Proof. First consider the case n = 1, i.e., of the reduced divisor E. We

have the following diagram of exact sequences, where the vertical arrows are
multiplication by m. ’

0 — Ko.p — Or<icrKos — D1<ij<r®pes,; (ip): Ka(k) — 0
im im A 4m
0 — Ko g — Or<izr Ko, 5 — D1<ij<r®pes,; (ip) K2(k) — 0

s | | Diagram E
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Since the ground field £ is algebraically closed, I,(k) is uniquely divisible
by a lemma of Bass and Tate (see [S4},Theorem 8.24). This implies the last
vertical arrow in the above diagram is an isomorphism. Hence by the snake
lemma, combined with lemma 4.2.4(a), we get that K, ¢ is m-divisible, and

mK:Q,E = @1gi5r(m’C2,El) = @xgigroz*i ®z Hm-

For n > 1, the conclusions about K5, g in characteristic 0 follow from the
case n = 1, using lemma 3.1.6 and the exact sequence (3.13), which imply
that

ker(Kone — Ko g)

is a sheaf of Q-vector spaces. O

Corollary 4.2.6 (a) Let E be the reduced exceptional curve in X. Then
SK\(E) is divisible, and the natural maps

SK\(E) = @ SK\(E;) — (k)%
=1
induce isomorphisms on torsion subgroups.

(b) If k has characteristic 0, then SK|(nE) is divisible for anyn > 1, and
SK{(nE) — SK/(E) is an isomorphism on torsion subgroups.

Proof. This is an immediate corollary of the lemma 4.2.5, combined with
lemma 4.2.4(a). / O

Lemma 4.2.7 Let E and X be as above. Then
SI(I(E)torsion C image (SA’I()’;’))

under the natural map SK,(X) — SK,(E). If k has characteristic 0, then
a similar statement holds with SK,(nE) (in place of SK,(E)).
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Proof. After corollary 4.2.6(a), it suffices in the case n = 1 to show that the
composite

Pic \ X k — SI\ ( ) — SI\I(E) — EBiSI\’I(Ei) — (k*)%r
is surjective on torsion subgroups. We consider the following diagram
PIC(E) ® k* ——————»@15i§rPiC(Ei) ® k*
| . 1

SK,(E) P  xer

where the map dg is given by

de(CL®a) = (a¥, -, a%) with d; = deg(L|g,)-
Now the composite map

M : << LE; — Pic(X) — Pic(E) — Z%"

is gn en by the intersection matrix M of E. Since E is the exceptional curve
on \ the intersection matrix is negative definite, 1.e., the map M is injective,
and hence has finite cokernel because of the rank comparison. This implies
that this map is surjective when tensored with the group fie of roots of unity,
since the latter group is divisible#This implies that the composite map

Pic():’) ® ptoo — Pic(E) @ jioo — SK1(E) orsion = foo ™"

is surjective..

The stronger conclusion for arbitrary n > 1 in characteristic 0 now follows
immediately by applying corollary 4.2.6(b). O

Let E and X be as above. Recall that we have defined the group
F, = ker(F2o(X,nE) — F2Ko(X))
in the beginning of this section.
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Lemma 4.2.8 (a) With the above notation, the grbup F, is torsion free,
and '

: (ker en,l)torsion = (Fn)torsion-
(b) If k has characteristic 0, then F, is torsion-free for alln > 1.

Proof. We first prove (a). Using the relative K-theory long exact sequence
of the pair (X, E) and lemma 1.3.3, we see that Fy, < T&Tasg—:__s‘(l\li)(r)’ and so by
the commutative diagram of lemma 1.3.1(c), we have

Hl (Ea KZ?,E)

imageH (X, K, %) '

1

But we have seen (corollary 4.2.6) that SK (E) = H'(E,K2E) 1s divisible,
and its torsion subgroup is contained in image (SK, (X)) = image (H' (N, K, 7))
But the latter group itself is the direct sum of a divisible group and a finite
group by lemma 4.2.4. Hernce we see casily that the quotient group

) H‘ (Ea K?,E)
) ‘ixnzxch‘(.‘:', K, %)

must be torsion-free and divisible and so F, is torsion free. Since 0, is the
natural map F,, — Fi, the other conclusion is obvious.

In characteristic 0, the statement (b) follows from the corresponding
stronger conclusion in lemma 4.2.7. O

We now prove a general result in characteristic p, which has independent
interest, apart from its use in the proof of Theorem 4.0.6.

Proposition 4.2.9 Let 7 : X —» X be a resolution of singularities of a
normal quasi-projective surface X over an algebraically closed field k of char-
acteristic p > 0, and let E be the reduced ezxceptional curve on . Then the

maps

P F2Ky(X) = F2Ko(X, E)
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and
F2Ro(X.nE) — F2Ro(X,E), Vn>1
are isomorphisms.

Proof. As in corollary 3.1.8,we reduce to the case when X' and X are

projective, and E is a normal cfossing divisor. Also, from Theorem 2.0.5,

combined with lemma 1.2.1, we see that the two conclusions are equivalent.
We know (see [S1]), that the group "

ker(F2Ko(X) — F2Ko(X))
is divisible. Hence by lemma 1.2.1,
F, = ker(F?Ko(X,nE) — F2Ko(X))

is also divisible for all n, and hence also (F},) is divisible for all n. Now

by lemma 4.2.8(a), Fj is torsion free, and

torsion

(F")torsion = (kergn,l)torsion-

By lemma 4.2.3, ker(a,,,l_) is torsion of a fixed exponent. Hence F,, is torsion-
free, and

| ker(éz"l) = 0.
But from Diagram D above, we see that
ker(Bn1) = ker(6n1 : F?Ko(X,nE) — F?Ko(X, E)).

Hence 6, is an isomorphism, which proves the proposition. - 0

Proof of Theorem 4.0.6. Now we finish proof of Theorem 4.0.6, which
was the main goal of this chapter. If k has characteristic p > 0, then

lemma 4.2.8(a) combined with proposition 4.2.9 implies that F?Ky(X) —
,. : '
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Wﬁg[{} s mjective on torston, o henes the ap oy is mpective on tor-
ghon subgroups, as desired.

Becharacteristic (1. we use lemntna L2 8B which implies that F2R N L)
Wﬁg(‘;i s injective on torsion subgroups. Now we use Theorenm 20005 1o

Baish the proof. -

Porollary 4.2.10 1.0f N he u normal prajeeiiee vty vecr alycbrane olo-

sure of a finete freld. Then the Alhanese map

88 an amorp hism,

Proof. [n this case, hoth eroups are torsion. Now the corallary follows [rom

Tileorem 106, L

We have another importiant corollary to Theoreny LoLGe Tlas resalt s
new onlv in chavacteristic po> O for p-torsion eveles: even for this, [0
gontains a proof in the case dim A = 30 nsing o shinple trick (hased o s
suggestion of M. 1" Murthy}, The romaining case. that of surfaces. follows

"

from Theorem 106, as is explained in [MS].

Corollary 4.2.11 Let A be o novmad affice domeain of dimensionn 72 orer
en algebraeally closed field 1o "Phon FUIG0AY s torsion-fiee

By removing a point from a sicoth projective curve ol positive gemis, it
s easily seen that the above resnlt is oot true in general for o simooth alfine

reurve of positive gents.
4.3 Proof of Theorem 3.0.2 in characteristic

p >0

We now prove Theorem 3.0.2 in positive characteristic, using proposition 42,9,

First suppose that Pie™ (X)) — Pic"(£) As in characteristie 0, we remark



that, becanse the intersection matrix of the components of E is negative def-
inite, VS{X} = NS(E} has finite cokernel, so that Pic .Y - Pic £ has finite
cokernel as well. This implies as before that 5‘1\'1(.?) — SK{E) is surjec-
tive, which in turn implies that le‘;g(j:, EY — FQHU(,"?) is an isomorphism
as belore, since these implications are independent of the characteristic of the
ground field.

But by the proposition 4.2.9, the map
FPRN, nE) — FANN, E)
i an isomorphism for all n > 0. From this, we get that
FIG(X, nE) — FIRG(N)
is isomorphism for all n > . Now by Theorem 2.0.5, we conclude that
CH (X)) = FPRy(N) — F2RG(X) = CIP(Y)

15 an isomorphism.

Conversely, suppose k is uncountahble, and
Pi¢%( ) —s Pic"(E)
is not surjective. It is then shown in [$2], Section 3. that the map
PRGN, E) — F2R{X) has a non-trivial kernel, and hence so does
CHX) = FPRy(X) — F?I\'g(jf} = CH?(.‘:'),

This completes the proof of theorem 3.0.2 in characteristic p > 0. )
Corollary 4.3.1 Let X be a connected normal quasi-projective surface over
an alyebroicolly closed field k of characteristic p > 0, and let v X —3 X be
a resolution of stngularities of X, with reduced, normal crossing cxceplional

divisor I, Suppose all components of F are rational, and the dual graph of
F has no loops. Then CHA(X) = CHYX).

Proof. The hypotheses fmply that Pic?(E) = 0, so the result follows from
the positive characteristic version of Theorem 3.0.2 proved above. W
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