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Chapter 1

Introduction and Scope of the
Thesis



1.1 Introduction

Pattern recognition (PR) is an activity that we humans normally excel in. We do
it almost all the time, and without conscious effort. We receive information via our
various sensory organs, which is processed instantaneously by our brain so that, almost
immediately, we are able to identify the source of the information, without having made
any perceptible effort. What is even more impressive is the accuracy with which we
can perform recognition tasks even under non-ideal conditions, for instance, when the
information that needs to be processed is vague, imprecise or even incomplete. In fact,
most of our day-to-day activities are based on our success in performing various pattern
recognition tasks. For example, when we read a book, we recognize the letters, words
- and, ultimately, concepts and notions, from the visual signals received by our brain,
which processes them speedily and probably does a neurobiological implementation of

template-matching!

The discipline of Pattern Recognition (or pattern recognition by machine) essentially
deals with the problem of developing algorithms and methodologies/devices that can
enable the computer-implementation of many of the recognition tasks that humans
normally perform. The motivation is to perform these tasks more accurately, or faster,
and perhaps, more economically than humans and, in many cases, to release them
from drudgery resulting from performing routine recognition tasks repetitively and
mechanically. The scope of PR also encompasses tasks humans are not good at, like
reading bar codes. The goal of pattern recognition research is to devise ways and
means of automating certain decision-making processes that lead to classification and

recognition.

Machine recognition of patterns can be viewed as a two-fold task, consisting of learning
the invariant and common properties of a set of samples characterizing a class, and
of deciding that a new sample is a possible member of the class by noting that it has
properties common to those of the set of samples. The task of pattern recognition by
a computer can be described as a transformation from the measurement space M to

the feature space F and finally to the decision space D, i.e.,
M= F—D.

Here the mapping § : F — D is the decision function, and the elements d € D are



termed as decisions.

PR has been a thriving field of research for the past few decades, as is amply borne
out by the numerous books [30, 32, 41, 118, 123, 125] devoted to it. In this regard,
mention must be made of the seminal article by Kanal [61], which gives a comprehen-
sive review of the advances made in the field till the early nineteen-seventies. More
recently, a review article by Jain et al. [60] provides an engrossing survey of the ad-
vances made in statistical pattern recognition till the end of the twentieth century.
Though the subject has attained a very mature level during the past four decades or
so, it remains evergreen to the researchers due to continuous cross-fertilization of ideas
from disciplines like computer science, physics, neurobiology, psychology, engineering,
statistics, mathematics and cognitive science. Depending on the practical need and
" demand, various modern methodologies have come into being, which often supplement

the classical techniques [111].

In recent years, the rapid advances being made in computer technology have ensured
that large sections of the world population have been able to gain easy access to
computers on account of falling costs worldwide, and their use is now commonplace
in all walks of life. Government agencies, and scientific, business and commercial
organizations are routinely using computers not just for computational purposes but
also for storage, in massive databases, of the immense volumes of data that they
routinely generate, or require from other sources. Large-scale computer networking
has ensured that such data has become accessible to more and more people. In other
words, we are in the midst of an information explosion, and there is urgent need for
methodologies that will help us bring some semblance of order into the phenomenal
volumes of data that can readily be accessed by us with a few clicks of the keys
of our computer keyboard. Traditional statistical data summarization and database
management techniques are just not adequate for handling data on this scale, and
for extracting intelligently, information or, rather, knowledge that may be useful for
exploring the domain in question or the phenomena responsible for the data, and
providing support to decision-making processes. This quest had thrown up some new
phrases, for example, data mining and knowledge discovery in databases (KDD) [24,
37, 38, 51, 52, 55).

The massive databases that we are talking about are generally characterized by the

presence of not just numeric, but also textual, symbolic, pictorial and aural data. They



may contain redundancy, errors, imprecision, and so on. KDD is aimed at discovering
natural structures within such massive and often heterogeneous data. Therefore PR
plays a significant role in KDD process. However, KDD is being visualized as not
Just being capable of knowledge discovery using generalizations and magnifications
of existing and new pattern recognition algorithms, but also the adaptation of these
algorithms to enable them to process such data, the storage and accessing of the
data, its preprocessing and cleaning, interpretation, visualization and application of

the results, and the modeling and support of the overall human-machine interaction.

Data mining is that part of knowledge discovery which deals with the process of iden-
tifying valid, novel, potentially useful, and ultimately understandable patterns in data,
and excludes the knowledge interpretation part of KDD. Therefore, as it stands now,
- data mining can be viewed as applying PR and machine learning principles in the

context of voluminous, possibly heterogeneous data sets [111].

The objective of the thesis is to provide some results of investigations, both theoretical
and experimental, addressing certain pattern recognition tasks essential for data min-
ing. Tasks considered include data condensation, feature selection, case generation,
clustering, classification and rule generation/evaluation. Various methodologies have
been developed using both classical and soft computing approaches (integrating fuzzy
logic, artificial neural networks, rough sets, genetic algorithms). The emphasis of the
proposed methodologies is given on (a) handling data sets which are large (both in size
and dimension) and involve classes that are overlapping, intractable and/or having
nonlinear boundaries, and (b) demonstrating the significance of granular computing in
soft computing paradigm for generating linguistic rules and dealing with the knowledge
discovery aspect. Before we describe the scope of the thesis, we provide a brief review
of pattern recognition, knowledge discovery in data bases, data mining, challenges in
application of pattern recognition algorithms to data mining problems, and some of

the possible solutions.

Section 1.2 presents a description of the basic concept, features and techniques of
pattern recognition briefly. Next, we define the KDD process and describe its vari-
ous components. In Section 1.4 we elaborate upon the data mining aspects of KDD,
discussing its components, tasks involved, approaches and application areas. The pat-
tern recognition perspective of data mining is introduced next and related research

challenges are mentioned. The problem of scaling up pattern recognition algorithms

4



to large data sets is discussed in Section 1.6. Some broad approaches to achieving

scalability are listed. Finally, Section 1.7 discusses the scope of the thesis.

1.2 Pattern Recognition in Brief

A typical pattern recognition system consists of three phases namely, data acquisition,
feature selection/eztraction and classification/clustering. In the data acquisition phase,
depending on the environment within which the objects are to be classified /clustered,
data are gathered using a set of sensors. These are then passed on to the feature
selection/extraction phase, where the dimensionality of the data is reduced by retain-
ing/measuring only some characteristic features or properties. In a broader perspec-
tive, this stage significantly influences the entire recognition process. Finally, in the
classification/clustering phase, the selected/extracted features are passed on to the
classifying/clustering system that evaluates the incoming information and makes a fi-
nal decision. This phase basically establishes a transformation between the features
and the classes/clusters. Different forms of transformation can be a Bayesian rule of
computing a posterior class probabilities, nearest neighbor rule, linear discriminant

functions, perceptron rule, nearest prototype rule etc [30, 32].

1.2.1 Data acquisition

Pattern recognition techniques are applicable in a wide domain, where the data may
be qualitative, quantitative, or both; they may be numerical, linguistic, pictorial, or
any combination thereof. The collection of data constitutes data acquisition phase.
Generally, the data structures that are used in pattern recognition systems are of two
tvpes : object data vectors and relational data. Object data, set of numerical vectors,
are represented in the sequel as Y = {y,,¥2,...,¥n}, a set of n feature vectors in the
p-dimensional measurement space 0y. An sth object, s = 1,2,...,n, observed in the
process has vector y, as its numerical representation; y; is the ith (i = 1,2,...,p)
feature value associated with the sth object. Relational data is a set of n? numerical
relationships, say {rs}, between pairs of objects. In other words, 7, represents the
extent to which sth and gqth objects are related in the sense of some binary relationship

p. If the objects that are pairwise related by p are called O = {0y,0,,...,0,}, then

b
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1.2.2 Feature selection/extraction

Feature selection/extraction is a process of selecting a map of the form X = f(Y'), by
which a sample y (=[y1, 92, ..,¥p]) in a p-dimensional measurement space {2y is trans-
formed into a point x (=[x, Z3,...,Zy]) in a p'-dimensional feature space §2x, where
P < p. The main objective of this task [30], is to retain/generate the optimum salient
characteristics necessary for the recognition process and to reduce the dimensionality
of the measurement space €0y so that effective and easily computable algorithms can
be devised for efficient classification. The problem of feature selection/extraction has
* two aspects — formulation of a suitable criterion to evaluate the goodness of a feature
set, and searching the optimal set in terms of the criterion. In general, those features
are considered to have optimal saliencies for which interclass/intraclass distances are
maximized/minimized. The criterion of a good feature is that it should be unchanging
with any other possible variation within a class, while emphasizing differences that are

important in discriminating between patterns of different types.

The major mathematical measures so far devised for the estimation of feature qual-
ity are mostly statistical in nature, and can be broadly classified into two categories
- feature selection in the measurement space and feature selection in a transformed
space. The techniques in the first category generally reduce the dimensionality of the
measurement space by discarding redundant or least information carrying features.
On the other hand, those in the second category utilize all the information contained
in the measurement space to obtain a new transformed space; thereby mapping a
higher dimensional pattern to a lower dimensional one. This is referred to as feature

extraction.

1.2.3 Classification

The problem of classification is basically one of partitioning the feature space into
regions, one region for each category of input. Thus it attempts to assign every data
point in the entire feature space to one of the possible (say, M) classes. In real life,

the complete description of the classes is not known. We have instead, a finite and



usually smaller number of samples which often provides partial information for optimal
design of feature selector/extractor or classifying/clustering system. Under such cir-
cumstances, it is assumed that these samples are representative of the classes. Such a
set of typical patterns is called a training set. On the basis of the information gathered
from the samples in the training set, the pattern recognition systems are designed,
i.e., we decide the values of the parameters of various pattern recognition methods.
Design of a classification or clustering scheme can be made with labeled or unlabeled
data. When the computer is given a set of objects with known classifications (i.e.,
labels) and is asked to classify an unknown object based on the information acquired
by it during training, we call the design scheme supervised learning; otherwise we call
it unsupervised learning. Supervised learning is used for classifying different objects,

- while clustering is performed through unsupervised learning.

Pattern classification, by its nature, admits many approaches, sometimes complemen-
tary, sometimes competing, to provide solution of a given problem. These include
decision theoretic approach (both deterministic and probabilistic), syntactic approach,
connectionist approach, fuzzy and rough set theoretic approach and hybrid or soft com-

puting approach.

In the decision theoretic approach, once a pattern is transformed, through feature eval-
uation, to a vector in the feature space, its characteristics are expressed only by a set
of numerical values. Classification can be done by using deterministic or probabilistic
techniques [30, 32]. In deterministic classification approach, it is assumed that there
exists only one unambiguous pattern class corresponding to each of the unknown pat-
tern vectors. Nearest neighbor classifier (NN rule) [32] is an example of this category.

In most of the practical problems, the features are usually noisy and the classes
in the feature space are overlapping. In order to model such systems, the features
Iy,T2,...,Ti,..., T, are considered as random variables in the probabilistic approach.
The most commonly used classifier in such probabilistic systems is the Bayes mazimum
likelihood classifier [32].

When a pattern is rich in structural information (e.g., picture recognition, character
recognition, scene analysis) i.e., the structural information plays an important role in
describing and recognizing the patterns, it is convenient to use syntactic approaches

{41} which deal with the representation of structures via sentences, grammars and au-



tomata. In the syntactic method [41}, the ability of selecting and classifying the simple
pattern primitives and their relationships represented by the composition operations
is the vital criterion of making a system effective. Since the techniques of composition
of primitives into patterns are usually governed by the formal language theory, the
approach is often referred to as linguistic approach. An introduction to a variety of

approaches based on this idea can be found in [41].

A good pattern recognition system should possess several characteristics. These are on-
line adaptation (to cope with the changes in the environment), handling nonlinear class
separability (to tackle real life problems), handling of overlapping classes/clusters (for
discriminating almost similar but different objects), real-time processing (for making a
decision in a reasonable time), generation of soft and hard decisions (to make the system
" flexible), verification and validation mechanisms (for evaluating its performance), and
minimizing the number of parameters in the system that have to be tuned (for reducing
the cost and complexity). Moreover, the system should be made artificially intelligent
in order to emulate some aspects of the human processing system. Connectionist
approaches (or artificial neural network based approaches) to pattern recognition are
attempts to achieve these goals, and have drawn the attention of researchers because of

its major characteristics like adaptivity, robustness/ruggedness, speed and optimality.

All these approaches to pattern recognition can again be fuzzy set theoretic {14, 62,
118, 165] in order to handle uncertainties, arising from vague, incomplete, linguistic,
overlapping patterns etc., at various stages of pattern recognition systems. Fuzzy set
theoretic classification approach is developed based on the realization that a pattern
may belong to more than one class, with varying degree of class membership. Accord-
ingly, fuzzy decision theoretic, fuzzy syntactic, fuzzy neural approaches are developed
(14, 19, 118, 123].

More recently, the theory of rough sets [127, 132, 133, 158] has emerged as another
major mathematical approach for managing uncertainty that arises from inexact, noisy,
or incomplete information. It is turning out to be methodologically significant to the
domains of artificial intelligence and cognitive sciences, especially in the representation
of and reasoning with vague and/or imprecise knowledge, data classification, data

analysis, machine learning, and knowledge discovery [156, 158].

Investigations have also been made in the area of pattern recognition using genetic



algorithms [129]. Like neural networks, genetic algorithms (GAs) [46] are also based
on powerful metaphors from the natural world. They mimic some of the processes
observed in natural evolution, which include cross-over, selection and mutation, leading

to a stepwise optimization of organisms.

There have been several attempts over the last decade to evolve new approaches to
pattern recognition and deriving their hybrids by combining the merits of several tech-
niques [123]. Recently, a consolidated effort is being made to integrate mainly fuzzy
logic, artificial neural networks, genetic algorithms and rough set theory, for developing
an efficient new paradigm called soft computing. Soft computing [167] is a consortium
of methodologies which works synergistically and provides in one form or another flex-
ible information processing capabilities for handling real life ambiguous situations. Its
~ aim is to exploit the tolerance for imprecision, uncertainty, approximate reasoning and
partial truth in order to achieve tractability, robustness, low cost solutions, and close
resemblance to human like decision making. In other words, it provides the foundation
for the conception and design of high MIQ (Machine IQ) systems, and therefore forms
the basis of future generation computing systems. An integration of neural network
and fuzzy set theories, commonly known as the neuro-fuzzy approach, is perhaps the
most visible hybrid paradigm [122, 123] in soft computing framework. Rough-fuzzy
(127] and neuro-rough [109, 126] hybridizations are also proving to be fruitful frame-
works for modeling human perceptions and providing means for computing with words.
Significance of the recently proposed computational theory of perceptions (CTP) [169]

may also be mentioned in this regard.

1.3 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is defined as [37]:

The nontrivial process of identifying valid, novel, potentially useful, and

ultimately understandable patterns in data.

In this definition, the term pattern goes beyond its traditional sense to include models
or structures in data. Data is a set of facts F' (e.g., cases in a database), and a

paltern is an expression E in a language L describing the facts in a subset F (or a
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Figure 1.1: The KDD process {111]

model applicable to that subset) of F. E is called a pattern if it is simpler than the

enumeration of all facts in Fg.

The discovered patterns should be valid on new data with some degree of certainty.
Also, the patterns need to be novel (at least to the system and preferably to the user)
and potentially useful, that is, lead to some benefit to the user. Finally, the patterns

should be understandable (if not immediately) after some postprocessing.

Data mining is a step in the KDD process that consists of applying data analysis
and discovery algorithms which, under acceptable computational limitations, produce
a particular enumeration of patterns (or generate a model) over the data. It uses

hsstorical information to discover regularities and improve future decisions [95].

The overall KDD process is outlined in Figure 1.1. It is interactive and iterative

involving, more or less, the following steps [37, 38]:

1. Data cleaning and preprocessing: includes basic operations, such as noise removal
and handling of missing data. Data from real-world sources are often erroneous,
incomplete, and inconsistent, perhaps due to operation error or system imple-
mentation flaws. Such low quality data needs to be cleaned prior to data mining.

2. Data condensation and projection: includes finding useful features and samples to

represent, the data (depending on the goal of the task) and using dimensionality
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reduction or transformation methods.

. Data integration and wrapping: includes integrating multiple, heterogeneous data

sources and providing their descriptions (wrappings) for ease of future use.

. Choosing the data mining function(s) and algorithm(s): includes deciding the
purpose (e.g., classification, regression, summarization, clustering, discovering
association rules and functional dependencies, or a combination of these) of the
model to be derived by the data mining algorithm and selecting methods (e.g.,
neural networks, decision trees, statistical models, fuzzy models) to be used for

searching patterns in data.

. Data mining: includes searching for patterns of interest in a particular represen-
4

tational form or a set of such representations.

. Interpretation and visualization: includes interpreting the discovered patterns,
as well as the possible visualization of the extracted patterns. One can analyze
the patterns automatically or semi-automatically to identify the truly interest-

ing/useful patterns for the user.

. Using discovered knowledge: includes incorporating this knowledge into the per-

formance system, taking actions based on knowledge.

Thus, KDD refers to the overall process of turning low-level data into high-level knowl-
edge. Perhaps the most important step in the KDD process is data mining. However,

the other steps are also important for the successful application of KDD in practice.

For example, steps 1, 2 and 3, mentioned above, have been the subject of widespread

research in the area of data warehousing. We now focus on the data mining component
of KDD.

1.4 Data Mining

Data mining involves fitting models to or determining patterns from observed data.
The fitted models play the role of inferred knowledge. Deciding whether the model

reflects useful knowledge or not is a part of the overall KDD process for which subjective
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human judgment is usually required. Typically, a data mining algorithm constitutes

some combination of the following three components [37].

e The model: The function of the model (e.g., classification, clustering) and
its representational form (e.g., linear discriminants, neural networks). A model

contains parameters that are to be determined from the data.

e The preference criterion: A basis for preference of one model or set of param-
eters over another, depending on the given data. The criterion is usually some
form of goodness-of-fit function of the model to the data, perhaps tempered by
a smoothing term to avoid overfitting, or generating a model with too many

degrees of freedom to be constrained by the given data.

e The search algorithm: The specification of an algorithm for finding particular
models and parameters, given the data, model(s), and a preference criterion.

A particular data mining algorithm is usually an instantiation of the model/preference/

search components.

1.4.1 Data mining tasks

The more common model tasks/functions in current data mining practice include:

1. Association rule discovery: describes association relationship among different at-
tributes. The origin of association rules is in market basket analysis. A market
basket is a collection of items purchased by a customer in an individual customer
transaction. One common analysis task in a transaction database is to find sets
of items, or itemsets, that frequently appear together. Each pattern extracted
through the analysis consists of an itemset and its support i.e., the number of
transactions that contain it. Businesses can use knowledge of these patterns to
improve placement of items in a store or for mail-order marketing. The huge
size of transaction databases and the exponential increase in the number of po-
tential frequent itemsets with increase in the number of attributes (items) make
the above problem a challenging one. The Apriori algorithm [1] provided one
carly solution which was improved by subsequent algorithms using partitioning,

hashing, sampling and dynamic itemset counting.
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2. Clustering: maps a data item into one of several clusters, where clusters are nat-
ural groupings of data items based on similarity metrics or probability density
models. Clustering is used in several exploratory data analysis tasks, customer
retention and management, and web mining. The clustering problem has been
studied in many fields, including statistics, machine learning and pattern recog-
nition. However, large data considerations were absent in these approaches.
Recently, several new algorithms with greater emphasis on scalability have been
developed, including those based on summarized cluster representation called
cluster feature (Birch [171], ScaleKM [16]), sampling (CURE [49]) and density
joins (DBSCAN ([35]).

3. Classification: classifies a data item into one of several predefined categorical
classes. It is used for the purpose of predictive data mining in several fields e.g.,
in scientific discovery, fraud detection, atmospheric data mining and financial
engineering. Several classification methodologies have already been discussed
earlier in Section 1.2.3. Some typical algorithms suitable for large databases are

based on Bayesian techniques and decision trees.

4. Sequence analysis: models sequential patterns, like time-series data [79]. The
goal is to model the process of generating the sequence or to extract and report
deviation and trends over time. The framework is increasingly gaining impor-

tance because of its application in bioinformatics and streaming data analysis.

5. Regression: maps a data item to a real-valued prediction variable. It is used in

different prediction and modeling applications.

6. Summarization: provides a compact description for a subset of data. A simple
example would be mean and standard deviation for all fields. More sophisticated
functions involve summary rules, multivariate visualization techniques and func-
tional relationship between variables. Summarization functions are often used in

interactive data analysis, automated report generation and text mining.

-]

Dependency modeling: describes significant dependencies among variables.

Some other tasks required in some data mining applications are, outlier/anomaly de-

tection, link analysis, optimization and planning.
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1.4.2 Data mining tools

A wide variety and number of data mining algorithms are described in the literature
- from the fields of statistics, pattern recognition, machine learning and databases.
They represent a long list of seemingly unrelated and often highly specific algorithms.
Some representative groups are mentioned below:

1. Statistical models (e.g., linear discriminants [32, 55])

2. Probabilistic graphical dependency models

3. Decision trees and rules [145]

4. Inductive logic programming based models

5. Example based methods (e.g., nearest neighbor [5], lazy learning [3] and case

based reasoning [74] methods)

6. Neural network based models [24, 88, 108]

=~

Fuzzy models [24, 89, 134]
8. Rough set theory based models [75, 82, 105]
9. Genetic algorithm based models [64]

10. Hybrid and soft computing models [63, 104]

The data mining algorithms determine both the flexibility of the model in representing
the data and the interpretability of the model in human terms. Typically, the more
complex models may fit the data better but may also be more difficult to understand
and to fit reliably. Also, each representation suits some problems better than the
other. For example, decision tree classifiers can be very useful for finding structure
in high dimensional spaces and are also useful in problems with mixed continuous
and categorical data. However, they may not be suitable for problems where the true

decision boundaries are nonlinear multivariate functions.
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1.4.3 Applications of data mining

A wide range of organizations including business companies, scientific laboratories and
governmental departments have deployed successful applications of data mining. While
early adopters of this technology have tended to be in information-intensive industries
such as financial services and direct mail marketing, the technology is applicable to any
company looking to leverage a large data warehouse to better manage their operations.
Two critical factors for success with data mining are: a large, well-integrated data
warehouse and a well-defined understanding of the process within which data mining
is to be applied. Several domains where large volumes of data are stored in centralized

or distributed databases include the following.

o Financial Investment: Stock indices and prices, interest rates, credit card data,

fraud detection.

Health Care: Several diagnostic information stored by hospital management sys-

tems.

Manufacturing and Production: Process optimization and trouble shooting.

Telecommunication network: Calling patterns and fault management systems.

Scientific Domain: Astronomical observations, genomic data, biological data.

The World Wide Web.

The results of a recent survey conducted at the www.kdnuggets.com web site regarding

the usage of data mining algorithms in different domains are presented in Figure 1.2.

1.5 Pattern Recognition in Data Mining

In the previous section we have discussed the generic components of a data mining
svstem, common data mining tasks/tools and related principles and issues that appear
in designing a data mining system. At present, the goal of KDD community is to
develop a unified framework of data mining which should be able to model typical

data mining tasks, be able to discuss the probabilistic nature of the discovered patterns
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Figure 1.2: Application areas of data mining

and models, be able to talk about data and inductive generalizations of the data, and
accept the presence of different forms of data (relational data, sequences, text, web).
Also, the framework should recognize that data mining is an interactive and iterative
process, where comprehensibility of the discovered knowledge is important and where
the user has to be in the loop [92, 146].

Pattern recognition and machine learning algorithms seem to be the most suitable
candidates for addressing the above tasks. It may be mentioned in this context that
historically the subject of knowledge discovery in databases has evolved, and continues
to evolve, from the intersection of research from such fields as machine learning, pattern
recognition, statistics, databases, artificial intelligence, reasoning with uncertainties,
expert systems, data visualization, and high-performance computing. KDD systems
incorporate theories, algorithms, and methods from all these fields. Therefore, before
elaborating the pattern recognition perspective of data mining, we describe briefly
two other prominent frameworks, namely, the database perspective and the statistical

perspective of data mining.

Database perspective of data mining

Since most business data resides in industrial databases and warehouses, commercial
companies view mining as a sophisticated form of database querying [51, 59]. Research

based on this perspective seeks to enhance the expressiveness of query languages (rule
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query languages, meta queries, query optimizations), enhance the underlying model of
data and DBMSs (the logical model of data, deductive databases, inductive databases,
rules, active databases, semistructured data etc.) and improve integration with data
warehousing systems (online analytical processing (OLAP), historical data, meta-data,
interactive exploring). The approach also has close links with search based perspec-
tive of data mining, exemplified by the popular work on association rules [1] at IBM |
Almaden.

The database perspective has several advantages including scalability to large databases
present in secondary and tertiary storage, generic nature of the algorithms (applicabil-
ity to a wide range of tasks and domains), capability of handling heterogeneous data,
and easy user interaction and visualization of mined patterns. However, it is still ill-
equipped to address the full range of knowledge discovery tasks. The reasons being:
inability to mine complex patterns and model non-linear relationships (the database
models being of limited richness), unsuitability for exploratory analysis, lack of induc-
tion capability, and restricted scope for evaluating the significance of mined patterns
[146].

Statistical perspective of data mining

Statistical perspective views data mining as computer automated exploratory data
analysis of (usually) large complex data sets [45, 55]. The term ‘data mining’ existed in
statistical data analysis literature long before its current definition in computer science
community. However, the abundance and massiveness of data has provided impetus
to development of algorithms which, though rooted in statistics, lays more emphasis
on computational efficiency. Presently, statistical tools are used in all the KDD tasks
like preprocessing (sampling, outlier detection, experimental design), data modeling
(clustering, expectation maximization, decision trees, regression, canonical correlation
etc), model selection, evaluation and averaging (robust statistics, hypothesis testing)

and visualization (principal component analysis, Sammon’s mapping).

The advantages of statistical approach are its solid theoretical background, and easiness
of posing formal questions. Tasks such as classification and clustering fit easily into
this approach. What seems to be lacking are ways for taking into account the iterative
and interactive nature of the data mining process. Also scalability of the methods to
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very large, specially tertiary memory data, is still not fully achieved.

1.5.1 Pattern recognition/machine learning perspective of

data mining

At present pattern recognition and machine learning provide the most fruitful frame--
work for data mining [67, 95]. Not only does it provide a wide range of models
(linear/non-linear, comprehensible/complex, predictive/descriptive, instance/rule bas-
ed) for data mining tasks (clustering, classification, rule discovery), methods for model-
ing uncertainties (probabilistic, fuzzy) in the discovered patterns also form part of PR
research. Another aspect which makes pattern recognition algorithms attractive for
data mining are their capability of learning or induction. As opposed to many statisti-
cal techniques that require the user to have a hypothesis in mind first, PR algorithms
automatically analyze data and identify relationships among attributes and entities in
the data to build models that allow domain experts to understand the relationship
between the attributes and the class. Data preprocessing tasks like instance selection,
data cleaning, dimensionality reduction, handling missing data are also extensively
studied in pattern recognition framework. Besides these, other data mining issues ad-
dressed by PR methodologies include, handling of relational, sequential and symbolic
data (syntactic PR, PR in arbitrary metric spaces), human interaction (knowledge
encoding and extraction), knowledge evaluation (description length principle) and vi-

sualization.

Pattern recognition is at the core of data mining systems. However, pattern recogni-
tion and data mining are not equivalent considering their original definitions. There
exists a gap between the requirements of a data mining system and the goals achieved
by present day pattern recognition algorithms. Development of new generation PR
algorithms is expected to encompass more massive data sets involving diverse sources
and types of data that will support mixed-initiative data mining, where human experts
collaborate with the computer to form hypotheses and test them. The main challenges

to PR as a unified framework for data mining are mentioned below.
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1.5.2 Research issues and challenges

1. Massive data sets and high dimensionality. Huge data sets create combinatori-
ally explosive search spaces for model induction which may make the process of
extracting patterns infeasible owing to space and time constraints. They also
increase the chances that a data mining algorithm will find spurious patterns

that are not generally valid.

2. User interaction and prior knowledge. Data mining is inherently an interactive
and iterative process. Users may interact at various stages, and domain knowl-
edge may be used either in the form of a high level specification of the model, or
at a more detailed level. Visualization of the extracted model is also desirable.

3. Querfitting and assessing the statistical significance. Data sets used for mining
are usually huge and available from distributed sources. As a result, often the
presence of spurious data points leads to overfitting of the models. Regularization

and resampling methodologies need to be emphasized for model design.

4. Understandability of patterns. It is necessary to make the discoveries more un-
derstandable to humans. Possible solutions include rule structuring, natural

language representation, and the visualization of data and knowledge.
5. Nonstandard and incomplete data. The data can be missing and/or noisy.

6. Mized media data. Learning from data that is represented by a combination of

various media, like (say) numeric, symbolic, images and text.

7. Management of changing data and knowledge. Rapidly changing data, in a
database that is modified/deleted/augmented, may make the previously discov-
ered patterns invalid. Possible solutions include incremental methods for updat-

ing the patterns.

8. Integration. Data mining tools are often only a part of the entire decision making
system. It is desirable that they integrate smoothly, both with the database and

the final decision making procedure.

In the next section we discuss the issues related to the large size of the data sets in

more detail.
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1.6 Scaling Pattern Recognition Algorithms to
Large Data Sets

Organizations are amassing very large repositories of customer, operations, scientific
and other sorts of data of gigabytes or even terabytes size. KDD practitioners would
like to be able to apply pattern recognition and machine learning algorithms to these
large data sets in order to discover useful knowledge. The question of scalability asks
whether the algorithm can process large data sets efficiently, while building from them

the best possible models.

From the point of view of complexity analysis, for most scaling problems the limiting
. factor of the data set has been the number of examples and their dimension. A large
number of examples introduces potential problems with both time and space complex-
ity. For time complexity, the appropriate algorithmic question is: what is the growth
rate of the algorithm’s run time as the number of examples and their dimensions in-
creases? As may be expected, time-complexity analysis does not tell the whole story.
As the number of instances grows, space constraints become critical, since, almost
all existing implementations of learning algorithm operate with training set entirely
in main memory. Finally, the goal of learning algorithm must be considered. Eval-
uating the effectiveness of a scaling technique becomes complicated if degradation in
the quality of the learning is permitted. Effectiveness of a technique for scaling pat-
tern recognition/learning algorithms is measured in terms of the above three factors,

namely, time complexity, space complexity and quality of learning.

Many diverse techniques, both general and task specific, have been proposed and im-
plemented for scaling up learning algorithms. An excellent survey of these methods is
provided in [143]. We discuss here some of the broad categories relevant to the thesis.
Besides these, other hardware driven (parallel processing, distributed computing) and

database driven (relational representation) methodologies are equally effective.

Data reduction

The simplest approach for coping with the infeasibility of learning from a very large

data set is to learn from a reduced/condensed representation of the original massive
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data set [11]. The reduced representation should be as faithful to the original data
as possible, for its effective use in different mining tasks. At present the following

categories of reduced representations are mainly used:

e Sampling/Instance selection: Various random, deterministic and density biased
sampling strategies exist in statistics literature. Their use in machine learning
and data mining tasks has also been widely studied [22, 71, 84]. Note that
merely generating a random sample from a large database stored on disk may
itself be a non-trivial task from a computational viewpoint. Several aspects of
instance selection, e.g., instance representation, selection of interior/boundary
points, instance pruning strategies, have also been investigated in instance based
and nearest neighbor classification frameworks [164]. Challenges in designing an
instance selection algorithm include accurate representation of the original data
distribution, making fine distinctions at different scales and noticing rare events

and anomalies.

o Data squashing: It is a form of lossy compression where a large data set is
replaced by a small data set and some accompanying quantities, while attempting

to preserve its statistical information [33].

o Indezing data structures: Systems such as kd-trees [13], R-trees, hash tables, AD-
trees, multiresolution kd-trees [29] and cluster feature (CF)-trees [16] partition
the data (or feature space) into buckets recursively, and store enough information
regarding the data in the bucket so that many mining queries and learning tasks

can be achieved in constant or linear time.

o Frequent itemsets: They are often applied in supermarket data analysis and

require that the attributes are sparsely valued [1].

e DataCubes: Use a relational aggregation database operator to represent chunks
of data [47].

The last four techniques fall into the general class of representation called ‘cached
sufficient statistics’ [106]. These are summary data structures that lie between the
statistical algorithms and the database, intercepting the kinds of operations that have
the potential to consume large time if they were answered by direct reading of the data
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set. Case-based reasoning [74] also involves a related approach where salient instances
{or descriptions) are either selected or constructed and stored in the case base for later

use.

Dimensionality reduction

An important problem related to mining large data sets, both in dimension and size,
is of selecting a subset of the original features [83]. Preprocessing the data to obtain
a smaller set of representative features, retaining the optimal/salient characteristics of
the data, not only decreases the processing time but also leads to more compactness

of the models learned and better generalization.

Active learning

Traditional machine learning algorithms deal with input data consisting of independent
and identically distributed (iid) samples. In this framework, the number of samples
required (sample complezity) by a class of learning algorithms to achieve a specified
accuracy can be theoretically determined [12, 163]. In practice, as the amount of data
grows, the increase in accuracy slows, forming the learning curve. One can hope to
avoid this slow down in learning by employing selection methods for sifting through
the additional examples and filtering out a small non-iid set of relevant examples that
contain essential information. Formally, active learning studies the closed-loop phe-
nomenon of a learner selecting actions or making queries that influence what data are
added to its training set. When actions/queries are selected properly, the sample com-
plexity for some problems decreases drastically, and some NP-hard learning problems

become polynomial in computation time [6, 25].

Data partitioning

Another approach to scaling up is to partition the data, avoiding the need to run
algorithms on very large data sets. The models learned from individual partitions
are then combined to obtain the final ensemble model. Data partitioning techniques
can be categorized based on whether they process subsets sequentially or concurrently.

Several model combination strategies also exist in literature [44] including, boosting,

22



bagging, ARCing classifiers, committee machines, voting classifiers, mixture of experts,
stacked generalization, Bayesian sampling, statistical techniques and soft computing
methods. The problems of feature partitioning and modular task decomposition for

achieving computational efficiency have also been studied.

Granular computing

Granular computing (GrC) may be regarded as a unified framework for theories,
methodologies and techniques that make use of granules (i.e., groups, classes or clusters
of objects in a universe) in the process of problem solving. In many situations, when
a problem involves incomplete, uncertain and vague information, it may be difficult
- to differentiate distinct elements and one is forced to consider granules. On the other
hand, in some situations though detailed information is available, it may be sufficient
to use granules in order to have an efficient and practical solution. Granulation is an
important step in the human cognition process. From a more practical point of view,
the simplicity derived from granular computing is useful for designing scalable data
mining algorithms [82, 127, 136]. There are two aspects of granular computing, one
deals with formation, representation and interpretation of granules (algorithmic aspect)
while the other deals with utilization of granules for problem solving (semantic aspect).
Several approaches for granular computing have been suggested in literature including
fuzzy set theory [168], rough set theory [132], power algebras and interval analysis.
The rough set theoretic approach is based on the principles of set approximation and

provides an attractive framework for data mining and knowledge discovery.

Efficient search algorithms

The most straightforward approach to scaling up machine learning is to produce more
efficient algorithms or to increase the efficiency of existing algorithms. As mentioned
earlier the data mining problem may be framed as a search through a space of models
based on some fitness criteria. This view allows for three possible ways of achieving

scalability.

e Restricted model space: Simple learning algorithms (e.g., two-level trees, decision
stump) and constrained search involve a ‘smaller’ model space and decrease the
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complexity of the search process.

e Knowledge encoding: Domain knowledge encoding, providing an initial solution
close to the optimal one, results in fast convergence and avoidance of local min-
ima. Domain knowledge may also be used to guide the search process for faster

convergence.

e Powerful algorithms and heuristics: Strategies like greedy search, divide and
conquer, modular computation are often found to provide considerable speed-
ups. Programming optimization (efficient data structures, dynamic search space
restructuring) and the use of genetic algorithms, randomized algorithms and
parallel algorithms may also obtain approximate solutions much faster compared

to conventional algorithms.

1.7 Scope of the Thesis

The objective of the thesis is to provide some results of investigations, both theoretical
and experimental, addressing certain pattern recognition tasks essential for data min-
ing. Tasks considered include data condensation, feature selection, case generation,
dustering, classification and rule generation/evaluation. Various methodologies have
been developed using both classical and soft computing approaches (integrating fuzzy
bogic, artificial neural networks, rough sets, genetic algorithms). The emphasis of the
proposed methodologies is given on handling data sets which are large (both in size and
dimension) and involve classes that are overlapping, intractable and/or having nonlin-
ear boundaries. Several strategies based on data reduction, dimensionality reduction,
active learning, granular computing and efficient search heuristics are employed for
dealing with the issue of ‘scaling up’ in learning problem. The problems of handling lin-
guistic input and ambiguous output decision, learning of overlapping/intractable class
structures, selection of optimal parameters, and discovering human comprehensible

knowledge (in the form of linguistic rules) are addressed in soft computing framework.

Methodologies developed for data condensation and feature selection are based on
dassical approach and are useful in the preprocessing stage of data mining. An active
support vector learning algorithm and a modular rough-fuzzy multilayer perceptron
. (MLP) trained with genetic algorithm (GA) are developed for performing classification
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and generating comprehensive linguistic rules. New measures for evaluating rules are
also presented. Granular computing based on rough-fuzzy approach is used for efficient
generation of cases (class prototypes). The case knowledge is further utilized in con-
junction with graph theoretic approach and expectation maximization (EM) clustering

algorithm for obtaining non-convex clusters.

The effectiveness of the algorithms is demonstrated on different real life data sets,
mainly large in dimension and/or size, taken from varied domains e.g, geographical
information systems, remote sensing imagery, population census, speech recognition
and cancer management. Superiority of the models over several related ones is found
to be statistically significant. The results of the investigations are summarized below

under different chapter headings.

1.7.1 Density based multiscale data condensation [100]

In Chapter 2, a generic multiscale data reduction methodology is described [100]. It
preserves the salient characteristics of the original data set by representing the proba-
bility density underlying it. The representative points are selected in a multiresolution
fashion, which is novel with respect to the existing density based approaches. A scale
parameter (k) is used in non-parametric density estimation so that the data can be
viewed at varying degrees of detail depending on the value of k. This type of mul-
tiscale representation is desirable in various data mining applications. At each scale
the representation gives adequate importance to different regions of the feature space

based on the underlying probability density.

It is observed experimentally that the multiresolution approach helps to achieve lower
error with similar condensation ratio compared to several related schemes. The reduced
set obtained is found to be effective for a number of mining tasks like classification,
clustering and rule generation. The algorithm is also found to be efficient in terms of
sample complexity, in the sense that the error level decreases rapidly with the increase

in size of the condensed set.
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1.7.2 Unsupervised feature selection using feature similarity
[(101]

Chapter 3 describes an unsupervised feature selection algorithm [101] suitable for data
sets, large in both dimension and size. Conventional methods of feature selection
involve evaluating different feature subsets using some index and selecting the best
among them. The index usually measures the capability of the respective subsets in
classification or clustering depending on whether the selection process is supervised or
unsupervised. A problem of these methods, when applied to large data sets, is the

high computational complexity involved in searching.

We digress from the aforesaid conventional view and propose a method which is based
on measuring similarity between features and then removing the redundancy therein.
This does not need any search and, therefore, is fast. Since the method achieves
dimensionality reduction through removal of redundant features, it is more related to

feature selection for compression rather than for classification.

The method involves partitioning of the original feature set into some distinct subsets or
clusters so that the features within a cluster are highly similar while those in different
clusters are dissimilar. A single feature from each such cluster is then selected to
constitute the resulting reduced subset. The algorithm is generic in nature and has the
capability of multiscale representation of data sets. A new feature similarity measure,
called maximum information compression index, is introduced. It is also demonstrated

how ‘representation entropy’ can be used for quantifying the redundancy in a set.

Superiority of the algorithm, over related methods, is demonstrated extensively on
different real life data with dimension ranging from 4 to 649. Comparison is made
on the basis of both clustering/classification performance and redundancy reduction.
Effectiveness of the maximal information compression index and the effect of scale

parameter are also studied.

1.7.3 Active support vector learning [99, 102]

While Chapters 2 and 3 deal with some preprocessing tasks of data mining, Chapter 4

is concerned with its classification/learning aspect. Here we present two active learn-
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ing strategies [99, 102] for handling the large quadratic programming (QP) problem
of support vector machine (SVM) classifier design. The first one is an error driven
incremental method for active support vector learning. The method involves selecting
a chunk of ¢ new points, having equal number of correctly classified and misclassified
points, at each iteration by resampling the data set, and using it to update the cur-
rent SV set. The resampling strategy is computationally superior to random chunk
selection, while achieving higher classification accuracy. Since it allows for querying
multiple instances at each iteration, it is computationally more efficient than those

that are querying for a single example at a time.

The second algorithm deals with active support vector learning in statistical query
framework. Like the previous algorithm, it also involves queries for multiple instances
at each iteration. The intermediate statistical query oracle, involved in the learning
process, returns the value of the probability that a new example belongs to the actual
support vector set. A set of ¢ new points is selected according to the above probability,
and is used along with the current SVs to obtain the new SVs. The probability is
estimated using a combination of two factors: the margin of the particular example
with respect to the current hyperplane, and the degree of confidence that the current
set of SVs provides the actual SVs. The degree of confidence is quantified by a measure
which is based on the local properties of each of the current support vectors and is

computed using the nearest neighbor estimates.

The methodology in the second part has some more advantages. It not only queries for
the error points (or points having low margin) but also a number of other points far
from the separating hyperplane (interior points). Thus, even if a current hypothesis is
erroneous there is a scope for it being corrected owing to the interior points. If only
error points were selected the hypothesis might have actually been worse. The ratio
of selected points having low margin and those far from the hyperplane is decided by
the confidence factor, which varies adaptively with iteration. If the current SV set
is close to the optimal one, the algorithm focuses only on the low margin points and
ignores the redundant points that lie far from the hyperplane. On the other hand,
if the confidence factor is low (say, in the initial learning phase) it explores a higher
number of interior points. Thus, the trade-off between efficiency and robustness of
performance is adequately handled in this framework. Also, the efficiency of most of
the existing active SV learning algorithms depends on the sparsity ratio (i.e., the ratio

27



of the number of support vectors to the total number of data points) of the data set.
Due to the adaptive nature of the query in the proposed algorithm, it is likely to be
efficient for a wide range of sparsity ratio.

Experiments have been performed on five real life classification problems. The number
of patterns ranges from 351 to 495141, dimension from 9 to 34, and the sparsity ratio
from 0.01 to 0.51. Our algorithms, particularly the second one, are found to provide
superior performance in terms of classification accuracy, closeness to the optimal SV
set. training time and margin distribution, as compared to several related algorithms
for incremental and active SV learning. Effectiveness of the confidence factor, used in

statistical queries, is also studied.

In the previous three chapters we have used classical approach for developing method-
“ologies for data condensation, feature selection and active learning. The next two
chapters (Chapters 5 and 6) emphasize on demonstrating the effectiveness of integrat-
ing different soft computing tools, e.g., fuzzy logic, artificial neural networks, rough

sets and genetic algorithms for performing certain tasks in data mining.

1.7.4 Rough-fuzzy case generation and clustering [119, 120,
121]

In Chapter 5 the principle of granular computing in rough fuzzy framework is exploited
for efficient case (representative class prototypes) generation [119, 120}, and clustering
[121] of large data sets. It has two parts. First we propose a rough-fuzzy hybridiza-
tion scheme for case generation. Fuzzy set theory is used for linguistic representation
of patterns, thereby producing a fuzzy granulation of the feature space. Rough set
theory is used to obtain the dependency rules which model different informative re-
gions in the granulated feature space. The fuzzy membership functions corresponding
to the informative regions are stored as cases along with the strength values. Case
retrieval is made using a similarity measure based on these membership functions. Un-
like the existing case selection methods, the cases here are cluster granules, and not
the sample points. Also, each case involves a reduced number of relevant (variable)
features. Because of this twofold information compression the algorithm has low time

requirement in generation as well as retrieval of cases. Superiority of the algorithm in
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terms of classification accuracy, and case generation and retrieval time is demonstrated

experimentally on data sets having large dimension and size.

Next, an integration of a minimal spanning tree (MST) based graph-theoretic tech-
nique and expectation maximization (EM) algorithm with rough set initialization is
described for non-convex clustering [121]. Rough set initialization is performed using
dependency rules generated on a fuzzy granulated feature space. EM provides the sta-
tistical model of the data and handles the associated uncertainties. Rough set theory
helps in faster convergence and avoidance of the local minima problem, thereby en-
hancing the performance of EM. MST helps in determining non-convex clusters. Since
it is applied on Gaussians rather than the original data points, time requirement is
very low. Comparison with related methods is made in terms of a cluster quality mea-
~sure and computation time. Its effectiveness is also demonstrated for segmentation of

multispectral satellite images into different landcover types [121].

1.7.5 Modular Rough-fuzzy MLP: Evolution, rule generation
and evaluation [97, 98, 124]

So far, we have demonstrated in Chapter 5 a judicious integration of fuzzy sets and
rough sets for providing an efficient granular computing paradigm. Chapter 6 provides
a synergistic integration of four soft computing components, namely, fuzzy sets, rough
sets, neural networks and genetic algorithms along with modular decomposition strat-
egy, for generating a rough-fuzzy multilayer perceptron (MLP) [124]. The resulting
connectionist system achieves gain in terms of performance, learning time and network

compactness for classification and linguistic rule generation.

Here, the role of the individual components is as follows. Fuzzy sets handle uncertain-
ties in the input data and output decision of the neural network, and provide linguistic
representation (fuzzy granulation) of the feature space. Multilayer perceptron is well
known for providing a connectionist paradigm for learning and adaptation. Rough set
theory is used to extract domain knowledge in the form of linguistic rules, which are
then encoded into a number of fuzzy MLP modules or subnetworks. Genetic algo-
rithms (GAs) are used to integrate and evolve the population of subnetworks as well

as the fuzzification parameters through efficient searching. A concept of variable mu-
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tation operator is introduced for preserving the localized structure of the constituting
knowledge based subnetworks, while they are integrated and evolved. The nature of

the mutation operator is determined by the domain knowledge extracted by rough sets.

The modular concept, based on ‘divide and conquer’ strategy, provides accelerated
training, preserves the identity of individual clusters, reduces the catastrophic interfer-
ence due to overlapping regions, and generates a compact network suitable for extract-
ing a minimum number of rules with high certainty values. Knowledge discovery aspect
is quantitatively studied through some rule evaluation indices. Two new indices viz.,
‘certainty’ and ‘confusion’ in a decision are defined in this regard. The effectiveness of
the network and the rule extraction algorithm is extensively demonstrated through ex-

periments along with comparisons. In some cases the rules generated are also validated

" by domain experts. The investigation, besides having significance in soft computing

‘ research, has potential for application to large scale problems involving knowledge

~ discovery tasks [104], particularly related to mining of linguistic classification rules.

1.7.6 Conclusions and scope for further research

The concluding remarks along with the scope for further research are made in Chap-
ter 7. ¢

Twenty one different data sets, used in the experiments, are described in brief in the

Appendix.
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Chapter 2

Density Based Multiscale Data

Condensation



2.1 Introduction

The current popularity of data mining and data warehousing, as well as the decline
in the cost of disk storage, has led to a proliferation of terabyte data warehouses [38].
Mining a database of even a few gigabytes is an arduous task for machine learning
techniques, and requires advanced parallel hardware and algorithms. An approach for
dealing with the intractable problem of learning from huge databases is to select a small
subset of data for learning [143]. Databases often contain redundant data. It would
be convenient if large databases could be replaced by a small subset of representative
patterns so that the accuracy of estimates (e.g., of probability density, dependencies,
class boundaries) obtained from such a reduced set should be comparable to that

- obtained using the entire data set.

The simplest approach for data reduction is to draw the desired number of random
samples from the entire data set. Various statistical sampling methods such as random
sampling, stratified sampling, and peepholing [22] have been in existence. However,
naive sampling methods are not suitable for real world problems with noisy data, since
the performance of the algorithms may change unpredictably and significantly [22].
Better performance is obtained using uncertainty sampling (81} and active learning
[152], where a simple classifier queries for informative examples. The random sampling
approach effectively ignores all the information present in the samples not chosen
for membership in the reduced subset. An advanced condensation algorithm should

include information from all samples in the reduction process.

Some widely studied schemes for data condensation are built upon classification based
approaches, in general, and the k-NN rule, in particular [27]. The effectiveness of
the condensed set is measured in terms of the classification accuracy. These methods
attempt to derive a minimal consistent set, i.e., a minimal set which correctly classifies
all the original samples. The very first development of this kind is the condensed nearest
neighbor rule (CNN) of Hart [54]. Other algorithms in this category including the
popular IB3, I1B4 [2], reduced nearest neighbor and iterative condensation algorithms
are summarized in [164]. Recently a local asymmetrically weighted similarity metric
(LASM) approach for data compression [150] is shown to have superior performance
compared to conventional k-NN classification based methods. Similar concepts of data

reduction and locally varying models based on neural networks and Bayes classifier are
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discussed in [141] and [86] respectively.

The classification based condensation methods are however specific to (i.e., dependent
on) the classification tasks and the models (e.g., k-NN, perceptron) used. Data con-
densation of more generic nature is performed by classical vector quantization methods
[48] using a set of codebook vectors which minimize the quantization error. An effec-
tive and popular method of learning the vectors is by using the self-organizing map
[72]. However, if the self-organizing map is to be used as a pattern classifier, the
codebook vectors may be further refined using the learning vector quantization algo-
rithms [72). These methods are seen to approximate the density underlying the data
[72). Since learning is inherent in the methodologies, the final solution is dependent

on initialization, choice of learning parameters, and the nature of local minima.

Another group of generic data condensation methods are based on the density based
approaches, which consider the density function of the data for the purpose of conden-
sation rather than minimizing the quantization error. These methods do not involve
any learning process and therefore are deterministic (i.e., for a given input data set the
output condensed set is fixed). Here one estimates the density at a point and selects the
points having ‘higher’ densities, while ensuring a minimum separation between the se-
lected points. These methods bear resemblance to density based clustering techniques
like the DBSCAN algorithm [35], popular for spatial data mining. DBSCAN is based
on the principle that a cluster point contains in its neighborhood a minimum number
of samples, i.e., the cluster point has density above a certain threshold. The neigh-
borhood radius and the density threshold are user specified. Astrahan [9] proposed a
classical data reduction algorithm of this type in 1971, in which he used a hypersphere
(disc) of radius d, about a point to obtain an estimate of density at that point. The
points are sorted based on these estimated densities, and the densest point is selected,
while rejecting all points that lie within another disc of radius d; about the selected
point. The process is repeated till all the samples are covered. However, selecting
the values of d; and d, is a non-trivial problem. A partial solution using a minimal
spanning tree based method is described in [23]. Though the above approaches select
the points based on the density criterion, they do not directly attempt to represent the
original distribution. The selected points are distributed evenly over the entire feature
space irrespective of the distribution. A constant separation is used for instance prun-
ing. Interestingly, Fukunaga [43] suggested a non-parametric algorithm for selecting a

«
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condensed set based on the criterion that density estimates obtained with the original
set and the reduced set are close. The algorithm is however search based and requires

large computation time.

Efficiency of condensation algorithms may be improved by adopting a multiresolution
representation approach. A multiresolution framework for instance based learning
and regression has been studied in [29] and [107] respectively. It uses a k-d tree
[13] to impose a hierarchy of data partitions which implicitly condense the data into
homogeneous blocks having variable resolutions. Each level of the tree represents a
partition of the feature space at a particular scale of detail. Prediction for a query
point is performed using blocks from different scales; finer scale blocks are used for
points close to the query and cruder scale blocks for those far from the query. However,
the blocks are constructed by simple median splitting algorithms which do not directly

consider the density function underlying the data.

We describe in this chapter a density based multiresolution data reduction algorithm
[100] that uses discs of adaptive radii for both density estimation and sample pruning.
The method attempts to accurately represent the entire distribution rather than the
data set itself. The accuracy of this representation is measured using nearest neighbor
density estimates at each point belonging to the entire data set. The method does
away with the difficult choice of radii d; and d as in Astrahan’s method discussed
above. In the proposed method, k-NN density estimates are obtained for each point
and the points having higher density are selected subject to the condition that the
point does not lie in a region ‘covered’ by any other selected point. A selected point
-covers’ a disc around it with volume inversely proportional (by a factor o, say) to the
(estimated) density at that point, as illustrated in Figure 2.1. Hence the regions having
higher density are represented more accurately in the reduced data sets compared to
sparse regions. The proportionality factor (o) and k used for k-NN density estimation

controls the condensation ratio and the accuracy of representation.

The condensation algorithm can obtain reduced sets which represent the data at dif-
ferent scales. The parameter k acts as the scale parameter, and the data is viewed at
varying degrees of detail depending on the value of k. This type of multiscale repre-
sentation of data is desirable for various applications like data mining. At each scale
the representation gives adequate importance to different regions of the feature space

" based upon the probability density as mentioned before. The above scheme induces
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Figure 2.1: Multiresolution data reduction

a scale which is both efficient in terms of density estimation error and natural to the

data distribution.

It is observed from experiments that the multiresolution approach helps to achieve
lower error with similar condensation ratio compared to several related data condensa-
tion schemes. The reduced set obtained was found to be effective for a number of data
mining applications like classification, clustering and rule generation. The suggested
algorithm is also found to be scalable and efficient in terms of sample complexity, in the
sense that the error level decreases quickly with the increase in size of the condensed

set. In the next section we describe aspects of multiscale representation.

2.2 Multiscale Representation of Data

Multiscale representation of data refers to visualization of the data at different ‘scales’,
where the term scale may signify either unit, frequency, radius, window size or kernel
parameters. The importance of scale has been increasingly acknowledged in the past
decade in the areas of image and signal analysis and computer vision with the devel-
opment of several scale inspired models like pyramids, wavelets and multiresolution
- techniques. Recently scale-based methods have also become popular in clustering (80]
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and density estimation. In these methodologies, the concept of scale has been imple-
mented using variable width radial basis function Network, annealing based clustering

and variable window density estimates.

The question of scale is natural to data condensation. At a very coarse scale the entire
data may be represented by only a few number of points, and at a very fine scale all
the sample points may constitute the condensed set, the scales in between representing
varying degrees of detail. In many data mining applications (e.g., structure discovery
in remotely sensed data, identifying population groups from census data) it is neces-
sary that the data be represented in varying levels of detail. Data condensation is only
a preliminary step in the overall data mining process and several higher level learning
operations may be performed on the condensed set later. Hence the condensation algo-
rithm should be able to obtain representative subsets at different scales, as demanded,

in an efficient manner.

The proposed method for data condensation, discussed in Section 2.1, obtains con-
densed sets of different degrees of detail by varying a scale parameter k. It may be
noted that such variable detail representation may be achieved by other approaches
also, including random sampling. However, unlike random sampling the scales induced
by the proposed method are not prespecified by the sizes of the condensed sets but fol-
low the natural characteristics of the data. As far as efficiency of the scaling procedure
is concerned, it may be noted that in most of the multiscale schemes for representing
data or signal, including wavelets, efficiency is achieved by a lenient representation
of the ‘unimportant’ regions and a detailed representation of the ‘important’ regions,
where the notion of importance may vary from problem to problem. We have followed
a similar principle in the proposed condensation algorithm where at each scale the
different regions of the feature space are represented in the condensed set based on
the densities of those regions estimated at that particular scale. Figure 2.2 illustrates
the concept of variable scale representation. The data consists of 2000 points selected
randomly from two nonoverlapping circles of radius 1 unit and centers at (2,0) and
(3,0) respectively (Figure 2.2(a)). Figures 2.2(b)-(e) shows representation of the data
by condensed sets at different levels of detail. It can be seen that in Figure 2.2(b) only
two points cover the entire data set. In Figure 2.2(c) four points are used to represent
the entire data set. Figure 2.2(d) and (e) are more detailed representations of the data.

" For a particular scale the basic principle of the proposed data condensation algorithm
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Figure 2.2: Representation of data set at different levels of detail by the condensed
sets. ‘.’ is a point belonging the condensed set, the circles about the points denote the
discs covered that point. The two bold circles denote the boundaries of the data set.
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involves sorting the points based on estimated densities, selecting the denser points
and removing other points that lie within certain distances of the selected points in a
multiresolution manner. A non-parametric method of estimating a probability density
function is the k-nearest neighbor method. In k-NN based estimation technique the
density of a point is computed based upon the volume of disc about that point which
includes a fixed number, say k, other points [87]. Hence, the radius of the disc is
smaller in a densely populated region than in a sparse region. The volume of the disc
is inversely proportional to the probability density function at the center point of the
disc. This behavior is advantageous for the present problem from the point of view of
multiresolution representation over different regions of feature space. This is the reason

that the k-NN density estimate is considered in the proposed condensation algorithm.

Before we present the data condensation algorithm, we describe in brief the k-NN

based density estimation technique in the next section.

2.3 Nearest Neighbor Density Estimate

Let x;,Xz,...,Xn be independent observations on a p-dimensional random variable
X, with a continuous probability density function f. The problem is to estimate f at

a point z.

Let d(x,z) represent the Euclidean distance between x and z. A p-dimensional hy-
persphere of radius r about z is designated by S, i.e., Srz = {x|d(x,2) < r}. The
volume or Lebesgue measure of the hypersphere S, , will be called A,. Let us describe
a non-parametric method for estimating f suggested by Loftsgaarden [87].

Let k() be a sequence of positive integers such that limy_,o0 k(N) = 00, and limy
k(N)/N = 0. Once k(N) is chosen and a sample set {x;, X2, .. . Xy} is available, Ti(n),z
is determined as the distance from z to the (k(NN) + 1)th nearest neighbor of z among

X;, X2,...Xy. Hence, an estimate of f is given by

In(z) = k(Jf/V) v -

(2.1)

Tk(N),s
It can be proved [87] that the density estimate given by Equation 2.1 is asymptotically
unbiased and consistent. It may however be noted that k-NN estimates suffer from the

‘curse of dimensionality’ problem in high dimensional spaces.
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A condensation algorithm should obtain a subset which is representative of the original
data distribution. We discuss some measures of accuracy of such representations in

terms of the error in k-NN density estimate discussed above.

Measures of error in density estimate

Let xi,...,Xy be N independent samples drawn from a distribution f. The closeness

between two estimates ¢; and g, of f is measured by a criterion of the form

J — -11\7 Z D(g1(xi), g2(xi)) ,

~ where x; is the ith sample, and D(.,.) is a measure of the distance between g (x;) and
g2(x;). It may be noted that J is a random variable, and an estimate of the quantity

J, where

j) = / D(9:(2), 92(2)) f (2)dz

In our case we have a density estimate fy for f, from {x,,...xy} using the k-NN
density estimation method already descrlbed Now we like to choose n points, n << N,
from x,,...,xy such that the den51ty estimate &, obtained from this n points is close
to fN where n is not predetermined. In the next section, we present a method that
automatically provides the value for n and the set of n points for a given {x;,...,xn}.
It may be noted that J measures the difference between estimates fN and &, and not
the error of each of these estimates with respect to the actual distribution. However,
if N is large it is known that fy is a consistent estimate of f [87] (for suitable values
of k as mentioned in Equation 2.1). Hence, a small value of J indicate closeness of d,

to the actual distribution f.
For D we use the form, similar to log-likelihood ratio used in classification [43],
n)f ~ (i)

Gn(X;)

A second possibility is a modified version of the kernel of the Kullback-Liebler infor-

D(fn (%), @n(x:)) = |1 : (2.2)

mation number [43], which attaches more weight to the high density region of the

distribution

fN(xi)

&N(xi).ln& (Xi) (23)

D(fw(xi), 6m(x:)) =
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We have used both of these quantities to measure the efficacy of the reduction algo-
rithms in subsequent sections. If the estimates are close enough, each of the quantities ‘

is close to zero.

2.4 Proposed Data Reduction Algorithm [100]

The proposed data reduction algorithm involves estimating the density at a point using
the methods described in the previous section, sorting the points based on the density
criterion, selecting a point according to the sorted list, and pruning all points lying
within a disc about a selected point with radius inversely proportional to the density

. at that point.

Algorithm:

Let By = {X;,X,...,Xy} be the original data set. Choose a positive integer k.

1. For each point x; € By calculate the distance of the kth nearest neighbor of x;

in By. Denote it by 74 x;.

2. Select the point x; € By, having the lowest value of rix; and place it in the
reduced set E. Ties in lowest value of 7 x; may be resolved by a convention, say
according to the index of the samples. From Equation 2.1 it is evident that x;

corresponds to the point having the highest density fn (x;)-

3. Remove all points from By that lie within a disc of radius 27y x; centered at x;,
and the set consisting of the remaining points be renamed as By. Note that since
r’,’c”xj (where p is the dimension of the feature space) is inversely proportional
to the estimate of the probability density at x;, regions of higher probability
density are covered by smaller discs and sparser regions are covered by larger
discs. Consequently, more points are selected from the regions having higher

density.

4. Repeat Step 2 on By till By becomes a null set.

~ The x;’s thus selected and the corresponding rx,x; constitute the condensed (reduced)
set. O
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The procedure is illustrated in Figure 2.1 in Fy — F space. As shown in the figure,
each selected point (marked ‘*’) is at the center of a disc that covers some region in
the feature space. All other points (marked as ‘.’) lying within the disc except the
center is discarded. It can be seen that selected points lying in high density regions
have discs of smaller radii, while points in sparser regions correspond to larger discs,

1.e., the data is represented in a multiscale manner over the feature space.

Remarks:

1. The algorithm not only selects the denser data points, but does so in a manner
such that the separation between two points is inversely proportional to the prob-
ability density of the points. Hence, regions in the feature space having higher
density are represented by more points than sparser regions. This provides a
better representation of the data distribution than random sampling, because
different regions of the feature space are given variable importance on the basis
of the probability density of that region, i.e., the representation is of multiresolu-
tion nature. A technique for performance enhancement and computational time

reduction, using such multiresolution representation is discussed in [29].

2. The condensed set obtained may be used to obtain an estimate of the probability
density function of the data. This may be done using the k-NN density estimation

method discussed in Section 2.3.

3. The parameter k acts as a scale-parameter for the condensation algorithm. The
size of the neighborhood, used for density estimate, as well as the pruning radii
are dependent on k, and there%ore vary with scale. Smaller the value of k more
refined is the scale and vice versa. However, independent of the chosen scale,
the representation gives adequate importance to the different regions of the fea-
ture space depending on their estimated densities at that scale. This type of
multiresolution representation helps preserve salient features which are natural
to the data over a wide range of scales. In many situations the scale to be used
for condensation is dictated by the application. However, if no such application
specific requirements exist, the condensed set may be selected from the region
where the error versus scale curve (which is exponentially decaying in nature)

begins to flatten.
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4. It may be noted that the choice of k is a classical problem for k-NN based
methods for finite sample sets. Theoretically, the value of k should increase
with the size of the data set (IV), but at a slower rate than N itself. For data
condensation using the proposed method it has also been observed that the value
of k should be increased as the data set size IV increases to achieve a constant
condensation ratio (CR), though the exact nature of the k versus CR curve is
distribution dependent. In the experimental results presented in Section 2.5.5 we
observe that at high values of & (i.e., low values of CR) the k versus CR curve is

sufficiently robust over different data sets.

5. The accuracy of k-NN density depends on the value of k used. Admissible values
of kK may be obtained from considerations discussed above. However, for very
small data sets the choice of lower admissible limit of & is dictated by the size of
the data set.

2.5 Experimental Results and Comparisons [100]

In this section we present the results of experiments conducted on some well known
data sets of varying dimension and size. Among them the Forest cover type data
represents forest cover of 30m x 30m cells obtained from US Forest Service (USFS)
Region 2 Resource Information System (RIS). It contains 581012 instances having 54
attributes representing cartographic variables. Each observation is labeled as belonging
to one of the 7 different classes (forest cover types). Among the other data sets, the
Satellite Image data consists of four 512 x 512 gray scale images of different spectral
bands obtained by the Indian Remote Sensing satellite of the city of Calcutta in India.
Each pixel represents a 36.25m x 36.25m region. The third large data set used is the
PUMS census data for the Los Angeles and Long Beach area. The data contains 133
attributes, mostly categorical and 320000 samples were used. The other data sets for
e.g., Wisconsin breast cancer (medical domain data), Pima Indian (also medical domain
data), Vowel (speech data), Iris (flower classification data), ringnorm and twonorm
(artificial data) are benchmark data sets widely used in literature. The Norm data

was artificially generated by drawing 500 i.i.d samples from a normal distribution with

10

mean = [ g ] and covariance matrix = [ ) ] . The data sets are described in detail
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in Appendix A.

The organization of the results is as follows. First we present and compare the results
concerning error in density estimate and condensation ratio for all ten data sets. Next,
we demonstrate the efficacy of our condensation method for three diverse tasks namely
classification, clustering and rule generation on the three large data sets. The Forest
cover type data is considered to evaluate the classification performance, the Satellite
image data is considered for clustering and the PUMS Los Angeles census data is con-
sidered for rule generation. Our choice of tasks for the three large data sets described
above has been guided by studies performed on them in existing literature as well as
the nature of the data sets. Finally we empirically study the scalability property of the
algorithm in terms of sample complexity, i.e., the number of samples in the condensed

set required to achieve a particular accuracy level.

2.5.1 Density estimation

Here we compare the error between density estimates obtained using the original data
set and the reduced set. The proposed algorithm is compared with three representative
data reduction schemes (random sampling, vector quantization based and clustering
based) described below. Classification based data reduction methods like Condensed
Nearest Neighbor are not compared, as error in density estimates is not the optimal-
ity criterion for such methods. The methods compared are: Random sampling with
replacement, the Self-organizing map (SOM) [72] and Astrahan’s clustering based uni-
form scale method [9]. In Astrahan’s method (explained in Section 2.1), for the purpose
of density estimation we use radius d; = \/&pﬁl,._,n(in fi=1,.nd(xi,x;)), and radius

d; = ~d, for pruning, where v is a tunable parameter controlling the condensation

ratio. The above expression for d; produces a radius close to that obtained using the
minimal spanning tree based method described in [23]. The following quantities are

compared for each algorithm:

1. The condensation ratio (CR), measured as the ratio of the cardinality of the

condensed set and the original set, expressed as percentage.

2. The log-likelihood (LLR) ratio for measuring the error in density estimate with
the original set and the reduced set as described in Equation 2.2.
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3. The Kullback-Liebler information number (KLI), also for measuring the error in

density estimate (Equation 2.3).

Test of statistical significance

In our experiments for each data 90% of the samples are selected as training set and
the remaining samples are used as test set. Ten such independent random training-
test set splits are obtained, and the mean and standard deviation (SD) of the errors
are computed over ten runs. Tests of significance were performed for the inequality of
means (of the errors) obtained using the proposed algorithm and the other condensation
schemes compared. Since both mean pairs and the variance pairs are unknown and
different, a generalized version of t-test is appropriate in this context. The above
problem is the classical Behrens-Fisher problem in hypothesis testing, a suitable test
statistic is described and tabled in [8]. The test statistic is of the form

v= et 22 (2.4)

B \V )\13% + /\28%’

where 7,7, are the means, s;, s, the standard deviations and A\; = 1/n1, A2 = 1/ny,

n;,n are the number of observations. O

In Tables 2.1-2.4 we report along with the individual means and SD’s the value of test
statistic computed and the corresponding tabled values at an error probability level of
0.05. If the computed value is greater than the tabled value the means are significantly
different.

The experiments have been performed for different values of condensation ratios for
each algorithm. However, in Tables 2.1 and 2.2, comparison is presented on the basis
of error in density estimate for similar values of CR. Alternatively one could have
also compared CR for similar values of error in density estimate. In Tables 2.1 and
2.2, results are presented for two different sets of values of CR, e.g., 0.1-3% and 5-
20% (of the original data set and not the training set) respectively. The error values
were computed using Equations 2.2 and 2.3 with the same value of k as used for
condensation. It may be noted that the optimal choice of k is a function of the data

size.

It is seen from the results (Tables 2.1 and 2.2) that our multiscale method achieves

consistently better performance than Astrahan’s method, random sampling and SOM
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Table 2.1: Comparison of k-NN density estimation error of condensation algorithms (lower CR)

Data set

Mutltiscale Uniform Scale SOM Random
Algorithm method [9] sampling
CR LLR KLI CR LLR KLI CR LLR KLI CR LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 3.0 0.001 1.16 0.09 0.16 0.04 3.0 0.001 1.33 0.12 0.20 0.04 3.0 1.21 0.08 0.17 0.004 3.0 1.38 0.27 0.25 0.10
(3.76, 1.72) (2.34, 1.71) (1.69, 1.73) | (0.02, 1.81) (2.56, 1.78) | (2.77, 1.77)
Iris 2.5 0.000 1.83 0.08 0.40 0.04 2.5 0.000 2.02 0.17 0.68 0.08 2.5 2.00 0.01 0.44 0.005 2.5 2.85 0.98 1.01 0.23
(3.35, 1.76) (10.38, 1.76) (7.0, 1.81) (3.29, 1.81) (3.44, 1.81) (8.66, 1.81)
Vowel 3.4 0.00 1.40 0.16 0.10 0.01 3.4 0.001 1.67 0.28 0.165 0.01 3.4 1.43 0.005 0.11 0.00 3.4 1.95 0.55 0.41 0.11
(2.77, 1.74) (15.24, 1.71) (0.88, 1.81) | (3.32, 1.81) (3.18, 1.78) | (9.30, 1.81)
Pima 3.2 0.002 1.15 0.11 18.1 1.03 3.2 0.001 1.31 0.17 21.1 4.0 3.2 1.24 0.04 20.4 1.01 3.2 1.99 0.91 25.1 9.1
(2.62, 1.73) (2.41, 1.81) (2.55, 1.78) (5.22, 1.71) (3.04, 1.81) | (2.53, 1.81)
Cancer 4.3 0.002 1.37 0.17 17.1 14 4.3 0.003 1.61 0.28 19.0 1.04 4.3 1.54 0.11 19.4 0.50 4.3 1.805 0.57 24.0 9.01
(2.43, 1.76) (3.80, 1.72) (2.23, 1.81) (5.35, 1.78) (2.43, 1.81) | (2.54, 1.81)
Monk 4.1 0.00 0.64 0.01 0.65 0.04 4.1 0.001 0.70 0.04 0.72 0.05 4.1 0.67 0.01 0.68 0.01 4.1 0.83 0.16 0.88 0.16
(4.82, 1.81) (3.62, 1.72) (7.03, 1.71) (2.41, 1.81) (1.86, 1.81) | (2.61, 1.81)
Tnorm 1.0 0.00 0.43 0.01 1.70 0.10 1.0 0.00 0.57 0.07 1.97 0.17 1.0 0.46 0.00 1.81 0.01 1.0 0.59 0.19 2.01 0.56
(6.56, 1.81) (4.54, 1.73) (9.95, 1.81) (3.30, 1.81) (5.86, 1.81) (1.81, 1.78)
Rnorm 2.0 0.00 0.40 0.05 2.11 0.22 2.0 0.001 0.54 0.07 2.95 0.22 2.0 0.41 0.001 2.24 0.001 2.0 0.70 0.15 3.01 091
(5.40, 1.73) (8.95, 1.71) (0.83, 1.81) (1.96, 1.81) (6.23, 1.78) (3.19, 1.81)
Forest 0.1 0.001 0.82 0.01 2.71 0.02 0.1 0.004 2.0 0.02 4.7 0.55 0.1 1.40 0.00 3.20 0.01 0.1 3.8 1.7 7.0 2.50
(175, 1.78) (11.99, 1.81) (192.38, 1.81) (72.68, 1.76) (5.81, 1.81) (5.69, 1.81)
Sat.Img. 0.2 0.001 0.78 0.01 1.18 0.09 0.2 0.002 0.92 0.02 1.40 0.25 0.2 0.88 0.01 1.28 0.00 0.2 1.09 0.15 1.79 0.27
(20.76, 1.76) (8.21, 1.81) {23.45, 1.71) (3.68, 1.81) (6.84, 1.81) (7.10, 1.78)
Census 0.1 0.002 0.27 0.00 1.55 0.10 0.1 0.004 0.31 0.02 1.70 0.15 0.1 0.30 0.01 1.61 0.01 0.1 0.40 0.17 1.90 0.45
(6.63, 1.81) (2.76, 1.72) (14.07, 1.81) (1.98, 1.81) (2.53, 1.81) | (2.52, 1.81)

‘CR’ denotes condensation ratio in %, ‘LLR’ denotes the log-likelihood error and ‘KLI’ denotes the Kullback-Liebler information
number, the numbers in the parenthesis indicate the computed and tabled values of the test statistic respectively. A higher
computed value compared to tabled value indicates statistical significance. The values marked bold denote lack of statistical

significance.
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Table 2.2: Comparison of k-NN density estimation error of condensation algorithms (higher CR)

Data set Multiscale Uniform Scale SOM Random
Algorithm method [9] sampling
CR LLR KLI CR LLR KLI CR LLR KLI CR LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 20 0.001 0.38 0.001 0.08 0.00 20 0.002 0.43 0.002 0.10 0.001 20 0.40 0.001 0.09 0.00 20 0.49 0.09 0.11 0.01
(74.16, 1.76) | (61.59, 1.78) (46.9, 1.72) (74.16, 1.76) (4.05, 1.81) | (9.94, 1.81)
Iris 20 0.00 0.82 0.001 0.19 0.001 20 0.00t 0.91 0.001 0.25 0.001 20 0.87 0.001 0.22 0.001 20 1.04 0.40 0.40 0.16
(211, 1.72) (140, 1.72) (117, 1.72) (9.90, 1.81) (1.82, 1.81) | (4.35, 1.81)
Vowel 20 0.001 0.88 0.07 0.05 0.001 20 0.002 0.97 0.10 0.09 0.001 20 0.90 0.001 0.07 0.001 20 1.25 0.25 0.21 0.04
(2.61, 1.74) (93.8, 1.72) (0.93, 1.81) | (46.90, 1.72) (4.73, 1.81) | (13.2, 1.81)
Pima 20 0.001 0.50 0.05 8.8 0.32 20 0.002 0.62 0.09 10.0 0.81 20 0.59 0.002 9.1 0.10 20 0.81 0.25 14.03 4.1
(3.86, 1.78) (4.56, 1.76) (5.96, 1.81) (2.96, 1.81) (4.16, 1.81) | (4.21, 1.81)
Cancer 20 0.001 0.68 0.05 9.1 0.4 20 0.002 0.81 0.07 10.4 0.70 20 0.77 0.01 9.8 0.01 20 0.92 0.22 11.9 2.09
(5.01, 1.78) (5.34, 1.74) (5.85, 1.81) (5.63, 1.81) (3.52, 1.81) | (4.36, 1.81)
Monk 20 0.002 0.31 0.001 0.32 0.005 20 0.002 0.34 0.002 0.35 0.002 20 0.32 0.001 0.33 0.001 20 0.42 0.04 0.44 0.04
(44.5, 1.78) (18.47, 1.78) (33.01, 1.81) | (6.40, 1.81) (9.11, 1.81) | (9.87, 1.81)
Tnorm 20 0.000 0.22 0.001 0.80 0.005 10 0.001 0.29 0.005 1.04 0.02 10 0.25 0.00 0.88 0.01 10 0.35 0.08 1.21 0.17
(45.53, 1.81) | (38.61, 1.81) (70.35, 1.71) | (26.40, 1.81) (5.40, 1.81) | (7.99, 1.81)
Rnorm 20 0.000 0.25 0.005 0.91 0.002 10 0.001 0.29 0.01 1.07 0.07 10 0.26 0.00 1.01 0.00 10 0.32 0.09 1.21 0.35
(11.86, 1.78) (7.57, 1.81) (6.63, 1.81) (32.52, 1.81) (2.57, 1.81) (2.84, 1.81)
Forest 5 0.001 0.54 0.005 0.91 0.002 5 0.002 0.62 0.005 1.71 0.007 5 0.57 0.002 1.04 0.005 5 1.72 0.25 4.91 1.17
(37.5, 1.72) (364, 1.81) (18.4, 1.78) (80.0, 1.76) (15.6, 1.81) (11.4, 1.81)
Sat.Img. 5 0.001 0.41 0.005 0.71 0.01 5 0.001 0.50 0.007 0.81 0.02 5 0..47 0.002 0.80 0.01 5 0.62 0.10 0.92 0.14
(34.70, 1.76) (14.83, 1.76) (36.95, 1.78) (21.10, 1.71) (6.95, 1.81) (4.96, 1.81)
Census 5 0.002 0.17 0.001 0.80 0.01 5 0.002 0.22 0.002 0.91 0.007 5 0.19 0.00 0.88 0.00S8 5 0.28 0.01 1.00 0.17
(74.16, 1.76) (27.98, 1.78) (46.90, 1.81) (21.95, 1.78) (36.3, 1.81) (3.89, 1.81)




for both sets of condensation ratios. For each condensation ratio (two condensation
ratios are considered), for each index of comparison (two indices are considered) of
density estimation error and for each data set (eleven data sets including three large
data sets), the proposed method is found to provide better performance than each
of the other three data condensation methodologies compared. Regarding statistical
significance tests it can be seen from Tables 2.1 and 2.2 that, out of 132 comparisons,
the proposed method is found to provide significantly better results in 127 comparisons.
Only while comparing with SOM for the Norm, Vowel and Ringnorm data sets, the
performance of the proposed method is found to be better, but not significantly. (The
corresponding entries are marked bold in Tables 2.1 and 2.2.) Experiments were also
carried out for other values of the condensation ratio (e.g., 40% and 60%) and similar

performance has been observed.

For the purpose of comparison, the condensed sets obtained using different algorithms

are also used for kernel density estimates. The kernel estimate is given by
. 1= .,
fa(x) =~ > K(x,u)),
i=1

where u;’s are points belonging to the reduced set and K(-,-) is the kernel function.
We used a Gaussian kernel of the form
_ 1
K(x,u;) = [(h227r) p/2] exp {—2—}?'—25(7(, u; } )
where p is the dimension, h bandwidth and &(x, u;) the Euclidean distance between x
and u;. The bandwidth h is chosen as

h = \/ sup ( inf d(lli,uj))y

i=l,..,n J=l,..,n

where u; and u; are points in the condensed set. The reason for selecting the above
bandwidth can be explained in terms of minimal spanning trees [23]. The bandwidth
satisfies both the conditions for consistent kernel density estimation. The error mea-
sures are presented in Tables 2.3 and 2.4 for the same two groups of condensed sets as
considered in Tables 2.1 and 2.2 respectively. It is seen from Tables 2.3 and 2.4 that
when using kernel estimates, the proposed algorithms produce less error than all the
related schemes for all data sets. Statistical significance tests are also presented for

all the comparisons, and in 129, of 132 comparisons, the proposed method performs
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Table 2.3: Comparison of kernel (Gaussian) density estimation error of condensation

algorithms (lower CR, same condensed set as Table 2.1)

Data set Multiscale Uniform Scale SOM Random
Algorithm method [9] sampling
LLR KLI LLR KLI LLR KL1 LLR KLI
L Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
| Norm 1.04 0.07 0.14 0.03 1.15 0.09 0.17 0.03 1.10 0.07 0.15 0.004 1.29 0.25 0.23 0.09
(3.05, 1.74) (2.24, 1.74) (1.92, 1.72) (1.04, 1.81) | (3.05, 1.81) | (3.67, 1.78)
Iris 1.72 0.05 0.37 0.02 1.91 0.14 0.59 0.04 1.88 0.01 0.41 0.002 2.78 0.95 0.98 0.17
(4.04, 1.78) (15.56, 1.76) | (9.92, 1.81) (6.29, 1.81) (3.52, 1.81) | (11.27, 1.81)
1, Vowel 1.35 0.09 0.09 0.005 1.61 0.17 0.16 0.01 1.38 0.002 0.10 0.00 1.88 0.47 0.37 0.08
k (4.27, 1.76) (19.8, 1.76) (1.05, 1.81) | (6.32, 1.81) (3.50, 1.81) | (11.05, 1.81)
Pima 1.07 0.08 17.2 0.81 1.27 0.11 19.9 2.2 1.18 0.0t 19.1 0.88 1.91 0.90 23.2 8.9
‘ (4.65, 1.74) (3.64, 1.78) (4.31, 1.81) (5.02, 1.72) (2.94, 1.81) | (2.12, 1.81)
Cancer 1.34 0.16 16.8 1.4 1.57 0.20 18.8 0.91 1.51 0.09 19.1 0.47 1.78 0.55 23.3 8.80
(2.84, 1.74) (3.78, 1.78) (2.92, 1.78) (4.93, 1.79) (2.43, 1.81) | (2.31, 1.81)
. Monk 0.62 0.01 0.63 0.04 0.68 0.03 0.71 0.04 0.66 0.01 0.67 0.01 0.82 0.11 0.87 0.14
(6.00, 1.78) (4.47, 1.74) (8.94, 1.74) (3.08, 1.81) (6.00, 1.81) | (5.21, 1.81)
i Tnorm 0.42 0.01 1.64 0.05 0.56 0.05 1.92 0.11 0.45 0.00 1.78 0.001 0.57 0.10 1.97 0.44
| (8.68, 1.81) (6.51, 1.74) (9.49, 1.81) (5.53, 1.81) (4.72, 1.81) | (2.33, 1.81)
i Rnorm 0.38 0.03 2.02 0.17 0.53 0.05 2.80 0.19 0.40 0.001 2.19 0.01 0.69 0.09 2.89 0.82
: (8.13, 1.76) (6.51, 1.74) (9.49, 1.81) (5.53, 1.81) (4.72, 1.81) | (2.33, 1.81)
! Forest 0.80 0.007 2.69 0.01 1.95 0.01 4.4 0.53 1.38 0.00 3.10 0.01 3.70 1.43 7.0 2.50
i (325, 1.74) (10.2, 1.81) (366, 1.81) (91, 1.72) (6.55, 1.81) | (5.45, 1.81)
3 Sat.Img 0.75 0.005 1.09 0.02 0.88 0.01 1.28 0.09 0.82 0.005 1.22 0.00 0.98 0.10 1.72 0.22
(36.77, 1.76) (6.52, 1.81) (31.3, 1.72) (20.55, 1.81) (7.26, 1.81) (9.02, 1.81)
! Census 0.25 0.00 1.46 0.04 0.29 0.01 1.59 0.09 0.27 0.005 1.52 0.005 0.37 0.10 1.82 0.40
L (12.6, 1.81) (4.17, 1.78) (12.6, 1.81) (4.71, 1.81) (3.79, 1.81) | (2.83, 1.81)

significantly better than the other three algorithms. The cases for which statistical
significance could not be established are denoted by bold entries in Tables 2.3 and 2.4.

We have also compared our algorithm with Fukunaga’s non-parametric data conden-
sation algorithm [43] only for the Norm data set. For a log-likelihood error of 0.5 the
condensation ratio achieved by this method is 50%, while the corresponding figure is
23.4% for our method. On the Norm data set while the CPU time required by the
proposed algorithm is 8.10 secs, the above mentioned algorithm is found to require
2123.05 secs.

In Figure 2.3, we have plotted the points in the condensed set along with the discs
covered by them at different condensation ratios for the proposed algorithm and for
Astrahan’s method. The objective is to demonstrate the multiresolution characteristics
of the algorithm in contrast to a fixed resolution method. It is observed that our
algorithm represents the original data in a multiresolution manner; the denser regions
are more accurately represented compared to the sparser regions. The regions covered
by the representative points are uniform for Astrahan’s method [9]. It may be observed
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Table 2.4: Comparison of kernel (Gaussian) density estimation error of condensation

algorithms (higher CR, same condensed set as Table 2.2)

Data set Multiscale Uniform Scale SOM Random
Algorithm method {9] sampling
LLR KLI LLR KLI LLR KL1 LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 0.35 0.001 0.07 0.00 1.40 0.001 0.09 0.001 0.37 0.001 0.08 0.001 0.47 0.05 0.10 0.01
(117, 1.72) | (686, 1.81) (47, 1.72) (33.1, 1.81) (7.95, 1.81) (9.94, 1.81)
Iris 0.79 0.001 0.17 0.001 0.88 0.001 0.23 0.001 0.86 0.001 0.21 0.001 1.00 0.28 0.37 0.10
(211, 1.72) | (140, 1.72) | (140, 1.72) (93.8, 1.72) (2.48, 1.81) (6.63, 1.81)
Vowel 0.86 0.05 0.04 0.001 0.95 0.09 0.08 0.001 0.88 0.001 0.05 0.001 1.17 0.22 0.20 0.04
(2.90, 1.74) | (93.8, 1.72) | (1.32, 1.81) | (23.45, 1.72) | (4.55, 1.81) (13.26, 1.81)
Pima 0.47 0.04 8.20 0.28 0.60 0.07 9.10 0.54 0.56 0.001 8.8 0.04 0.80 0.17 14.00 4.10
(5.34, 1.74) | (4.90, 1.74) | (7.46, 1.81) (7.03, 1.81) (6.27, 1.81) (4.68, 1.81)
Cancer 0.67 0.04 8.70 0.35 0.79 0.05 9.80 0.76 0.74 0.005 9.50 0.01 0.90 0.19 11.5 2.01
(6.21, 1.76) | (4.66, 1.74) | (5.75, 1.81) (7.57, 1.81) (3.92, 1.78) | (4.55, 1.81)
Monk 0.30 0.001 0.31 0.004 0.34 0.001 0.34 0.001 0.31 0.001 0.32 0.001 0.41 0.03 0.44 0.02
(93.8, 1.72) | (24.1,1.81) | (23.4, 1.72) (8.04, 1.78) (12.15, 1.81) | (21.14, 1.81)
Tnorm 0.21 0.001 0.78 0.004 0.28 0.004 0.99 0.01 0.23 0.00 0.86 0.005 0.34 0.05 1.19 0.10
(56.3, 1.81) | (64.6, 1.78) | (66.3, 1.81) (41.4, 1.76) (8.62, 1.81) ( 13.5, 1.81)
Rnorm 0.23 0.002 0.88 0.001 0.28 0.005 1.02 0.05 0.24 0.001 0.97 0.001 0.31 0.05 1.17 0.28
(30.8, 1.78) | (9.28, 1.81) | (14.8, 1.78) (211, 1.72) (4.64, 1.81) (3.43, 1.81)
Forest 0.53 0.004 0.90 0.002 0.61 0.004 1.70 0.005 0.55 0.001 0.98 0.004 1.70 0.17 4.90 1.00
(46.9, 1.72) | (492, 1.78) | (16.08, 1.79) | (59.3, 1.74) (22.8, 1.81) (13.2, 1.81)
Sat.Img 0.40 0.004 0.70 0.005 0.47 0.007 0.80 0.01 0.45 0.001 0.77 0.005 0.59 0.05 0.90 0.10
(28.8, 1.74) (29.6, 1.74) (40, 1.78) (32, 1.72) (12.5, 1.81) (6.62, 1.81)
Census 0.16 0.001 0.78 0.01 0.22 0.001 0.91 0.005 0.17 0.00 0.87 0.004 0.27 0.01 0.98 0.11
(140, 1.72) | (35, 1.76) (33.1, 1.81) (27.7,1.78) | (36.3,1.81) | (6.00, 1.81)

from the figure that multiscale representation is most effective in terms of error when

the condensed set is sparse, i.e., the condensation ratio is low (Figure 2.3(a)).

2.5.2 Classification: Forest cover data

As mentioned in Appendix A, the said data represents forest cover types of 30m x 30m
cells obtained from US Forest Service (USFS) Region 2 Resource Information System
(RIS). There are 581,012 instances, with 54 attributes representing cartographic vari-
ables (hillshade, distance to hydrology, elevation, soil type etc), of which 10 are quan-
titative and 44 binary. The quantitative variables were scaled to the range [0, 1]. The
task is to classify the observations into seven categories representing the forest cover
types, namely — Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow,
Aspen, Douglas-fir, Krummbholz. About 80% of the observations belong to classes

Spruce/Fir and Lodgepole Pine.

We have condensed the training set using different condensation algorithms including
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Multiscale Astrahan’s
Method Method

Figure 2.3: Plot of the condensed points (of the Norm data) for the proposed algorithm
and Astrahan’s method, for different sizes of the condensed set. Bold dots represent a

selected point and the discs represent the area of Fy — F3 plane covered by a selected

point at their center.
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the proposed one. The different condensed sets obtained are then used to design a k-
NN classifier (1-NN for LASM) and a multi layer perceptron (MLP) for classifying the
test set. The goal is to provide an evidence that the performance of our multiresolution
condensation algorithm does not depend on the final use of the condensed set. The

following data reduction methods are compared:

1. Random sampling: Sampling with replacement is used to obtain a specific con-
densation ratio. The condensed set is a representative of the underlying distri-

bution.

9. Stratified sampling: Instead of sampling uniformly over the entire population,
subclasses of interest (strata) are identified and treated differently. For the given
data we considered class stratification, i.e., the number of samples selected from

each class is proportional to the size of the class in the original set.

3. Condensed nearest neighbor (CNN) [54]: The condensation ratio is varied by
changing the parameter k used for k-NN classification. The condensed set obtains
a high concentration of points near the class boundaries. It may be mentioned

that arbitrarily low condensation ratios cannot be achieved using CNN.

4. Local asymmetrically weighted similarity metric (LASM) {150]: The condensed
set is obtained by random sampling, but the metric used for nearest neighbor
classification varies locally and is learned from the training set. The value of

reinforcement rate used is @ = 0.2 and the punishment rate used is § = 1.0.

5. Method of Astrahan [9]: As explained in the last section this is an uniform scale

density based method.

6. Learning vector quantization [72]: We have considered the LVQ3 version of the al-
gorithm for comparison. Initial codebook vectors obtained using a self-organizing

map are refined here using the LVQ3.

As in the case of density estimate experiments (Section 2.5.1), we have selected 90%
of the data randomly as training set and the remaining data is used as test set. Such
data splits are performed 10 times independently and the mean and standard deviation
(SD) of the classification accuracy on test set, and condensation ratios (CR) obtained
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Table 2.5: Classification performance for Forest cover type data

Condensation Condensation Classification Classification CPU
Algorithm Ratio (%) Accuracy (%) Accuracy (%) time
using k-NN using MLP (hrs)
Mean SD Mean SD (test stat.) Mean SD (test stat.)
Proposed method 0.1 0.004 83.10 1.90 70.01 0.90 4.29
LvQ3 0.1 - 75.01 1.01 (12.50, 1.76) 68.08 0.80 (3.33,1.72) 2.02
LASM 01 - 74.50 2.52 (9.08, 1.72) (1-NN) | - - 5.90
Astrahan 0.1 0.004 66.90 2.10 (18.97, 1.72) 59.80 0.53 (32.81, 1.73) 4.10
Stratified sampling 0.1 - 44.20 5.9 (20.81, 1.8}) 36.10 5.95 (18.75, 1.81) -
Random sampling 0.1 - 37.70 10.04 (14.73, 1.81) 29.80 8.2 (16.16, 1.81) -
Proposed method 5.0 0.01 97.00 1.81 80.02 1.40 4.52
LvVQ3 50 - 88.01 1.04 (14.34, 1.76) 74.00 0.92 (11.99, 1.73) 4.05
LASM 50 - 87.55 2.50 (10.17, 1.73) (1-NN) | - - 7.11
Astrahan 5.0 0.01 82.09 2.53 (16.05, 1.73) 66.00 1.4 (23.48,1.71) 4.40
CNN 5.05 1.01 81.17 3.80 (2.64, 1.73) 75.02 4.1 (1.52, 1.78) 5.51
Stratified sampling | 5.0 - $5.20 7.1 (18.92, 1.81) 40.10 7.01 (18.52,1.81) | -
Random sampling 50 - 44.70 8.02 (21.09, 1.81) 35.80 8.8 (16.40, 1.81) -

for each such splits are presented. Statistical significance tests are also performed to
test the inequality of means of the classification accuracy. As before we present the
computed value of the test statistic and the tabled value, if the computed value is
greater than the tabled value the means are significantly different. We also present
the CPU times required by the condensation algorithms on a Digital Alpha 800MHz
workstation. The figures shown here are the average values taken over 10 runs.

In Table 2.5, we compare the effect of each method on classification accuracy for
condensation ratios of 0.1% and 5%. Note that the lowest condensation ratio that
could be achieved for the Forest data using CNN is 3.1%, hence, comparison with

CNN is presented only for the 5% case.

It can be seen from Table 2.5 that the proposed methodology achieves higher classifica-
tion accuracy than the other methods and that this difference is statistically significant.
For classification, the same value of k as that used for condensation is considered, ex-
cept for LASM where 1-NN is used. For classification using MLP, the proposed method
and LVQ performs similarly. Results for LASM are not presented for MLP, since if no
specialized metric is used LASM represents just a random subset. The performances of
both random sampling and stratified sampling are found to be catastrophically poor.
The uniform scale method of Astrahan performs poorer than the proposed method,
LVQ and LASM.
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2.5.3 Clustering: Satellite image data

The satellite image data (Appendix A) contains observations of the Indian Remote
Sensing (IRS) satellite for the city of Calcutta, India. The data contains images of
four spectral bands. We present in Figure 2.4(a), for convenience, the image for band
4. Here the task is to segment the image into different land cover regions, using four
features (spectral bands). The image mainly consists of six classes e.g., clear water
(ponds, fisheries), turbid water (the river Ganges flowing through the city), concrete
(buildings, roads, airport tarmacs), habitation (concrete structures but less in density),
vegetation (crop, forest areas) and open spaces (barren land, playgrounds). Fuzzy

segmentation of the image is reported in detail in [116].

" Using our methodology we have extracted six prototype points from the entire data
set. The remaining points are placed in the cluster of the prototype point to whose
sphere (disc) of influence the particular point belongs. Thus the condensation process

implicitly generates a clustering (partition/segmentation) of the image data.

We have compared the performance of our algorithm with two other related clustering
methods, namely, k-means algorithm [32] and Astrahans density based uniform scale
method [9]. For the k-means algorithm we have considered k = 6, since there are six
classes, and the best result (as evaluated by a cluster quality index) obtained out of
ten random initializations is presented. In Astrahan’s method six prototype points are
obtained, the remaining pixels are then classified by minimum distance classification

with these six points.

The results are presented in Figures 2.4(b)-(d). Figure 2.4(d) is seen to have more
structural details compared to Figures 2.4(b) and 2.4(c). From the segmented image
obtained using the proposed method more number of landmarks known from ground
truths can be detected by visual inspection. The segmentation results of the remote

sensing images obtained above are also evaluated quantitatively using an index f3.

Let n; be the number of pixels in the ith (i = 1,...,c) region obtained by the segmen-
tation method. Let X;; be the vector (of size 4 x 1) of the gray values of the jth pixel
(j=1,...,n;) for all the images in region i, and X; the mean of n; gray values of the
ith region. Then f is defined as [116]:
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Figure 2.4: IRS images of Calcutta: (a) original Band 4 image, and segmented images
using (b) k-means algorithm, (c) Astrahan’s method, (d) proposed multiscale algorithm
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Table 2.6: 3 value and CPU time of different clustering methods

Method k-means | Astrahan’s | Proposed
B 5.30 7.02 9.88
CPU time (hrs) | 0.11 0.71 0.75

Y T (X~ X)T (X~ X)
Yot Yo (X — X)T (X5 = Xi)
where, n is the size of the image and X is the mean gray value of the image. It may
~ be noted that X;;, X and X; are all 4 x 1 vectors.

(2.5)

ﬂ:

Note that the above measure is nothing but the ratio of the total variation and within-
class variation and is widely used for feature selection and cluster analysis [116]. For a
given image and ¢ (number of clusters) value, the higher the homogeneity within the
segmented regions higher would be the 3 value. The proposed method has the highest

3 value as can be seen in Table 2.6.

2.5.4 Rule generation: Census data

The original source for this data set is the IPUMS project. The data (Appendix A)
contains 320000 samples and 133 attributes, mostly categorical (integer valued). A
study commonly performed on census data is to identify contrasting groups of pop-
ulations and study their relations. For this data we have investigated two groups of
population namely those who have undergone/not undergone ‘higher education’, mea-
sured in terms of number of years in college. It is interesting and useful to generate
logical rules depending on the other available attributes which classify these groups.
We have considered the attribute educational record, ‘edrec’, and investigated two sets
of population, one having more than 4% years of college education, and the other below

that. The task is to extract logical inference rules for the sets.

As a similarity measure between two samples we have used the Value Difference Metric
(VDM) [164]. Using the VDM, the distance between two values £ and v of a single

attribute a is defined as
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M (Noge  Nawe)’
vdma(x,v)=2a=1<N’ - N ) (2.6)

where N, . is the number of times attribute a had value z; Ny is the number of
times attribute a had value z and the output class was c; and M is the number of
output classes (2 in our case). Using this distance measure, two values of an attribute
are considered to be closer if they have more similar classification, regardless of the
magnitude of the values. Using the value difference metric, the distance between two

points having p independent attributes is defined as

VDM(x,v) = \/Zzzlvdmg(xa,va). (2.7)

We have used the popular C4.5 [145] program to generate logical rules from the con-
densed data sets. We have restricted the size of the rules to conjunction of 3 variables
only. As before, 90% of the data is selected as training set and the rules are evaluated
on the remaining data. Eleven such splits are obtained and the means and standard

deviations (SD) are presented.
For the purpose of comparison with our method, the C4.5 program is also run on
condensed sets obtained using: Random sampling, Stratified sampling, Density based
Uniform Scale method of Astrahan [9] and Condensed nearest neighbor. Following
quantities are computed in Table 2.7:

1. Condensation ratio (CR)

2. Number of rules generated

3. Accuracy of classification on test set (we also present statistical tests of signifi-
cance for comparing the other methods with the proposed method)

4. Percentage of uncovered samples

5. CPU time

The comparison is performed for a constant condensation ratio of 0.1%. However, for
CNN a CR of only 2.2% could be achieved by varying k. The classification accuracy of
the proposed method is higher than random sampling, stratified sampling and CNN,
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Table 2.7: Rule generation performance for the Census data

Condensation CR(%) # of Rules | Classification Uncovered CPU
method (rounded to | accuracy (%) samples (%) | time
integer) (%) (hrs)
Mean SD Mean SD | Mean SD (Test Stat.) | Mean SD
Random sampling | 0.1 - 448 88 32.1 8.8 (8.43,1.81) | 4001 55 | -
Stratified sampling | 0.1 - 305 45 388 5.5 (9.71,1.78) | 370 5.5 -
CNN 2.2 0.050 270 53 32.0 4.1 (17.55, 1.78) | 55.0 4.1 2.80
Astrahan [9] 0.1 0004|245 50 | 488 4.0 (4.89,1.78) | 250 3.1 | 4.22
Proposed 0.1 0.004 | 178 30 55.1 1.5 20.2 1.80 | 4.10

Figures in parentheses indicate the computed value of test statistic and tabled value respectively

it is also significantly higher than Astrahan’s method. It is also observed that the
“uncovered region is minimum for the rules generated from the subset obtained by
the proposed algorithm. The rule base size is far smaller than random, statistical
sampling and Astrahan’s method. Therefore the rules generated from the condensed

set is compact yet having high accuracy and cover as compared to other sets.

2.5.5 Experiments on scalability

The scaling property of the condensation algorithm is also studied in a part of the
experiment. For this we have examined the sample complezity of the algorithm, i.e., the
size of condensed set required to achieve an accuracy level (measured as error in density
estimate). In Figure 2.5 the log-likelihood error is plotted against the cardinality
of the condensed set (as a fraction of the original set), for three typical data sets
namely, Norm (of known distribution), Vowel (highly overlapping), Wisconsin (large
dimension). The solid curve is for the proposed methodology while the dotted one is
for random sampling. It can be seen that the proposed methodology is superior to

random sampling.

2.5.6 Experiments on choice of k

In Section 2.4 we have described the role of k in the proposed algorithm. As k increases,
the size of condensed set reduces and vice versa. Here we provide some experimental

results in support of the discussion. The effect of varying parameter k£ on the condensa-
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tion ratio (CR) is shown in Figure 2.6, for the three aforesaid data sets (Section 2.5.6).
It can be observed that for values of k in the range = 7-20 the curves attain low CR
values and are close to each other for all the three data sets. For the Vowel data a CR
value of 3.4% was obtained at k£ = 31. It may be noted that the curve for the Norm

(smallest) data set is shifted to the left compared to the other two curves.

2.6 Conclusions and Discussion

In this chapter, we have presented an algorithm for non-parametric data condensation.
The method follows the basic principles of non-parametric data reduction present in
* literature, but the sample pruning step is done in a multiresolution manner rather
than with uniform resolution. It is based on the density underlying the data. The
proposed approach is found to have superior performance as compared to some existing
data reduction schemes in terms of error in density estimate both for small and large
data sets having dimension ranging from 2 to 133. The performance of classification,
clustering and rule generation using the condensation algorithm is studied for three
large data sets. The algorithm does not require the difficult choice of radii d; and d,
which are critical for Astrahan’s method, only the choice of parameter k is necessary.
Choice of k is guided by the size of the original data set and the accuracy/condensation
ratio desired. The parameter k also provides a parametrization of the concept of scale
in data condensation, and the scales induced follow the natural characteristics of the

data and, hence, are efficient.

As far as the computational complexity is concerned, the algorithm can be considered
to have three computational steps. In the first step, for each point in the original set
the distance of the kth nearest neighbor is computed. In the second step, the point
having the minimum value of the distance is selected and in the third step, all points
lying within a radius of 2ri,, of a selected point are removed. It is observed that
the computation time required for second and third steps decreases with iteration,
since the size of the original set decreases progressively (the rate is dependent on
k and the data distribution). The first step is the most time consuming one and
it requires (O(kN?)), where N is the number of data points. A way of reducing the

time complexity of nearest neighbor calculation is to use approximate nearest neighbor
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Figure 2.5: Variation in error in density estimate (log-likelihood measure) with the
size of the Condensed Set (expressed as percentage of the original set) with the corre-
sponding, for (a) the Norm data, (b) Vowel data, (c) Wisconsin Cancer data.
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Figure 2.6: Variation of condensation ratio CR (%) with k.

| (ANN) computations using specialized data structures like k-d trees [7]. Probabilistic

nearest neighbor search methods have also been suggested [36], having expected O(1)

time complexity and O(N) storage complexity.

The guiding principle of our algorithm is to minimize the error in terms of density
estimate rather than the classification score. The justification is to obtain a generic
representative condensed set independent of the task performed with it later. In many
data mining applications the final task is not always known beforehand or there may
be multiple tasks to be performed. In the above circumstances such a condensed rep-
resentation is more useful. We have performed experiments to show that a condensed
set obtained by our method performs well for diverse data mining tasks such as clas-

sification, clustering and rule generation.
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- Chapter 3

Unsupervised Feature Selection

using Feature Similarity




3.1 Introduction

An important problem related to mining large data sets, both in dimension and size,
is of selecting a subset of the original features [38]. Preprocessing the data to obtain a
smaller set of representative features and retaining the optimal salient characteristics
of the data not only decreases the processing time but also leads to more compactness
of the models learned and better generalization. We use supervised feature selection
when class labels of the data are available, otherwise unsupervised feature selection
is appropriate. In many data mining applications class labels are unknown; thereby

indicating the significance of unsupervised feature selection there.

Conventional methods of feature selection involve evaluating different feature subsets
| using some index and selecting the best among them. The index usually measures the
capability of the respective subsets in classification or clustering depending on whether
the selection process is supervised or unsupervised. A problem of these methods, when
applied to large data sets, is the high computational complexity involved in searching.
The complexity is exponential in terms of the data dimension for an exhaustive search.
Several heuristic techniques have been developed to circumvent this problem. Among
them the branch and bound algorithm, suggested by Fukunaga and Narendra [30],
obtains the optimal subset in expectedly less than exponential computations when
the feature evaluation criterion used is monotonic in nature. Greedy algorithms like
sequential forward and backward search [30] are also popular. These algorithms have
quadratic complexity, but they perform poorly for non-monotonic indices. In such
cases, sequential floating searches [144] provide better results, though at the cost of a
higher computational complexity. Beam search variants of the sequential algorithms
[4] are also used to reduce computational complexity. Recently robust methods for
finding out the optimal subset for arbitrary evaluation indices are being developed
using genetic algorithms (GAs) [129]. GA based feature selection methods [77] are
usually found to perform better than other heuristic search methods for large and
medium sized data sets, however they also require considerable computation time for
large data sets. Other attempts to decrease the computational time of feature selection
include probabilistic search methods like random hill climbing [155], and Las Vegas
Filter (LVF) approach [83]. Comparison and discussion of some of the above methods

for many real life data sets may be found in [77].
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Since the interest of the present study lies with unsupervised feature selection, we
discuss here some of the existing methods which can be broadly classified into two cat-
egories. Methods in one such category involve maximization of clustering performance,
as quantified by some index. These include sequential unsupervised feature selection
algorithm [83], wrapper approach based on expectation maximization (EM) [34], max-
imum entropy based method and the recently developed neuro-fuzzy approach [113].
The other category considers selection of features based on feature dependency and
relevance. The principle is that any feature carrying little or no additional informa-
tion beyond that subsumed by the remaining features, is redundant, and should be
eliminated. Various dependence measures like correlation coefficients [50], measures of
statistical redundancy [58], or linear dependence [26] have been used. Recently the Re-
lief algorithm [70] and its extensions [76] which identify statistically relevant features
have been reported. A fast feature selection algorithm based on information fuzzy
network is described in [78]. Another algorithm based on conditional independence
uses the concept of Markov blanket [73]. All these methods involve search and require
significantly high computation time for large data sets. In [69] an algorithm which
does not involve search and selects features by hierarchically merging similar feature
pairs is described. However, the algorithm is crude in nature and performs poorly on
real life data sets. It may be noted that, principal component analysis (PCA) [30] also
performs unsupervised dimensionality reduction based on information content of fea-
tures. However, PCA involves feature transformation and obtains a set of transformed

features rather than a subset of the original features.

In this chapter we propose an unsupervised algorithm [101] which uses feature de-
pendency /similarity for redundancy reduction, but requiring no search. The method
involves partitioning of the original feature set into some distinct subsets or clusters so
that the features within a cluster are highly similar while those in different clusters are
dissimilar. A single feature from each such cluster is then selected to constitute the
resulting reduced subset. A new similarity measure, called maximal information com-
pression index, is used in clustering. Its comparison with two other measures namely,
correlation coefficient and least square regression error is made. It is also demonstrated

how ‘representation entropy’ can be used for quantifying redundancy in a set.

The nature of both the proposed clustering algorithm and the newly introduced feature
similarity measure is geared towards two goals - minimizing the information loss (in
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terms of second order statistics) incurred in the process of feature reduction, and
minimizing the redundancy present in the reduced feature subset. The feature selection
algorithm owes its low computational complexity to two factors - (a) unlike most
conventional algorithms, search for the best subset (requiring multiple evaluation of
indices) is not involved, (b) the new feature similarity measure can be computed in
much less time compared to many indices used in other supervised and unsupervised
feature selection methods. Since the method achieves dimensionality reduction through
removal of redundant features, it is more related to feature selection for compression

rather than for classification.

Superiority of the algorithm, over four related methods wviz, branch and bound al-

- gorithm, sequential floating forward search, sequential forward search and stepwise

clustering, is demonstrated extensively on nine real life data of both large and small
sample sizes and dimension ranging from 4 to 649. Comparison is made on the basis
of both clustering/classification performance and redundancy reduction. Effectiveness
of the maximal information compression index and the effect of scale parameter are

also studied.

The organization of the chapter is as follows: in the next section we describe measures
of similarity between a pair of features. In Section 3.3 we present the proposed feature
selection algorithm using the similarity measure and discuss some of its characteristics.

In Section 3.5 we provide experimental results along with comparisons.

3.2 Feature Similarity Measure

In this section we discuss some criteria for measuring similarity between two random
variables, based on linear dependency between them. In this context we propose a new

measure called mazimal information compression indez to be used for feature selection.

There are broadly two possible approaches to measure similarity between two random
variables. One is to non-parametrically test the closeness of probability distributions
of the variables. Walds-Wolfowitz test and the other run tests [148] may be used for
this purpose. However, these tests are sensitive to both location and dispersion of the
distributions, hence not suited for the purpose of feature selection. Another approach
is to measure the amount of functional (linear or higher) dependency between the vari-

-
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ables. There are several benefits of choosing linear dependency as a feature similarity
measure. It is known that if some of the features are linearly dependent on the others,
and if the data is linearly separable in the original representation, the data is still
linearly separable if all but one of the linearly dependent features are removed [26]. As
far as the information content of the variables is concerned, second order statistics of
the data is often the most important criterion after mean values [148]. All the linear
dependency measures that we will discuss are related to the amount of error in terms
of second order statistics, in predicting one of the variables using the other. We discuss
below two existing [148] linear dependency measures before explaining the proposed

mazimal information compression index.

Correlation Coefficient (p): The most well known measure of similarity between two

random variables is the correlation coefficient. Correlation coefficient p between two
COV(z,z2)

\/Var(zi)var(zs)’

denotes the variance of a variable and cov( ) the covariance between two variables. If

where var( )

random variables z; and z, is defined as p(z1,z2) =

r, and z, are completely correlated i.e., exact linear dependency exists, p(zy,23) is 1
or —1. If z; and x, are totally uncorrelated p(z;, ;) is 0. Hence, 1 — |p(z1,%2)| can
be used as a measure of similarity between two variables £, and z,. Following can be

stated about the measure:

[y

L 0<1—p(z1,22)| <1
2. 1 — |p(zy, )| = 0 if and only if z; and z; are linearly related.
3. 1—|p(z1,22)] = 1 — |p(z2, 21)| (symmetric)

4. Ifu = 8% and v = -’—zdlé for some constants a,b,c,d, then 1 — |p(z1,22)] =

1—|p(u, v)] i.e., the measure is invariant to scaling and translation of the variables.

The measure is sensitive to rotation of the scatter diagram in (x,r2) plane.

[&2]

Though correlation coefficient contains many desirable properties as a feature simi-
larity measure, properties 4 and 5, mentioned above, make it somewhat unsuitable
for feature selection. Since the measure is invariant to scaling, two pairs of variables
having different variances may have the same value of the similarity measure, which is
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not desirable as variance has high information content. Sensitivity to rotation is also

not desirable in many applications.

Least Square Regression Error (€): Another measure of the degree of linear dependency
between two variables z; and z. is the error in predicting z, from the linear model
Ty = a + bx;. a and b are the regression coefficients obtained by minimizing the mean
square error e(T;,T2)? = %Z(ei(ml,xg))2, ei(x1,T2) = T2i — @ — bxy;. The coefficients
are given by a = 7, and b = %%?ﬁl and the mean square error e(x, ) is given by
e(zy, z3) = var(zq)(1 — p(z1,%2)?). If 22 and =z, are linearly related e(z;,z2) = 0, and
if 2, and 7, are completely uncorrelated e(z,z2) = var(zz). The measure e? is also
known as the residual variance. It is the amount of variance of z unexplained by the

linear model. Some properties of e are:

1. 0 < e(zy, 1) < var(zs)
2. e(zy,12) = 0 if and only if z; and z; are linearly related.
3. e(z1, ) # e(x2,71) (unsymmetric)

4. If u = z;/c and v = x,/d for some constant a,b,c,d, then e(z),T2) = d%e(u,v),
i.e., the measure e is sensitive to scaling of the variables. It is also clear that e is

invariant to translation of the variables.

5. The measure e is sensitive to rotation of the scatter diagram in z, — z2 plane.

Note that the measure e is not symmetric (property 3). Moreover, it is sensitive to
rotation (property 5).

Now we suggest a measure of linear dependency which has many desirable properties

for feature selection not present in the above two measures.

Magimal Information Compression Indez (Az): Let L be the covariance matrix of ran-
dom variables z; and z,. Define, mazimal information compression indez as Ao(z1,22) =

smallest eigenvalue of X, i.e.,

2Xo(x1,22) = (v?.r(xl)+var(x2)——\/(var(xl) + var(z,))? — 4var(z)var(z2)(1 — p(x1, 72)?).
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The value of ), is zero when the features are linearly dependent and increases as the
amount of dependency decreases. It may be noted that the measure A; is nothing but
the eigenvalue for the direction normal to the principle component direction of feature
pair (z1,;). It is shown in [30] that maximum information compression is achieved if
a multivariate (in this case bivariate) data is projected along its principal component
direction. The corresponding loss of information in reconstruction of the pattern (in
terms of second order statistics) is equal to the eigenvalue along the direction normal to
the principal component. Hence, ), is the amount of reconstruction error committed if
the data is projected to a reduced (in this case reduced from two to one) dimension in
the best possible way. Therefore it is a measure of the minimum amount of information

loss or the mazimum amount of information compression, possible.

The significance of A, can also be explained geometrically in terms of linear regression.
It can be easily shown [148] that the value of ); is equal to the sum of the squares
of the perpendicular distances of the points (z1,z;) to the best fit line z = a +
bz,, obtained by minimizing the sum of the squared perpendicular distances. The
coefficients of such a best fit line are given by @ = &,cotd + £, and b = —cotf, where
§ = 2 tan~! ( 200V (z1,23) ) The nature of errors and the best fit lines for least

var(z;)?-var(zz)?
square regression and principal component analysis are illustrated in Figure 3.1. A2

has the following properties:

1. 0 < Ay(x1,29) < 0.5(var(z;) + var(zz))
2. Ag(x1,x) = 0 if and only if z; and z, are linearly related.
3. Xy, 32) = A2(Z2,21) (symmetric)

4. If u = % and v = % for some constant a, b, c,d, then Ay(z1,12) # A2(u,v), ie.,
the measure is sensitive to scaling of the variables. Since the expression of A;
does not contain mean, but only the variance and covariance terms it is invariant

to translation of the data set.

5. )y is invariant to rotation of the variables about the origin (this can be easily
verified from the geometric interpretation of A considering the property that the
perpendicular distance of a point to a line does not change with rotation of the

axes).
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Figure 3.1: Nature of errors in linear regression, (a) Least square fit (e), (b) Least

square projection fit (Az).

The measure )\, possesses several desirable properties like symmetry (property 3), sen-
sitivity to scaling (property 4), and invariance to rotation (property 5). It is a property
of the variable pair (z;, ;) reflecting the amount of error committed if maximal in-
formation compression is performed by reducing the variable pair to a single variable.

Hence, it may be suitably used in redundancy reduction.

3.3 Feature Selection Method [101]

The task of feature selection involves two steps, namely, partitioning the original feature
set into a number of homogeneous subsets (clusters) and selecting a representative
feature from each such cluster. Partitioning of the features is done based on the k-
NN principle using one of the feature similarity measures described in Section 3.2. In
doing so, we first compute the k nearest features of each feature. Among them the
feature having the most compact subset (as determined by its distance to the farthest
neighbor) is selected, and its k neighboring features are discarded. The process is

repeated for the remaining features until all of them are either selected or discarded.

While determining the k nearest neighbors of features we assign a constant error thresh-
old (€) which is set equal to the distance of the kth nearest neighbor of the feature
selected in the first iteration. In subsequent iterations, we check the A, value, corre-

sponding to the subset of a feature, whether it is greater than € or not. If yes, then we
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decrease the value of k. Therefore k may be varying over iterations. The concept of
clustering features into homogeneous groups of varying sizes is illustrated in Figure 3.2.

The algorithm may be stated as follows:

Algorithm:

Let the original number of features be P, and the original feature set be A = {F},i =
1,...,P}. Represent the dissimilarity between features Fj and F; by S(F;, F;). Higher
the value of S is, the more dissimilar are the features. The measures of linear de-
pendency (e.g., p, e, \2) described in Section 3.2 may be used in computing S. Let r¥
represent the dissimilarity between feature F; and its kth nearest neighbor feature in
R. Then

Step 1: Choose an initial value of £ < P — 1. Initialize the reduced feature subset R
to the original feature set A, i.e., R + A.

Step 2: For each feature F; € R, compute r}.

Step 3: Find feature Fy for which 7% is minimum. Retain this feature in R and discard
k nearest features of Fy. (Note: Fy denotes the feature for which removing k nearest

neighbors will cause minimum error among all the features in R). Let € = rk.

Step 4: If k > cardinality(R) — 1: k = cardinality(R) — 1.
Step 5: If k = 1: Go to Step 8.
Step 6: While r5 > ¢ do:
(a) k=k—-1.
r% = infpenrtt.
(‘k’ is decremented by 1, until the ‘kth nearest neighbor’ of at least one
of the features in R is less than e-dissimilar with the feature)
(b) If k = 1: Go to Step 8.
(if no feature in R has less than e-dissimilar ‘nearest neighbor’ select all

the remaining features in R)
End While

Step 7: Go to Step 2.

Step 8: Return feature set R as the reduced feature set. O
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Figure 3.2: Feature clusters

Remarks:

Computational complexity: The algorithm has low computational complexity with re-
spect to both number of features and number of samples of the original data. With
respect to the dimension (P) the method has complexity O(P?). Among the existing
search based schemes only sequential forward and backward search have complexity
O(P?), though each evaluation is more time consuming. Other algorithms like plus-{-
take-r, sequential floating search and branch and bound algorithm [30] have complex-
ity higher than quadratic. Most probabilistic search algorithms also require more than

quadratic number of evaluations.

The second factor which contributes to the speedup achieved by the proposed algo-
rithm, is the low computational complexity of evaluating the linear dependency mea-
sures of feature similarity. If the data set contains n samples, evaluation of the similar-
ity measure for a feature pair is of complexity O(n). Thus the feature selection scheme
has overall complexity O(P?n). Almost all other supervised and unsupervised feature
evaluation indices (e.g., entropy, class separability, K-NN classification accuracy) have
at least O(n?) complexity of computation. Moreover, evaluation of the linear depen-
dency measures involves computation using one dimensional variables only, while the
other measures often involve distance computations at higher dimensions. All these
factors contribute to the large speedup achieved by the proposed algorithm compared

to other feature selection schemes.
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Notion of scale in feature selection and choice of k: In our algorithm k controls the
size of the reduced set. Since k determines the error threshold (e), the representation
of the data at different degrees of details is controlled by its choice. This characteristic
is useful in data mining where multiscale representation of the data is often necessary.
Note that the said property may not always be possessed by other algorithms where
the input is usually the desired size of the reduced feature set. The reason is that
changing the size of the reduced set may not necessarily result in any change in the
levels of details. In contrast, for the proposed algorithm, k acts as a scale parameter

which controls the degree of details in a more direct manner.

Non-metric nature of similarity measure: The similarity measures used in the pro-
posed algorithm need not be a metric. Unlike conventional agglomerative clustering
algorithms it does not utilize metric property of the similarity measures. Also unlike
the step wise clustering method [69] used previously for feature selection, our clustering

algorithm is partitional and non-hierarchical in nature.

3.4 Feature Evaluation Indices

Let us now describe some indices that have been considered for evaluating the effective-
ness of the selected feature subsets. The first three indices namely, class separability,
K-NN classification accuracy and naive Bayes classification accuracy do need class
information of the samples while the remaining three namely, entropy, fuzzy feature
evaluation index and representation entropy, do not. Before we discuss them, we men-
tion, for convenience, the following notations: Let n be the number of sample points in
the data set, M be the number of classes present in the data set, P be the number of
features in the original feature set A, p be the number of features in the reduced feature
set R, 24 be the original feature space with dimension P, and §lg be the transformed

feature space with dimension p.

1. Class separability [30): Class separability S of a data set is defined as 5 =
trace(S; ' Sy). Sw is the within class scatter matrix and Sp is the between class
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scatter matrix, defined as:

M M
Sw = Z mi B{(x = p;)(x = ;)T |w;} = Zﬂjzj

“~
—

M
Sy, = (pj —X)(pj — %
1

)T

3

M
x = E{x}= Z il (3.1)

where 7; is the a priori probability that a pattern belongs to class wj, x is the
feature vector, u; is the sample mean vector of class wj, X is the sample mean
vector for the entire data points, £; is the sample covariance matrix of class wj,
and F{.} is the expectation operator. A lower value of the separability criteria

S ensures that the classes are well separated by their scatter means.

2. K-NN classification accuracy: Here we have used the K-NN rule for evaluating the
effectiveness of the reduced set for classification. Cross-validation is performed
in the following manner - we randomly select 90% of the data as training set and
classify the remaining 10% points. Ten such independent runs are performed, and
the average classification accuracy on test set is used. The value of K, chosen for
the K-NN rule, is the square root of the number of data points in the training

set.

3. Naive Bayes classification accuracy: A Bayes maximum likelihood classifier [30],
assuming normal distribution of classes, is also used for evaluating the classifi-
cation performance. Mean and covariance of the classes are estimated from a
randomly selected 10% training sample, and the remaining 90% of the points
are used as test set. Ten such independent runs are performed and the average

classification accuracy on test set is provided.
4. Entropy [83]: Let the distance between two data points 1,7 be

p Ty T 9 1/2
E : Li byl
Dij — —_ ,
max; — miny

=1
where z;; denotes feature value for i along Ith direction, and max;, min; are the

maximum and minimum values computed over all the samples along lth axis, p
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is the number of features. Similarity between i, j is given by sim(s, j) = e~ oD

where a is a positive constant. A possible value of a is ll—%“-—'é. D is the average
distance between data points computed over the entire data set. Entropy is

defined as:

E=- Z Z(sim(i,j) x log sim(z, j) + (1 —sim(s, 5)) % log (1 —sim(3, 5))) (3.2)
i=1 j=1
where n is the number of sample points. If the data is uniformly distributed in

the feature space entropy is maximum. When the data has well-formed clusters

uncertainty is low and so is entropy.

. Puzzy feature evaluation inder [113]: Fuzzy feature evaluation index (FFEI) is
defined as: '

FFEI = n_l)zz [ (1 = 1) + (1 = )] (3:3)
ti#j

where u{‘j and u{} are the degrees that both patterns i and j belong to the same
cluster in the feature spaces Q4 and Qg respectively. Membership function p;;

may be defined as

pij =1- i if dij < Dynas

=0, otherwise.

d;; is the distance between patterns : and 7, and Dy, is the maximum separation

between patterns in the respective feature spaces.

The value of FFEI decreases as the intercluster/intracluster distances increase/

decrease. Hence, the lower the value of FFEI, more crisp is the cluster structure.

Note that the first two indices, class separability and K-NN accuracy, measure the
effectiveness of the feature subsets for classification, while the indices entropy and
fuzzy feature evaluation index evaluate the clustering performance of the feature
subsets. Let us now describe a quantitative index which measures the amount of

redundancy present in the reduced subset.

. Representation entropy [30]: Let the eigenvalues of the p x p covariance matrix
of a feature set of size p be A\, = 1,...,p. Let N = fﬁTl X\ has similar
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properties like probability, namely, 0 < M <1 and S7.i A = 1. Hence, an

entropy function can be defined as
2
HR = - Z :\l IOg :\1. (3.4)
=1

The function Hp attains a minimum value (zero) when all the eigenvalues except
one are zero, or in other words when all the information is present along a single
co-ordinate direction. If all the eigenvalues are equal, i.e., information is equally
distributed among all the features, Hy is maximum and so is the uncertainty

involved in feature reduction.

The above measure is known as representation entropy. It is a property of the
data set as represented by a particular set of features, and is a measure of the
amount of information compression possible by dimensionality reduction. This is
equivalent to the amount of redundancy present in that particular representation
of the data set. Since the proposed algorithm involves partitioning of the original
feature set into a number of homogeneous (highly compressible) clusters, it is
expected that representation entropy of the individual clusters are as low as
possible, while that of the final reduced set of features has low redundancy i.e.,

a high value of representation entropy.

It may be noted that among all the p dimensional subspaces of an original P
dimensional data set, the one corresponding to the Karhunen-Loeve co-ordinates
[30] (for the first p eigenvalues) has the highest representation entropy, i.e., is least
redundant. However, for large dimensional data sets K-L transform directions
are difficult to compute. Also, K-L transform results in general transformed

variables and not exact subsets of the original features.

3.5 Experimental Results and Comparisons [101]

Organization of the experimental results is as follows: First the performance of the

proposed algorithm in terms of the feature evaluation indices, discussed in Section 3.4,

is compared with five other feature selection schemes. Then we study the redundancy

reduction aspect of the algorithm quantitatively along with comparisons. Effect of

varying the parameter k, used in feature clustering, is also studied.
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Three categories of real life public domain data sets are used: low dimensional (P < 10)
(e.g., Iris, Wisconsin cancer, and Forest cover type (considering numerical features
only) data), medium dimensional (10 < P < 100) (e.g., lonosphere, Waveform and
Spambase data), and high dimensional (P > 100) (e.g., Arrhythmia, Multiple features
and Isolet data), containing both large and relatively smaller number of points. Their

characteristics are described in Appendix A.

3.5.1 Comparison: Classification and clustering performance

Four indices, viz, entropy (Equation 3.2), fuzzy feature evaluation index (Equation 3.3),
class separability (Equation 3.1), K-NN and naive Bayes classification accuracy are
considered to demonstrate the efficacy of the proposed methodology and for comparing
it with other methods. Four unsupervised feature selection schemes considered for

comparison are:

1. Branch and Bound Algorithm (BB) [30]: A search method in which all possible
subsets are implicitly inspected without exhaustive search. If the feature selection

criterion is monotonic BB returns the optimal subset.

2. Sequential Forward Search (SFS) [30]: A suboptimal search procedure where one
feature at a time is added to the current feature set. At each stage, the feature
to be included in the feature set is selected from among the remaining available
features so that the new enlarged feature set yields a maximum value of the

criterion function used.

3. Sequential Floating Forward Search (SFFS) [144]: A near optimal search pro-
cedure with lower computational cost than BB. It performs sequential forward

search with provision for backtracking.

4. Step Wise Clustering (using correlation coefficient) (SWC) [69]: A non-search
based scheme which obtains a reduced subset by discarding correlated features.

In our experiments we have mainly used entropy (Equation 3.2) as the feature selection
criterion with the first three search algorithms.
Comparisons in terms of five indices are made for different sizes of the reduced feature

subsets. Tables 3.1, 3.2 and 3.3 provide such a comparative result corresponding to
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Table 3.1: Comparison of feature selection algorithms for large dimensional data sets

Data set Method Evaluation Criteria CpPU

E |FFEI| S | KNNA (%) | BayesA (%) | Time (sec)

Mean SD | Mean SD

Isolet SFS 0.52 | 0.41 | 1.09 | 95.02 0.89 | 92.03 0.52 | 14.01 x10%
p=310 SWC 0.71 | 0.55 | 2.70 | 72.01 0.71 | 68.01 0.44 431
P=617 Relief-F | 0.70 | 0.52 | 2.24 | 95.81 0.81 | 95.52 0.47 | 5.03 x10°
k =305 Proposed | 0.50 | 0.40 | 1.07 | 96.00 0.78 | 95.01 0.52 440
Mult. Feat. | SFS 067 | 047 045 | 77.01 0.24 | 75.02 0.14 | 5.00 x10*
p=325 SWC 0.79 | 0.55 | 0.59 | 52.00 0.19 | 50.05 0.10 401
P=649 Reliet-F | 0.71 | 0.50 | 0.52 | 78.37 0.22 | 75.25 0.11 | 1.10 x10°
k=322 Proposed | 0.68 | 0.48 | 0.45 | 78.34 0.22 | 75.28 0.10 451
Arrhythmia | SFS 0.74 | 0.44 | 0.25 | 52.02 0.55 | 50.21 0.43 1511
p=100 SWC 0.82 | 0.59 | 0.41 | 40.01 0.52 | 38.45 0.38 70
P=195 Relief-F | 0.78 | 0.55 | 0.27 | 56.04 0.54 | 54.55 0.40 404
k=295 Proposed | 0.72 | 0.40 | 0.17 | 58.93 0.54 | 56.00 0.41 74

E: Entropy, FFEL: Fuzzy Feature Evaluation Index, S: Class Separability, KNNA: k-NN
classification accuracy, BayesA: naive Bayes classification accuracy, SD: standard deviation.
SFS: Sequential Forward Search, SWC: Step Wise Clustering. p: number of selected features,

P: number of original features, k: parameter used by the proposed method.

high, medium and low dimensional data sets when the size of the reduced feature subset
is taken to be about half of the original size as an example. Comparison for other sizes
of the reduced feature set is provided in Figure 3.3 considering one data set from each
of the three categories, namely, multiple features (high), ionosphere (medium) and
cancer (low). The CPU time required by each of the algorithms on a Sun UltraSparc
350 MHz workstation are also reported in Tables 3.1-3.3. Since the branch and bound
(BB) and the sequential floating forward search (SFFS) algorithms require infeasibly
high computation time for the large data sets, we could not provide the figures for
them in Table 3.1. For the classification accuracies (using K-NN and Bayes), both

mean and standard deviations (SD) computed for ten independent runs are presented.
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sets

Table 3.2: Comparison of feature selection algorithms for medium dimensional data

Data set Method Evaluation Criteria CPU
E |[FFEI| S | KNNA (%) | BayesA (%) | Time (sec)
Mean SD | Mean SD
BB 0.50 [ 0.30 { 0.28 | 90.01 0.71 | 88.17 0.55 1579
Spambase | SFFS 0.50 | 0.30 | 0.28 | 90.01 0.72 | 88.17 0.55 1109
SFS 0.52 | 0.34 | 0.29 | 87.03 0.68 | 86.20 0.54 121.36
p=29 SWC 0.59 | 0.37 | 0.41 | 82.04 0.68 | 79.10 0.55 11.02
P=57 Relief-F | 0.59 { 0.36 | 0.34 | 87.04 0.70 | 86.01 0.52 70.80
k=27 Proposed | 0.50 | 0.30 | 0.28 | 90.01 0.71 | 88.19 0.52 13.36
BB 0.67 | 0.47 | 0.29 | 78.02 0.47 | 62.27 0.41 1019
Waveform | SFFS 0.68| 0.48 | 0.31 | 77.55 0.45 | 62.22 0.41 627
SFS 069 049 | 0.37 | 74.37 0.44 | 59.01 0.42 71.53
p=20 SWC 0.72 | 0.55 | 0.41 | 62.03 0.40 | 47.50 0.40 8.01
P=40 Relief-F | 0.73 | 0.54 | 0.38 | 74.88 0.41 | 62.88 0.40 50.22
k=17 Proposed | 0.68 | 0.48 | 0.30 | 75.20 0.43 | 63.01 0.40 8.28
BB 065 | 0.44 | 0.07 | 75.96 0.35 | 65.10 0.28 150.11
Ionosphere | SFFS 0.65| 044 | 0.08 | 74.73 0.37 | 65.08 0.31 50.36
SFS 065| 0.44 [ 0.10 | 69.94 0.32 | 62.00 0.27 10.70
p=16 SWC 0.66 | 0.47 | 0.22 { 62.03 0.32 | 59.02 0.25 1.04
P=32 Relief-F | 0.62 | 0.47 | 0.15 | 72.90 0.34 | 64.55 0.27 8.20
k=11 Proposed | 0.64 | 0.43 | 0.10 | 78.77 0.35 | 65.92 0.28 1.07
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Table 3.3: Comparison of feature selection algorithms for low dimensional data sets

Data set | Method Evaluation Criteria CPU
E |FFEI| S | KNNA (%) | BayesA (%) | Time (sec)
Mean SD | Mean SD
BB 0.65| 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 | 4.01 x10*
Forest SFFS 0.64 | 0.39 | 0.81| 67.75 0.43 | 66.22 0.41 | 3.02 x10*
SFS 0.64 | 0.41 |0.98 | 62.03 0.41 | 61.09 0.40 | 7.00 x10?
p=5 SWC 0.68 | 0.45 | 1.00 | 54.70 0.37 | 53.25 0.35 50.03
P=10 Relief-F | 0.65 | 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 | 2.80 x10*
k=5 Proposed | 0.65 | 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 55.50
BB 059 036 | 1.84 | 94.90 0.17 | 94.45 0.14 3.39
Cancer | SFFS 0.59 | 0.36 | 1.84 | 94.90 0.17 | 94.45 0.14 6.82
SFS 0.61 | 0.37 | 2.68 | 92.20 0.17 | 91.05 0.15 1.16
p=4 SWC 0.60 | 0.37 | 2.69 | 90.01 0.19 | 89.11 0.17 0.10
P=9 Relief-F | 0.59 | 0.36 | 1.84 | 94.90 0.17 | 94.25 0.17 0.91
k=5 Proposed | 0.56 | 0.34 | 1.70 | 95.56 0.17 | 94.88 0.17 0.10
BB 0551 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.56
Iris SFFS 0.55| 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.71
SFS 057 | 0.35 | 27.0{ 92.55 0.17 | 93.10 0.14 0.25
p=2 SWC 0.60 | 0.37 | 29.2 | 92.19 0.19 | 93.02 0.17 0.01
P=4 Relief-F | 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.14
k=2 Proposed | 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.01
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Compared to the search based algorithms (BB, SFFS and SFS), the performance of
the proposed scheme is comparable or slightly superior, while the computational time
requirement is much less for the proposed scheme. On the other hand, compared to
the similarity based SWC method the performance of the proposed algorithm is much
superior, keeping the time requirement comparable. It is further to be noted that the
superiority in terms of computational time increases as the dimensionality and sample
size increase. For example, in the case of low dimensional data sets speedup factor of
the proposed scheme compared to BB and SFFS algorithms is about 30-50, for Forest
data which is low dimensional but has large sample size the factor is about 100, for
medium dimensional data sets, BB and SFFS are about 100 times slower and SFS
about 10 times slower, while for the high dimensional data sets SFS is about 100 times
slower, and BB and SFFS could not be compared as they require infeasibly high run

time.

It may be noted that the aforesaid unsupervised feature selection algorithms (viz.,
BB, SFFS, SFS) usually consider ‘entropy’ as the selection criterion. Keeping this
in mind detailed results are provided in Tables 3.1-3.3. However, we have also run
the experiments using another unsupervised measure, namely, fuzzy feature evaluation
index (FFEI) (Equation 3.3). Table 3.4 shows, as an illustration, the results only for
the four large data sets (Isolet, Multiple features, Arrhythmia and Forest cover type).

These results corroborate the findings obtained using entropy.

In a part of the experiment we have also compared the performance with a supervised
method Relief-F, which is widely used. We have used 50% of the samples as design set
for the Relief-F algorithm. Results are presented in Tables 3.1-3.3. The Relief-F algo-
rithm provides classification performance comparable to the proposed scheme in spite
of using class label information. Moreover, it has much higher time requirement, spe-
cially for data sets with large number of samples e.g., the Forest data. Its performance

in terms of the unsupervised indices is also poorer.

Statistical significance of the classification performance of the proposed method com-
pared to those of the other algorithms is tested. Means and SD values of the accura-
cies, computed over 10 independent runs, are used for this purpose. The test statistics
described in Section 2.5.1 is used. It is observed that the proposed method has signif-
icantly better performance compared to the SWC algorithm for all the data sets, and
the SFS algorithm for most of the data sets. For the other algorithms namely, Relief-F,
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Table 3.4: Comparison of feature selection algorithms for large data sets when search

algorithms use FFEI as the selection criterion

Data set Method Evaluation Criteria CPU
FFEI | E S | KNNA (%) | BayesA (%) | Time (sec)
Mean SD Mean SD
Isolet - SFS 0.40 | 0.54 | 0.98 | 95.81 0.82 | 92.19 0.72 | 28.01 x10*
p=310, P=617 | Proposed | 0.40 | 0.50 | 1.07 | 96.00 0.78 | 95.01 0.52 440
Mult. Feat. SFS 0.44 | 0.67 | 0.44 | 77.71 0.44 | 75.81 0.17 | 9.20 x10*
p=325, P=649 | Proposed | 0.48 | 0.68 [ 0.45 | 78.34 0.22 | 75.28 0.10 451
Arrhythmia SFS 0.40 | 0.77 |1 0.21 | 53.22 0.59 | 52.25 0.44 2008
p=100, P=195 | Proposed | 0.40 | 0.72 | 0.17 | 58.93 0.54 | 56.00 0.41 74
BB 0.40 | 0.65 | 0.90 | 64.03 0.41 | 63.55 0.40 | 9.21 x10*
Forest SFFS 0.40 | 0.66 | 0.83 | 67.01 0.45 | 66.00 0.44 | 7.52 x10*
SFS 0.43 | 0.66 | 1.01 | 61.41 0.44 | 60.01 0.41 | 17.19 x103
p=5, P=10 Proposed | 0.40 | 0.65 | 0.90 | 64.03 0.41 | 63.55 0.40 55.50

BB and SFFS, the performance is comparable, i.e., the difference of the mean values

of the classification scores is statistically insignificant.

3.5.2 Redundancy reduction: Quantitative study

As mentioned before, the proposed algorithm involves partitioning the original feature
set into certain number of homogeneous groups and then replacing each group by a
single feature, thereby resulting in the reduced feature set. Representation entropy
(Hpg), defined in Section 3.4, is used to measure the redundancy in both the homo-
geneous clusters and the final selected feature subset. Hp when computed over the
individual clusters should be as low as possible (indicating high redundancy among the
features belonging to a single cluster), while giving as high value as possible for the
selected subset (indicating minimum redundancy). Let us denote the average value of
Hpg computed over the homogeneous groups by Hj, and the value of Hp for the final
selected subset by Hp,.
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Figure 3.3: Variation in classification accuracy with size of the reduced subset for - (a)
Multiple features, (b) Ionosphere, and (c) Cancer data sets. The vertical dotted line

Enwopy (E)

Entropy ()

Entropy (E)

;;;;;
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marks the point for which results are reported in Tables 3.1-3.3.
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Table 3.5: Representation entropy Hj, of subsets selected using some algorithms

Data set BB | SFFS | SFS | SWC | Relief-F | Proposed
Isolet - - 291 | 2.87 2.89 3.50
Mult. Ftrs. - - 2.02 | 1.90 1.92 3.41
Arrhythmia | - - 2.11 | 2.05 2.02 3.77
Spambase | 2.02 | 1.90 | 1.70 | 1.44 1.72 2.71
Waveform 1.04 | 1.02 | 0.98 | 0.81 0.92 1.21
Ionosphere | 1.71 | 1.71 | 1.70 | 0.91 1.52 1.81
Forest 091 | 082 | 0.82| 0.77 0.91 0.91
Cancer 0.71| 0.71 | 0.55 | 0.55 0.59 0.82
Iris 047 | 047 (041 | 031 0.47 0.47

Table 3.5 shows the comparative results of the proposed method with other feature
selection algorithms in terms of H&. It is seen that the subset obtained by the proposed

scheme is least redundant having the highest H}, values.

To demonstrate the superiority of the magzimal information compression indez A,
compared to the other two feature similarity measures (p and e) used previously, we
provide Table 3.6, where we have compared both Hy and H %, values obtained using
each of the similarity measures, in our clustering algorithm. It is seen from Table 3.6
that, A, has superior information compression capability compared to the other two

measures as indicated by the lowest and highest values of H}, and H}, respectively.

3.5.3 Effect of parameter k

In our algorithm the size of the reduced feature subset and hence the scale of details
of data representation is controlled by the parameter k. Figure 3.4 illustrates such
an effect for three data sets - multiple features, ionosphere and cancer, considering
one data from each of the high, medium and low categories. As expected, the size
of the reduced subset decreases overall with increase in k. However, for medium and
particularly large dimensional data (Figure 3.4a) it is observed that for certain ranges
of k at the lower side, there is no change in the size of the reduced subset i.e., no

reduction in dimension occurs. Another interesting fact observed in all the data sets
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Table 3.6: Redundancy reduction using different feature similarity measures

Data set Similarity Measure: Ag | Similarity Measure: e | Similarity Measure: p
HY, Hy, HY, Hj H}, Hy,
Isolet 0.001 3.50 0.007 3.01 0.003 341
Mult. Ftrs. | 0.002 341 0.008 2.95 0.007 3.01
Arrhythmia | 0.007 3.77 0.017 2.80 0.010 341
Spambase 0.04 2.71 0.07 2.01 0.05 2.53
Waveform 0.10 1.21 0.14 1.04 0.11 1.08
Ionosphere | 0.05 1.81 0.07 1.54 0.07 1.54
Forest 0.10 0.91 0.17 0.82 0.11 0.91
Cancer 0.19 0.82 0.22 0.71 0.19 0.82
Iris 0.17 0.47 0.22 0.31 0.17 0.47

H},: average representation entropy of feature groups, Hj: representation entropy of selected
subset, Ag: maximal information compression index, e: least square regression error, p:

correlation coefficients.

considered is that, for all values of k in the case of small dimensional data sets, and
for high values of k in the case of medium and large dimensional data sets, the size of
the selected subset varies linearly with k. Further, it is seen in those cases, p+k =~ P,
where p is the size of the reduced subset and P is the size of the original feature set.

3.6 Conclusions and Discussion

An algorithm for unsupervised feature selection using feature similarity measures is
described. The novelty of the scheme, as compared to other conventional feature
selection algorithms, is the absence of search process which contributes to the high
computational time requirement of those feature selection algorithms. Our algorithm
is based on pairwise feature similarity measures, which are fast to compute. It is found
to require several orders less CPU time compared to other schemes. Unlike other ap-
proaches which are based on optimizing either classification or clustering performance
explicitly, here we determine a set of maximally independent features by discarding the

redundant ones. This enhances the applicability of the resulting features to compres-
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Figure 3.4: Variation in size of the reduced subset with parameter k for - (a) Multiple

features, (b) Ionosphere, and (c) Cancer Data.
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sion and other tasks like forecasting, summarization, association mining in addition to
classification/clustering. Another characteristics of the proposed algorithm is its capa-
bility of multiscale representation of data sets. The scale parameter k used for feature
clustering efficiently parametrizes the trade-off between representation accuracy and
feature subset size. All these make it suitable for a wide variety of data mining tasks

involving large (in terms of both dimension and size) data sets.

Besides formulating the novel clustering algorithm, we have defined a feature simi-
larity measure called, mazimal information compression inder. One may note that
the definition of the said parameter is not new, it is its use in feature subset selec-
tion framework which is novel. The superiority of this measure for feature selection
is established experimentally. It is also demonstrated through extensive experiments
that representation entropy can be used as an index for quantifying both redundancy
reduction and information loss in a feature selection method.

We have measured the information loss in terms of second order statistics. The simi-
larity measure used for the feature selection algorithm is selected/defined accordingly.
One may modify these measures suitably in case even higher order statistics are used.
In this regard modifications of correlation indices [148] which measure higher order
polynomial dependency between variables may be considered. Also the similarity mea-
sure is valid only for numeric features; its extension to accommodate other kinds of

variables (e.g., symbolic, categorical, hybrid) may also be investigated.
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Chapter 4

Active Support Vector Learning



4.1 Introduction

In the previous two chapters we have dealt with some preprocessing tasks of data
mining. The present chapter is concerned with its classification/learning aspect. Here
we present two active learning strategies [99, 102] for handling the large quadratic

programming problem of designing support vector machine classifier.

The support vector machine (SVM) [20, 163] has been successful as a high perfor-
mance classifier in several domains including pattern recognition, data mining and
bioinformatics. It has strong theoretical foundations and good generalization capabil-
ity. Another advantage of SVM is that, as a by-product of learning, it obtains a set
of support vectors (SVs) which characterizes a given classification task or compresses
a labeled data set. Often the number of the SVs is only a small fraction of that of the

original data set.

A limitation of the SVM design algorithm, particularly for large data sets, is the need
to solve a quadratic programming (QP) problem involving a dense n X n matrix, where
n is the number of points in the data set. Since most QP routines have quadratic com-
plexity, SVM design requires huge memory and computational time for large data ap-
plications. Several approaches exist for circumventing the above shortcomings. These
include simpler optimization criterion for SVM design, e.g., the linear SVM [17] and
the kernel adatron [40], specialized QP algorithms like the conjugate gradient method
[65], decomposition techniques which break down the large QP problem into a series of
smaller QP sub-problems [110], and sequential minimal optimization (SMO) algorithm

[140] and its various extensions.

A simple method to solve the SVM QP problem has been described by Vapnik [163],
which is known as ‘chunking’. The chunking algorithm uses the fact that the solution of
the SVM problem remains the same if one removes the points that correspond to zero
Lagrange multipliers of the QP problem (the non-SV points). The large QP problem
can thus be broken down into a series of smaller QP problems, whose ultimate goal
is to identify all of the non-zero Lagrange multipliers (SVs) while discarding the zero
Lagrange multipliers (non-SVs). At every step, chunking solves a QP problem that
consists of the non-zero Lagrange multiplier points from the previous step, and a chunk
of g other points. At the final step, the entire set of non-zero Lagrange multipliers has

been identified; thereby solving the large QP problem. Several variations of chunking
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algorithm exist depending upon the method of forming the chunks {20, 153]. Chunking
greatly reduces the training time compared to batch learning of SVMs. However, it
may not handle large-scale training problems due to slow convergence of the chunking

steps when ¢ new points are chosen randomly.

Recently, active learning has become a popular paradigm for reducing the sample
complexity of large scale learning tasks [6, 25]. Here, instead of learning from samples
selected randomly, the learner has the ability to select its own training data. This is
done iteratively, and the output of a step is used to select the examples for the next
step. Several active learning strategies exist in practice, e.g., error driven techniques,

uncertainty sampling, version space reduction and adaptive resampling.

In the context of support vector machine, active learning can be used to speed up
chunking algorithms. In [21], a query learning strategy for large margin classifiers is
presented which iteratively requests the label of the data point closest to the current
separating hyperplane. This accelerates the learning drastically compared to random
sampling. An active learning strategy based on version space splitting is presented in
[161]. The points which split the current version space into two halves having equal
volumes are selected at each step, as they are likely to be the actual support vectors.
Three heuristics for approximating the above criterion are described, the simplest
among them selects the point closest to the current hyperplane as in [21]. A greedy
optimal strategy for active SV learning is described in {154]. Here, logistic regression is
used to compute the class probabilities, which is further used to estimate the expected
error after adding an example. The example that minimizes this error is selected as
a candidate SV. Here also two heuristics are suggested for practical implementation
by focusing only on the informative dimensions and selecting examples based on their
proximity to the separating hyperplane. Althoug}; these active learning strategies
query only for a single point at each step, several studies have noted that the gain in
computational time can be obtained by querying multiple instances at a time. This

motivates the formulation of active learning strategies which query for multiple points.

Another major limitation of all the above strategies is that they are essentially greedy
methods where the selection of a new point is influenced only by the current hypoth-
esis (separating hyperplane) available. In the above setup, learning may be severely
hampered in two situations: a ‘bad’ example is queried which drastically worsens the
current hypothesis, and the current hypothesis itself is far from the optimal hypothesis
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(e.g., in the initial phase of learning). As a result, the examples queried are less likely

to be the actual support vectors.

The model of learning from statistical queries captures the natural notion of learning
algorithms that construct a hypothesis based on statistical properties of large samples
rather than the idiosyncrasies of a particular sample [66]. Such a model of active
learning seems intuitively more robust than those that are willing to make radical
alterations to their hypothesis on the basis of individual examples. Here, instead
of the original oracle which provides random examples of the target hypothesis, the
learner interacts with an intermediate oracle whose goal is to enforce restriction on
the learner’s use of the examples. The intermediate oracle provides an estimate of
the probability (with an allowed approximation error) that an example belongs to
the target hypothesis i.e., provides answers to statistical queries rather than exact
membership queries. The probability of a point being selected for learning may be set
equal to that answer. The statistical query model has been theoretically demonstrated

to provide efficient and robust learning in noisy environments [66).

The chapter has two parts. First we present an error driven incremental method
[99] for active support vector learning. The method involves selecting a chunk of ¢
new points, having equal number of correctly classified and misclassified points, at
each iteration by resampling the data set, and using it to update the current SV set.
The resampling strategy is computationally superior to random chunk selection, while
achieving higher classification accuracy. Since, it allows for querying multiple instances
at each iteration, it is computationally more efficient than those that are querying for

a single example at a time.

The second part of this chapter provides a method for active support vector learning
in statistical query framework [102]). Like the previous algorithm, it also involves
queries for multiple instances at each iteration. The intermediate statistical query
oracle, involved in the learning process, returns the value of the probability that a new
example belongs to the actual support vector set. A set of ¢ new points is selected
according to the above probability, and is used along with the current SVs to obtain
the new SVs. The probability is estimated using a combination of two factors: the
margin of the particular example with respect to the current hyperplane, and the
degree of confidence that the current set of SVs provides the actual SVs. The degree
of confidence is quantified by a measure which is based on the local properties of each
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of the current support vectors and is computed using the nearest neighbor estimates.

The methodology in the second part has some more advantages. It not only queries for
the error points (or points having low margin) but also a number of other points far
from the separating hyperplane (interior points). Thus, even if a current hypothesis is
erroneous there is a scope for it being corrected owing to the interior points. If only
error points were selected the hypothesis might have actually been worse. The ratio
of selected points having low margin and those far from the hyperplane is decided by
the confidence factor, which varies adaptively with iteration. If the current SV set
is close to the optimal one, the algorithm focuses only on the low margin points and
ignores the redundant points that lie far from the hyperplane. On the other hand,
if the confidence factor is low (say, in the initial learning phase) it explores a higher
number of interior points. Thus, the trade-off between efficiency and robustness of
performance is adequately handled in this framework. Also, the efficiency of most of
the existing active SV learning algorithms depends on the sparsity ratio (i.e., the ratio
of the number of support vectors to the total number of data points) of the data set.
Due to the adaptive nature of the query in the proposed algorithm, it is likely to be

efficient for a wide range of sparsity ratio.

Experiments have been performed on five real life classification problems. The sample
size ranges from 351 to 495141, dimension from 9 to 34, and the sparsity ratio from
0.01 to 0.51. Our algorithms are found to provide superior performance and faster
convergence compared to several related algorithms for incremental and active SV

learning.

The organization of the chapter is as follows. In the next section we describe briefly
the basic support vector machine algorithm for classification. Then we describe the
algorithm of incremental support vector learning in Section 4.3. In Section 4.4 we
provide a formal description of the learning with statistical query framework along
with a methodology for estimating the associated confidence factor. The algorithm
for active learning with statistical queries is described in Section 4.5. Experimental
results are presented in Section 4.6, and finally conclusions and discussion are provided

in Section 4.7.
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4.2 Support Vector Machine

Support vector machines are a general class of learning architectures inspired from
statistical learning theory that performs structural risk minimization on a nested set
structure of separating hyperplanes [163]. Given a training data, the SVM training
algorithm obtains the optimal separating hyperplane in terms of generalization error.
Though SVMs may also be used for regression and multiclass classification, in this

study we concentrate only on two-class classification problem.

Algorithm: Suppose we are given a set of labelled examples (X1, y1), (X2, ¥2), - - -, (Xi, %)
oo, (Xn, Yn), Xi € RP y; € {—1,+1}. We consider functions of the form sgn((w-x)+b),

in addition we impose the condition

inf |(w-x;)+0bl=1. (4.1)

i=1,..,n

We would like to find a decision function f, , with the properties fws(X:) = yi; @ =

1,...,n. If such a function exists, condition (4.1) implies

yi((w-x)+b0)>1, Vi=1,...,n. (4.2)

In many practical situations, a separating hyperplane does not exist. To allow for
possibilities of violating Equation 4.2, slack variables are introduced like

&>0, 1=1,...,n (4.3)

to get
u((w-x)+0)>1-&, i=1,...,n (4.4)

The support vector approach for minimizing the generalization error consists of the

following:

Minimize : o(w,f)=(w-w)+C i & (4.5)
i=1

subject to the constraints (4.3) and (4.4).

It can be shown that minimizing the first term in Equation 4.5, amounts to minimizing

the VC-dimension or maximizing the margin (Figure 4.1), while minimizing the second
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Figure 4.1: SVM as maximum margin classifier (linearly separable case)

term corresponds to minimizing the misclassification error [20]. SVM’s provide the
maximum margin classifiers for a given misclassification on the training set. This is

illustrated in Figure 4.1.

The above minimization problem can be posed as a constrained quadratic programming
(QP) problem. The solution gives rise to a decision function of the form:

f(x) =sgn [Z yiai(x - x3) + b| ,

i=1
where @;’s are positive numbers. Only a small fraction of the «; coefficients are non-
zero. The corresponding pairs of < xj,y; > entries are known as support vectors and
they fully define the decision function. The support vectors are geometrically the
points lying near the class boundaries as illustrated in [20]. We use linear kernels for
SVM. However, nonlinear kernels like polynomial, sigmoidal and radial basis functions
may also be used.
We briefly mention below an alternate explanation of SVM learning, applicable to hard
margin case, which provides a better insight of the incremental SV learning procedure.
The approach is due to Tong and Koller [161]. Consider a feature space F and the

parameter space W. If the training data is linearly separable in the feature space, the
set of hyperplanes that separate the data is called the version space V, defined as

V={weW||w||l=1uwuw-x)>0,i=1,...,n}. (4.6)
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:

There exists a duality between the feature space F and the parameter space W: points
in F correspond to hyperplanes in W and vice versa. Also, the version space is a
connected region on the surface of a hypersphere in parameter space. Using the above
facts and considering the SVM optimality criterion, it can be shown that SVMs find the
center of the largest hypersphere whose center can be placed in version space and whose
surface does not intersect with the hyperplanes corresponding to the training instances.
The hyperplanes that are touched by the maximal radius hypersphere correspond to
support vectors and the radius of the hypersphere is the margin of the SVM. Thus if
one queries for the training instances which maximally reduce the size of the current
version space, the SVM obtained would eventually lie close to the actual SVM. It can
be shown that maximal reduction in size of the version space takes place if V] =V

where V; and V; denote the resulting version spaces if instance ¢ is added and has

labels —1 and +1 respectively.

4.3 Incremental Support Vector Learning with Mul-
tiple Points [99]

The objective of the algorithm is to select a minimal subset of support vectors such
that the corresponding SVM would provide minimum misclassification on the remain-
ing points in the sample set. The methodology is motivated from the condensation
technique proposed by Hart [54] for reducing the computational complexity and storage

requirements of k-NN classifiers.
Algorithm 1:

Set up data bins called STORE and GRABBAG. Initially, k¥ randomly selected sam-
ples are placed in STORE, all other samples are placed in GRABBAG. k is chosen
arbitrarily, such that STORE contains at least one point from each class.

Step 1: Design a SVM using the samples in STORE. Retain the support vectors in
STORE, and discard other points in STORE.

Step 2: Resample GRABBAG. From GRABBAG select ¢/2 points which are cor-
rectly classified and ¢/2 points which are misclassified by the SVM obtained in Step 1.
Append the (q) resampled points to STORE obtained after Step 1. Repeat Step 1, till

93



q/2 Correctly
Classified &
¢/2 Misclassified I
Points Classification
() with SVs GRABBAG
+
SVM Exit N Support
- Exit
STORE Design < Vectors (SVs)
l Y
Condensed
Set = STORH

Figure 4.2: Incremental support vector learning with multiple points (Algorithm 1)

the required accuracy is achieved on a test set, or GRABBAG is exhausted. O

The algorithm is illustrated in Figure 4.2. ¢

In the next section we describe briefly the model of learning using statistical queries.
This is useful in understanding the second algorithm (Algorithm 2) for active support

vector learning, described in Section 4.5.

4.4 The Statistical Query Model of Learning

Let C be a (concept) class of {0, 1} valued functions over an input space X. In trying to
design a learning algorithm for the class C, we assume that there is a fixed but arbitrary
and unknown target probability distribution P over X that governs the generation of
random examples. The standard supervised learning model (PAC model [163]), when
executed on the target concept f € C, a learning algorithm will be given access to
an oracle EX(f,P) that on each call draws an input x randomly and independently

according to P, and returns the labeled example < x, f(x) >.

In the statistical query model [66] the standard examples oracle EX(f,P) is replaced
by a new oracle STAT(f,P). The oracle STAT(f, P) takes as input a statistical query
of the form (x, ). Here x is any mapping of a labeled example to {0, 1}, and o € [0, 1].
A query (x, c) is interpreted as a request for the value P, = Prycp(x(x, f(x)) = 1),
which can be abbreviated as Prgx(s,p)(x = 1). Thus, each query is a request for the
probability of some event on the distribution generated by EX(f,P). However, the
oracle STAT(f,P) will not return the exact value of P, but only an approximation,
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and the role of « is to quantify the amount of error the learning algorithm is willing

to tolerate in this approximation.

In the context of support vector machines, the target of the learning algorithm is to
learn the set of all support vectors. This is done by incrementally training a SVM on a
set of cxamples consisting of the previous SVs and a new set of points. In the proposed
algorithm the new set of points, instead of being randomly generated by EX(f,P),is
generated according to Pr, returned by the oracle STAT(f,P). x(x, f(x)) denotes
the event that the example x is a SV. f(x) is the optimal separating hyperplane. Let
< w,b > be the current separating hyperplane available to the learner. We define the
probability Pr, returned by the oracle STAT(f,P) as follows:

P,= ¢ ifyw-x+b)<1 (4.7)

= 1—c¢ otherwise.

Here c is a confidence parameter which denotes how close the current hyperplane <

w,b > is to the optimal one, and y is the label of x.

The significance of P, is as follows: if ¢ is high, which signifies that the current hyper-
plane is close to the optimal one, points lying within the margin band of the current
hyperplane are highly likely to be the actual SVs. Hence, the probability P, returned
to the corresponding query is set to a high value c. When the value c is low, the prob-
ability of selecting a point lying within the margin decreases, and a high probability
value (1 — ¢) is then assigned to an interior point. Let us now describe a method for

estimating the confidence factor c.

Estimating the confidence factor for a SV set

Let the current set of support vectors be denoted by S = {s),Sg,...,s}. Also, consider
a test set T = {x|,x},...,x),} and an integer k (say, k = y/m). For every s; € S
compute the set of k nearest points in 7. Among the k nearest neighbors let k} and
k; number of points have labels +1 and —1 respectively. The confidence factor c is

then defined as
=4 Zmln (kt, kD) (4.8)

Note that the maximum value of the confidence factor c is unity when kf = k;
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Vi = 1,...,l, and the minimum value is zero when min(k}, k) = 0 Vi = 1,...,L
The first case implies that all the support vectors lie near the class boundaries and
the set S = {s1,8,...,8} is close to the actual support vector set. (It may be noted
that support vectors are points lying near the class boundaries). The second case, on
the other hand, denotes that the set S consists only of interior points and is far from
the actual support vector set. Thus, the confidence factor ¢ measures the degree of
closeness of S to the actual support vector set. Higher the value of c is, the closer is
the current SV set to the actual SV set.

The use of the factor c can also be justified from the point of view of Bayes classification
rule. It is known that for overlapping classes the support vector set consists of the error
points and the points lying within a margin band of the decision boundary. Bayes
classification rule states that posteriori probabilities of each of the classes are equal
along the decision boundary and on the error region. The ratios k;' /k and k] /k are
nearest neighbor estimates of the posteriori probabilities for the classes +1 and —1
respectively. Hence, they attain almost equal values for both error points and points
lying near the class boundaries. It may also be mentioned that the support vector set,
when used for k nearest neighbor classification, is known to provide high classification

accuracy [31].

A version space explanation of the factor ¢ may also be provided. It is evident from
the discussion in Section 4.2, that points which split the version space into two equal
halves are considered to be the likely candidates for being support vectors. Volumes
of the version spaces V* and V™, as obtained after adding those points with labels
+1 and —1, are equal [161]. Examination of the SVM objective function reveals that,
if a neighborhood of a point s; contains equal number of examples having labels +1
and —1, then addition of the point s; with labels +1 and —1 results in version spaces
V* and V™ respectively with equal volumes. Hence, as the value of ¢ (Equation 4.8)

increases, the probability that s;’s are the candidate support vectors increases.
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4.5 Learning Support Vectors with Statistical
Queries [102]

Here we describe a method for active learning of support vectors with statistical queries.
The active support vector learning algorithm obtains a new SV set at each step by
minimizing the objective function of Equation 4.5 for a set of points consisting of the
SVs of the previous step and ¢ new points. These new ¢ points are obtained from the
training set using the statistical query strategy, as discussed in the previous section.

The algorithm is presented below and the block diagram is shown in Figure 4.3.
Algorithm 2:

Let A = {X;,Xa, ..., Xy} denote the entire training set used for SVM design. SV (B) de-
notes the set of support vectors, of the set B, obtained using the methodology described
in Section 4.2. S; = {si,S2,...,8} is the support vector set obtained after tth itera-
tion, and < wy, b, > is the corresponding separating hyperplane. Vi ={v1,Vz2,...,Vq}
is the set of ¢ points actively queried for at step t. c is the confidence factor obtained

using Equation 4.8. The learning steps involved are given below:

Initialize: Randomly (without replacement) select an initial starting set Vo of ¢ in-
stances from the training set A. Set t = 0 and Sy = SV(V;). Let the parameters of
the corresponding hyperplane be < wyg, by >.

While Stopping Criterion is not satisfied:
Vi=0.
While Cardinality(V;) < ¢:
Randomly (without replacement) select an instance x € A.
Let y be the label of x.
If y(w,-x+b) <1
Select x with probability c. Set V; = V, U {x}.
Else:
Select x with probability 1 — c. Set V; = V, U {x}.
End If
End While
Sy =SV(SiuV),t=t+1.
End While
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Figure 4.3: Active support vector learning with statistical queries (Algorithm 2)

The set S;-, where ¢* is the iteration at which the algorithm terminates, contains the
final SV set. O

Stopping Criterion: Among the ¢ points actively queried at each step ¢, let ¢’ points
have margin greater than unity (y(w;-x+b) > 1). Learning is stopped if the quantity
C—'q‘li exceeds a threshold Th (say, = 0.9).

Remarks:

1. The selection probability P, (Equation 4.7) returned by the statistical query
oracle is a two level function of the margin (y(w-x+b)) of a point x. Continuous
functions of margin of x may also be used. Such an algorithm can be considered
to be statistical query based extensions of the existing methods of active support
vector learning which query for the nearest point to the separating hyperplane.
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2. The stopping criteria may be interpreted as follows. A high value of the quantity
_qqi implies that the query set contains a few number of points with margin less
than unity. No further gain can be thus achieved by the learning process. The
value of ¢’ may also be large when the value of c is low in the initial phase of
learning. However, if both ¢ and ¢’ have high values, the current SV set is close
to the actual one (i.e., a good classifier is obtained) and also the margin band

is empty (i.e., the learning process is saturated); hence, the learning may be

terminated.

4.6 Experimental Results and Comparison

Organization of the experimental results is as follows. First, the performance of the two
algorithms, presented in Sections 4.3 and 4.5, is compared with two other incremental
support vector learning algorithms as well as the batch SVM, in terms of generalization
capability, training time and D (Equation 4.9). The effectiveness of the confidence
factor ¢, used for active querying by the second algorithm, is then studied. Finally, we
investigate the nature of the margin distribution, obtained by the second algorithm,
as compared to those obtained by some other related large margin classifiers.

Five data sets are used, namely, Wisconsin cancer, Ionosphere, Heart, Twonorm and
Forest cover type. They are described in Appendix A. The first four data sets have
two overlapping classes. The fifth one (Forest cover type) contains seven classes; but
80% of the points belong to classes one and two. We consider here only the points

belonging to those two classes.

4.6.1 Comparison: Classification accuracy and training time

The algorithms for incremental SV learning with multiple points (Algorithm 1, denoted
by IncrSVM in Table 4.1) and active SV learning with statistical queries (Algorithm
2, denoted by StatQSVM in Table 4.1) are compared with (i) incremental SV learning
with random chunk selection [20] (denoted by RandSVM in Table 4.1), and (ii) a
recently proposed method for active SV learning which queries for the point closest
to the current separating hyperplane [21] (denoted by QuerySVM in Table 4.1). Note

99



that the QuerySVM is identical to the ‘simple margin’ strategy described in (161]. A
comparison with the actual batch SVM algorithm (denoted by BatchSVM in Table 4.1)
is also provided, since this is the ideal one. The batch SVM algorithm could not provide

results for the Forest cover type data, due to its large size.

Comparison is made on the basis of the following quantities:

1. Classification accuracy on training set (atm,-m-ng): The training set is obtained
by sampling 90% of the points from the entire data set. Mean of the accuracy,

computed over 10 such random selection, is reported.

2. Classification accuracy on test set (ass): The test set has size 10% of that of
the entire data set, and contains points which do not belong to the training set.

Here also means over 10 independent runs are reported.

3. Closeness of the SV set: We measure closeness of the SV set (5), obtained by an
algorithm, to the actual one (S) which is obtained by the batch SVM algorithm.
This is measured by the distance D defined as follows [91]:

1 - .
D=— 3 6(x;,5) + — ¥ b(x2, 5) + Dist(3, S), (4.9)
ng x1€8 s x2€S
where
d(x1,5) = min d(x;,x3), 6(xz,.§’) = min d(xj, x3),
x2€5 x1€S
and

Dist(S, S) = max{max (x,, S), max 6(x2,5)}.
x;€8 x2€S8

ng and ng are the number of points in S and S respectively. Dist(S‘, S) is
the Hausdorff distance between sets S and S. d(x1,x2) is the Euclidean distance
between points x; and x,. The distance measure D has been used for quantifying
the errors of set approximation algorithms [91], and is related to the e-cover of a

set.

4. CPU time (t.py) required on a Sun UltraSparc 350MHz Workstation.

It is observed from the results shown in Table 4.1 that all the incremental algorithms,

as expected, require significantly less training time as compared to the batch SVM
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Table 4.1: Comparison of performance of SVM design algorithms

Data Algorithm | G4rgining(%) | atest(%0) | D | tepu (s€C)
BatchSVM 97.44 96.32 | Zero 1291
Cancer RandSVM 87.19 86.10 | 10.92 302
QuerySVM 97.10 96.21 9.91 262
IncrSVM 92.10 91.01 | 10.40 221
StatQSVM 97.40 96.43 | 7.82 171
BatchSVM 88.87 84.57 | Zero 271
Ionosphere | RandSVM 78.10 7717 | 8.92 81
QuerySVM 78.19 77.02 8.01 95
IncrSVM 79.50 78.22 | 9.10 78
StatQSVM 84.09 82.20 | 7.01 68
BatchSVM 78.80 77.35 | Zero 2702
Heart RandSVM 72.52 70.82 | 0.37 94
QuerySVM 75.04 74.01 280 72
IncrSVM 74.05 72.11 410 55
StatQSVM 75.82 74.91 168 25
BatchSVM 98.58 97.46 | Zero | 8.01 x10*
Twonorm | RandSVM 93.40 92.01 | 12.70 770
QuerySVM 95.01 93.04 | 12.75 410
IncrSVM 95.22 93.10 | 12.52 520
StatQSVM 97.02 96.01 | 12.01 390
RandSVM 59.22 57.90 - | 4.70 x10*
Forest | QuerySVM 66.01 65.77 - |3.20 x10*
cover type | IncrSVM 64.02 61.02 - 1290 x10*
StatQSVM 75.44 74.83 - 2.01 x10*

e The value of D corresponding to BatchSVM is Zero by definition.
¢ Since BatchSVM could not be obtained for the large Forest cover type data, D could not
be computed, and is denoted by ‘-’.
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with little degradation in classification accuracy. Comparing the three active learning
algorithms (namely, QuerySVM, IncrSVM, and StatQSVM) with RandSVM shows
that the use of active learning strategy enhances the performance in terms of both
classification accuracy and training time, for all the data sets. Again, among the active
learning techniques, StatQSVM achieves the highest classification score with minimum
D value in least time for all the cases. This superiority of StatQSVM becomes more
apparent for the Forest cover type data, where it significantly outperforms the other
three incremental learning methods. When tested for statistical significance (using the
methodology described in Section 2.5.1), the classification accuracy of StatQSVM was
found to be significantly higher, compared to the other three incremental methods, for
all the data sets except the Cancer data, where significance could not be established
while comparing with QuerySVM. It may be further noted that QuerySVM provides
higher classification accuracy compared to IncrSVM; this is expected since QuerySVM

involves complex queries requiring more CPU time.

The nature of convergence of the classification accuracy on test set a, is shown in
Figure 4.4 for all the data sets. It is observed that the convergence curve for the
StatQSVM algorithm dominates over those of RandSVM, IncrSVM and QuerySVM.
Since the RandSVM algorithm selects the chunks randomly, the corresponding curve
is smooth and almost monotonic, although its convergence rate is much slower. On
the other hand, the QuerySVM algorithm selects only the point closest to the current
separating hyperplane and achieves a high classification accuracy in few iterations.
However, its convergence curve is oscillatory and the classification accuracy falls sig-
nificantly after certain iterations. This is expected as querying for points close to the
current separating hyperplane may often result in gain in performance if the current
hyperplane is close to the optimal one. While querying for interior points reduces the
risk of performance degradation, it achieves poor convergence rate. StatQSVM, on
the other hand, selects an optimal proportion of low margin and interior points, and

hence, maintains a fast convergence rate without oscillatory performance degradation.

4.6.2 Effectiveness of the confidence factor c

Figure 4.5 shows the variation of ¢ (Equation 4.8), for the SV sets obtained in StatQSVM,
with distance D. It is observed that for all the data sets c is (negatively) correlated
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with D. As the current SV set approaches the optimal one, the value of D decreases
and the value of confidence factor ¢ increases. Hence, ¢ also provides an effective mea-
sure of the closeness of the SV set to the actual one. Variation of ¢ with iteration for
the StatQSVM algorithm is shown in F igure 4.6. For all the data sets, the value of the
confidence factor c is low in the initial phases of learning, and subsequently it increases
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to attain a value closer to unity when learning converges.
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4.6.3 Margin distribution

Recently it has been shown that the generalization capability of a classifier can be char-
acterized not only by the minimum margin, but also by more general parameters that
can be estimated from the margin distribution. Some such parameters were studied
in [39]. In our cxperiments we also investigate the nature of the margin distribution
in terms of the cumulative distribution of the quantity y(w - x + b). In Figure 4.7 we
show the variation of the margin distribution, obtained at different learning iterations
of the StatQSVM algorithm, for the Twonorm data set only, as an example. It is seen
that with iteration the distribution shifts to the right with more number of points hav-
ing high margin. In Figure 4.8 we present a comparison among all the four aforesaid
SVM learning algorithms, as well as a SVM designed using boosting [130], in terms of
their final margin distributions. (Note that boosting SVM is considered in Figure 4.8
because it is well known for providing large margin classifiers, though it is computa-
tionally demanding for large data sets. Since it is not an incremental learning method,
we did not consider it in Table 4.1 for comparison.) It is observed that for most data
points a higher margin value is achieved for both boosting SVM and StatQSVM as
compared to batch SVM, RandSVM and QuerySVM. This may be due to the fact that
both the former ones incrementally use a set of points which are obtained by sampling
from a distribution that varies with iteration. In the case of StatQSVM the statistical
query oracle generates this distribution, while for boosting SVM the distribution is
obtained from the probability values which are stored for all the points and updated
with iteration. Both these distributions drift towards the actual separating hyperplane

with iteration.

4.7 Conclusions and Discussion

Two methods for active SVM learning are presented to overcome the large QP problem
arising in SVM design. The effectiveness of the algorithms is experimentally demon-
strated for some real life data sets. Among the two algorithms presented, the second
one, based on statistical query model of learning, provides better performance. This is
because of the use of an adaptive query strategy whose novelty is as follows. Most of

the algorithms for incremental SV learning either query for points close to the current
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separating hyperplane or select random chunks consisting mostly of interior points.
Both these strategies represent extreme cases; the former one is fast but unstable,
while the latter one is robust but slowly converging. The former strategy is useful in
the final phase of learning, while the latter one is more suitable in the initial phase. The
concept of a statistical query oracle which uses an adaptive confidence factor handles

the above trade-off and thereby achieves faster convergence.

In Algorithm 1, we have selected equal number of correctly classified (n. = ¢/2) and
misclassified (n,, = ¢/2) points in the resampling step. One may use other values
of n¢/ny,. In that case for data sets having substantial overlap (high sparsity ratio),
the choice of n, and n,, influences the nature of the convergence curve. If more mis-
classified points, compared to correctly classified points, are chosen (i.e., n¢/n, < 1)
the convergence curve is oscillatory in nature. On the other hand, choosing a larger
number of correctly classified points compared to misclassified points (i.e., n¢/nm, > 1)

leads to smoother but slower convergence. ¢

So far we have used, in Chapters 2-4, classical approach for developing methodologies
for data condensation, feature selection and active learning. The next two chapters
(Chapters 5 and 6) emphasize on demonstrating the effectiveness of integrating differ-
ent soft computing tools, e.g., fuzzy logic, artificial neural networks, rough sets and
genetic algorithms for performing tasks like case (class prototypes) generation, cluster-

ing/classification, and rule generation/evaluation for mining and knowledge discovery.
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Chapter 5

Rough-fuzzy Case Generation and

Clustering



5.1 Introduction

Granular computing (GrC) may be regarded as a unified framework for theories,
methodologies and techniques that make use of granules in the process of problem
solving. A granule is a clump of objects (points), in the universe of discourse, drawn
together by indistinguishability, similarity, proximity, or functionality. Granulation
leads to information compression/summarization. Therefore computing with granules,
rather than points, provides gain in computation time; thereby making the role of

granular computing significant in data mining.

Granulation may be crisp or fuzzy, depending on whether the boundaries of granules
do or do not lend themselves to precise definition. Fuzzy granulation (f-granulation)
may be obtained using the concepts of linguistic variable, fuzzy if-then rule, and fuzzy
graph [168]. Recently, rough set theory 131, 132] has become a popular mathematical
framework for granular computing. While fuzzy set theory assigns to each object a
grade of belongingness to represent an imprecise set, the focus of rough set theory is
on the ambiguity caused by limited discernibility of objects in the domain of discourse.
The key concepts in rough set theory are those of ‘indiscernibility’ and ‘reducts’. In-
discernibility formalizes the concept of finite precision representation of objects in real
life situations, and reducts represent the ‘core’ of an information system (both in terms
of objects and features) in a granular universe. Recently, rough sets and fuzzy sets
are being integrated in soft computing framework, the aim being to develop a model
of uncertainty stronger than either [127]. In the present chapter we exploit the mer-
its of the aforesaid integration for performing two tasks, namely, case generation and

clustering.

A case may be defined as a contextualized piece of knowledge representing an experi-
ence that teaches a lesson fundamental to achieving goals of the system [74]. Selection
and generation of cases (i.e., representative class prototypes) are two important compo-
nents of a case based reasoning (CBR) system. While case selection deals with selecting
informative prototypes from the data, case generation concerns with construction of

‘cases’ that need not necessarily include any of the given data points.

Early CBR systems mainly used case selection mechanisms based on the nearest neigh-
bor principle. These algorithms involve case pruning/growing methodologies, as ex-
emplified by the popular IB3 algorithm [5]. A summary of the above approaches may
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be found in [164]. Recently, fuzzy logic and other soft computing tools have been inte-
grated with CBR for developing efficient methodologies and algorithms [114]. For case
selection and retrieval, the role of fuzzy logic has been mainly in providing similarity
measures and modeling ambiguous situations [114]. A neuro-fuzzy method for selecting
cases has been proposed in [113], where a fuzzy case similarity measure is used, with
repeated growing and pruning of cases, until the case base becomes stable. All the op-
erations are performed using a connectionist model with adaptive link structure. Use
of fuzzy feature vectors and neural networks for case retrieval has been studied in [90].
It may be noted that, cases (class prototypes) represent the informative and irreducible
part of a problem. Rough set theory, which also deals with ‘information granules’ and
‘reducts’, is therefore a natural choice for case generation in domains which are data
rich, contain uncertainties and allow tolerance for imprecision. Additionally, rough
sets have the capability of handling complex objects (e.g., proofs, hierarchies, frames,
rule bases); thereby strengthening further the necessity of rough-CBR systems. Some

of the attempts being made in this regard are available in [142].

In the first part of this chapter, we use rough-fuzzy hybridization for designing a
methodology for case generation. Each pattern (object) is represented by its fuzzy
membership values with respect to three overlapping linguistic property sets ‘low’,
‘medium’ and ‘high’; thereby generating a fuzzy granulation of the feature space which
contains granules with ill-defined boundaries. Discernibility of the granulated objects
in terms of attributes is then computed in the form of a discernibility matrix. Using
rough set theory a number of decision rules are generated from the discernibility matrix.
The rules represent rough clusters of points in the original feature space. The fuzzy
membership functions corresponding to the region, modeled by a rule, are then stored
as a case. A strength factor, representing the a priori probability (size) of the cluster,
is associated with each case. In other words, each case has three components, namely,
the membership functions of the fuzzy sets appearing in the reducts, the class labels
and the strength factor. In the retrieval phase, these fuzzy membership functions are

utilized to compute the similarity of the stored cases with an unknown pattern.

It may be noted that unlike most case selection schemes, the cases generated by our
algorithm need not be any of the objects (patterns) encountered, rather they represent
regions having dimensions equal to or less than that of the input feature space. That
is, all the input features (attributes) may not be required to represent a case. This
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type of variable and reduced length representation of cases results in the decrease in
retrieval time. Furthermore, the proposed algorithm deals only with the information
granules, not the actual data points. Because of these characteristics its significance

to data mining applications is evident.

The effectiveness of the methodology is demonstrated on some real life data sets, large
both in dimension and size. Cases are evaluated in terms of the classification accuracy
obtained using 1-NN rule. Comparison is made with the conventional IB3 and IB4
algorithms [5], and random case selection method. The proposed methodology is found
to perform better in terms of 1-NN accuracy, average number of features per case, case

generation time and average case retrieval time.

The second part of this chapter describes a method for non-convex clustering using
expectation maximization (EM) algorithm initialized by crude clusters which are ob-
tained by fuzzy discretization along with rough set rule generation. As discussed in
Chapter 1, clustering is an important task in several data mining applications includ-
ing document retrieval, image/spatial data segmentation, market analysis [149]. Data
mining applications place the following two primary requirements on clustering al-
gorithms: scalability to large data sets (or, the issue of computation time) [16] and

non-presumption of any canonical data properties like convexity.

Clustering algorithms can be grouped broadly into two categories. One is based on
iterative refinement of cluster parameters, optimizing some criterion function or like-
lihood of some probabilistic model (e.g., k-means [149], mixture of Gaussians [28]).
The second is graph-theoretic clustering, where each cluster represents a subgraph of
a graph of the entire data. One of the well known graph-theoretic clustering is based
on the construction of the minimal spanning tree (MST) of the data [170]. Both the
approaches have their advantages and disadvantages and cannot directly be applied
for data mining. While the iterative refinement schemes like k-means and expecta-
tion maximization (EM) are fast and easily scalable to large databases [16], they can
only produce convex clusters and are sensitive to initialization of the parameters. The
graph-theoretic methods can model arbitrary shaped clusters, but are slow and sen-
sitive to noise. It may be noted that, the advantages of one are complementary in

overcoming the limitations of the other, and vice versa.

A general method of clustering using statistical principles is to represent the probability
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density function of the data as a mizture model, which asserts that the data is a
combination of k individual component densities (commonly Gaussians), corresponding
to k clusters. The task is to identify, given the data, a set of k populations in the
data, and provide a model (density distribution) for each of the populations. The
EM algorithm is an effective and popular technique for estimating the mixture model
parameters [28]. It iteratively refines an initial cluster model to better fit the data and
terminates at a solution which is locally optimal for the underlying clustering criterion
[28]. Log-likelihood is used as the objective function which measures how well the
model fits the data. Like other iterative refinement clustering methods, including
the popular k-means algorithm, the EM algorithm is fast and its scalable versions
are available [16]. An advantage of EM over k-means is that it provides a statistical
model of the data and is capable of handling the associated uncertainties. However,
a problem arising due to its iterative nature is convergence to a local rather than
the global optima. It is sensitive to initial conditions and is not robust. To overcome
the initialization problem, several methods for determining ‘good’ initial parameters for
EM have been suggested, mainly based on subsampling, voting and two stage clustering
[94]. However, most of these methods have heavy computational requirement and/or

are sensitive to noise.

In our clustering algorithm; rough set theoretic logical rules are used to obtain initial
approximate mixture model parameters. As in the first part of the chapter, linguistic
representation of patterns is used for fuzzy granulation. The crude mixture model,
after refinement through EM, leads to accurate clusters. Here, rough set theory offers
a fast and robust (noise insensitive) solution to the initialization and local minima
problem of iterative refinement clustering. Also the problem of choosing the number
of mixtures is circumvented, since the number of Gaussian components to be used is

automatically decided by rough set theory.

The problem of modeling non-convex clusters is addressed by constructing a minimal
spanning tree (MST) with each Gaussian as nodes and Mahalanobis distance between
them as edge weights. Since graph-theoretic clustering is performed on the Gaussian
models rather than the individual data points and the number of models are much
less than the data points, the computational time requirement is significantly small. A
(non-convex) cluster obtained from the graph is a particular subset of all the Gaussians
used to model the data.
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Experiments are performed on some real life and artificially generated non-convex data
sets. It is found that rough set with fuzzy discretization enhances the performance of
EM algorithm both in terms of cluster quality and computational time. Integration of
minimal spanning tree with rough-fuzzy initialized EM, results in further improvement
of performance with a slight increase in computational time. The merits of the proposed
algorithm are also demonstrated, in another part of the experiment, for the problem

of segmentation of multispectral satellite images.

The organization of the chapter is as follows. Section 5.2 presents the basic features
of rough set theory which are relevant to this chapter. In Section 5.3, the methodol-
ogy for fuzzy granulation and linguistic representation of patterns is described. The
rough-fuzzy case generation methodology is described in Section 5.4, along with ex-
perimental results and comparison. The non-convex clustering algorithm is stated in
Section 5.5 together with experimental results and comparison. Application of the clus-
tering algorithm to multispectral remote sensing image segmentation is demonstrated

in Section 5.6.

5.2 Rough Sets

Let us present here some preliminaries of rough set theory which are relevant to this

chapter. For details one may refer to [132] and [157].

5.2.1 Information systems

An information system is a pair S =< U, A >, where U is a non-empty finite set
of objects called the universe and A a non-empty finite set of atiributes such that
a:U — V, for every a € A. The set V, is called the value set of a.

In many situations there is an outcome of classification that is known. This a poste-
riori knowledge is expressed by one distinguished attribute called decision attribute.
Information systems of this kind are called decision systems. A decision system is any
information system of the form A = (U, AU{d}), where d ¢ A is the decision attribute.
The elements of A are called conditional attributes. An information (decision) system

may be represented as an attribute-value (decision) table, in which rows are labeled by
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Table 5.1: Hiring: An example of a decision table

Diploma. (i) | Experience (e) | French (f) | Reference (r) | Decision
X MBA Medium Yes Excellent Accept
Xo MBA Low Yes Neutral Reject
X3 MCE Low Yes Good Reject
X4 MSc High Yes Neutral Accept
Xs MSc Medium Yes Neutral Reject
Xg MSc High Yes Excellent Reject
X7 MBA High No Good Accept
Xg MCE Low No Excellent Reject

objects of the universe and columns by the attributes. Table 5.1 is an example of rep-
resenting a decision system A’ = (U, { Diploma, Ezperience, French, Reference}U

{Decision}), for hiring personnel.

5.2.2 Indiscernibility and set approximation

A decision system (i.e., a decision table) expresses all the knowledge available about
a system. This table may be unnecessarily large because it could be redundant at
least in two ways. The same or indiscernible objects may be represented several times,

or some attributes may be superfluous. The notion of equivalence relation is used to

tackle this problem.

With every subset of attributes B C A, one can easily associate an equivalence relation
Ig on U: Ig = {(x1,x2) € U : forevery a € B, a(x,) = a(xz)}. Ip is called B-
indiscernibility relation. If (x;,%3) € Ip, then objects x; and x, are indiscernible from
each other by attributes B. The equivalence classes of the partition induced by the
B-indiscernibility relation are denoted by [x]p. These are also known as granules. For
example, in the case of the decision system represented by Table 5.1, if we consider
the attribute set B = {Diploma, Ezperience}, the relation Ip defines the following

partition of the universe,
IB = I{Diploma, Ezxperience} = {{X3, x8}a {X4, xﬁ}a {X5}, {Xl}, {XZ}, {X7}}.
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Figure 5.1: Rough representation of a set with upper and lower approximations

Here {x3,Xs}, {X4, X6}, {X5}, {x1}, {X2}, {x7} are the granules obtained by the relation
Ip.

The partition induced by the equivalence relation I can be used to build new subsets of
the universe. Subsets that are most often of interest have the same value of the outcome
attribute i.e., belong to the same class. It may happen, however, that a concept (e.g.,
‘Reject’ in Table 1) cannot be defined crisply using the attributes available. It is here
that the notion of rough set emerges. Although we cannot delineate the concept crisply,
it is possible to delineate the objects which definitely ‘belong’ to the concept and those
which definitely ‘do not belong’ to the concept. These notions are formally expressed

as follows.

Let A = (U, A) be an information system and let B C A and X C U. We can approxi-
mate X using only the information contained in B by constructing the lower and upper
approximations of X. If X C U, thesets {(x € U : [x]p C X} and {x € U : [x]p N X #
0}, where [x]p denotes the equivalence class of the object x € U relative to Ip, are
called the B-lower and B-upper approzimation of X in S and denoted by BX, BX re-
spectively. The objects in BX can be certainly classified as members of X on the basis
of knowledge in B, while objects in BX can only be classified as possible members of
X on the basis of B. This is illustrated in Figure 5.1. Considering the decision system
Hiring (Table 5.1), if B = {Diploma, Ezperience} and X is the concept Reject, then:
BX = {xy,{x3,Xs},X5} and BX = {x3, {x3,Xs}, {X4, X6}, Xs}.
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5.2.3 Reducts

Indiscernibility relation reduces the data by identifying equivalence classes, i.e., ob-
jects that are indiscernible, using the available attributes. Only one element of the
equivalence class is needed to represent the entire class. Reduction can also be done
by keeping only those attributes that preserve the indiscernibility relation and conse-
quently, set approximation. So one is, in effect, looking for minimal sets of attributes
taken from the initial set A, so that the minimal sets induce the same partition on the
domain as done by A. In other words, the essence of the information remains intact,
and superfluous attributes are removed. The above sets of attributes are called reducts.
Depending on the nature of information preserved, there may be four important cate-

gories of reducts. They are:

1. Reducts not relative to a particular case (or object) and not relative to the
decision attribute. The full discernibility relation is preserved. Reducts of this
type are minimal attribute subsets that enable us to discern all cases from each
other, upto the same degree as the full set of attribute does.

2. Reducts not relative to a particular case (or object) but relative to the decision
attribute. All regions with the same value of the generalized decision are pre-
served. Reducts of this type are minimal conditional attribute subsets B C A
that for all classes enable us to make the same classifications as the full set of

attributes does.

3. Reducts relative to case (or object) x but not relative to the decision attribute.
Reducts of this type are minimal conditional attribute subsets that enable us
to discern case x from all other cases upto the same degree as the full set of

conditional attributes does.

4. Reducts relative to case (or object) x and relative to the decision attribute. Our
ability to discern case x from cases with different generalized decision than x is
preserved. Reducts B of this type are minimal conditional attribute subsets that
enable us to determine the outcome of case x, upto the same degree as the full

set of attribute does.
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Reducts have been nicely characterized in [157) by discernibility matrices and discerni-
bility functions. Consider U = {xy,...,X,} and A = {ay,...,a,} in the information
system S =< U, A >. By the discernibility matrix M(S) of S is meant an n X n-matrix

(symmetrical with empty diagonal) such that
Cj = {G. € A: (I(Xi) ;é a(x]-)}. (51)

A discernibility function fs is a function of m boolean variables @, . . ., @, correspond-

ing to the attributes a,,. .., a, respectively and defined as follows:

fs(@y,...,ap) = /\{\/(Cij) :1<4,5<n, j<i, cij #0}, (5.2)

where \/(c;;) is the disjunction of all variables @ with a € ¢;;. It is seen in [157] that
{ai,,...,a;} is areduct in § if and only if a;, A...Ag;, is a prime implicant (constituent

of the disjunctive normal form) of fs.

5.2.4 Dependency rule generation

A principal task in the method of rule generation is to compute reducts relative to
a particular kind of information system, the decision system. Relativized versions of
discernibility matrices and functions shall be the basic tools used in the computation. d-
reducts and d-discernibility matrices are used for this purpose [157]. The methodology

is described below.

Let S =< U, A > be a decision table, with A = C'Ud, and d and C its sets of decision
and condition attributes respectively. Let the value set of d be of cardinality M, i.e.,
Vy = {d\,da,...,dum}, representing M classes. Divide the decision table S=<UA>
into M tables S; = < U;, A; >, i = 1,..., M, corresponding to the M decision attributes
dy,...,dp, where U = Uy U ... U Uy and A; = C'U {d;}.

Let {X;1,...,X,} be the set of those objects of U; that occur in &;,¢ = 1,..., M. Now
for each di-reduct B = {by,...,bx} (say), a discernibility matrix (denoted by My, (B))
can be derived from the d;-discernibility matrix as follows:

cij = {a € B : a(x;) # a(x;)}, (5.3)
fori,j=1,..,n.
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For each object x; € X,,...,X;,, the discernibility function f; 7 is defined as

= NV :1<4,5<n, j<i, ¢ 20}, (5.4)

where \/(c;;) is the disjunction of all members of ¢;;. Then f3 is brought to its
disjunctive normal form (d.n.f). One thus obtains a dependency rule r;, viz. d; + P;,

where P, is the disjunctive normal form (d.n.f) of f;"',j € i1y.-nylp.

The dependency factor df; for r; is given by

_ card(POSp,(d;))
- card(U;) ’
where POSp,(di) = Uxe;, Bi(X), and B;(X) is the lower approximation of X with
respect to B;. B; is the set of condition attributes occurring in the rule r; : d; + P,
POSp,(d;) is the positive region of class d; with respect to attributes B;, denoting the
region of class d; that can be surely described by attributes B;. Thus, df; measures
the information about decision attributes d; derivable from the condition attributes of

(5.5)

df;

a rule B;. df; has values in the interval [0, 1], with the maximum and minimum values

corresponding to complete dependence and independence of d; on B; respectively.

Ezample 1:

The methodology for rough set rule generation is illustrated here. Let us consider the
Hiring decision system A' = (U,{Diploma(i), Ezperience(e), French(f), Refer
ence(r)} U{Decision}) of Table 5.1. Vpecision = {Accept, Reject} is the value set
of the attribute Decision; Vpecision is Of cardinality two. The original decision table
(Table 5.1) is thus split into two decision tables Saccept (Table 5.2(a)), and Sgreject
(Table 5.2(b)). Since all the objects in each table are distinct, they could not be re-
duced further. Next, for each decision table the discernibility matrices M Accept(C) and
MEeject(C) are obtained using Equation 5.3. Among them only the matrix M accept(C)
is shown in Table 5.3, as an illustration. The discernibility function obtained from
M aceept(C) is

facepr = (EVeEVT)A(eVFVT)AGEV fVT)
= (eA)V(EANf)VEASf)VT (disjunctive normal form)
The following dependency rules are obtained from faccept
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Accept + et
Accept +— eAf
Accept + iAf
Accept +

Table 5.2: Two decision tables obtained by splitting the Hiring table S (Table 5.1)

(a) SAccept

i e f T Decision
x; || MBA | Medium | Yes | Excellent | Accept

x4 | MSc High | Yes | Neutral | Accept
x7 | MBA [ High | No Good Accept

(b) SReject

i € f T Decision
x, || MBA Low | Yes | Neutral Reject
x3 || MCE Low Yes | Good Reject
x5 | MSc | Medium | Yes | Neutral Reject
Xg || MSc High | Yes | Excellent | Reject
xg || MCE Low No | Excellent | Reject

Table 5.3: Discernibility matrix M gccept for the split Hiring decision table Saccept (Ta-
ble 5.2(a))

Objects | x; | x4 X7
X1 i,e,r | e f,r
X4 i, for
X7
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5.3 Linguistic Representation of Patterns and Fuzzy

Granulation

As is evident from the previous section, rough set theory deals with a set of objects
in a granular universe. In the present section we describe a way of obtaining the
granular feature space using fuzzy linguistic representation of patterns. Only the case
of numeric features is mentioned here. (Features in descriptive and set forms can also
be handled in this framework.) The details of the methodologies involved may be found
in (122, 123).

Let a pattern (object) F be represented by p numeric features (attributes), i.e., F =
[F1,Fa,...,Fp). Note that, F is equivalent to a p-dimensional feature vector x. Each
feature is described in terms of its fuzzy membership values corresponding to three
linguistic fuzzy sets, namely low (L), medium (M) and high (H). Thus a p-dimensional

pattern vector is represented as a 3p-dimensional vector [122, 123]

F = [”llow(Fl)’ u’rlnedium(Fl)? u;u'yh(Fl); ”l2ow(F2)’ ”3nedium(F2)1 /’t?u'gh(F2);
e ;l"’;’mu(FP)’ p’fnedium(FP)7 l"’iigh(Fp)] (56)

where il (), 1} 4im(-) and ufu.gh(.) indicate the membership values of (.) to the fuzzy

sets low, medium and high along feature axis j. p(.) € [0,1].

For each input feature Fj, the fuzzy sets low, medium and high are characterized

individually by a m-membership function whose form is [166]

201 — E29)2 ) for A < |Fj—¢] < A
p(Fj) =a(Fe,0) =<{ 1-2(5=dy2 for 0 < |Fj—¢| < 2 (5.7)
0, otherwise ,

where A(> 0) is the radius of the m—function with c as the central point. For each of
the fuzzy sets low, medium and high, A and c take different values. These values are
chosen so that the membership functions for these three fuzzy sets have overlapping

nature (intersecting at membership value 0.5), as shown in Figure 5.2.

Let us now explain the procedure for selecting the centers (c¢) and radii (A) of the
overlapping m—functions. Let m; be the mean of the pattern points along 7 axis.
Then m;, and m;, are defined as the mean (along j** axis) of the pattern points
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membership value

Feature j

Figure 5.2: 7—Membership functions for linguistic fuzzy sets low (L), medium (M) and

high (H) for each feature axis.

having co-ordinate values in the range [F}, .., m;) and (m;, Fj,_, ] respectively, where
F;... and Fj . denote the upper and lower bounds of the dynamic range of feature

maz Imin

Fj. The centers and the radii of the three 7-functions are defined as

Clow(Fj) = my

Cmedium(F;) — T

Chigh(Fj) = My, (5.8)
Mow(F;) = Cmedium(F;) — Clow(F)

Mhigh(F;) = Chigh(Fj) — Cmedium(F;)

Amedium(iy) = 0.5 (Chigh(F;) — Clow(Fy))-

Here we take into account the distribution of the pattern points along each feature axis

while choosing the corresponding centers and radii of the linguistic fuzzy sets.

The aforesaid three overlapping functions along each axis generate the fuzzy granulated
feature space in p-dimension. The granulated space contains 3” granules with fuzzy
boundaries among them. Here the granules (clumps of similar objects or patterns) are
attributed by the three fuzzy linguistic values ‘low’, ‘medium’ and ‘high’. The degree
of belongingness of a pattern to a granule (or the degree of possessing a property
low, medium or high by a pattern) is determined by the corresponding membership

function.

Furthermore, if one wishes to obtain crisp granules (or crisp subsets), a-cut, 0 < a < 1,
[166] of these fuzzy sets may be used. (a-cut of a fuzzy set is a crisp set of points for
which membership value is greater than or equal to a.) Note that the concept of
fuzzy granulation has been explained earlier in different ways and effectively used in
rough-fuzzy framework [137, 138, 168].
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Note that we have used three fuzzy property sets ‘low’, ‘medium’ and ‘high’. One
may consider hedges like ‘very’, ‘more or less’ to generate more granules i.e., finer
granulated space. However, this will enhance the computational requirement for both

case generation and retrieval.

5.4 Rough-fuzzy Case Generation Methodology
[119, 120]

Here we describe a methodology for case generation on the fuzzy granulated space as
obtained in the previous section. This involves two tasks, namely, (a) generation of
fuzzy rules using rough set theory, and (b) mapping the rules to cases. Since rough
set theory operates on crisp granules (i.e., subsets of the universe) we need to convert
the fuzzy membership values of the patterns to binary ones or, to convert the fuzzy
membership functions to binary functions in order to represent the crisp granules
(subsets) for application of rough set theory. This conversion can be done using an
a-cut. This is illustrated in Figure 5.3, where 0.5-cut is used to obtain 3> = 9 crisp
granules (subsets) of the 2-dimensional feature space from the linguistic representation

of the input features.

The schematic diagram for the generation of case is shown in Figure 5.4. One may
note that, the inputs to the case generation process are fuzzy membership functions,
the output ‘cases’ are also fuzzy membership functions, but the intermediate rough set
theoretic processing is performed on binary functions representing crisp sets (granules).
For example, the inputs to Block 2 are fuzzy membership functions. Its outputs are
binary membership functions which are used for rough processing in Block 3 and Block
4. Finally, the outputs of Block 4, representing cases, are again fuzzy membership

functions. Each task is discussed below.

5.4.1 Thresholding and rule generation

Consider the 3p fuzzy membership values of a p dimensional pattern F;. Then select
only those attributes having values greater than or equal to Th (= 0.5, say). In other
words, we obtain a 0.5-cut of all the fuzzy sets to obtain binary membership values
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1 1 1
Kiow Y medium M high

Figure 5.3: Generation of crisp granules from linguistic (fuzzy) representation of the
features F; and F. Dark region (M, M>) indicates a crisp granule obtained by 0.5-cuts

1 2 :
on the . 4iwm and Ly i, functions

corresponding to the sets low, medium and high.

For example, consider the point x in Figure 5.3. Its 3p dimensional fuzzy representation
is F = [0.4,0.7,0.1,0.2,0.8,0.4]. After binarization it becomes F,, = [0,1,0,0,1,0],
which denotes the crisp granule (or subset) at the center of the 3 x 3 granulated space.

After the binary membership values are obtained for all the patterns we constitute the
decision table for rough set rule generation. As the method considers multiple objects
in a class a separate n; X 3p-dimensional attribute-value decision table is generated
for each class dy (where n; indicates the number of objects in di). Let there be m
sets Oy, ..., O, of objects in the table having identical attribute values, and card(O;) =

Nkt = 1,...,m, such that ng, > ... > ny, and > .-, ng, = ng. The attribute-value
table can now be represented as an m X 3p array. Let ny,ng,...,ng, denote the
distinct elements among ny,, ..., ng,, such that ng > ng > ... > ny . Let a heuristic

threshold function be defined as [10]
m 1
2= "

= , (5.9)

Tr =

so that all entries having frequency less than T'r are eliminated from the table, resulting
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For each feature F ; of a pattern
obtain its membership values for
low(L), medium(M) and high (H)
fuzzy sets

m E)p (F) uhiéfj)ﬂo, 1]

low 37, medi
Threshold using o -cut to
obtain binary membership values

pE)u E) P«hig’j)E {0, 1}

owJ

Obtain fuzzy IF-THEN rules
using rough set theory

ldl<——l_,l/\M2

Map conjunctive parts of arule to
different Cases represented by
fuzzy membership functions

{“’(’ C»)‘)}

{“low ) medlum,dll

Case
Base

Figure 5.4: Schematic diagram of rough-fuzzy case generation
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in the reduced attribute-value table. The main motive of introducing this threshold
function lies in reducing the size of the case base and in eliminating the noisy patterns.
From the reduced attribute-value table, thus obtained, rough dependency rules are

generated using the methodology described in Section 5.2.4.

5.4.2 Mapping dependency rules to cases

We now describe the technique for mapping rough dependency rules to cases. The
algorithm is based on the observation that each dependency rule (having frequency
above some threshold) represent a cluster in the feature space. It may be noted that
only a subset of features appears in each of the rules, this indicates the fact that the
entire feature set is not always necessary to characterize a cluster. A case is constructed

out of a dependency rule in the following manner:

1. Consider the antecedent part of a rule; Split it into atomic formulas containing

only conjunction of literals.

2. For each atomic formula, generate a case - containing the centers and radii of the
fuzzy linguistic variables (‘low’, ‘medium’ and ‘high’) which are present in the

formula. (Thus, multiple cases may be generated from a rule.)

3. Associate with each such case generated, the precedent part of the rule and the
case strength equal to the dependency factor of the rule (Equation 5.5). The
strength factor reflect the size of the corresponding cluster and the significance

of the case

Thus a case has the following structure:

case{

Feature i: fuzzset;: center, radius;

Class k
Strength

}

where fuzzset denote the fuzzy sets ‘low’, ‘medium’ or ‘high’. The method is explained

below with the help of an example.
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One may note that while 0.5-cut is used to convert the 3n fuzzy membership functions
of a pattern to binary ones for rough set rule generation (Section 5.4.1), the original
fuzzy functions are retained in order to use them in for representing the generated
cases (Section 5.4.2). These are also illustrated in Figure 5.4, where the outputs ),

112, sium are fuzzy sets (membership functions).

Ezample 2:

Consider a data having two features Fj, F; and two classes as shown in Figure 5.5.
The granulated feature space has 3% = 9 granules. These granules are characterized by
three membership functions along each axis, and have ill-defined boundaries. Let the
following two dependency rules be obtained from the reduced attribute table:

class; + Ly A Hy, df = 0.5

classy + Hi A Lo, df =04

Let the parameters of the fuzzy sets ‘low’, ‘medium’ and ‘high’ be as follows:
Feature 1: ¢;=0.1, A\;,=0.5, cpr=0.5, Apr=0.7, cg=0.7, Ag=0.4.
Feature 2: ¢1,=0.2, \1=0.5, cpr=0.4, Apr=0.7, cg=0.9, Ag=0.5.

Therefore, we have the following two cases:

case 1{

Feature No: 1, fuzzset(L): center=0.1, radius=0.5
Feature No: 2, fuzzset (H): center=0.9, radius=0.5
Class=1

Strength=0.5

}

case 2{

Feature No: 1, fuzzset (H): center=0.7, radius=0.4
Feature No: 2, fuzzset (L): center=0.2, radius=0.5
Class=2

Strength=0.4

}
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Figure 5.5: Rough-fuzzy case generation for a two dimensional data

5.4.3 Case retrieval

Each case thus obtained in the previous section is a collection of fuzzy sets { fuzzsets}
described by a set of one dimensional 7-membership functions with different ¢ and A
values. To compute the similarity of an unknown pattern F (of dimension p) to a case

p (of variable dimension pp,, pm < p), we use

Pm

sim(F,p) = | == 3 (Hfuesnal ) (5.10)

m j=1

where u’}uzzset(F}) is the degree of belongingness of the j** component of F to fuzzset
representing the case p. When g7/ = 1 for all j, sim(F,p) = 1 (maximum) and when
p = 0 for all j, sim(F,p) = 0 (minimum). Therefore Equation 5.10 provides a
collective measure computed over the degree of similarity of each component of the
unknown pattern with the corresponding one of a stored case. Higher the value of
the similarity, the closer is the pattern F to the case p. Note that fuzzy membership
functions in Equation 5.10 take care of the distribution of points within a granule;
thereby providing a better similarity measure between F and p than the conventional

Euclidean distance between two points.

For classifying (or to provide a label to) an unknown pattern, the case closest to the
pattern, in terms of sim(F, p) measure, is retrieved and its class label is assigned to

that pattern. Ties are resolved using the parameter Case Strength.
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5.4.4 Results and comparison

Experiments are performed on three real life data sets, namely, Iris data, Forest cover
type data and Multiple features data sets. The last two data sets have large number of
samples and features. The characteristics of the data sets are described in Appendix A.

The cases generated using the rough-fuzzy methodology are compared with those ob-

tained using the following three case selection methodologies:
(i) Instance based learning algorithm, IB3 [5],

(ii) Instance based learning algorithm with reduced number of features, IB4 [2]. The
feature weighting is learned by random hill climbing in IB4. A specified number of

features having high weights is selected, and
(iii) Random case selection.
Comparison is made on the basis of the following:

(a) 1-NN classification accuracy using the generated/selected cases. For all the data
10% of the samples are used as training set for case generation and 90% of the samples
are used as test set. Mean of the accuracy computed over 10 such random split is

reported.
(b) Number of cases stored in the case base.

(c) Total CPU time required (on a DEC Alpha 400 MHz Workstation) for case gener-

ation.

(d) Average CPU time required (on a DEC Alpha 400 MHz Workstation) to retrieve

a case for the patterns in test set.

For the purpose of illustration, we present the rough dependency rules and the cor-
responding generated cases in Tables 5.4 and 5.5 respectively for the Iris data, as an
example. Comparative results of the rough-fuzzy case generation methodology with
other case selection algorithms are presented in Tables 5.6, 5.7 and 5.8 for the Iris, For-
est cover type and Multiple features data respectively in terms of number of cases, 1-NN
classification accuracy, average number of features per case (Pay,), and case generation
(tyen) and retrieval (t,e) times. It can be seen from the tables that the cases obtained
using the proposed rough-fuzzy methodology are much superior to random selection
method and 1B4, 'and close to IB3 in terms of classification accuracy. (The superiority
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over random selection and IB4 was found to be statistically significant, when tested
using the statistics described in Section 2.5.1.) The method requires significantly less
time compared to IB3 and IB4 for case generation. As is seen from the tables, the
average number of features stored per case (pgyy) by the rough-fuzzy technique is much
less than the original data dimension (p). As a consequence, the average retrieval time
required is very low. IB4 also stores cases with a reduced number of features and has
a low retrieval time, but its accuracy is much less compared to the proposed method.

Moreover, all the cases involve equal number of features, unlike ours.

Table 5.4: Rough dependency rules for the Iris data

Cl — Ll A H2 A L3 df =(0.81
Cg —~ M AL, ANM, df = (.81
C3 — H1 A H4 df =0.77

Table 5.5: Cases generated for the Iris data

case 1{
Feature No: 1, fuzzset(L): center=5.19, radius=0.65
Feature No: 2, fuzzset (H): center=3.43, radius=0.37
Feature No: 3, fuzzset (L): center=0.37, radius=0.82
Class=1
Strength=0.81
}
case 2{
Feature No: 1, fuzzset(M): center=3.05, radius=0.34
Feature No: 2, fuzzset (L): center=1.70, radius=2.05
Feature No: 4, fuzzset (M): center=1.20, radius=0.68
Class=2
Strength=0.81
}
case 3{

Feature No: 1, fuzzset(H): center=6.58, radius=0.74
Feature No: 4, fuzzset (H): center=1.74, radius=0.54
Class=3
Strength=0.77

}
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Table 5.6: Comparison of case selection algorithms for Iris data

Algorithm No. of | payg | Classification | fgen | tret
Cases accuracy (%) | (sec) | (sec)
Rough-fuzzy | 3 2.67 | 98.17 0.2 |0.005
IB3 3 4 98.00 2.50 | 0.01
B4 3 4 90.01 4.01 | 0.01
Random 3 4 87.19 0.01 {0.01

Table 5.7: Comparison of case selection algorithms for Forest cover type data

Algorithm No. of | pavg | Classification | tgen | tre:
Cases accuracy (%) | (sec) | (sec)
Rough-fuzzy | 542 4.10 | 67.01 244 |44
IB3 945 10 | 66.88 4055 | 52.0
IB4 545 4 50.05 7021 | 4.5
Random 545 10 41.02 17 52.0

Table 5.8: Comparison of case selection Algorithms for Multiple features data

Algorithm No. of | payy | Classification | {gen | tret
Cases accuracy (%) | (sec) | (sec)
Rough-fuzzy | 50 20.87 | 77.01 1096 | 10.056
1B3 52 649 78.99 4112 | 507
1B4 02 21 41.00 8009 | 20.02
Random 50 649 50.02 8.01 | 507

5.5 Clustering [121]

In Section 5.4 we have demonstrated how fuzzy granulation along with rough set theo-
retic rule generation can be used to efficiently generate cases (class prototypes). Note
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that, these logical rules correspond to different important regions of the feature space,
and represent crude clusters. We now exploit the above capability of rough-fuzzy
computing for fast clustering via the expectation maximization (EM) algorithm and

minimal spanning tree (MST).

5.5.1 Mixture model estimation via the EM algorithm

‘The mixture model approximates the data distribution by fitting k component density
functions fy, h =1,...,k to a data set D having n patterns and p features. Let x € D

be a pattern, the mixture model probability density function evaluated at x is:

k
p(x) =) w fa(x|én)- (5.11)
h=1

The weights wy, represent the fraction of data points belonging to model h, and they
sum to one (Efl:l wy, = 1). The functions f(x|¢n), h = 1,...,k are the component
density functions modeling the points of the hth cluster. ¢, represents the specific
parameters used to compute the value of f, (e.g., for a Gaussian component density

function, ¢, is the mean and covariance matrix).

For continuous data, Gaussian distribution is the most common choice for component
density function. This is motivated by a result from density estimation theory stating
that any distribution can be effectively approximated by a mixture of Gaussians with
weights wy,. The multivariate Gaussian with p-dimensional mean vector p, and p x p

covariance matrix % is:

Sa(X|un, Zp) = mexp (——21-()( — )T (Zp) M x - uh)) (5.12)

The quality of a given set of parameters ® = {(wn, s, Zr),h = 1,...,k} is determined
by how well the corresponding mixture model fits the data. This is quantified by the
log-likelihood of the data, given the mixture model:

k
L(®) = Z log (Z wn fn (x| n, Eh)) : (5:13)
h=1

xeD

The EM begins with an initial estimation of ® and iteratively updates it such that
L(®) is non-decreasing. .We next outline the EM algorithm.
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EM Algorithm:

Given a data set D with n patterns and p continuous features, a stopping tolerance
¢ > 0 and mixture parameters ®’ at iteration j, compute ®/*! at iteration j + 1 as
follows:

Step 1. (E-Step) For pattern x € D:
Compute the membership probability wp(x) of x in each cluster h =1,...,k:

wh S (xluih, Z3)
> wl filxlul, B1)

wj,(x) =

Step 2. (M-Step) Update mixture model parameters:

J+1 Z wh(x)

xeD

“]+1 erD w{z(x)x
h ] ’
ZxGD ’U)i(X)

2j+1 . ExeD 'UJ“;‘(X) (X I[Zj-l) (X “il-H) h=1 k
= : ,h=1,... k.
Y xep Wh(X)
Stopping Criterion: If |L(®7) — L(®/*1)| < ¢, Stop. Else set j + j + 1 and Go To
Step 1. L(®) is as given in Equation 5.13.

5.5.2 Rough set initialization of mixture parameters

In this section we describe the methodology for obtaining crude initial values of the
parameters (®) of the mixture of Gaussians used to model the data. The param-
eters are refined further using EM algorithm described in the previous section. The
methodology is based on the observation that ‘reducts’ obtained using rough set theory

represent crude clusters in the feature space.

Reducts are computed using the methodology for fuzzy granulation and rule generation
described in Sections 5.3 and 5.2.4. Note that, case generation (studied in Section 5.4)
is a supervised task while clustering involves unsupervised data analysis. Hence, unlike

Section 5.4.1, where decision relative reducts are used, here we use reducts which are
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not relative to decision attributes. In addition a ‘support factor’ is defined to measure

the strength of a reduct.

Support factor sf; for the rule r; is defined as

sfy = =k (5.14)

E:=1 N ’
where ng,,7 = 1,...,r are the cardinality of the sets O; of identical objects belonging

to the reduced attribute value table.

5.5.3 Mapping reducts to mixture parameters

The mixture model parameters consists of the number of component Gaussian density
functions (k) and weights (wy), means (u) and variances (X) of the components. We

describe below the methodology for obtaining them.

1. Number of Gaussians (k): Consider the antecedent part of a rule r;; Split it into
atomic formulas containing only conjunction of literals. For each such atomic
formula, assign a component Gaussian. Let the number of such formula be k.

2. Component weights (wy): Weight of each Gaussian is set equal to the normalized
support factor sf; (obtained using Equation 5.14) of the rule (r;) from which it

is derived, wy, = f;,f['——

i1 8fi”

3. Means (u4): An atomic formula consists of conjunction of a number of literals.
The literals are linguistic fuzzy sets ‘low’, ‘medium’ and ‘high’ along some feature
axes. The component of the mean vector along that feature is set equal to the
center (c) of the 7-membership function of the corresponding fuzzy linguistic set.
Note that all features do not appear in a formula, implying those features are
not necessary to characterize the corresponding cluster. The component of the
mean vector along those features which do not appear are set to the mean of the

entire data along those features.

4. Variances (X3): A diagonal covariance matrix is considered for each component
Gaussian. As in the case of means, the variance for feature j is set equal to radius
A of the corresponding fuzzy linguistic set. For those features not appearing in

a formula tlge variance is set to small random value.
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S D X:;x % b

Figure 5.6: Rough-fuzzy generation of crude clusters for a two dimensional data (a)
data distribution and rough set rules, (b) probability density function for the initial
mixture model.

Ezample:

Consider the following two reducts obtained from a reduced attribute value table of a
data having two dimensions Fj and F. The example is illustrated in Figure 5.6.

cluster, « LA Hg, 3f1 =0.50
clustery < Hy A L,, sfz = 0.40

Let the parameters of the fuzzy linguistic sets ‘low’, ‘medium’ and ‘high’ be as follows:
Feature 1: ¢;,=0.1, A=0.5, cpr=0.5, Apr=0.7, cg=0.7, Ag=0.4.
Feature 2: ¢1,=0.2, A\=0.5, cpr=0.4, Ar=0.7, cg=0.9, Ag=0.5.

Then we have two component Gaussians with parameters as follows:

05 0
w, = 0.56, py = [0.1,0.9] and ¥; =
1 Hi [ ] 1 _ 0 05 -
05 0 |
Wy = 044, H2 = [07,02] and 22 = ’
] 0 0.5

We summarize below all the steps for rough set initialization of mixture models.

1. Represent each pattern in terms of its membership to fuzzy linguistic sets low,
medium and high along each axis. Thus an p dimensional pattern is now repre-
sented by a 3p-dimensional vector.
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2. Threshold each 3p-dimensional vector containing fuzzy membership values to
obtain 3p-dimensional binary vector. Retain only those vectors which are distinct

and appear with frequency above a threshold.
3. Construct an attribute-value table from the reduced set of binary vectors.

4. Construct discernibility matrix from the attribute value table. Generate discerni-
bility functions (rules) for each object in the matrix. Consider atomic formula
of the rules which are conjunction of literals (linguistic variables ‘low’, ‘medium’

and ‘high’, in this case)

5. Map each atomic formula to parameters wp, tip and ¥, of corresponding compo-

nent Gaussian density functions.

5.5.4 Graph-theoretic clustering of Gaussian components

In this section we describe the methodology for obtaining the final clusters from the
Gaussian components used to represent the data. A minimal spanning tree (MST)
based approach is adopted for this purpose. The MST is a graph that connects a data
set of N points so that a complete ‘tree’ of N-1 edges is built. (A tree is a connected
graph without cycles.) The tree is 'minimal’ when the total length of the edges is the
minimum necessary to connect all the points. A MST may be constructed using either
Kruskal’s or Prim’s algorithm. Desired number of clusters of points may be obtained
from a MST by deleting the edges having highest weights. For example for the set of 9
points {A, B, C, D. E, F, G, H, 1} illustrated in Figure 5.7, two clusters can be obtained
by deleting the edge CD having highest weight 6. The two subgraphs represent the
clusters. It may be mentioned that arbitrary shaped clusters may be obtained using

the above algorithm.

Instead of using individual points, we construct a MST whose vertices are the Gaussian
components of the mixture model and the edge weights are the Mahalanobis distance
(D) between them defined as:

D% = (1 — p2)" (51 4 T2) 7 (a — b2) (5.15)

where i1, 2 and ¥, %S, are the means and variances of the pair of Gaussians. To

obtain k clusters, k — 1 edges having the highest weights are deleted, and components
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Figure 5.7: Using minimal spanning tree to form clusters

belonging to a single connected subgraph after deletion are considered to represent a

single cluster.

Note that each cluster obtained as above is a mixture model in itself. The number of
its component Gaussians being equal to the number of vertices of the corresponding
subgraph. For assigning a point (x) to a cluster, probability of belongingness of x to
each of the clusters (sub-mixture models) is computed using Equation 5.11, and the
cluster giving the highest probability p(x) is assigned to x, i.e., we follow the Bayesian

classification rule.

5.5.5 Results and comparison

Experiments are performed on two real life data sets (Forest cover type and Multiple
features) with large number of samples and dimension. An artificial non-convex data
set (Pat) is also considered for the convenience of demonstrating some features of the
algorithm along with visualization of the performance. The data sets are described in

Appendix A.

The clustering results of the proposed methodology are compared with those obtained
using -

1. k-means algorithm with random initialization (KM).

2. k-means algorithm with rough set initialization (of centers) and graph-theoretic
clustering (RKMG).

3. EM algorithm with random initialization and graph-theoretic clustering (EMG).

4. EM algorithm with means initialized with the output of k-means algorithm and
with graph-theoretic clustering (KEMG).
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5. BIRCH [171], a clustering algorithm suitable for large data sets.

Among the algorithms mentioned above, methods 2, 3 and 4 have the capability for
obtaining non-convex clusters, while method 1 can obtain convex clusters only. It
may be mentioned that, in the proposed algorithm, we use EM algorithm with rough
set initialization and graph-theoretic clustering. For the purpose of comparison, in
addition to rough set theoretic initialization, we have also considered EM algorithms
with random initialization (method 3) and another popular method for initialization
(method 4). Besides these, to demonstrate the effect of rough set theoretic initial-
ization on another hybrid iterative refinement-graph theoreti¢ clustering method, we
consider method 2, which is the k-means algorithm with graph theoretic clustering.
We could not present the comparisons with purely graph-theoretic techniques (i.e., on
the original data) as they require infeasibly large time for the data sets used.

Comparison is performed on the basis of cluster quality index § [116] and CPU time.
CPU time is obtained on an Alpha 400 MHz workstation. f is defined as [116]:

YL T (X - X)T (X - X)
Y T (X — X)T (X~ Xa)

where n; is the number of points in the ith (i = 1,...,k) cluster, X;; is the feature
vector of the jth pattern (j = 1,...,n;) in cluster i, X; the mean of n; patterns of
the ith cluster, n is the total number of patterns, and X is the mean value of the
entire set of patterns. Note that § is nothing but the ratio of the total variation and
within-cluster variation. This type of measure is widely used for feature selection and

cluster analysis [116]. For a given data and k (number of clusters) value, the higher

g (5.16)

the homogeneity within the clustered regions, higher would be the 3 value.

For the purpose of visualization of the partitioning, and illustration of several char-
acteristics of the algorithm, we first present the results on the artificial Pat data set
which is of smaller dimension (=2). The non-convex character of the data is shown in
Figure 5.8. The reducts obtained using rough set theory, and the parameters of the

corresponding four Gaussians are as follows:
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Figure 5.8: Scatter plot of the artificial data Pat

cluster) + Ly A My; wy = 0.15, ; = [0.223,0.511], £, = [ 0-376 0.340
clustery + Hy A My; wy = 0.16, pp = [0.753,0.511}, X5 = 0-333 0';)40
clusters « M, A Hy; w3 = 0.35, u3 = [0.499,0.744], L3 = 0-?)65 0;)33
clustery +— My A Ly; w4y = 0.34, pg = [0.499,0.263], L4 = | 0~265 0.;)48 |

The distribution of points belonging to each component Gaussian, obtained after refin-
ing the parameters using EM, is plotted in Figure 5.9. These are indicated by symbols:
+, 0, 0, and A. The variation of log-likelihood with EM iteration is presented in Fig-
ure 5.10 for both random initialization and rough set initialization. It is seen that for
rough set initialization log-likelihood attains a higher value at the start of EM. The
final clusters (two in number) obtained by our method after graph-theoretic partition-
ing of the Gaussians are shown in Figure 5.11(a). The algorithm is seen to produce
the same natural non-convex partitions, as in the original data. It may be noted that
the conventional k-means algorithm, which is capable of generating convex clusters

efficiently, fails to do so (Figure 5.11(b)), as expected.

Table 5.9 provides comparative results (in terms of § and CPU time) of the proposed
algorithm with other four, as mentioned before, for three different data sets. It is seen
that the proposed methodology produces clusters having the highest 3 value for all
the cases. Note that, since no training/test set selection is involved, the concept of
statistical significance is not applicable here. The CPU time required is less than that
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of the other two EM based algorithms (EMG and KEMG). For the k-means algorithm
(KM) although the CPU time requirement is very low, its performance is significantly
poorer. The BIRCH algorithm requires the least CPU time, but has performance
poorer than the proposed algorithm, KEMG, EMG and RKMG.

Rough set theoretic initialization is found to improve the § value as well as reduce
the time requirement of both EM and k-means. It is also observed that k-means
with rough set theoretic initialization (RKMG) performs better than EM with random
initialization (EMG), though it is well known that EM is usually superior to k-means

in partitioning.

Table 5.9: Comparative performance of clustering algorithms

Algorithm | Cluster quality (8) | CPU time (sec)
Forest cover type data
Proposed 7.10 1021
KEMG 6.21 2075
EMG 5.11 1555
RKMG 5.90 590
KM 3.88 550
BIRCH 4.21 104
Multiple features data
Proposed 11.20 721
KEMG 10.90 881
EMG 10.40 810
RKMG 10.81 478
KM 7.02 404
BIRCH 8.91 32
Pat data
Proposed 18.10 1.04
KEMG 15.40 2.10
EMG 10.90 1.80
RKMG 15.30 0.91
KM 8.10 0.80
BIRCH 9.02 0.55
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5.6 Multispectral Image Segmentation [121]

In the present section, we describe an application of the aforesaid clustering algorithm
to another real life problem, namely, segmentation of multispectral satellite images into
different landcover types. Merits of the methodology as depicted in the previous section
are also found to hold good. Before we provide the results of investigations, we describe,
in brief, the relevance of the methodology for multispectral image segmentation and
the implementation procedure. Note that the process of fuzzy discretization used here

is different from that used in the previous section.

Segmentation is a process of partitioning an image space into some nonoverlapping
meaningful homogeneous regions. The success of an image analysis system depends
on the quality of segmentation. Two broad approaches to segmentation of remotely
sensed images are gray level thresholding and pixel classification. In thresholding
[116] one tries to get a set of thresholds {T1,T3,...,Tk} such that all pixels with
grey values in the range [T}, T;;,) constitute the ith region type. On the other hand
in pixel classification, homogeneous regions are determined by clustering the feature
space of multiple image bands. Both thresholding and pixel classification algorithms
may be either local i.e., context dependent or global i.e., blind to the position of a
pixel. Multispectral nature of most remote sensing images make pixel classification the

natural choice for segmentation.

Statistical methods are widely used in unsupervised pixel classification framework be-
cause of their capability of handling uncertainties arising from both measurement error
and the presence of mixed pixels. In most statistical approaches, an image is modeled
as a ‘random field’ consisting of collections of two random variables Y = (Y;)ses, X =
(X,)ses- The first one takes values in the field of ‘classes’, while the second one deals
with the field of ‘measurements’ or ‘observations’. The problem of segmentation is
to estimate Y from X. A general method of statistical clustering is to represent the
probability density function of the data as a mizture model, which asserts that the
data is a combination of k individual component densities (commonly Gaussians), cor-
responding to k clusters. The task is to identify, given the data, a set of k£ populations
in it, and provide a model (density distribution) for each of the populations. The
EM algorithm is an effective and popular technique for estimating the mixture model
parameters. It iteratively refines an initial cluster model to better fit the data and
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terminates at a solution which is locally optimal for the underlying clustering criterion
[28]. An advantage of EM is that it is capable for handling uncertainties due to mixed
pixels and helps in designing multivalued recognition systems. The EM algorithm has
following limitations, (i) the number of clusters needs to be known, (ii) the solution

depends strongly on initial conditions, and (iii) can only model convex clusters.

The first limitation is a serious handicap in satellite image processing; since in real
images the number of classes is frequently difficult to determine a priori. To overcome
the second, several methods for determining ‘good’ initial parameters for EM have been
suggested, mainly based on subsampling, voting and two stage clustering [94]. However,
most of these methods have high computational requirement and/or are sensitive to
noise. The stochastic EM (SEM) algorithm [93] for segmentation of images is another
attempt in this direction which provides an upper bound on the number of classes,

robustness to initialization and fast convergence.

The clustering algorithm, described in Section 5.5, circumvents many of the above
problems. Block diagram of the integrated segmentation methodology is shown in
Figure 5.12. Discretization of the feature space, for the purpose of rough set rule
generation, is performed by gray level thresholding of the image bands individually.
Thus, each attribute (band) now takes on values in {1,2,.k + 1}, where k is the
number of threshold levels for that band. The fuzzy correlation (C(u1, p2)) between
a fuzzy representation of an image (1) and its nearest two-tone version (u2) is used.

Fuzzy correlation C (g1, p2) is defined as [115]

Clu,p2) =1 - 5— X (Z{ [ @*R()} + ET: {1 = m@I*R( )}> (5.17)
i=T+1

with X1 = 22 20 () — 1]2A(3) and Xa = Y-y [22(i) — 1]*h(3) = constant, L —11is
the maximum grey level and h(i) is the frequency of the ith grey level. The mazimas
of the C(yu1, p2) represent the threshold levels. For details of the above method one
may refer to [115]. We have considered correlation as a measure of thresholding, since
it is found recently to provide good segmentation in less computational time compared
to similar methods [116]. However, any other grey level thresholding technique may
be used. Note that, we have not used fuzzy linguistic granulation of the feature space

here, since histogram based thresholding provides a natural mean of discretization of

images.
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Results are presented on two IRS-1A (4 bands) images. The images were taken using
LISS-II scanner in the wavelength range 0.77 — 0.86um and it has a spatial resolution
of 36.25m x 36.25m. The images are of size 512 x 512. They cover areas around the
city of Calcutta and Bombay respectively.

For the Calcutta image the grey level thresholds obtained using the correlation based
methodology are band 1: {34,47}, band 2: {20,29}, band 3: {24,30} and band 4:
{31,36}. For Bombay image the corresponding values are {36,60}, {22,51}, {23,68}
and {11,25}. After discretization, the attribute value table is constructed. Eight rough
set rules (for Calcutta image) and seven rules (for Bombay image), each representing
a crude cluster, is obtained. The rules are then mapped to initial parameters of the
component Gaussians and refined using EM algorithm. The Gaussians are then merged
using the minimal spanning tree based technique discussed in Section 5.5.4; thereby
resulting in five clusters (from original eight and seven Gaussians). For both the images
progressive improvement was observed from the initial grey level thresholding of the
individual bands, clustering using crude mixture model obtained from rough set rules,
clustering using refined mixture model obtained by EM, and finally to graph theoretic

clustering of the component Gaussians.

The performance of the proposed hybrid method is compared extensively with that
of various other related ones, as mentioned in Section 5.5.5. These involve different
combinations of the individual components of the proposed scheme namely, rough set
initialization, EM and MST, with other related schemes e.g., random initialization and
k-means algorithm. The algorithms compared are (a) randomly initialized EM and k-
means algorithm (EM, KM) (best of 5 independent random initializations), (b) rough
set initialized EM and k-means (centers) algorithm (REM, RKM), (c) EM initialized
with the output of k-means algorithm (KMEM), (d) EM with random initialization
and MST clustering (EMMST), and (e) fuzzy k-means (FKM) algorithm.

For the purpose of qualitative comparison of the segmentation results we have consid-
ered the index 3 (Equation 5.16). We also present the total CPU time required by
these algorithms on a DEC Alpha 400 MHz Workstation. It may be noted that except
for the algorithms involving rough set, the number of clusters is not automatically

determined.

Comparative results are presented in Tables 5.10 and 5.11. Segmented images of the
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city of Calcutta obtained by these algorithms are also presented in Figure 5.13, for
visual inspection. For Bombay image we show the segmented versions only for the
proposed method and KM algorithm having the highest and lowest 8 values. The
following conclusions can be arrived at from the results:

1. EM vs k-means: It is observed that EM is superior to k-means (KM) both with
random and rough set initialization. However, k-means requires considerably less
time compared to EM. The performance of fuzzy k-means (FKM) is intermediate

between k-means and EM, though its time requirement is more than EM.

2. Effect of rough set initialization: Rough set theoretic initialization (REM, RKM)
is found to improve the § value as well as reduce time requirement substantially
for both EM and k-means. Rough set initialization is also superior to k-means
initialization (KMEM).

3. Contribution of MST: Use of MST adds a small computational load to the EM al-
gorithms (EM, REM), however, the corresponding integrated methods (EMMST
and the Proposed algorithm) show a definite increase in B value.

4. Integration of all the three components, EM, rough set and MST, in the pro-
posed algorithm, produces the best segmentation in terms of B value in the least
computation time. This is also supported visually if we consider Figs. 5.15 and
9.16 which demonstrate the zoomed image of two man made structures viz, river
bridge and airport strips of Calcutta image corresponding to the proposed method
and KM algorithm providing the highest and lowest 3 values respectively.

9. Computation time: It is observed that the proposed algorithm requires signifi-
cantly less time compared to other algorithms having comparable performance.
Reduction in time is achieved due to two factors. Rough set initialization reduces
the convergence time of the EM algorithm considerably compared to random ini-
tialization. Also, the MST being designed on component Gaussians rather than
individual data points adds very little load to the overall time requirement while

improving the performance significantly.
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Table 5.10: Comparative performance of different clustering methods for the Calcutta

image
Algorithm | No. of | Index g | Time
clusters (sec)
EM ) 5.91 1720
KM ) 5.25 801
REM 8 6.97 470
RKM 8 5.41 301
KMEM 8 6.21 1040
EMMST 5 6.44 1915
FKM 5 5.90 2011
Proposed ) 7.37 505

Table 5.11: Comparative performance of different clustering methods for the Bombay

image
Algorithm | No. of | Index 3 | Time
clusters (sec)
EM 5 9.11 1455
KM 5 8.45 701
REM 7 10.12 381
RKM 7 10.00 277
KMEM 7 12.71 908
EMMST 5 14.04 | 1750
FKM 5 9.20 1970
Proposed 5 17.10 395
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Figure 5.13: Segmented IRS image of Calcutta using (a) proposed method, (b) EM
with MST (EMMST), (c) fuzzy k-means algorithm (FKM), (d) rough set initialized
EM (REM), (e) EM with k-means initialization (KMEM), (f) rough set initialized
k-means (RKM), (g) EM with random initialization (EM), (h) k-means with random
initialization (KM)
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Figure 5.14: Segmented IRS image of Bombay using (a) proposed method, (b) k-means

with random initialization (KM)

Figure 5.15: Zoomed images of a bridge on the river Ganges in Calcutta for (a) pro-

posed method, (b) k-means with random initialization (KM)

Figure 5.16: Zoomed images of two parallel airstrips of Calcutta airport for (a) pro-

posed method, (b) k-means with random initialization (KM)
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5.7 Conclusions and Discussion

We have presented new methodologies for case generation and clustering by exploiting
the merits of rough-fuzzy hybridization. Fuzzy set theory is used to represent a pattern
in terms of its membership to linguistic variables. This gives rise to efficient fuzzy
granulation of the feature space. On the granular universe thus obtained, rough sets
are used to form reducts which contain informative and irreducible information both
in terms of features and patterns. The fuzzy linguistic rules obtained from the reducts
represent different clusters in the granular feature space. Granular clusters (regions),
modeled by the rules, are mapped to different cases, represented by fuzzy membership

functions.

Since rough set theory is used to obtain cases through crude rules (i.e., it deals with
information granules, and not the original data), case generation time is reduced. Also,
since only the informative regions and the relevant subset of features are stored (i.e., the
generated cases are represented by different reduced number of features), case retrieval
time decreases significantly. Therefore, the case generation algorithm is suitable for

mining data sets, large both in dimension and size.

Rough-fuzzy computing is also found to be successful in effectively circumventing the
initialization and local minima problems of iterative refinement clustering algorithms
(like EM and k-means). In addition, this improves the clustering performance, as

measured by (3 value.

The contribution of the second part of the chapter also lies in the development of
a methodology integrating the merits of graph-theoretic clustering (e.g., capability
of generating non-convex clusters) and iterative refinement clustering (such as low
computational time requirement). At the local level the data is modeled by Gaussians,
i.e., as combination of convex sets, while globally these Gaussians are partitioned using
graph-theoretic technique; thereby enabling the efficient detection of the non-convex
clusters present in the original data. Since the number of Gaussians is much less than
the total number of data points, the computational time requirement for this integrated

method is much less than that required by a conventional graph theoretic clustering.
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Chapter 6

Modular Rough-fuzzy MLP:

Evolution, Rule Generation and

Evaluation



6.1 Introduction

In the previous chapter we have demonstrated a judicious integration of fuzzy sets and
rough sets for providing an efficient granular computing paradigm useful for data min-
ing applications. This chapter provides a synergistic integration of four soft computing
components, namely, fuzzy sets, rough sets, neural networks and genetic algorithms
along with modular decomposition strategy, for generating a modular rough-fuzzy mul-
tilayer perceptron (MLP). The resulting connectionist system achieves gain in terms of
performance, learning time and network compactness for classification and linguistic
rule generation. Different quantitative indices are used for evaluating the linguistic

rules, and to reflect the knowledge discovery aspect.

There are ongoing efforts during the past decade to integrate fuzzy logic, artificial
neural networks (ANN) and genetic algorithms (GAs) to build efficient systems in soft
computing paradigm. Recently, the theory of rough sets [131, 132] has emerged as
another mathematical tool for dealing with uncertainty arising from inexact or incom-
plete information, and is also being used in soft computing [127]. The rough-fuzzy MLP
[10], developed in 1998 for pattern classification, is such an example combining both
rough sets and fuzzy sets with neural networks for building an efficient connectionist
system. In this hybridization, fuzzy sets help in handling linguistic input information
and ambiguity in output decision, while rough sets extract the domain knowledge for
determining the network parameters. Some other attempts in using rough sets (either
individually or in combination with fuzzy set) for designing neural network systems
are available in [109] where rough sets are used mainly for generating the network
parameters, and in [139] where roughness at the neuronal level has been incorporated.
One may also note the utility of GAs in determining the network parameters as well as
the topology (growing/pruning of links), as has been noticed during the past decade
[112]. Several algorithms have been developed for extracting embedded knowledge, in
the form of symbolic rules, from these hybrid networks [68, 159, 160].

Two important issues which have not been adequately addressed by the above method-
ologies are those of lengthy training time and poor interpretability of the networks. A
major disadvantage in neural networks learning of large scale tasks is the high compu-
tational time required (due to local minima and slow convergence). Use of knowledge
based networks offers only a partial solution to the problem. Also, in most of the
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above methodologies the link weights of the network are rather uniformly distributed
and the network is not suitable for extracting crisp (certain) rules. Compact networks
with structure imposed on the weight values are more desirable in this respect for
network interpretation. We introduce here the concept of modular learning (in an

evolutionary framework) to deal with these problems.

A recent trend in neural network design for large scale problems is to split the original
task into simpler subtasks, and to co-evolve the subnetwork modules for each of the
subtasks [53]. The modules are then combined to obtain the final solution. Some of
the advantages of this modular approach include decomplexification of the task, and
its meaningful and clear neural representation. The divide and conquer strategy leads
to super-linear speedup in training. It also avoids the ‘temporal crosstalk problem’ and
interference while learning. In addition, the number of parameters (i.e., weights) can
be reduced using modularity; thereby leading to a better generalization performance

of the network [147], compactness in size and crispness in extracted rules.

In the present chapter a modular evolutionary approach is adopted for designing a
hybrid connectionist system in soft computing framework for both classification and
rule generation. The basic building block used is the rough-fuzzy MLP [10], mentioned
earlier. The original classification task is split into several subtasks and a number of
rough-fuzzy MLPs are obtained for each subtask. The subnetwork modules are inte-
grated in a particular manner so as to preserve the crude domain knowledge which was
encoded in them using rough sets. The pool of integrated networks is then evolved
using a GA with a restricted (adaptive/variable) mutation operator that utilizes the
domain knowledge to accelerate training and preserves the localized rule structure as
potential solutions. The parameters for input and output fuzzy membership functions
of the network are also tuned using GA together with the link weights. We have mod-
ified the existing procedure for generation of rough set dependency rules for handling
directly the real valued attribute table containing fuzzy membership values. This helps
in preserving all the class representative points in the dependency rules by adaptively
applying a threshold that automatically takes care of the shape of membership func-
tions. Unlike previous attempts of knowledge based network design (10, 162], here all
possible inference rules, and not only the best rule, contribute to the final solution.
The use of GAs in this context is beneficial for modeling multi-modal distributions,

since all major representatives in the population are given fair chance during network
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synthesis. Superiority of the proposed model, over some related ones, is experimentally
demonstrated in terms of classification accuracy, network size and training time when
both real life (speech and medical) and artificially generated data sets, with dimension
ranging from two to twenty one and class boundaries overlapping as well as non-linear,

are considered as input.

In the second part of the investigation, an algorithm for extracting linguistic rules,
based on this hybrid model, is presented. The performance of the rules is evaluated
quantitatively. Two new measures are accordingly defined indicating the certainty and
confusion in a decision. These new indices are used along with some existing measures
to evaluate the quality of the rules. A quantitative comparison of the rule extraction
algorithm is made with some existing ones like Subset [42], M of N [162] and X2R (85).
It is observed that the proposed methodology extracts rules which are less in number,
yet accurate, and have high certainty factor and low confusion with less computation

time.

The organization of the chapter is as follows: Section 6.2 explains, in brief, the rough-
fuzzy MLP [10]. The design procedure of the modular evolutionary algorithm is de-
scribed in Section 6.3. The rule extraction method and the quantitative performance
measures are presented in Section 6.4. The effectiveness of the proposed model and
its comparison with some related ones are provided in Section 6.5. Finally, Section 6.6

concludes the chapter.

6.2 Rough-fuzzy MLP

The rough-fuzzy MLP [10] is described briefly in this section. First we explain the
fuzzy MLP, for convenience. This is followed by the knowledge encoding algorithm for

mapping the rules to the parameters of a fuzzy MLP.

6.2.1 Fuzzy MLP

The fuzzy MLP model [122] incorporates fuzziness at the input and output levels of the
MLP, and is capable of handling exact (numerical) and/or inexact (linguistic) forms

of input data. Any input feature value is described in terms of some combination of
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membership values to the linguistic property sets low (L), medium (M) and high (H).
Class membership values (1) of patterns are represented at the output layer of the
fuzzy MLP. During training, the weights are updated by backpropagating errors with
respect to these membership values such that the contribution of uncertain vectors is

automatically reduced.

A three-layered feedforward MLP is used. The output of a neuron in any layer (h)
other than the input layer (h = 0) is given as

1

h
Y; ATy het)

= 6.1
1+exp(—3_,y; Wi, (6.1)

where yP~!

*~1 is the state of the ith neuron in the preceding (h — 1)th layer and w;.'i‘l

is the weight of the connection from the ith neuron in layer i — 1 to the jth neuron
in layer h. For nodes in the input layer, y? corresponds to the jth component of the

input vector. Note that = = 3,y 'wl .

Input vector

An p-dimensional pattern F; = [F;;, Fig,...,F;p] is represented as a 3p-dimensional
vector

Fi = [thiow(F:,) (Fi)s - - - » tinign(rs,) (Fi)] = 3y Y3 » (6.2)
where the p values indicate the membership functions of the corresponding linguistic 7-
sets low, medium and high along each feature axis and y{, .. ., y3, refer to the activations

of the 3p neurons in the input layer.

When the input feature is numerical, we use w—fuzzy sets (in the one dimensional
form), with range [0,1], as represented by Equation 5.7. Note that features in linguistic

and set forms can also be handled in this framework [122].

Output representation

Consider an M-class problem domain such that we have M nodes in the output layer.
Let the p-dimensional vectors o = [01..-0kp] and v = [vk1, ..., Ukp] denote the mean

and standard deviation respectively of the numerical training data for the kth class cx.
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The weighted distance of the training pattern F; from kth class ¢ is defined as

P TF — o]
Zik = Z[——]] for k=1, ..., M, (6.3)

v .
j=1 kj

where F;; is the value of the jth component of the ith pattern point.

The membership of the ith pattern in class k, lying in the range [0, 1] is defined as

[118]
1
pe(Fi) = —F~7 (6.4)
L+ ()1
where positive constants f; and f. are the denominational and exponential fuzzy gen-

erators controlling the amount of fuzziness in the class membership set.

6.2.2 Rough set knowledge encoding

Rough set knowledge encoding involves two steps: generating rough set dependency
rules, and mapping the rules to initial network parameters. The basic principle of
rough set rule generation is already discussed in Section 5.2. The following paragraphs
describe, in brief, the steps used here to obtain the dependency rules, and the method-

ology for mapping the rules to the weights of a fuzzy MLP.

Consider the case of feature Fj for class ¢, in the M-class problem domain. The
inputs for the i** representative sample F; arc mapped to the corresponding three-
dimensional feature space of ptiow(r;)(Fi), medium(F;;)(Fi) and pnign(r;)(Fi). Let these
be represented by L;, M; and H; respectively. These values are then used to construct
the attribute value table. As the method considers multiple objects in a class, a
separate n; X 3p-dimensional attribute-value decision table is generated for each class

cx (where ny indicates the number of objects in cx).

For constructing the discernibility matrix, the absolute distance between each pair of
objects is computed along each attribute L;, M;, H; for all j. We modify Equation 5.3
to directly handle a real-valued attribute table consisting of fuzzy membership values.
We define

cij={a€B: |a(xi) —a(x;)|> Th} (6.5)

for i,j = 1,...,n;, where Th is an adaptive threshold. Note that the adaptivity of
this threshold is in-built, depending on the inherent shape of the membership function.
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Figure 6.1: Illustration of adaptive thresholding of membership functions

Dependency rules are generated from the discernibility matrix using the methodology
described in Section 5.2.4.

Consider Figure 6.1. Let a;, a; correspond to two membership functions (attributes)
with a, being steeper as compared to a;. It is observed that r; > ry. This results in an
implicit adaptivity of Th while computing ¢;; in the discernibility matrix directly from
the real-valued attributes. Here lies the novelty of the proposed method. Moreover,
this type of thresholding also enables the discernibility matrix to contain all the rep-
resentative points/clusters present in a class. This is particularly useful in modeling
multi-modal class distributions. Note that the above notion of adaptive thresholding,
for constructing the discernibility matrix, is similar to that used in [135] related to

shadowed sets.

Dependency rules are generated from the discernibility matrix, obtained as above,

using the methodology described in Section 5.2.4.

While designing the initial structure of the rough-fuzzy MLP, the union of the rules of
the M classes is considered. The input layer consists of 3p attribute values while the
output layer is represented by M classes. The hidden layer nodes model the first level
(innermost) operator in the antecedent part of a rule, which can be either a conjunct
or a disjunct. The output layer nodes model the outer level operands, which can
again be either a conjunct or a disjunct. For each inner level operator, corresponding
to one output class (one dependency rule), one hidden node is dedicated. Only those
input attributes that appear in this conjunct/disjunct are connected to the appropriate
hidden node, which in turn is connected to the corresponding output node. Each outer
level operator is modeled at the output layer by joining the corresponding hidden
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nodes. Note that a single attribute (involving no inner level operators) is directly
connected to the appropriate output node via a hidden node, to maintain uniformity

in rule mapping.

Let the dependency factor for a particular dependency rule for class cx bedf =a=1
by Equation 5.5. The weight wy; between a hidden node 1 and output node k is set at
ﬁ; + ¢, where fac refers to the number of outer level operands in the antecedent of
the rule and ¢ is a small random number taken to destroy any symmetry among the
weights. Note that fac > 1 and each hidden node is connected to only one output
node. Let the initial weight so clamped at a hidden node be denoted as 3. The weight
w},, between an attribute a; (where a corresponds to low (L), medium (M) or high
(H) ) and hidden node ¢ is set to 7‘% + ¢, such that facd is the number of attributes
connected by the corresponding inner level operator. Again facd > 1. Thus for an
M-class problem domain there are at least M hidden nodes. It is to be mentioned
that the number of hidden nodes is determined directly from the dependency rules. It

depends on the form in which the antecedents are present in the rules.

6.3 Modular Evolution of Rough-fuzzy MLP [96,
124, 103]

The design procedure of Modular Neural Networks (MNN) involves two broad steps -
effective decomposition of the problem such that the subproblems can be solved with
compact networks, and efficient combination and training of the networks such that
there is gain in terms of training time, network size and accuracy. These are described
in detail in the following section along with the steps involved and the characteristics

features.

6.3.1 Algorithm

We use two phases. First an M-class classification problem is split into M two-class
problems. Let there be M sets of subnetworks, with 3p inputs and one output node
each. Rough set theoretic concepts are used to encode domain knowledge into each of
the subnetworks, using Equations 5.4 and 6.5. As explained in Section 6.2.2 the number
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of hidden nodes and connectivity of the knowledge-based subnetworks is automatically
determined. Each two-class problem leads to the generation of one or more crude
subnetworks, each encoding a particular decision rule. Let each of these constitute
a pool. So we obtain m > M pools of knowledge-based modules. Each pool k is
perturbed to generate a total of n; subnetworks, such that ny = ... =ng = ... = npn.
These pools constitute the initial population of subnetworks, which are then evolved

independently using genetic algorithms.

At the end of the above phase, the modules/subnetworks corresponding to each two-
class problem are concatenated to form an initial network for the second phase. The
inter module links are initialized to small random values as depicted in Figure 6.2. A
set of such concatenated networks forms the initial population of the GA. The mutation
probability for the inter-module links is now set to a high value, while that of intra-
module links is set to a relatively lower value. This sort of restricted mutation helps
preserve some of the localized rule structures, already extracted and evolved, as poten-
tial solutions. The initial population for the GA of the entire network is formed from all
possible combinations of these individual network modules and random perturbations
about them. This ensures that for complex multi-modal pattern distributions all the
different representative points remain in the population. The algorithm then searches
through the reduced space of possible network topologies. The steps are summarized

below followed by an example.

Steps

Step 1: For each class, generate rough set dependency rules using the methodology
described in Section 5.2.4.

Step 2: Map each of the dependency rules to a separate subnetwork modules (fuzzy
MLPs) using the methodology described in Section 6.2.2.

Step 3: Partially evolve each of the subnetworks using conventional GA.

Step 4: Concatenate the subnetwork modules to obtain the complete network. For
concatenation the intra-module links are left unchanged while the inter-module links
are initialized to low random values (Figure 6.2). Note that each of the subnetworks

solves a 2-class classification problem, while the concatenated network solve the actual
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Figure 6.2: Intra and Inter module links

M-class problem. Every possible combination of subnetwork modules is generated to

form a pool of networks.

Step 5: The pool of networks is evolved using a modified GA with an adaptive/variable
mutation operator. The mutation probability is set to a low value for the intra-module

links and to a high value for the inter-module links.

Ezample:

Consider a problem of classifying a two dimensional data into two classes. The input
fuzzifier maps the features into a six dimensional feature space. Let a sample set of

rules obtained from rough set theory be
C] ¢ (L] A Mz) Vv (H2 A Ml), Cy Mz VHl, Cy L2 VL],

where L;j, M;, H; correspond t0 fiow(F;), Hmedium(Fj)s Fhigh(F;) respectively. For the
first phase of the GA three different pools are formed, using one crude subnetwork
for class 1 and two crude subnetworks for class 2 respectively. Three partially trained
subnetworks result from each of these pools. They are then concatenated to form
(1 x 2) = 2 networks. The population for the final phase of the GA is formed with
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these networks and perturbations about them. The steps followed in obtaining the

final network are illustrated in Figure 6.3.
Remarks:

(i) The use of rough sets for knowledge encoding provides an established mathematical
framework for network decomposition. Knowledge encoding not only produces an
initial network close to the optimal one, it also reduces the search space. The initial

network topology is automatically determined and provides good building blocks for
the GA.

(ii) In earlier concurrent algorithms for neural network learning, there exist no guide-
lines for the decomposition of network modules [172]. Arbitrary subnetworks are as-
signed to each of the classes. Use of networks with the same number of hidden nodes
for all classes leads to overlearning in the case of simple classes and poor learning in

complex classes. Use of rough set theory circumvents the above problem.

(iii) Sufficient reduction in training time is obtained, as the above approach parallelizes
the GA to an extent. The search string of the GA for subnetworks being smaller,
more than linear decrease in searching time is obtained. Also very small number of
training cycles are required in the refinement phase, as the network is already very
close to the solution. Note that the modular aspect of our algorithm is similar to the
co-evolutionary algorithm (CEA) used for solving large scale problems with EAs [172].

(iv) The splitting of an M-class problem into M two-class problems bears an analogy
to the well known divide and conquer strategy and speeds up the search procedure
significantly. Here one can use a smaller chromosome and/or population size, thereby

alleviating to some extent the space-time complexity problem.

(v) The algorithm indirectly constrains the solution in such a manner that a structure
is imposed on the connection weights. This is helpful for subsequent rule-extraction
from the weights, as the resultant network obtained has sparse but strong intercon-
nection among the nodes. Although in the above process some amount of optimality
is sacrificed, and often for many-class problems the number of nodes required may be
higher than optimal, yet the network is less redundant. However the nature of the
objective function considered and the modular knowledge based methodology used en-
ables sufficient amount of link pruning, and the total number of links are found to be

significantly less. The use of restricted mutation (as defined in Section 6.3.2) minimizes
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162



link tag bit

I .
"DTefad T T T oo BT 1T o] SS [o] T o[
%/__J

——
weighti (16 + 1) bits fuzzy parameters

[CIRTIRL I SN N A

(16 bits each)
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the destruction of encoded rule structures in the knowledge based networks.

(vi) For each two-class (sub)problem a set of subnetworks encoding separate decision
rules is available. Since all possible combinations of these subnetworks are considered
for the final evolutionary training, greater diversity within the population is possible.
This results in faster convergence of the GA which utilizes multiple theories about a
domain. This also ensures that all the clusters in the feature space are adequately

represented in the final solution.

6.3.2 Evolutionary design

Here we discuss different features of genetic algorithms [46] with relevance to our

algorithm.

Chromosomal representation

The problem variables consist of the weight values and the input/output fuzzification
parameters. Each of the weights is encoded into a binary word of 16 bit length, where
[000...0] decodes to —128 and [111...1] decodes to 128. An additional bit is assigned to
each weight to indicate the presence or absence of the link. The fuzzification parameters
tuned are the center (c) and radius ()) for each of the linguistic attributes low, medium
and high of each feature, and the output fuzzifiers f; and f, [122]. These are also coded
as 16 bit strings in the range [0, 2]. For the input parameters, [000...0] decodes to 0 and
[111...1] decodes to 1.2 times the maximum value attained by the corresponding feature
in the training set. The chromosome is obtained by concatenating all the above strings
(Figure 6.4). Sample values of the string length are around 2000 bits for reasonably

sized networks.
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Figure 6.5: Variation of mutation probability with iteration

Initial population is generated by coding the networks obtained by rough set based
knowledge encoding, and by random perturbations about them. A population size of

64 was considered.

Crossover

It is obvious that due to the large string length, single point crossover would have
little effectiveness. Multiple point crossover is adopted, with the distance between two
crossover points being a random variable between 8 and 24 bits. This is done to ensure
a high probability for only one crossover point occurring within a word encoding a

single weight. The crossover probability is fixed at 0.7.

Mutation

The search string being very large, the influence of mutation is more on the search
compared to crossover. Each of the bits in the string is chosen to have some mutation
probability (pmut). The mutation probability has a spatio-temporal variation. The
variation of pmut with iteration is shown in Figure 6.5. The maximum value of pmut is
chosen to be 0.4 and the minimum value as 0.01. The mutation probabilities also vary
along the encoded string, the bits corresponding to inter-module links being assigned
a probability pmut (i.e., the value of pmut at that iteration) and intra-module links
assigned a probability pmut/10. This is done to ensure least alterations in the structure
of the individual modules already evolved. Hence, the mutation operator indirectly

incorporates the domain knowledge extracted through rough set theory.
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Choice of fitness function

An objective function of the form described below is chosen.

FObJ = G!lfl + ()lzfz s (66)
where
f _ No. of Correctly Classified Sample in Training Set
L= Total No. of Samples in Training Set
f =1 — No. of links present
2 = Total No. of links posstble’

Here a; and a; determine the relative weight of each of the factors. oy is taken to be
0.9 and o, is taken as 0.1, to give more importance to the classification score compared
to the network size in terms of number of links. Note that we optimize the network

connectivity, weights and input/output fuzzification parameters simultaneously.

Selection

Selection is done by the roulette wheel method. The probabilities are calculated on
the basis of ranking of the individuals in terms of the objective function, instead of
the objective function itself. Elitism is incorporated in the selection process to prevent
oscillation of the fitness function with generation. The fitness of the best individual
of a new generation is compared with that of the current generation. If the latter has
a higher value the corresponding individual replaces a randomly selected individual in

the new population.
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6.4 Rule Generation and Quantitative Evaluation
[124]

6.4.1 Rule extraction methodology

Algorithms for rule generation from neural networks mainly fall in two categories -
pedagogical and decompositional [160]. Our algorithm can be categorized as decom-

positional. It is described below.

1. Compute the following quantities:
PMean= Mean of all positive weights, PThres;= Mean of all positive weights
less than PMean, PT hres,= Mean of all weights greater than PMean. Similarly

calculate NThres, and NThres, for negative weights.
2. For each hidden and output unit

(a) for all weights greater than PT hres; search for positive rules only, and for all

weights less than NT'hres; search for negated rules only by Subset method.

(b) search for combinations of positive weights above Pthres; and negative
weights greater than NThres; that exceed the bias. Similarly search for
negative weights less than NThres; and positive weights below PThres; to

find out rules.

3. Associate with each rule j a confidence factor
. (Biwji — 6;)
ji all nodes in the path E,"U)j,‘

cfi= , (6.7)

where w;j; is the ith incoming link weight to node j.

Since our training algorithm imposes a structure on the network, resulting in a sparse
network having few strong links, the PThres and NThres values are well separated.
Hence the above rule extraction algorithm generates most of the embedded rules over

a small number of computational steps.

The computational complexity of our algorithm is as follows. Let the network have
i, h, o numbers of input, hidden and output nodes respectively. Let us make the as-
sumption that i = h = 0 = k. Let the fraction of weights having value in [0, PThres;),
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[PThres,, PThresy), [PThres;,o0), be p1, ps, ps respectively. Similarly let the cor-
responding fractions for negative weights be n;, ng, ns. Then the computational
complexity (C) becomes

C = k( 9(pa+pa)k+l 4 gnatna)k+l | o(Patni)k+l 4 g(prtng)k+l )

If ny, ng, p1, P2 <K p3, 13,

C ~ 4k. (2p3k + 2n3k) = 4k. (6ln2.p3k + eln2.n3k).

Also if p3, n3 K€ 1,

C = 4k.(1+ In2.(p3 + n3)k + 0.5.(In 2.(p3 + n3))%k?, i.e., C = O(K?).

An important consideration is the order of application of rules in a rule base. Since most
of the real life patterns are noisy and overlapping, rule bases obtained are often not
totally consistent. Hence multiple rules may fire for a single example. Several existing
approaches apply the rules sequentially, often leading to degraded performance. The
rules extracted by our method have confidence factors associated with them. Therefore

if multiple rules are fired, we use the strongest rule having the highest confidence.

Two existing rule extraction algorithms, similar in spirit to the proposed algorithm,
are the Subset method [42] and M of N method [162]. The major problem with the
Subset algorithm is that the cost of finding all subsets grows as the size of the power
set of the links to each unit. It requires lengthy, exhaustive searches of size O(2*) for a
hidden /output node with a fan-in of k and extracts a large set of rules, upto Box(1+6n),
where 3, and S, are the number of subsets of positively and negatively weighted links
respectively. Some of the generated rules may be repetitive, as permutations of rule
antecedents are not taken care of automatically. Moreover, there is no guarantee that
all useful knowledge embedded in the trained network will be extracted. Computational
complexity of the M of N algorithm is O(k*+(k?.7)), where j is the number of examples.
Additionally, the rule extraction procedure involves a backpropagation step requiring
significant computation time. The algorithm has good generalization (accuracy), but
can have degraded comprehensibility [160]. Note that one considers groups of links as
equivalence classes, thereby generating a bound on the number of rules rather than

establishing a ceiling on the number of antecedents.
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6.4.2 Quantitative measures

Here

we provide some measures in order to evaluate the performance of the rules.

Among them, Certainty and Confusion, reflecting the confidence and ambiguity in a

decision, are newly defined. Note that these aspects had not been considered earlier.

Let N be an M x M matrix whose (¢, j)th element n;; indicate the number of patterns

actually belonging to class i, but classified as class j.

i)

i)

iii)

iv)

Accuracy: It is the correct classification percentage, provided by the rules on a
test set defined as %‘4.100, where n; is equal to the number of points in class %

and n;. of these points are correctly classified.

User’s Accuracy [151]: If n! points are found to be classified into class ¢, then
the user’s accuracy (U) is defined as U = n;./n;. This gives a measure of the
confidence that a classifier attributes to a region as belonging to a class. In other

words, it denotes the level of purity associated with a region.

Kappa [151]: The coefficient of agreement called ‘kappa’ measures the relation-
ship of beyond chance agreement to expected disagreement. It uses all the cells
in the confusion matrix, not just the diagonal elements. The estimate of kappa
(K) is the proportion of agreement after chance agreement is removed from con-

sideration. The kappa value for class ¢ (K;) is defined as

NN — NN

K; = (6.8)

n.ni —ng.nj’
The numerator and denominator of overall kappa are obtained by summing the

respective numerators and denominators of K; separately over all classes.

Fidelity [160]: This represents how closely the rule base approximates the parent
neural network model [160]. We measure this as the percentage of the test set
for which network and the rule base output agree. Note that fidelity may or may

not be greater than accuracy.

Confusion: This measure quantifies the goal that the “Confusion should be

restricted within minimum number of classes’. This property is helpful in higher

level decision making. Let 7;; be the mean of all ny; for ¢ # j. Then we define
Card{nij * Ny > ﬁ,‘j,i 7é ]}

Conf = M_ (6.9)
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for an M class problem. The lower the value of Conf, lesser is the number of

classes between which confusion is occurs.

vi) Cover: Ideally the rules extracted should cover all the cluster regions of the
pattern space. We use the percentage of examples from a test set for which no
rules are fired as a measure of the uncovered region. A rule base having a smaller

uncovered region is superior.

vii) Rule base size: It is measured in terms of the number of rules. Lower the value

is, more compact is the rule base.
viii) Computational complezity: Here we present the CPU time required.

ix) Certainty: By certainty of a rule base we quantify the confidence of the rules

as defined by the certainty factor ¢f (Equation 6.7).

6.5 Results and Comparison [124]

The modular rough-fuzzy MLP, described in Sections 6.3 and 6.4, has been imple-
mented on both real life (Vowel, Hepatobiliary and Cervical cancer) and artificially
generated (Pat) data. These data sets have overlapping and nonlinear class bound-

aries. The details of the data are provided in Appendix A.

Let the proposed methodology be termed Model S. Other models compared include:
Model O: An ordinary MLP trained using backpropagation (BP) with weight decay.
Model F: A fuzzy MLP trained using BP [122] (with weight decay).

Model R: A fuzzy MLP trained using BP (with weight decay), with initial knowledge

encoding using rough sets [10].

Model FM: A modular fuzzy MLP trained with GAs along with tuning of the fuzzifica-
tion parameters. Here the term modular refers to the use of subnetworks corresponding

to each class, that are later concatenated using GAs.
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Figure 6.7: (a) Input m-functions and (b) data distribution along F; axis for the Vowel
data. Solid lines represent the initial functions and dashed lines represent the functions
obtained finally after tuning with GAs. The horizontal dotted lines represents the
threshold level

6.5.1 Classification

Recognition scores obtained for Vowel, Hepatobiliary and Pat data by the proposed
soft modular network (Model S) are presented in Table 6.2. It also shows a comparison
with other related MLP-based classification methods (Models O, F, R and FM). In all
cases, 10% of the samples are used as training set, and the remaining samples are
used as test set. Ten such independent runs are performed and the mean value and
standard deviation of the classification accuracy, computed over them, are presented
in Table 6.2.

The dependency rules, as generated via rough set theory and used in the encoding
scheme, are shown in Table 6.1 only for Vowel data, as an example. The values of
input fuzzification parameters used are also presented in Table 6.1. The corresponding
n-functions are shown in Figure 6.7 only for feature F}, as an illustration. In Table 6.1,
F;, where F' stands for low, medium or high, denotes a property F' of the ith feature
[122]. The integrated networks contain 18, 15 and 10 hidden nodes in a single layer
for Vowel, Pat, and Hepatobiliary data respectively. After combination 96, 61 and
16 networks were obtained respectively. The initial population of the GA was formed
using 64 networks in each of these cases. In the first phase of the GA (for models FM
and S), each of the subnetworks are partially trained for 10 sweeps.
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Table 6.1: Rough set dependency rules for Vowel data along with the input fuzzification

parameter values

c1 — MVL;3

g « M VM

c2 ¢+ MV M3V (Hi AMz)

c2 — Mav i3

ca + (LiAH2)V(M1A Hj)

ez — (LiAH2)V(LiAMs3)

ca — (LiAL2)Vv(LiALz)V (L2 AM3)V (L1 A M3)
cs (Hl/\M2)V(M1/\Ms)V(Mx/\Mz)V(Mz/\Ll)
cs (H1I\Mz)V(Ml/\Mz)V(Hl/\H:;)V(Hzl\IA)
cs — (Lz2ALy)V(HsAM3)V M

ce +— LiVM3iVvli

c¢ 4+ M VH;3

c¢ +— LiVH;

ce — M VM3Vl

Fuzzification Parameters:
Feature 1: ¢z, = 0.348, cps = 0.463, cy = 0.613, Ay, = 0.115, Apr = 0.150, Ay = 0.134
Feature 2: cr = 0.219, cpr = 0.437, cy = 0.725, Ay = 0.218, Ay = 0.253, Ay = 0.288
Feature 3: cf, = 0.396, cpr = 0.542, cy = 0.678, A\, = 0.146, Apr = 0.140, Ay = 0.135

The classification accuracies obtained by the models are analyzed for statistical sig-
nificance. Tests of significance (as described in Section 2.5.1) are performed for the
inequality of means (of accuracies) obtained using the proposed algorithm and the
other methods compared. In Table 6.2, we present the mean and standard deviation
(SD) of the accuracies. Using the means and SDs, the value of the test statistics is
computed. If the value exceeds the corresponding tabled value, the means are unequal
with statistical significance (algorithm having higher mean accuracy being significantly

superior to the one having lower value).

It is observed from Table 6.2 that Model S performs the best (except for Model R
on Vowel data and Model F on Hepatobiliary data) with the least network size as
well as least number of sweeps. For Model R with Vowel data and Model F with
Hepatobiliary data, the classification performance on test set is marginally better than
that of Model S, but with significantly higher number of links and training sweeps
required. Comparing models F and R, we observe that the incorporation of domain
knowledge in the latter through rough sets boosts its performance. Similarly, using
the modular approach with GA (Model FM) improves the efficiency of Model F. Since
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Model S encompasses the principle of both models R and FM, it results in the least
redundant yet most effective model. The variation of the classification accuracy of
the models with iteration is also studied. As expected, Model S is found to have high
recognition score at the very beginning of evolutionary training, the next values are
attained by models R and FM, and the lowest being attained by models O and F using
backpropagation. For example, in the case of Vowel data, these figures are 64% for
S, 52% for R, 44% for FM, and 0% for F and O. Model S converges after abouf 90
iterations of the GA, providing the highest accuracy compared to all the other models.

The backpropagation based models require about 2000-5000 iterations for convergence.

It may be noted that the training algorithm suggested is successful in imposing a
structure among the connection weights. As seen from Figure 6.8, for Vowel data, the
weight values for a fuzzy MLP trained with BP (Model F) is more or less uniformly
distributed between the maximum and minimum values. On the other hand, the
modular rough-fuzzy MLP (Model S) has most of its weight values zero while majority
of its non-zero weights have a high value. Hence it can be inferred that the former
model results in a dense network with weak links, while the incorporation of rough
sets, modular concepts and GAs produces a sparse network with strong links. The
latter is suitable for rule extraction. The connectivity (positive weights) of the trained

network is shown in Figure 6.9.

6.5.2 Rule extraction

We use the algorithm explained in Section 6.4.1 to extract rules from the trained
network (Model S). These rules are compared with those obtained by the Subset method
[42], M of N method [162], a pedagogical method X2R [85] and a decision tree-based
method C4.5 [145] in terms of the performance measures (Section 6.4.2). The set
of rules extracted from the proposed network (Model S) is presented in Table 6.4
along with their certainty factors (cf) for Vowel, Hepatobiliary and Pat data. The
values of the fuzzification parameters of the membership functions L, M and H are
also mentioned. For the Hepatobiliary data we present the fuzzification parameters

only for those features that appear in the extracted rules.

A comparison of the performance indices of the extracted rules is presented in Table 6.3.
Since the network obtained using Model S contains fewer links, the generated rules
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Table 6.2: Comparative performance of different models

Models

Model O

Model F

Model R

Model FM

Model §

Train | Test

Train l Test

Train l Test

Train | Test

Train Test

Vowel data

Accuracy(%)
(Mean SD)

65.4 0.5 | 64.1 0.5

84.1 0.4 | 81.8 0.5

86.7 0.3 | 86.0 0.2

85.3 0.4 | 823 0.5

87.1 0.2 | 8.8 0.2

# links

131

210

152

124

84

Sweeps

5600

5600

2000

200

90

Pat data

Accuracy(%)
(Mean SD)

55.1 0.4 | 54.8 0.3

68.7 0.5 | 68.1 0.5

73.1 0.4 | 71.1 04

70.2 0.5 | 69.8 0.4

75.7 0.5 | 74.7 0.4

# links

62

105

82

84

72

Sweeps

2000

2000

1500

150

90

Hepatobiliary data

Accuracy(%)
(Mean SD)

70.1 0.4 | 60.0 0.3

66.1 0.4 | 69.8 0.5

76.9 0.4 | 68.0 0.5

76.8 0.4 | 67.4 0.5

78.4 0.4 | 68.9 0.5

## links

143

310

190

230

108

Iterations

2500

2500

1500

200

110

SD: Standard Deviation




Network obtained wih GA

v
210}
'S

Figure 6.8: Histogram plot of the distribution of weight values with (a) Model S and
(b) Model F for Vowel data

Figure 6.9: Positive connectivity of the network obtained for the Vowel data, using
Model S. (Bold lines indicate weights greater than PThres;, while others indicate
values between PThres; and PThres;)
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Table 6.3: Comparison of the performance of the rules extracted by various methods

for Vowel, Pat and Hepatobiliary data

Algorithm | Accuracy Users’ Kappa | Uncovered | No. of | CPU time | Conf
(%) Accuracy (%) (%) Region (%) | Rules (Sec)

\% ‘Model S 81.02 83.31 78.17 3.10 10 1.1 1.4
0] Subset 82.01 82.72 77.29 2.89 16 14 1.9
w Mof N 79.00 80.01 74.55 2.10 14 1.2 1.9
E X2R 76.00 75.81 72.34 2.72 14 0.9 1.7
L C4.5 79.00 79.17 77.21 3.10 16 1.0 1.5
Model S 70.31 74.44 71.80 2.02 8 1.0 1.1
P Subset 71.02 73.01 70.09 1.91 16 1.1 1.5
A Mof N 70.09 71.12 70.02 2.02 11 1.1 1.5
T X2R 67.82 68.23 67.91 191 10 0.9 1.4
C4.5 71.02 73.44 72.00 2.02 11 1.1 1.2
H Model S 64.90 64.70 64.10 8.02 7 0.9 14
E Subset 65.00 65.41 64.44 7.52 11 1.0 1.8
P Mof N 63.91 64.00 63.02 8.02 10 1.0 1.8
A X2R 61.02 60.90 60.90 7.91 9 0.9 1.7
TO C4.5 64.01 64.23 64.90 7.91 10 0.9 1.4

are less in number and they have high certainty factor. Accordingly, it possesses
relatively higher percentage of uncovered region, though the accuracy did not suffer
much. Although the Subset algorithm achieves the highest accuracy, it requires the
largest number of rules and computation time. In fact, the accuracy/computation time
of Subset method is marginally better/worse than Model S, while the size of the rule

base is significantly less for Model S.

The accuracy achieved by Model S is better than that of M of N, X2R and C4.5,
except for the Pat data with C4.5. Also considering user’s accuracy and kappa, the best
performance is obtained by Model S. The X2R algorithm requires least computation
time but achieves least accuracy with more rules. The Conf index is the minimum for
rules extracted by Model S; it also has high fidelity (e.g., 94.22%, 89.17% and 74.88%
for Vowel, Pat and Hepatobiliary data respectively).

In a part of the experiment, we also conducted a comparison with Models I, R and FM
for rule extraction. It was observed that the performance degrades substantially for
them because these networks are less structured and hence less suitable, as compared

to Model S, for rule extraction.
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Table 6.4: Rules extracted from trained networks (Model S) for Vowel, Pat and Hep-

atobiliary data along with the input fuzzification parameter values

Vowel data Pat data

cg +— MyvLzV M cf = 0.851 cp «— MAM; cf =0.674
cp + HivM; cf =0.755 ¢ +~ MAH{A-Ly c¢f =087
c2 — MV M; cf = 0.811 ca + LanH cf =0.80
c2 & - MiA-HyAL;AM; cf =0.846 ca + LanM, cf =0.778
c3 « LyVH; cf =0.778 c3 +— LiAL2 cf = 0.636
cg — LiALaA-L3 cf =0.719 c3 + HyANH; cf =0.674
cs +— M AH; cf =0.881 c3 ¢ M AMzA-Lz cf=0.636
cs +— M AM cf =0.782 c3 + MIAMaA-Ly cf=0.636
s « HiAM; cf =0.721
ce  ~Hp cf =0.717

FuzzificationParamelers : FuzzificationParameters :

Feature 1: ¢ =0.34, cp =0.502, ¢y =0.681 Featurel: c¢f =0.216 cp =0499 cy=0.751
Feature 1: Ap =0.122, ’ Am =0.154, Ay =0.177 Featurel: A =0.282 XAp =0.265 Ay = 0.252
Feature 2: ¢ =0.217, cp =0431, cy=0.725 Feature2: cp =1266 cp =1.737 cy=2.511
Feature 2: Ap = 0211, Ap =0.250, Ay =0.288 Feature?2: Ap =0.244 Ap =0.235 Ay =0.226
Feature3: cp =0.380, cp =0.540, cy =0.675
Feature 3: Ap =0.244, Ay =0.212, Ay =0.224

Hepatobiliary data

¢t ¢+ L3AMgA-Ly cf =0.857
¢t ¢+ Ls3n-LenL) cf = 0.800
c2 4 LaAMA Mg cf =0.846
c2 « Mg cf =0.571
c3 ¢« Lz3ANL2AM;3 cf = 0.800
c4 + LanLeA-Ly cf =0.833
¢4 — MaALaA-Mz cf=0.833

FuzzificationParameters :

Feature 1: ¢ =52.47 cM = 112.88 ¢y = 289.17
Feature 1: Ap = 62.44 Aym =118.35 Ay =176.40
Feature 2: cp = 24.04 cp = 53.41 cy = 125.35
Feature 2: Ap =29.15 Ay =55.14 Ay =72.08
Feature 3: cp =336.15 cp =477.95 ¢y = 844.00
Feature 3: Ap = 140.00 Ay =254.44 Ay = 367.01
Feature 6: c¢p = 12.15 cy = 17.27 cy = 25.52
Feature 6: Ay =5.11 Apm =1T7.18 Ag = 9.25
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Rules for staging of cervical cancer with binary feature inputs [97]:

Investigation is also made to demonstrate the effectiveness of the aforesaid concept of
modular rule evolution to the problem of staging of cervical cancer where the rules
corresponding to four stages are validated by oncologists. Here the symptoms (fea-
tures) are binary valued. Therefore conventional MLP is used, instead of fuzzy MLP.
Knowledge encoding is done using rough set theoretic rules which are generated di-
rectly from the feature values (without fuzzification). One thus obtains a modular
rough MLP (denoted by Model RM, say), instead of the modular rough-fuzzy MLP
(Model S) studied in earlier experiments. Before we present the experimental results,
we describe, in brief, the problem of cancer staging, details of the features (clinical
measurements) involved and the patient data used for building the modular rough
MLP model.

Staging is a process that uses information learnt about cancer through diagnostic
processes, such as the size of the tumor, how deeply the tumor has invaded tissues
at the site of the origin, the extent of any invasion into surrounding organs, and
the extent of metastasis (spread) to lymph nodes or distant organs. This is a very
important process because proper staging is the most important factor in selecting
the right treatment plan. Cervical cancer is most frequently staged using the FIGO
(International Federation of Gynaecology and Obstetrics) System of Staging. This
system classifies the disease in Stages I through IV.

The data used consists of a set of 221 cervical cancer patient cases obtained from the
database of the Chittaranjan National Cancer Institute (CNCI), Calcutta. There are
four classes corresponding to Stages I, II, III and IV of the cancer, containing 19, 41,
139, and 19 patient cases respectively. The features of the proposed model represent
the presence or absence of the symptoms, and the signs observed upon physical ex-
amination. The 21 boolean input features refer to Vulva: healthy (Vu(h)), Vulva:
lesioned (Vu(l)), Vagina: healthy (Va(h)), Vagina: spread to upper part (Va(u)),
Vagina: spread to middle part (Va(m)), Vagina: spread to lower part (Va(l)), Cerviz:
healthy (Cz(h)), Cerviz: eroded (Cx(e)), Cerviz: small ulcer (Cz(su)), Cerviz: ulcera-
tive growth (Cz(u)), Cerviz: proliferative growth (Cz(p)), Cerviz: ulcero-proliferative
growth (Cz(l)), Paracerviz: free (PCz(f)), Paracerviz: infiltrated (PCz(i)), Urinary
bladder base: soft (BB(s)), Urinary bladder base: hard (BB(h)), Rectrovaginal sep-
tum: free (RVS(f)), Rectrovaginal septum: infiltrated (RVS(i)), Parametrium: free
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Table 6.5: Crude rules obtained via rough set theory for staging of cervical cancer

I Cx(su) Vv Para(f), Cx{p) V Para(f), Cx(su) V Para(nu)
Il | Va(h) Vv Cx(u), Va(h) v Cx(l),

Va(u) vV Cx(u), Para(nu), Pcx(f)

III | Para(nu), Para(u), Va(u)

( Va(u) A Cx(u) ) V Cx(1) V Va(m)

( Va(h) A Cx(u) ) V ( Va(u) A Cx(u) ) Vv Cx(l)

( Va(u) A Cx(p) ) V Va(m) V Cx(l)

IV | ( Va(l) A Cx(u) ) V (Cx(u) A Va(u)) v (Va(l) A Para(u))
( Va(l) A Cx(p) ) V Va(m).

Table 6.6: Rules extracted from the modular rough MLP for staging of cervical cancer

I+ (Va(h) A Para(f)) V (Cz(h) A Cz(u) A BB(s))

II  « (PCx(f)APCz(i))V Para(f) V Para(nu)

IIT « Va(h) ACz(u) A Cz(l) A Para(u)

IV« Va(m)V (Cz(u) ACxz(p)) V (Para(nu) A Para(u)).

(Para(f)), Parametrium: spread, but not upto (Para(nu)) and Parametrium: spread

upto (Para(u)) respectively.

The dependency rules generated via rough set theory and used in the encoding scheme
are provided in Table 6.5. The evolved network is found to have (for recognition
score around 80%) 118 links in 50 iterations, vis-a-vis 175 links in 90 iteration for the
conventional MLP (Model O). A sample set of refined rules extracted from the network

is presented in Table 6.6.

The expertise obtained from oncologists regarding different stages is provided below.
In Stage I the cancer has spread from the lining of the cervix into the deeper connective
tissue of the cervix. But it is still confined within the cervix. Stage II signifies the
spread of cancer beyond the cervix to nearby areas like parametrial tissue, that are
still inside the pelvic area. In Stage III the cancer has spread to the lower part of the
vagina or the pelvic wall. It may be blocking the ureters (tubes that carry urine from
the kidneys to the bladder). Stage IV is the most advanced stage of cervical cancer.
Now the cancer has spread to other parts of the body, like rectum, bladder or lungs. It
may be mentioned here that the rules generated by the proposed algorithm (Table 6.6)
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conform to the experts’ opinion.

The performance of the popular C4.5 machine learning system [145] on the data set

was also studied as a benchmark. Sample rules generated by C4.5 are:

I + Va(h) A PCx(f) A Para(f)
II « Para(f)

II « BB(s)

I « BB(s) A Para(u)

Note that, the rules obtained using C4.5 are significantly poorer than those obtained
by the proposed methodology. This is due to the fact that only statistically significant
instances of the stages are represented in the rules by C4.5. On the other hand, in
the proposed model the rare patient cases are also preserved and incorporated into the
network in the process of knowledge encoding and structured training. This leads to

a more complete rule base.

6.6 Conclusions and Discussion

A methodology for modular evolution of a rough-fuzzy MLP using genetic algorithms
for designing a knowledge-based network for pattern classification and rule generation
is presented. The proposed algorithm involves synthesis of several MLP modules, each
encoding the rough set rules for a particular class. These knowledge-based modules
are refined using a GA. The genetic operators are implemented in such a way that they
help preserve the modular structure already evolved. It is seen that this methodology
along with modular network decomposition results in accelerated training and more
sparse (compact) network with comparable classification accuracy, as compared to

earlier hybridizations.

The aforesaid model is used to develop a new rule extraction algorithm. The extracted
rules are compared with the ones generated from some of the related rule extraction
techniques on the basis of some quantitative performance indices. These indices reflect
the knowledge discovery aspect. Two new measures, introduced in this regard to

evaluate the confidence and ambiguity in a decision, are found to be satisfactory. It
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is observed that the proposed methodology extracts rules which are less in number,
yet accurate, and have high certainty factor and low confusion with less computation
time. The investigation, besides having significance in soft computing research, has
potential for application to large scale problems involving knowledge discovery tasks

[104], particularly related to mining of linguistic classification rules.
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Chapter 7

Conclusions and Scope for Further

Research



7.1 Conclusions

In every chapter we have presented conclusions drawn from the respective method-
ologies developed and the experimental results therein. Here we consolidate them to

provide an overall picture of the contributions of the thesis.

The thesis dealt with certain pattern recognition tasks essential for data mining. Tasks
considered include data condensation, feature selection, case generation, clustering,
classification and rule generation/evaluation. Various methodologies have been de-
veloped using both classical and soft computing approaches (integrating fuzzy logic,
artificial neural networks, rough sets, genetic algorithms). The emphasis of the pro-
posed methodologies is given on handling data sets which are large (both in size and
dimension) and involve classes that are overlapping, intractable and/or having nonlin-
ear boundaries. Several strategies based on data reduction, dimensionality reduction,
active learning, granular computing and efficient search heuristics are employed for
dealing with the issue of ‘scaling up’ in learning problem. The problems of handling
linguistic input and ambiguous output decision, learning of overlapping/intractable
class structures, selection of optimal parameters, and discovering human comprehensi-
ble knowledge (in the form of linguistic rules) are addressed in soft computing frame-
work. Different features of the methodologies, along with comparisons with those of
the related ones, are demonstrated extensively on different real life data sets. These
data have number of dimensions ranging from 2 to 649 and samples ranging from 150
to 581012, taken from varied domains e.g., geographical information systems, remote
sensing imagery, population census, speech recognition and cancer management. Su-

periority of the proposed models over several related ones is found to be statistically

significant.

The data condensation algorithm of Chapter 2 performs non-parametric data reduction
in a multiresolution manner based on the density underlying the data. The method
can obtain reduced sets to represent the data at different degrees of detail (scales). The
representation gives adequate importance to different regions of the feature space based
on the respective probability densities. The said scale structure is efficient in terms of
density estimation error and provides a natural representation of the data distribution.
The algorithm obtains a generic representative condensed set, independent of the task
performed with it later, and suitable for a number of data mining applications e.g.,
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classification, clustering and rule generation.

The unsupervised feature selection algorithm (described in Chapter 3) is based on
pairwise feature similarity measures. The novelty of the method, as compared to
other conventional feature selection algorithms, is the absence of search process which
contributes to the high computational time requirement of those feature selection al-
gorithms. Unlike other approaches which are based on optimizing either classification
or clustering performance explicitly, here we determine a set of maximally indepen-
dent features by discarding the redundant ones. This enhances the applicability of
the resulting features to compression and other tasks like forecasting, summarization,
association mining in addition to classification/clustering. Another characteristic of
the algorithm is its capability of multiscale representation of data sets. The scale
parameter k used for feature clustering efficiently parametrizes the trade-off between
representation accuracy and feature subset size. All these make it suitable for a wide

variety of mining tasks.

The first algorithm, described in Chapter 4, for active support vector learning demon-
strates the advantages of active resampling over random sample selection. The second
one, based on the statistical query model of learning, involves a query strategy which
uses an adaptive confidence factor to handle the trade-off between selecting interior
points and points close to the current separating hyperplane. In the initial phase of
learning it explores more number of interior points, while in the final phase it focuses
only on the points close to the separating hyperplane and ignores the redundant in-
terior points. This helps the algorithm to achieve fast and smooth (oscillation free)

convergence as compared to the preceding two methods.

The methodologies for case generation and clustering presented in Chapter 5 exploit
the merits of rough-fuzzy hybridization for granular computing. Fuzzy set theory
is used to represent a pattern in terms of its membership to some linguistic sets;
thereby producing a fuzzy granulated feature space. Rough set theory is used to obtain
cases (class prototypes) through crude rules from the fuzzy granulated feature space.
Since the algorithm deals with information granules, and not the original data, case
generation time is reduced. Also, since only the informative regions and the relevant
characterizing subset of features are stored (i.e., the generated cases are represented
by different reduced number of features), case retrieval time decreases significantly.

Therefore, this case generation algorithm is suitable for mining data sets, large both in
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dimension and size. Note that, while the methods in Chapters 2 and 3 perform data
condensation and dimensionality reduction separately, the cases generated in Chapter 5

represent a condensed version of the data set with reduced dimension.

Rough-fuzzy granulation is also found to be successful not only in circumventing the
initialization and local minima problems of iterative refinement clustering algorithms
(like, EM and k-means), but also in improving their clustering performance. Be-
sides these, the contribution of the chapter lies in the development of a methodology
integrating the merits of graph-theoretic clustering (e.g., capability of generating non-
convex clusters) and iterative refinement clustering (such as low computational time

requirement) for efficient detection of non-convex clusters.

A rough-fuzzy MLP is used in Chapter 6 for designing a modular knowledge-based net-
work for pattern classification and linguistic rule generation. A new concept of variable
mutation operator is introduced. This helps in preserving the individual clusters in the
final solution. It is seen that the modular network decomposition results in accelerated
training and more sparse (compact) network with comparable classification accuracy,

as compared to earlier related hybridizations.

The aforesaid model is used to develop a rule extraction algorithm. Two measures
are newly introduced to evaluate quantitatively the confidence and ambiguity in a
decision caused by the rules. These indices along with other measures, like accuracy,
kappa value, fidelity, and coverage, reflect the knowledge discovery aspect and are used

to compare the performance of the rule extraction algorithm.

The algorithm for multiscale data condensation (Chapter 2) is found to have superior
performance as compared to the methods based on random sampling [22], self orga-
nizing map [72], and uniform scale method [9] in terms of error in density estimate.
The MLP and k-NN classifiers, when designed using the condensed set obtained by our
algorithm, provide higher accuracy rate compared to the cases when these classifiers
are designed using the condensed sets obtained by other algorithms based on stratified
sampling [22], condensed nearest neighbor [54], learning vector quantization [72] and
locally adaptive asymmetrically weighted metric [150]. If the points in the condensed
set, obtained by our multiscale method, are used as the prototypes for clustering, then
the resulting clusters have § value higher than that generated by the k-means algo-
rithm [30]. Also, the rules extracted from the multiscale condensed set (using the C4.5
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algorithm [145]) are compact, yet having higher accuracy rate and cover value as com-
pared to those obtained by the algorithms based on random sampling [22], stratified
sampling [22], condensed nearest neighbor [54] and uniform scale method [9]. Besides
these, the proposed data condensation algorithm is found to be scalable and efficient
in terms of sample complexity, in the sense that the (density estimation) error level

decreases quickly with the increase in size of the condensed set.

The unsupervised feature selection algorithm in Chapter 3 is seen to be superior (in
terms of clustering/ classification performance and redundancy reduction) to four re-
lated methods wiz, branch and bound algorithm (30}, sequential floating forward search
[144), sequential forward search [30] and stepwise clustering [69], when real life data
sets with dimension ranging from 4 to 649 are considered. It requires several orders
less CPU time compared to search based methods like branch and bound algorithm
[30], sequential floating forward search [144], and sequential forward search {30]. The
maximal information compression index, used as feature similarity measure, is seen
to be more effective for redundancy reduction as compared to other such similarity

measures e.g., correlation and least square regression error.

The method of support vector learning based on active resampling (Chapter 4) has
higher classification score, lower D value and faster convergence compared to random
SVM [153]. However, the method for active SV learning, based on statistical query,
performs the best in terms of speed and robustness when compared with the two

preceding algorithms and the query SVM [21].

Cases generated using the rough-fuzzy scheme in Chapter 5 are found to be better
in terms of 1-NN classification accuracy, average number of features per case, case
generation time and average case retrieval time, when compared with the conventional
IB3 and IB4 algorithms [5], and the random case selection method [164].

Rough set with fuzzy discretization enhances the performance of EM algorithm both
in terms of B-value (cluster quality) and computation time. Integration of minimal
spanning tree with rough-fuzzy initialized EM, results in further improvement of per-
formance with a slight increase in computational time. This hybridization provides, in
addition, the capability of detecting non-convex clusters efficiently. These conclusions
also hold good for the problem of segmentation of multispectral satellite images into

different landcover types.
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Superiority of the modular rough-fuzzy MLP model (Chapter 6) to conventional MLP,
fuzzy MLP and rough-fuzzy MLP is experimentally demonstrated in terms of clas-
sification accuracy, network size and training time when both real life (speech and
medical) and artificially generated data sets, with class boundaries overlapping as well
as non-linear, are considered as input. The linguistic rules extracted from the modu-
lar rough-fuzzy MLP are less in number, yet accurate, and have high certainty factor
and low confusion with less computation time as compared to those extracted using
Subset [42], M of N [162] and X2R [85]. This investigation, besides having signifi-
cance in soft computing research, has potential for application to large scale problems
involving knowledge discovery tasks [104], particularly related to mining of linguistic

classification rules.

7.2 Scope for Further Research

The data condensation methodology, described in Chapter 2, involves non-parametric
density estimation and data reduction. A mathematical framework of the notion of
data condensation is required to be developed for more comprehensive study of the
problem. The asymptotic convergence of the condensation procedure and its finite
sample error rate need to be analyzed. It may be noted that k-nearest neighbor
density estimate (used in the methodology) from finite and non-i.i.d. samples is an
open research area which has drawn recently the attention of researchers from different
fields.

A way of reducing the time complexity of the aforesaid algorithm is to use approximate
nearest neighbor (ANN) computations using specialized data structures like k-d trees
[7]. Probabilistic nearest neighbor search methods [36], having expected O(1) time

complexity and O(NN) storage complexity, may also be used for this purpose.

The feature selection algorithm (Chapter 3) is more related to feature selection for
information compression rather than for classification/clustering. Recently, several
information theoretic criteria are being used for incremental feature selection. Rela-

tionship of our method with these algorithms needs to be studied.

In Chapter 4, we have presented a statistical query based algorithm for active support

vector learning. The nature of the query probability varies adaptively over iteration.
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A decision theoretic generalization of the above scheme may provide better active
learning strategies. Also, the relationship of the proposed active learning strategy

with the mistake bound model of online learning may be investigated.

Chapter 5 demonstrates the power of granular computing by developing a rough-fuzzy
scheme for case (class prototypes) generation and clustering in large data sets. In
this regard a simple rough set rule generation strategy is adopted along with fuzzy
granulation. However, more general rough set models like tolerance relations and rough
mereology may yield better performance. Also, the capability of rough mereology for
handling heterogeneous, symbolic and relational data may be utilized for problems like

multimedia mining and genomic data analysis.

The modular rough-fuzzy MLP (Chapter 6) generates a structured network providing
high classification accuracy. This is achieved by constrained evolution of the network,
implemented by a modified genetic algorithm. In other words, the search is performed
over a restricted hypothesis space. It is observed that the weight values of the solu-
tion network obtained using the above approach are not uniformly distributed, there
is presence of a few strong links, others being mostly non-existent. Such networks
" are known to have better generalization capability. Its VC-dimension is likely to be
lower than that of the ordinary MLP. Establishing this theoretically may constitute an
interesting future research problem. Again, one may investigate the sensitivity of the

rule evaluation indices with respect to network weights.

We have used various indices for quantitative evaluation of the linguistic rules. Some
of these indices (e.g., fidelity, coverage, confusion, certainty) may be used in a suitable
combination to act as the objective function of the network, instead of classification
accuracy, for generating a knowledge based connectionist system. This formulation
is geared towards maximizing the utility of the network with respect to knowledge

discovery tasks.

Over the last decade, we have witnessed an explosive growth in the information avail-
able on the World Wide Web (WWW). Web mining, though considered to be a partic-
ular application of data mining, warrants a separate field of research mainly because of
the typical characteristics of web data and human interface related issues. The pattern
recognition and soft computing algorithms studied in the thesis have potential of being

used in web mining applications [128].
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Appendix A

Data Sets Used in Experiments



We present below the details of the data sets used in empirical evaluation and com-
parison of the algorithms developed. They are listed in the order of their size (number

of samples and dimensions).

1. Forest cover type: The data represents forest cover types of 30m x 30m cells
obtained from US Forest Service (USFS) Region 2 Resource Information System
(RIS). There are 581012 instances, with 54 attributes representing cartographic
variables (hillshade, distance to hydrology, elevation, soil type etc), of which 10
are quantitative and 44 binary. The task is to classify the observations into seven
categories representing the forest cover types, namely — Spruce/Fir, Lodgepole
Pine, Ponderosa Pine, Cottonwood/Willow, Aspen, Douglas-fir, Krummbholz.
Source: UCI KDD Archive [57].

2. PUMS census: Population census data for the Los Angeles and Long Beach area.
The data contains 320,000 samples and 133 attributes (mostly categorical or
integer valued). The task is to identify two groups of population namely those
who have undergone/not undergone ‘higher education’, measured in terms of
number of years in college. Source: UCI KDD Archive [57].

3. Satellite image: Gray level images of four different spectral bands obtained by
the Indian Remote Sensing satellite of the city of Calcutta in India. Each image
is 512 x 512 pixel in size. Source: NRSA data center, India.

4. Isolet: The data consists of several spectral coeflicients of utterances of English
alphabets by 150 subjects. There are 617 features all real in the range [0, 1], 7797

instances and 26 classes. Source: UCI Machine Learning Repository [15].

5. Multiple features: This data set consists of features of handwritten numerals
(‘0’-‘9’) extracted from a collection of Dutch utility maps. There are total 2000
patterns, 649 features and 10 classes. Source: UCI Machine Learning Repository
[15].

6. Twonorm: Artificial data [18] having 20000 samples, 20 features and 2 classes.
Each class follows multivariate normal distribution with covariance matrix as the
identity matrix. Class 1 has mean (a, a, ..., a) and class 2 has mean (—a, —a, ..., —a).

a= ?2%-. Source: UCI Machine Learning Repository [15].
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10.

11.

12.

13.

14.

Ringnorm: Artificial data [18] having 20000 samples, 20 features and 2 classes.
Each class is multivariate normal. Class 1 has mean (0,0, ...,0) and covariance
matrix as 4 time the identity matrix, class 2 has mean (a,aq,...,a) and covari-

ance matrix as the identity matrix. a = 2. Source: UCI Machine Learning

202

Repository [15].

Waveform: Noisy artificial data [18]. It consists of 5000 instances having 40
attributes each. The attributes are continuous valued, and some of them are
noise. The task is to classify an instance into one of the 3 categories of waves.

Source: UCI Machine Learning Repository [15].

Spambase: Word frequencies of email, used to classify an email into spam or
non-spam category. There are 4601 instances, 57 continuous valued attributes
denoting word frequencies, and 2 classes. Source: UCI Machine Learning Repos-
itory [15].

Arrhythmia: Parameters of ECG measurements used to classify a patient into
classes of cardiac arrhythmia. It contains 452 samples each having 279 attributes.
Among the attributes 195 are real valued, and are used for our experiments.

Source: UCI Machine Learning Repository [15].

Heart: Diagnostic measurements of Cleveland heart disease. It contains 1535
data points belonging to 2 classes. Number of features is 16. Source: UCI

Machine Learning Repository [15].

Vowel: Formant frequencies of Indian Telugu vowels [117] uttered in consonant-
vowel-consonent context by 3 male speakers in the age group of 30-35 years. It
contains 871 samples, 3 features and 6 classes. Source: Machine Intelligence
Unit, Indian Statistical Institute, Calcutta.

Pat: Artificial linearly nonseparable data as shown in Figure 5.8 [123]. There are
880 samples, 2 features and 2 classes. Source: Machine Intelligence Unit, Indian

Statistical Institute, Calcutta.

Pima: Clinical measurements to detect diabetes disease of Pima Indian tribe.
There are 768 samples, 8 features and 2 classes. Source: UCI Machine Learning

Repository [15).
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15.

16.

17.

18.

19.

20.

21.

Wisconsin cancer: Clinical measurements to detect breast cancer. It contains 9
features, 684 instances and 2 classes. Source: UCI Machine Learning Repository
[15].

Hepatobiliary: Results of biochemical tests (e.g., Glutamic Oxalacetic Transam-
inate, Glutamic Pyruvic Transaminase, Lactate Dehydrase, Gamma Glutamyl
Transpeptidase, Blood Urea Nitrogen) used to detect Hepatobiliary disorders like
Alcoholic Liver Damage, Primary Hepatoma, Liver Cirrhosis and Cholelithiasis

[56]). There are 536 samples, 9 features and 4 classes.

Monks-2: Al game playing moves data having 432 samples, 6 features and 2
classes. Source: UCI Machine Learning Repository [15].

Tonosphere: The data represents autocorrelation functions of radar measure-
ments. The task is to classify them into 2 classes denoting passage or obstruction
in ionosphere. There are 351 instances and 34 attributes, all continuous. Source:
UCI Machine Learning Repository [15].

Cervical cancer: Clinical measurements for staging of cervical cancer [97]. There
are 221 samples, 21 features and 4 classes. Source: Machine Intelligence Unit,

Indian Statistical Institute, Calcutta.

Iris: Measurements of Iris flowers. There are 150 samples, 4 features and 3

classes. Source: UCI Machine Learning Repository [15].

Norm: Artificial bivariate normal data with zero mean and covariance matrix as

the identity matrix [100]. It contains 500 samples and 2 features.
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