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Chapter 0

Introduction

The main objective of this thesis is to develop an algebraic deformation theory for
associative dialgebras, which are binary quadratic algebras discovered by J.-1L. Loday
in [16], [17], and subsequently, to derive a G-algebra structure on the dialgebra
cohomology with coefficients in itself.

Deformation theory dates back at least to Riemann’s 1857 memoir on abelian
functions in whi(v:h he studied manifolds of complex dimension one and calculated
the number of parameters (called moduli) upon which a deformation depends. The
modern theory of deformations of structures on manifolds was developed extensively
by Frolicher-Kodaira-Nijenhuis-Nirenberg-Spencer [13], [14], [15], [25], [26].

The study of deformations of algebraic structures was initiated by M. Gersten-
haber [5], [6], [7], [8], [9]. The basic theorems and features of a deformation theory
arc all due to him. The following is a brief description of the deformation theory of
associative algebra, as introduced by M. Gerstenhaber.

Let A be an associative algebra over a field A7) with underlying vector space V'
Let N[f]] be the formal power series ring with coefficients in K and @ = K((t)) be

the quotient power series field of K{[f]]. Let V{[f]] be the power series module over



Voand Vo = V([t]] @y Q- Then Vi is a vector space over Q.

Any bilinear function f: V' x V' — 1 extends to a bilinear function Vo x Vg —
1 over Q. A bilinear function f: Ve x Vi — Vg which is such an extension is said
(o be “defined over 7. Suppose a multiplication f; @ Vo ®¢ Vi —» Vo 1s given by a

formal power series of the form
fila,b) = Fyla,b) + Fi(a,b)t + Fy(a, Dyt? 4 - -
where cach [ is defined over K and Fy(a, b) = ab, the original multiplication of L.
Assume that f, 1s associative, that is,
filfila,b),¢) = fila, fu(b,c)), forall a,b,ce V.

Then the associative algebra Ag, with underlying vector space Vg and multiplication
f, are called a one parameter family of deformations of A. The algebra Ag is called
a deformed algebra. The condition that f, is associative is equivalent to having for

all a,0,¢in V and for all v = 0,1,2, ...

(0.1) > (e, b),¢) = Fala, Fiu(b,¢)) = 0.
s

For v=0, this is just the associativity of the original multiplication. For v=1, the

above condition implies
al\ (b, ¢) — Fy(ab,¢) + Fy(a,be) — Fi(a,b)c =0

In terms of Hochschild theory this simply means that Fy is a Hochschild 2-cocycle,

thatis, Iy € Z%(A, A). The 2-cocycle Iy is called the infinitesimal of the deformation,

Thus we have the following result.



Proposition 0.0.1 The infinitesimal of a one parameter family of deformation of

an associative algebra 1s a Hochschild 2-cocycle.

An arbitrary element Fy € Z%(A, A) need not be an infinitesimal of a deformation.
[f it be so, then we say that Fy is integrable. The integrability of £ implies an infinite
sequence of relations which may be interpreted as the vanishing of the ‘obstructions’

to the integration of F}. For we can rewrite (0.1) as

(0.2) SF,(a,b,c) = > Fy\(Fl(a,b),c) = F\(a, F,(b,c)).
Adp=v
A >0

For v = 2, (0.2) gives
0F5(a,b,¢) = Fi(Fi(a,b),c) — Fi(a, Fi(),¢)).

Let G be the function of three variables defined by the right hand side of the

above cquality, that is,
G(a,b,c) = Fi(Fi(a,b),c) — Fy(a, Fi(b,¢)).

If Fi € Z?(A, A), then G € Z*(A, A), and the cohomology class of G is the Ist
obstruction to the integration of Fy; if I} is integrable, this class must be zero.

In general, suppose Fy, Fy, ... F, ) satisfy (0.2) for v = 1,2,...,n — 1 then the
right hand side of (0.2), for v = n defines a Hochschild 3-cochain, and is called
the primary obstruction and it is an obstruction to finding F;,, which would extend
the deformation. The most important result in deformation theory is the following

theorem.

Theorem 0.0.2 The primary obstruction 1s a 3-cocycle.
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We also have the following theorem.
Theorem 0.0.3 If H*(A, A) =0 then any I, € Z%(A, A) is integrable.

A one parameter family of deformations of an associative algebra A defined by a

multiplication f, is trivial if there exists a linear automorphism @, of Vg
Di(a) = a+ O (a)t + Dy(a)t® + -,

where cach @; : V5 — V4, are linear maps defined over K, such that @, f,(a,b) =
®i(a) - @(b). In that case, the deformed algebra is isomorphic to the algebra
Alltl] @ sy @

There is an obvious notion of cquivalence of deformations and an associative
algebra A 1s called rigid if every deformation is equivalent to the trivial one. An

unportant result in this theory is the following theorem.
Theorem 0.0.4 [f H*(A, A) = 0, then A is rigid.

For example, the tensor algebra T(V), the universal enveloping algebra U(g) of a
semi simple Lie algebra ¢ are rigid.

M. Gerstenhaber remarked that his methods would extend to any equationally
defined algebraic structure. His theory was extended to Lie algebras by A. Nijenhuis
and R. Richardson [21], [22], [23]. Their work closcly parallels those of the Frolicher-
Kodaira-Nijenhuis-Nirenberg-Spencer theory. The deformation theory of bialgebra,
which relates to quantum groups, was studied by Gerstenhaber and Schack in [11].

Any deformation theory should have the following features:

(i) A class of objects within which deformation takes place and a cohomology

theory (deformation cohomology) associated to those objects which controls



the deformation in the sense that infinitesimal deformation of a given object

can be identified with the clements of a suitable cohomology group.
(i) A theory of obstruction to the integration of an infinitesimal deformation.

(iii) Deformation of automorphisins of the deformed object and a notion of rigid

objects.

(iv) Existence of a G-alegbra structure on the deformation cohomology.

For example, in the Gerstenhaber theory, objects are associative algebras and
the natural candidate for the cohomology is the Hochschild cohomology and for
Nijenhuis-Richardson theory, objects are Lie algebras and the associated cohomology

is the Chevalley-Eilenberg cohomology.

The notion of Leibniz algebras, and dialgebras were introduced by J.-L. Loday

in (16}, [17], while studying periodicity phenomena in algebraic K-theory.

The dialgebras are a new kind of algebraic object, whose structure is determined
by two associative operations intertwined by some relations, for which there exists
an associated Koszul operad.

More precisely, a dialgebra over a field K is a vector space D over K equipped
with two operations 4 (called left) and I (called right), satisfying the following five

axioms:

x - (y 2) = (:I:—{y)—iz%a:-i(ykz)

(zhy) 2z A (y 4 2)

(xH4y)Fz Lok (yi—z)g—(:ﬂ-y)kz
Observe that the relations 1 and 5 say that the operations 4 and = are associative

respectively and 3 is called the inner associativity.
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A cohomology theory associated to the dialgebras was developed by J.-L. Loday,
called the dialgebra cohomology. The dialgebra cohomology with cocfficients has
been studied by A. Frabetti [4]. An interesting fact is the appearance of combinatorial
objects called planar binary trees in the construction of this cohomology theory.

The major aim of the thesis (a part of which appears in [19]) is to develop
deformation theory for associative dialgebras (which we simply call dialgebra), using
dialgebra cohomology HY*(D, D), extending the methods of [5]-[9]. For deformation
of a dialgebra, which consists of two associative products intertwined by some extra
relations, one needs to consider deformations of cach of the products simultancously.
Moreover, these deformations should be correlated in some sense and this correlation

should be inbuilt in the definition of the infinitesimal.

The main results of this thesis consist of showing deformations of a dialgebra

D are controlled by the dialgebra cohomology HY™*(D, D) with coefficients in the
dialgebra itself. More precisely, we show that:

(i) The infinitesimal of a deformation is a 2-cocycle, and the primary obstruction

to the extension of a 2-cocycle to a deformation is a 3-cocycle.

(ii) We derive a sufficient condition for rigidity and show that the free dialgebra is

rigid.

(iii) The infinitesimal of an automorphism of the identity deformation is a derivation
(that is, a 1-cocycle), and the obstruction for extension of a derivation to an
automorphism is a 2-cocycle.

To obtain the above results we introduce a pre-Lie system and a pre-Lie product
on the dialgebra cochain complex CY*(D, D), which defines the dialgebra cohomol-

ogy HY*(D, D). This structurc on CY*(D, D) will play an important role to develop



the deformation theory of dialgebras. Moreover, the pre-Lie product on the dialgebra
complex is described constructively, using the combinatorial propertics of the planar
trees, typical of the dialgebra cohomology. We also introduce a new example of a
dialgebra on the Laurent polynomials in two variables, and an explicit deformation
of it. This is done in Chapters 2-6 of this thesis.

[t may be mentioned that in [1], D. Balavoine studied formal deformations of
algebras over a quadratic operad in general and showed that the cohomology theory
which is involved is the one given by the Koszul dual operad. For a type of algebra,
deformation theory may also be built up by using triple cohomology as explained
in [3]. Morcover, an algebraic analogue of Haefliger’s cohomology can be used to

develop algebraic deformation theory too [24].

M. Gerstenhaber and A. A. Voronov have shown in [12], that the cochain com-
plex C*(A, A), of an associative algebra A, admits a homotopy G-algebra structure,
which in turn induces a G-algebra structure on the cohomology H*(A, A). In this
thesis, we show that as in the case of Hochschild complex, the dialgebra complex
CY*(D, D) with the differential altered by a suitable sign, admits a homotopy G-
algebra structure which comes from a non-% operad structure on CY*(D, D). More-
over, we deduce that this structure induces a G-algebra structure on the cohomology

HY*(D, D) of a dialgebra D. This is done in Chapter 7 of this thesis.

The thesis is organized as follows. In Chapterl, we summarise the basic facts
about dialgebras and their cohomology. In Chapter 2, we define formal deformation
of dialgebras, obstruction cochains, prove fow immediate results and state onc of
the two main theorems about obstruction cochains. In Chapter 3, we introduce the

notion of equivalent and trivial deformations in this context and prove that the free



dialgebra Dias(V') is rigid. In Chapter4, we introduce the notion of infinitesimal
of an automorphism, define obstruction to integrability of 1-cocycles and state the
other theorem about obstruction cochains. In Chapter 5 we introduce a o; product on
CY™*(D, D). Tt turns out that equipped with these o;-products, CY*(D, D) admits
the structure of a pre-Lie system. We then use o;-products to define a pre-Lie product
o on CY*(D, D) which makes CY*(D, D) a pre-Lie ring. There is also defined an
associative product * on CY*(D, D) and we establish a relation connecting the pre-
Lie product o, the associative product * and the coboundary operators of CY*(D, D).
In Chapter6, we interpret the obstruction cochains in terms of o and * and prove
the main theorems of the thesis. Finally in Chapter 7, we show that the dialgebra
complex CY*(D, D) with the differential altered by a sign admits a homotopy G-
algebra structure, which is induced by a non-¥ operad structure on CY*(D, D), and

also deduce that the cohomology HY* (D, D) admits a G-algebra structure.



Chapter 1

Dialgebras and dialgebra cohomology

1.1 Introduction

The notion of Leibniz algebras and dialgebras (or more precisely, associative di-
algebras) was discovered by J.-L. Loday while studying periodicity phenomena in
algebraic K-theory [17]. The dialgebras are introduced as a new kind of algebraic
object, whose structure is determined by two associative operations intertwined by

some relations, for which there exists an associated Koszul operad.

A (co)homology theory associated to dialgebras has been developed by J.-L. Lo-
day and, interestingly enough, combinatorial objects called planar binary trees play
a crucial role in the construction of the (co)chain complex. Dialgebra (co)homology

with coeflicients was introduced by A. Frabetti in [4].

In this chapter we present, for completeness, the definition of dialgebras as in-
troduced by J.-L. Loday in [16] and the description of dialgebra cohomology with

coefficients as introduced by A. Frabetti in [4].
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1.2  Dialgebras

After recalling the definition, we present a few examples of dialgebras, and describe
the notion of free dialgebra over a vector space, all of which can be found in [16].
Throughout this thesis, & will denote the ground field, and the tensor product over

K will be denoted by ®.

Definition 1.2.1 An associative dialgebra (or simply, dialgebra) D over K is a
vector space over K along with two A-lincar maps =+ D @ D — D called left and
F: D® D — D called right satisfying the following axioms :
x4 (y z2) = (:I:%g/)—izé:z,'%(y}—z)
(1.1) (b y)dz 2 ook (yaz)
(x4y)Fz = sk (ybz) 2 (aky)t 2

for all z,y, and z € D.

A morphism of dialgebras from D to D' is a K-lincar map f : D — D’ such

that f(z Hy) = f(z) 4 f(y) and f(z b y) = f(z) & f(y) forall z,y € D.

Example 1.2.2 Let (A4,d) be a differential associative algebra. Define left and right
products on (A,d) by

rdy:=xdy and rhy:=dry.

Then A equipped with these two products is a dialgebra.

Example 1.2.3 Let A be an associative algebra and let M be an A-bimodule. Let
f: M — A be an A-bimodule map. Then M can be made into a dialgebra by

defining left and right products as

m-m =mf(m') and mbEm = f(m)m’

10



Example 1.2.4 The category of linear maps over a field A denoted by LM consists
of the W-hnear maps f 1V — 117 as objects. Morphisms between [V = Woand
S7o V= W are apair of K-linear maps (2.o0), 20V > Voand ¢ - W — W such

that f o = v o f. This category can be equipped with a tensor product as follows.
VEhmew Lwy=venwowaev U wew

Let g 0 ML — IR be an object in the category LM, Then g : M — R is an associative
algebra in this category is equivalent to saying that [? is an associative algebra,
M is an R-bumodule and ¢ is a bimodule map, [18]. Hence, an associative algebra
g M — R in this category LM defines a dialgebra structure on the source M, by

the previous example.

Example 1.2.5 Let A be an associative algebra and n be a positive integer. On the
module of n-vectors D = A™ one can define left and right products as follows :

n

(x 4y =2(dy) for 1<i<n,
j=1

(@Fy)i= (O w)y for 1<i<n
j=1

Then D equipped with these products is a dialgebra. This is a special case of Example

1.2.3, where f is given by f((y;)) = X v

Let Dias denote the category of dialgebras. The free object Dias(V) in the
category Dias is described as follows. Let V' be a vector space over K. The free
dialgebra on V' is the dialgebra Dias(V) equipped with a K-linear map i : V —

Dias(V') such that for any K-lincar map f : V — D, where D is a dialgebra over

NCAN INS T
r m“\sl“ I %k
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K. there exists a unique dialgebra map ¢ 2 Deas(V) - 5 D, such that f = 2o An

explicit desceription of Dwas(V) 1s as follows
Dias(V) =T(V) @ Ve T

where (V) = K & V@ VP @ - equipped with the two products induced by :

(Vom0 Oy ) A (woy, - wo dgwy - - - wy)
= U, 0 DUy Uyt W W - Wy
and
(Vom0 DUy -y B (e, - - wo gy - - - wy)
= U, U Uyt U Wyt W Wy - Wy
where

Vopn - rU—l/DO,Ul R e O VS | ® Uy ® Vy U

is a typical additive generator of Dias(V).

1.3 Dialgebra cohomology

In this section, we first recall planar binary trees and certain face maps which are
defined on the set of planar binary trees making it into a pre-simplicial set. Next we

recall the definition of cohomology of a dialgebra with coefficients.

1.3.1 Planar binary trees

A planar binary tree with n vertices (in short, n-tree) is a planar tree with (n + 1)

leaves, one root and each vertex trivalent. Let Y, denote the set of all n-trees. Let Yy

12



be the singleton set consisting of a root only. The trees Y,.0 < < 3 are as shown

in the following diagram :

Y=l Y= =00 =N

For any y € Y;,, the (n+ 1) leaves are labelled by {0,1,...,n} from left to right
and the vertices are labelled {1,2, .../ n} so that the eth vertex is between the leaves
(1 = 1) and 7. The only element | of Yy is denoted by [0] and the only clement of Y

is denoted by [1].

There is a convenient way to denote every tree uniquely by an array of numbers,
by using what is known as grafting of trees. Grafting of a p-tree y; and a g-tree y, is
a (p+q+ 1)-tree denoted by 4, V y, which is obtained by joining the roots of y; and
Yy and creating a new root from that vertex. This is denoted by [y; p+ ¢+ 1 yo] with
the convention that all zeros are deleted except for the element in Y;. For instance,
[0] v [0] = [1], [1] V [0] = [12]. Thus the trees pictured above from left to right are
0], [1], [12], [21],[123], [213], [131], [312],[321]. Throughout this thesis, we shall use
these notations to represent elements of Y, 0 < n < 3. Also, given a tree y € Y,
one can uniquely determine two trees y, € Y, and y, € Y, with p,q < n, such that
y=vy1Vys

It may be noted that the n-trees that we are considering here are just the finite

binary trees obtained by considering free binary operation on Yj, as described in [2].

Definition 1.3.1 For any i, 0 < i < n, face maps d; : Y,, — Y, _,, are defined as
follows :
di - Y, — Y,

y = diy,

13



where dyy is obtained from y by deleting the tth leaf.

These face maps satisfy did; = d;1d;, 1 < 4. Thus the set {Yy;n > 0} of planar

binary trees equipped with the above face maps is a pre-simplicial set.

1.3.2 Cohomology with coefficients in a representation

The dialgebra cohomology was first constructed by J.-L. Loday [16]. Cocfficients in
this theory was introduced by A. Frabetti [4] to define dialgebra cohomology with

coefficients. Coefficients are representations of a dialgebra as defined below.

Definition 1.3.2 Let D be a dialgebra over a field K. A representation of D is
a K-module M, endowed with two left actions 4, D@ M — M, and two right
actions -,F: M ® D — M, satisfying the axioms (1.1), whenever one of the entries

z,y or z is in M and the two others are in D.

Clearly, D itself is a representation of D where the left actions and the right

actions are given by the left product and the right product of D respectively.

Let D be a dialgebra over K, and M a representation of D. Forn > 0, let
K[Y,] denote the K-vectorspace spanned by Y, and CY™(D, M) := Hom(K[Ya]®
D®" M) be the module of n-cochains of D with coefficients in M. The coboundary
operator & : CY™(D, M) — CY™!(D, M) is defined as the K -linear map
§ = M (—1)'6", where

alogf(doy;a%“-aan+l), ifi=0
(5if)(?/§a1,02,---7an+1) = f(diy;al,...,aioi/aiﬂ,...,an+1), if1<i<n
f(dﬂ-l-ly;a'lv---)an)0%+1an+1, fe=n+1

14



for any 4y € Yo ,15 @1y, Gy € D and [0 N[Y )@ D7 ——r AL Here, for any ¢,
0<i<mn41,d;: Y, — Y, arc the face maps as in Defintion 1.3.1 and the maps

0; « i1 — {-,F}, are defined by

- if i is of the form | V yy, for some n-tree y,

F  otherwise

- if the i leaf of y is oriented like “\

b if the it leaf of y is oriented like /7

for1 <i<n and

’ - if y is of the form y; V |, for some n-tree y
Ony1(y) = 0y = )
- otherwise.

The K-linear map & satisfies § o § = 0. The cohomology of the dialgebra D with
coefficients in M is defined by

HY™(D, M) := H™(CY*(D, M)) = ZZ;'}}%’TAQ

where ZY™(D, M) and BY™(D, M) are submodules of CY™(D, M) consisting of co-
cycles and coboundaries respectively. Throughout this thesis, we shall be concerned

with HY*(D, D), the cohomology of D with coefficients in D.
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Chapter 2

Deformations of Dialgebras

2.1 Introduction

The study of deformations of algebraic structures was initiated by M. Gerstenhaber
(5], [6], [7], (8], [9]. He introduced deformation theory for associative algebras and
remarked that his methods would extend to any equationally defined algebraic struc-
ture. His theory was further extended to Lie algebras by A. Nijenhuis and R. Richard-
son [21], [22], [23]. The deformation theory of bialgebras, which relates to quantum
groups, was studied by M. Gerstenhaber and S. D. Schack [11]. The main aim of
this chapter is to construct a deformation theory for dialgebras, which parallels the

existing theories for associative and Lie algebras.

In the majority of the available cases of deformation theory experience provides
one with a natural candidate for the cohomology controlling the deformations. For
example, one knows that Hochschild cohomology captures the deformation of asso-
ciative algebras and the Chevalley-Eilenberg cohomology controls the deformation
of Lie algebras. We shall see that in the case of dialgebras dialgebra cohomology

as described in the previous chapter controls the deformations. It turns out that,

16



as in most classical cases, deformations of a dialgebra are controlled by the lower
dimensional cohomology groups. It is worth mentioning here that in classical al-
gebraic deformation theories, the relevant cohomology controlling the deformations
actually coincides with the Yoneda cohomology in a category of bimodules. In the
present case, it would be interesting to find relationship between the Yoneda coho-
mology in the category of bimodules over a dialgebra and the dialgebra cohomology

as introduced in Section 1.3.2.

In this chapter we introduce the definitions of deformations of a dialgebra, n-
infinitesimal of a deformation, integrability and obstruction cochains. We also prove
a few elementary results, involving the infinitesimals, which are analogous to the
results obtained by M. Gerstenhaber in [6], in the theory of deformations of an
associative algebra. Moreover, we state one of the main theorems of this thesis,
involving obstruction cochains of a family of deformations. The proof of this theorem
appears in chapter 6, and depends on the pre-Lie system structure of the dialgebra
cochain complex CY*(D, D). At the end we introduce a new example of a dialgebra

on the Laurent polynomials in two variables and an explicit deformation of it.

2.2 Deformations

The definitions of deformations of dialgebras and infinitesimals, as they appear in
this section, closely parallel the same definitions, as they appear in the theory of

deformations of an associative algebra, [6].

Let D be a dialgebra over K with left product 4 and right product . Let V be
the underlying vector space of D, I{[[t]] denote the power series ring in one variable

and Q = K((t)) denote the quotient power series field. Let V[[¢]} denote the power

17



serics module with coefficients in Voover K[[t]] and Vg denote the (Q-vector space
VI[]] @wy @- Here one has to note that V{[t]] @k @ is made into a (J-vector
space by setting (a®q)-¢' =a®@(q-¢') forallae V[[t]] and ¢, ¢" € @, that is, this
(O-vector space is obtained from V([t]} by extension of scalars from K{[t]] to . Note
that any K-bilincar map f:V xV — V', in particular, the two products 4 and -,
extends to a (Q-bilinear map f: Vo x Vo — Vp in a natural way. Any )-bilincar
map Vg x Vo — Vg which is such an extension is said to be ‘defined over K.

With the above notations, we make the following definition.

Definition 2.2.1 Let there be given two bilinear maps fEIT - Vo x Vo — Vo,

which are expressible in the form

(2.1) fiab) = Fi(ab)+ Fi(a,b)t+ Fi(a,b)* + -
(2.2) fi(a,b) = Fj(a,b)+ F7(a,b)t + F7(a, b)t? + - - -

for all a, b € V, where Ff and FY are bilinear maps Vo x Vo — Vo defined over K,
and F¢ and FJ are induced by - and F respectively. Consequently, the maps f& and
fT are also defined over K. Moreover assume that Vg equipped with the products
ftand f] is a dialgebra which we denote by D;. Then D, is called a one-parameter

family of (formal) deformations of D.

We note that the identities (2.1) and (2.2) are equivalent to

(2.3) fia,b) = Ff(a,b) + Ff(a,b)t + Ffa,b)t* + - - -
(2.4) fr(a,b) = Fj(a,b)+ F{(a,b)t + F;(a, bt> + -

for all a, b € V, as all maps involved are defined over K.

Here is an obvious example of a deformation.

18



Example 2.2.2 Identity deformation of a dialgebra D s the dialgebra Dy =

D[t} @ryyy Q wath the underlying vector space Vi and with multiplications

gia,b) =a-b and g/(a,b) =at b forallabe V. induced by the products of
D.

2.3 Infinitesimals

Analogous to the definition of infinitesimal in the case of deformations of associative

algebras, we introduce the following definitions.
Let D,, with products ff and f] as given by equations (2.1) and (2.2), denote a
one parameter family of deformations of the dialgebra D. With these notations, we

make the following definition.

Definition 2.3.1 The ‘infinitesimal’ or ‘differential’ of this family of formal defor-

mations is the function Fy : K[Ys] ® D®? — D defined by

Fflay,aq), ify=[21]
FT(ay,ay), ify=[12]

Fl(y;alaa‘l):

where Ff and FT are considered as K-bilinear functions from V' x V' to V.
More generally, higher order infinitesimals are defined as follows.

Definition 2.3.2 Let Ff = 0= F', 1 <1 <n— 1, with either F¢ or FT non-zero.

Then the function F, : K[Yy] ® D®* — D defined by

Fli(ay,aq), ify=[21]
Fr(ay,ay), ify=1[12]

Fn(y; a, (12) -
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is called the n-infinitesimal of this family of deformations, where F5and F) are

considered as K -bilinear functions from V- x V to V.

Thus infinitesimal of a family is simply l-infinitesimal.

Let us now take a closer look at the conditions that are forced upon the bilincar
maps F¢ and F7, for all v = 0,1,. .., by the fact that Vg along with the products ff
and f7, is a dialgebra D,. If D, along with ff and f] denotes a one parameter family

of deformations of the dialgebra D, by the axioms (1.1), we must have,

([ fia, L) = SHSHa b)),

fE(fHa,b),0) = fia, [ (e,

(25) FEfra,b)e) = fia, Fb,e),
Fr(fta,b),e) = frla, fi(b,)),

| Sra, f10,0) = ST (ab),0)

for all a,b,c € V, where V denotes the underlying vector space of D.

Now expanding both sides of each of the equations in (2.5), using the equations

(2.3) and (2.4), we have the following equations respectively.

Fi(a, Ypso Fi(b, )t
ftg( [l.>0 (a bith,c) =
fE(Cus0 Fi(a, 0, c)
ff (> #>0F8(a bt #,c)
fi(a, Euso Fi (b, 0)t)
Now using the fact that the maps ff and f] are Q—bilinear, we can rewrite the above
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equations as

2oap>0 F (a, F,‘:(b, "))“H/\ = 2auz0 1){]( (” by, ejrA,
Z,\,ﬂzo F,f(l",i(“’ b), ")ULM = ZA,,Q() )‘j(‘ (b, c))e" A
a0 Ff(l’;(a, b), ")f’uw‘ = ZA,,»() a, F (1, C ))"“H
SAu0 F/((Iif(a, by, e)t'tr = 3o, o FXla, F (b, )it
2oa >0 I (a, F;(b, "))ULH = a0 F,\( t(a,b), c)ert A

respectively. Collecting coeflicients of ¢ we see that the above equations are equliv-

alent to the system of equations

(2.6,) Sy FHFR(0,0),0) = Fi(a, Fib,e)) = 0
(2.7,) Ziﬁi‘?"Ff(Ef(a’b)’) Fi(a,Fi(bc)) = 0
(2.8,) zm;FA(FT(a b),c) — Fi(a, Fi(b,c)) = 0
(2.9,) Dyncs B (Fila,0), ) = F(a Fi(b.e)) = 0
(2.10,) Z*T;i‘ VFA(‘,I(a,b),C)~F§(G»Fl(b,6)) = 0

for all a,b,c € V and for v =0,1,2....

Since Ff and F} arc extensions of the dialgebra products < and respectively, it
immediately follows that the above equations reduce to axioms (1.1) of the dialgebras

for v = 0.
Infinitesimal of a family of formal deformation of a dialgebra measures the devi-
ation from the existing products. We may note here that infinitesimals are always

9-cochains. The following result relates deformations of a dialgebra D to the dialge-

bra cohomology HY™*(D, D).

Proposition 2.3.3 The n-infinitesimal I, of a formal deformation D of a dialgebra

D is a 2-cocycle.
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Proof. By the definition of an n-infinitesimal, equations (2.6,) -(2.10,) vield the

following set of equations for v = n.

Fla—b,e¢) = Fli(a,bAc)+ Fla,b) 4 ¢ —a -4 Fi(b,c) 0
Fla b, c)— Fi(a, bl ¢)+ Flla,b) dc—a A F(be) = 0

Fflat bc) = F)(a, b-e)+ Fr(a,b) Ac—at Fi(be) = 0
Fr(a-bec)— Fi(a, bk c) + Ffa,b)Fec—at Ihbe) = 0
Fr(at b,c)— Fi{a, bt ¢) + Fy{a,b) Fe—at Fi(bye) = 0.

In order to prove that §F, = 0, we have to show that (§F,)(y;a,b,c¢c) = 0 for all
a.b,c € D and for y = [123],[213], [131], [312], [321].

For y = [123],

(6F,)([123]; a, b, ¢)
= at F,([12);b,c) — Fa([12];aF b,c) + F.([12];a,bF ¢)
—F,([12);a,b) F ¢
= a}—F,:(b,c)—F,:(al—b,c)—i—F,j(a,bl—c)-—F,:(a,b)}*c
= 0, by (2.10,).

For y = [213],

(6F,)([213];a, b, ¢)
— at F,([12};b,¢) — Fa([12;a b c) + F.([12};a,bF ¢)
—F,([21];a,0) F ¢
— at FT(bc)— Fi{adb,c)+ Fr(a,btc) - Ffa,b) Fc
= 0, by (2.9.).
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2.4

For y = [131],

For y = [312],

For y = [321],

Thus F;, is a 2-cocycle. This completes the proof of the proposition.

(GE)([131]; b, )

at Fu(121);0,¢) = Fu((21sa b bye) + Fu((12]5a,b A )
-F,([12];a,b) 4 ¢

ab Flb,c) — Fiat bye) + Fo(a,b—¢) — F(a.b) - e
0, by (2.8,).

(0F)([312]; a,b, )

a - F,([12):b,¢) — Fu([21];a 4 b, ¢) + Fu([21];a,b F ¢)
—F,([21];a,b) ¢

a4 Fy(bc) = Fy(adbc)+ Fia, bt c) — Fi(a,b) ¢
0, by (2.7.). |

(6F»)([321]; a,b,¢)

a 14 F,([21];b,¢) — Fu([21];a 4 b,¢) + Fu([21);a,b 1 ¢)
—F,([21];a,b) ¢

adFib,c) — Fia-b,c)+ Ffa,bHc) — Ff(a,b) Hc
0, by (2.6,).

Integrability of 2-cocycles

In view of the Proposition 2.3.3, one might be interested to know if every 2-cocycle is

the infinitesimal of a one-parameter family of deformations of a dialgebra. This gives
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rise to the concept of integrability and to decide integrability of a 2-cocycle; one 1s
led into an obstruction theory, which we will consider in the next section. Before we
introduce the definition of integrability of a 2-cocycle, we need to make the following
observations.

Let D be a dialgebra, v € Yz and a, b, ¢ € D. Then for any 2-cochain F, €

CY?(D, D), we have by definition of coboundary map,

GF ) (y;a,b,¢) = aoyF, (dyy; b, c) — F,(dyy; aolb, c)
+F,(dyy; a,bole) — F,(dsy; a,b)oje.

More precisely, for y = [321],[312],[131],[213],{123], the above equation takes the

following forms respectively.

(6F,)([321);a,b,¢) = a-Fib,c) — Fia b, c) + Ff(a,b-Hc) — Fi(a,b) 4 ¢
= T aum I‘jf(F}f((l,,(l)),C) - Ff((L, Fﬁ(ba C))a
A=0,0rpu=0
(6F,)([312);a,b,¢) = a-1Fr(bc)— Fia-b,c)+ Fla,btc) — Fi(a,b) dc
= =¥ s FHFYa,b),c) - Fi(a, Fj(b,c)),

A=0,0rpu=0

(6F,)([131);a,b,¢) = at Fibc) — Fi(aF bc) + Fi(a,b - c) — Fi(a,b) Hc
= =X tum 0F£<F;:(aab)a(:) - F;(CL, F;f(ba C))a

A=0,0rpu=

(6F,)([213);a,b,¢) = at FI(b,c)— Fr(a-b,c)+ Fi(a,btc) — Ff(a,b) Fc
= -2 Atp=v F/((Fﬁ(a,b),c) - F;((L, F;:(bv C))?

A=0,0ru=0

(§F,)([123};a,b,¢) = ab Fl(b,c)— F(atFb,c)+ F)(a,bF ¢)— F](a,b) Fc
= _E >\+p:uOF;(FJ(G,,{)),C)—F;(G,FZ([),C)).

A=0,0rpu=
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Thus, equations (2.6,) - (2.10,) can now be rewritten as

(2.11,)
(2.12,)
(2.13,)
(2.14,)

(2.15,)

for all a,b,c € D.

Poxrumy I (I (0, 0),¢) = Fi(a, Fii(b, c))

Ap>0

Z*W‘“:“ Ff(F;f((L7 b)? (:) - 1’/{1((1’7 }7;:([)7 C))

Apun>0

oniums FX(F (a,b), ¢) — F{(a, F(b, )

A,u>0

s FL(F2(a,b),¢) = F}(a, F(b,c))

Au>0

Soriu= FY(F)(a, ), ¢) — FX(a, F (b, c))

Au>0

§F,(1321]; 4, b, ¢)
OF,([312];a,b, ¢)
SF,([131};a,b,¢)
§F,([213];a,b,¢)

§F,([123];a,b,¢)

Definition 2.4.1 Any 2-cocycle F' need not be the infinitesimal of a deformation.

If it be so, then we call F' integrable.

Therefore, F is integrable if F = F, can be extended to a sequence Fy, F3,

.., F,, ..., where F, : K[Y;] ® D®? — D is defined by

Fa,b) ify=][21]
Fr(a,b) ify=[12

F,(y;a,b) =

for some Dy, along with ff and f7, denoting a one parameter family of deformations

of D, as defined in equations (2.1) and (2.2) and satisfying equations (2.11,) - (2.15,).

By the end of the next scction, we shall be able to state a sufficient condition

(Corollary 2.5.3) for the integrability of every 2-cocycle of a dialgebra. Morcover, we

show in the next chapter that the integrability of a 2-cocycle F' depends only on its

cohomology class.
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2.5 Obstruction cochains

Theory of obstructions has always played a very important role in deformation theory
to decide whether a given 2-cocycle is integrable or not. Given a 2-cocycle we shall see
that there exists a sequence of cohomology classes, vanishing of which is a necessary
and sufficient condition for the given 2-cocycle to be integrable. In analogy to all
the existing deformation theories, we proceed to define obstruction cochains, in the

deformation theory of dialgebras, as follows.
Suppose we are given 2-cochains F,, 1 < v < n — 1. Define F, F] : D®* — D
by
Fi(a,b) = F,([21];a,b)
Fy(a,b) = F,([12];a,b)

(2.17)

for all a,b € D. Moreover suppose that ¢, F7 and F, satisfy equations (2.11,)-
(2.15,), 1 < v < n — 1, then define a 3-cochain G : k[Y3] ® D®* — D as follows:

G(B2ka,b.e) = Tyoucy FFL@,)0) — Fi(a FL0,0)
G([312);a,b,¢) = fonF”(F,f(a,b),C)—Ff(a,FT( b,c))
G131 a,b,0) = zAALZSFf(Ff(a b),6) — F (o, FL(b,)
(213} a,b,¢) = zAL;gFA(Ff(a b, ¢) - Fi(a, F(5,6)
G(123);a,b,c) = Z;%g"F’(Fr(a,b),c)—F;‘(a,Fl(b,c))

for all a,b,c € D.

Let F' and F' be two 2-cochains. We define a 3-cochain F o F' as follows :

FoF'(y;a,b,c) = F(dy; F'(d3y; a,b), ¢) — F(day; a, F'(doy; b, ¢)),
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forall a, b, ¢ € D and y € Yy. For example, if y = [321], then
I'o F'(y;a,b,¢) = FYUF"(a,b),¢) — F(a, F'(b, ¢)).

This 1s just one instance of the general pre- Lic product to be defined i Chapter b

Suppose Fy,...F,_; are 2-cochains such that Ff F7 and F, satisfy equations

v

v

(2.11,)-(2.15,), 1 < v < n— 1, where Ff and F7 are defined as in (2.17). Then

O0F,([321];a,b,¢) = Soasu= ,,F)\(Fl(u b),¢) — Fi(a, Fi(b,c))

Ap>0

Yortu=s I\ 0 F,([321]); @, b, ¢)
Au>0

0F,([312];a,b,¢) = ZH,L o FY(Fi(a,b),c) — Fi(a, F](b, )

Apu>0

Z/\-i—y. UF)\OF ([312] a, b C)

Au>0

SR(131h 0, = Sy PP a1, ) — Fla, FLG,)

'zw , Py o F([131);a,b, ¢)

A,u>0

dF,([213];a,b,¢) = ZH‘, ,F/\(Fe(a b),c) — FX(a, F}(b, )

Au>0

Soaiums P 0 Fu([213];a, b, ¢)

A,u>0

0F,([123];a,b,¢) = ZH,, ,,FA(F’(a b),c) — Fx(a, F](b,¢))

)/J'>

Z/Wu .,F)\OFN([123] a, b C)

Au>0
Thus,
Z F)\ oF 73]
Atp=v
Ap>0

for all v, 1 < v < n — 1. It turns out that the 3-cochain G as defined above can

be expressed as G = Y s4u=n Fi 0 F,. This 3-cochain appears as an obstruction to
Au>0

extending the given sequence. We now state below the first main theorem, the proof

of which appears in chapter 6.
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Theorem 2.5.1 Let D be a dialgebra and Iy Fy, . F,_y be elemnents of CY?(D, D),

such that

(2.18) > Fiolk, =46F,
Abpu=v
A >0

forallv=1,2,....n—1. IfG e CY*D,D) is given by

G = Z F/\ o F;u
Abp=mn
A >0
then G = 0, that is, G is a 3-cocycle. The cohomology class of G vanishes if and
only if the given sequence extends to a sequence Iy, Fy, ... F, satisfying equation
(2.18) for all v = 1,2,...,n. Thus with Fy being the original dialgebra structure,
S Fit* is a deformation modulo t™ if and only if the equation (2.18) holds for v <n

and this can be extended to a deformation modulo t"*! if and only if the cohomology

class of G vanishes.

It is worth noting that the above theorem recapitulates Proposition 2.3.3 as the

cases n = 1 and F, ., = 0.

Definition 2.5.2 The cohomology class of G is called the primary obstruction to
extend the sequence Fy, Fy, ..., F,_; satisfying equations (2.11,) to (2.15,), 1 < v <
n — 1 to a sequence Fy, Fy, ..., F, satisfying equations (2.11,) to (2.15,), 1 <v < n,

with F¥’s and F7’s obtained from F; as described above.

As a consequence of the above theorem, we can derive a sufficient condition for

integrability of every 2-cochain.

Corollary 2.5.3 If HY?*(D,D) = 0 for a dialgebra D, then all the obstructions

vanish and hence any 2-cocyle is integrable.
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2.6 A deformation of the Laurent polynomials

Let K[z, y,z ', y '] denote the vector space of all Laurent polynomials in two vari-
ables z and y over a field K with basis 27y9, p, ¢ integers. Define two operations

and F on the basis elements by

xmyn _{ Irys — .,L,7nyn+r+s &Ild zmyn |”‘ IL'r’yS — :L,m+n+r

S

y

1

Extending these two operations on K[z, y, ™",y '] by bilinearity we get linear maps

A Kz, y, o7y )@ Ko,y 2y ' — Klz,y, 274yl

We now show that K[z, y, 27!,y !] equipped with the operations - and - is a dialge-
g

bra. It is enough to check that the dialgebra axioms (1.1) hold for all basis elements

g™y 2Pyl 2"y € Klz,y,z ', y~']. By the definition of 4 and F products, we
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have

(2.21)

(2.22)

(2.23)

(2.24)

Equations (2.19) and (2.20) imply that axiom (1) of (

Axiom (4) is implied by (2.24) and (2.25) and axiom (5) is implied by (2.25) and
(2.26). Hence, the products defined above make K(z,y,z7', y~'] into a dialgebra

over K.

Define linear maps

Fy F): Kla,y,z

Tyt A (P A aTy)

( nL 71 % 1]) {I)—{I U

m n _ﬂl (71)7/(1 }_ T I/ )

( n, n}_ IpJq) 411 7/

my F(p (1—1’1,_/)

( m n ‘i.’lpyq) P‘ T y

™y b (aPy? F aTy®)

(z™y™ b 2Py?) F a7y

30

.m o I]l qgtris

e, A ptrgerTts
)

LY
.,1/.7IL:{/71—+1)fq _+ .,L.r,‘l/.s'

.,L.myn»} p+q+r+s’

m n — Ip+q+r7/s

.,I/.m,!/n%—p+q+r+s’

.,L.m+n+pyq _4 1:7' Us

m-tn-+p

€T q+r+s7

Y
) n [ .Lp q+7r+s
m-+n+ +r+s

T Pyd™m™s,

:Errl?/71+p+q [ J)T?js

l.m+n+p+q+ry

lm n }_ Ip+q+rys
m+n+ptq+r,,s

T Py,

$m+n+pyq - xrys

l,m+n+p+q+rys.

1.1) holds, (2.20) and (2.21)
imply that axiom (2) holds. Again (2.22) and (2.23) imply that axiom (3) holds.

71/_1] — I([IaY 7I~1)y71]



by

["I(:I',”:I/”, ‘1:7:[,/5) — .,I/JIL,//'II 1% 7{ 117 l/,!/h

y
= gyttt
L™y oyt = ay™ T y®
= gt vy
Then one checks that the linear maps F4 FT satisfy equations (2.6,) to (2.10,). For
this, it 1s enough to verify that for a = 2™y™, b = 27y and ¢ = «"y" cach term of the
left hand side of the equations (2.6,) to (2.10,) except (2.8,) is zero. For (2.8,), the
term corresponding to (A, 1), A+ g = v, A # p cancels with the term corresponding

to (1, A), A4 = v, A # pand any term with A = p is again zero. Hence
Dy = Klz,y, o'y [t @xq K((2))
with ff and f7 is a deformation of the dialgebra D = K[z, y, 7!, y~!] where

f=> F4 and f[ =5 FJt".

v>0 v>0
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Chapter 3

Equivalent and trivial deformations

3.1 Introduction

In this chapter we introduce the notion of isomorphisms between deformations of
a dialgebra D, define equivalence of deformations of a dialgebra and trivial defor-
mations. With these notions, a dialgebra is then called rigid if every deformation
of it is trivial. We deduce that vanishing of the second cohomology HY?(D, D) of
a dialgebra D is a sufficient condition for rigidity of D. Using this condition, we
show that the free dialgebra Dias(V), over a vector space V, is rigid. It is worth
mentioning here that the free associative algebra T'(V') over a vector space V' is rigid,

in the context of deformation theory of associative algebras.

3.2 Equivalence of deformations

Let D be a dialgebra over a field K. Let V denote the underlying vector space of
D. Also, as in the previous chapter, @ = K((t)) denotes the quotient power series

field in one variable over K, V[[t]] denotes the power series module over K[[t]] with
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cocfficients in 1 and Ve, denotes the Q-vector space V{[E]] @y 2. We note that any
K-linear map ¢ : V. — V' extends to a Q-linear map ¢ © Vi, — V4, in a natural
way. Any map which is such an extension is said to be ‘defined over K70 Let D (f)
be a deformation of a dialgebra ) given by
(3.1) JE=2F, fi=3 Ft
v>0 v>0
and D;(g) be a deformation of D given by
(3.2) g =2 Gutt, g =y Gt
v>0 v>0
Note that any K[[t]]-linear homomorphism V([¢]] — V{[t]] is of the form 3wt
where 1; € Homg (V, V).

With the above notations, we make the following definition.

Definition 3.2.1 A (formal) isomorphism ¥, : D,(f) — D(g) from deformation

D,(f) to deformation D;(g) is a Q-linear automorphism ¥, : Vo — Vo
Vy(a) = a+i(a)t + pa(a)t’ +
where each 1); : Vo — Vg is a linear map defined over K such that

V. fi(a,b) = g{(¥i(a), ¥ (b))
\I/tftr(aab) = gtr(\pt(a)’\yt(b))

for all a,b € Vg. In other words a formal isomorphism is an isomorphism which is

(3.3)

equal to identity modulo ¢.

As in the case of deformations, equation (3.3) is equivalent to

U fi(a,b) = g{(Te(a), T:(b))
\I’tftr(avb) - gtr(\ljt(a)a\pt(b))

(3.4)
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for all a. b € V. The above definition enables us to define the notion of equivalence

between deformations of a dialgebra.

Definition 3.2.2 Let D(f) and D,(g), given by the expressions (3.1) and (3.2)
respectively, denote two deformations of the dialgebra D. Then D, (f) and Dy(g) are

said to be equivalent if there exists a (formal) isomorphism W = Dy(f) — Dy(g).

Definition 3.2.3 A (formal) automorphism of a deformation Dy(f) of a dialgebra

D is simply a (formal) isomorphism from D,(f) to D,(f).

Recall from Example2.2.2 that the identity deformation of a dialgebra D is the
dialgebra Dg = D{[t]] ® k[ @ with the underlying vector space Vg and with mul-
tiplications gf(a,b) = a 4 b and g/(a,b) = at b for all a,b € Vg, induced by the
products of D. ‘

Definition 3.2.4 A deformation D,(f) is said to be trivial if it is equivalent to the

identity deformation.

The relation between the infinitesimals of two equivalent deformations is given by

the following proposition.

Proposition 3.2.5 If D,(f) and D(g) are two equivalent deformations of D, then

the infinitesimals of Dy(f) and Dy(g) determine the same cohomology class.

Proof. Let the cquivalence of D;(f) and D,(g) be given by the isomorphism W, :
D,(f) — Dy(g). Expanding both sides of the first equation in (3.4), by using (3.1)

and (3.2), and using the fact that all the maps involved are defined over K, and ¥,
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and ¢, are Q-linear, we get
(22,50 1"f(u, D)) = gf(ijo hy(a)t! 3k (D)%),
or oo I (a D)= 50 kg G (), i ()R

Now equating coeflicients of ¢, we get

(3.5) ST Gl (a), (b Z i ( I’ (a,b))

i+ j+k=n +y=n
Similarly, expanding both sides of the second equation in (3.4), by using (3.1)
and (3.2), and using the fact that all the maps involved are defined over K, we get
\I’z(Zpo[‘ (a,b)t ) = gLT(ZjZ() wj(a)tj,f,kzo ’l/)k(b)tk)>
or Cigzo Wil Y (a, D)7 = 52, ko0 GT (15 (a), e (b))t H 5.

Now equating coefficients of t", we get
1 g ) 123

(3.6) > Gi(ila), ve(b) = DY ¢i(F7(a,b))

i+jtk=n itj=n
For n = 1, equations (3.5) and (3.6) take the forms
Ffa,b) = Gia,b)+a - (b) +i(a) 4b— 1 (a—b)
Fi(a,b) = G7(a,b)+at P (b)+i(a) b —1(at b)
forall a,b € V. Now since Hom (K [Y1]® D, D) = Homg (D, D), ¥, can be identified

with a unique 1-cochain again denoted by ¢; where 9, ([1];a) = ¥,(a) for all a € D.

Observe that

SYn([21];a,0) = a4 Y(b) — ¥i(a=b) +¥i(a) b
= F{(a,b) - G{(a,D),

o ([12];a,0) = at (b)) —Py(at b))+ (a) b
= F{(a,b) — G7(a,b).

35



Hence §y = I — Gy, that is I and G are cohomologous. This completes the proof
of the proposition. =
On the other hand if two 2-cocycles are cohomologous and one is the infinitesimal

of a deformation, then so is the other of an equivalent deformation.

Proposition 3.2.6 Let D, along with f/ and f7, given by the expressions (3.1),
denote a deformation of the dialgebra D. Let Fy denote the infinitesimal of D,. If a
2-cocycle Gy 1s cohomologous to Iy, then there czists an equivalent deformation D;

such that Gy 1is the infinitesimal of D;.

Proof. Let G| = F} + 4%, for some 1-cochain ¢. Let ¥ : Vi — V5 be a Q-lincar
map given by

Uy(a) = a+ P(a)t.
More precisely, ¥, is an isomorphism between (J-vector spaces, where the inverse
map is given by

UM a) = a+ D (—1)¢'(a)t".

i>1

Then G, is the infinitesimal of the deformation D} given by gf and g7 where
(3.7) gi(a,b) = W f{(We(a), (b))
(3.8) gila,b) = W fi (W), Tu(b))
This is because (3.7) and (3.8) can be rewritten as
(3.9) ‘I’;l(ff(\l’t(a): Wy(b)) = v, 2250 Fil(a +1p(a)t, b+ p(b)t)t,
(3.10) (ST (Te@), Ue()) = W7 Tino FY (a4 p(a)t, b+ 9 (b)t)E".

Using the fact that Ff, FT and ¥, are Q-linear, and also using the fact that Ff and

F§ are the original - and - products respectively, coefficients of ¢ in the equation
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(3.9) is
{(
(

Similarly. cocflicients of ¢ in the equation (3.10) 1s

Fi(a,b) + a o) plaa0) + pla) b
T,

= F b) + d¢:([21); a,b).

o

Fi(a,0) +at ¢(b) = ¢lat b) + () F b
= F(a,b)+ 0([12]; a,b).

By the definition of an infinitesimal, the infinitesimal of the deformation D) is F, + 0y
y bl t i )

which is G;. This completes the proof of the proposition. ]

Remark 3.2.7 It follows that the integrability of an clement of ZY?(D, D) depends
only on its cohomology class. If any element in a cohomology class is integrable, then

every other element in the same cohomology class is also integrable.

The above discussions reveal that the infinitesimal of a trivial deformation is a
coboundary, though the converse may not be true. In other words, a non trivial
deformation may have an infinitesimal which is a coboundary. What we can assure

is the following.

Theorem 3.2.8 A nontrivial deformation of a dialgebra is equivalent to a deforma-

tion whose n-infinitesimal 1is not a coboundary for some n > 1.

Proof. Let D, be a deformation of D with multiplications ff and f7 given by
equation (3.1). Let F,, the unique 2-cochain defined by Ff and F7 as in (2.16),
be the n-infinitesimal of the deformation, for n > 1. Then by Proposition (2.3.4),

d0F, = 0. Now suppose that F,, is a coboundary, say F, = —d, for some 9, €
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CYYD,D) = Homg (D, D). Let W, be the formal automorphism of Vi, defined by

Vy(a) = a+ ¢, (a)t’. Then setting

gi(a,b) = W (W (a), Wy (b)) = S Glla,b)t”,
v>0

gr(a,b) = W' 7 (y(a), V(b)) = > G a,b)t
v>0

we get a deformation Dj isomorphic to ;. Explicitly, gf and g} arc given by
gia,b) = a—"b—{Yn(a D) = nla) 4b—a A (b) - Ffa,b)}t"
+F£+1f,"+l o
gi(a,b) = abb—{halatd) —ula) Fb—at P,(b) — Fy(a,b)}t"
+Fr+1t71+1 +

Suppose Ff # 0. Then as Fy, = —d,, we sce that

Fi(a,b) = Fu([21];a,b) = —dvn([21];a,0)
= —{a49.([1;0) = ¥al(ll;a ) + ¢n([1};a) H b}
= —{aAPn(b) = ¥ula =b) +Yn(a) b}
Thus the coefficient of ¢ in gé(a,b) is zero. In case F! = 0, then v, ([21};a,b) =0
and hence coefficient of ¢ is again zero. By a similar argument the coefficient of ¢"
in the expression of ¢] is also zero. Thus G} = 0 for 1 < 1 < n where x = {{,r}.
Hence we can repeat our argument to kill off an infinitesimal that is a coboundary

and the process must stop if the deformation D, is nontrivial. This completes the

proof of the theorem. n

3.3 Rigidity

The notion of rigidity may be defined as follows.
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Definition 3.3.1 A dialgebra D is said to be rigid if every deformation of D s a

trivial deformation.

As a consequence of Theorem 3.2.8 we have the following sufficient condition for

rigidity of a dialgebra D.

Corollary 3.3.2 Let D be a dialgebra over a field K. If the second cohomology
HY?(D, D) vanishes, then D 1s rigid.

Proof. Let, if possible, D, be a non-trivial deformation of D. Then by Theorem 3.2.8
D, is equivalent to a deformation D, whose n-infinitesimal (which is a 2-cocycle by
Proposition 2.3.3) is not a coboundary, for some n > 1. This contradicts the fact
that HY?(D, D) = 0. »

It is well known that the tensor algebra T'(V') which is the free object in the cat-
egory of associative algebras is rigid in the sense of deformation theory of associative
algebras. Here we show that the free object in the category Dias, that is, the free
dialgebra Dias(V) over a vector space V/, is rigid in the sense of deformation theory

of dialgebras.

Proposition 3.3.3 The free dialgebra Dias(V') over the vector space V is rigid.

Proof. Let us denote Dias(V) by D. By Corollary 3.3.2, it is enough to show that
HY?(D,D) = 0. Let f € ZY*(D, D). Let D denote the underlying vector space of

D. Consider the short exact sequence of dialgebras
0—D-DeD 5D —0
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where D on the left is considered as a dialgebra with abelian products, that is,
a—b=abkb=0forall a,b € D, and the dialgebra structure on D & D is defined

by
(ay,b) = (ag, b)) = (ay Aby + by Hay — f([21];01,02), 0, A b,)

(ay, b)) F (ag,by) = (ar b by + by Fag — f({12];b1,b2), b1 1= by),
j being the inclusion into the first factor and 7 the projection onto the second factor.
This sequence splits as a sequence of vector spaces. So there exists a I{-linear map
o:D — D@ D such that m oo = idp. Hence o must be of the form (g, id), where
g: D — Dis K-linear. Let o/ = o/V :V — D @ D. Universal property of
D = Dias(V) gives a dialgebra map & : D — D @ D with 6 o i = ¢', 4 being the
inclusion V < D. This implies that on V| & and ¢’ agrece. We note here that as
described in chapter 1, the generators of D look like v_,, - - - v_19v| -+ Uy, for v; € V.
Since 7 and & are both dialgebra maps we have m o & = id. Hence ¢ is of the form

(¢, 1d) for some K-linear map ¢ : D — D. Now as ¢ is a dialgebra map, we have
d(a-b) =5(a) 45(b)

and

glatb) =a(a)F a(b).

Since ¢ = (¢, id) we get

(3.11) (p(a—b),a=b) = (p(a),a) - (¢(b),d)
= (p(a) 4b+a-p(b) — f([21};a,b),a -1 b)

(3.12) (platkd),akb) = (p(a),a)t (p(b),b)
= (pla)Fb+at o) — f(12];a,b),aFb).
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Now, by the definition of the coboundary map,
dp([21);a,0) = a-p((1];0) —@([tl;a 4 b) + @([1];a) Hb
dp([12;a,0) = at w((1];0) —w((1;atb) + @([1];a) & b.

Equating the first co-ordinates on both sides of (3.11) and (3.12), we deduce that
fly;a,b) = do(y; a,b) for y = [21], [12], where ¢ has been interpreted as a 1-cochain.

Thus f = dp. This completes the proof of the proposition. ]
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Chapter 4

Automorphisms of the identity deformation

4.1 Introduction

Recall that the identity deformation, as introduced in Example2.2.2, 15 the dialgebra
Do = DI[t] ®k[g @ with the underlying vector space Vg and with multiplications
¢f(a,b) = a 4 b and gj(a,b) = al b for all a,b € Vg, induced by the products
of D. In this chapter, we study automorphisms of the identity deformation Dg.
Analogous to the notion of infinitesimal of a deformation as introduced in chap-
ter 2, we define infinitesimal of an automorphism, prove a few immediate results,
and introduce obstructions to “integrability” of derivations (that is, 1-cocycles) of
D. Further, we state another main theorem of this thesis, Theorem 4.3.1, involving
obstruction cochains. This is the counterpart of Theorem2.5.1 in the case of inte-
grability of derivations. The proof of this theorem appears in chapter 6 and depends
on the associative cup product * on CY*(D, D) which will be introduced in the next
chapter. We also subsequently derive a sufficient condition for extending a truncated

automorphism to an automorphism of Dg.
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4.2 Infinitesimal

According to Definition 3.2.3, a (formal) automorphism of the identity deformation

D¢ 1s a Q-linear map WV, : Do — Do

(4.1) Wy (a) = ola) + r(a)t + Pola)t® + -

for all @ € D, where cach 1; : Dg — Dg is a linear map defined over K and g is

the identity map satisfying

U(a—b) = Yi(a) 4, (b)
U(atkb) = Yy(a)F P, (b)

(4.2)

for all a,b € D.

Definition 4.2.1 Let ¥, given by

W, (a) = o(a) + (@)t + Poa)t® + - -

denote a (formal) automorphism of Dg. The first non-zero coefficient 9, in the above

expression is called the infinitesimal of the automorphism W,.

Thus infinitesimal of an automorphism measures its deviation from the identity
map. Also since CY!(D, D) = Homg(D, D), every infinitesimal is a 1-cochain. In

fact, even more is true.

Lemma 4.2.2 The infinitesimal of an automorphism of D¢ is a derivation, that is,

a 1-cocycle.
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Proof. Let W, given by equation ((1.1) denote an antomorphism of g, Substituting

Yyoin equation (4.2) we get

oo V(@ A0 = LA -0 Y \(”) 421;1 0 /;A< )
Zl/)(] 11/<” F [) L)\ lJ{ \(”) F L/:/() l/’w( ) )

or equivalently

Zu\f() '(/),,((1, - ]))[,l/ — Z/\,}l?()('lv/))\((l‘) l/)/z( ))L/\ I
Susotu(at D = Yy soliha(a) F (b)),

Equating coefficients of £ on both sides, the above sct of equations reduce to

(4.3,) }:f\ﬂfé Pa(a) 4 (b) = .(a-b)
>

(4.4,) St a(a) F () = ulatb)
A >0

foralla,b € D,and forallvy = 0,1,2,.... Equation (4.3,) and (4.4,) can be rewritten

as
(4.5,) Eybiy ha(a) A¢u(d) = (@) o+ (e -b) — a4 (b)
(4.6.) Dymmala) b)) = —t(a) bt (el b) — a1, (b)

for all a,b € D, and for all v=1,2,.... As in chapter 3, we identify the lincar map

y; with the corresponding 1-cochain defined by
Yi([1];a) = ¥;(a) forall ae D.

Then equations (4.5,) and (4.6,) reduce to

(4.7,) Zk\ﬁﬁfﬁ A1) a) 9. ([1);0) = —0¥u([21};a,b)
(4.8,) 232;5 (1) a) Eu([10) = —6¢((12);a,0)
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for all a.b € D and for all v = 1,... . It follows from (4.7,) and (4.8,) that if v, is
the infimtesimal of W, then 04, = 0. Hence the infinitesimal of an automorphism is
a derivation of D. This completes the proof of the lemma. ]

We note here that the equations (4.7,) and (4.8,) give a necessary and sufficient

condition for a linear automorphism W, as in (4.1) to be a dialgebra automorphism

of DQ

4.3 Obstructions to extending a derivation

Any derivation of D need not be the infinitesimal of an automorphism of Dg. We
may ask when a derivation of D extends to an automorphism of Dg. Suppose that
a derivation v, has been extended to a truncated automorphism W, = id + Z’f_l Pt
so that ;’s satisfy (4.7,) and (4.8,) for allv = 1,...,n— 1. Define a 2-cochain F' by

Coaru=n U ([1]; @) 9, ([1);0) if y=[21]
F(y; a, b) — A >0

Coaeuzn YA ([1]; @) F 9, ([1]; ) if y=[12]
A,u>0
for all a,b € D.

Let F, G be two 1-cochains. Define a 2-cochain F' x G as follows :

(F* G)([21];a,b) = F([1];a) 1G([1};b)
(F+G)([12);a,b) = F([1};

=

Q
—~
=
uC“‘
~—

This is a special case of a more general definition of the x product, to be defined in

Chapter 5.

Let ¥, = id + 7 "4;t* be a truncated automorphism, with 1-cochains ; sat-

isfying (4.7,) and (4.8,), v = 1,...,n — 1. Using the * product defined above for
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I-cochains, this 1s equivalent to saying

S, = — Z TSN

Atpu=v
A >0

for all v = 1,...,n — 1. It turns out that the 2-cochain F' as defined above can be

expressed as

F= 3 hh*y,.

Adpu=n

Au>0
This 2-cochain appears as an obstruction to extending the given derivation to an
automorphism. We now state the second main theorem, the proof of which appears

in Chapter6.
Theorem 4.3.1 Let D be a dialgebra and iy, ,, ..., be 1-cochains, such that

- Z 1/1,\ * ’(l)/l. = 01,
Atp=v
Au>0

forallv=1,...,n— 1. If F € CY?(D, D) be given by

F= Z w/\*d),m

Atp=n
Au>0

then 6F = 0, in otherwords, F is a 2-cocycle. The cohomology class of F' must
vanish if the truncated autornorphism is to be extended. In other words, id -+ ¥ it
is an automorphism modulo t" if and only if the first equation holds for v < n and
this can be extended to an automorphism id + ¥ ¥t modulo "' if and only if the

cohomology class of F' vanishes.

Definition 4.3.2 The cohomology class of F' is called the primary obstruction to
extend the sequence ¥y, 1, ..., 1, | satisfying (4.7,) and (4.8,), 1 <v <n-1,to

a sequence ¥y, Pg, . .., 1, satisfying (4.7,) and (4.8,) for 1 < v < n.
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We may call a derivation integrable if it can be realized as an infinitesimal of an

automorphism of D).
From the above theorem we deduce the following corollary.

Corollary 4.3.3 If HY*(D, D) = 0, then every derwation of D may be extended to

an automorphism of De.

The following theorem relates the theory of deformations developed in chapter 2
and the theory of automorphisms of the identity deformation Dg developed in this
chapter. Infact, it involves all the concepts that have been introduced so far in the

thesis.

Theorem 4.3.4 If every derivation of D extends to an autornorphism of Dg, then

every trivial deformation of D has a trivial n-infinitesimal.

Proof. Suppose that
fia,b) = a-b+ Fia,b)t + Fy(a,b)t* + -
fi(a,b) = at b+ Fi(a,b)t+ F5(a,b)t* + -
define a trivial deformation of a dialgebra D. Let F;, defined by
Fo([21];0,b) = Fi(a,b), Fu([12];a,b) = I (a,b)
be the n-infinitesimal of this deformation. Recall from Definition 2.3.2, Ff=0=F],
1 <i<n-1and by Proposition2.3.3 F, is a cocycle. Let
U, (a) = a+ Pi(a)t + Yo(a)t® + - -

be the isomorphism from Dy to D¢ where D, denotes the deformation defined by ff

and f;. Thus we have
W (f(a,b)) = Wy(a) AW, (b) and y(f](a,b)) = ¥ila) F Wi(b)
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for all ¢, b € D. Substituting the expression for W, we get

V(X0 Fi(a,b)t') = 2050 Pia)t 22550 Py (D)1,

U (Xiso Fy(a,0)t7) = s vi(a)tt - Ejzo7/)j(b)tj~

Using the expression of ¥, we can rewrite the above equations as

2, 520 i (Ff(a, b))t = 3, j>o0 tila) Yy (),
i geo ¥ (FT (@, b)) = 52, juothi(a) b (b)Y

(4.9)

Equating coefficients of ¢t from the above equations, we get

Pi(a=b) =(a) 1o+ a1 (b)
Pi(abb) =vY(a) b+ alt P (b),

which is equivalent to the fact that d1; = 0. In other words, v, (and hence —1,) is

a derivation of D. By hypothesis, there exists an automorphism of Dg of the form
ni(a) =a— P (a)t+---.

It is easy to see that the composition 7} o W, which is again an isomorphism from D,

to D¢ has coefficient of ¢ equal to 0.

Let the composition be given by
Ul(a) =1} o Wy(a) = a+ Y(a)t? + ¢i(a)t® + -

Again as ¥} is an isomorphism from D, to D¢, we have equations similar to (4.9) and

equating coefficients of 2 thercof we see that 1) ( and hence, —)) is a derivation of

D.
Now, again by hypothesis, there exists an automorphism of D¢ of the form
ni(a) = a — Pya)t* + -
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As above the composition W¢ = 7? o (1) o ¥y), which is again an isomorphism {rom
D, to Dy, has both the coefficients of t and t* equal to zero. Since, Ff =0= 7,

<3< n—1 we can repeat the process (n — 1) times to construct an isomorphism

' n—1 __ n-1 =2 .
Wy =0y =T o T oo 0,

from D, to Dg and is of the form
Vi(a) = a+ Yn ()t + Pl (@)™ + -

Since ¥} is an isomorphism we have
2, >0 wg(Ff(a, b))tiH = 2. j>0 Yi(a) w;<b)ti+j,
S o U (FT(a, D) = 5 jseila) - (D)8,
Equating coefficients of t", we get,
@ b) + Flab) = ¥i(a) 1b+a—uh(0)
Wh(atb)+ Fi(a,b) = yna) b b+atyr(b).
By definition of the coboundary, and regarding 1!, as a 1-cochain,
sy ((21);a,0) = a—((1);0) — (10 4 0) + ¥r((l];a) A,
s (12a,0) = at 9, ([1;0) — vu((tat b) + ¢p((ta) Fo.
Hence we can rewrite the above equations as
sy, ([21);0,b) = Fi(a,b)
s¢! ([12);a,0) = Fy(a,b).
But by definition of n-infinitisimal, this simply implies that 0¢; = I, the n-

infinitisimal. This proves that the n-infinitisimal of the family of deformations given

by ffand f] is trivial. »
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Chapter 5

Structure of a pre-Lie system on C'Y*(D, D)

5.1 Introduction

The notion of pre-Lie system was introduced by M. Gerstenhaber [5]. He showed that
the Hochschild complex of an associative algebra admits a pre-Lie system structure.
He also showed that a pre-Lie system induces a pre-Lie ring structure. He used the

above structures to develop deformation theory of associative algebras.

The aim of this chapter is to show that the direct sum of the cochain modules,
CY*(D, D) of a dialgebra D, admits a pre-Lie system structure. Since the construc-
tion of CY*(D, D) involves planar binary trees, our case is more complicated than
the case of Hochschild complex. We need to introduce certain operations (cf. Def-
inition 5.2.1) on planar binary trees which are essential in giving a pre-Lie system
structure on CY*(D, D). As a consequence, CY™*(D, D) becomes a pre-Lie ring with
a product which we call ‘pre-Lie product’. Moreover, there exists an associative
product * on CY*(D, D), of degree zcro, induced by the pre-Lie system structure.
These structures play a crucial role in proving Theorems2.5.1 and 4.3.1 in the next

chapter. Finally we establish an important relationship connecting the associative



product *, the pre-Lie product and the coboundary maps of the cochain complex.

5.2 Pre-Lie product on the cochain complex

In this section we recall the definition of pre-Lie system, as was introduced in [5], and
define certain operations on the set of planar binary trees. These operations enable
us to define the structure of a pre-Lie system on the cochain complex CY*(D, D),

and consequently, a pre-Lic ring structure on the same.

Definition 5.2.1 Given a pair of integers, p,q > 1 with p + ¢ = n + 1, we define
two maps Ri(n;p,q) : Y, — Y, and Ry(n;p,q) : Yo —> Y, foreach 1, 0 <i<p—1

as follows. For y € Y,

disrdipe - digq(y) ifp,g>2and0<2<p—1

Ri(n;p,q)y) =< vy fp=n,g=land 0<i<n-—1
didy - du_1(y) fp=1,¢g=nande=0
and
' dody -+ dio1divgrr - dpig(y) ifp,g>2and 0 <i<p-—1
dgs1 - dprg—1(y) if p,g>2and =0
dody - - dp.-2(y) ifp,g>2andi=p-1
Ry(n;p, @) (y) = dody - di_1diyy -+ di(y) ifp=n,g=land 0<i<p-1
dy - d,(y) fp=n,g=landi=0
dy - dy_o(y) fp=n,gq=landi=n-1
LV ifp=1,¢=mnandi=0.

To simplify notation, we will often denote the maps R (m;r, s) and Ry (m;r, s),

0 < i < r—1, corresponding to any triple of integers m, r and s with m+1 =1r-+s, as



defined above, simply by I} and ). However, whenever necessary, we will explicitly
write down these maps to avoid confusion.

We recall the following definition from [5].

Definition 5.2.2 A right pre-Lie system (or simply a pre-Lic system) {V,,,0;} is a
sequence ..., V_y, Vo, V1, ... of K-modules, equipped with a lincar map o; = o;(m, n) :
Vin ® Vi, — Vi for every triple of integers m,n,1 > 0 with ¢« < m satisfying the
following properties
(fmojhP)oiypg™ fFO<3 <11
(fMoig)o; WP =1 fmo;(gho; i h?) fi<j<n+1,i#0

and 0 <j<n+1,ift=0

where f € V,, is written as f™ to indicate its degree and f o; g = o;(f ® g).

Next we define products o; on CY*(D, D), of degree —1, which eventually makes
CY*(D, D) into a pre-Lie system.

Definition 5.2.3 Let D be a dialgebra over a field K. For all ¢, 0 <1 <p —1 the
maps

0; : CY?(D, D) x CYYD, D) — CYP*" (D, D)

are defined in the following way. Given f € CY?(D, D) and g € CY%(D, D),

(f 04 g)(y) A1y ..., Gpy Qpi1,-- - ,ap+q—1)
= f(Rll(y)v ay, ... »ai,!](Ré(?/); Aitiy - - - 7ai+(1)7 Aitgtls -+ - 7(Lp+q—1)

where y € Y141, R} 1 Ypiq-1 — Yy and Ry : Y, 1,1 — Y, are maps as in 5.2.1.
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The maps o; as defined above will endow CY*(D, D) with the structure of a pre-
Lie system. The proof of this depends on the next two leminas. The proofs of the

following lemmas are based on the pre-simplicial identity didy = dp_1dy, I < k.

Lemma 5.2.4 Let n+2=p+q+7. For0<j<p+q—-2,0<1<p—1 and

j <1 —1, the following maps

R{ R]l(n p+rq—1,7): Y, — Y
np+q—1,7r): Y, — Y,
) Vg1 — ¥

i
2

= Rj(
R=Ri(p+q—1ipgq
= Ri(p+q—1;p,9) : Yorg1 — Yq
R = R (p+r = 1,9) Yo 2 Youro
R = R mp+r—1,q) 1 Y — Y
R =Rl(p+r—1p7r): Y —Y
Ry =Rjp+r—1Lpr): Your — ¥

satisfy
() RiRl=RiR'",
(i) RyRY = By,
(i13) R} = RLRY!
where the terms on the either side of the equalities (1), (it) and (iii) are suitable

composition of maps, for example, R’iR{ at the left hand side of the equality (7)
denotes the composition of the maps Ri(nip+q—1,7) and Ri(p+q—1;p, q).

Proof. First note that 0 < i < p implies p > 2. We need to consider a few cases.
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Case 1. Let q,7 > 2, 0<j<p+qg—-2,0<i<p-1landj <:-1 By
Definition 5.2.1, we have

(

J prtr—1 _
(52) ]{lRll r = (l]'+1dj+2 ce dj—krfldi+rdi+r+l e di+r+r]—2-

1) Rll RJI = di+1di+2 cet {li+qfld'j+ldj+2 Tt (IZ]'+T‘1,

(W

Since j <i—1, j+7r— 1 <i+r. Hence the simplicial identities didy = dy_1d; for
| < k imply that the adjacent terms dj4,_1d;4, in the right hand side of the equation
(5.2) can be replaced by diy,—1d;4r—1. We apply this argument again to the term
djir—1ditr+1. Continuing the process, (5.2) reduces to

RIRY™ ! = dj\djyg - djyr—adizr—1digr -+ - digriq-3djir_1.
Next, we repeat the argument starting with dj;,_2dipr—1. Proceeding this way the
string dj41 -+ - dj4r-1 in (5.2) can be pushed off to the right to get (5.1). This proves
(&).
To prove (i1), first assume that i < p — 1. Then, by Definition 5.2.1 we have
RSV =dody - djyrardjyr - digr—2@izrig - dpygrr—2-

Note that j+7r—1<i+r—-2asj<i¢—1 Ifj+r—1<i+r—2 thenin
the above expression of Rff"l we can replace dji,_1dj4r by djir_1djyr—1 and then
replace dj4r—1d;4r+1 by djirdjr—1. Repeating this process we can make d;;,_; and
diyr+q adjacent and hence can replace djpr—1ditriq BY digriq1djir1- Then starting
with djyr-1ditriq41 and successively applying the simplicial identities we get

Ry =dody - djr—odjir—1djir - digr—3digrigo1 - dpygir 3ot
Next, we apply the above argument again starting with the terms d;, odj4,—1 to
get

i+r—1 __
RQ - dodl e dj~+-r—~3dj+r—‘2 T di+r——4di+r+q—2 e dp+q+r~4dj+r—2dj+r*1-
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We repeat the process (r — 1) times to obtain
i+r—1
I = dody - di—ldz+q+l e 'dp+q~ldj+ldj+2 e ‘(l]‘+r~1
_ i r2J
= Ry

If i = p — 1, then by Definition 5.2.1, we have
REYTT = dody - dyyr

and
RIQ)_IR{ = Rg_ldj+1 g
= dody - dyoadyir - dygror.
Now the proof of the desired equality is similar to the proof of the corresponding

case for 1 < p — 1.

To prove (i14) first assume that j > 0. Note that by Definition 5.2.1
R% = dod, - 'dj~1dj+r+l e 'd’p+q+r~2

and

J pitr—1 _
R2R1 - dOdl o 'dj—ldj+r+1 ne 'dp+r—1di-b-rdi+r+l e di+r+q—2-

Asp > 1, p4+r > i+r. Thus, by applying d; 1d; = did; for ¢ < j, in the above
expression of R%Ri“'l, the terms dpy,-1d;4r can be replaced by dij,dpir. Next we
consider d,y,d;yr41 and replace it by diy,1dpir41. Repeating this (g — 1) times we

get
J pitr—1 _
RQRl - dOdl T 'dj—l(ij+r+1 T dp+r—2di+rdi+r+l e ‘di+r+q~‘2dp+q+r*2-

Next, apply the above argument to the adjacent terms dj, 2ditr to get

Jj pitr—1
R2R1 = dodl s (ijAldj+r+1 s dp+r'—3

diprdivr i1 digrag2dpygrr—3dprgrr—2.
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Continuing this process (p — ¢ — 1) times we obtain

R%Rllwil = dody - dj~1dj+r+1 iy iy dig g
o di+r+r]72di+r+q—l T dp-{»q+r—3dp+q+r72
= R
It remains to prove (ii4) for the case j = 0. In this case 7 > 1 and we have

0 _
RQ = dpy1 - dp+q+r—2
RO i+r—1
QRl

Ry yrdigri - divrig—2
= dry1 dppr—1@igrdipriy - digrag-2-
The proof here is an imitation of the corresponding proof for the case j > 0.
Case 2. Letr=1,¢>20<j<p+qg—2,0<i<p—-landj<i—-1
Here,
RR] = R as Rj= id
= dip1diyz - digg1,
and - .
RIRY = Ridip1-diyg—
= dipy--diggr as R = id.
This proves the equality (¢), in this case.
To prove (i) we note that
RiRI = Ry as R} = id
= dody - dim1dizgrr o dpig
and sz = dody - dio1diggir - dprga
This proves (ii) for r = 1.

To prove (ziz), note that the maps
Ry=Ri(nip+q—1,1): Y. — Y
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and

It — I (o il LV Ve
RIRY = Ry (p;p, 1) IR (s p, q): Y, — Y
are the same constant maps as Y7 is a singleton set. Thus (121) follows.

Case 3. Let ¢ = 1, 7 > 2. Here, by Definition5.2.1,

RiR{ = Ridj%ldjﬂ o djyren

= dj+1dj+2 T dj+1~_1 as Rll = 1id

and
RR = Rl as R = id
= dj+1dj+2 e 'dj+r—1-
This proves RiR] = R{RT""™', in this case.

To prove (ii), note that

RLR) = Ri(p;p, )R (nip,7) 1 Yo — Vi

Moreover, by definition 5.2.1,

R = Ry (p = 1,1) 0 Ya — N

Again, since Y; is a singleton set, the maps on either sides of the equality (i7) are

the same constants, hence the result follows immediately.

To prove (i1), observe that
RO = id
and
R = Ry(n;p,7r) = dody -+ - djadjursr -yt
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Also
R?z =Ry(p+r—1Lipr)=dody - djrdyirgr - ey
by Definition 5.2.1. Thus (4i7) holds in this case.
Case 4. Let ¢ = r = 1. Note that by Definition 5.2.1,
RiR] = Ri(pp. )Ri(n;p, 1)
= id
= Ri(p:p, 1)Ri(n;p, 1)
= RIR.
This proves (4).
To prove (ii), observe that

RLR) = Ry(p;p, VR (n;p, 1) : Yo — 1A,
and
Ry(n;p, 1) 1 Yo — Y1
(1) follows trivially as ¥; consists of a single element.

To prove (ii1), we note that
RIRL = Ry(p;p, VR (nsp, 1) : Yo — Yo — 1)

and
R = Ri(p;p,1): Y, — Y.
Again, since Y, consists of a single element, the result follows trivially.

These exhaust all possible cases, and the proof of the lemma is complete.



Lemma 5.2.5 letn+2=p+qg+7r. For0<j<p+q—2,0<i<p-1and

i<j<qifi>0and <y <qifi=0 the maps

Rl =R{(mp+q—1,7): Yy — Yoig
)Y, — Y,

Y, — Y,

)
' np+q—1,7
n;p,q+r—1
)Y,

P
Ypig-1 — Y

G
I
&
=3
_|._
£
!
=
=3
=

( )

( )

(nipg+r—1): Yy —> Your

( hg-1 — Yy
)

Ry =Ri(p+q—1;p4q
R =R g+r-1q7): Yo — Y,
Ry =Ry a+7—14,7) Youro — Y,

satisfy
(i) RiR} = Ri,
(ii) R\R, = RI'Rj,

(i) Ry = R} 'R,

Proof. Case 1. Let p,q,r > 2. To prove (i), we have by Definition 5.2.1

(2

(

3) Ry =  dizidiyo - diggir—2,
(5.4

) RﬁR{ = dip1digz - digg1djndize - djgro

ot

Let us consider the adjacent terms d;y4,-1d;41, in the equation (5.4). First note that
i4+q>j+1. For ifi>0,thenj+1<j+i<g+iasj<gandifi¢=0thenj<gq.
So j+1 < q. Also note that if i+¢ = j+1, then the right hand sides of the equalities
(5.3) and (5.4) are exactly the same. Hence we may assume 7 +¢ > j + 1. In this

case, the term diyq-1d;4, can be rewritten as dji1ditq, by using dg_1d; = d;dy. for
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| < k. Next considering the two adjacent terms dy 442, and repeating the process
(r — 1) times, we can rewrite equation (5.4) as

i pi o
RIR = digidigo - diyg—odjiidyyo iy dig gy o

Next we consider the adjacent terms d,yq-2d;41. Again, as in the previous case, we
may assume that i + ¢ — 1 > j + 1. Proceeding as in the previous step, the above

expression can be rewritten as
RiR;f = dip1digy - 'di+q—3dj+ldj+2 e 'dj+r—ldi+q+r7.'5d1+q+r72-
This process can be continued till the term left of d;, is dj;1, and must be stopped
once the term left of d;;; is d;. So, at the end of the process, RﬁR{ will look like
R\R] = dip1dive - - djdjyr - djr1djyr - diggir—2.
This is nothing but
Ri = didipe - 'di+q+r—-‘2~
Hence () is proved.
To prove (ii), let us first assume that 0 < i < p — 1. Then, by Definition5.2.1
RR] = Ridjadjz - djra
= dod, - 'di7~ldi+q+l e 'd])+q—1dj+1dj+2 T d]+r~l
and
le_lRlz = R{ﬁid()dl ot di—ldi+q+r T dp+q+r—2
= dj_in1djiv2 - djmipr—rdody - diadivgir - dpigar—2

Starting with the expression of R} "R}, and following the same techniques as done

previously, we bring all the operators dy, dy, -+, di—y to the front, one at a time, and
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rewrite the whole equation as
1?']1_1 lz = dOdl o 'dzfl(]f] Hd]ffl T (lj—{»rflfgi+(1+r o 'dp+q+r72~
Next we note that j +7 — 1 < g +7r—1<qg+7r <q+r+1 So, using the identity
didy = dix_1d; for | < k, we can rewrite the adjacent terms djir—1ditqqr of the above
equation as d;yg4r—1d4r-1. Next we consider the terms d;4r—2diyg4r—1, Which can be
rewritten as diigr—2d;4r—2. This technique can be repeated (r — 1) times to obtain
R{_IRQ = dod; -~ ‘di—ldz‘+q+1dj+1dj+2 e 'dj+r—1di+q+r+1 o 'dp+q+r—2-
All the operators from d;gr41 t0 dpiqir—2 can be treated similarly, to get
RITRY = dody - dicidigqndingre dprg—1djidjve - djpr 1
This is the required form of the expression of RQR{.
Now if 4 = p — 1, then the expressions of RQR{ and R{_iRQ are given by
RyR = Rédj+1dj+2 vy
= dody - dinadjpidyie - djra
RIT'R, = R} 'dody---dia
= dj_iy1dj-iv2 - dj_ipradody - dioy
To prove the required equality, the string of operators dod, - - - d;_, appearing in
R{"’Ré can be moved to the extreme left by using dx_1d; = didy for | < k. The

resulting expression is precisely the expression for RQR{.
Now if ¢ = 0, then Definition 5.2.1 yields
RIR] = Rdyyy---djsr
= dq+1dq+2 e 'dp+q—1dj+1 o 'dj+r—1a

J R0 J
R1R2 — Rldq+rdq+r+l T dp+q+r42

- dj—H e dj+r—1dq+rdq+r+l e dp+q+r—2-
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Observe that as 2 = 0, hypothesis implies 7 < ¢, hence 7+7—1 < j3+7 < g+71. Now
starting with d;4,_1d,y, and applying the identity didy = di_ydy for I < k, (r = 1)
times, the string of operators dgy, - - - dy4 42 appearing in the expression R{ RY can
be moved to the extreme left to yield RgR{.

In order to prove (iiz), we need to consider a few cases separately. First let us

assume 0 < 7 < p — 1, and 1 < j. We note that by definition we have
R?z = dody - ‘dj—ldj+r+1 e 'dp+(1+r72
RY'Ry = dody---dj_iadj_iyrqr - dopradody - dicdiggir - dpigir—2

Since 1 < j, by using the identity dy_1d; = didg, for [ < k, the string of opera-
tors dj_ijir41 - - - dgier—1 appearing in R%_iRé can be replaced by the string dy---d;_;

following it, yielding
R%_iRé =dody -+ -dj_i1dody - dirdjri1 - dggrtioidggrgi s dpigir—2.

Again, as i < j, by using the identity dx_,d; = didy for [ < k. the string of operators
dod, - - -d;_, appearing in the above expression of R%_iRg can be brought to the

extreme left to obtain

j=i i
RTRY = dody - diadi - djadjrgr o dggrrindgyryi o dpygir—2
- R
2~

Now if 0 < ¢ < p—1, and 7 = j, we have

R} =dody - djydjgrir - dpigiro

and
R(Q)R?z = Rgdodl o djadjpgrr dpygir

= dr+l T dq+r71d0d1 T dj—ldj—(»q»}—r T dp+q+r~2-
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The proof is again similar to the previous case, we simply have to move the string
of operators dy - - - d;_1, appearing in the expression of RgRﬂ to the extreme left by
using dy_dy = dydg, for I < k.
Next if e =p—1, and 2 < 3,
Ry = dody---dj djirer - dprgir—2
RUPHIRETY = RYPMdody o dyy
= dody - dj_pdj_pirio - dgpr1dody - - dp_y.
The proof is similar to the proof of case 0 <7 < p—1, 7 < j. One simply moves the
string dy - - - dp—o in the expression R%_p“R’Q’_l to the extreme left using dx_d; = d;dy,
for [ < k.
If i = p— 1, and ¢ = j, the expressions look like
R’é’”l = dOdl T 'dp—de+r Tt dp+q+772
RORE™' = RYdod, - dp2
= dpyy - 'dq+r—1d0dl e 'dp—'z-
The proof again involves same steps as in the case 0 <1 <p—1, +=.

Now if i =0, and 0 < j < g — 1, the case is trivial, because
R% = dod, - - dj—ldj+r+l " 'dp+q+r—2

and
J R0 J
RIRY = Rydgyr- dpigir—2

- dO e dj—ldj+r+l e dq+r~ldq+r e dp+q+r—2
= R,
Similarly, if 1 =0, 7 = ¢ — 1,

g-1 _
RQ - dOdl T dq72dq+r T dp+q+rv27
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and

g1 o Sq—1
]{2 1?2 — ]{2 dq+7'dq+7‘+1 Tt (11"+'(I'+'T72
- d()dl T {qu?dq%rr e dp+q+r—2

—1

= Ry

Finally, if : = 5 = 0, then

0 _
RQ = dr+1 T dll+q+r—2

and

RORy = Rydgyrdgirin s dppgir-2
= drjr - 'dq+r—1dq+rdq+r+1 e dpygir—2
~ RS
This proves that R} = R%‘iRé in this case.
Case 2. Let p,q > 2. and r = 1.

To prove (2), we note that,

RiR] = Ri(p+q-Lpg)Ri(nip+aq-1,1)
= Rilp+q-1p,9)
= Ri(n;p,q)
= I,
as RI(n;p+q — 1,1) is identity, by Definition5.2.1.
Next we note that
RyR] = Riy(p+q—Lip,q)Ri(mp+q—-1,1)
= Ry(n;p,q)
as RI(n;p + ¢ — 1,1) is identity, and
RITRY = RI(g39, ) Ry(n;p, q)
= Rimipg)
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as R17'(q;q,1) is identity. Hence, equality (ii) follows.
To prove (zi2), note that
Ry Ry = R g5 g, DRy (s p, ) - Y — Y3,
and
Ry =Ri(n:p+q—1,1):Y, — Y1

The required equality is trivially true as Y; consists of a single element.

Case 3. Let p,r > 2 and ¢ = 1. This forces 7 = j. The value could be either 0 or

1.
To prove (z) we note that, by Definition 5.2.1,
RiR] = Ri(p;p,1)Ri(nip,7)
= Ri(n;p,r) as Ri(p;p,1) is identity
= djidjp2 - djyro1,
and

Ry = Ri(n;p,7)
= diy1dive - dig(grr-1)1
= dipdiy2 - digro1
Since 1 = j, the result follows.

For proving (i), note that
RyR; = Ry(p;p, V) Ri(nip, 1) 1 Yo — VY,

and

RR) = R%(r; 1, ") Ry(n;p,7) : Yo — Y1,
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Since, maps on either sides of the equality land in Y], which is a singleton set, the
result follows.
To prove (i) we first assume that 7 > 0. This forces the condition s = 7 = 1. We

observe here that

Ré = d()dr+2 te (17,_{,T,]
RORY = Ridodrio- - dpir_1
= dodryg- - dpyra as Ry = RY(r;1,7) = id.

This shows that R} = R} R}, in this case.

Now we assume 2 = 0. This forces j = 0. We have

0 _
R2 - dr+1"'dp+r~1

RORY = RYdry1--dpyr as R)= Ry(r;1,7) = id.

This proves (i1i) for the case i = 0.
Case 4. Let ¢ = r = 1, and p > 2. This again forces 1 = j.

Here we have by Definition 5.2.1,

RiR{ = Ri(p;p,)Ri(n;p,1)
= id,

and

R = Ri(n;p,1) = id.
This proves (¢).
To prove (ii), we have
RyRy = Ry(pip, DRy (nip, 1) - Yo — Y,

66



and

RYRL = V(L L, )Ry (nyp, 1) 2 Y, —— Y
Again, since Y] consists of a single element, (22) follows trivially.

To prove (7i1),

RORY = RY(1;1, DRy(n;p, 1) 1 ¥, — Y7,

and
RS = Ry(n;p,1): Y, — Y.

Both the sides being constant maps, the result follows.

Case 5. p = 1,q,7 > 2. Then hypothesis 0 < 7 < p — 1 implies ¢ = 0. Hence
0< 5 <q.

To prove (i), by Definition5.2.1, -
R = Bmlg+r—1):Y, — ¥,
R?R{ = R g 1,q)Ri(n;q,7) : Y — Y1,
In this case, both sides are constant maps onto Y;. Hence, () is proved.

To prove (iz), by Definition 5.2.1,
ROR) = RSdjdyyo- dygrs
= dj+1dj+2 cdjyr
as Ry = RY(g; 1, q) is identity and
RIRY = R

= dyidjpr - djyra

— RYR}
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as Y = RY(n;1,q +r — 1) is identity. This proves the required identity.
To prove (i2z), by Definition 5.2.1,

Ry = Ri(njq,r)

2
RIR) = Rl(qg+7—1;q,7) R5(n;1,q+7 —1)

(
(
= Ry(q+7~1;q,7)
= It3(n;q,7)
as RY = RY(n;1,q +r — 1) is identity and n + 1 = ¢ + 7. Hence, (u17) is proved.
Case 6. Let p = ¢ = 1, and r > 2. Then, by hypothesis 0 < i < p- 1,17 = 0.
Also, hypothesis 0 < 7 < ¢ implies j = 0.
In this case, as p = ¢ = 1, the maps in (i) and (ii) ends with Y;. So, (i) and (i)

follows immediately. Need only to prove (i7i). We note that

RS = R)(n;1,7)

is identity. Also,
RR§ = R§(r; 1,7) Ry(n; 1,7)
is identity, as both the maps are identity maps. This proves identity (123).
Case 7. Let p=r=1and g > 2.

In this case, (4) and (ii1) follows trivially, as both sides end with the only element

in Y;. So, need only to verify (iz). We note that

RRS = RY(g;1,9) Ri(n;q,1)

is identity, as both the maps are identity maps, and

RIRS = R)(g;4,1) R3(n;1,q)
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is identity, as both the maps arc so. Hence, (u2) follows.

Case 8. Let p = ¢ = r = 1. This case is obvious as all maps in the statement of
the lemma reduce to identity maps.

This exhausts all possible cases and completes the proof of the lemma. u

We are now in a position to prove the following.

Proposition 5.2.6 The maps o; : CY?(D, D) x CYY(D,D) — cyrri-Y(D D),

0<i<p—1, as defined in 5.2.3, induce a pre-Lie system structure on CY*(D, D).

Proof. Let f € CY?(D, D), g € CYD,D) and h € CY"(D, D) and assume that
0<j<i—1. Thenfory € Ypiqiro, and ar,...,p4qtr—2 € D, we have by definition

of the maps oy,

(foig)ojh(y;a1,. .\ Gpyqrr—2)

= (f O; g)(R{(y)§a1)---:aj,h(R%(y)§aj+la--~)aj+r)7aj+r+l,---aap+q+r—2)

f(R?iR{(y)a ai, ..., 0aj, h(R%(y)a Aj+1y - "aj-H“)’ Qjpr41y -+ Qitr—1,

g(RéR{ (); Qigry - - - ai+r+q—l)> Aigrtqr-- > a’p+q+r—2))

where
Rl = Rilp+q+7r—2p+q—L1) YVorgir2 — Ypig,
Ry = Rilp+q+r—2p+q—11): Yopgura — Y
R = Ri(p+q—1ip,q) : Yorg1 — 1),
Ry = Ré(p +q—1;p,q) s Yprgo1r — Y

are the maps as defined in Definition 5.2.1.
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On the other hand

(f o5 h) o glysar, - Gpigir-2)
= (fo; (R Hy)ar,.. i 1,9 g5 HY)s e, -5 Qigrig-1),
(ii+r+(1, ey Qpigtr—2)
= f(RIRY ' y)an,... a4 WRLRT 7 (y); @ty - - s Qjr ), Qyra 1
S ipr-1, 9 (RHT 1( )i Gigrs - -5 Qigrbg—1)s Qiriqs - - - Aptqrr—2)
where
R = R ' p+g+r—2p+r—1,0) Yirgur2 — Ypiren
Ry = Ry ot gt —2p+r = 1,q)  Yougro — Y,
R = Rip+r—1p,r71): Yo — Y,
Ry = Ryp+r—1p71): Y0 —Y

are the maps as defined in Definition 5.2.1.
It now follows from Lemma5.2.4 that (fo;g)ojh = (fo;h)oir1gfor0 < j <i—1.
Suppose now that i < j < qifi>0and 0 < j <gifi=0. Then

(f 04 g) oj h(yv ap, .. - )ap+q+7‘—2)
- (f 03 g)(R{(y)va'la v :a’jah(Ré(y);aj-Fl: S aaj+r)7

Ajtrls - - :ap+q+r—2)
= f(R’iR{(y);ah 0 g(RGR (2/) az+1,~~-,aj,h(R%(y);aj+1»
: 76Lj+r)7 Ajprily: o aq+r+i—1)7 Aitriqy - 7ap+q+r—2)-
where
Rl = Rilp+q+r—2%p+q—1,7) Yorgir2 — Yugon,
Ry = Ry(p+a+r—2p+a—17): Yorgra — Yy,
RY = Ri(p+q-15p,0) Yorg1 — Yp,
Ry = Ry(p+q—1p,q): Vg1 — Y,

70



arc the maps as defined in Definition 5.2.1.

On the other hand

f o (.(] Oj—i h)(y; Ar,y - -y ap+(1+r*'2)
= f(R(y)iar,. . a, (g0, W) avrr, - - Bgartizn)s
Qgpryir - s (I/p—#q+r72)

= f(Rll(y)) ag, - - - aa’ﬂg(R]l_lRlQ(y)a Ait1y - - 1a]7h(}?’%_1R12(y)’ Aj41,

S 7aj+r), Qjprily- - aaq+r+ivl)7 Qgyrvi-- - ap+q+r—2)-

where
R = Rilp+q+r—2p,g+7—1): Ypigir2 — ¥,
Ry = Ry(p+q+7—2p,q+7 1) Yosguroa = Yoo,
Ril'*i = R{'*i(q+r—1;q77‘)3yq+r'1 — ¥,

R = Ry Yg+r—1g,7): Yo — Y
are the maps as defined in5.2.1.
Lemma5.2.5 now implies that (f o;g)ojh = fo;(goj_ih) fori<j<qifi>0

and 0 < j < ¢ if i = 0. Thus considering elements of CY?(D, D) to be of degree
(p — 1) we see that the maps

o : CY?(D, D) x CY?(D, D) — CY?*~Y(D, D)

for i < p — 1 as defined in5.2.3 make CY*(D, D) into a pre-Lie system. This

completes the proof of the proposition. [

The products o; can now be combined to give a product on CY*(D, D), which

we call the pre-Lie product.
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Definition 5.2.7 The ‘pre-Lie product’
o: CYP(D,D) x CY‘(D,D) — CY" (D, D)

on CY*(D, D) is defined by

p—1

fog= 3 (-1)"Vfoyg

1=0

for f € CY?(D,D) and g € CY(D, D).
We recall the following definition from [5].

Definition 5.2.8 A graded ring A will be called a graded right pre-Lic ring (or
simply a pre-Lie ring) if for clements a,b,c of A of degrees A, ji,v respectively we
have

(coa)ob— (~1)M(cob)oa=co(aob— (=1)*boa),

where a o b denotes the product of a and b in A.
Now, let us recall Theorem 2 from [5].

Theorem 5.2.9 Let {Vp,,0;} be a pre-Lie system and f™,g" h? be elements of
Vi Vi, Vy Tespectively. Then

(i) (frog™)oh? — f™o(gtoh?)= Y (—1)MHPI(f™ o; g™) o; hP, where the sum is
extended over those i and j with either 0 < j<i—1lorn+i+1<j<m+n,

(i) (Jmogm) oh? — ™o (ghoh?) = (=1)"P[(fmoh?)og™ — "o (W og")

As a consequence of Proposition 5.2.6 and Theorem 5.2.9 stated above, we deduce

the following result.

Corollary 5.2.10 The direct sum of cochain modules CY*(D, D) of a dialgebra D,

equipped with the pre-Lie product, becomnes a pre-Lie Ting.
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5.3 Associative product on the cochain modules

Next we define an associative product * on the graded modules CY*(D, D), which

is actually induced by the o; products defined in the previous section.
Definition 5.3.1 For f € CY?(D, D) and g € CY(D, D),
«: CY?P(D,D) x CYYD, D) — CY?*(D, D)
is given by f * g = (7 09 f) 0, g, where 7 € CY?*(D, D) is the 2-cochain defined by

m([21];a,0) = a-b
n([12};a,b) = atb

for all a,b € D.
Explicitly, for y € Ypuq, a1, a2,...,ap14 € D,
(f * 9)(y;a1,a2,...,0p49) = (T 0o f) 0p g(y; a1, 02, .. , Qpiq)

= W(R?Rll)(y)w f(RgRIf(y)v ai, - .- 7ap)’ g(Rg(y)a Ap41y -+ a‘p+q))
= f(RORY(y)s a1, - -+, ap) 4 g(RE(Y); Qp1, - -5 Gpig)

where a is either 4 or F according as RYRY(y) is [21] or [12] respectively, and Ri,

R} for 1 = 0,p are the maps

R = Ri(p+qp+1,q): Yo — Yo
Ry = Rhi(p+ap+tlq): Yoy —Y
RY = Rip+1;,2,p): Yy — Y
Ry = RY(p+1;2,p): Y, — Yy,

as defined in Definition 5.2.1.
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Remark 5.3.2 It is interesting to see that 7 is a cocycle. For, by definition of the

coboundary,

(5.5) St(ysa b, c) = aofm(dyy; b,e) — m(dyy; aolb,c)
+ 7(dyy; a,bolc) — 7(dyy; @, b)ole.
For y = [321],[312], [131}, [213], [123}, equation (5.5) yields the following equations

respectively

6n([321);a,b,¢) = a-An([21]; b,c) — 7([21}; @ b, ¢) +7([21]; a,b+c)
—7n([21]; a,b) d¢
= 0, byaxiom 1 of (1.1),
6m([312);a,b,¢) = aAn([12]; b,c) — #([21]; a4 b,c) + n([21}; a,bt ¢)
—7r(.0[21]; a,b)y 4c | ‘ '
= 0, by axiom 2 of (1.1),
6m([131];a,b,¢) = at w([21]; b,c) — w([21]; at b,c) + 7 ([12]; a,b T ¢)
—m([12]; a,b) d¢
= 0, by axiom 3 of (1.1),
on([213);a,b,¢) = at w([12]; b,c) — w([12]; a 4 b,c) + 7([12]; a,bF ¢)
—m([21]; a,b) ¢
= 0, by axiom 4 of (1.1),
on([123];a,b,¢) = at7w([12]; b,c) — m([12]; a kb, c) +n([12]; a,bF ¢)
~m([12); a,b) F ¢
= 0, by axiom 5 of (1.1).
This proves that 7 = 0. It is infact a coboundary, 7 = d¢, where ¢([1};a) = a for

all a € D.
The following lemma shows that the graded product * is associative.
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Lemma 5.3.3 The graded product x on CY*(D, D) s associative.

Proof. Suppose f € CYP(D,D), g € CYY(D,D) and h € CY"(D,D). Then, for

Y € Yopirgir and ay,ag, ..., appqer € D, we note that

(f * g) * h(yv ay, ..., ap+q+r)
= w(RYRT"(y); m(RYRYRORY Y (y); f(RORYRIRY ™ (y); ay, .- -, ap),

Q(RgRngthq(y); Ap+1s -+, ap+(])>7 h(RIZ)-HI(:{/); Upt+g+1s - - - “p+q+r))

where
RIY = RM(p+q+7p+q+1,7) Yo — Yorgn
Y = REYp+q+rip+q+l,r): Yo — Y
R) = RYp+q+12,p+q): Yorg — Yo
Ry = RYp+a+12,p+q): Yorgrn — Yoy
R = Rilp+ap+1,9): Y — Yon
Ry = Ry(p+agp+l,9): Yo —Y,
R = R(p+1;2,p): Yo — Yo
RY = Rip+1;2,p): Y, — Y,

are the maps involved in the above equation. On the other hand

f * (g * h’)(y7 Ayy ... 7a[)+(1+r)
= m(R{RY(y); fRRRY()s s ap),

y Up

W(R?RYRIQ)(?J): g(R(Z)I?(III{g(U)v Ofera c 7”’p+q)7 h(}ngZQ)((/) ap+q+1> ! U';HHHT)))
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where
R =
R =
RO =
Ry =
n =
R —
RO =
R =

Rp-+qg+rp+1lg+7): Yoigr — You

Rip+qg+mp+1l,qg+7): Yyiqer — Your

Ri(p+1;2,p): Yy — Y
RY(p+1;2,p): Y, — Y,

—

I
R

(
(

Mg+ 1;2,q) : Y1 — Y2
Ry

q+1;2,q): Yo — Y.

Wlg+ryqg+1,71) Yo — Yo

qg+riq+1,7): Yy, — Y,

Note that according to the convention, following Definition 5.2.1, we arc using the

same symbol to denote different maps. For example, in the expression of (f*g)x*h,

RY denotes the map Yp4q41 — Y2 as well as the map Y11 — Ya. Now to prove

that the right hand sides of the equalities given above are the same, we proceed as

follows.

Step (i). First note that the composition RYRYRORY™ appearing in the ex-

pression of (f * g) * h is same as RYR} appearing in that of f x (g * h). Because by

Definition 5.2.1,

RORY R R

= dp-H(dp—H T dp+q—l)dp+q+l(dp+(]+l T dp+q+r—1)

— RIRY.

= dpy1dypyr dpyg1dpredpige -

- (dp—H U dp+q—1)dp+qdp+q+l(dp+q+1 © 'dp+q+r~1)

: dp+q+rw1

(first applying d;_,d; = d;d;, 1 < j, ¢g—1 times starting with the operators dyirdyiq at

the left, then shifting the (¢ + 1) operator dy; 441 to the left by using did; = d;_1d;,

i < 7, q times.)
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Step (ii). Next observe that RYRYRY T appearing in the expression of (f*g)*h
is the same as RYRYRY appearing in that of f (¢ *h). This can be seen ecasily using
a similar idea as in Step (i) above.

Step (iii). Next note that the map &5 appearing in the expression of (f*g) *h
is the same as RIRS of f x (g * h). The proof is similar to the previous cases.

Step (iv). Let S: Y, .4, — Y3 be the operator
S = dldQ s dp*ldp-kl te d’)+(lfldp+q+1 M dp+q+-,~_1.

Note that the maps RYR}™ and RYRYRYRY'? appearing in the expression of (fxg)xh

can be written as d;S and d3S respectively. This is because,

RIRT™ = (di- - dprg-1)(dpsgi1 - dpsgir-1)

= didy - 'dp—ldp+l T dp+q—1dp+q+1 e 'dp+q+rfl

- d15

and

RYRYRIRY™ = (dy---dp1)(dpy1 - dpigo1)(dprgt1) (gt dpigar—1),
= dydydy- - dp«ldpﬂ T dp+(]—1dp+q+1 T 'dp+q+r—1
= d3S

by using pre-simplicial identity.

Similarly the maps RYR} and RYRYRY appearing in f x (g * h) are respectively
dyS and dyS. Since y € Y4, S(y) € Y3 and there could be five possible cases

for S(y). For each of these five cases the result will follow from the five axioms of

dialgebras.
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Let S(y) = [321]. In this case, d,S(y) = [21], d3S(y) = [21], d2S(y) = [21] and

doS(y) = [21]. Hence by definition of m, we get

(f*9)*h(yiar, . apagir) = (FISRIRIRT(y)iar, .. )
g(RERIRTT () @y - - Gpig))
}L(R3+q(?/)§ Apigits- s Uprgir))
and
fr(gxh)(yan,. o apiger) = fUIGRI(Y);an, ... ap)
(9(RIRIRY(y); ps1, - - -5 Gpyg)
R RGR(Y); Qprgr1s - - - Qpigir))
where y = [321]. It now follows from the dialgebra axiom 1 of (1.1) and Steps (i)-(iii),
that
frlgxh)(ys a1, apigrr) = (f*g) xh(y;an,. .-, Aptqtr)
where y = [321].
Let S(y) = [312]. In this case, dS(y) = [21], d3S(y) = [21], d2S(y) = [21] and
doS(y) = [12]. Hence by definition of 7, we get
(f*9) ¥ h(yia1, - aprgsr) = (FURBRIRIRY™(v)san, -, ap)
g(RERIRY (y); apiv, - - -y Gpig))
fL(Rp+q (¥); aprgr1, - - s Gprgtr))
and
Frlgxm)(yiar, - aprger) = fIRRI(Y); a1, 0)
(g(RSRIRL(Y); apr1, - - - Opg)
hRGRE(Y); Qpigris -+ Qprgir))
where y = [312]. Tt now follows from the dialgebra axiom 2 of (1.1) and Steps (i)-(iii),

that
f * (g * }L)(U, Ay, ... »U«p+q+r) = (f * (j) * h(!/, Ay, .-y a’p+(]+r)
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where y = [312].

Let S(y) = [131). In this case, d1S(y) = [21], d3S(y) = [12], &25(y) = [12] and
doS(y) = [21]. Hence by definition of m, we get

(f*9)* h(yiar,. . tprgrr) = (JIROIGRIRT(y)san, .. ap)
GRERIRT™ (y); Gpsts - - Apig))
h(1{3+(1(y)§ Apigils - - s Apqir))

and

Frlgxh)(yian,. o aprger) = fULRI(Y)a1,-.,0) 1

(9(RERIRL(Y); ps1, - - -, Apg)
WMRERE(Y); Gptqits- - Aprgtr))

where y = [131]. It now follows from the dialgebra axiom 3 of (1.1) and Steps (i)-(iii),

that

Fr(g*h)(y; a1, - apigyr) = (f * 9) x h(y; a1, -, Aptqetr)
where y = [131].

Let S(y) = [213]. In this case, d,S(y) = [12], d3S(y) = [21], d2S(y) = [12] and
doS(y) = [12]. Hence by definition of 7, we get

(f*g)*h(ys a1, Qpager) = (f(RgR’ngR’f“(y); aps ..., ap)
g(RERIRT (y); apy, - - Gpag))
h(RSM(?J); Aptq+1y - -+ aa‘p+q+r))

and
fx(gxh)yian,. . apiqer) = [(RIRY(y);ay,...,a5)
(9(RORIRE(Y); aprr, - pag) b

]L(RgRg(y)) Ap4gtly - ap+q+r))
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where y = [213]. It now follows from the dialgebra axiom 4 of (1.1) and Steps (i)-(iii),
that

f * <(] * h’)(y; aApy .-, ap+q+r) = (f * (1) * h(y; Ay, .- ”’p»f-q+r)
where y = [213].

Let S(y) = [123]. In this case, d,S(y) = [12], d3S(y) = [12], d2S(y) = [12] and
doS(y) = [12]. Hence by definition of 7, we get

(f*g)*h(y;ar, .. aprgrr) = (FIRSRTRIRT(y);a1,...,ap)
!] RIZ)RgR’lH—q(y)u ap+1; RN ap+q)) }_

h

PN

Rl?H—q(y); Aptq+1y-- -, a’p+q+r))

and
fr(gxh)(y;ar, ..., aprqsr) = [fIRORY(y);a1,...,0p)
(9(R3R{I;(Y); ap1, - - -5 Gpig) 1
hRERE(Y); Qptgtts - - » Qptgsr))

where y = [123]. It now follows from the dialgebra axiom 5 of (1.1) and Steps (i)-(ii),
that

f* (9 * h)(y;ala---»ap+q+r) = (f *g) * h’(y;ala . ~')ap+q+r)

where y = [123]. This completes the proof of the lemma. =

We will need the following lemma in Chapter 6.
Lemma 5.3.4 If f,g € CY' (D, D), then §(f xg) =9df xg — fxdg.
Proof. By definition, we have to prove that

(6(f*g)—0f xg+ f*d9)(y;a,b,¢) =0

80



for all y € Y3, a,b,c € D. We now show that this identity is equivalent to the

dialgebra axioms.

(6(f*g) = 6f xg+ f*dg9)([321];a,b,c)

= a1 (f*g)([21};b,¢) = (f * 9)([21];a H b, ) + (f * g)([21]; 0,0+ ¢)

—(f*9)([21};a,b) Hc—df([21];a,b) + g([1); ¢) + F([1}; @) 4 dg([21]; b, ¢)

=a - (f([1;0) A 9([1};¢)) = f([1};a #4b) A g([1};¢) + f([1};a) Fg([1];b A ¢)
—(f((1);a) A g([1];0)) Hc = (a A f([1];0)) A g([1]; ) + f({L};a ) Hg([1];¢)
—(f([t];a) H4b) A g([1);¢) + f([1]sa) 4 (0 A g([1]; ) ~ f([1};a) Fg([1]; b )

+f([1};a) # (g([1]; ) ¢

= ())

by axiom 1 of (1.1).

(6(f*xg)—of * g+ f+3g)([312];a,b,¢c)

= a4 (f*9)([12];b,¢) = (f * 9)([21]sa b, c) + (f * g)([21]; 0, bk ¢)

—(f * 9)([21];0,b) Hc = 8f([21];a,b) H g([1]; ¢) + f([1]; @) 4 5g([12]; b, ¢)
=a - (f([1};0) F g([1};¢)) = F([Lsa =) A g((1]s ) + f([1};a) A g([1};bF ¢)
—(f([1};0) 4 9([1];8)) 4 ¢ = (a4 £([1};0))  g([L]; ) + f([L];a A4 b) A g((1]; ¢)
~(f([1;a) 4b) A g((1];¢) + f([1);a) 4 (b F g([1};0)) — F([1])sa) A g([L];0F ¢)
+f([1];a) A (9([1];0) F ¢)

= (),

by axiom 2 of (1.1).
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(6(fxg)—0ofxg+ fx0g)([131];a,b,¢)

= akF (f*9)([21);b,0) — (f * 9)([21)sak b,¢) + (f + o) (12} 0, b ¢)

—(f * 9)([12);a,b) 4 ¢ = 67 ([12];a,6) - g(([1);¢) + ([L];a) - 8g([21]; b, )

= ar (f([1};b) 4 g([1;0)) — F((saFb) 4 g([L]s0) + F([L)sa) F g([1}sb A )
~(f([1ha) F g([1);0) 4 e~ (ak F(10) Fg((1);0) + F([1ia k- b) + g([1);c)
~(f([Wsa) F b) A g((1);e) + f([Lsa) F (b g([1];0)) — F([1];a) - g((1);b )
+F((1];0) F (g([1];6) H ¢)

=0,

by axiom 3 of (1.1).

(6(f*g) —6f xg+ f*dg)([213];a,b,c)

=abt (f*g)([12];b,c) — (f * g)([12];a -1b,¢) + (f * g)([12]; a, b F- ¢)

—(f * 9)([21];a,b) F ¢ = 0 f([21]);a,b) - g([1]; ¢) + f([1]; a) & 6g([12]; b, ¢)
=at (f([15;0) F g([1);¢)) = f([1a =4 b) & g([1];c) + f([1];a) F g([1]; b+ ¢)
—(f([1a) A g((1]; ) F e = (a A F([1];0)) F g([1]; ) + f([1];a 4 b) F g([1];¢)
—(f((1}a) 4b) F g((1]se) + f([1};0) F (b g([1);¢)) — f([1};a) & g([1];F c)
+/([1);a) F (g([1];0) =)

= 0’

by axiom 4 of (1.1).
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(6(f = g) —df + g+ [ +0g)([123];0,b,¢)

=at (f+g)((12:ib.0) = (f + ) (120 k b,e) + ( + g)([12]50,b )

—(f * 9)([12};0,0) F c’—éf([u};( byt g(1fse) + f([1sa) b Sg((12)50,¢)

= ar (10 F g(150)) = F([har by g((1ie) + f((1ia) F g([1)ib o)
~(f({1}a) mm, )))H—(wf([] b)) F g((1)i ) + F((La b b) F g((1)0)
—(f([(1;a) Fb) = g([1];0) + f([L);a) F (b F g([1]; 0)) = f([1]s @) - g([1};0F ¢)
+f([1);0) (Ju J;0) F o)

=0,

by axiom 5 of (1.1). This completes the proof of the lemma. n
Remark 5.3.5 It should be mentioned here that in {10] M. Gerstenhaber and S.
D. Schack introduced the notion of ‘Comp algebra’ and showed that the Hochschild
complex C*(A, A) of an associative algebra A is a natural example of a comp alge-
bra. A proof similar to the proof of Proposition5.2.6, where we have shown that
CY*(D, D) is a pre-Lie system, shows that CY*(D, D) along with 7 as defined in
5.3.1 form a comp algebra. Then the associativity of * product, graded derivation

property of x product and Theorem5.3.7 (proved below) are special cases of some

more general comp algebra statements.

The following result relates the pre-Lie product and the coboundary map.
Lemma 5.3.6 For any f € CY?(D, D),
5f = —fom+ (1P wof= (1) (rof—(=1)""fon)
where w is the 2-cochain as defined in Definition 5.5.1.
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Proof. Let y € Y4y and a1, a9, ..., 0, € D. Then

- 7(1’])+l)
. >(Li)+l) + Zf}:l(il)lf(dly) Ay, ..., ai()!i/ai%-l: -
+(=1)P f(dpirysan, -

O f(y; ar, ay, .
= a,04 f (doy; ay, . - Sy Apy)
) ap)0%+1ap+1

and
(=fom+ (=1 'ro fi(y;ar,...,0p41)
= = V0 F(RY(y); a1 - as, m(R5(Y); @i,y aara),
s ap) (1P (RY(Y); F(RS (W) ans - - -y 4p), )
+(=1)P" I (Ri(y); a1, f(I3(y)s @z, - - -, ap, Qpi1))]
= Y0 fRT () an - ap, (R (y)s 4y, a54),
s app) + (S0P (R (y); f(R2(Y); @, - - -5 ap), Apet)
+(=DP I (Ri(y); a1, f(IG(Y)5 a2, - - -, ap, Gpi1))],

where the maps I} in the above equality, according to their order of appearance, are

R, = Ri(p+1;p2): Y0 —Y
R, = Ry(p+1;p,2): Yo — Y
RY = R)(p+1;2,p): Y — Y
Ry = RY(p+1;2,p): Y1 — Y
Rl = Ri(p+1;2,p): Y — Y,
Ry = Rip+1;2,p): Yo — Y,

To complete the proof observe the following:

(a) R (y) = d;(y), which follows from the definition of R
(b) R} (y) is the tree [21] or the tree [12] according as of is H or F-.
We prove (b) by induction on the degree of y, where degree of y is nif y € Y.

Let deg y = 2. Then j can take value 1 only and R%_l = IRY is the identity map.
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Morcover, if 0! =, then y must be [21] and if oY =k, then y must be [12]. Hence
(b) is true for deg y = 2. Assume that (b) holds for all y with deg y < m and
forall j,1 <j<m—1 Letdegy=m+1and 1 <j <m Lety =z Vuay,
where ¢ =deg 2, < m+ 1, k =deg o < m+ 1 and £ + k = m. Let o;’ =
Two cases arise. The jth leaf of y is either a leaf of 2, or a leaf of z,. Suppose
that it is a leaf of . In this case, it must be an interior leaf of z;, that is, not
those numbered 0 and p as 1 < j and o? =-{. Note that R{l Yo — Yois
given by Ry = dod, - +dj_odj4o - - - dimyy and, in the present case, we also have the
map R%—l : Y, — Y, given by R%*I = dody -+ - d;j_2djo - - - dp. Note that the effect
of applying the operator dgy1---dmy1 on y is to delete the leaves of z, one after
another, the leaves of z; remaining untouched during the process. In other words,

desr - A1 (y) = CLl Hence

R%—l(y) — dodl"'dj—ldj+2"'d£dé+1"'dm+1(?/) :dodl "'deldj—%»?"'de(Il)
= R%’l(arl).

Moreover og = 0;' by definition, as j # ¢. Hence by induction the result follows.

Now if the jth leaf is a leaf of 2, and an interior one the case is settled as above.
Suppose now that the jth leaf in the Oth leaf of x5, so that j = £+ 1. We know that
R%_l =dod; - -dj_1dj42 - - - dmyr. Observe that if we apply the operator d; o - - dmy1
ony = z, V @, it does not alter the leaves of z; and there are two leaves of x5 which
survive in the resulting tree and more over these are not deleted by applying the
operator dod, - --d;_5 on the result. Since j = £+ 1, it is now clear that R y)
must be of the form [0] V [1] = [21]. The case o] = is similar.

(c) RS(y) = dpi1(y), 1s immediate from the definition.

(d) RY(y) is [21] or [12] according to as oy, is +or k.
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To see (d), let of),; =1 Then y is not of the form y; v [0]. Thus, if y =z, V 2y,
then deg x, > 1 and the last two leaves of z, cannot be deleted by applying RY =
dydy---d,  on y. It follows that RY must be of the form [0] v (1] as R}(y) € Y5.
Thus RY(y) = [21]. Now if 0%, =F, y is of the form y; v [0], for some tree y, € Y,
This implies that R (y) = dydz - - dp- 1 (y) = [12].

(e) Ry(y) = dyy, is again immediate from the definition.

(f) Ri(y) is [21] or [12] according as of =— or of =t.

To see (f), we note that R} = dy - - - d,. If of =F, then y is not of the form [0] VvV,
for some tree y; € Y,. Thus if y = z, V x5, then deg £, > 1 and the first two leaves
of z, cannot be deleted by applying R} on y. It follows that R;(y) must be of the
form [1] v [0] = [12]. Again, if of =, y must be of the form [0] V y;, for some tree
y1 € Yp. So, Ri(y) = da---dy(y) = [21].

The lemma now follows from the abové observdpions. |

We conclude this chapter by establishing a relationship between the pre-Lie prod-

uct, the * product and the coboundary maps of the cochain complex.

Theorem 5.3.7 Let D be a dialgebra over a field K. If f € CYP(D,D) and g €
CYD, D), then

fodg—0d(fog)+ (=1)7 6fog= (-1 Vfxg+ (=1)""gx .

Proof. From Lemmab.3.6, we have

fobg—38(fog)+(-1)"16fog = [(-1)7'fo(rog)—fol(gom)
—[(=1)P*imo(fog)—(fog)om]
H(=1) (=1 (mo flog = (fom)ogl
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As (CY*(D, D), o) is a pre-Lic ring by Corollary 5.2.10, we have

fodg=08(fog)+ (-1 6foyg = (VU”'“’[(WOf) og—mo(fog)]

- ;;H][Z p i+ (g— l)](’/T o, f) o, (j]

where the sum is over those 4,5 such that 0 < j <¢—1lorj=p, corresponding to
i = 0. The last equality follows from Theorem 5.2.9. Note that the degrees of 7, f, g

are respectively 1,p — 1 and ¢ — 1. Hence

fobg—0(fog)+(~1)" " 6fog = (=1PH(=1)0"VP(mop f)o, gt

1)P~ (7 o1 f) o 9)]

1)1 (7 0g f) op g+ (1) (w00 g) 0 f
)

DD fx g+ (—1)4 Lo« f.

(=
(=
(=
(=

This completes the proof of the theorem. n



Chapter 6

Obstruction cocycles

6.1 Introduction

We devote this chapter solely to the proofs of Theorems2.5.1 and 4.3.1 using the
products introduced in chapter 5 on the cochain complex CY*(D, D) for a dialgebra
D. We first express the obstuction cochains introduced in chapters 2 and 4 in terms
of the pre-Lie product and the * product respectively, and then using the results
proved in chapter5 show that these obstuction cochains are actually cocycles. It
should be mentioned here that Theorems2.5.1 and 4.3.1 are formal properties of

pre-Lie systems and comp-algebras, proved in general set-up by M. Gerstenhaber.

6.2 Integrability of 2-cocycle

In this section we interpret the obstruction cochains G, as defined in chapter2,

section 5, in terms of the pre-Lie product introduced in the previous chapter.

Let D be a dialgebra, I\ and F), be any two 2-cochains in CY?*(D, D). We first

observe that by definition of the pre-Lie product
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Fyo F,([321):a,b,¢) = (FyooF,

—Fyo1 F,)([321};a,0,¢)

= IN(RY([321); FL(R([321]; a,b), ¢)—
FA(Ri([321); 0, Fu(R3([321]; b, ¢))

= F\(di([321]; Fu(ds([321]; a,b), ¢)
—F(do([321}; @, F,.(do([321]; b, ¢))

= R((21]; Fu([21); a,b), ¢) = Fa((21]; 0, FL([21]; b, ¢))

= Ff(Flf(a,b),c) — F¥(a, Fﬁ(b, c)).

Fyo F,([312];a,b,¢) = (F\o0 F,

—Fy o1 F,)([312];a,b, ¢)

= B(R(312); Fu(R3(312)5 0, 1), )
—FA(Ry([312]; a, Fl.(R5([312}; b, ¢))

= Ry (312] F(ds(312); 0,b), 0
~ Fy(da((312) 0, Fy(dof[312):,)

= I([21]; Fu([21];a,b), ¢) = Fa([21); @, Fu([12]; b, €))

= FYF o), 0) ~ Fi{a, F5(b,0).
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Fyo F,([131]);a,b,¢)

F\o F,([213];a,b,¢)

(£ 09 £,

—Fy oy F,)([131];a,0,¢)

FA(RY(131); F, (RY((131]; 0, ), )

R (R(131]; 0, F(R(131);b,0))

Fy(ds (131]; Fu(d([131; 0, b), )

~ Fy(da([131]; @, Fy(do([131); b, )

FA(21); Fu((12];0,0), ¢) — Fa(12) 0, F((21];,c)
FL(F7(a,b),¢) — F{(a, FE(b, ).

(Fyop F,

—F\ o1 F,,)([213}; a,b,¢)

By (RY([213); F (R3([213]; 0, ), )
~RA(RI(213) 0, Fu(R(213); b, )

Fy(di([213]; Fu(ds([213]; a, b), €)

- F(da(([213); 0, Fy(do([213];b, )

Fa(12); (21 0,0), ¢) — Fa(12]; 0, Fu([12];b, )
F{(F(a,b), ) — Fi(a, Fi(b, ).
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Fyo Fu((123]a,b,¢) = (P oo
—Fy o1 F)([123);0,b,¢)
= P(R((123]; Fu(RY((123]; a,b), ¢)
~ P (R}([123]; a, Fu(Ry([123]; b, )
= Fy(di([123); Fl.(ds([123]; 0, 0), ¢)
— Fx(d2([123]; a, Flu(do([123}; b, ¢))
= Fy([12); Fu((12]; 0,b), ¢) — Fa([12]; o, FL([12]; 0, ¢))
= F}(F;(a,b),c) ~ F(a, Fj(bc)).

Thus, combining the above expressions, one has

FY(Fi(a,b),c) — b [321]

F{(Fi(a,b),c) — Fi(a, F(bc)) ify=[312]

(Fxo Fu)(y;a,b,¢) =4 F{(Fi(a,b),c) — F(a, Ff(b,c)) if y=[131]
F{(Fi(a,b),c) —

F{(F}(a,b)

\

for all a,b,c € D. Thus equation (2.11,)-(2.15,) can be rewritten as

= Z F/\OF‘;L

Ap=v
Ap>0

and the obstruction cochain G € CY?3(D, D) as defined in chapter2, sectiond is

given by

G= > F\oF,

Abp=n
>0

To prove Theorem 2.5.1, we shall need the following results from [5].
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Lemma 6.2.1 (Lemma 1[3]) Let f,g be clements of a right graded pre-Lie ring
B, with g homogenous of odd degree. Suppose either
(1) B has no element of order 2, v.e., v € B and 2 = 0 wmplies x = 0, or

(11) B s the pre-Lie ring of a pre-Lie system {V,,,0,}. Then (fog)og= fo(gog).

We are now in a position to prove the first main theorem about obstruction

cochains related to integrability of 2-cocycle in the case of deformation.

Proof of Theorem 2.5.1 By Theorem 5.3.7

S(FyxoF,)=F\0dF,—0F\oF,+ (moyF,) oy Fx — (mog Fy) o3 I,

e

Hence,

(SG - ZA Fu=n 6(F/\ o [L)

A,u>0

- Z/\+u=n(F,\ ¢ 5.F“ - (5F,\ o] F#)
A u>0

= Za+§+x>=0n[Fa o (FgoFy) — (Fyo Fp)o Fyl.
QA

By Lemma6.2.1, we may assume that 8 # A in the term Fyo(FgoFy)— (FooFg)oF\.
Now as in Proposition 3 of [6], the above sum can be written as a sum of terms of

the form
[Fyo (FgoFy+ F\oFy)— ((Fao Fg)oFy+ (Fyo Fy)o Fg)

where a + 8+ X = n, o, 3, > 0 and cach of these term vanishes by (ii) of Theo-
rem 5.2.9. Hence 6G = 0. Note that the cohomology class of G is zero if and only
if G = 0F, for some F, ¢ CY*(D,D). Hence the last statement follows. This

completes the proof.
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6.3 Integrability of 1-cocycle

In this section, we interpret the obstructions to derivations in terms of the associative
 product, and show that these obstruction cochains are cocycles. Recall from chapter
4, scction 3 that if a derivation v, has been extended to a truncated automorphism

W, = S it of Dg, then the primary obstruction is the 2-cochain F defined by

Zsrucn Ya([1); @) 4 ([1];0) if y = [21]

>0

Dy alllh@) Fw(in) iy =012

Au>

F(y;a,b) =

Now we observe that
(P * ) ([21];a,0) = (7 o0ghn) o1 ¥u([21];a,b)
= w(RIR{[21], ¥a([1]; @), ¥u([1]; @)
= (1) 0) (1) 0),
where 7 is the 2-cochain as defined in 5.3.1 and
R(l) = R?(Q,Q, ].) Y, — Y,
R} = R{(2;2,1):Y, — Y,

are both identity maps.

Similarly,
(W * wu)([12]§ a, b) = (7r 0 ) ©1 1/);&([12]; a, b)
= m(RIRI[12], ¥a([1]; a), ¥u([1]; a))
= ([l a) F (1) 0).
where

R = RUZ2,1):Y,— Y
Rl = RI(2;2,1):Y, — Y,
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are both identity maps.

Finally, we prove the second main theorem about obstruction cochains related to

integrability of 1-cocycle in the case of automorphism.

Proof of Theorem 4.3.1. From above, we obscrve that the obstruction cochain F,

in terms of the x product is given by

F = Z P * Yy

Adp=n
Au>0

and equations (4.7,) and (4.8,) can be written as

51/}1/:_ Z '(/)/\*1/}“

A+p=v
Au>0

forv=1,2,...,n—1. Hence
0F = 2Xxiu=n 6(1;[))\ * wu)
Au>0

- - Zz\+p=n {(Za+ﬁ=»\ "/)a * wﬁ) * w,u - w)\ * (Ea+ﬂ=u wa * wﬁ)}
A a,B>0 a,/>0

>0

= — arprnmn{ (Vo * Pp) * Yy — Yo * (Vg * Yu)}

a,B,u>0

= 0

as  is associative. Here we note that the cohomology class of F' is zero if and only

if ' = 8y, for some v, € CY'(D,D). Hence, the last statement follows. This

completes the proof.
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Chapter 7

G-algebras and dialgebra cohomology

7.1 Introduction

It is well known since the pioneering work of M. Gerstenhaber [5] that the Hochschild
cochain complex C*(A, A) of an associative algebra A admits a brace algebra struc-
ture. Moreover, in [12], M. Gerstenhaber and A. A. Voronov have shown that
C*(A, A) admits a homotopy G-algebra structure which induces the G-algebra struc-
ture on the Hochschild cohomology as introduced in [5]. These structures on C*(A, A)
are in fact induced from a natural operad structure on C*(A, A), where only the non-

¥ part of the operad is responsible for inducing the above structures.

The aim of this chapter is to show that as in the case of Hochschild complex,
the dialgebra cochain complex CY*(D, D), with the differential altered by a sign
admits a homotopy G-algebra structure which comes from a non-¥ operad structure
on CY*(D, D), for a dialgebra D. This homotopy G-algebra structure on the cochain

level in turn induces a G-algebra structure on the cohomology HY™* (D, D).



7.2 Braces for dialgebra complex

In this section, we generalize o; products as introduced in chapter 5 to define braces or
multilinear operations in CY*(D, D) of a dialgebra D. These generalized o; products
endow CY*(D, D) with a brace algebra structure. We recall from [12] the definition

of a brace algebra.

Definition 7.2.1 A brace algebra is a graded vector space with a collection of braces
(or multilinear operations) x{zi,2,...,2,} of degree —n satisfying the identity

(brace identity)

{z1, T2, R R R R TR T Zogilgjlgiz...gimgj,,.gn(—1)(3?{?/1, s Y
xl{yil-}—lu'--7Uj1}:yj1+la~-~uyi2a
Lo{Yirt 1 - Yin b Yiat 1o - - o Yirms
Ton{Yip+1 - -a?/jm},yjmﬂ,---,yn}
where z{} is understood as just «, degz{zy,...,zn} = degz -+ 322i_, degz; — 7, |z| =

degz — 1, and € =371, |z, Zif:l [Yql-

Generalizing the maps 1% and I?5, as introduced in Definition 5.2.1, we define the

following operations on the set of planar binary trees.

Definition 7.2.2 Let n,4;, 4, ..., ir, My, My, ..., M, be non-negative integers with

n,my,...,m; > 1 such that

,
0 S ’1;1,7;1 + my § ’LIQ,...,'L'TWI + My S iryir + my S N =n+ ZWLZ' - T
!
For cach j, 0 < j < r we define maps

21 yelr RN VS s
R (Nynymy, - M) T YN = Yo,
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with 71y = n in the following way. For j =0,

11,0 ir . . —
Iz (Ninymy, oo ymy) = Hoso (digyr - diptmg—1)
1<e<r
if 2 <o < N, where IT stands for composition of terms and RV (Nyn,my,...,m.)

is the identity or the obvious constant map according as mg is N or 1.

For1 <j<r, if2<m; <N then

(do - 'dij—l)(dij+mj+l cedy) 4 2 L Amy s N
R;:.i.,ir(N;n,mh”_’mr) = ¢ (dmys1 - -dy) i; =0

(d()”'dij—l) ij+mj+1>N

and R (N;n,ma, .. ,m,) is identity or the obvious constant map according as

mj:Normj:I.

We may note here that for 7 = 1, the above definition coincides with the Defini-
tion 5.2.1. The maps defined above induce multilinear operations on the direct sum
of the cochain modules CY*(D, D) of a dialgebra D. We show that these multilinear
maps endow CY*(D, D) with the structure of a brace algebra.

Definition 7.2.3 Let D be a dialgebra over a field K. For non-negative integers
N iy ey T,y With O <4y, sy +my <o, ot H e <, trt+m, <N =

n + 37 m; — r, the multilinear maps

o i 1 CY™(D, D)@ CY™ (D, D) — CYY(D, D)

j=1
are defined as follows. Let f € CY™(D, D),g; € CY™i(D,D),1 < j <t Fory €Yy,
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and z,,...,zny € D,

fou (g1 92, TN)
= f(RY (N my, .- ST )Y Yy o Ty
GRS (N, my, - M )Y Doyt - - STy ) e

g (R (N my, - Y5 Tt - - JTi by )y s TN

In the above definition, if for some j, m; = 0, then g; € CcYD,D)
=~ Homg (K, D) = D and the corresponding input in f is simply g;.
Next we use these generalized o; products to define braces on CY*(D,D) as

follows.
Definition 7.2.4 For f € CY™(D, D), g, € cYy™(D,D),v=1,...,1,

f{glv' . 197} = Z ("‘1)7,.f Oy yenir (917" : 'ng)

i1y
where the summation extends over all iy,...,%, satisfying the inequalities as men-
tioned in 7.2.3, so that oy, ;. is defined, n = 32}, lgvliv, and |g,| = degg, — 1 =

m, — 1.

Remark 7.2.5 It may be noted that by the definition of braces on CcY*(D, D), f{g}

coincides with the pre-Lie product f o g as introduced in Definition 5.2.7.

Henceforth, we shall use the symbol f o g in order to denote f{g}. The following

proposition will follow from the Lemma 7.4.1.

Proposition 7.2.6 The braces as defined above make the dialgebra cochain complez

CY*(D, D), of a dialgebra D, into a brace algebra.
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7.3 Operad structure

In this section we show that the dialgebra complex CY*(D, D) of a dialgebra D
admits the structure of a non-Y operad. Later in this chapter, we use this operad
structure to prove that the braces as defined in Definition 7.2.4 make CY™*(D, D) into

a brace algebra. We recall from [20] the following definition.

Definition 7.3.1 A non-Y operad C of K-vector spaces consists of vector spaces

C(4), j > 0, together with a unit map 7 : K — C(1) and multilincar maps
v Ck)®C(H) ® - ®C(Jk) — C(Y)

for k > 1;4, > 0 and j = ¥*_, j,. The maps ~y are required to be associative and

unital in the following sense.

(a) The following associative diagram ‘commutes, where S5, = j, S0 = 1

b

ps:j1+j2+"'+js andQS:ips_1+l+"'+ip3»1S5§k3

Ck) ® (®_,C)) ® (®I_, Cir) 2 () ® (@)= Clir))

| I
'shufﬂe C (7)
Il T

. : : 1d®(®,
Ck) ® (R, Cl1) ® (@) Clipes)) 257 Clh) @ (®F, Ca)
(b) The following two unit diagrams commute :

clk)® K* =5 C(k)

I(l®1}kl /‘ Y
C(k) ® C(1)*
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K®Cly) = C()
Wﬂdl YAk
C(1)®C(j)

Next we proceed to show that CY*(D, D) admits a non-2 operad structure. In

order to define the required multilincar maps, we first introduce the following maps.

Definition 7.3.2 Given an integer j, with 7 = Zlej,, k > 1 and j, > 1, define
maps

[O%k; g1,y 0k) @ Y5 — s

U(kijr,.ovdi) @ Y — Y, 1<r <k

POks v, gk) = dieeodjiadji - djgordgiagpir - dsr oadsr gy

k-1 . dek-r. - dj_
Zﬁ=;JS_1 ‘::11.73‘{"1 71

= dy-dp - dpy e dy dp o dp—1 forall 1<r<k—1,
and
I"(k;gi,- k) = do-- 'dZ:;;js_le:=1j3+l i .de=l]‘s
= dy---dy,_, 1dp 1 d;
where p, = j1 +j2+---+7jr, 1 <7 <k, and the symbol d; appearing in any expression

means that the map d; has been omitted.

Remark 7.3.3 Given integers j, £k > 1, j, > 1 with j = Sk, Jr, we shall often
write the map T7(k; j1, ..., jk) simply as I, for all 7 = 0,1,..., k. However, to avoid
confusion we shall write the maps I'™ explicitly, along with the values of £, ji, ..., ji,

whenever necessary.
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Our main aim is to prove the following result.

Theorem 7.3.4 For a dialgebra D over a field K, the dialgebra complez CY*(D, D)

is a non-2 operad of K -vector spaces.
In order to prove the above theorem we make use of the following lemma.

Lemma 7.3.5 Let j, > 1, 1 <r < k be integers with j = Zlejr. Let 1 = Zle i,
with integers i, > 1. Set ps = j1 +Ja+ -+ 7Js and qs = 1y, _, 41 + - +1p,. Then for

1 <5<y, 1 <r <k the corresponding maps

LO(k; g1,y dk) 1 Y — Yy I(k;gr, .-y dk) 0 Y; — Y,

35501, ...,45) - Yi — Y] [Pr=x®s(giig, .. ,45) Yo — Yy,
%k q, -, q0) : Yi — Yy I(k;qu, .. q) - Ys — Y,

L0 41y - e s Ippabie) © Y, — Y5

L (G e rbts - o5 Bproytgn) Yoo = Yip 4

satisfy

(a) T°k;jv, .-, 36) L0055 %0, -0 35) = T0ks qu, - - -y qi),s

(b) T7(k;g1,. s 30T 500, -0 %5) = T00Uri tprtts - - - ipy 43 ) DT (B 1y Gk,
(¢) TPr=4s(5iay, . 45) =T (Grs gt s oy yeg ) DT (RS Q- Q).

Proof. The proof of the above lemma is a repeated application of the simplicial

identity d,;dj = dj—ldia 1< ],

By Definition 7.3.2, the operator I'°T"° on the left hand side of the equality (a) is

given by two strings of operators as

T = (dl"'dp1"'dpz"'dpk—1'Hdi’k“l)



Now that operator d; at the extreme left in

dy-dy, - dy, - d

Pk—1

cod

pr—1

can be brought to the extreme right by successive application of d;d; = d;_1d;,1 < j,

yielding

Ay odyy oy dyy o dy e dy, ad,

Now, by applying d;_id; = d;d;,7 < j, the operator d; at the right of the above
string can be pushed into the string

d]"'dn ...(jil+i2...(] -1y e disy,
e=1"t
to recover the operator d;,, and thus yielding

10 = (dy -+ dp, -~ dpyr -y oy oy 9)(dy o dyy iy gy dmior, e disy)

t=1 Lt

We repeat the above method, each time starting with the operator d; at the left

of the first string to recover an omitted operator in the second string. After (p; — 1)
number of steps, we get
FOI'\O — (d2 .. 'dpz—mdm—(m—'Z) ce dpr—pldpr—(px—Q) e
dpk—l_Plde;l_(Pl—z) o 'dl)k—m)(dl T di1 T di1+i2 o

dy, cod P -di_1),

t=1
since q; = 41 + - - - 1,,. Again we apply the above method starting with the operators
dy, ..., dy,—p,, at the left end of the first string to replace all the omitted opera-
tors between dg 4 and dg 44,1, of the second string. Proceeding this way, all the

operators of the first string can be exhausted to yield
rre = dy- - df11—1d111+1 o 'd(11+(12—1dlll+ll2+1 T

Ay g1y gerr sy gdesier e ding
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Observe that 3>5_, ¢, = 1.

But this is the operator I'Y of the right hand side of the equality (a). This proves
part (a).
To prove (b) first note that, the operator I'’on the right hand side of the equality

(b) can be expressed as

D= di o dyry - dgr) -+ dyrge-1) - g1,

where g(r,s) =1p,_ 41+ p,_,42 + -+ +1p,_,+s. Hence, by Definition 7.3.2, we have

r'r = (d;-- 'dq(r,l) .. 'Jq(r,2) o dgirjo—1) " dgr—1)(do - - .dzr_l —le:=14s+l e

s=19s

and

IT0 = (dy- - dp, , 1dp, i1 dp,)(dy - dy "'di1+i2"‘de:1u"'d i1 -eedisy)

e=1"t

Now, I'"'T'° comprises of two strings of operators, denoted by the parentheses.
Using the pre-simplicial identity d;_,d; = did;, 1 < j, the operator d,, of the first
string can be shifted to the right of the second string, in the form of d;, to get

T = (do---dp,_,1dp. g1 dyy1)(dy iy diy iy - cdeo1 I ~di_ydy).

t=1
This is because the number of operators in the second string ist—j and py+¢1—7 = ¢.

Now let us look at the operator d,,_, in the first string of the above expression of
I'"I"® and we keep on commuting it with the operators in the second string by using
d;j_1d; = d;d;, i < j until we reach the operator d<;-: i

t=1

., . i—1 . .
before it is then d,, 14, where € = 3372, 4, — j as there are € number of operators

.- The operator immediately
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before dg~-1, - If we apply d;j_1d; = did;, 1 < j, once more then we get back the

t=1

omitted operator dy~ -1, and I'"TY becomes
t=1

I“rfo = ((l() 17’r 1= ldpr-i-l dl)k 2)((11 jzl v (ji1+i2 e (ZZ::I d
.d j*lil"'di—ldi)-

t=1

11‘

Similarly all the operators d,, 11,...,d,, —» can be embedded in the second string

to replace the omitted terms d pral ydgi-2, r respectively, using the identity
d]‘_ldi = didj, 1< 7.

t=1 t=1

So, I''T'Y now takes the form

(do - dp,_,—1)(di-+diy - diypig - 'de;lig—lef;l 0 Ay g -d;).
Now observe that by the simplicial identity d;d; = d;_1d;,7 < j, the string
dody - - d

Pr-1—1

is equivalent to dod; - - - dp,_,—2d;. Thus,
T = (dody - - - dy,_,_ody)(dy - - cdyy e diy gy dZ c—lef;li:de;, i1 i)

Now again by applying d;_,d; = did;,% < j, the operator d; at the extreme right of
the string dod, - - - dp,_,—2d; can be pushed into the string

dicoodiy iy o dyer g dyer g dser e da
to recover the operator d;,. Thus I'"T becomes
rp0 7 M
TP = (dody - -+ dp,_y—2)(dy -+ o iy - iy - doyoer g ydsooe o dsoer gy e dy).

By repeated application of the previous step, all the operators di,...,d, ,—; of

the first string in the above expression can be embedded in the second string using
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d;_1d; = didj, 1 < 7, toreplace the omitted operators d; , . . ., dp, -1 - ' Having done

t=1

this, ["T'Y becomes

(10(11 Tt dll Tt (lll+12 N dzl’r H ’L St JZT;] “(12:’2111_*_1 T d’l.
= (do(ll s dzr 1%*1)(6121:”1 1 d Pr_1tu i cet dzf;l i‘_l)(dz:=1 Q@+l di),

t=1
as z;;} qs = >0 1, where 1 < u < j,.
Now observe that the entire string of operators

(gt v oo dyrr i),

t=1

1 < u < j,, can be moved to the extreme left, using d;d; = d;_1d;, 7 < j,. Since

there are Y.7_] q; many operators in the first string, the suffix of each of the operator

appearing in the sequence dx~rr-1 o deppy+u. - -dswer o will be reduced by
& Z =1 utl t—=1 1t Zt:l“ 1

SIT1qs = Yb7t 4, Having done this we get

v

Gpp_y+1Fip. g 42) T d(ipr_1+1+"‘+ipr~1+jr—1) - dg, 1)

T = (d;--d;

pr_1+1

.d(

(do - - .dz:;; 01957 g1 i=Zf=] Qs)

= (v dygray o) dytrgo-n)dg 1) (do - dgver ds e
diZZf:x qs),
as q(r,s) = ip,_, 41 +ip, 42+ - +ip_,4s, which is precisely the expression for T°T".

Finally, to prove (c), we have by Definition 7.3.2,

I—‘pr~l+s — (do...d frll+s 1_t_1)(d f;;1+sit+1"'di)
and
D7 = (o -y rdmyes g+ dsos e o odse )
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We note that the expression of I'*I' can be rewritten in the form

(do - dyirs—1y—1dgr,sy+1 - g, ) (do - ”(jzpr . dz i i)

Now using d;_;d; = did;, @ < j, the operator d,, can be shifted to the right of the

sccond string by interchanging successively $°777" ¢, number of times, to get
ST — [ .« .. [ . P .
°r" = ((l() dq(r,s—l)—ldq(r,s)+l d(h_l)(do dz;’;;L it*ld‘/_:fll “(12:’;1 il (11),

as gy + Y01 i, = Y0, 4. Treating all the operators dg(rg)41, -, dg, -1, similarly, we

have

I = (d() ce dq(r,s—l)—l)( dzfrlx i—1 Z” 1+s dzpr dzf;l i1 di),

as q(r,s) + 1+ 207 4, = Y01 "4, + 1. Again, all the operators do, - -, dg(r,s-1)-1

can be moved to the right, by 577" 4, places, using d;_d; = d;d;, © < j, to yield

srr = (doﬂ'dzf;fliz—ldzprl o lmproy Ham iy 1)(d proite 1~--d2’t’;lu

t=1 U t=1 = t=1
)

— r‘Pr—H’S'

This proves (c) and completes the proof of the lemma. ]

Proof of Theorem 7.3.4. For each j > 0, set
C(j) = CY?(D, D) = Hom(K[Y;] ® D, D).

Note that
C(1) = Homg(K[Y1)® D, D)

~ Homg(D, D).
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Define the unit map n : K — C(1) by n(1) = idp. Now, for £ > 1,5, > 0 and
7 = 37, define multilinear maps

k
(7.1) v:CYH(D, D)@ Q@ CY" (D, Dy — CYI(D, D)

r=1
as follows : For f € CY*(D, D), g, € CY’'" (D, D)
Y590 g ys 21 35)
= fTW) T W)z, 25), 92(T2(Y)s 2010+ o5 Tjraga) s ooy
ge(CEY)i o) ooy L))
= fCW@sa@ @)z 200, 0202 W) Tpists - Tpa)s s
gk (T W) Tp 1, -+, Tp))
where [0 = I'%(k;j1,...,0k) 1 Y; — Yy, and I7 = I (k; 1, ..., %) : ¥; — Y, are
the maps as defined in 7.3.2, z,,...,z; € D and y € Y}.
It may be noted here that if j, = 0 for some r, then g, € CY%D,D)
Homk(K, D) = D and the corresponding input in f is simply g,.
To check associativity, let f € CY*(D,D),g, € CY’"(D,D),r = 1,...,k, and
hy € CY*(D,D),t=1,...,5 = ¥F_ j.. As in the above lemma, let

j
P=D i ps =St 2t ey Gs = p_ 1+ F b,
t=1

Also set qgs) = tp,_ 41+ tp, 142+ ip 4, 1 <5 < g Then
(72) 70(7®1d)((f1 g1, - 7.(]16)1 h’la h27 ceey h]) - ’)/(,)/(fu gis .., (]k)v hl) ey h‘])
On the other hand, shuffle yields

shuff
(Fr g1 gk bty b)) S (F (g0 hay o k) (92, sy - ),

(gk) hpk_1+], NN h’Pk:j))'
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Now, composing with v o (id @ (@,7)) we get,

vo (id @ (@) o (shuflle)((f, g1, .-, 9x), hiy oo, 1)
(7.3) = y(fivlg ol ) v (92 e Ry )l
TG Py p=5))-
To show that (7.2) and (7.3) arc the same cochain in CY*(D, D), let y € Y; and

Ty, &y, ..., x; € D. Then,

7(7(f’(/17 s a.(]k);hla - -,h«j)(:{/;fl;l,- .. axi)
(74) - ’Y(f;glv"'agk)(roy;h‘l(rly;xl:’"7$i1)a}1’2(r2y;$i1+1)'"7I’i1+12)7"'
h](F]yi‘EZi;: Q1 7$i))

where,

FOy = Fo(j;ilv"'aij)y:dl"'dil"'di1+i2”'d {::it"'di—ly)

My = T(j5a,..., )y =do---d g Ay eprdiy, lsusy
Now by definition of v, as given in (7.1), the equation (7.4) is
= f(IT%; g1 (D' T0; ha (Plys 21,5 24y )s - - -

NANITTE ) .
hi (I y’xZiLI’nH""’$Zi‘=li¢=q1))"“’

(7.5)
k7o, NIRRT G
g (TFT 0y hyy o (TPE1F I S RN EREREE f:ﬁlit),h..,
AT T 0y pos .
h](r :l/)’l’zlt;ll i1 >x1)))
where

PT% = T%k; g1, 0050, 4)Y
=y oy, dyerdy iy dses, o diy
t=1 't

and for 1 <r <k

F"Fo’y = Fr<k7.}177]k)ro(-]’?1"[])y

= oo edy iy dydi o diy e dyy o dyen o diy,

108



On the other hand,

(76) V(f‘/)/(qh h’la c }L[)1)7 s )V(Qk, h’pk*1+17 cy /ka—_:]))(y;fl:h s
= f(;v(g1; h, - b YTy, mg, ), -
7(gkw hpk~1+1a ey hpk:j)(r‘ky; xz’:;]‘ FES LR ,IZ’:ZI (la:i))

where
My = I%kq, @)y

= d,-- 'dql . "dm+q2 - -'dzk*lq . '(1Ef:1qs“1y

and for 1 <r <k,

Fry — FT(k’ g1y .- -, Qk)y
— dO I dz:;ll qs_l(lZ::l go+1 ‘e . dzle qs:iy.

By definition of 7y, (7.6) can further be written as

= f(Py; n(TT y; b (D Ty 20,y 24 ), - -
hjl(Fjll—‘ly; 1'2{1::1it+1, Cee qu)) cey

ge(TOT*y; hpya (P TRy T

s=1

gs+17 " kS

hj(rjkrky; xZi;f PERTEES ,$i)))

where . :
TOT7y = TO(5r tp ybts- s bpy i) LT (K5 Q1,5 QR)Y

= (dy--- dq(m) codgray darge—1) “dg 1)
(do T dz:;; qsgle::] gs+1 777 dz'::l q,:z‘)y’
and
FSFT:U - Fs(jr;iprwl—kla'"'ail)r_..1+jr)rr(k;qla"'7qk)y
- (dO o dq(r,s~l)—1dq(r,s)+1 o dqr)
(o dyrt 1y g At g2
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for1<s<j,and 1 <r <k

Comparing (7.5) and (7.7), and using the Lemma 7.3.5, it follows that the cochains
I g g

in (7.2) and (7.3) are the same.

To check commutativity of unit diagrams, let f € C(k) = CY*(D, D), v, ..., €
K. Then,

yo (iId@n*)(f ® (an,..., ) =v(f; 01, ..., o)

where we identify «; € K with the map

oy I([Yl]®D — D

(y;0) = ca
foralli =1,2,...,k. If ¢ denotes the isomorphism
C(k) ® K* = C(k),

then

o(f ® (ar, .-y ) (Y5215 - -y Tk) = f(ys nz, - -y QkTE).
Now,
Y(fiou, . o)Wz, ak) = f(Dy aa(Tly; ), aw(Thys 2x))
where % = y,as T =T%k;1,...,1) and "y = dp -+ dy_adry1---dpy,1 <7 < k.
Therefore,
v(fion, . ak) (YT, ., Tk) = fly;apxy, .., Q).

Hence,
vo (id@n)(f® (a,... ) = o(f © (.-, ).
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Also for f € C(j) and o € I,

v @id)(a® f) = v(x; f)

where « is regarded as an element of C(1) as above.

Now,
e iz, 1y) = ol f(Tyz, 0 25))

where [y = I°(1;j)y = dy...dj 1y and Iy =T(1;5)y =y Thus

o Nz, .- o35) = oy fyizn, . 5)
= af(y;T1,...,2j)-
where y' is the only tree in Y.

Note that ¥ : K ®@ C(j) =5 C(j) is given by

Y(a® f)(y;z1, .- 75) = af(y;z1, .-, T5)-

This completes the proof of the theorem.

7.4 Braces induced by the operad structure

We recall from [12] that if C(j),j > 0 is a (non-Y.) operad with multiplication map

v, then the graded vector space C = @ C(j) admits a brace algebra structure given

by

Flon, gt = (=) (fidp, - idp, g1, idp, . idb, gn,idp, - -

where the summation runs over all possible substitutions of gi,..

., gn into f in

the prescribed order, and € = 320, lgpliy, 7, being the total number of variables
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one has to input in front of g,. Here id, represents n(1). The brace identity is a
consequence of the commutativity of associative and unit diagrams. Therefore, in
view of Theorem 7.3.4, we sce that CY* (D, D) admits a brace algebra structure. The
following lemma now shows that the braces as introduced in Definition 7.2.4 makes

the dialgebra cochain complex into a brace algebra.

Lemma 7.4.1 The braces on CY*(D, D) induced by the operad structure coincide

with the braces as introduced in Definition 7.2.4.

Proof. Let f € C(k) = CY*(D, D) and g; € C(m;) = CY™ (D, D),1 <1< n.

Then according to M. Gerstenhaber and A. A. Voronov [12], the brace induced

by the multilinear maps 7 are given by

g,y 00} = Z(—l)‘w(f;id, id, gr,id, .. id, g, id, L id)

where id = idp = 7(1) and the summation is over all possible substitutions of
G1,...,gs into f, in the given order and € = 3270, |gpl1p, i, being the total number of

inputs in front of gp.

Observe that in the term
(=D y(f;id, ..., id, g1,id, ..., id, gn, 1d, . .. ,1d)

of the above summation, the total number of identity entries in v is k —n, the total
number of identity entries in front of g is 7, and the total number of identity entries
in front of ¢, is 7, — Y-} my, 2 < r < n. Moreover, the following inequalities hold:
n
0< iy, 0 4+my <igyoenylpoy + My S by by 100y < k+ th - n = N, (say).

t=1
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By definition of v as given in (7.1), we have for y € Yy,

(7.8) v(fiid, . ad grad, o ids g ids id)(y; a0, xw)
— 0, . o SEATE o DA P - o
- f(r !/1‘1’17"'7‘1‘i17.(11(1 : !/7'Li1+1)"'7'I‘ll+‘ln1)7J'il+7nl+lv'"7‘1‘12)
tp—mi1+2,,. o - o .
.(/'Z(F : BRI TES PR a'l’i2+"12)) Tigtmatly -5 Lins

In (Fin—zzzll myebn, .

(AR P -a$in+mn)7 s ):I:N>>

where
P = I?P(kl,....,my, 1., L,mg, ... ymey, 1,001
—_—— ——
13 ip—my—11 Tr—Tp_]—lpr—1
me, 1, o mp, 1,00, 1)
——

N—-mp—in

for 0 < p < k. Note that in the definition of v as given in (7.1), the map I'* yields
the only tree in Yy when operated on y if j, = 1 by Definition 7.3.2. In other words,
'™ is the obvious constant map. For instance, by Definition7.3.2, the map [ut+?

appearing in (7.8), is given by

Iit2 = dy- - digyymy )18 emir2) 11 AN
= dy- - diy 410 pmiy2 Ay
and consists of N — 1 face maps d;, hence T'"*?y = ¢/, where y' is the only tree in
Y;. Hence the corresponding input id(y'; ;) in 7 is simply z;.

Now according to Definition 7.3.2, we have

o . . y .
0 = dy-diydiyyr - diypmy 1 diy4my diydiy 1 - diggmy—1diymy

coodiy oy diy

"din+mn"'dN
= di1+1 T di1+ml~ldi2+1 e 'd1’2+mr1 coodi

T dir+mr—1 T dln+l o din+mn—l

— R as introduced in Definition 7.2.2.
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. r—1
Also the operator [ir= i Mot corresponding to g,, is given by

r—1 -
[ir=2oimy MetT dy---d,. . - d,. _ .
) 0 (Z"_Zz:; m¢)+Z::: my—1 (1,—22211 nu)+z:£=ll my+me+1

“dy
Recall that the number of identity entries infront of g, is 7, — >.j2} m, and their
degrees sum up to i, — 3_;_! m; and the sum of the degrees of gy, ..., ¢, is Sz my.
Thus,
. r—1
1 — ng+r
D=2 ™+ = ooy yds g A

= R, asintroduced in Definition 7.2.2.

It follows that the N-cochain
y(f;id, ..., id, g1,id, ..., id, gn,id, ..., id)

is same as f o, . (91,...,9,). This sets up a sign preserving bijective correspon-

dence between the terms of the summation

S (D) (fiid, ... ,1d, g1,1d, ..., id, ga,1d, . . ., 1d)
where the summation is over all possible substitutions of g;,..., g, into f, in the

given order, ¢ = 3_7_, |gplip, ip being the total number of inputs infront of g,, and

the terms of the summation

Z(_l)”f oilr--in (g17 et 1!]71)

where the summation is over all 4, ...,7, such that 0 < ;,2, + my < t9,..., 0, 1 +
Moy <y by + My <k + 0 ms —noand 9= 301 gy,
Thus the braces as defined in section 2 are precisely the braces induced by the

(non-Y) operad structure. ]
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7.5 G-algebra structure on cohomology

In this final section we show that the dialgebra cohomology HY (D, D) of a dialgebra
D has a G-algebra structure which is induced from a homotopy G-algebra structure

on the dialgebra cochain complex CY*(D, D) with the differential altered by a sign.

Let us first recall the following definitions from [12].

Definition 7.5.1 A homotopy G-algebra is a brace algebra V = &,V" provided
with a differential d of degree one and a dot product z - y of degree zero making
V into a differentially graded associative algebra. The dot product must satisfy the
following compatibility identities:

(79) (:I;l . 1"2){:(/1’ L 7yn} = Z(_1)€$1{yl» sy yk} * m?{yk-}-h .. 7?/11}7

k=0

where € = (|z2| + 1) 0, [y, and

d(z{zy1, ..., Top1}) = (d2){z1,. .., Tny1}

— (=Dl ot () lmletlEad g Ly L day, L T )
(=1)U=lDlelgy g l{ay, . T}

— (=Dl (—1)lmlteHml g e T, Ty )

+(_1)|z|+lxl|+]xn|${xl? L. ,xn} . In+1~

(7.10)

Definition 7.5.2 A multiplication on an operad C of vector spaces is an element
m € C(2) such that mom = 0, where mom := m{m} and { } denote the associated

braces.

The following lemma shows that the operad CY*(D, D) is equipped with a mul-

tiplication.



Lemma 7.5.3 The 2-cochain m € CY?(D, D) defined by

(7.11) {”([21];a,b) — adb
m([12];a,0) = atb

for all a,b € D is a multiplication on the operad CY*(D, D).

Proof. By Remark7.2.5, we only need to verify that 7 o7 = 0. Now, by definition

of pre-Lie product in section 2 of chapter 5, we have for y € Y3 and a,b,c € D,
mo 71'(yu a, b7 C) = (7T Op T — T Oy Tf)(y, a, ba (7).
Thus for y = [321],

mon([321];a,b,¢) = (wogm — moy m)([321];a,b,c)
= 7([21];w([21}; a,b), ¢) — 7([21}; @, w([21]; b, ¢)
= (a-db)dc—a-(bdc)
~ 0

by dialgebra axiom 1 of (1.1).

For y = [312],

mom([312];a,b,¢) = (mogm — 7oy m)([312];a,b,c)
= (21 a(21)0,0), ) - n((21]; a,7([12): b, ¢)
= (adb)dc—a-(bFc)
= 0

by dialgebra axiom 2 of (1.1).
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For y = [131],

mon([131};a,b,¢) = (woyw —moy m)([131];a,b,¢)
— w21 (12 b),¢) — 7([12] 0, 7((21]; b,
= (aFb)dc—at (bc)
= 0

by dialgebra axiom 3 of (1.1).

For y = [213],

mon([213};a,b,c) = (mogm — 7oy m)([213];a,b,c)
= 7([12);7([21];a,b),¢) — w([12]; a, 7([12]; b, c)
= (a-db)Fc—at (bFc)
= 0

by dialgebra axiom4 of (1.1).

For y = [123],

mom([123];a,b,¢) = (mogm — oy w)([123];a,b,c)
= w([12;w((12]; a,b), c) — w([12]; a, 7([12]; b, )
= (aFbFc—ak (bt
= 0

by dialgebra axiom 5 of (1.1). This completes the proof of the lemma. n

In order to show that the dialgebra cochain complex CY*(D, D) admits a homo-
topy G-algebra structure, we shall make use of Proposition 2(3) from [12], which we

describe below. Let C denote an operad, m a multiplication on C and m o 2 denote

m{z}.

117



Proposition 7.5.4 The product
v yi= (<)M iz, )
of degree 0 and the differential
dx:mo:c—(~—1)|”|.7:om, d* =0, deg d =1,
define the structure of a differential graded (DG) associative algebra on C.

First, we observe the following two facts.

Remark 7.5.5 Note that by Lemma 5.3.6, the coboundary operator
0:CY™"(D,D) — CY™!(D, D)
can be expressed in the form

(7.12) of = (—1)|f|(7r of — (-—l)mf o) = (—l)mdf.

Remark 7.5.6 The « product, as introduced in Definition 5.3.1, can be expressed

in terms of braces as

(7'13) frg= (~1)(|f|+1)(|g|)7r{f,g}.
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This i1s because, by the definition of braces on CY*(D. D
b] 9, b b

L9 yian L ag) = (DM Dmog (£, 9) (g2, i)
= (D" Vn(RY(p + 45 2,p, 0)y;
J(R (04 4;2,p,9)y; 71, ..., ),
9B (P + 42,0, 0095 Tpir, -, Tyrg)
= (=1)PIr(d, - dpadpyy o dpy g1 (y);
fdpyr - “dpiq(y); 71, - - Tp),
9(do - dpr (¥); Tpi1, - - -, Tpag))
= (=1 Vn(dy - dpordpr - g (y);
f(dp-Hdp—H o 'dp+q—1(y); T, - 'Ip)’
9ldo -+ dp1(Y); Tpy1, - -, Tpig))
= (=P Ir(RUp + 1,2, p)RY(p+ g0 + 1, ) (v);
(RSP + L2, )R+ ap+1,9)(y); 21, .. ., ),
9B P+ 6P+ 1,0) (1) Tpr1s - -, Tpey))
= (=1 f s gy, ..., zp).
Here we make use of the fact that the operator dy4q in the string of operators
dpt1---dpiq can be moved to the extreme left of the same string using d;d; =

dj_ldi,i < 7, to yield dp+1dp+1 s dp+q—1-

Therefore by equation (7.13), the dot product f - g determined by the multi-
plication m as in Proposition 7.5.4 is in this case, nothing but the x product, upto
the sign (—1)I/+D0U94D  Moreover, the differential d determined by m as in Propo-
sition 7.5.4 is merely the coboundary operator §, upto the sign (—1)MD that is,

df = (~1)U05(f).

Consequently, by Proposition 7.5.4 and Theorem 7.3.4, we deduce that
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Corollary 7.5.7 The graded cochain module CY*(D, D) equipped with the product
[ * g, altered by the sign (=1)WHDASHD i the coboundary df = (=D)VI5f s q

differential graded associative algebra.

Next we recall Theorem 3 of (12].

Theorem 7.5.8 A4 multiplication on an operad C defines the structure of a homo-
topy G-algebra on ®xC(k). A multiplication on a brace algebra is equivalent to the

structure of a homotopy G-algebra on it.
Thus in view of Theorem 7.3.4, Theorem 7.5.8 and Lemma 7.5.3 we have

Corollary 7.5.9 The cochain complez (CY*(D, D), d), where df = (=DVIsf is q
homotopy G-algebra with the dot product f - g = (—1)I/1+00gl+1) £ qg.

As a consequence, we have

Corollary 7.5.10 The cochain complex (CY*(D, D),d) is a differential graded Lie

algebra with respect to the commutator [,y =zo0y— (=1)lellvly o o,
Proof. The brace identity, form =n =1 implies that

117{5131}{3/1} = ${$1,y1} + 5’3{371{3/1}} + (—1)|xl,'yll${y1,1?1},

as 0 <1y <5 < 1.

Using Remark 7.2.5, we deduce from above that

(7.14) (zoz)oy, —z0(z)0 yi) = z{z, )} + (—l)m”l“lw{yl,;zrl}.
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In order to verify that the commutator satisfies the graded jacobl identity, we

proceed as follows.

(= 1)z, y], 2] + (= 1)y, 2], o] + (= 1)z, 2], y]

— (_1)lzllzl[x oy — (_1)|xl|y|y oz, z] + (,1)Iyllrl[y oz — (_1)iy|lzlz ° y,I]
+(_1)lll|y|[z o — (_1)|Z||I|:L o z7 y]

_ (_1)|z]|z!(($ o y) 0z — (_1)|zoyHZIz o (3; o y))

_1)lfv|(ly|+lzl)((y ox)oz— (—l)ly””’zlz o(yoz))
1)|y||1|((y oz)ox — (—1)|y°ZH$I$ o(yoz))
1)zl ((z 0 y) 0z — (—1)¥Flz 0 (2 0 y))
vl((zoxz) oy — (—1)kezlvly o (2 0 7))
1)z (g 0 2) oy — (—1)FWly o (2 0 2))

+

(
(—
—(=
+(-
(-

= (=1)elEl((zoy)oz—z0(yoz))+ (=1)l#¥l((zoz) oy — z0 (x 0 Y))
— (=)Dl (y o z) 0 2 — y o (w0 2)) = (=) FFEIM((zoy) oz — z 0 (y o))

HDWE (o 2) oz~ yo (z0m)) — (~) IR0 2) oy — w0 (s0))

(as |y ozl =lyl+|z| etc)

= (=~ {y, 2} + (~D)PF{z,p}) + (DM {z, v} + (-D)FM{y, 2})
(D) WheDlel(y {2, 2} + (=D)ElEly {2, 2)) — (1)l (2 {y, 2}
(=)l g,y + (D) ({2, 2) + (- 1)y {z, 2})

(=)D (2 )+ (— 1)l {y, 2))
(by (7.14))
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by cancellation of terms.

Moreover, the dot product is always homotopy graded commutative, that is
(7.15)  z-y— (—1)lEHDi+n, (=1l (d(z o y) —dzoy— (—1)"z0dy).
This follows directly from equation (7.10) as

(=D)lel(d(zoy) —dzoy — (—=1)lz o dy)
= (= D)lEl((=1) (DIl gy (1)l )
=y — (=)0,

Also, the differential is a derivation of the bracket. This follows from the homotopy

graded commutativity of the dot product.

dlz,y] - [dz, y] - (~1)"[z, dy]
= d(zoy— (-1)kl¥lyoz) — (dzoy — (—1)le=livly o da)
~(=1)Pl(z o dy — (~1)1dy o 2)
= d(zoy)—dzoy— (=1)lzody
—(=1)klvl(d(yox) — dy oz — (=1)W¥ly o dx)
= (~Dbl(g.y— (—1)Uel+1)yl+1)y, )
—(=1)l=llvl+l(y . g — (=1) (=Dl 4 Y)
(by (7.15))
= 0.
This shows that every homotopy G-algebra is a differential graded Lie algebra with

respect to the commutator [z,y] =z oy — (—1)Fl¥y o g m

Next we recall the following definition from [12].

Definition 7.5.11 A G-algebra is a graded vector space H with a dot product z -y

defining the structure of a graded commutative algebra with a bracket [z, y] of degree
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—1 defining the structure of a graded Lie algebra such that the bracket with an clement

is a derwation of the dot product :

[z,y2] = [z, y]z + (— D)=y p 2]

Corollary 7.5.12 The * product  * y, altered by the sign (—1)ISHDWIHD and the
bracket [z,y] = zoy—(—=1)*Wlyox define the structure of a G-algebra on the dialgebra

cohomology HY*(D, D) of a dialgebra D.

Proof. First observe that HY™(D, D) = H"((CY*(D, D),¢)) = H*((CY*(D, D), d)).
The fact that the dot product z-y = (=1)#*1x{z, y} lifts to the cohomology follows
from Proposition 7.5.4. Equation (7.15) implies that this dot product is graded com-
mutative. Moreover, by Corollory 7.5.10, the bracket [z,y] = z oy — (=1)F¥ly oz of
degree —1 defines the structure of a graded Lie algebra on HY™*(D, D). It remains
to show that the bracket with an element is a derivation of the dot product.

First we show that the commutator [z,y] = z 0y — (—=1)vly o 2 for all ,y €

CY*(D, D) is a graded derivation of the dot product up to null homotopy, that is

2,y - 2] = [2,y] - 2 = (= 1)WYy 2]
(DRI Ay, 2)) — (o) 2} — (—OFla{dy, 2} — (=) Py, dz)).
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By definition of the commutator, we have

{;,;’ Y- Z] — [a:,y] R (_J)IIM!/\ ”)y . [_,1;’ z]
—go(y 2)— ()Y z)on = (woy — (- Wlyor) -2
(1)l )y (g oz — (—1)lEz 0 )
(wo(y-2) — (~EWIy (roz)— (roy) )
_(_1)\Illy‘2|(y cz)ox — (Al)lrllyi(y ox)-z+ (_1)|wl(lyl+IZH-1)y (z o)
~ oy — (~1)FBIy  (ro2) — (zoy) - 2)
_(_1)lzl(lyl+|zl+1)((y z)ox —y-(zox)+ (_1)l'f-l(lz|+1)y 0x.2)
—gzoy.z— (=)W (z02) — (zoy)- 2
as ((y-z)oz—y-(z0x)+ (=1)l=l=4 Dy 6 3.2) = 0, by equation (7.9)
(1) Ay, ) - (de){y, 2} — (~D)le{dy, 2} — (- D)y, dz))

by equation (7.10). This implics that {2,y - z] = [z,y] -2z + (=)l y [z, 2} for
all z,y,z € HY*(D, D). Thus HY*(D, D) admits a G-algebra structure. ]
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